WO2018030465A1 - Curable resin composition for printed wiring board, dry film, cured product, and printed wiring board - Google Patents

Curable resin composition for printed wiring board, dry film, cured product, and printed wiring board Download PDF

Info

Publication number
WO2018030465A1
WO2018030465A1 PCT/JP2017/028927 JP2017028927W WO2018030465A1 WO 2018030465 A1 WO2018030465 A1 WO 2018030465A1 JP 2017028927 W JP2017028927 W JP 2017028927W WO 2018030465 A1 WO2018030465 A1 WO 2018030465A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fine cellulose
resin composition
carboxyl group
printed wiring
Prior art date
Application number
PCT/JP2017/028927
Other languages
French (fr)
Japanese (ja)
Inventor
柴田 大介
夏芽 大川
宇敷 滋
崇夫 三輪
恭平 大和
吉晃 熊本
Original Assignee
太陽ホールディングス株式会社
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽ホールディングス株式会社, 花王株式会社 filed Critical 太陽ホールディングス株式会社
Priority to CN201780048663.2A priority Critical patent/CN109565932A/en
Priority to KR1020197006887A priority patent/KR20190050980A/en
Publication of WO2018030465A1 publication Critical patent/WO2018030465A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/288Alkyl ethers substituted with nitrogen-containing radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Definitions

  • the present invention relates to a curable resin composition for a printed wiring board (hereinafter, also simply referred to as “curable resin composition”), a dry film, a cured product, and a printed wiring board, each containing a hydrophobized fine cellulose fiber.
  • a printed wiring board is for connecting and fixing electronic parts by applying conductor wiring to an insulating substrate.
  • the insulating layer and conductor layer may be multilayered or a flexible insulating substrate may be used. It is an important part in electronic equipment.
  • a printed wiring board is also used for a semiconductor package, and the curable resin composition for a printed wiring board and a dry film are used as an outer layer after the wiring board or the semiconductor is mounted.
  • Patent Documents 1 and 2 propose a technique using a material in which fine cellulose fibers are dispersed in a composition.
  • Patent Documents 1 and 2 have a problem in that the reliability of the metal conductor is deteriorated and the reliability is lowered.
  • an object of the present invention is to provide a curable resin composition for a printed wiring board, a dry film, a cured product, and a printed wiring board, which can obtain a cured product having low thermal expansion and good adhesion to a metal conductor. It is to provide.
  • the present inventors have found that the average fiber diameter is in a specific range, the average fiber length is not more than a specific value, and the aspect ratio representing the ratio between the average fiber diameter and the average fiber length is in a specific range.
  • the inventors have found that the above-mentioned problems can be solved by using a hydrophobized fine cellulose fiber having a carboxyl group, and have solved the present invention.
  • the carboxyl group of the fine cellulose fiber having a carboxyl group is modified with at least one of an amine compound and a quaternary ammonium compound to be hydrophobized.
  • a resin composition comprising fine cellulose fibers and a curable resin,
  • the fine cellulose fiber having a carboxyl group has an average fiber diameter of 0.1 nm or more and 200 nm or less, an average fiber length of 600 nm or less, and an average aspect ratio of 1 or more and 200 or less. It is.
  • the resin composition of the present invention preferably further contains silica. Moreover, it is preferable that the resin composition of this invention contains at least any 1 type of a thermosetting resin and a photocurable resin as said curable resin.
  • the dry film of the present invention is characterized in that the curable resin composition for a printed wiring board has a resin layer formed on the film and dried.
  • the cured product of the present invention is characterized in that the curable resin composition for a printed wiring board or the resin layer of the dry film is cured.
  • the printed wiring board of the present invention is characterized by comprising the above cured product.
  • a curable resin composition for a printed wiring board, a dry film, a cured product, and a printed wiring board capable of obtaining a cured product having low thermal expansion and good adhesion to a metal conductor is realized. It became possible to do.
  • the curable resin composition for a printed wiring board according to the present invention is a fine product in which a carboxyl group of a fine cellulose fiber having a carboxyl group is modified with at least one of an amine compound and a quaternary ammonium compound to be hydrophobized.
  • Cellulose fibers and a curable resin are included.
  • the average fiber diameter is 0.1 nm or more and 200 nm or less
  • the average fiber length is 600 nm or less
  • the average aspect ratio A fiber having an average fiber length / average fiber diameter of 1 or more and 200 or less is used.
  • the fine cellulose fiber having a carboxyl group has an average fiber diameter of 0.1 nm or more and 200 nm or less, an average fiber length of 600 nm or less, and an average aspect ratio of 1 or more and 200 or less.
  • the fine cellulose fiber obtained by modifying the carboxyl group of the fine cellulose fiber having a group to be hydrophobized also has an average fiber diameter of 0.1 nm to 200 nm, an average fiber length of 600 nm or less, and an average aspect ratio. Is 1 or more and 200 or less.
  • the fine cellulose fiber having a carboxyl group is also referred to as a carboxyl group-containing fine cellulose fiber
  • the fine cellulose fiber obtained by hydrophobizing the carboxyl group of the carboxyl group-containing fine cellulose fiber is also referred to as a hydrophobized fine cellulose fiber.
  • the carboxyl group-containing fine cellulose fiber having an average aspect ratio in the above range is a fragile part existing in the natural cellulose fiber, for example, an amorphous region. Since the fiber is cut into short fibers and the distribution ratio of the crystal region increases as a whole, it is presumed that the low thermal expansibility can be maintained even though the fibers are short fibers. Moreover, since the fiber length of the obtained hydrophobized fine cellulose fiber is short, the dispersibility in the resin composition is improved and the effect as a filler is sufficiently exhibited. It is considered that the adhesiveness is excellent.
  • the curable resin composition of the present invention is suitably used for forming an insulating layer of a printed wiring board, for example, for forming a surface protective layer such as a core layer, an interlayer insulating layer, or a solder resist of a printed wiring board. Is preferably used.
  • the curable resin composition of the present invention include a thermosetting resin composition containing a thermosetting resin, a photocurable resin composition containing a photocurable resin, a photocurable resin, and a thermosetting resin.
  • the photocurable thermosetting resin composition containing is mentioned.
  • hydrophobized fine cellulose fiber The above-mentioned hydrophobized fine cellulose fiber is obtained by modifying the carboxyl group of the carboxyl group-containing fine cellulose fiber with at least one of an amine compound and a quaternary ammonium compound to make it hydrophobic.
  • the raw material natural cellulose fiber include wood pulp such as softwood pulp and hardwood pulp; cotton pulp such as cotton linter and cotton lint; non-wood pulp such as straw pulp and bagasse pulp; bacterial cellulose and the like These 1 type can be used individually or in combination of 2 or more types.
  • the raw material is mainly composed of cellulose, hemicellulose and lignin, and the content of lignin is usually about 0 to 40% by mass, particularly about 0 to 10% by mass.
  • or a bleaching process can be performed as needed, and the amount of lignin can be adjusted.
  • the lignin content can be measured by the Klason method.
  • cellulose molecules are not a single molecule but regularly agglomerate to form a microfibril having crystallinity in which dozens are collected, and this is a basic skeletal substance of the plant. Therefore, in order to produce fine cellulose fibers from the above raw materials, the fibers are unraveled to the nano size by subjecting the raw materials to beating or crushing treatment, high-temperature high-pressure steam treatment, treatment with phosphate, etc. Can do.
  • the primary hydroxyl group at the C6 position in the glucopyranose ring of the natural cellulose is selectively converted into a carboxyl group by subjecting the natural cellulose fiber to an oxidation treatment (for example, an oxidation treatment using TEMPO described later).
  • Carboxyl group-containing cellulose fibers can be obtained by oxidation. By performing this treatment, the cellulose fibers can be unraveled to a nano size with a relatively weak shearing force.
  • the hydrophobic fine cellulose fiber can be obtained by modifying the carboxyl group of the carboxyl group-containing cellulose fiber with at least one of an amine compound and a quaternary ammonium compound to make it hydrophobic.
  • a slurry in which natural cellulose fibers are dispersed in water is prepared.
  • the slurry is added with about 10 to 1000 times (mass basis) of water as a raw material natural cellulose fiber (absolute drying basis: mass of natural cellulose fiber after being heated and dried at 150 ° C. for 30 minutes) It is obtained by processing with a mixer or the like.
  • the natural cellulose fiber may be subjected to a treatment for increasing the surface area such as beating.
  • the cellulose I type crystallinity degree of the said commercially available pulp is 80% or more normally.
  • the natural cellulose fiber is oxidized in the presence of an oxidizing agent such as an N-oxyl compound to obtain a carboxyl group-containing cellulose fiber (hereinafter sometimes simply referred to as “oxidation treatment”).
  • an oxidizing agent such as an N-oxyl compound
  • N-oxyl compound examples include one or more heterocyclic N-oxyl compounds selected from piperidine oxyl compounds having 1 or 2 carbon atoms, pyrrolidine oxyl compounds, imidazoline oxyl compounds, and azaadamantane compounds. preferable.
  • a piperidineoxyl compound having an alkyl group having 1 or 2 carbon atoms is preferable, and 2,2,6,6-tetraalkylpiperidine-1-oxyl (TEMPO), 4-hydroxy- 2,2,6,6-tetraalkylpiperidine-1-oxyl, 4-alkoxy-2,2,6,6-tetraalkylpiperidine-1-oxyl, 4-benzoyloxy-2,2,6,6-tetra Di-tert-alkylnitroxyl compounds such as alkylpiperidine-1-oxyl and 4-amino-2,2,6,6-tetraalkylpiperidine-1-oxyl, 4-acetamido-TEMPO, 4-carboxy-TEMPO, 4 -Phosphonoxy-TEMPO and the like.
  • TEMPO 2,2,6,6-tetraalkylpiperidine-1-oxyl
  • 4-hydroxy- 2,2,6,6-tetraalkylpiperidine-1-oxyl 4-alkoxy-2,2,6,6-tetraalkyl
  • piperidine oxyl compounds 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4- Methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl is more preferred, and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) is even more preferred.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • the amount of the N-oxyl compound may be a catalytic amount, and is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 9 parts by mass with respect to 100 parts by mass of natural cellulose fiber (absolute dry basis). More preferably, it is 0.1 to 8 parts by mass, and still more preferably 0.5 to 5 parts by mass.
  • an oxidizing agent other than the N-oxyl compound can be used.
  • the oxidizing agent from the viewpoint of solubility and reaction rate when the solvent is adjusted to an alkaline region, oxygen or air, peroxides; halogens, hypohalous acids, halous acids, perhalogen acids and their alkali metals Salt or alkaline earth metal salt; halogen oxide, nitrogen oxide and the like.
  • alkali metal hypohalites are preferable, and specific examples include sodium hypochlorite and sodium hypobromite.
  • the amount of the oxidant used may be selected according to the degree of carboxyl group substitution (oxidation degree) of the natural cellulose fiber, and the oxidation reaction yield varies depending on the reaction conditions. The range is preferably about 1 to 100 parts by mass with respect to 100 parts by mass of natural cellulose fiber (absolute dry basis).
  • bromides such as sodium bromide and potassium bromide and iodides such as sodium iodide and potassium iodide can be used as a co-catalyst.
  • the amount of the promoter is not particularly limited as long as it is an effective amount that can exhibit its function.
  • the reaction temperature in the oxidation treatment is preferably 50 ° C. or less, more preferably 40 ° C. or less, further preferably 20 ° C. or less, from the viewpoint of reaction selectivity and side reaction suppression, and the lower limit thereof is preferably ⁇ 5. It is above °C.
  • the pH of the reaction system is preferably matched to the nature of the oxidizing agent.
  • the pH of the reaction system is preferably alkaline, preferably pH 7 to 13, and pH 10 ⁇ 13 are more preferred.
  • the reaction time is preferably 1 to 240 minutes.
  • a carboxyl group-containing cellulose fiber having a carboxyl group content of preferably 0.1 mmol / g or more is obtained.
  • the carboxyl group-containing cellulose fiber obtained in the oxidation treatment step contains an N-oxyl compound such as TEMPO and a by-product salt used as a catalyst.
  • an N-oxyl compound such as TEMPO
  • a by-product salt used as a catalyst.
  • purification can be carried out to obtain a carboxyl group-containing cellulose fiber having a high purity.
  • an optimum method can be employed depending on the type of solvent in the oxidation reaction, the degree of oxidation of the product, and the degree of purification. For example, reprecipitation using water as a good solvent, methanol, ethanol, acetone, etc. as a poor solvent, extraction of TEMPO into a solvent that is phase-separated from water such as hexane, purification by ion exchange of salts, dialysis, etc. Is mentioned.
  • the solvent as the dispersion medium is water, alcohol having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms such as methanol, ethanol and propanol; ketone having 3 to 6 carbon atoms such as acetone, methyl ethyl ketone and methyl isobutyl ketone.
  • water alcohol having 1 to 6 carbon atoms, ketone having 3 to 6 carbon atoms, carbon number 2
  • polar solvents such as lower alkyl ethers of 5 to 5, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, succinic acid methyltriglycol diester, and water is more preferable from the viewpoint of reducing environmental burden.
  • the amount of the solvent used is not particularly limited as long as it is an effective amount capable of dispersing the carboxyl group-containing cellulose fibers, but is preferably 1 to 500 times by mass, more preferably 2 to 200 times the carboxyl group-containing cellulose fibers. Can be used at mass times.
  • a known disperser is preferably used as an apparatus used in the miniaturization process.
  • a disaggregator, a beater, a low pressure homogenizer, a high pressure homogenizer, a grinder, a cutter mill, a ball mill, a jet mill, a single screw extruder, a twin screw extruder, an ultrasonic stirrer, a household juicer mixer, and the like can be used.
  • the solid content concentration of the reactant fiber in the refinement treatment is preferably 50% by mass or less.
  • At least one treatment selected from biochemical treatment, chemical treatment, and mechanical treatment can be further performed before performing the above-described miniaturization treatment.
  • Specific examples include acid hydrolysis, hydrothermal decomposition, oxidative decomposition, pulverization, enzyme treatment, UV treatment, electron beam treatment, and the like.
  • the treatment content include a method of refluxing carboxyl group-containing cellulose fibers that have undergone a purification step with an acid.
  • the kind of acid and its concentration are not particularly limited. For example, a method of adding concentrated hydrochloric acid and heating an aqueous dispersion of carboxyl group-containing cellulose fibers having a hydrochloric acid concentration of 0.1 to 10 M is exemplified.
  • the solid content concentration is adjusted as needed (a visually colorless transparent or opaque liquid) or a dried powder (however, the fine cellulose fibers are aggregated) And is not intended to mean cellulose particles).
  • a suspension only water may be used as a dispersion medium, and a mixed solvent of water and other organic solvents (for example, alcohols such as ethanol), surfactants, acids, bases, etc. May be used.
  • the hydroxyl group at the C6 position of the cellulose structural unit is selectively oxidized to a carboxyl group via an aldehyde group, and the carboxyl group content is 0.1 mmol / g or more, and the average fiber diameter is Of 0.1 to 200 nm, an average fiber length of 600 nm or less, and an average aspect ratio of 1 or more and 200 or less, preferably a fine cellulose fiber having a crystallinity of 30% or more.
  • the average fiber diameter, average fiber length, and average aspect ratio of the carboxyl group-containing fine cellulose fibers can be measured as follows. Water is added to the carboxyl group-containing fine cellulose fiber to prepare a dispersion liquid having a concentration of 0.0001% by mass, and the dispersion liquid is dropped on mica (mica) and dried as an observation sample. Using a force microscope (AFM, Nanoscope III Tapping mode AFM, manufactured by Digital instrument, probe uses Nano Probes Point Probe (NCH)), the fiber height of the fine cellulose fibers in the observation sample is measured.
  • AFM force microscope
  • NHC Nano Probes Point Probe
  • the microscope image which can confirm a fine cellulose fiber five or more fine cellulose fibers are extracted, and an average fiber diameter is computed from those fiber heights. Further, the average fiber length is calculated from the distance in the fiber direction. The average aspect ratio is calculated from the average fiber length / average fiber diameter.
  • the average fiber diameter of the carboxyl group-containing fine cellulose fibers is from 0.1 nm to 200 nm, preferably from 1 nm to 100 nm, more preferably from 2 nm to 50 nm, and even more preferably from 2.5 nm to 20 nm. .
  • Those having an average fiber diameter of less than 0.1 nm are difficult to produce, and if the average fiber diameter exceeds 200 nm, a cured product having good adhesion to the conductor of the printed wiring board cannot be obtained.
  • the average fiber length of the carboxyl group-containing fine cellulose fibers is 600 nm or less, preferably 50 nm or more and 600 nm or less, more preferably 100 nm or more and 500 nm or less, and further preferably 150 nm or more and 500 nm or less. Those having an average fiber length exceeding 600 nm are difficult to disperse when made into a composition.
  • the average aspect ratio of the carboxyl group-containing fine cellulose fibers is 1 or more and 200 or less, preferably 5 or more and 180 or less, more preferably 9 or more and 170 or less, and particularly preferably 9 or more and less than 100. Those having an average aspect ratio of less than 1 are difficult to produce, and if the average aspect ratio exceeds 200, a cured product having good adhesion to the metal conductor cannot be obtained. When the average aspect ratio is 200 or less, the adhesion between the metal conductor and the cured product becomes better, and the smaller the average aspect ratio, the better the adhesion between the metal conductor and the cured product, and the viscosity of the composition can be lowered. .
  • fine cellulose fibers that have been modified by modifying the carboxyl group and made hydrophobic are used. That is, hydrophobic microcellulose fibers obtained by modifying fine cellulose fibers having a carboxyl group with an amine compound or a quaternary ammonium compound are used.
  • hydrophobized fine cellulose fiber will be described.
  • the modifying group is bonded to the cellulose main chain through one or both of an amide bond and an amine salt.
  • the modifying group may be a functional group bonded through either one or both of an amide bond and an amine salt, such as a hydrocarbon group having 1 carbon atom, or a saturated or saturated group having 2 to 30 carbon atoms.
  • An unsaturated linear or branched hydrocarbon group is exemplified. Specific examples include the following hydrocarbon groups.
  • C1 hydrocarbon group methyl group.
  • Saturated linear hydrocarbon group having 2 to 30 carbon atoms ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, nonyl group, decyl group, dodecyl group, octadecyl group, docosyl group, Octacosanyl group.
  • Unsaturated linear hydrocarbon group having 2 to 30 carbon atoms oleyl group, myristol group, palmitoleyl group, linoleyl group, linolenyl group, eicosanyl group.
  • the carbon number of the saturated or unsaturated linear or branched hydrocarbon group is arbitrarily selected depending on the combination with the curable resin, but is preferably 1 or more, particularly 3 or more, and particularly preferably 10 or more, Further, it is preferably 30 or less, particularly 20 or less, particularly 18 or less. For example, it is preferably 1 or more and 30 or less, preferably 3 or more and 20 or less, and more preferably 10 or more and 18 or less.
  • the carbon number is in the above range, the fine cellulose fibers and the curable resin are in a uniform mixed state, and good physical properties as a resin composition such as a low linear thermal expansion coefficient are obtained.
  • amine having a saturated or unsaturated linear or branched hydrocarbon group examples include primary amines such as methylamine, ethylamine, propylamine, isopropylamine, butylamine, and hexyl.
  • primary amines such as methylamine, ethylamine, propylamine, isopropylamine, butylamine, and hexyl.
  • monoalkylamines such as amine, octylamine, decylamine, dodecylamine, octadecylamine, and oleylamine.
  • secondary amine examples include dialkylamines such as dimethylamine, diethylamine, dibutylamine, and dioctadecylamine.
  • the amine having an aromatic hydrocarbon group may have a total carbon number of 6 to 20, and may be either a primary amine or a secondary amine, but from the viewpoint of reactivity with a carboxyl group. Primary amines are preferred. Further, the number of aromatic hydrocarbon groups in the amine may be either one or two as long as the total carbon number is 6 to 20, but one is preferable.
  • Examples of the amine having an aromatic hydrocarbon group include an amine having an aryl group and an amine having an aralkyl group, and an amine having an aryl group is preferable from the viewpoint of compatibility with a resin.
  • aryl group examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenyl group, and a triphenyl group, and these may be used alone or in combination of two or more.
  • a phenyl group, a naphthyl group, and a biphenyl group are preferable, and a phenyl group is more preferable.
  • aralkyl group examples include a benzyl group, a phenethyl group, a phenylpropyl group, a phenylpentyl group, a phenylhexyl group, and a phenylheptyl group, and these may be used alone or in combination of two or more.
  • a benzyl group, a phenethyl group, a phenylpropyl group, a phenylpentyl group, and a phenylhexyl group are preferable, and a benzyl group, a phenethyl group, a phenylpropyl group, and a phenylpentyl group are more preferable.
  • the aryl group and aralkyl group may have a substituent.
  • substituents include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • C1-C6 alkyl groups such as butyl, pentyl, isopentyl, hexyl; methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy
  • An alkoxy group having 1 to 6 carbon atoms such as pentyloxy group, isopentyloxy group, hexyloxy group; methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxy
  • An alkoxycarbonyl group having 1 to 6 carbon atoms such as a carbonyl group, a pentyloxycarbonyl group or an isopentyloxycarbonyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an
  • amine having an aromatic hydrocarbon group examples include aniline, toluylamine, 4-biphenylylamine, diphenylamine, 2-aminonaphthalene, p-terphenylamine, and amine having an aryl group. -Aminoanthracene, 2-aminoanthraquinone. Of these, aniline, toluylamine, 4-biphenylylamine, diphenylamine, and 2-aminonaphthalene are preferable, and aniline is more preferable from the viewpoint of compatibility with the resin.
  • Examples of the amine having an aralkyl group include benzylamine, phenethylamine, 3-phenylpropylamine, 5-phenylpentylamine, 6-phenylhexylamine, 7-phenylheptylamine, and 8-phenyloctylamine.
  • benzylamine, phenethylamine, 3-phenylpropylamine, 5-phenylpentylamine, 6-phenylhexylamine, and 7-phenylheptylamine are preferable from the same viewpoint, and benzylamine, phenethylamine, 3-phenylpropylamine, and 5-phenylpentylamine are preferable.
  • amine and 6-phenylhexylamine More preferred are amine and 6-phenylhexylamine, and even more preferred are benzylamine, phenethylamine, 3-phenylpropylamine, and 5-phenylpentylamine.
  • the amine having an aromatic hydrocarbon group used in the present invention may be prepared according to a known method or may be a commercially available product.
  • amines having hydroxyl groups aminated, amines having hydrophilic groups such as hydroxyethyl groups, hydroxypropyl groups, ethylene glycol, propylene glycol Hydrophobized fine cellulose fibers used in the present invention also have polyether chains such as polyether, polyester amines such as lactide, caprolactone, etc., and amines having alicyclic hydrocarbons such as polyether amine, polyester amine, cyclopentyl group, and cyclohexyl group. Is preferably used as a compound bonded via either or both of an amide bond and an amine salt.
  • the quaternary ammonium compound for modifying the carboxyl group of the hydrophobized fine cellulose fiber to form an amine salt includes tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, tetrapropylammonium hydroxide, Examples include tetraethylammonium chloride, tetrabutylammonium chloride, lauryltrimethylammonium chloride, dilauryldimethylchloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, cetyltrimethylammonium chloride, and alkylbenzyldimethylammonium chloride.
  • tetramethylammonium hydroxide tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide are preferable from the viewpoint of easy modification to the carboxyl group.
  • the addition amount of the hydrophobized fine cellulose fibers in the curable resin composition of the present invention is preferably 0.1 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the total amount (solid content basis) of the curable resin. Preferably they are 1 mass part or more and 20 mass parts or less, More preferably, they are 2 mass parts or more and 10 mass parts or less.
  • the addition amount is 0.1 parts by mass or more, the thermal expansibility is lowered, and when it is 30 parts by mass or less, the balance between the low thermal expansibility and the adhesion between the metal conductor is excellent.
  • Method for modifying carboxyl group of fine cellulose fiber The following are mentioned as a modification method of the carboxyl group of the fine cellulose fiber in this invention.
  • a first method there is a method in which a carboxyl group-containing fine cellulose fiber and an amine compound having a modifying group are mixed in a solvent to form a salt.
  • the amount of the amine compound used can be determined by the amount of the desired amine salt bound in the hydrophobized fine cellulose fiber, but an amino group is preferred with respect to 1 mol of the carboxyl group contained in the carboxyl group-containing fine cellulose fiber.
  • Is 0.1 mol or more more preferably 0.5 mol or more, more preferably 0.7 mol or more, and still more preferably 1 mol or more. From the viewpoint of product purity, it is preferably 50 mol or less, more preferably 20 mol or less, still more preferably Is used in an amount of 10 mol or less.
  • the amount of amine included in the above range may be used for the salt forming step at a time, or may be divided and used for the salt forming step.
  • the solvent it is preferable to select a solvent in which the amine compound to be used is dissolved.
  • a solvent in which the amine compound to be used is dissolved.
  • IPA isopropanol
  • DMF N, N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • THF Tetrahydrofuran
  • diester of succinic acid and triethylene glycol monomethyl ether acetone, methyl ethyl ketone (MEK), acetonitrile, dichloromethane, chloroform, toluene, acetic acid, etc.
  • MEK methyl ethyl ketone
  • acetonitrile dichloromethane
  • dichloromethane chloroform
  • toluene acetic acid, etc.
  • diester of succinic acid and triethylene glycol monomethyl ether, ethanol, and DMF are preferable.
  • the temperature at the time of mixing is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, and further preferably 10 ° C. or higher. Moreover, from a viewpoint of coloring of the hydrophobized fine cellulose fiber, Preferably it is 50 degrees C or less, More preferably, it is 40 degrees C or less, More preferably, it is 30 degrees C or less.
  • the mixing time can be appropriately set according to the type of amine and solvent used, but is preferably 0.01 hours or longer, more preferably 0.1 hours or longer, still more preferably 1 hour or longer, preferably 48. It is not longer than time, more preferably not longer than 24 hours, and further preferably not longer than 12 hours.
  • post-treatment may be appropriately performed in order to remove the amine compound that has not been used for forming the salt.
  • the post-treatment method for example, filtration, centrifugation, dialysis and the like can be used.
  • a fine cellulose fiber having a carboxyl group and an amine compound having a modifying group are amidated in a solvent.
  • the usage-amount of the amine compound which has the said modification group can be determined by the desired amount of coupling
  • the amino group is preferably at least 0.1 mol, more preferably at least 0.5 mol, even more preferably at least 0.7 mol, even more preferably at least 1 mol, and from the viewpoint of product purity, preferably at most 50 mol.
  • the amount is preferably 20 mol or less, more preferably 10 mol or less.
  • the amount of amine included in the above range may be subjected to the reaction at a time or may be divided and subjected to the reaction.
  • a known condensing agent can be used.
  • the condensing agent is not particularly limited, and examples thereof include condensing agents described in Synthetic Chemical Series Peptide Synthesis (Maruzensha) P116, or Tetrahedron, 57, 1551 (2001).
  • condensing agents described in Synthetic Chemical Series Peptide Synthesis (Maruzensha) P116, or Tetrahedron, 57, 1551 (2001).
  • DMT-MM 4- (4,6 -Dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride
  • the reaction time and reaction temperature in the condensation reaction can be appropriately selected according to the type of amine and solvent used, etc., but from the viewpoint of reaction rate and productivity, preferably 1 to 24 hours, more preferably 10 to 20 hours.
  • the reaction temperature is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, and further preferably 10 ° C. or higher from the viewpoint of reactivity.
  • it is 200 degrees C or less, More preferably, it is 80 degrees C or less, More preferably, it is 30 degrees C or less.
  • post-treatment may be performed as appropriate in order to remove unreacted amine compound, condensing agent, and the like.
  • the post-treatment method for example, filtration, centrifugation, dialysis and the like can be used.
  • a third method there is a method in which fine cellulose fibers having a carboxyl group and a quaternary ammonium compound having a modifying group are mixed in a solvent to form a salt.
  • the amount of the quaternary ammonium compound used can be determined by the desired amount of binding in the hydrophobized fine cellulose fiber, but the quaternary ammonium cation with respect to 1 mol of the carboxyl group contained in the carboxyl group-containing fine cellulose fiber. However, it is preferably 0.1 mol or more, more preferably 0.5 mol or more, still more preferably 0.7 mol or more, and still more preferably 1 mol or more.
  • the amount of the quaternary ammonium compound included in the above range may be used for the salt formation step at once, or may be divided and used for the salt formation step.
  • the solvent used when mixing with the said amine can be used similarly, and water can also be used in addition to them. These may be used alone or in combination of two or more. Among them, water, diester of succinic acid and triethylene glycol monomethyl ether, ethanol, and DMF are preferable. About the temperature and time at the time of mixing, and the post-process after salt formation, it can set suitably with reference to the case where it mixes with the said amine compound.
  • the curable resin composition of the present invention is a thermosetting resin composition, a photocurable resin composition, or a photocurable thermosetting resin composition.
  • thermosetting resin composition The thermosetting resin composition of the present invention preferably contains a thermosetting resin, an inorganic filler, and a curing catalyst.
  • a thermosetting resin used in the thermosetting resin composition it is desirable to use a resin having a functional group capable of being cured by heat, and in particular, having at least one cyclic (thio) ether group in the molecule.
  • a compound is preferably used.
  • Examples of the compound having a cyclic ether group include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, and bisphenol Z type.
  • Bisphenol type epoxy resin such as epoxy resin, bisphenol A novolac type epoxy resin, phenol novolac type epoxy resin, novolac type epoxy resin such as cresol novolac epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, arylalkylene type epoxy resin, Tetraphenylolethane type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, di Clopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene type epoxy resin, glycidyl methacrylate copolymer epoxy resin, cyclohexyl maleimide and glycidyl methacrylate
  • Phenol resins such as resol type phenol resins such as resins; phenoxy resins; urea (urea) resins; triazine ring-containing resins such as melamine resins; unsaturated polyester resins, diallyl phthalate resins, silicone resins, resins having a benzoxazine ring, norbornene Resin, cyanate resin, isocyanate resin, urethane resin, benzocyclobutene resin, maleimide resin, bismaleimide triazine resin, polyazomethine resin, thermosetting polyimide, Examples include cyanate ester resins and active ester resins.
  • the thermosetting resin includes an epoxy resin and a phenol resin.
  • an epoxy resin and a phenol resin By including an epoxy resin and a phenol resin, heat resistance, peel strength, insulation reliability, and the like can be improved.
  • the content of the epoxy resin is, for example, from 1 part by weight to 90 parts by weight, preferably from 10 parts by weight to 85 parts by weight, and more preferably from 20 parts by weight to 80 parts by weight with respect to 100 parts by weight of the total thermosetting resin. It is below mass parts.
  • content of a phenol resin it is 1 mass part or more and 70 mass parts or less with respect to a total thermosetting resin, Preferably it is 5 mass parts or more and 60 mass parts or less, More preferably, it is 10 mass parts or more and 50 mass parts or less. It is.
  • active ester resin as a thermosetting resin, sclerosis
  • hardenability can be improved when dimethylaminopyridine is used.
  • inorganic fillers include barium sulfate, barium titanate, amorphous silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, and aluminum nitride.
  • silica, particularly spherical silica is preferable because it has a small specific gravity, can be blended in a high proportion in the composition, and is excellent in low thermal expansion.
  • the curable resin composition of the present invention a combination of fine cellulose fibers and silica is suitable, and in this case, the effect of reducing the linear expansion coefficient of the cured product is further excellent, and the adhesion with the metal conductor is even better.
  • the average particle size of the inorganic filler is preferably 3 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the average particle diameter of an inorganic filler can be calculated
  • the blending amount of the inorganic filler is, for example, 25 to 90% by mass, preferably 30 to 90% by mass, and more preferably 35 to 85% by mass with respect to the solid content of the composition.
  • the curing catalyst is mainly for curing a thermosetting resin among curable resins.
  • imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- Imidazole derivatives such as phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) Amine compounds such as —N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; Phosphorus such as phenylphosphine Compounds, such as dimethyl
  • Examples of commercially available products include 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, 2P4MHZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.), U-CAT3503N, U-CAT3502T, DBU, DBN, U-CATSA102, U- CAT5002 (manufactured by San Apro Co., Ltd.) and the like may be mentioned, and they may be used alone or in combination of two or more.
  • a basic catalyst is desirable.
  • imidazoles are desirable, and by using imidazoles, both curability and stability of the composition can be achieved, and heat resistance can be improved.
  • the content of the curing catalyst is, for example, 0.01 parts by mass or more and 20 parts by mass or less, preferably 0.05 parts by mass or more and 15 parts by mass or less, more preferably 0.1 parts by mass with respect to 100 parts by mass of the thermosetting resin. It is not less than 15 parts by mass.
  • thermosetting resin in addition to the hydrophobized fine cellulose fiber, thermosetting resin, inorganic filler and curing catalyst, other conventional compounding components can be appropriately blended in the thermosetting resin composition of the present invention, depending on the application. It is.
  • Examples of other commonly used ingredients include colorants, organic solvents, dispersants, antifoaming / leveling agents, thixotropic agents, coupling agents, flame retardants, and the like.
  • a known and conventional one represented by a color index as a color pigment or dye can be used.
  • the content of the colorant is, for example, from 0.01% by mass to 3% by mass, preferably from 0.05% by mass to 1% by mass, more preferably from 0.1% by mass to 0.00% in the entire composition. 5% by mass or less.
  • it is 1 mass% or more and 65 mass% or less in the whole composition, Preferably it is 3 mass% or more and 60 mass% or less, More preferably, it is 5 mass. % Or more and 50% by mass or less.
  • organic solvents examples include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, diethylene glycol Glycol ethers such as monoethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether; esters such as ethyl acetate, butyl acetate, cellosolve acetate, diethylene glycol monoethyl ether acetate and esterified products of the above glycol ethers; Alcohols such as ethanol, propanol, ethylene glycol, propylene glycol; Mention may be made of petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha,
  • Dispersants include polycarboxylic acid-based, naphthalene sulfonic acid formalin condensation-based, polyethylene glycol, polycarboxylic acid partial alkyl ester-based, polyether-based, polyalkylene polyamine-based polymeric dispersants, alkyl sulfonic acid-based, four Low molecular weight dispersants such as secondary ammonium series, higher alcohol alkylene oxide series, polyhydric alcohol ester series and alkylpolyamine series can be used.
  • Antifoaming and leveling agents include compounds such as silicone, modified silicone, mineral oil, vegetable oil, aliphatic alcohol, fatty acid, metal soap, fatty acid amide, polyoxyalkylene glycol, polyoxyalkylene alkyl ether, polyoxyalkylene fatty acid ester, etc. Etc. can be used.
  • fine particle silica fine particle silica, silica gel, amorphous inorganic particles, polyamide-based additive, modified urea-based additive, wax-based additive and the like can be used.
  • alkoxy group is methoxy group, ethoxy group, acetyl, etc.
  • reactive functional group is vinyl, methacryl, acrylic, epoxy, cyclic epoxy, mercapto, amino, diamino, acid anhydride, ureido, sulfide, Isocyanates and the like, for example, vinyl silane compounds such as vinyl ethoxylane, vinyl trimethoxysilane, vinyl tris ( ⁇ -methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxylane, ⁇ -aminopropyltrimethoxylane, Amino-based silane compounds such as N- ⁇ - (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, ⁇ -ureidopropyltriethoxysilane, ⁇ -gly
  • Flame retardants include hydrated metal such as aluminum hydroxide and magnesium hydroxide, red phosphorus, ammonium phosphate, ammonium carbonate, zinc borate, zinc stannate, molybdenum compound, bromine compound, chlorine compound, phosphate ester Phosphorus-containing polyol, phosphorus-containing amine, melamine cyanurate, melamine compound, triazine compound, guanidine compound, silicon polymer, and the like can be used.
  • hydrated metal such as aluminum hydroxide and magnesium hydroxide, red phosphorus, ammonium phosphate, ammonium carbonate, zinc borate, zinc stannate, molybdenum compound, bromine compound, chlorine compound, phosphate ester Phosphorus-containing polyol, phosphorus-containing amine, melamine cyanurate, melamine compound, triazine compound, guanidine compound, silicon polymer, and the like can be used.
  • the photocurable resin composition of the present invention preferably contains a photocurable resin, an inorganic filler, a photopolymerization initiator, a colorant and the like.
  • a resin having a functional group that can be cured by irradiation with active energy rays, and may be radically polymerizable or cationically polymerizable. Examples thereof include compounds having one or more ethylenically unsaturated bonds, alicyclic epoxy compounds, and oxetane compounds in the molecule, and compounds having one or more ethylenically unsaturated bonds in the molecule are preferably used.
  • photopolymerizable oligomers As the compound having an ethylenically unsaturated bond, known and commonly used photopolymerizable oligomers, photopolymerizable vinyl monomers, and the like are used.
  • photopolymerizable oligomer examples include unsaturated polyester oligomers and (meth) acrylate oligomers.
  • Examples of (meth) acrylate oligomers include phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, epoxy (meth) acrylates such as bisphenol type epoxy (meth) acrylate, urethane (meth) acrylate, epoxy urethane (meta ) Acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polybutadiene-modified (meth) acrylate, and the like.
  • (meth) acrylate is a term which generically refers to acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.
  • photopolymerizable vinyl monomer known and commonly used monomers, for example, styrene derivatives such as styrene, chlorostyrene, and ⁇ -methylstyrene; vinyl esters such as vinyl acetate, vinyl butyrate, and vinyl benzoate; vinyl isobutyl ether, vinyl Vinyl ethers such as n-butyl ether, vinyl t-butyl ether, vinyl n-amyl ether, vinyl isoamyl ether, vinyl n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, triethylene glycol monomethyl vinyl ether; acrylamide , Methacrylamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-methoxymethylacrylamide, N-ethoxymethyl (Meth) acrylamides such as chloramide and N-butoxymethylacrylamide; allyl compounds such as triallyl isocyanurate
  • Alicyclic epoxy compounds include 3,4,3 ′, 4′-diepoxybicyclohexyl, 2,2-bis (3,4-epoxycyclohexyl) propane, and 2,2-bis (3,4-epoxycyclohexyl).
  • -1,3-hexafluoropropane bis (3,4-epoxycyclohexyl) methane
  • 1- [1,1-bis (3,4-epoxycyclohexyl)] ethylbenzene bis (3,4-epoxycyclohexyl) adipate
  • 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate (3,4-epoxy-6-methylcyclohexyl) methyl-3 ′, 4′-epoxy-6-methylcyclohexanecarboxylate
  • ethylene-1 2-bis (3,4-epoxycyclohexanecarboxylic acid) ester
  • oxetane compound examples include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl-3- Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl) methyl acrylate
  • polyfunctional oxetanes such as (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin, poly (p -Hydroxystyrene
  • the photopolymerization initiator is for curing the photocurable resin among the curable resins, and may be a radical photopolymerization initiator or a cationic photopolymerization initiator.
  • photo radical polymerization initiators include benzoin and benzoin alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy Acetophenones such as 2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone; 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1 -One, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4
  • tertiary amines such as N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine, triethanolamine and the like. You may use together with an agent etc.
  • the blending amount of the photopolymerization initiator is, for example, 0.05 to 20 parts by mass, preferably 0.1 to 15 parts by mass, and more preferably 0.1 parts by mass in terms of solid content with respect to 100 parts by mass of the photocurable resin. 5 to 10 parts by mass.
  • thermosetting resin composition those similar to those used in the thermosetting resin composition can be used, and the blending amount can also be the same.
  • the same colorants as those used in the thermosetting resin composition can be used.
  • a colorant even when an excessive amount of accumulated light is irradiated in the photocurable resin composition, it is possible to prevent a decrease in adhesion. Moreover, the visibility of a coating film can also be improved.
  • the photocurable resin composition of the present invention in addition to the hydrophobized fine cellulose fiber, the photocurable resin, the inorganic filler, the photopolymerization initiator and the colorant, other conventional compounding components are appropriately added depending on the use. It is possible to mix. Examples of other commonly used ingredients include organic solvents, dispersants, antifoaming / leveling agents, thixotropic agents, coupling agents, flame retardants, and the like. These organic solvents, dispersants, antifoaming / leveling agents, thixotropic agents, coupling agents, and flame retardants can be the same as those used for the thermosetting resin composition.
  • the photocurable thermosetting resin composition of the present invention contains a photocurable resin and a thermosetting resin.
  • the photocurable thermosetting resin composition of the present invention is developed using an alkaline aqueous solution.
  • the carboxyl group-containing resin either a photosensitive carboxyl group-containing resin having at least one photosensitive unsaturated double bond or a carboxyl group-containing resin having no photosensitive unsaturated double bond can be used.
  • the resins listed below can be suitably used.
  • An unsaturated monocarboxylic acid is reacted with a copolymer of an epoxy group, a compound having an unsaturated double bond, and a compound having an unsaturated double bond in each molecule, and produced by this reaction.
  • a carboxyl group-containing photosensitive resin obtained by reacting a secondary hydroxyl group with a saturated or unsaturated polybasic acid anhydride obtained by reacting a secondary hydroxyl group with a saturated or unsaturated polybasic acid anhydride.
  • the carboxylic acid produced by this reaction has one epoxy group and an unsaturated double bond in each molecule.
  • Hydroxyl group and carboxyl group-containing photosensitive resin obtained by reacting obtained by reacting.
  • a polyfunctional epoxy compound is reacted with a compound having one reactive group other than a hydroxyl group that reacts with two or more hydroxyl groups and an epoxy group in one molecule, and an unsaturated group-containing monocarboxylic acid.
  • a carboxyl group-containing photosensitive resin obtained by reacting the obtained reaction product with a polybasic acid anhydride.
  • a carboxyl group-containing product obtained by reacting a reaction product of a resin having a phenolic hydroxyl group with an alkylene oxide with an unsaturated group-containing monocarboxylic acid, and reacting the resulting reaction product with a polybasic acid anhydride.
  • the photocurable resin and the thermosetting resin used in the photocurable thermosetting resin composition of the present invention those similar to the above-described photocurable resin and thermosetting resin can be used.
  • the photocurable thermosetting resin composition of the present invention preferably contains the above-described inorganic filler, curing catalyst, and photopolymerization initiator, and other conventional compounding components are appropriately blended depending on the application. It is possible.
  • Examples of other conventional compounding components include the above-described colorants, organic solvents, dispersants, antifoaming agents / leveling agents, thixotropic agents, coupling agents, flame retardants, and the like.
  • the curable resin composition of the present invention may be used as a dry film or as a liquid. When used as a liquid, it may be one-component or two-component or more.
  • the two-component composition for example, a composition obtained by separating hydrophobic fine cellulose fibers and a curable resin may be used.
  • the dry film of the present invention has a resin layer obtained by applying and drying the curable resin composition of the present invention on a carrier film.
  • the curable resin composition of the present invention is diluted with the above organic solvent to adjust to an appropriate viscosity, and then a comma coater, a blade coater, a lip coater, a rod coater, and a squeeze coater. Apply a uniform thickness on the carrier film using a reverse coater, transfer roll coater, gravure coater, spray coater or the like. Thereafter, the applied composition is usually dried at a temperature of 40 to 130 ° C. for 1 to 30 minutes to form a resin layer.
  • the coating film thickness is not particularly limited, but in general, the film thickness after drying is appropriately selected in the range of 3 to 150 ⁇ m, preferably 5 to 60 ⁇ m.
  • a plastic film is used as the carrier film.
  • a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used.
  • the thickness of the carrier film is not particularly limited, but is generally appropriately selected within the range of 10 to 150 ⁇ m. More preferably, it is in the range of 15 to 130 ⁇ m.
  • the peelable cover film for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a surface-treated paper, or the like can be used.
  • the cover film only needs to have an adhesive force between the resin layer and the resin film that is smaller than that between the resin layer and the carrier film when the cover film is peeled off.
  • the resin layer may be formed by applying and drying the curable resin composition of the present invention on the cover film, and a carrier film may be laminated on the surface. That is, as the film to which the curable resin composition of the present invention is applied when producing a dry film in the present invention, either a carrier film or a cover film may be used.
  • the printed wiring board of the present invention has a cured product obtained from the curable resin composition of the present invention or the resin layer of the dry film.
  • a method for producing a printed wiring board of the present invention first, for example, the curable resin composition of the present invention is adjusted to a viscosity suitable for the coating method using the organic solvent, and dip-coated on the substrate. After coating by a method such as a coating method, a flow coating method, a roll coating method, a bar coater method, a screen printing method, or a curtain coating method, the organic solvent contained in the composition is volatile dried at a temperature of 60 to 100 ° C. ) To form a tack-free resin layer. Moreover, in the case of a dry film, after bonding together on a base material so that a resin layer may contact a base material with a laminator etc., a resin layer is formed on a base material by peeling a carrier film.
  • Examples of the base material include printed wiring boards and flexible printed wiring boards that have been previously formed with copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth / non-woven cloth epoxy, glass cloth / paper epoxy.
  • PEN polyethylene naphthalate
  • Volatile drying performed after the application of the curable resin composition of the present invention is performed in a dryer using a hot air circulation drying furnace, an IR furnace, a hot plate, a convection oven or the like (equipped with a heat source of an air heating method using steam).
  • the method can be carried out using a method in which hot air is brought into countercurrent contact and a method in which the hot air is blown onto the support.
  • the composition of the present invention is a thermosetting resin composition
  • the composition is applied on a substrate to form a coating film, or a dry film is laminated to form a resin layer.
  • a cured film (cured product) excellent in various properties such as heat resistance, chemical resistance, moisture absorption resistance, adhesion, and electrical properties can be formed by heating to a temperature of 100 to 180 ° C. and thermosetting. it can.
  • the composition of the present invention is a photocurable resin composition
  • the composition is applied on a substrate to form a coating film, or a dry film is laminated to form a resin layer, and then an active energy ray To form a cured film (cured product). Moreover, you may heat a coating film before irradiation of an active energy ray as needed.
  • the composition of the present invention is an alkali development type photocurable thermosetting resin composition, after forming a resin layer on a printed wiring board, it is selectively activated energy rays through a photomask having a predetermined pattern.
  • the unexposed area is developed with a dilute alkali aqueous solution (for example, 0.3 to 3 mass% sodium carbonate aqueous solution) to form a cured product pattern. Further, the cured product is irradiated with active energy rays and then heat-cured (for example, 100 to 220 ° C.), irradiated with active energy rays after heat-curing, or is subjected to final finish curing (main curing) only by heat-curing. A cured film having excellent properties such as properties and hardness is formed.
  • the composition of the present invention may be a non-developable photocurable thermosetting resin composition that contains the thermosetting resin and the photocurable resin and is not subjected to development processing.
  • the exposure apparatus used for the active energy ray irradiation may be any apparatus that irradiates ultraviolet rays in the range of 350 to 450 nm, equipped with a high-pressure mercury lamp lamp, an ultra-high pressure mercury lamp lamp, a metal halide lamp, a mercury short arc lamp, etc.
  • a direct drawing apparatus for example, a laser direct imaging apparatus that directly draws an image with a laser using CAD data from a computer
  • the lamp light source or laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm.
  • the exposure amount for image formation varies depending on the film thickness and the like, but can be generally in the range of 10 to 1000 mJ / cm 2 , preferably 20 to 800 mJ / cm 2 .
  • the developing method can be a dipping method, a shower method, a spray method, a brush method, etc., and as a developing solution, potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, Alkaline aqueous solutions such as ammonia and amines can be used.
  • Oxidized pulp 1 Conifer bleached kraft pulp (Fletcher Challenge Canada, trade name “Machenzie”, CSF 650 ml) was used as natural cellulose fiber.
  • TEMPO a commercially available product (ALDRICH, Free radical, 98% by mass) was used.
  • sodium hypochlorite a commercially available product (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • a commercially available product manufactured by Wako Pure Chemical Industries, Ltd. was used as sodium bromide.
  • Oxidized pulp 2 An oxidized pulp having a solid content of 30.4% was obtained by using the same method as that for oxidized pulp 1 except that the raw material used was changed to eucalyptus-derived hardwood bleached kraft pulp (manufactured by CENIBRA).
  • Preparation Example 4 A carboxyl group-containing fine cellulose fiber was produced in the same manner as in Preparation Example 3 except that oxidized pulp 2 was used.
  • This fine cellulose fiber has an average fiber diameter of 11.0 nm, an average fiber length of 187 nm, an average aspect ratio of 17, a carboxyl group content of 1.1 mmol / g, and a carboxyl group-containing fine cellulose fiber dispersion having a solid content concentration of 5 It was 0.0 mass%.
  • CNF2 As a fine cellulose fiber, except that the fine cellulose fiber obtained in Preparation Example 1 was replaced with the fine cellulose fiber obtained in Preparation Example 2, a fine cellulose fiber DMF dispersion (solid content: 5.0 mass) in the same manner as CNF1. %).
  • CNF4 As the fine cellulose fiber, CNF3, except that the fine cellulose fiber obtained in Preparation Example 2 was changed to the fine cellulose fiber obtained in Preparation Example 3 and tetrabutylammonium hydroxide was replaced with JEFFAMINE M-600 (manufactured by HUNTSMAN). In the same manner, a fine cellulose fiber DMF dispersion (solid content: 8.0% by mass) was obtained.
  • CNF5 As a fine cellulose fiber, except that the fine cellulose fiber obtained in Preparation Example 1 was replaced with the fine cellulose fiber obtained in Preparation Example 4, a fine cellulose fiber DMF dispersion (solid content 12.0 mass) was obtained in the same manner as CNF1. %).
  • tetrahydrophthalic anhydride was added to the OH group of the resin obtained above at 95 to 105 ° C. for 8 hours at a molar ratio of 0.26. This was taken out after cooling to obtain a solution containing 50% by mass (nonvolatile content) of a carboxyl group-containing resin having a solid acid value of 78.1 mgKOH / g and a mass average molecular weight of 35,000.
  • thermosetting resin composition ⁇ Preparation of thermal expansion measurement sample> (Thermosetting resin composition)
  • the resin layer of each composition was laminated on a 18 ⁇ m thick copper foil with a vacuum laminator at 60 ° C. under a pressure of 0.5 MPa for 60 seconds, and the PET film was peeled off.
  • the copper foil was peeled off, and the sample of the cured film was obtained.
  • the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
  • a copper foil having a thickness of 18 ⁇ m was attached to a FR-4 copper clad laminate having a thickness of 1.6 mm, each composition was applied with an applicator having a gap of 120 ⁇ m, and dried at 90 ° C. for 10 minutes in a hot air circulation drying oven. Then, it irradiated with the integrated light quantity 2000mJ / cm ⁇ 2 > with the 120W / cm conveyor type high pressure mercury lamp. And the copper foil was peeled off and the sample of the cured film was obtained. In addition, the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
  • a copper foil having a thickness of 18 ⁇ m was attached to a FR-4 copper clad laminate having a thickness of 1.6 mm, each composition was applied with an applicator having a gap of 120 ⁇ m, and dried at 90 ° C. for 10 minutes in a hot air circulation drying oven. Thereafter, a negative mask with a pattern of 3 mm width ⁇ 30 mm length was brought into close contact, and exposed at 700 mJ / cm 2 with a metal halide lamp exposure machine for printed wiring boards. Next, development was performed with a developing machine for 60 seconds using a 1 wt% Na 2 CO 3 developer at 30 ° C. Then, it was cured by heating at 150 ° C. for 60 minutes in a hot air circulation drying furnace, and the copper foil was peeled off to obtain a cured film sample. In addition, the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
  • thermosetting resin composition Except using the produced sample as it was, it carried out by the same method as a thermosetting resin composition and a photocurable resin composition. The results are shown in Tables 2-6.
  • Thermosetting resin composition ⁇ Preparation of a sample for measuring peel strength of plated copper> (Thermosetting resin composition)
  • Each composition was applied to a PET film having a thickness of 38 ⁇ m with an applicator having a gap of 120 ⁇ m, and dried at 90 ° C. for 10 minutes in a hot air circulating drying oven to obtain a dry film having a resin layer of each composition.
  • the resin layer of each composition was laminated to a 1.6 mm thick FR-4 copper clad laminate with a vacuum laminator at 60 ° C. under a pressure of 0.5 MPa for 60 seconds, and the PET film was peeled off. It was. Subsequently, it was cured by heating at 180 ° C. for 30 minutes in a hot air circulation drying furnace.
  • permanganate desmear manufactured by ATOTECH
  • electroless copper plating Sulcup PEA, manufactured by Uemura Kogyo Co., Ltd.
  • electrolytic copper plating treatment were performed in this order, and a copper plating treatment with a copper thickness of 25 ⁇ m was performed on the resin layer.
  • an annealing process was performed at 190 ° C. for 60 minutes in a hot-air circulating drying furnace to obtain a test substrate subjected to a copper plating process.
  • the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
  • permanganate desmear manufactured by ATOTECH
  • electroless copper plating Sulcup PEA, manufactured by Uemura Kogyo Co., Ltd.
  • electrolytic copper plating treatment were performed in this order, and a copper plating treatment with a copper thickness of 25 ⁇ m was performed on the cured film.
  • an annealing process was performed at 190 ° C. for 60 minutes in a hot-air circulating drying furnace to obtain a test substrate subjected to a copper plating process.
  • the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
  • Photo-curable thermosetting resin composition Each composition was applied to an FR-4 copper clad laminate having a thickness of 1.6 mm with an applicator having a gap of 120 ⁇ m, and dried at 90 ° C. for 10 minutes in a hot air circulating drying oven. Thereafter, an entirely transparent mask was brought into close contact, and exposed at 700 mJ / cm 2 with a metal halide lamp exposure machine for printed wiring boards. Next, development was performed with a developing machine for 60 seconds using a 1 wt% Na 2 CO 3 developer at 30 ° C. Then, it was cured by heating at 150 ° C. for 60 minutes in a hot air circulation drying furnace.
  • permanganate desmear manufactured by ATOTECH
  • electroless copper plating Sulcup PEA, manufactured by Uemura Kogyo Co., Ltd.
  • electrolytic copper plating treatment were performed in this order, and a copper plating treatment with a copper thickness of 25 ⁇ m was performed on the cured film.
  • an annealing process was performed at 190 ° C. for 60 minutes in a hot-air circulating drying furnace to obtain a test substrate subjected to a copper plating process. Compositions that were too viscous to be applied with an applicator were considered impossible.
  • thermosetting resin composition ⁇ Preparation of sample for peel strength measurement of chemically polished copper foil> (Thermosetting resin composition) (Process 1)
  • Each composition was applied to a PET film having a thickness of 38 ⁇ m with an applicator having a gap of 120 ⁇ m, and dried at 90 ° C. for 10 minutes in a hot air circulation type drying furnace to prepare a film in which a resin layer of each composition was formed.
  • the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
  • etch-out plate A plate with copper foil completely removed by an etching method using ferric chloride on an FR-4 copper clad laminate with a thickness of 1.6 mm (hereinafter simply referred to as “etch-out plate”) has four sides. Four sides of an 18 ⁇ m thick electrolytic copper foil slightly smaller than the first etch-out plate were fixed with a chemical-resistant adhesive tape. In this state, the electrolytic copper foil is exposed except for the portion where the tape is applied. Next, the electrolytic copper foil adhered with MEC's etch bond CZ-8101 was chemically polished to produce a substrate with copper foil.
  • a plate with copper foil completely removed by an etching method using ferric chloride on an FR-4 copper clad laminate with a thickness of 1.6 mm (hereinafter simply referred to as “etch-out plate”) has four sides. Four sides of an 18 ⁇ m thick electrolytic copper foil slightly smaller than the first etch-out plate were fixed with a chemical-resistant adhesive tape. In this state, the electrolytic copper foil is exposed except for the portion where the tape is applied. Next, the electrolytic copper foil adhered with MEC's etch bond CZ-8101 was chemically polished to produce a substrate with copper foil.
  • a plate with copper foil completely removed by an etching method using ferric chloride on an FR-4 copper clad laminate with a thickness of 1.6 mm (hereinafter simply referred to as “etch-out plate”) has four sides. Four sides of an 18 ⁇ m thick electrolytic copper foil slightly smaller than the first etch-out plate were fixed with a chemical-resistant adhesive tape. In this state, the electrolytic copper foil is exposed except for the portion where the tape is applied. Next, the electrolytic copper foil adhered with MEC's etch bond CZ-8101 was chemically polished to produce a substrate with copper foil.
  • Thermosetting resin 1 Epicron 830 (bisphenol F type epoxy resin)
  • Thermosetting resin made by DIC Corporation 2 JER827 (bisphenol A type epoxy resin)
  • Thermosetting resin made by Mitsubishi Chemical Corporation 3 EPPN-502H ( Triphenylmethane type epoxy resin) Nippon Kayaku Co., Ltd. (solid content 60% cyclohexanone varnish)
  • Thermosetting resin 4 FX-293 (fluorene type phenoxy resin) manufactured by Nippon Steel & Sumitomo Chemical Co., Ltd. (solid content 30% cyclohexanone varnish)
  • Thermosetting resin 5 HF-1 (phenol novolac resin) manufactured by Meiwa Kasei Co., Ltd.
  • Curing catalyst 1 2E4MZ (2-ethyl-4-methylimidazole) Shikoku Kasei Kogyo Co., Ltd.
  • Filler 1 Silica, Admafine SO-C2 Admatex Co., Ltd.
  • Filler 2 Barium sulfate, B-30 Sakai Chemical Industry Co., Ltd.
  • Organic solvent 1 Dimethylformamide antifoam 1: BYK-Japan Japan Co., Ltd. BYK-352
  • Photo curable resin 1 bisphenol A type epoxy acrylate
  • Photo curable resin 2 manufactured by Mitsubishi Chemical Corporation: Trimethylolpropane triacrylate
  • photocurable resin 4 Light Ester HO Kyoeisha Chemical Co., Ltd.
  • Curing catalyst 2 Finely pulverized melamine Curing catalyst manufactured by Nissan Chemical Co., Ltd. 3: Dicyandiamide photopolymerization initiator 2: Irgacure 907 Photocurable resin manufactured by BASF Co., Ltd. 5: Dipentaerythritol tetraacrylate thermosetting resin 6: TEPIC -H (triglycidyl isocyanurate) manufactured by Nissan Chemical Co., Ltd.
  • the average fiber diameter is 0.1 nm or more and 200 nm or less
  • the average fiber length is 600 nm or less
  • the aspect ratio representing the ratio between the average fiber diameter and the average fiber length is 1 or more and 200 or less.

Abstract

Provided are: a curable resin composition which is for a printed wiring board and is capable of providing a cured product having low thermal expansion and good adhesion to a metal conductor; a dry film; a cured product; and a printed wiring board. The resin composition contains: a fine cellulose fiber having a carboxyl group; and a curable resin, wherein the carboxyl group of the fine cellulose fiber is modified and hydrophobized by at least one among an amine compound and a quaternary ammonium compound. The fine cellulose fiber having the carboxyl group has an average fiber diameter of 0.1-200 nm, an average fiber length of 600 nm or less, and an average aspect ratio of 1-200.

Description

プリント配線板用硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板Curable resin composition for printed wiring board, dry film, cured product, and printed wiring board
 本発明は、疎水化された微細セルロース繊維を含むプリント配線板用硬化性樹脂組成物(以下、単に「硬化性樹脂組成物」とも称する)、ドライフィルム、硬化物およびプリント配線板に関する。 The present invention relates to a curable resin composition for a printed wiring board (hereinafter, also simply referred to as “curable resin composition”), a dry film, a cured product, and a printed wiring board, each containing a hydrophobized fine cellulose fiber.
 プリント配線板は絶縁基材に導電体の配線を施して電子部品を接続固定するものであり、用途に応じて、絶縁層および導体層を多層化したり、可撓性のある絶縁基材を用いたりする場合があり、電子機器においては重要な部品となっている。また、プリント配線板は、半導体パッケージにも使用され、プリント配線板用硬化性樹脂組成物やドライフィルムは、配線板や半導体実装後の外層として使用されている。 A printed wiring board is for connecting and fixing electronic parts by applying conductor wiring to an insulating substrate. Depending on the application, the insulating layer and conductor layer may be multilayered or a flexible insulating substrate may be used. It is an important part in electronic equipment. Moreover, a printed wiring board is also used for a semiconductor package, and the curable resin composition for a printed wiring board and a dry film are used as an outer layer after the wiring board or the semiconductor is mounted.
 近年では、電子機器の小型化に伴い、プリント配線板について配線の高密度化が要求されてきており、配線や部品接続部の信頼性確保のため、プリント配線板の材料には低い熱膨張性が求められてきている。 In recent years, with the miniaturization of electronic devices, it has been required to increase the density of wiring for printed wiring boards. To ensure the reliability of wiring and component connection parts, the material of printed wiring boards has low thermal expansion. Has been demanded.
 低い熱膨張性を達成する手法として、例えば、特許文献1,2には、微細セルロース繊維を組成物中に分散させた材料を用いる手法が提案されている。 As a technique for achieving low thermal expansibility, for example, Patent Documents 1 and 2 propose a technique using a material in which fine cellulose fibers are dispersed in a composition.
特開2011-001559号公報JP 2011-001559 A 特開2012-119470号公報JP 2012-119470 A
 しかしながら、特許文献1,2に記載の材料では、金属導体の密着性が劣るなどの信頼性の低下を起こす問題があった。 However, the materials described in Patent Documents 1 and 2 have a problem in that the reliability of the metal conductor is deteriorated and the reliability is lowered.
 そこで本発明の目的は、低熱膨張性であって、金属導体との密着性が良好な硬化物を得ることができるプリント配線板用硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板を提供することにある。 Accordingly, an object of the present invention is to provide a curable resin composition for a printed wiring board, a dry film, a cured product, and a printed wiring board, which can obtain a cured product having low thermal expansion and good adhesion to a metal conductor. It is to provide.
 本発明者らは鋭意検討した結果、平均繊維径が特定の範囲であり、平均繊維長が特定値以下であり、平均繊維径と平均繊維長との比を表すアスペクト比が特定の範囲である、カルボキシル基を有する微細セルロース繊維を疎水化したものを用いることで、上記課題を解決できることを見出して、本発明を解決するに至った。 As a result of intensive studies, the present inventors have found that the average fiber diameter is in a specific range, the average fiber length is not more than a specific value, and the aspect ratio representing the ratio between the average fiber diameter and the average fiber length is in a specific range. The inventors have found that the above-mentioned problems can be solved by using a hydrophobized fine cellulose fiber having a carboxyl group, and have solved the present invention.
 すなわち、本発明のプリント配線板用硬化性樹脂組成物は、カルボキシル基を有する微細セルロース繊維の該カルボキシル基がアミン化合物および第4級アンモニウム化合物のうちの少なくともいずれか一種により修飾されて疎水化されてなる微細セルロース繊維と、硬化性樹脂とを含む樹脂組成物であって、
 前記カルボキシル基を有する微細セルロース繊維の、平均繊維径が0.1nm以上200nm以下であり、平均繊維長が600nm以下であり、かつ、平均アスペクト比が1以上200以下であることを特徴とするものである。
That is, in the curable resin composition for a printed wiring board of the present invention, the carboxyl group of the fine cellulose fiber having a carboxyl group is modified with at least one of an amine compound and a quaternary ammonium compound to be hydrophobized. A resin composition comprising fine cellulose fibers and a curable resin,
The fine cellulose fiber having a carboxyl group has an average fiber diameter of 0.1 nm or more and 200 nm or less, an average fiber length of 600 nm or less, and an average aspect ratio of 1 or more and 200 or less. It is.
 本発明の樹脂組成物は、さらに、シリカを含むことが好ましい。また、本発明の樹脂組成物は、前記硬化性樹脂として、熱硬化性樹脂および光硬化性樹脂のうちの少なくともいずれか一種を含むことが好ましい。 The resin composition of the present invention preferably further contains silica. Moreover, it is preferable that the resin composition of this invention contains at least any 1 type of a thermosetting resin and a photocurable resin as said curable resin.
 本発明のドライフィルムは、上記プリント配線板用硬化性樹脂組成物が、フィルム上に塗布、乾燥されてなる樹脂層を有することを特徴とするものである。 The dry film of the present invention is characterized in that the curable resin composition for a printed wiring board has a resin layer formed on the film and dried.
 本発明の硬化物は、上記プリント配線板用硬化性樹脂組成物、または、上記ドライフィルムの前記樹脂層が、硬化されてなることを特徴とするものである。 The cured product of the present invention is characterized in that the curable resin composition for a printed wiring board or the resin layer of the dry film is cured.
 本発明のプリント配線板は、上記硬化物を備えることを特徴とするものである。 The printed wiring board of the present invention is characterized by comprising the above cured product.
 本発明によれば、低熱膨張性であって、金属導体との密着性が良好な硬化物を得ることができるプリント配線板用硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板を実現することが可能となった。 According to the present invention, a curable resin composition for a printed wiring board, a dry film, a cured product, and a printed wiring board capable of obtaining a cured product having low thermal expansion and good adhesion to a metal conductor is realized. It became possible to do.
 以下、本発明の実施の形態について、詳細に説明する。
 本発明のプリント配線板用硬化性樹脂組成物は、カルボキシル基を有する微細セルロース繊維のカルボキシル基がアミン化合物および第4級アンモニウム化合物のうちの少なくともいずれか一種により修飾されて疎水化されてなる微細セルロース繊維と、硬化性樹脂とを含むものであり、カルボキシル基を有する微細セルロース繊維として、平均繊維径が0.1nm以上200nm以下であり、平均繊維長が600nm以下であり、かつ、平均アスペクト比(平均繊維長/平均繊維径)が、1以上200以下であるものを用いる。
 ここで、カルボキシル基を有する微細セルロース繊維は、平均繊維径が0.1nm以上200nm以下であり、平均繊維長が600nm以下であり、かつ、平均アスペクト比が、1以上200以下であるが、カルボキシル基を有する微細セルロース繊維のカルボキシル基が修飾されて疎水化されてなる微細セルロース繊維も、平均繊維径が0.1nm以上200nm以下であり、平均繊維長が600nm以下であり、かつ、平均アスペクト比が、1以上200以下である。
 以下、カルボキシル基を有する微細セルロース繊維を、カルボキシル基含有微細セルロース繊維とも言い、カルボキシル基含有微細セルロース繊維のカルボキシル基が疎水化されてなる微細セルロース繊維を、疎水化微細セルロース繊維とも言う。
Hereinafter, embodiments of the present invention will be described in detail.
The curable resin composition for a printed wiring board according to the present invention is a fine product in which a carboxyl group of a fine cellulose fiber having a carboxyl group is modified with at least one of an amine compound and a quaternary ammonium compound to be hydrophobized. Cellulose fibers and a curable resin are included. As fine cellulose fibers having a carboxyl group, the average fiber diameter is 0.1 nm or more and 200 nm or less, the average fiber length is 600 nm or less, and the average aspect ratio A fiber having an average fiber length / average fiber diameter of 1 or more and 200 or less is used.
Here, the fine cellulose fiber having a carboxyl group has an average fiber diameter of 0.1 nm or more and 200 nm or less, an average fiber length of 600 nm or less, and an average aspect ratio of 1 or more and 200 or less. The fine cellulose fiber obtained by modifying the carboxyl group of the fine cellulose fiber having a group to be hydrophobized also has an average fiber diameter of 0.1 nm to 200 nm, an average fiber length of 600 nm or less, and an average aspect ratio. Is 1 or more and 200 or less.
Hereinafter, the fine cellulose fiber having a carboxyl group is also referred to as a carboxyl group-containing fine cellulose fiber, and the fine cellulose fiber obtained by hydrophobizing the carboxyl group of the carboxyl group-containing fine cellulose fiber is also referred to as a hydrophobized fine cellulose fiber.
 従来、通常300程度の平均アスペクト比を有するカルボキシル基含有微細セルロース繊維に対して各種修飾基を結合させるなどの疎水化処理を行なったものはあったが、かかる微細セルロース繊維は、低熱膨張性ではあるものの、金属導体との密着性が低かった。
 しかしながら、本発明者らは、平均アスペクト比が1以上200以下のカルボキシル基含有微細セルロース繊維に対して疎水化処理を施したものと硬化性樹脂とを含む組成物とすると、この組成物から得られる硬化物は、低熱膨張性を維持したまま、金属導体との密着性にも優れることを見出した。
 このような効果が奏される詳細な理由は不明であるが、平均アスペクト比が上記範囲に含まれるカルボキシル基含有微細セルロース繊維は、天然セルロース繊維中に存在する脆弱な部分、例えば、非晶領域が切断されて短繊維化したものであるために、全体として結晶領域の分布割合が増加することから、短繊維でありながら低熱膨張性を維持できたと推察される。
 また、得られる疎水化微細セルロース繊維の繊維長も短いことから、樹脂組成物中での分散性が向上して、フィラーとしての効果も十分発揮されるので、低熱膨張性に優れながら、金属導体との密着性にも優れると考えられる。
Conventionally, there have been those that have been subjected to a hydrophobic treatment such as bonding various modifying groups to carboxyl group-containing fine cellulose fibers that usually have an average aspect ratio of about 300, but such fine cellulose fibers are not low in thermal expansion. Although there was, the adhesion to the metal conductor was low.
However, the present inventors obtained a composition containing a curable resin and a hydrophobic group-containing fine cellulose fiber having an average aspect ratio of 1 or more and 200 or less obtained from this composition. It was found that the cured product was excellent in adhesion to the metal conductor while maintaining low thermal expansion.
Although the detailed reason for such an effect is unknown, the carboxyl group-containing fine cellulose fiber having an average aspect ratio in the above range is a fragile part existing in the natural cellulose fiber, for example, an amorphous region. Since the fiber is cut into short fibers and the distribution ratio of the crystal region increases as a whole, it is presumed that the low thermal expansibility can be maintained even though the fibers are short fibers.
Moreover, since the fiber length of the obtained hydrophobized fine cellulose fiber is short, the dispersibility in the resin composition is improved and the effect as a filler is sufficiently exhibited. It is considered that the adhesiveness is excellent.
 本発明の硬化性樹脂組成物は、プリント配線板の絶縁層を形成するために好適に用いられ、例えば、プリント配線板のコア層、層間絶縁層、ソルダーレジスト等の表面保護層を形成するために好適に用いられる。
 また、本発明の硬化性樹脂組成物としては、例えば、熱硬化性樹脂を含む熱硬化性樹脂組成物、光硬化性樹脂を含む光硬化性樹脂組成物、光硬化性樹脂および熱硬化性樹脂を含む光硬化性熱硬化性樹脂組成物が挙げられる。
The curable resin composition of the present invention is suitably used for forming an insulating layer of a printed wiring board, for example, for forming a surface protective layer such as a core layer, an interlayer insulating layer, or a solder resist of a printed wiring board. Is preferably used.
Examples of the curable resin composition of the present invention include a thermosetting resin composition containing a thermosetting resin, a photocurable resin composition containing a photocurable resin, a photocurable resin, and a thermosetting resin. The photocurable thermosetting resin composition containing is mentioned.
〔疎水化微細セルロース繊維〕
 上記疎水化微細セルロース繊維は、カルボキシル基含有微細セルロース繊維のカルボキシル基がアミン化合物および第4級アンモニウム化合物のうちの少なくともいずれか一種により修飾されて疎水化されてなるものであり、以下のようにして得ることができる。
 原材料の天然セルロース繊維としては、例えば、針葉樹系パルプ、広葉樹系パルプ等の木材パルプ;コットンリンター、コットンリントのような綿系パルプ;麦わらパルプ、バガスパルプ等の非木材系パルプ;バクテリアセルロース等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。
[Hydrophobized fine cellulose fiber]
The above-mentioned hydrophobized fine cellulose fiber is obtained by modifying the carboxyl group of the carboxyl group-containing fine cellulose fiber with at least one of an amine compound and a quaternary ammonium compound to make it hydrophobic. Can be obtained.
Examples of the raw material natural cellulose fiber include wood pulp such as softwood pulp and hardwood pulp; cotton pulp such as cotton linter and cotton lint; non-wood pulp such as straw pulp and bagasse pulp; bacterial cellulose and the like These 1 type can be used individually or in combination of 2 or more types.
 上記原材料は主としてセルロース、ヘミセルロースおよびリグニンから構成され、このうちリグニンの含有量は通常0~40質量%程度、特には0~10質量%程度である。これらの原材料については、必要に応じ、リグニンの除去ないし漂白処理を行って、リグニン量の調整を行うことができる。なお、リグニン含有量の測定は、Klason法により行うことができる。 The raw material is mainly composed of cellulose, hemicellulose and lignin, and the content of lignin is usually about 0 to 40% by mass, particularly about 0 to 10% by mass. About these raw materials, the removal of a lignin thru | or a bleaching process can be performed as needed, and the amount of lignin can be adjusted. The lignin content can be measured by the Klason method.
 植物の細胞壁の中では、セルロース分子が単分子ではなく規則的に凝集して数十本集まった結晶性を有するミクロフィブリルを形成しており、これが植物の基本骨格物質となっている。よって、上記原材料から微細セルロース繊維を製造するためには、上記原材料に対し、叩解ないし粉砕処理、高温高圧水蒸気処理、リン酸塩等による処理等を施すことにより、その繊維をナノサイズまで解きほぐすことができる。 In the cell wall of a plant, cellulose molecules are not a single molecule but regularly agglomerate to form a microfibril having crystallinity in which dozens are collected, and this is a basic skeletal substance of the plant. Therefore, in order to produce fine cellulose fibers from the above raw materials, the fibers are unraveled to the nano size by subjecting the raw materials to beating or crushing treatment, high-temperature high-pressure steam treatment, treatment with phosphate, etc. Can do.
 また、天然セルロース繊維に対して、酸化処理(例えば、後述するTEMPOを用いた酸化処理)を行うことによって、天然セルロースのグルコピラノース環中のC6位の1級水酸基を選択的にカルボキシル基へと酸化することにより、カルボキシル基含有セルロース繊維を得ることができる。この処理を行うことにより、セルロース繊維を比較的弱いせん断力で、ナノサイズまで解きほぐすことができる。 Moreover, the primary hydroxyl group at the C6 position in the glucopyranose ring of the natural cellulose is selectively converted into a carboxyl group by subjecting the natural cellulose fiber to an oxidation treatment (for example, an oxidation treatment using TEMPO described later). Carboxyl group-containing cellulose fibers can be obtained by oxidation. By performing this treatment, the cellulose fibers can be unraveled to a nano size with a relatively weak shearing force.
 さらに、カルボキシル基含有セルロース繊維のカルボキシル基を、アミン化合物および第4級アンモニウム化合物のうち少なくとも一種で修飾して疎水化することで、上記疎水化微細セルロース繊維を得ることができる。  Furthermore, the hydrophobic fine cellulose fiber can be obtained by modifying the carboxyl group of the carboxyl group-containing cellulose fiber with at least one of an amine compound and a quaternary ammonium compound to make it hydrophobic. *
 以下、本発明で用いる疎水化微細セルロース繊維の製造方法について具体的に記載する。
(スラリー化工程)
 まず、水中に天然セルロース繊維を分散させたスラリーを調製する。スラリーは、原料となる天然セルロース繊維(絶対乾燥基準:150℃にて30分間加熱乾燥させた後の天然セルロース繊維の質量)に対して約10~1000倍量(質量基準)の水を加え、ミキサー等で処理することにより得られる。天然セルロース繊維は、叩解等の表面積を高める処理が施されていてもよい。また、上記市販のパルプのセルロースI型結晶化度は、通常80%以上である。
Hereinafter, the manufacturing method of the hydrophobized fine cellulose fiber used by this invention is described concretely.
(Slurry process)
First, a slurry in which natural cellulose fibers are dispersed in water is prepared. The slurry is added with about 10 to 1000 times (mass basis) of water as a raw material natural cellulose fiber (absolute drying basis: mass of natural cellulose fiber after being heated and dried at 150 ° C. for 30 minutes) It is obtained by processing with a mixer or the like. The natural cellulose fiber may be subjected to a treatment for increasing the surface area such as beating. Moreover, the cellulose I type crystallinity degree of the said commercially available pulp is 80% or more normally.
(酸化処理工程)
 次に、上記天然セルロース繊維を、N-オキシル化合物等の酸化剤の存在下で酸化処理して、カルボキシル基含有セルロース繊維を得る(以下、単に「酸化処理」と称する場合がある)。
(Oxidation process)
Next, the natural cellulose fiber is oxidized in the presence of an oxidizing agent such as an N-oxyl compound to obtain a carboxyl group-containing cellulose fiber (hereinafter sometimes simply referred to as “oxidation treatment”).
 N-オキシル化合物としては、炭素数1又は2のアルキル基を有するピペリジンオキシル化合物、ピロリジンオキシル化合物、イミダゾリンオキシル化合物、及び、アザアダマンタン化合物から選ばれる1種以上の複素環式のN-オキシル化合物が好ましい。これらの中では、反応性の観点から、炭素数1又は2のアルキル基を有するピペリジンオキシル化合物が好ましく、2,2,6,6-テトラアルキルピペリジン-1-オキシル(TEMPO)、4-ヒドロキシ-2,2,6,6-テトラアルキルピペリジン-1-オキシル、4-アルコキシ-2,2,6,6-テトラアルキルピペリジン-1-オキシル、4-ベンゾイルオキシ-2,2,6,6-テトラアルキルピペリジン-1-オキシル、4-アミノ-2,2,6,6-テトラアルキルピペリジン-1-オキシル等のジ-tert-アルキルニトロキシル化合物、4-アセトアミド-TEMPO、4-カルボキシ-TEMPO、4-ホスフォノキシ-TEMPO等が挙げられる。これらのピペリジンオキシル化合物の中では、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-メトキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルがより好ましく、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)がさらに好ましい。 Examples of the N-oxyl compound include one or more heterocyclic N-oxyl compounds selected from piperidine oxyl compounds having 1 or 2 carbon atoms, pyrrolidine oxyl compounds, imidazoline oxyl compounds, and azaadamantane compounds. preferable. Among these, from the viewpoint of reactivity, a piperidineoxyl compound having an alkyl group having 1 or 2 carbon atoms is preferable, and 2,2,6,6-tetraalkylpiperidine-1-oxyl (TEMPO), 4-hydroxy- 2,2,6,6-tetraalkylpiperidine-1-oxyl, 4-alkoxy-2,2,6,6-tetraalkylpiperidine-1-oxyl, 4-benzoyloxy-2,2,6,6-tetra Di-tert-alkylnitroxyl compounds such as alkylpiperidine-1-oxyl and 4-amino-2,2,6,6-tetraalkylpiperidine-1-oxyl, 4-acetamido-TEMPO, 4-carboxy-TEMPO, 4 -Phosphonoxy-TEMPO and the like. Among these piperidine oxyl compounds, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4- Methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl is more preferred, and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) is even more preferred.
 N-オキシル化合物の量は、触媒量であればよく、天然セルロース繊維(絶対乾燥基準)100質量部に対して、好ましくは0.001~10質量部、より好ましくは0.01~9質量部、さらに好ましくは0.1~8質量部、よりさらに好ましくは0.5~5質量部である。
 天然セルロース繊維の酸化処理においては、N-オキシル化合物以外の酸化剤を使用することができる。酸化剤としては、溶媒をアルカリ性域に調整した場合の溶解度や反応速度等の観点から、酸素又は空気、過酸化物;ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸及びそれらのアルカリ金属塩又はアルカリ土類金属塩;ハロゲン酸化物、窒素酸化物等が挙げられる。これらの中でも、アルカリ金属次亜ハロゲン酸塩が好ましく、具体的には、次亜塩素酸ナトリウムや次亜臭素酸ナトリウムが例示される。酸化剤の使用量は、天然セルロース繊維のカルボキシル基置換度(酸化度)に応じて選択すればよく、また、反応条件によって酸化反応収率が異なるため一概には決められないが、原材料である天然セルロース繊維(絶対乾燥基準)100質量部に対し、好ましくは約1~100質量部となる範囲である。
The amount of the N-oxyl compound may be a catalytic amount, and is preferably 0.001 to 10 parts by mass, more preferably 0.01 to 9 parts by mass with respect to 100 parts by mass of natural cellulose fiber (absolute dry basis). More preferably, it is 0.1 to 8 parts by mass, and still more preferably 0.5 to 5 parts by mass.
In the oxidation treatment of natural cellulose fibers, an oxidizing agent other than the N-oxyl compound can be used. As the oxidizing agent, from the viewpoint of solubility and reaction rate when the solvent is adjusted to an alkaline region, oxygen or air, peroxides; halogens, hypohalous acids, halous acids, perhalogen acids and their alkali metals Salt or alkaline earth metal salt; halogen oxide, nitrogen oxide and the like. Among these, alkali metal hypohalites are preferable, and specific examples include sodium hypochlorite and sodium hypobromite. The amount of the oxidant used may be selected according to the degree of carboxyl group substitution (oxidation degree) of the natural cellulose fiber, and the oxidation reaction yield varies depending on the reaction conditions. The range is preferably about 1 to 100 parts by mass with respect to 100 parts by mass of natural cellulose fiber (absolute dry basis).
 また、酸化反応をより一層効率よく行うため、助触媒として、臭化ナトリウム、臭化カリウム等の臭化物や、ヨウ化ナトリウム、ヨウ化カリウム等のヨウ化物等を用いることができる。助触媒の量は、その機能を発揮できる有効量であればよく、特に制限はない。
 酸化処理における反応温度は、反応の選択性、副反応の抑制の観点から、好ましくは50℃以下、より好ましくは40℃以下、更に好ましくは20℃以下であり、その下限は、好ましくは-5℃以上である。
In order to perform the oxidation reaction more efficiently, bromides such as sodium bromide and potassium bromide and iodides such as sodium iodide and potassium iodide can be used as a co-catalyst. The amount of the promoter is not particularly limited as long as it is an effective amount that can exhibit its function.
The reaction temperature in the oxidation treatment is preferably 50 ° C. or less, more preferably 40 ° C. or less, further preferably 20 ° C. or less, from the viewpoint of reaction selectivity and side reaction suppression, and the lower limit thereof is preferably −5. It is above ℃.
 また、反応系のpHは酸化剤の性質に合わせることが好ましく、例えば、酸化剤として次亜塩素酸ナトリウムを用いる場合、反応系のpHはアルカリ性とすることが好ましく、pH7~13が好ましく、pH10~13がより好ましい。さらに、反応時間は1~240分間が望ましい。 The pH of the reaction system is preferably matched to the nature of the oxidizing agent. For example, when sodium hypochlorite is used as the oxidizing agent, the pH of the reaction system is preferably alkaline, preferably pH 7 to 13, and pH 10 ~ 13 are more preferred. Further, the reaction time is preferably 1 to 240 minutes.
 上記酸化処理を行うことにより、カルボキシル基含有量が好ましくは0.1mmol/g以上の、カルボキシル基含有セルロース繊維が得られる。 By performing the oxidation treatment, a carboxyl group-containing cellulose fiber having a carboxyl group content of preferably 0.1 mmol / g or more is obtained.
(精製工程)
 上記酸化処理工程で得られるカルボキシル基含有セルロース繊維は、触媒として用いるTEMPO等のN-オキシル化合物や副生塩を含む。そのまま次工程を行ってもよいが、精製を行って純度の高いカルボキシル基含有セルロース繊維を得ることもできる。精製方法としては、酸化反応における溶媒の種類、生成物の酸化の程度、精製の程度により最適な方法を採用することができる。例えば、良溶媒として水、貧溶媒としてメタノール、エタノール、アセトン等を用いた再沈殿、ヘキサン等の水と相分離する溶媒へのTEMPO等の抽出、及び、塩のイオン交換、透析等による精製等が挙げられる。
(Purification process)
The carboxyl group-containing cellulose fiber obtained in the oxidation treatment step contains an N-oxyl compound such as TEMPO and a by-product salt used as a catalyst. Although the next step may be carried out as it is, purification can be carried out to obtain a carboxyl group-containing cellulose fiber having a high purity. As the purification method, an optimum method can be employed depending on the type of solvent in the oxidation reaction, the degree of oxidation of the product, and the degree of purification. For example, reprecipitation using water as a good solvent, methanol, ethanol, acetone, etc. as a poor solvent, extraction of TEMPO into a solvent that is phase-separated from water such as hexane, purification by ion exchange of salts, dialysis, etc. Is mentioned.
(微細化工程)
 次に、上記精製工程後に得られたカルボキシル基含有セルロース繊維を微細化する工程を行う。微細化工程では、上記精製工程を経たカルボキシル基含有セルロース繊維を溶媒中に分散させ、微細化処理を行うことが好ましい。この微細化工程を行うことにより、平均アスペクト比が上記範囲にある微細セルロース繊維が得られる。
(Miniaturization process)
Next, a step of refining the carboxyl group-containing cellulose fiber obtained after the purification step is performed. In the refinement process, it is preferable to perform the refinement process by dispersing the carboxyl group-containing cellulose fibers that have undergone the purification process in a solvent. By performing this refinement step, fine cellulose fibers having an average aspect ratio in the above range can be obtained.
 分散媒としての溶媒は、水の他、メタノール、エタノール、プロパノール等の炭素数1~6、好ましくは炭素数1~3のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン等の炭素数3~6のケトン;直鎖又は分岐状の炭素数1~6の飽和炭化水素又は不飽和炭化水素;ベンゼン、トルエン等の芳香族炭化水素;塩化メチレン、クロロホルム等のハロゲン化炭化水素;炭素数2~5の低級アルキルエーテル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル等の極性溶媒等が例示される。これらは、単独で又は2種以上を混合して用いることができるが、微細化処理の操作性の観点から、水、炭素数1~6のアルコール、炭素数3~6のケトン、炭素数2~5の低級アルキルエーテル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、コハク酸メチルトリグリコールジエステル等の極性溶媒が好ましく、環境負荷低減の観点から、水がより好ましい。溶媒の使用量は、カルボキシル基含有セルロース繊維を分散できる有効量であればよく、特に制限はないが、カルボキシル基含有セルロース繊維に対して、好ましくは1~500質量倍、より好ましくは2~200質量倍で使用することができる。 The solvent as the dispersion medium is water, alcohol having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms such as methanol, ethanol and propanol; ketone having 3 to 6 carbon atoms such as acetone, methyl ethyl ketone and methyl isobutyl ketone. Linear or branched saturated or unsaturated hydrocarbons having 1 to 6 carbon atoms; aromatic hydrocarbons such as benzene and toluene; halogenated hydrocarbons such as methylene chloride and chloroform; lower groups having 2 to 5 carbon atoms; Examples include alkyl ethers; polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and diesters of succinic acid and triethylene glycol monomethyl ether. These can be used alone or in admixture of two or more, but from the viewpoint of the operability of the micronization treatment, water, alcohol having 1 to 6 carbon atoms, ketone having 3 to 6 carbon atoms, carbon number 2 Preferred are polar solvents such as lower alkyl ethers of 5 to 5, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, succinic acid methyltriglycol diester, and water is more preferable from the viewpoint of reducing environmental burden. The amount of the solvent used is not particularly limited as long as it is an effective amount capable of dispersing the carboxyl group-containing cellulose fibers, but is preferably 1 to 500 times by mass, more preferably 2 to 200 times the carboxyl group-containing cellulose fibers. Can be used at mass times.
 微細化処理で使用する装置としては、公知の分散機が好適に使用される。例えば、離解機、叩解機、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー、カッターミル、ボールミル、ジェットミル、単軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等を用いることができる。また、微細化処理における反応物繊維の固形分濃度は50質量%以下が好ましい。 A known disperser is preferably used as an apparatus used in the miniaturization process. For example, a disaggregator, a beater, a low pressure homogenizer, a high pressure homogenizer, a grinder, a cutter mill, a ball mill, a jet mill, a single screw extruder, a twin screw extruder, an ultrasonic stirrer, a household juicer mixer, and the like can be used. Further, the solid content concentration of the reactant fiber in the refinement treatment is preferably 50% by mass or less.
 また、本発明では、上記微細化処理を行う前に、生化学的処理、化学処理、及び、機械処理から選ばれる少なくとも1つの処理を、さらに行うことができる。具体的には、酸加水分解、熱水分解、酸化分解、粉砕、酵素処理、UV処理、電子線処理等の処理方法が挙げられるが、これらの処理によりセルロース繊維の短繊維化が図られて、微細化処理をより効率的に行うことができ、ひいては、平均アスペクト比が上記範囲内に含まれるものとなる。上記処理内容としては、例えば、精製工程を経たカルボキシル基含有セルロース繊維を酸で還流する方法が挙げられる。酸の種類及びその濃度は特に限定されない。例えば、濃塩酸を添加して、塩酸濃度が0.1~10Mであるカルボキシル基含有セルロース繊維の水分散液を加熱する方法が例示される。 Further, in the present invention, before performing the above-described miniaturization treatment, at least one treatment selected from biochemical treatment, chemical treatment, and mechanical treatment can be further performed. Specific examples include acid hydrolysis, hydrothermal decomposition, oxidative decomposition, pulverization, enzyme treatment, UV treatment, electron beam treatment, and the like. By these treatments, cellulose fibers are shortened. Therefore, the miniaturization process can be performed more efficiently, and as a result, the average aspect ratio is included in the above range. Examples of the treatment content include a method of refluxing carboxyl group-containing cellulose fibers that have undergone a purification step with an acid. The kind of acid and its concentration are not particularly limited. For example, a method of adding concentrated hydrochloric acid and heating an aqueous dispersion of carboxyl group-containing cellulose fibers having a hydrochloric acid concentration of 0.1 to 10 M is exemplified.
 得られた微細セルロース繊維の形態としては、必要に応じ、固形分濃度を調整した懸濁液状(目視的に無色透明又は不透明な液)、あるいは乾燥処理した粉末状(但し、微細セルロース繊維が凝集した粉末状であり、セルロース粒子を意味するものではない)とすることもできる。なお、懸濁液状にする場合、分散媒として水のみを使用してもよく、水と他の有機溶媒(例えば、エタノール等のアルコール類)や界面活性剤、酸、塩基等との混合溶媒を使用してもよい。 As the form of the obtained fine cellulose fiber, the solid content concentration is adjusted as needed (a visually colorless transparent or opaque liquid) or a dried powder (however, the fine cellulose fibers are aggregated) And is not intended to mean cellulose particles). In the case of a suspension, only water may be used as a dispersion medium, and a mixed solvent of water and other organic solvents (for example, alcohols such as ethanol), surfactants, acids, bases, etc. May be used.
 上記のようにして、セルロース構成単位のC6位の水酸基がアルデヒド基を経由してカルボキシル基へと選択的に酸化され、上記カルボキシル基含有量が0.1mmol/g以上で、かつ、平均繊維径が0.1~200nm、平均繊維長が600nm以下、平均アスペクト比が1以上200以下の微細化されたセルロース、好ましくは30%以上の結晶化度を有する微細セルロース繊維を得ることができる。 As described above, the hydroxyl group at the C6 position of the cellulose structural unit is selectively oxidized to a carboxyl group via an aldehyde group, and the carboxyl group content is 0.1 mmol / g or more, and the average fiber diameter is Of 0.1 to 200 nm, an average fiber length of 600 nm or less, and an average aspect ratio of 1 or more and 200 or less, preferably a fine cellulose fiber having a crystallinity of 30% or more.
〔微細セルロース繊維の平均繊維径、平均繊維長および平均アスペクト比〕
 カルボキシル基含有微細セルロース繊維の平均繊維径、平均繊維長および平均アスペクト比は、以下のようにして測定することができる。
 カルボキシル基含有微細セルロース繊維に水を加えて、その濃度が0.0001質量%の分散液を調製し、この分散液をマイカ(雲母)上に滴下して乾燥したものを観察試料として、原子間力顕微鏡(AFM、Nanoscope III Tapping mode AFM、Digital instrument社製、プローブはナノセンサーズ社製Point Probe(NCH)を使用)を用いて、観察試料中の微細セルロース繊維の繊維高さを測定する。その際、微細セルロース繊維が確認できる顕微鏡画像において、微細セルロース繊維を5本以上抽出し、それらの繊維高さから平均繊維径を算出する。また、繊維方向の距離より、平均繊維長を算出する。平均アスペクト比は平均繊維長/平均繊維径より算出される。
[Average fiber diameter, average fiber length and average aspect ratio of fine cellulose fibers]
The average fiber diameter, average fiber length, and average aspect ratio of the carboxyl group-containing fine cellulose fibers can be measured as follows.
Water is added to the carboxyl group-containing fine cellulose fiber to prepare a dispersion liquid having a concentration of 0.0001% by mass, and the dispersion liquid is dropped on mica (mica) and dried as an observation sample. Using a force microscope (AFM, Nanoscope III Tapping mode AFM, manufactured by Digital instrument, probe uses Nano Probes Point Probe (NCH)), the fiber height of the fine cellulose fibers in the observation sample is measured. In that case, in the microscope image which can confirm a fine cellulose fiber, five or more fine cellulose fibers are extracted, and an average fiber diameter is computed from those fiber heights. Further, the average fiber length is calculated from the distance in the fiber direction. The average aspect ratio is calculated from the average fiber length / average fiber diameter.
 本発明において、カルボキシル基含有微細セルロース繊維の平均繊維径は0.1nm以上200nm以下であり、好ましくは1nm以上100nm以下、より好ましくは2nm以上50nm以下、さらに好ましくは2.5nm以上20nm以下である。平均繊維径0.1nm未満のものは製造が困難であり、また、平均繊維径が200nmを超えると、プリント配線板の導体と密着性が良好な硬化物を得ることができない。 In the present invention, the average fiber diameter of the carboxyl group-containing fine cellulose fibers is from 0.1 nm to 200 nm, preferably from 1 nm to 100 nm, more preferably from 2 nm to 50 nm, and even more preferably from 2.5 nm to 20 nm. . Those having an average fiber diameter of less than 0.1 nm are difficult to produce, and if the average fiber diameter exceeds 200 nm, a cured product having good adhesion to the conductor of the printed wiring board cannot be obtained.
 カルボキシル基含有微細セルロース繊維の平均繊維長は600nm以下であり、好ましくは50nm以上600nm以下、より好ましくは100nm以上500nm以下、さらに好ましくは150nm以上500nm以下である。平均繊維長が600nmを超えるものは、組成物にしたときの分散が難しくなる。 The average fiber length of the carboxyl group-containing fine cellulose fibers is 600 nm or less, preferably 50 nm or more and 600 nm or less, more preferably 100 nm or more and 500 nm or less, and further preferably 150 nm or more and 500 nm or less. Those having an average fiber length exceeding 600 nm are difficult to disperse when made into a composition.
 カルボキシル基含有微細セルロース繊維の平均アスペクト比は1以上200以下であり、好ましくは5以上180以下、より好ましくは9以上170以下、特に好ましくは9以上100未満である。平均アスペクト比が1未満のものは製造が困難であり、平均アスペクト比が200を超えると、金属導体と密着性が良好な硬化物を得ることができない。平均アスペクト比が200以下であると、金属導体と硬化物との密着性が良好となり、平均アスペクト比が小さくなるほど金属導体と硬化物との密着性に優れ、組成物の粘度を下げることができる。 The average aspect ratio of the carboxyl group-containing fine cellulose fibers is 1 or more and 200 or less, preferably 5 or more and 180 or less, more preferably 9 or more and 170 or less, and particularly preferably 9 or more and less than 100. Those having an average aspect ratio of less than 1 are difficult to produce, and if the average aspect ratio exceeds 200, a cured product having good adhesion to the metal conductor cannot be obtained. When the average aspect ratio is 200 or less, the adhesion between the metal conductor and the cured product becomes better, and the smaller the average aspect ratio, the better the adhesion between the metal conductor and the cured product, and the viscosity of the composition can be lowered. .
 本発明においては、上記カルボキシル基を修飾して、疎水化した微細セルロース繊維を用いる。すなわち、カルボキシル基を有する微細セルロース繊維を、アミン化合物や第4級アンモニウム化合物を用いて修飾した疎水化微細セルロース繊維を用いる。
 以下、この疎水化微細セルロース繊維について説明する。
 カルボキシル基含有微細セルロース繊維のカルボキシル基が修飾されて疎水化されてなる微細セルロース繊維においては、修飾基がアミド結合またはアミン塩のいずれか一方もしくは両方を介してセルロース主鎖に結合している。
In the present invention, fine cellulose fibers that have been modified by modifying the carboxyl group and made hydrophobic are used. That is, hydrophobic microcellulose fibers obtained by modifying fine cellulose fibers having a carboxyl group with an amine compound or a quaternary ammonium compound are used.
Hereinafter, the hydrophobized fine cellulose fiber will be described.
In the fine cellulose fiber obtained by modifying the carboxyl group of the carboxyl group-containing fine cellulose fiber to be hydrophobized, the modifying group is bonded to the cellulose main chain through one or both of an amide bond and an amine salt.
 修飾基としては、アミド結合またはアミン塩のうちのいずれか一方もしくは両方を介して結合する官能基であればよく、例えば、炭素数1の炭化水素基、又は、炭素数2~30の飽和若しくは不飽和の直鎖状若しくは分岐状の炭化水素基が挙げられる。具体例としては、以下の炭化水素基が挙げられる。
 炭素数1の炭化水素基:メチル基。
 炭素数2~30の飽和の、直鎖状の炭化水素基:エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、ドコシル基、オクタコサニル基。
 炭素数2~30の不飽和の、直鎖状の炭化水素基:オレイル基、ミリストレイル基、パルミトレイル基、リノレイル基、リノレニル基、エイコサニル基。
 炭素数2~30の飽和の、分岐状の炭化水素基:イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、t-ペンチル基、イソへキシル基、2-ヘキシル基、ジメチルブチル基、エチルブチル基。
The modifying group may be a functional group bonded through either one or both of an amide bond and an amine salt, such as a hydrocarbon group having 1 carbon atom, or a saturated or saturated group having 2 to 30 carbon atoms. An unsaturated linear or branched hydrocarbon group is exemplified. Specific examples include the following hydrocarbon groups.
C1 hydrocarbon group: methyl group.
Saturated linear hydrocarbon group having 2 to 30 carbon atoms: ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, nonyl group, decyl group, dodecyl group, octadecyl group, docosyl group, Octacosanyl group.
Unsaturated linear hydrocarbon group having 2 to 30 carbon atoms: oleyl group, myristol group, palmitoleyl group, linoleyl group, linolenyl group, eicosanyl group.
Saturated, branched hydrocarbon group having 2 to 30 carbon atoms: isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, t-pentyl group, isohexyl group, 2-hexyl group, Dimethylbutyl group, ethylbutyl group.
 飽和若しくは不飽和の直鎖状若しくは分岐状の炭化水素基の炭素数は、硬化性樹脂との組み合わせによって任意に選択されるが、1以上、特に3以上、とりわけ10以上であることが好ましく、また30以下、特に20以下、とりわけ18以下であることが好ましい。例えば、1以上30以下であることが好ましく、3以上20以下であることが好ましく、10以上18以下であることが一層好ましい。炭素数が上述の範囲にあることで、微細セルロース繊維と硬化性樹脂とが均一な混合状態となり、低線熱膨張係数など樹脂組成物として良好な物性が得られる。 The carbon number of the saturated or unsaturated linear or branched hydrocarbon group is arbitrarily selected depending on the combination with the curable resin, but is preferably 1 or more, particularly 3 or more, and particularly preferably 10 or more, Further, it is preferably 30 or less, particularly 20 or less, particularly 18 or less. For example, it is preferably 1 or more and 30 or less, preferably 3 or more and 20 or less, and more preferably 10 or more and 18 or less. When the carbon number is in the above range, the fine cellulose fibers and the curable resin are in a uniform mixed state, and good physical properties as a resin composition such as a low linear thermal expansion coefficient are obtained.
 上記飽和若しくは不飽和の直鎖状若しくは分岐状の炭化水素基を有するアミンとしては、具体的には、第1級アミンとしては、例えば、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、オクタデシルアミン、オレイルアミン等のモノアルキルアミンが挙げられる。第2級アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジオクタデシルアミン等のジアルキルアミンが挙げられる。 Specific examples of the amine having a saturated or unsaturated linear or branched hydrocarbon group include primary amines such as methylamine, ethylamine, propylamine, isopropylamine, butylamine, and hexyl. Examples thereof include monoalkylamines such as amine, octylamine, decylamine, dodecylamine, octadecylamine, and oleylamine. Examples of the secondary amine include dialkylamines such as dimethylamine, diethylamine, dibutylamine, and dioctadecylamine.
 また、芳香族炭化水素基を有するアミンとしては、総炭素数が6~20であればよく、第1級アミン、第2級アミンのいずれでもよいが、カルボキシル基との反応性の観点からは、第1級アミンが好ましい。また、アミンにおける芳香族炭化水素基の数は、総炭素数が6~20となるのであれば、1個、2個のいずれでもよいが、1個が好ましい。 Further, the amine having an aromatic hydrocarbon group may have a total carbon number of 6 to 20, and may be either a primary amine or a secondary amine, but from the viewpoint of reactivity with a carboxyl group. Primary amines are preferred. Further, the number of aromatic hydrocarbon groups in the amine may be either one or two as long as the total carbon number is 6 to 20, but one is preferable.
 芳香族炭化水素基を有するアミンとしては、アリール基を有するアミン、アラルキル基を有するアミンが挙げられ、樹脂との相溶性の観点から、アリール基を有するアミンが好ましい。 Examples of the amine having an aromatic hydrocarbon group include an amine having an aryl group and an amine having an aralkyl group, and an amine having an aryl group is preferable from the viewpoint of compatibility with a resin.
 アリール基としては、具体的には、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基、トリフェニル基が挙げられ、これらは単独で又は2種以上結合していてもよい。なかでも、樹脂との相溶性の観点から、フェニル基、ナフチル基、ビフェニル基が好ましく、フェニル基がより好ましい。 Specific examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenyl group, and a triphenyl group, and these may be used alone or in combination of two or more. Among these, from the viewpoint of compatibility with the resin, a phenyl group, a naphthyl group, and a biphenyl group are preferable, and a phenyl group is more preferable.
 アラルキル基としては、具体的には、ベンジル基、フェネチル基、フェニルプロピル基、フェニルペンチル基、フェニルヘキシル基、フェニルヘプチル基が挙げられ、これらは単独で又は2種以上結合していてもよい。中でも、樹脂との相溶性の観点から、ベンジル基、フェネチル基、フェニルプロピル基、フェニルペンチル基、フェニルヘキシル基が好ましく、ベンジル基、フェネチル基、フェニルプロピル基、フェニルペンチル基がより好ましい。 Specific examples of the aralkyl group include a benzyl group, a phenethyl group, a phenylpropyl group, a phenylpentyl group, a phenylhexyl group, and a phenylheptyl group, and these may be used alone or in combination of two or more. Among these, from the viewpoint of compatibility with the resin, a benzyl group, a phenethyl group, a phenylpropyl group, a phenylpentyl group, and a phenylhexyl group are preferable, and a benzyl group, a phenethyl group, a phenylpropyl group, and a phenylpentyl group are more preferable.
 また、上記アリール基、アラルキル基は置換基を有してもよく、置換基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ヘキシル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ヘキシルオキシ基等の炭素数1~6のアルコキシ基;メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、イソペンチルオキシカルボニル基等の炭素数1~6のアルコキシカルボニル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;炭素数1~6のアシル基、アラルキル基、アラルキルオキシ基が挙げられる。 The aryl group and aralkyl group may have a substituent. Examples of the substituent include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. C1-C6 alkyl groups such as butyl, pentyl, isopentyl, hexyl; methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy An alkoxy group having 1 to 6 carbon atoms such as pentyloxy group, isopentyloxy group, hexyloxy group; methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxy An alkoxycarbonyl group having 1 to 6 carbon atoms such as a carbonyl group, a pentyloxycarbonyl group or an isopentyloxycarbonyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; an acyl group having 1 to 6 carbon atoms; Examples include aralkyl groups and aralkyloxy groups.
 上記芳香族炭化水素基を有するアミンとしては、具体的には、アリール基を有するアミンとしては、アニリン、トルイルアミン、4-ビフェニリルアミン、ジフェニルアミン、2-アミノナフタレン、p-テルフェニルアミン、2-アミノアントラセン、2-アミノアントラキノンが挙げられる。中でも、樹脂との相溶性の観点からアニリン、トルイルアミン、4-ビフェニリルアミン、ジフェニルアミン、2-アミノナフタレンが好ましく、アニリンがより好ましい。アラルキル基を有するアミンとしては、ベンジルアミン、フェネチルアミン、3-フェニルプロピルアミン、5-フェニルペンチルアミン、6-フェニルヘキシルアミン、7-フェニルヘプチルアミン、8-フェニルオクチルアミンが挙げられる。中でも、同様の観点からベンジルアミン、フェネチルアミン、3-フェニルプロピルアミン、5-フェニルペンチルアミン、6-フェニルヘキシルアミン、7-フェニルヘプチルアミンが好ましく、ベンジルアミン、フェネチルアミン、3-フェニルプロピルアミン、5-フェニルペンチルアミン、6-フェニルヘキシルアミンがより好ましく、ベンジルアミン、フェネチルアミン、3-フェニルプロピルアミン、5-フェニルペンチルアミンがさらに好ましい。本発明において用いる芳香族炭化水素基を有するアミンは、公知の方法に従って調製してもよく、市販品であってもよい。 Specific examples of the amine having an aromatic hydrocarbon group include aniline, toluylamine, 4-biphenylylamine, diphenylamine, 2-aminonaphthalene, p-terphenylamine, and amine having an aryl group. -Aminoanthracene, 2-aminoanthraquinone. Of these, aniline, toluylamine, 4-biphenylylamine, diphenylamine, and 2-aminonaphthalene are preferable, and aniline is more preferable from the viewpoint of compatibility with the resin. Examples of the amine having an aralkyl group include benzylamine, phenethylamine, 3-phenylpropylamine, 5-phenylpentylamine, 6-phenylhexylamine, 7-phenylheptylamine, and 8-phenyloctylamine. Among them, benzylamine, phenethylamine, 3-phenylpropylamine, 5-phenylpentylamine, 6-phenylhexylamine, and 7-phenylheptylamine are preferable from the same viewpoint, and benzylamine, phenethylamine, 3-phenylpropylamine, and 5-phenylpentylamine are preferable. More preferred are amine and 6-phenylhexylamine, and even more preferred are benzylamine, phenethylamine, 3-phenylpropylamine, and 5-phenylpentylamine. The amine having an aromatic hydrocarbon group used in the present invention may be prepared according to a known method or may be a commercially available product.
 また他にも、プロピレングリコールアルキルエーテルにエチレンオキシド、プロピレンオキシドを所望量付加させた後、水酸基末端をアミノ化したアミン、ヒドロキシエチル基、ヒドロキシプロピル基など親水基を有するアミンや、エチレングリコール、プロピレングリコールなどのポリエーテル鎖や、ラクチド、カプロラクトンなどのポリエステル鎖を有する、ポリエーテルアミンやポリエステルアミン、シクロペンチル基、シクロヘキシル基などの脂環式炭化水素を有するアミンも、本発明で用いる疎水化微細セルロース繊維においてアミド結合またはアミン塩のいずれか一方もしくは両方を介して結合する化合物として、好適に用いられる。 In addition, after adding a desired amount of ethylene oxide or propylene oxide to propylene glycol alkyl ether, amines having hydroxyl groups aminated, amines having hydrophilic groups such as hydroxyethyl groups, hydroxypropyl groups, ethylene glycol, propylene glycol Hydrophobized fine cellulose fibers used in the present invention also have polyether chains such as polyether, polyester amines such as lactide, caprolactone, etc., and amines having alicyclic hydrocarbons such as polyether amine, polyester amine, cyclopentyl group, and cyclohexyl group. Is preferably used as a compound bonded via either or both of an amide bond and an amine salt.
 疎水化微細セルロース繊維のカルボキシル基を修飾してアミン塩を形成するための第4級アンモニウム化合物としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラエチルアンモニウムクロライド、テトラブチルアンモニウムクロライド、ラウリルトリメチルアンモニウムクロライド、ジラウリルジメチルクロライド、ステアリルトリメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、アルキルベンジルジメチルアンモニウムクロライドが挙げられる。中でも、カルボキシル基への修飾のしやすさの観点から、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドが好ましい。 The quaternary ammonium compound for modifying the carboxyl group of the hydrophobized fine cellulose fiber to form an amine salt includes tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, tetrapropylammonium hydroxide, Examples include tetraethylammonium chloride, tetrabutylammonium chloride, lauryltrimethylammonium chloride, dilauryldimethylchloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, cetyltrimethylammonium chloride, and alkylbenzyldimethylammonium chloride. Among these, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide are preferable from the viewpoint of easy modification to the carboxyl group.
 本発明の硬化性樹脂組成物における疎水化微細セルロース繊維の添加量は、硬化性樹脂の全量(固形分基準)100質量部に対して、好ましくは0.1質量部以上30質量部以下、より好ましくは1質量部以上20質量部以下、さらに好ましくは2質量部以上10質量部以下である。添加量を0.1質量部以上とすると、熱膨張性が低くなり、30質量部以下とすると、低熱膨張性と金属導体との密着性のバランスに優れるものとなる。 The addition amount of the hydrophobized fine cellulose fibers in the curable resin composition of the present invention is preferably 0.1 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the total amount (solid content basis) of the curable resin. Preferably they are 1 mass part or more and 20 mass parts or less, More preferably, they are 2 mass parts or more and 10 mass parts or less. When the addition amount is 0.1 parts by mass or more, the thermal expansibility is lowered, and when it is 30 parts by mass or less, the balance between the low thermal expansibility and the adhesion between the metal conductor is excellent.
(微細セルロース繊維のカルボキシル基の修飾方法)
 本発明における微細セルロース繊維のカルボキシル基の修飾方法としては、以下のものが挙げられる。
 第1の方法として、カルボキシル基含有微細セルロース繊維と修飾基を有するアミン化合物とを溶媒中で混合させて、塩とする方法が挙げられる。
 上記アミン化合物の使用量は、疎水化微細セルロース繊維における所望のアミン塩の結合量により決めることができるが、カルボキシル基含有微細セルロース繊維に含有されるカルボキシル基1molに対して、アミノ基が、好ましくは0.1mol以上、より好ましくは0.5mol以上、さらに好ましくは0.7mol以上、よりさらに好ましくは1mol以上であり、製品純度の観点から、好ましくは50mol以下、より好ましくは20mol以下、さらに好ましくは10mol以下となる量を用いる。なお、上記範囲に含まれる量のアミンを一度に塩形成工程に供しても、分割して塩形成工程に供してもよい。
(Method for modifying carboxyl group of fine cellulose fiber)
The following are mentioned as a modification method of the carboxyl group of the fine cellulose fiber in this invention.
As a first method, there is a method in which a carboxyl group-containing fine cellulose fiber and an amine compound having a modifying group are mixed in a solvent to form a salt.
The amount of the amine compound used can be determined by the amount of the desired amine salt bound in the hydrophobized fine cellulose fiber, but an amino group is preferred with respect to 1 mol of the carboxyl group contained in the carboxyl group-containing fine cellulose fiber. Is 0.1 mol or more, more preferably 0.5 mol or more, more preferably 0.7 mol or more, and still more preferably 1 mol or more. From the viewpoint of product purity, it is preferably 50 mol or less, more preferably 20 mol or less, still more preferably Is used in an amount of 10 mol or less. In addition, the amount of amine included in the above range may be used for the salt forming step at a time, or may be divided and used for the salt forming step.
 溶媒としては、用いるアミン化合物が溶解する溶媒を選択することが好ましく、例えば、エタノール、イソプロパノール(IPA)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N,N-ジメチルアセトアミド、テトラヒドロフラン(THF)、コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル、アセトン、メチルエチルケトン(MEK)、アセトニトリル、ジクロロメタン、クロロホルム、トルエン、酢酸等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。これらの極性溶媒の中でも、コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル、エタノール、DMFが好ましい。 As the solvent, it is preferable to select a solvent in which the amine compound to be used is dissolved. For example, ethanol, isopropanol (IPA), N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N, N-dimethylacetamide, Tetrahydrofuran (THF), diester of succinic acid and triethylene glycol monomethyl ether, acetone, methyl ethyl ketone (MEK), acetonitrile, dichloromethane, chloroform, toluene, acetic acid, etc. may be mentioned, one of these alone or two or more They can be used in combination. Among these polar solvents, diester of succinic acid and triethylene glycol monomethyl ether, ethanol, and DMF are preferable.
 混合時の温度は、好ましくは0℃以上、より好ましくは5℃以上、さらに好ましくは10℃以上である。また、疎水化微細セルロース繊維の着色の観点から、好ましくは50℃以下、より好ましくは40℃以下、さらに好ましくは30℃以下である。混合時間は、用いるアミン及び溶媒の種類に応じて適宜設定することができるが、好ましくは0.01時間以上、より好ましくは0.1時間以上、更に好ましくは1時間以上であり、好ましくは48時間以下、より好ましくは24時間以下、さらに好ましくは12時間以下である。 The temperature at the time of mixing is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, and further preferably 10 ° C. or higher. Moreover, from a viewpoint of coloring of the hydrophobized fine cellulose fiber, Preferably it is 50 degrees C or less, More preferably, it is 40 degrees C or less, More preferably, it is 30 degrees C or less. The mixing time can be appropriately set according to the type of amine and solvent used, but is preferably 0.01 hours or longer, more preferably 0.1 hours or longer, still more preferably 1 hour or longer, preferably 48. It is not longer than time, more preferably not longer than 24 hours, and further preferably not longer than 12 hours.
 上記塩の形成後、塩の形成に使用されなかったアミン化合物を除去するために、後処理を適宜行ってもよい。この後処理の方法としては、例えば、ろ過、遠心分離、透析等を用いることができる。 After the formation of the salt, post-treatment may be appropriately performed in order to remove the amine compound that has not been used for forming the salt. As the post-treatment method, for example, filtration, centrifugation, dialysis and the like can be used.
 第2の方法として、カルボキシル基を有する微細セルロース繊維と修飾基を有するアミン化合物とを溶媒中でアミド化反応させる方法が挙げられる。
 上記修飾基を有するアミン化合物の使用量は、疎水化微細セルロース繊維における所望の結合量により決めることができるが、反応性の観点から、カルボキシル基含有微細セルロース繊維に含有されるカルボキシル基1molに対して、アミノ基が、好ましくは0.1mol以上、より好ましくは0.5mol以上、さらに好ましくは0.7mol以上、よりさらに好ましくは1mol以上であり、製品純度の観点から、好ましくは50mol以下、より好ましくは20mol以下、さらに好ましくは10mol以下となる量を用いる。なお、上記範囲に含まれる量のアミンを一度に反応に供しても、分割して反応に供してもよい。
As a second method, there may be mentioned a method in which a fine cellulose fiber having a carboxyl group and an amine compound having a modifying group are amidated in a solvent.
Although the usage-amount of the amine compound which has the said modification group can be determined by the desired amount of coupling | bonding in a hydrophobized fine cellulose fiber, from a reactive viewpoint, with respect to 1 mol of carboxyl groups contained in a carboxyl group-containing fine cellulose fiber. The amino group is preferably at least 0.1 mol, more preferably at least 0.5 mol, even more preferably at least 0.7 mol, even more preferably at least 1 mol, and from the viewpoint of product purity, preferably at most 50 mol. The amount is preferably 20 mol or less, more preferably 10 mol or less. In addition, the amount of amine included in the above range may be subjected to the reaction at a time or may be divided and subjected to the reaction.
 上記カルボキシル基含有微細セルロース繊維と、修飾基を有するアミン化合物との反応においては、公知の縮合剤を用いることもできる。
 縮合剤としては、特には限定されないが、合成化学シリーズ ペプチド合成(丸善社)P116記載、又は、Tetrahedron,57,1551(2001)記載の縮合剤などが挙げられ、例えば、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロライド(以下、「DMT-MM」と称する場合がある)等が挙げられる。
In the reaction of the carboxyl group-containing fine cellulose fiber and the amine compound having a modifying group, a known condensing agent can be used.
The condensing agent is not particularly limited, and examples thereof include condensing agents described in Synthetic Chemical Series Peptide Synthesis (Maruzensha) P116, or Tetrahedron, 57, 1551 (2001). For example, 4- (4,6 -Dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (hereinafter sometimes referred to as “DMT-MM”).
 上記縮合反応においては、用いるアミン化合物が溶解する溶媒を選択することが好ましい。
 上記縮合反応における反応時間及び反応温度は、用いるアミン及び溶媒の種類等に応じて適宜選択することができるが、反応率及び生産性の観点から、好ましくは1~24時間、より好ましくは10~20時間である。また、反応温度は、反応性の観点から、好ましくは0℃以上、より好ましくは5℃以上、さらに好ましくは10℃以上である。また、疎水化微細セルロース繊維の着色の観点から、好ましくは200℃以下、より好ましくは80℃以下、さらに好ましくは30℃以下である。
In the condensation reaction, it is preferable to select a solvent in which the amine compound to be used is dissolved.
The reaction time and reaction temperature in the condensation reaction can be appropriately selected according to the type of amine and solvent used, etc., but from the viewpoint of reaction rate and productivity, preferably 1 to 24 hours, more preferably 10 to 20 hours. The reaction temperature is preferably 0 ° C. or higher, more preferably 5 ° C. or higher, and further preferably 10 ° C. or higher from the viewpoint of reactivity. Moreover, from a viewpoint of coloring of the hydrophobized fine cellulose fiber, Preferably it is 200 degrees C or less, More preferably, it is 80 degrees C or less, More preferably, it is 30 degrees C or less.
 上記混合後及び反応後においては、未反応のアミン化合物や縮合剤等を除去するために、後処理を適宜行ってもよい。この後処理の方法としては、例えば、ろ過、遠心分離、透析等を用いることができる。 After the mixing and after the reaction, post-treatment may be performed as appropriate in order to remove unreacted amine compound, condensing agent, and the like. As the post-treatment method, for example, filtration, centrifugation, dialysis and the like can be used.
 第3の方法として、カルボキシル基を有する微細セルロース繊維と修飾基を有する第4級アンモニウム化合物とを溶媒中で混合させて、塩とする方法が挙げられる。
 上記第4級アンモニウム化合物の使用量は、疎水化微細セルロース繊維における所望の結合量により決めることができるが、カルボキシル基含有微細セルロース繊維に含有されるカルボキシル基1molに対して、第4級アンモニウムカチオンが、好ましくは0.1mol以上、より好ましくは0.5mol以上、さらに好ましくは0.7mol以上、よりさらに好ましくは1mol以上であり、製品純度の観点から、好ましくは50mol以下、より好ましくは20mol以下、さらに好ましくは10mol以下となる量を用いる。なお、上記範囲に含まれる量の第4級アンモニウム化合物を一度に塩の形成工程に供しても、分割して塩の形成工程に供してもよい。
As a third method, there is a method in which fine cellulose fibers having a carboxyl group and a quaternary ammonium compound having a modifying group are mixed in a solvent to form a salt.
The amount of the quaternary ammonium compound used can be determined by the desired amount of binding in the hydrophobized fine cellulose fiber, but the quaternary ammonium cation with respect to 1 mol of the carboxyl group contained in the carboxyl group-containing fine cellulose fiber. However, it is preferably 0.1 mol or more, more preferably 0.5 mol or more, still more preferably 0.7 mol or more, and still more preferably 1 mol or more. From the viewpoint of product purity, it is preferably 50 mol or less, more preferably 20 mol or less. More preferably, the amount is 10 mol or less. The amount of the quaternary ammonium compound included in the above range may be used for the salt formation step at once, or may be divided and used for the salt formation step.
 溶媒としては、上記アミンと混合する際に用いられる溶媒を同様に用いることができ、それらに加えて水も用いることができる。これらは単独で又は2種以上を組み合わせて用いることができ、中でも、水、コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル、エタノール、DMFが好ましい。
 混合時の温度や時間、並びに塩形成後の後処理については、上記アミン化合物と混合する場合を参照して、適宜設定することができる。
As a solvent, the solvent used when mixing with the said amine can be used similarly, and water can also be used in addition to them. These may be used alone or in combination of two or more. Among them, water, diester of succinic acid and triethylene glycol monomethyl ether, ethanol, and DMF are preferable.
About the temperature and time at the time of mixing, and the post-process after salt formation, it can set suitably with reference to the case where it mixes with the said amine compound.
〔硬化性樹脂〕
 本発明の硬化性樹脂組成物は、熱硬化性樹脂組成物、光硬化性樹脂組成物または光硬化性熱硬化性樹脂組成物である。
[Curable resin]
The curable resin composition of the present invention is a thermosetting resin composition, a photocurable resin composition, or a photocurable thermosetting resin composition.
(熱硬化性樹脂組成物)
 本発明の熱硬化性樹脂組成物は、熱硬化性樹脂、無機フィラーおよび硬化触媒を含むことが好ましい。
 熱硬化性樹脂組成物に用いる熱硬化性樹脂としては、熱による硬化反応が可能な官能基を有する樹脂を用いることが望ましく、特に、分子中に1個以上の環状(チオ)エーテル基を有する化合物が好ましく用いられる。
(Thermosetting resin composition)
The thermosetting resin composition of the present invention preferably contains a thermosetting resin, an inorganic filler, and a curing catalyst.
As the thermosetting resin used in the thermosetting resin composition, it is desirable to use a resin having a functional group capable of being cured by heat, and in particular, having at least one cyclic (thio) ether group in the molecule. A compound is preferably used.
 環状エーテル基を有する化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂などのビスフェノール型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂などのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂、エポキシ変性のポリブタジエンゴム誘導体、CTBN変性エポキシ樹脂、トリメチロールプロパンポリグリシジルエーテル、フェニル-1,3-ジグリシジルエーテル、ビフェニル-4,4’-ジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコール又はプロピレングリコールのジグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリス(2,3-エポキシプロピル)イソシアヌレート、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレートなどのエポキシ樹脂;フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂などのノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油などで変性した油変性レゾールフェノール樹脂などのレゾール型フェノール樹脂などのフェノール樹脂;フェノキシ樹脂;尿素(ユリア)樹脂;メラミン樹脂などのトリアジン環含有樹脂;不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、ノルボルネン系樹脂、シアネート樹脂、イソシアネート樹脂、ウレタン樹脂、ベンゾシクロブテン樹脂、マレイミド樹脂、ビスマレイミドトリアジン樹脂、ポリアゾメチン樹脂、熱硬化性ポリイミド、シアネートエステル樹脂、活性エステル樹脂等が挙げられる。 Examples of the compound having a cyclic ether group include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol E type epoxy resin, bisphenol M type epoxy resin, bisphenol P type epoxy resin, and bisphenol Z type. Bisphenol type epoxy resin such as epoxy resin, bisphenol A novolac type epoxy resin, phenol novolac type epoxy resin, novolac type epoxy resin such as cresol novolac epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, arylalkylene type epoxy resin, Tetraphenylolethane type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, phenoxy type epoxy resin, di Clopentadiene type epoxy resin, norbornene type epoxy resin, adamantane type epoxy resin, fluorene type epoxy resin, glycidyl methacrylate copolymer epoxy resin, cyclohexyl maleimide and glycidyl methacrylate copolymer epoxy resin, epoxy modified polybutadiene rubber derivative, CTBN-modified epoxy resin, trimethylolpropane polyglycidyl ether, phenyl-1,3-diglycidyl ether, biphenyl-4,4′-diglycidyl ether, 1,6-hexanediol diglycidyl ether, diethylene glycol or propylene glycol Glycidyl ether, sorbitol polyglycidyl ether, tris (2,3-epoxypropyl) isocyanurate, triglycidyl tris (2-hydride) Xylethyl) isocyanurate epoxy resins; phenol novolac resins, cresol novolac resins, novolac phenol resins such as bisphenol A novolac resins, unmodified resole phenol resins, oil-modified resole phenols modified with tung oil, linseed oil, walnut oil, etc. Phenol resins such as resol type phenol resins such as resins; phenoxy resins; urea (urea) resins; triazine ring-containing resins such as melamine resins; unsaturated polyester resins, diallyl phthalate resins, silicone resins, resins having a benzoxazine ring, norbornene Resin, cyanate resin, isocyanate resin, urethane resin, benzocyclobutene resin, maleimide resin, bismaleimide triazine resin, polyazomethine resin, thermosetting polyimide, Examples include cyanate ester resins and active ester resins.
 熱硬化性樹脂としては、エポキシ樹脂およびフェノール樹脂を含むことが望ましい。エポキシ樹脂およびフェノール樹脂を含むことにより、耐熱性、ピール強度および絶縁信頼性等を向上させることができる。エポキシ樹脂の含有量としては、全熱硬化性樹脂100質量部に対して、例えば、1質量部以上90質量部以下、好ましくは10質量部以上85質量部以下、より好ましくは20質量部以上80質量部以下である。フェノール樹脂の含有量としては、全熱硬化性樹脂に対して、例えば、1質量部以上70質量部以下、好ましくは5質量部以上60質量部以下、より好ましくは10質量部以上50質量部以下である。
 また、熱硬化性樹脂として活性エステル樹脂を用いる場合は、ジメチルアミノピリジンを用いると硬化性を向上させることができる。
Desirably, the thermosetting resin includes an epoxy resin and a phenol resin. By including an epoxy resin and a phenol resin, heat resistance, peel strength, insulation reliability, and the like can be improved. The content of the epoxy resin is, for example, from 1 part by weight to 90 parts by weight, preferably from 10 parts by weight to 85 parts by weight, and more preferably from 20 parts by weight to 80 parts by weight with respect to 100 parts by weight of the total thermosetting resin. It is below mass parts. As content of a phenol resin, it is 1 mass part or more and 70 mass parts or less with respect to a total thermosetting resin, Preferably it is 5 mass parts or more and 60 mass parts or less, More preferably, it is 10 mass parts or more and 50 mass parts or less. It is.
Moreover, when using active ester resin as a thermosetting resin, sclerosis | hardenability can be improved when dimethylaminopyridine is used.
 本願発明の硬化性樹脂組成物においては、微細セルロース繊維と無機フィラーとを併用することにより、硬化物の線膨張係数の低減効果に優れる。
 無機フィラーとしては、硫酸バリウム、チタン酸バリウム、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム等が挙げられる。これらの無機フィラーの中でも、比重が小さく、組成物中に高い割合で配合可能であり、低熱膨張性に優れる点から、シリカ、中でも、球状シリカが好ましい。
 本願発明の硬化性樹脂組成物においては、微細セルロース繊維とシリカとの組合せが好適であり、この場合、硬化物の線膨張係数の低減効果にさらに優れ、金属導体との密着性がさらに良好となる。
 無機フィラーの平均粒径は3μm以下であることが好ましく、1μm以下が更に好ましい。なお、無機フィラーの平均粒径は、レーザ回折式粒子径分布測定装置により求めることができる。
 無機フィラーの配合量は、組成物の固形分に対して、例えば、25~90質量%、好ましくは30~90質量%、より好ましくは35~85質量%である。無機フィラーの配合量を上記範囲内とすることで、硬化後の硬化物の塗膜性能を良好に確保することができる。
In the curable resin composition of this invention, it is excellent in the reduction effect of the linear expansion coefficient of hardened | cured material by using together a fine cellulose fiber and an inorganic filler.
Examples of inorganic fillers include barium sulfate, barium titanate, amorphous silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, and aluminum nitride. Can be mentioned. Among these inorganic fillers, silica, particularly spherical silica is preferable because it has a small specific gravity, can be blended in a high proportion in the composition, and is excellent in low thermal expansion.
In the curable resin composition of the present invention, a combination of fine cellulose fibers and silica is suitable, and in this case, the effect of reducing the linear expansion coefficient of the cured product is further excellent, and the adhesion with the metal conductor is even better. Become.
The average particle size of the inorganic filler is preferably 3 μm or less, and more preferably 1 μm or less. In addition, the average particle diameter of an inorganic filler can be calculated | required with a laser diffraction type particle size distribution measuring apparatus.
The blending amount of the inorganic filler is, for example, 25 to 90% by mass, preferably 30 to 90% by mass, and more preferably 35 to 85% by mass with respect to the solid content of the composition. By making the compounding quantity of an inorganic filler into the said range, the coating-film performance of the hardened | cured material after hardening can be ensured favorable.
 硬化触媒は、硬化性樹脂のうち、主に熱硬化性樹脂を硬化させるためのものであり、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルホスフィン等のリン化合物、ジメチルアミノピリジンなどが挙げられる。また、市販品としては、例えば、2MZ-A、2MZ-OK、2PHZ、2P4BHZ、2P4MHZ(四国化成工業(株)製)、U-CAT3503N、U-CAT3502T、DBU、DBN、U-CATSA102、U-CAT5002(サンアプロ(株)製)などが挙げられ、単独で、または2種以上を混合して使用してもかまわない。また同様に、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもできる。 The curing catalyst is mainly for curing a thermosetting resin among curable resins. For example, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- Imidazole derivatives such as phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) Amine compounds such as —N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; Phosphorus such as phenylphosphine Compounds, such as dimethyl amino pyridine. Examples of commercially available products include 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, 2P4MHZ (manufactured by Shikoku Kasei Kogyo Co., Ltd.), U-CAT3503N, U-CAT3502T, DBU, DBN, U-CATSA102, U- CAT5002 (manufactured by San Apro Co., Ltd.) and the like may be mentioned, and they may be used alone or in combination of two or more. Similarly, guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-2,4-diamino-S-triazine, 2-vinyl-4,6 S-triazine derivatives such as -diamino-S-triazine / isocyanuric acid adduct and 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adduct can also be used.
 硬化触媒としては、塩基性触媒が望ましい。特にイミダゾール類が望ましく、イミダゾール類を使用することにより、組成物の硬化性と安定性とを両立でき、耐熱性を向上することができる。硬化触媒の含有量は、熱硬化性樹脂100質量部に対して、例えば、0.01質量部以上20質量部以下、好ましくは0.05質量部以上15質量部以下、より好ましくは0.1質量部以上15質量部以下である。 As the curing catalyst, a basic catalyst is desirable. In particular, imidazoles are desirable, and by using imidazoles, both curability and stability of the composition can be achieved, and heat resistance can be improved. The content of the curing catalyst is, for example, 0.01 parts by mass or more and 20 parts by mass or less, preferably 0.05 parts by mass or more and 15 parts by mass or less, more preferably 0.1 parts by mass with respect to 100 parts by mass of the thermosetting resin. It is not less than 15 parts by mass.
 本発明の熱硬化性樹脂組成物には、疎水化微細セルロース繊維、熱硬化性樹脂、無機フィラーおよび硬化触媒の他、その用途に応じて、慣用の他の配合成分を適宜配合することが可能である。 In addition to the hydrophobized fine cellulose fiber, thermosetting resin, inorganic filler and curing catalyst, other conventional compounding components can be appropriately blended in the thermosetting resin composition of the present invention, depending on the application. It is.
 慣用の他の配合成分としては、例えば、着色剤、有機溶剤、分散剤、消泡剤・レベリング剤、揺変剤、カップリング剤、難燃剤などが挙げられる。 Examples of other commonly used ingredients include colorants, organic solvents, dispersants, antifoaming / leveling agents, thixotropic agents, coupling agents, flame retardants, and the like.
 着色剤としては、着色顔料や染料等としてカラーインデックスで表される公知慣用のものが使用可能である。例えば、Pigment Blue 15、15:1、15:2、15:3、15:4、15:6、16、60、Solvent Blue 35、63、68、70、83、87、94、97、122、136、67、70、Pigment Green 7、36、3、5、20、28、Solvent Yellow 163、Pigment Yellow 24、108、193、147、199、202、110、109、139、179、185、93、94、95、128、155、166、180、120、151、154、156、175、181、1、2、3、4、5、6、9、10、12、61、62、62:1、65、73、74、75、97、100、104、105、111、116、167、168、169、182、183、12、13、14、16、17、55、63、81、83、87、126、127、152、170、172、174、176、188、198、Pigment Orange 1、5、13、14、16、17、24、34、36、38、40、43、46、49、51、61、63、64、71、73、Pigment Red 1、2、3、4、5、6、8、9、12、14、15、16、17、21、22、23、31、32、112、114、146、147、151、170、184、187、188、193、210、245、253、258、266、267、268、269、37、38、41、48:1、48:2、48:3、48:4、49:1、49:2、50:1、52:1、52:2、53:1、53:2、57:1、58:4、63:1、63:2、64:1、68、171、175、176、185、208、123、149、166、178、179、190、194、224、254、255、264、270、272、220、144、166、214、220、221、242、168、177、216、122、202、206、207、209、Solvent Red 135、179、149、150、52、207、Pigment Violet 19、23、29、32、36、38、42、Solvent Violet 13、36、Pigment Brown 23、25、Pigment Black 1、7等が挙げられる。
 着色剤の含有量は、全組成物中に、例えば、0.01質量%以上3質量%以下、好ましくは0.05質量%以上1質量%以下、より好ましくは0.1質量%以上0.5質量%以下である。また、酸化チタン等を用いて白色の硬化膜を得る場合は、全組成物中に、例えば、1質量%以上65質量%以下、好ましくは3質量%以上60質量%以下、より好ましくは5質量%以上50質量%以下である。
As the colorant, a known and conventional one represented by a color index as a color pigment or dye can be used. For example, Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 60, Solvent Blue 35, 63, 68, 70, 83, 87, 94, 97, 122, 136, 67, 70, Pigment Green 7, 36, 3, 5, 20, 28, Solvent Yellow 163, Pigment Yellow 24, 108, 193, 147, 199, 202, 110, 109, 139, 179, 185, 93, 94, 95, 128, 155, 166, 180, 120, 151, 154, 156, 175, 181, 1, 2, 3, 4, 5, 6, 9, 10, 12, 61, 62, 62: 1, 65, 73, 74, 75, 97, 100, 104, 105, 111, 116, 167, 168, 169, 182, 1 83, 12, 13, 14, 16, 17, 55, 63, 81, 83, 87, 126, 127, 152, 170, 172, 174, 176, 188, 198, Pigment Orange 1, 5, 13, 14, 16, 17, 24, 34, 36, 38, 40, 43, 46, 49, 51, 61, 63, 64, 71, 73, Pigment Red 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15, 16, 17, 21, 22, 23, 31, 32, 112, 114, 146, 147, 151, 170, 184, 187, 188, 193, 210, 245, 253, 258, 266, 267, 268, 269, 37, 38, 41, 48: 1, 48: 2, 48: 3, 48: 4, 49: 1, 49: 2, 50: 1, 52: 1, 52: 2, 53: 1, 53: 2, 57: 1, 58: 4, 63: 1, 63: 2, 64: 1, 68, 171, 175, 176, 185, 208, 123, 149, 166, 178, 179, 190, 194, 224, 254, 255, 264, 270, 272, 220, 144, 166, 214, 220, 221, 242, 168, 177, 216, 122, 202, 206, 207, 209, Solvent Red 135, 179, 149, 150, 52, 207, Pigment Violet 19, 23, 29, 32, 36, 38, 42, Solvent Violet 13, 36, Pigment Brown 23, 25, Pigment Black 1, 7, and the like.
The content of the colorant is, for example, from 0.01% by mass to 3% by mass, preferably from 0.05% by mass to 1% by mass, more preferably from 0.1% by mass to 0.00% in the entire composition. 5% by mass or less. Moreover, when obtaining a white cured film using a titanium oxide etc., it is 1 mass% or more and 65 mass% or less in the whole composition, Preferably it is 3 mass% or more and 60 mass% or less, More preferably, it is 5 mass. % Or more and 50% by mass or less.
 有機溶剤としては、メチルエチルケトン、シクロヘキサノンなどのケトン類;トルエン、キシレン、テトラメチルベンゼンなどの芳香族炭化水素類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテルなどのグリコールエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート、ジエチレングリコールモノエチルエーテルアセテートおよび上記グリコールエーテル類のエステル化物などのエステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコールなどのアルコール類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類、オクタン、デカンなどの脂肪族炭化水素類;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサなどの石油系溶剤等を挙げることができる。 Examples of organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, diethylene glycol Glycol ethers such as monoethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether; esters such as ethyl acetate, butyl acetate, cellosolve acetate, diethylene glycol monoethyl ether acetate and esterified products of the above glycol ethers; Alcohols such as ethanol, propanol, ethylene glycol, propylene glycol; Mention may be made of petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, a petroleum solvent or the like, such as solvent naphtha; le formamide, amides such as dimethylacetamide, octane, aliphatic hydrocarbons such as decane.
 分散剤としては、ポリカルボン酸系、ナフタレンスルホン酸ホルマリン縮合系、ポリエチレングリコール、ポリカルボン酸部分アルキルエステル系、ポリエーテル系、ポリアルキレンポリアミン系等の高分子型分散剤、アルキルスルホン酸系、四級アンモニウム系、高級アルコールアルキレンオキサイド系、多価アルコールエステル系、アルキルポリアミン系等の低分子型分散剤等が使用できる。 Dispersants include polycarboxylic acid-based, naphthalene sulfonic acid formalin condensation-based, polyethylene glycol, polycarboxylic acid partial alkyl ester-based, polyether-based, polyalkylene polyamine-based polymeric dispersants, alkyl sulfonic acid-based, four Low molecular weight dispersants such as secondary ammonium series, higher alcohol alkylene oxide series, polyhydric alcohol ester series and alkylpolyamine series can be used.
 消泡剤・レベリング剤としては、シリコーン、変性シリコーン、鉱物油、植物油、脂肪族アルコール、脂肪酸、金属石鹸、脂肪酸アミド、ポリオキシアルキレングリコール、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステル等の化合物等が使用できる。 Antifoaming and leveling agents include compounds such as silicone, modified silicone, mineral oil, vegetable oil, aliphatic alcohol, fatty acid, metal soap, fatty acid amide, polyoxyalkylene glycol, polyoxyalkylene alkyl ether, polyoxyalkylene fatty acid ester, etc. Etc. can be used.
 揺変剤としては、微粒子シリカ、シリカゲル、不定形無機粒子、ポリアミド系添加剤、変性ウレア系添加剤、ワックス系添加剤などが使用できる。 As the thixotropic agent, fine particle silica, silica gel, amorphous inorganic particles, polyamide-based additive, modified urea-based additive, wax-based additive and the like can be used.
 カップリング剤としては、アルコキシ基としてメトキシ基、エトキシ基、アセチル等であり、反応性官能基としてビニル、メタクリル、アクリル、エポキシ、環状エポキシ、メルカプト、アミノ、ジアミノ、酸無水物、ウレイド、スルフィド、イソシアネート等である、例えば、ビニルエトキシラン、ビニルトリメトキシシラン、ビニル・トリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシラン等のビニル系シラン化合物、γ-アミノプロピルトリメトキシラン、N-β-(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等のアミノ系シラン化合物、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシラン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシ系シラン化合物、γ-メルカプトプロピルトリメトキシシラン等のメルカプト系シラン化合物、N-フェニル-γ-アミノプロピルトリメトキシシラン等のフェニルアミノ系シラン化合物等のシランカップリング剤、イソプロピルトリイソステアロイル化チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラ(1,1-ジアリルオキシメチル-1-ブチル)ビス-(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート等のチタネート系カップリング剤、エチレン性不飽和ジルコネート含有化合物、ネオアルコキシジルコネート含有化合物、ネオアルコキシトリスネオデカノイルジルコネート、ネオアルコキシトリス(ドデシル)ベンゼンスルホニルジルコネート、ネオアルコキシトリス(ジオクチル)ホスフェートジルコネート、ネオアルコキシトリス(ジオクチル)ピロホスフェートジルコネート、ネオアルコキシトリス(エチレンジアミノ)エチルジルコネート、ネオアルコキシトリス(m-アミノ)フェニルジルコネート、テトラ(2,2-ジアリルオキシメチル)ブチル,ジ(ジトリデシル)ホスフィトジルコネート、ネオペンチル(ジアリル)オキシ,トリネオデカノイルジルコネート、ネオペンチル(ジアリル)オキシ,トリ(ドデシル)ベンゼン-スルホニルジルコネート、ネオペンチル(ジアリル)オキシ,トリ(ジオクチル)ホスファトジルコネート、ネオペンチル(ジアリル)オキシ,トリ(ジオクチル)ピロ-ホスファトジルコネート、ネオペンチル(ジアリル)オキシ,トリ(N-エチレンジアミノ)エチルジルコネート、ネオペンチル(ジアリル)オキシ,トリ(m-アミノ)フェニルジルコネート、ネオペンチル(ジアリル)オキシ,トリメタクリルジルコネート、ネオペンチル(ジアリル)オキシ,トリアクリルジルコネート、ジネオペンチル(ジアリル)オキシ,ジパラアミノベンゾイルジルコネート、ジネオペンチル(ジアリル)オキシ,ジ(3-メルカプト)プロピオニックジルコネート、ジルコニウム(IV)2,2-ビス(2-プロペノラトメチル)ブタノラト,シクロジ[2,2-(ビス2-プロペノラトメチル)ブタノラト]ピロホスファト-O,O等のジルコネート系カップリング剤、ジイソブチル(オレイル)アセトアセチルアルミネート、アルキルアセトアセテートアルミニウムジイソプロピレート等のアルミネート系カップリング剤等が使用できる。 As the coupling agent, alkoxy group is methoxy group, ethoxy group, acetyl, etc., and reactive functional group is vinyl, methacryl, acrylic, epoxy, cyclic epoxy, mercapto, amino, diamino, acid anhydride, ureido, sulfide, Isocyanates and the like, for example, vinyl silane compounds such as vinyl ethoxylane, vinyl trimethoxysilane, vinyl tris (β-methoxyethoxy) silane, γ-methacryloxypropyltrimethoxylane, γ-aminopropyltrimethoxylane, Amino-based silane compounds such as N-β- (aminoethyl) γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-ureidopropyltriethoxysilane, γ-glycid Xylpropyltrimeth Epoxy silane compounds such as silane, β- (3,4-epoxycyclohexyl) ethyltrimethoxylane, γ-glycidoxypropylmethyldiethoxysilane, mercapto silane compounds such as γ-mercaptopropyltrimethoxysilane, N- Silane coupling agents such as phenylamino silane compounds such as phenyl-γ-aminopropyltrimethoxysilane, isopropyl triisostearoylated titanate, tetraoctyl bis (ditridecyl phosphite) titanate, bis (dioctyl pyrophosphate) oxyacetate titanate , Isopropyltridodecylbenzenesulfonyl titanate, isopropyltris (dioctylpyrophosphate) titanate, tetraisopropylbis (dioctylphosphite) titanate, Tetra (1,1-diallyloxymethyl-1-butyl) bis- (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl titanate, isopropyltristearoyl diacryl Titanate, isopropyl tri (dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate, dicumylphenyloxyacetate titanate, diisostearoyl ethylene titanate, etc., ethylenically unsaturated zirconate-containing compound, neoalkoxy zirconate-containing compound , Neoalkoxytris neodecanoyl zirconate, neoalkoxytris (dodecyl) benze Sulfonyl zirconate, neoalkoxy tris (dioctyl) phosphate zirconate, neoalkoxy tris (dioctyl) pyrophosphate zirconate, neoalkoxy tris (ethylenediamino) ethyl zirconate, neoalkoxy tris (m-amino) phenyl zirconate, tetra ( 2,2-diallyloxymethyl) butyl, di (ditridecyl) phosphite zirconate, neopentyl (diallyl) oxy, trineodecanoyl zirconate, neopentyl (diallyl) oxy, tri (dodecyl) benzene-sulfonyl zirconate, neopentyl ( Diallyl) oxy, tri (dioctyl) phosphatozirconate, neopentyl (diallyl) oxy, tri (dioctyl) pyro-phosphatozirconate, neopentyl Diallyl) oxy, tri (N-ethylenediamino) ethyl zirconate, neopentyl (diallyl) oxy, tri (m-amino) phenyl zirconate, neopentyl (diallyl) oxy, trimethacryl zirconate, neopentyl (diallyl) oxy, triacryl Zirconate, dineopentyl (diallyl) oxy, diparaaminobenzoyl zirconate, dineopentyl (diallyl) oxy, di (3-mercapto) propionic zirconate, zirconium (IV) 2,2-bis (2-propenolatomethyl) Zirconate coupling agents such as butanolato, cyclodi [2,2- (bis-2-propenolatomethyl) butanolato] pyrophosphato-O, O, diisobutyl (oleyl) acetoacetylaluminate, alkylacetoacetate An aluminate coupling agent such as sodium aluminodiisopropylate can be used.
 難燃剤としては、水酸化アルミニウム、水酸化マグネシウム等の水和金属系、赤燐、燐酸アンモニウム、炭酸アンモニウム、ホウ酸亜鉛、錫酸亜鉛、モリブデン化合物系、臭素化合物系、塩素化合物系、燐酸エステル、含燐ポリオール、含燐アミン、メラミンシアヌレート、メラミン化合物、トリアジン化合物、グアニジン化合物、シリコンポリマー等が使用できる。 Flame retardants include hydrated metal such as aluminum hydroxide and magnesium hydroxide, red phosphorus, ammonium phosphate, ammonium carbonate, zinc borate, zinc stannate, molybdenum compound, bromine compound, chlorine compound, phosphate ester Phosphorus-containing polyol, phosphorus-containing amine, melamine cyanurate, melamine compound, triazine compound, guanidine compound, silicon polymer, and the like can be used.
(光硬化性樹脂組成物)
 本発明の光硬化性樹脂組成物は、光硬化性樹脂、無機フィラー、光重合開始剤および着色剤等を含むことが好ましい。
 光硬化性樹脂としては、活性エネルギー線照射による硬化反応が可能な官能基を有する樹脂を用いることが望ましく、ラジカル重合性でもカチオン重合性でもよい。
 例えば、分子中に1個以上のエチレン性不飽和結合を有する化合物、脂環エポキシ化合物、オキセタン化合物が挙げられ、分子中に1個以上のエチレン性不飽和結合を有する化合物が好ましく用いられる。
(Photocurable resin composition)
The photocurable resin composition of the present invention preferably contains a photocurable resin, an inorganic filler, a photopolymerization initiator, a colorant and the like.
As the photocurable resin, it is desirable to use a resin having a functional group that can be cured by irradiation with active energy rays, and may be radically polymerizable or cationically polymerizable.
Examples thereof include compounds having one or more ethylenically unsaturated bonds, alicyclic epoxy compounds, and oxetane compounds in the molecule, and compounds having one or more ethylenically unsaturated bonds in the molecule are preferably used.
 エチレン性不飽和結合を有する化合物としては、公知慣用の光重合性オリゴマー、および、光重合性ビニルモノマー等が用いられる。
 上記光重合性オリゴマーとしては、不飽和ポリエステル系オリゴマー、(メタ)アクリレート系オリゴマー等が挙げられる。(メタ)アクリレート系オリゴマーとしては、フェノールノボラックエポキシ(メタ)アクリレート、クレゾールノボラックエポキシ(メタ)アクリレート、ビスフェノール型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン変性(メタ)アクリレート等が挙げられる。
 なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語で、他の類似の表現についても同様である。
As the compound having an ethylenically unsaturated bond, known and commonly used photopolymerizable oligomers, photopolymerizable vinyl monomers, and the like are used.
Examples of the photopolymerizable oligomer include unsaturated polyester oligomers and (meth) acrylate oligomers. Examples of (meth) acrylate oligomers include phenol novolac epoxy (meth) acrylate, cresol novolac epoxy (meth) acrylate, epoxy (meth) acrylates such as bisphenol type epoxy (meth) acrylate, urethane (meth) acrylate, epoxy urethane (meta ) Acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polybutadiene-modified (meth) acrylate, and the like.
In addition, in this specification, (meth) acrylate is a term which generically refers to acrylate, methacrylate and a mixture thereof, and the same applies to other similar expressions.
 上記光重合性ビニルモノマーとしては、公知慣用のもの、例えば、スチレン、クロロスチレン、α-メチルスチレンなどのスチレン誘導体;酢酸ビニル、酪酸ビニル又は安息香酸ビニルなどのビニルエステル類;ビニルイソブチルエーテル、ビニル-n-ブチルエーテル、ビニル-t-ブチルエーテル、ビニル-n-アミルエーテル、ビニルイソアミルエーテル、ビニル-n-オクタデシルエーテル、ビニルシクロヘキシルエーテル、エチレングリコールモノブチルビニルエーテル、トリエチレングリコールモノメチルビニルエーテルなどのビニルエーテル類;アクリルアミド、メタクリルアミド、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-ブトキシメチルアクリルアミドなどの(メタ)アクリルアミド類;トリアリルイソシアヌレート、フタル酸ジアリル、イソフタル酸ジアリルなどのアリル化合物;2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラヒドロフルフリール(メタ)アクリレート、イソボロニル(メタ)アクリレート、フェニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなどの(メタ)アクリル酸のエステル類;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレートなどのアルコキシアルキレングリコールモノ(メタ)アクリレート類;エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート類、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどのアルキレンポリオールポリ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレートなどのポリオキシアルキレングリコールポリ(メタ)アクリレート類;ヒドロキシビバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレートなどのポリ(メタ)アクリレート類;トリス[(メタ)アクリロキシエチル]イソシアヌレートなどのイソシアヌレート型ポリ(メタ)アクリレート類などが挙げられる。 As the photopolymerizable vinyl monomer, known and commonly used monomers, for example, styrene derivatives such as styrene, chlorostyrene, and α-methylstyrene; vinyl esters such as vinyl acetate, vinyl butyrate, and vinyl benzoate; vinyl isobutyl ether, vinyl Vinyl ethers such as n-butyl ether, vinyl t-butyl ether, vinyl n-amyl ether, vinyl isoamyl ether, vinyl n-octadecyl ether, vinyl cyclohexyl ether, ethylene glycol monobutyl vinyl ether, triethylene glycol monomethyl vinyl ether; acrylamide , Methacrylamide, N-hydroxymethylacrylamide, N-hydroxymethylmethacrylamide, N-methoxymethylacrylamide, N-ethoxymethyl (Meth) acrylamides such as chloramide and N-butoxymethylacrylamide; allyl compounds such as triallyl isocyanurate, diallyl phthalate and diallyl isophthalate; 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tetrahydrofurfuryl Esters of (meth) acrylic acid such as (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, phenoxyethyl (meth) acrylate; hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, pentaerythritol Hydroxyalkyl (meth) acrylates such as tri (meth) acrylate; methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate Lucoxyalkylene glycol mono (meth) acrylates; ethylene glycol di (meth) acrylate, butanediol di (meth) acrylates, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tri Alkylene polyol poly (meth) acrylates such as methylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, Polyoxyalkylene glycol poly, such as ethoxylated trimethylolpropane triacrylate, propoxylated trimethylolpropane tri (meth) acrylate (Meth) acrylates; poly (meth) acrylates such as neopentyl glycol ester di (meth) acrylate of hydroxybivalic acid; isocyanurate type poly (meth) acrylates such as tris [(meth) acryloxyethyl] isocyanurate Is mentioned.
 脂環エポキシ化合物としては、3,4,3’,4’-ジエポキシビシクロヘキシル、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、2,2-ビス(3,4-エポキシシクロヘキシル)-1,3-ヘキサフルオロプロパン、ビス(3,4-エポキシシクロヘキシル)メタン、1-[1,1-ビス(3,4-エポキシシクロヘキシル)]エチルベンゼン、ビス(3,4-エポキシシクロヘキシル)アジペート、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(3,4-エポキシ-6-メチルシクロヘキシル)メチル-3’,4’-エポキシ-6-メチルシクロヘキサンカルボキシレート、エチレン-1,2-ビス(3,4-エポキシシクロヘキサンカルボン酸)エステル、シクロヘキセンオキサイド、3,4-エポキシシクロヘキシルメチルアルコール、3,4-エポキシシクロヘキシルエチルトリメトキシシラン等のエポキシ基を有する脂環エポキシ化合物などが挙げられる。
 市販品として、例えば、ダイセル化学工業社製のセロキサイド2000、セロキサイド2021、セロキサイド3000、EHPE3150;三井化学社製のエポミックVG-3101;油化シェルエポキシ社製のE-1031S;三菱ガス化学社製のTETRAD―X、TETRAD-C;日本曹達社製のEPB-13、EPB-27などが挙げられる。
Alicyclic epoxy compounds include 3,4,3 ′, 4′-diepoxybicyclohexyl, 2,2-bis (3,4-epoxycyclohexyl) propane, and 2,2-bis (3,4-epoxycyclohexyl). -1,3-hexafluoropropane, bis (3,4-epoxycyclohexyl) methane, 1- [1,1-bis (3,4-epoxycyclohexyl)] ethylbenzene, bis (3,4-epoxycyclohexyl) adipate, 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, (3,4-epoxy-6-methylcyclohexyl) methyl-3 ′, 4′-epoxy-6-methylcyclohexanecarboxylate, ethylene-1 , 2-bis (3,4-epoxycyclohexanecarboxylic acid) ester, cyclohexe And alicyclic epoxy compounds having an epoxy group such as oxide, 3,4-epoxycyclohexylmethyl alcohol, and 3,4-epoxycyclohexylethyltrimethoxysilane.
Commercially available products include, for example, Daicel Chemical Industries, Celoxide 2000, Celoxide 2021, Celoxide 3000, EHPE 3150; Mitsui Chemicals Epomic VG-3101; Yuka Shell Epoxy E-1031S; Mitsubishi Gas Chemical Co., Ltd. TETRAD-X, TETRAD-C; Nippon Soda Co., Ltd. EPB-13, EPB-27 and the like.
 オキセタン化合物としては、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマー又は共重合体などの多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、又はシルセスキオキサンなどの水酸基を有する樹脂とのエーテル化物、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等のオキセタン化合物が挙げられる。
 市販品としては、宇部興産社製のエタナコールOXBP、OXMA、OXBP、EHO、キシリレンビスオキセタン、東亜合成社製のアロンオキセタンOXT-101、OXT-201、OXT-211、OXT-221、OXT-212、OXT-610、PNOX-1009等が挙げられる。
Examples of the oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl-3- Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl) methyl acrylate In addition to polyfunctional oxetanes such as (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin, poly (p -Hydroxystyrene), cardo-type bisphenols, Examples include oxetane compounds such as lysarenes, calixresorcinarenes, etherified products with hydroxyl group-containing resins such as silsesquioxane, and copolymers of unsaturated monomers having an oxetane ring and alkyl (meth) acrylates. .
Commercially available products include Etanacol OXBP, OXMA, OXBP, EHO, xylylenebisoxetane manufactured by Ube Industries, Ltd., Aron Oxetane OXT-101, OXT-201, OXT-211, OXT-221, OXT-212 manufactured by Toa Gosei Co., Ltd. , OXT-610, PNOX-1009, and the like.
 光重合開始剤は、硬化性樹脂のうち、光硬化性樹脂を硬化させるためのものであり、光ラジカル重合開始剤でもよく、光カチオン重合開始剤でもよい。
 光ラジカル重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のベンゾインとベンゾインアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン等のアセトフェノン類;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタノン等のアミノアルキルフェノン類;2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリーブチルアントラキノン、1-クロロアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン等のベンゾフェノン類;又はキサントン類;(2,6-ジメトキシベンゾイル)-2,4,4-ペンチルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル-2,4,6-トリメチルベンゾイルフェニルフォスフィネイト等のフォスフィンオキサイド類;各種パーオキサイド類、チタノセン系開始剤などが挙げられる。これらは、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の三級アミン類のような光増感剤等と併用してもよい。
The photopolymerization initiator is for curing the photocurable resin among the curable resins, and may be a radical photopolymerization initiator or a cationic photopolymerization initiator.
Examples of photo radical polymerization initiators include benzoin and benzoin alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy Acetophenones such as 2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone; 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1 -One, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-Morpholinyl) phenyl] -1- Aminoalkylphenones such as Thanone; anthraquinones such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiarybutylanthraquinone, 1-chloroanthraquinone; 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2- Thioxanthones such as chlorothioxanthone and 2,4-diisopropylthioxanthone; ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; benzophenones such as benzophenone; or xanthones; (2,6-dimethoxybenzoyl) -2,4,4 -Pentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, Phosphine oxide such as Le 2,4,6-trimethyl benzoyl phenyl phosphinothricin Nate; various peroxides, and the like titanocene initiators. These are photosensitized like tertiary amines such as N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine, triethanolamine and the like. You may use together with an agent etc.
 光カチオン重合開始剤としては、例えば、ジアゾニウム塩、ヨードニウム塩、ブロモニウム塩、クロロニウム塩、スルホニウム塩、セレノニウム塩、ピリリウム塩、チアピリリウム塩、ピリジニウム塩等のオニウム塩;トリス(トリハロメチル)-s-トリアジン及びその誘導体等のハロゲン化化合物;スルホン酸の2-ニトロベンジルエステル;イミノスルホナート;1-オキソ-2-ジアゾナフトキノン-4-スルホナート誘導体;N-ヒドロキシイミド=スルホナート;トリ(メタンスルホニルオキシ)ベンゼン誘導体;ビススルホニルジアゾメタン類;スルホニルカルボニルアルカン類;スルホニルカルボニルジアゾメタン類;ジスルホン化合物等が挙げられる。
 これらの光重合開始剤は単独で、または2種以上を組み合わせて用いることができる。
Examples of the cationic photopolymerization initiator include diazonium salts, iodonium salts, bromonium salts, chloronium salts, sulfonium salts, selenonium salts, pyrylium salts, thiapyrylium salts, pyridinium salts and other onium salts; tris (trihalomethyl) -s-triazine And 2-halobenzyl esters of sulfonic acids; iminosulfonates; 1-oxo-2-diazonaphthoquinone-4-sulfonate derivatives; N-hydroxyimide = sulfonates; tri (methanesulfonyloxy) benzene Derivatives; bissulfonyldiazomethanes; sulfonylcarbonylalkanes; sulfonylcarbonyldiazomethanes; disulfone compounds and the like.
These photopolymerization initiators can be used alone or in combination of two or more.
 光重合開始剤の配合量は、固形分換算で、光硬化性樹脂100質量部に対して、例えば、0.05~20質量部、好ましくは0.1~15質量部、より好ましくは0.5~10質量部である。光重合開始剤をこの範囲で配合することで、銅上での光硬化性が十分となり、塗膜の硬化性が良好となり、耐薬品性等の塗膜特性が向上し、また、深部硬化性も向上する。 The blending amount of the photopolymerization initiator is, for example, 0.05 to 20 parts by mass, preferably 0.1 to 15 parts by mass, and more preferably 0.1 parts by mass in terms of solid content with respect to 100 parts by mass of the photocurable resin. 5 to 10 parts by mass. By blending the photopolymerization initiator within this range, the photocurability on copper becomes sufficient, the curability of the paint film becomes good, the paint film properties such as chemical resistance are improved, and the deep part curability. Will also improve.
 無機フィラーとしては、上記熱硬化性樹脂組成物において用いられるものと同様のものを使用することができ、配合量も同様とすることができる。 As the inorganic filler, those similar to those used in the thermosetting resin composition can be used, and the blending amount can also be the same.
 着色剤としては、上記熱硬化性樹脂組成物で用いられるものと同様のものを使用することができる。着色剤を含むことにより、光硬化性樹脂組成物において過剰の積算光量を照射しても、密着性の低下を防止することができる。また、塗膜の視認性を向上させることもできる。 As the colorant, the same colorants as those used in the thermosetting resin composition can be used. By including a colorant, even when an excessive amount of accumulated light is irradiated in the photocurable resin composition, it is possible to prevent a decrease in adhesion. Moreover, the visibility of a coating film can also be improved.
 本発明の光硬化性樹脂組成物には、疎水化微細セルロース繊維、光硬化性樹脂、無機フィラー、光重合開始剤および着色剤の他、その用途に応じて、慣用の他の配合成分を適宜配合することが可能である。
 慣用の他の配合成分としては、例えば、有機溶剤、分散剤、消泡剤・レベリング剤、揺変剤、カップリング剤、難燃剤などが挙げられる。これら有機溶剤、分散剤、消泡剤・レベリング剤、揺変剤、カップリング剤、難燃剤としては、熱硬化性樹脂組成物と同様のものを使用することができる。
In the photocurable resin composition of the present invention, in addition to the hydrophobized fine cellulose fiber, the photocurable resin, the inorganic filler, the photopolymerization initiator and the colorant, other conventional compounding components are appropriately added depending on the use. It is possible to mix.
Examples of other commonly used ingredients include organic solvents, dispersants, antifoaming / leveling agents, thixotropic agents, coupling agents, flame retardants, and the like. These organic solvents, dispersants, antifoaming / leveling agents, thixotropic agents, coupling agents, and flame retardants can be the same as those used for the thermosetting resin composition.
(光硬化性熱硬化性樹脂組成物)
 本発明の光硬化性熱硬化性樹脂組成物は、光硬化性樹脂および熱硬化性樹脂を含むものであり、特に本発明の光硬化性熱硬化性樹脂組成物を、アルカリ水溶液を用いる現像型とする場合には、硬化性樹脂としてカルボキシル基含有樹脂を含むことが望ましい。
 カルボキシル基含有樹脂は、感光性の不飽和二重結合を1個以上有する感光性のカルボキシル基含有樹脂、および、感光性の不飽和二重結合を有さないカルボキシル基含有樹脂のいずれも使用可能であり、特定のものに限定されるものではない。特に、以下に列挙する樹脂を好適に使用することができる。
(Photo-curable thermosetting resin composition)
The photocurable thermosetting resin composition of the present invention contains a photocurable resin and a thermosetting resin. In particular, the photocurable thermosetting resin composition of the present invention is developed using an alkaline aqueous solution. In this case, it is desirable to include a carboxyl group-containing resin as the curable resin.
As the carboxyl group-containing resin, either a photosensitive carboxyl group-containing resin having at least one photosensitive unsaturated double bond or a carboxyl group-containing resin having no photosensitive unsaturated double bond can be used. However, it is not limited to a specific one. In particular, the resins listed below can be suitably used.
(1)不飽和カルボン酸と不飽和二重結合を有する化合物の共重合によって得られるカルボキシル基含有樹脂、及びそれを変性して分子量や酸価を調整したカルボキシル基含有樹脂。
(2)カルボキシル基含有(メタ)アクリル系共重合樹脂に1分子中にオキシラン環とエチレン性不飽和基を有する化合物を反応させて得られるカルボキシル基含有感光性樹脂。
(3)1分子中にそれぞれ1個のエポキシ基と不飽和二重結合を有する化合物と不飽和二重結合を有する化合物との共重合体に不飽和モノカルボン酸を反応させ、この反応により生成した第2級の水酸基に飽和または不飽和多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(4)水酸基含有ポリマーに飽和または不飽和の多塩基酸無水物を反応させた後、この反応により生成したカルボン酸に1分子中にそれぞれ1個のエポキシ基と不飽和二重結合を有する化合物を反応させて得られる水酸基およびカルボキシル基含有感光性樹脂。
(5)多官能エポキシ化合物と不飽和モノカルボン酸を反応させ、この反応により生成した第2級の水酸基に一部または全部に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(6)多官能エポキシ化合物と、1分子中に2個以上の水酸基とエポキシ基と反応する水酸基以外の1個の反応基を有する化合物と、不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(7)フェノール性水酸基を有する樹脂とアルキレンオキシドとの反応生成物に不飽和基含有モノカルボン酸を反応させ、得られた反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
(8)多官能エポキシ化合物と、1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して多塩基酸無水物の無水物基を反応させて得られるカルボキシル基含有感光性樹脂。
(1) A carboxyl group-containing resin obtained by copolymerization of an unsaturated carboxylic acid and a compound having an unsaturated double bond, and a carboxyl group-containing resin having a molecular weight and an acid value adjusted by modifying it.
(2) A carboxyl group-containing photosensitive resin obtained by reacting a carboxyl group-containing (meth) acrylic copolymer resin with a compound having an oxirane ring and an ethylenically unsaturated group in one molecule.
(3) An unsaturated monocarboxylic acid is reacted with a copolymer of an epoxy group, a compound having an unsaturated double bond, and a compound having an unsaturated double bond in each molecule, and produced by this reaction. A carboxyl group-containing photosensitive resin obtained by reacting a secondary hydroxyl group with a saturated or unsaturated polybasic acid anhydride.
(4) After reacting a hydroxyl group-containing polymer with a saturated or unsaturated polybasic acid anhydride, the carboxylic acid produced by this reaction has one epoxy group and an unsaturated double bond in each molecule. Hydroxyl group and carboxyl group-containing photosensitive resin obtained by reacting.
(5) A carboxyl group-containing photosensitive resin obtained by reacting a polyfunctional epoxy compound and an unsaturated monocarboxylic acid, and reacting a secondary hydroxyl group produced by this reaction with a part or all of the polybasic acid anhydride. .
(6) A polyfunctional epoxy compound is reacted with a compound having one reactive group other than a hydroxyl group that reacts with two or more hydroxyl groups and an epoxy group in one molecule, and an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing photosensitive resin obtained by reacting the obtained reaction product with a polybasic acid anhydride.
(7) A carboxyl group-containing product obtained by reacting a reaction product of a resin having a phenolic hydroxyl group with an alkylene oxide with an unsaturated group-containing monocarboxylic acid, and reacting the resulting reaction product with a polybasic acid anhydride. Photosensitive resin.
(8) A reaction product obtained by reacting a polyfunctional epoxy compound, a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, and an unsaturated group-containing monocarboxylic acid. A carboxyl group-containing photosensitive resin obtained by reacting an anhydride group of a polybasic acid anhydride with an alcoholic hydroxyl group.
 本発明の光硬化性熱硬化性樹脂組成物に用いる光硬化性樹脂および熱硬化性樹脂は、上記した光硬化性樹脂および熱硬化性樹脂と同様のものを使用することができる。本発明の光硬化性熱硬化性樹脂組成物は、その他、上記した無機フィラー、硬化触媒および光重合開始剤を含むことが好ましく、その用途に応じて、慣用の他の配合成分を適宜配合することが可能である。 As the photocurable resin and the thermosetting resin used in the photocurable thermosetting resin composition of the present invention, those similar to the above-described photocurable resin and thermosetting resin can be used. In addition, the photocurable thermosetting resin composition of the present invention preferably contains the above-described inorganic filler, curing catalyst, and photopolymerization initiator, and other conventional compounding components are appropriately blended depending on the application. It is possible.
 慣用の他の配合成分としては、例えば、上記した着色剤、有機溶剤、分散剤、消泡剤・レベリング剤、揺変剤、カップリング剤、難燃剤などが挙げられる。 Examples of other conventional compounding components include the above-described colorants, organic solvents, dispersants, antifoaming agents / leveling agents, thixotropic agents, coupling agents, flame retardants, and the like.
 本発明の硬化性樹脂組成物は、ドライフィルム化して用いても液状として用いてもよい。液状として用いる場合は、1液性でも2液性以上でもよい。2液性組成物としては、例えば、疎水化微細セルロース繊維と硬化性樹脂とを分けた組成物としてもよい。 The curable resin composition of the present invention may be used as a dry film or as a liquid. When used as a liquid, it may be one-component or two-component or more. As the two-component composition, for example, a composition obtained by separating hydrophobic fine cellulose fibers and a curable resin may be used.
 次に、本発明のドライフィルムは、キャリアフィルム上に、本発明の硬化性樹脂組成物を塗布、乾燥させることにより得られる樹脂層を有する。ドライフィルムを形成する際には、まず、本発明の硬化性樹脂組成物を上記有機溶剤で希釈して適切な粘度に調整した上で、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等により、キャリアフィルム上に均一な厚さに塗布する。その後、塗布された組成物を、通常、40~130℃の温度で1~30分間乾燥することで、樹脂層を形成することができる。塗布膜厚については特に制限はないが、一般に、乾燥後の膜厚で、3~150μm、好ましくは5~60μmの範囲で適宜選択される。 Next, the dry film of the present invention has a resin layer obtained by applying and drying the curable resin composition of the present invention on a carrier film. When forming a dry film, first, the curable resin composition of the present invention is diluted with the above organic solvent to adjust to an appropriate viscosity, and then a comma coater, a blade coater, a lip coater, a rod coater, and a squeeze coater. Apply a uniform thickness on the carrier film using a reverse coater, transfer roll coater, gravure coater, spray coater or the like. Thereafter, the applied composition is usually dried at a temperature of 40 to 130 ° C. for 1 to 30 minutes to form a resin layer. The coating film thickness is not particularly limited, but in general, the film thickness after drying is appropriately selected in the range of 3 to 150 μm, preferably 5 to 60 μm.
 キャリアフィルムとしては、プラスチックフィルムが用いられ、例えば、ポリエチレンテレフタレート(PET)等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等を用いることができる。キャリアフィルムの厚さについては特に制限はないが、一般に、10~150μmの範囲で適宜選択される。より好ましくは15~130μmの範囲である。 As the carrier film, a plastic film is used. For example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a polyamideimide film, a polypropylene film, a polystyrene film, or the like can be used. The thickness of the carrier film is not particularly limited, but is generally appropriately selected within the range of 10 to 150 μm. More preferably, it is in the range of 15 to 130 μm.
 キャリアフィルム上に本発明の硬化性樹脂組成物からなる樹脂層を形成した後、樹脂層の表面に塵が付着することを防ぐ等の目的で、さらに、樹脂層の表面に、剥離可能なカバーフィルムを積層することが好ましい。剥離可能なカバーフィルムとしては、例えば、ポリエチレンフィルムやポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができる。カバーフィルムとしては、カバーフィルムを剥離するときに、樹脂層との間の接着力が、樹脂層とキャリアフィルムとの接着力よりも小さいものであればよい。 After the resin layer made of the curable resin composition of the present invention is formed on the carrier film, a cover that can be peeled off on the surface of the resin layer for the purpose of preventing dust from adhering to the surface of the resin layer. It is preferable to laminate films. As the peelable cover film, for example, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a surface-treated paper, or the like can be used. The cover film only needs to have an adhesive force between the resin layer and the resin film that is smaller than that between the resin layer and the carrier film when the cover film is peeled off.
 なお、本発明においては、上記カバーフィルム上に本発明の硬化性樹脂組成物を塗布、乾燥させることにより樹脂層を形成して、その表面にキャリアフィルムを積層するものであってもよい。すなわち、本発明においてドライフィルムを製造する際に本発明の硬化性樹脂組成物を塗布するフィルムとしては、キャリアフィルムおよびカバーフィルムのいずれを用いてもよい。 In the present invention, the resin layer may be formed by applying and drying the curable resin composition of the present invention on the cover film, and a carrier film may be laminated on the surface. That is, as the film to which the curable resin composition of the present invention is applied when producing a dry film in the present invention, either a carrier film or a cover film may be used.
 本発明のプリント配線板は、本発明の硬化性樹脂組成物またはドライフィルムの樹脂層から得られる硬化物を有するものである。本発明のプリント配線板の製造方法としては、まず、例えば、本発明の硬化性樹脂組成物を、上記有機溶剤を用いて塗布方法に適した粘度に調整して、基材上に、ディップコート法、フローコート法、ロールコート法、バーコーター法、スクリーン印刷法、カーテンコート法等の方法により塗布した後、60~100℃の温度で組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることで、タックフリーの樹脂層を形成する。また、ドライフィルムの場合、ラミネーター等により樹脂層が基材と接触するように基材上に貼り合わせた後、キャリアフィルムを剥がすことにより、基材上に樹脂層を形成する。 The printed wiring board of the present invention has a cured product obtained from the curable resin composition of the present invention or the resin layer of the dry film. As a method for producing a printed wiring board of the present invention, first, for example, the curable resin composition of the present invention is adjusted to a viscosity suitable for the coating method using the organic solvent, and dip-coated on the substrate. After coating by a method such as a coating method, a flow coating method, a roll coating method, a bar coater method, a screen printing method, or a curtain coating method, the organic solvent contained in the composition is volatile dried at a temperature of 60 to 100 ° C. ) To form a tack-free resin layer. Moreover, in the case of a dry film, after bonding together on a base material so that a resin layer may contact a base material with a laminator etc., a resin layer is formed on a base material by peeling a carrier film.
 上記基材としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキシド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、PETフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板等を挙げることができる。 Examples of the base material include printed wiring boards and flexible printed wiring boards that have been previously formed with copper or the like, paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth / non-woven cloth epoxy, glass cloth / paper epoxy. Using copper-clad laminates for high-frequency circuits using synthetic fiber epoxy, fluororesin, polyethylene, polyphenylene ether, polyphenylene oxide, cyanate, etc., and copper-clad laminates of all grades (FR-4, etc.) Examples thereof include a plate, a metal substrate, a polyimide film, a PET film, a polyethylene naphthalate (PEN) film, a glass substrate, a ceramic substrate, and a wafer plate.
 本発明の硬化性樹脂組成物を塗布した後に行う揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより支持体に吹き付ける方式)を用いて行うことができる。 Volatile drying performed after the application of the curable resin composition of the present invention is performed in a dryer using a hot air circulation drying furnace, an IR furnace, a hot plate, a convection oven or the like (equipped with a heat source of an air heating method using steam). The method can be carried out using a method in which hot air is brought into countercurrent contact and a method in which the hot air is blown onto the support.
 本発明の組成物が熱硬化性樹脂組成物である場合は、基材上に、組成物を塗布して塗膜を形成、または、ドライフィルムをラミネートして樹脂層を形成後、例えば、約100~180℃の温度に加熱して熱硬化させることにより、耐熱性、耐薬品性、耐吸湿性、密着性、電気特性等の諸特性に優れた硬化膜(硬化物)を形成することができる。 When the composition of the present invention is a thermosetting resin composition, the composition is applied on a substrate to form a coating film, or a dry film is laminated to form a resin layer. A cured film (cured product) excellent in various properties such as heat resistance, chemical resistance, moisture absorption resistance, adhesion, and electrical properties can be formed by heating to a temperature of 100 to 180 ° C. and thermosetting. it can.
 本発明の組成物が光硬化性樹脂組成物である場合は、基材上に、組成物を塗布して塗膜を形成、または、ドライフィルムをラミネートして樹脂層を形成後、活性エネルギー線を照射して硬化膜(硬化物)を形成する。また、必要に応じて活性エネルギー線の照射前に塗膜を加熱してもよい。
 本発明の組成物がアルカリ現像型の光硬化性熱硬化性樹脂組成物である場合は、プリント配線板上に樹脂層を形成後、所定のパターンを形成したフォトマスクを通して選択的に活性エネルギー線により露光し、未露光部を希アルカリ水溶液(例えば、0.3~3質量%炭酸ソーダ水溶液)により現像して硬化物のパターンを形成する。さらに、硬化物に活性エネルギー線を照射後加熱硬化(例えば、100~220℃)、もしくは加熱硬化後活性エネルギー線を照射、または、加熱硬化のみで最終仕上げ硬化(本硬化)させることにより、密着性、硬度等の諸特性に優れた硬化膜を形成する。なお、本発明の組成物は上記熱硬化性樹脂と光硬化性樹脂とを含み、現像処理しない非現像型の光硬化性熱硬化性樹脂組成物であってもよい。
When the composition of the present invention is a photocurable resin composition, the composition is applied on a substrate to form a coating film, or a dry film is laminated to form a resin layer, and then an active energy ray To form a cured film (cured product). Moreover, you may heat a coating film before irradiation of an active energy ray as needed.
When the composition of the present invention is an alkali development type photocurable thermosetting resin composition, after forming a resin layer on a printed wiring board, it is selectively activated energy rays through a photomask having a predetermined pattern. The unexposed area is developed with a dilute alkali aqueous solution (for example, 0.3 to 3 mass% sodium carbonate aqueous solution) to form a cured product pattern. Further, the cured product is irradiated with active energy rays and then heat-cured (for example, 100 to 220 ° C.), irradiated with active energy rays after heat-curing, or is subjected to final finish curing (main curing) only by heat-curing. A cured film having excellent properties such as properties and hardness is formed. The composition of the present invention may be a non-developable photocurable thermosetting resin composition that contains the thermosetting resin and the photocurable resin and is not subjected to development processing.
 上記活性エネルギー線照射に用いられる露光機としては、高圧水銀灯ランプ、超高圧水銀灯ランプ、メタルハライドランプ、水銀ショートアークランプ等を搭載し、350~450nmの範囲で紫外線を照射する装置であればよく、さらに、直接描画装置(例えば、コンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)も用いることができる。直描機のランプ光源またはレーザー光源としては、最大波長が350~450nmの範囲にあるものでよい。画像形成のための露光量は膜厚等によって異なるが、一般には10~1000mJ/cm、好ましくは20~800mJ/cmの範囲内とすることができる。 The exposure apparatus used for the active energy ray irradiation may be any apparatus that irradiates ultraviolet rays in the range of 350 to 450 nm, equipped with a high-pressure mercury lamp lamp, an ultra-high pressure mercury lamp lamp, a metal halide lamp, a mercury short arc lamp, etc. Furthermore, a direct drawing apparatus (for example, a laser direct imaging apparatus that directly draws an image with a laser using CAD data from a computer) can also be used. The lamp light source or laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm. The exposure amount for image formation varies depending on the film thickness and the like, but can be generally in the range of 10 to 1000 mJ / cm 2 , preferably 20 to 800 mJ / cm 2 .
 上記現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液が使用できる。 The developing method can be a dipping method, a shower method, a spray method, a brush method, etc., and as a developing solution, potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, Alkaline aqueous solutions such as ammonia and amines can be used.
 以下、本発明を、実施例を用いてより詳細に説明する。なお、以下の表中の配合量は、すべて質量部を示す。 Hereinafter, the present invention will be described in more detail using examples. In addition, all the compounding quantities in the following table | surfaces show a mass part.
〔酸化パルプの調製〕
(酸化パルプ1)
 針葉樹の漂白クラフトパルプ(フレッチャー チャレンジ カナダ社製、商品名「Machenzie」、CSF650ml)を天然セルロース繊維として用いた。TEMPOとしては、市販品(ALDRICH社製、Free radical、98質量%)を用いた。次亜塩素酸ナトリウムとしては、市販品(和光純薬工業社製)を用いた。臭化ナトリウムとしては、市販品(和光純薬工業社製)を用いた。
[Preparation of oxidized pulp]
(Oxidized pulp 1)
Conifer bleached kraft pulp (Fletcher Challenge Canada, trade name “Machenzie”, CSF 650 ml) was used as natural cellulose fiber. As TEMPO, a commercially available product (ALDRICH, Free radical, 98% by mass) was used. As sodium hypochlorite, a commercially available product (manufactured by Wako Pure Chemical Industries, Ltd.) was used. A commercially available product (manufactured by Wako Pure Chemical Industries, Ltd.) was used as sodium bromide.
 まず、針葉樹の漂白クラフトパルプ繊維100gを9900gのイオン交換水で十分に攪拌した後、このパルプ質量100gに対し、TEMPO1.25質量%、臭化ナトリウム12.5質量%、次亜塩素酸ナトリウム28.4質量%をこの順で添加した。pHスタッドを用い、0.5M水酸化ナトリウムを滴下してpHを10.5に保持した。反応を120分(20℃)行った後、水酸化ナトリウムの滴下を停止し、酸化パルプを得た。イオン交換水を用いて得られた酸化パルプを十分に洗浄し、次いで脱水処理を行い固形分30.4%の酸化パルプを得た。 First, 100 g of bleached kraft pulp fiber of coniferous trees was sufficiently stirred with 9900 g of ion-exchanged water, and then TEMPO 1.25 mass%, sodium bromide 12.5 mass%, sodium hypochlorite 28 with respect to 100 g of this pulp mass. .4% by weight was added in this order. Using a pH stud, 0.5 M sodium hydroxide was added dropwise to maintain the pH at 10.5. After carrying out the reaction for 120 minutes (20 ° C.), dropping of sodium hydroxide was stopped to obtain oxidized pulp. The oxidized pulp obtained using ion-exchanged water was sufficiently washed and then dehydrated to obtain an oxidized pulp having a solid content of 30.4%.
(酸化パルプ2)
 使用する原料をユーカリ由来の広葉樹漂白クラフトパルプ(CENIBRA社製)に変更した以外は、酸化パルプ1と同様の手法を用いることで固形分30.4%の酸化パルプを得た。
(Oxidized pulp 2)
An oxidized pulp having a solid content of 30.4% was obtained by using the same method as that for oxidized pulp 1 except that the raw material used was changed to eucalyptus-derived hardwood bleached kraft pulp (manufactured by CENIBRA).
〔微細セルロース繊維水分散液の調製〕
(調製例1)
 酸化パルプ1を1.18gとイオン交換水34.8gを高圧ホモジナイザーを用いて150MPaで微細化処理を10回行い、カルボキシル基含有微細セルロース繊維分散液(固形分濃度5.0質量%)を得た。この微細セルロース繊維の平均繊維径は2.7nm、平均繊維長は578nm、平均アスペクト比は214、カルボキシル基含有量は1.4mmol/gであった。
(Preparation of fine cellulose fiber aqueous dispersion)
(Preparation Example 1)
1.18 g of oxidized pulp 1 and 34.8 g of ion-exchanged water were refined 10 times at 150 MPa using a high-pressure homogenizer to obtain a carboxyl group-containing fine cellulose fiber dispersion (solid content concentration 5.0 mass%). It was. This fine cellulose fiber had an average fiber diameter of 2.7 nm, an average fiber length of 578 nm, an average aspect ratio of 214, and a carboxyl group content of 1.4 mmol / g.
(調製例2)
 105.3gの酸化パルプ1を、1000gのイオン交換水で希釈し、濃塩酸を346g加えて、酸化パルプ固形分濃度2.34wt%、塩酸濃度2.5Mの分散液に調製し、3分間還流させた。得られた酸化パルプを十分に洗浄し、固形分41%の酸加水分解TEMPO酸化パルプを得た。その後、酸化パルプ0.88gとイオン交換水35.12gを高圧ホモジナイザーを用いて150MPaで微細化処理を10回行い、カルボキシル基含有微細セルロース繊維分散液(固形分濃度5.0質量%)を得た。この微細セルロース繊維の平均繊維径は2.9nm、平均繊維長は491nm、平均アスペクト比は169、カルボキシル基含有量は1.4mmol/gであった。
(Preparation Example 2)
105.3 g of oxidized pulp 1 was diluted with 1000 g of ion-exchanged water, 346 g of concentrated hydrochloric acid was added to prepare a dispersion having an oxidized pulp solid content concentration of 2.34 wt% and a hydrochloric acid concentration of 2.5 M, and refluxed for 3 minutes. I let you. The obtained oxidized pulp was sufficiently washed to obtain an acid-hydrolyzed TEMPO oxidized pulp having a solid content of 41%. Thereafter, 0.88 g of oxidized pulp and 35.12 g of ion-exchanged water were refined 10 times at 150 MPa using a high-pressure homogenizer to obtain a carboxyl group-containing fine cellulose fiber dispersion (solid content concentration 5.0 mass%). It was. This fine cellulose fiber had an average fiber diameter of 2.9 nm, an average fiber length of 491 nm, an average aspect ratio of 169, and a carboxyl group content of 1.4 mmol / g.
(調製例3)
 還流時間を10分に変更したこと以外は調製例2と同様の方法でカルボキシル基含有微細セルロース繊維を製造した。この微細セルロース繊維の平均繊維径は4.6nm、平均繊維長は331nm、平均アスペクト比は72、カルボキシル基含有量は1.4mmol/g、カルボキシル基含有微細セルロース繊維分散液の固形分濃度は5.0質量%であった。
(Preparation Example 3)
A carboxyl group-containing fine cellulose fiber was produced in the same manner as in Preparation Example 2, except that the reflux time was changed to 10 minutes. The average fiber diameter of the fine cellulose fibers is 4.6 nm, the average fiber length is 331 nm, the average aspect ratio is 72, the carboxyl group content is 1.4 mmol / g, and the solid content concentration of the carboxyl group-containing fine cellulose fiber dispersion is 5 It was 0.0 mass%.
(調製例4)
 酸化パルプ2を用いた以外は調製例3と同様の方法でカルボキシル基含有微細セルロース繊維を製造した。この微細セルロース繊維の平均繊維径は11.0nm、平均繊維長は187nm、平均アスペクト比は17、カルボキシル基含有量は1.1mmol/g、カルボキシル基含有微細セルロース繊維分散液の固形分濃度は5.0質量%であった。
(Preparation Example 4)
A carboxyl group-containing fine cellulose fiber was produced in the same manner as in Preparation Example 3 except that oxidized pulp 2 was used. This fine cellulose fiber has an average fiber diameter of 11.0 nm, an average fiber length of 187 nm, an average aspect ratio of 17, a carboxyl group content of 1.1 mmol / g, and a carboxyl group-containing fine cellulose fiber dispersion having a solid content concentration of 5 It was 0.0 mass%.
(調製例5)
 還流時間を60分に変更したこと以外は調製例4と同様の方法でカルボキシル基含有微細セルロース繊維を製造した。この微細セルロース繊維の平均繊維径は19.4nm、平均繊維長は174nm、平均アスペクト比は9、カルボキシル基含有量は1.1mmol/g、カルボキシル基含有微細セルロース繊維分散液の固形分濃度は5.0質量%であった。
(Preparation Example 5)
A carboxyl group-containing fine cellulose fiber was produced in the same manner as in Preparation Example 4 except that the reflux time was changed to 60 minutes. The average fiber diameter of this fine cellulose fiber is 19.4 nm, the average fiber length is 174 nm, the average aspect ratio is 9, the carboxyl group content is 1.1 mmol / g, and the solid content concentration of the carboxyl group-containing fine cellulose fiber dispersion is 5 It was 0.0 mass%.
〔修飾基を有する微細セルロース繊維DMF分散液の作製〕
(CNF1) 
 マグネティックスターラー、攪拌子を備えたビーカーに、調製例1で得られた微細セルロース繊維40g(固形分濃度5.0質量%)を仕込んだ。続いて、アニリンを、微細セルロース繊維のカルボキシル基1molに対してアミノ基1.2molに相当する量、4-メチルモルホリン0.34g、縮合剤であるDMT-MMを1.98g仕込み、DMF300g中に溶解させた。反応液を室温(25℃)で14時間反応させた。反応終了後ろ過し、エタノールにて洗浄、DMT-MM塩を除去し、DMFで洗浄及び溶媒置換することで、微細セルロース繊維に、芳香族炭化水素基がアミド結合を介して連結した微細セルロース繊維DMF分散液を得た。得られた微細セルロース繊維DMF分散液の固形分濃度は2.2質量%であった。
[Preparation of fine cellulose fiber DMF dispersion having modifying groups]
(CNF1)
A beaker equipped with a magnetic stirrer and a stirrer was charged with 40 g of fine cellulose fibers obtained in Preparation Example 1 (solid content concentration: 5.0% by mass). Subsequently, aniline was charged in an amount corresponding to 1.2 mol of amino group with respect to 1 mol of carboxyl group of fine cellulose fiber, 0.34 g of 4-methylmorpholine, and 1.98 g of DMT-MM as a condensing agent, and into 300 g of DMF. Dissolved. The reaction solution was reacted at room temperature (25 ° C.) for 14 hours. After completion of the reaction, the mixture is filtered, washed with ethanol, the DMT-MM salt is removed, washed with DMF and solvent substitution is performed. Fine cellulose fibers in which aromatic hydrocarbon groups are linked to fine cellulose fibers via amide bonds A DMF dispersion was obtained. The solid content concentration of the obtained fine cellulose fiber DMF dispersion was 2.2% by mass.
(CNF2)
 微細セルロース繊維として、調製例1で得られた微細セルロース繊維を調製例2で得られた微細セルロース繊維に代えた以外は、CNF1と同様にして微細セルロース繊維DMF分散液(固形分5.0質量%)を得た。
(CNF2)
As a fine cellulose fiber, except that the fine cellulose fiber obtained in Preparation Example 1 was replaced with the fine cellulose fiber obtained in Preparation Example 2, a fine cellulose fiber DMF dispersion (solid content: 5.0 mass) in the same manner as CNF1. %).
(CNF3)
 マグネティックスターラー、攪拌子を備えたビーカーに、調製例2で得られた微細セルロース繊維35g(固形分濃度5質量%)を仕込んだ。続いて、テトラブチルアンモニウムヒドロキシドを、微細セルロース繊維のカルボキシル基1molに対してアミノ基1molに相当する量を仕込み、DMF300gで溶解させた。反応液を室温(25℃)で1時間反応させた。反応終了後ろ過し、DMFで洗浄することで、微細セルロース繊維に、アミン塩が結合した微細セルロース繊維を得た。得られた、微細セルロース繊維DMF分散液の固形分濃度は4.0質量%であった。
(CNF3)
In a beaker equipped with a magnetic stirrer and a stirrer, 35 g of fine cellulose fibers obtained in Preparation Example 2 (solid content concentration 5 mass%) were charged. Subsequently, tetrabutylammonium hydroxide was charged in an amount corresponding to 1 mol of amino groups with respect to 1 mol of carboxyl groups of fine cellulose fibers, and dissolved in 300 g of DMF. The reaction solution was reacted at room temperature (25 ° C.) for 1 hour. After completion of the reaction, the mixture was filtered and washed with DMF to obtain fine cellulose fibers in which amine salts were bonded to the fine cellulose fibers. The solid content concentration of the obtained fine cellulose fiber DMF dispersion was 4.0% by mass.
(CNF4)
 微細セルロース繊維として、調製例2で得られた微細セルロース繊維を調製例3で得られた微細セルロース繊維に、テトラブチルアンモニウムヒドロキシドをJEFFAMINE M-600(HUNTSMAN社製)に代えた以外は、CNF3と同様にして微細セルロース繊維DMF分散液(固形分8.0質量%)を得た。
(CNF4)
As the fine cellulose fiber, CNF3, except that the fine cellulose fiber obtained in Preparation Example 2 was changed to the fine cellulose fiber obtained in Preparation Example 3 and tetrabutylammonium hydroxide was replaced with JEFFAMINE M-600 (manufactured by HUNTSMAN). In the same manner, a fine cellulose fiber DMF dispersion (solid content: 8.0% by mass) was obtained.
(CNF5)
 微細セルロース繊維として、調製例1で得られた微細セルロース繊維を調製例4で得られた微細セルロース繊維に代えた以外は、CNF1と同様にして微細セルロース繊維DMF分散液(固形分12.0質量%)を得た。
(CNF5)
As a fine cellulose fiber, except that the fine cellulose fiber obtained in Preparation Example 1 was replaced with the fine cellulose fiber obtained in Preparation Example 4, a fine cellulose fiber DMF dispersion (solid content 12.0 mass) was obtained in the same manner as CNF1. %).
(CNF6)
 微細セルロース繊維として、調製例1で得られた微細セルロース繊維を調製例5で得られた微細セルロース繊維に、アニリンをオクタデシルアミンに代えた以外は、CNF1と同様にして微細セルロース繊維DMF分散液(固形分13.0質量%)を得た。
(CNF6)
As a fine cellulose fiber, the fine cellulose fiber obtained in Preparation Example 1 was replaced with the fine cellulose fiber obtained in Preparation Example 5 except that aniline was replaced with octadecylamine. A solid content of 13.0% by mass was obtained.
 これらの各微細セルロース繊維について、下記の表1中にまとめて示す。 These fine cellulose fibers are collectively shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔硬化性樹脂組成物に用いるカルボキシル基含有樹脂の調製〕
[合成例1]
(ワニス1)
 攪拌機、温度計、還流冷却器、滴下ロートおよび窒素導入管を備えた2リットルセパラブルフラスコに、溶媒としてのジエチレングリコールジメチルエーテル900g、および、重合開始剤としてのt-ブチルパーオキシ2-エチルヘキサノエート(日油(株)製、商品名;パーブチルO)21.4gを加えて、90℃に加熱した。加熱後、ここに、メタクリル酸309.9g、メタクリル酸メチル116.4g、および、ラクトン変性2-ヒドロキシエチルメタクリレート((株)ダイセル製、商品名;プラクセルFM1)109.8gを、重合開始剤であるビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(日油(株)製、商品名;パーロイルTCP)21.4gとともに3時間かけて滴下して加えた。さらに、これを6時間熟成することにより、カルボキシル基含有共重合樹脂を得た。なお、これらの反応は、窒素雰囲気下で行った。
[Preparation of carboxyl group-containing resin used in curable resin composition]
[Synthesis Example 1]
(Varnish 1)
In a 2 liter separable flask equipped with a stirrer, thermometer, reflux condenser, dropping funnel and nitrogen introduction tube, 900 g of diethylene glycol dimethyl ether as a solvent and t-butylperoxy 2-ethylhexanoate as a polymerization initiator 21.4 g (manufactured by NOF Corporation, trade name: Perbutyl O) was added and heated to 90 ° C. After heating, 309.9 g of methacrylic acid, 116.4 g of methyl methacrylate, and 109.8 g of lactone-modified 2-hydroxyethyl methacrylate (manufactured by Daicel Corporation, trade name: Plaxel FM1) were used as a polymerization initiator. Along with 21.4 g of certain bis (4-t-butylcyclohexyl) peroxydicarbonate (manufactured by NOF Corporation, trade name: Parroyl TCP), it was added dropwise over 3 hours. Further, this was aged for 6 hours to obtain a carboxyl group-containing copolymer resin. These reactions were performed in a nitrogen atmosphere.
 次に、得られたカルボキシル基含有共重合樹脂に、3,4-エポキシシクロヘキシルメチルアクリレート((株)ダイセル製、商品名;サイクロマーA200)363.9g、開環触媒としてのジメチルベンジルアミン3.6g、重合抑制剤としてのハイドロキノンモノメチルエーテル1.80gを加え、100℃に加熱し、これを攪拌することにより、エポキシの開環付加反応を行った。16時間後、固形分の酸価が108.9mgKOH/g、質量平均分子量が25,000のカルボキシル基含有樹脂を53.8質量%(不揮発分)含む溶液を得た。 Next, to the obtained carboxyl group-containing copolymer resin, 363.9 g of 3,4-epoxycyclohexylmethyl acrylate (manufactured by Daicel Corp., trade name: Cyclomer A200), 3. dimethylbenzylamine as a ring-opening catalyst; 6 g and 1.80 g of hydroquinone monomethyl ether as a polymerization inhibitor were added, heated to 100 ° C., and stirred to carry out an epoxy ring-opening addition reaction. After 16 hours, a solution containing 53.8% by mass (nonvolatile content) of a carboxyl group-containing resin having a solid acid value of 108.9 mgKOH / g and a weight average molecular weight of 25,000 was obtained.
[合成例2]
(ワニス2)
 温度計、攪拌機、滴下ロートおよび還流冷却器を備えたフラスコに、溶媒としてのジエチレングリコールモノエチルエーテルアセテート、および、触媒としてのアゾビスイソブチロニトリルを入れ、窒素雰囲気下、これを80℃に加熱し、メタアクリル酸とメチルメタアクリレートとを0.40:0.60のモル比で混合したモノマーを約2時間かけて滴下した。さらに、これを1時間攪拌した後、温度を115℃にまで上げ、失活させて樹脂溶液を得た。
[Synthesis Example 2]
(Varnish 2)
A flask equipped with a thermometer, stirrer, dropping funnel and reflux condenser is charged with diethylene glycol monoethyl ether acetate as a solvent and azobisisobutyronitrile as a catalyst and heated to 80 ° C. in a nitrogen atmosphere. Then, a monomer in which methacrylic acid and methyl methacrylate were mixed at a molar ratio of 0.40: 0.60 was dropped over about 2 hours. Furthermore, after stirring this for 1 hour, the temperature was raised to 115 ° C. and deactivated to obtain a resin solution.
 この樹脂溶液を冷却後、これを触媒として臭化テトラブチルアンモニウムを用い、95~105℃で30時間の条件で、ブチルグリシジルエーテルを0.40のモル比で、得られた樹脂のカルボキシル基の等量と付加反応させ、冷却した。 After cooling the resin solution, tetrabutylammonium bromide was used as a catalyst, and butyl glycidyl ether was added at a molar ratio of 0.40 at 95 to 105 ° C. for 30 hours. Addition reaction with an equal volume and cooling.
 さらに、上記で得られた樹脂のOH基に対して、95~105℃で8時間の条件で、無水テトラヒドロフタル酸を0.26のモル比で付加反応させた。これを、冷却後に取り出して、固形分の酸価が78.1mgKOH/g、質量平均分子量が35,000のカルボキシル基含有樹脂を50質量%(不揮発分)含む溶液を得た。 Further, tetrahydrophthalic anhydride was added to the OH group of the resin obtained above at 95 to 105 ° C. for 8 hours at a molar ratio of 0.26. This was taken out after cooling to obtain a solution containing 50% by mass (nonvolatile content) of a carboxyl group-containing resin having a solid acid value of 78.1 mgKOH / g and a mass average molecular weight of 35,000.
[合成例3]
(ワニス3)
 温度計、攪拌器、滴下ロートおよび還流冷却器を備えたフラスコに、クレゾールノボラック型エポキシ樹脂(DIC(株)製、エピクロンN-680、エポキシ当量=210)210gと、溶媒としてのカルビトールアセテート96.4gとを加え、加熱溶解させた。続いて、これに、重合禁止剤としてのハイドロキノン0.1g、および、反応触媒としてのトリフェニルホスフィン2.0gを加えた。この混合物を95~105℃に加熱し、アクリル酸72gを徐々に滴下し、酸価が3.0mgKOH/g以下となるまで、約16時間反応させた。この反応生成物を80~90℃にまで冷却した後、テトラヒドロフタル酸無水物76.1gを加え、赤外吸光分析により、酸無水物の吸収ピーク(1780cm-1)がなくなるまで、約6時間反応させた。この反応溶液に、出光興産(株)製の芳香族系溶剤イプゾール#150を96.4g加え、希釈した後に取り出した。このようにして得られたカルボキシル基含有の感光性ポリマー溶液は、不揮発分が65質量%、固形分の酸価が78mgKOH/gであった。
[Synthesis Example 3]
(Varnish 3)
In a flask equipped with a thermometer, stirrer, dropping funnel and reflux condenser, 210 g of cresol novolac type epoxy resin (DIC Corporation, Epicron N-680, epoxy equivalent = 210) and carbitol acetate 96 as a solvent .4 g was added and dissolved by heating. Subsequently, 0.1 g of hydroquinone as a polymerization inhibitor and 2.0 g of triphenylphosphine as a reaction catalyst were added thereto. This mixture was heated to 95-105 ° C., 72 g of acrylic acid was gradually added dropwise, and the mixture was reacted for about 16 hours until the acid value became 3.0 mgKOH / g or less. After the reaction product was cooled to 80 to 90 ° C., 76.1 g of tetrahydrophthalic anhydride was added, and about 6 hours until the absorption peak (1780 cm −1 ) of the acid anhydride disappeared by infrared absorption analysis. Reacted. To this reaction solution, 96.4 g of aromatic solvent ipsol # 150 manufactured by Idemitsu Kosan Co., Ltd. was added, diluted, and taken out. The thus obtained carboxyl group-containing photosensitive polymer solution had a nonvolatile content of 65 mass% and a solid content acid value of 78 mgKOH / g.
〔硬化性樹脂組成物の調製〕
 下記の表2~6中の記載に従って、各成分を配合撹拌後、吉田機械興業製高圧ホモジナイザーNanovater NVL-ES008を使用し、6回繰り返して分散させて各組成物を調製した。なお、表2~6中の数値は、質量部を示す。
(Preparation of curable resin composition)
According to the description in Tables 2 to 6 below, each component was blended and stirred, and then a high-pressure homogenizer Nanovater NVL-ES008 manufactured by Yoshida Kikai Kogyo Co., Ltd. was used and dispersed repeatedly 6 times to prepare each composition. The numerical values in Tables 2 to 6 indicate parts by mass.
<粘度測定>
 各組成物の粘度を、東機産業製コーンプレート型粘度計TPE-100-Hでコーンプレート1°34′を使用し、回転数0.5rpmにて測定した。その結果を、表2~6に示す。なお、装置の測定限界を超え、測定できなかった組成物は不能とした。
<Viscosity measurement>
The viscosity of each composition was measured with a cone plate type viscometer TPE-100-H manufactured by Toki Sangyo Co., Ltd. using a cone plate 1 ° 34 'at a rotation speed of 0.5 rpm. The results are shown in Tables 2-6. A composition that exceeded the measurement limit of the apparatus and could not be measured was regarded as impossible.
<熱膨張測定用サンプルの作製>
(熱硬化性樹脂組成物)
 厚さ38μmのPETフィルムに、ギャップ120μmのアプリケーターで各組成物を塗布し、熱風循環式乾燥炉にて90℃10分間乾燥させて、各組成物の樹脂層を有するドライフィルムを得た。その後、厚さ18μmの銅箔に真空ラミネーターにて60℃、圧力0.5MPaの条件で60秒間圧着して各組成物の樹脂層をラミネートして、PETフィルムを剥がした。次いで、熱風循環式乾燥炉にて180℃30分加熱して硬化させ、銅箔を剥がして硬化膜のサンプルを得た。なお、組成物の粘度が高く、アプリケーターで塗布できなかった組成物は不能とした。
<Preparation of thermal expansion measurement sample>
(Thermosetting resin composition)
Each composition was applied to a PET film having a thickness of 38 μm with an applicator having a gap of 120 μm, and dried at 90 ° C. for 10 minutes in a hot-air circulating drying oven to obtain a dry film having a resin layer of each composition. Thereafter, the resin layer of each composition was laminated on a 18 μm thick copper foil with a vacuum laminator at 60 ° C. under a pressure of 0.5 MPa for 60 seconds, and the PET film was peeled off. Then, it heated and hardened at 180 degreeC for 30 minute (s) with the hot-air circulation type drying furnace, the copper foil was peeled off, and the sample of the cured film was obtained. In addition, the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
(光硬化性樹脂組成物)
 厚さ18μmの銅箔を厚さ1.6mmのFR-4銅張積層板に張り付け、ギャップ120μmのアプリケーターで各組成物を塗布し、熱風循環式乾燥炉にて90℃10分間乾燥させた。その後、120W/cmのコンベア型高圧水銀灯にて積算光量2000mJ/cmにて照射した。そして、銅箔を剥がして硬化膜のサンプルを得た。なお、組成物の粘度が高く、アプリケーターで塗布できなかった組成物は不能とした。
(Photocurable resin composition)
A copper foil having a thickness of 18 μm was attached to a FR-4 copper clad laminate having a thickness of 1.6 mm, each composition was applied with an applicator having a gap of 120 μm, and dried at 90 ° C. for 10 minutes in a hot air circulation drying oven. Then, it irradiated with the integrated light quantity 2000mJ / cm < 2 > with the 120W / cm conveyor type high pressure mercury lamp. And the copper foil was peeled off and the sample of the cured film was obtained. In addition, the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
(光硬化性熱硬化性樹脂組成物)
 厚さ18μmの銅箔を厚さ1.6mmのFR-4銅張積層板に張り付け、ギャップ120μmのアプリケーターで各組成物を塗布し、熱風循環式乾燥炉にて90℃10分間乾燥させた。その後、3mm幅×30mm長のパターンが付いたネガマスクを密着させ、プリント配線板用メタルハライドランプ露光機で700mJ/cmにて露光した。次に、30℃の1wt%NaCOの現像液を用いて、現像機で60秒間現像した。その後、熱風循環式乾燥炉にて150℃60分加熱して硬化させ、銅箔を剥がして硬化膜のサンプルを得た。なお、組成物の粘度が高く、アプリケーターで塗布できなかった組成物は不能とした。
(Photo-curable thermosetting resin composition)
A copper foil having a thickness of 18 μm was attached to a FR-4 copper clad laminate having a thickness of 1.6 mm, each composition was applied with an applicator having a gap of 120 μm, and dried at 90 ° C. for 10 minutes in a hot air circulation drying oven. Thereafter, a negative mask with a pattern of 3 mm width × 30 mm length was brought into close contact, and exposed at 700 mJ / cm 2 with a metal halide lamp exposure machine for printed wiring boards. Next, development was performed with a developing machine for 60 seconds using a 1 wt% Na 2 CO 3 developer at 30 ° C. Then, it was cured by heating at 150 ° C. for 60 minutes in a hot air circulation drying furnace, and the copper foil was peeled off to obtain a cured film sample. In addition, the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
<熱膨張率の測定>
(熱硬化性樹脂組成物および光硬化性樹脂組成物)
 作製した熱膨張測定用サンプルを、3mm幅×30mm長にカットした。この試験片を、ティー・エイ・インスツルメント社製 TMA(Thermomechanical Analysis)Q400を用いて、引張モードで、チャック間16mm、荷重30mN、窒素雰囲気下、20~250℃まで5℃/分で昇温し、次いで、250~20℃まで5℃/分で降温して測定した。降温時における30℃から100℃の平均熱膨張率α1及び200℃から230℃の平均熱膨張率α2を求めた。その結果を、表2~6に示す。
<Measurement of thermal expansion coefficient>
(Thermosetting resin composition and photocurable resin composition)
The produced sample for thermal expansion measurement was cut into 3 mm width × 30 mm length. The test piece was elevated at 5 ° C./min from 20 to 250 ° C. in a tensile mode using a TMA (Thermomechanical Analysis) Q400 manufactured by T.A. Then, the temperature was lowered from 250 to 20 ° C. at a rate of 5 ° C./min. An average coefficient of thermal expansion α1 from 30 ° C. to 100 ° C. and an average coefficient of thermal expansion α2 from 200 ° C. to 230 ° C. at the time of temperature reduction were determined. The results are shown in Tables 2-6.
(光硬化性熱硬化性樹脂組成物)
 作製したサンプルをそのまま使用した以外は、熱硬化性樹脂組成物および光硬化性樹脂組成物と同じ方法で行った。結果を表2~6に示す。
(Photo-curable thermosetting resin composition)
Except using the produced sample as it was, it carried out by the same method as a thermosetting resin composition and a photocurable resin composition. The results are shown in Tables 2-6.
<めっき銅のピール強度測定用サンプルの作製>
(熱硬化性樹脂組成物)
 厚さ38μmのPETフィルムに、ギャップ120μmのアプリケーターで各組成物を塗布し、熱風循環式乾燥炉にて90℃10分間乾燥させて各組成物の樹脂層を有するドライフィルムを得た。その後、厚さ1.6mmのFR-4銅張積層板に真空ラミネーターにて60℃、圧力0.5MPaの条件で60秒間圧着して各組成物の樹脂層をラミネートして、PETフィルムを剥がした。次いで、熱風循環式乾燥炉にて180℃30分加熱して硬化させた。そして、過マンガン酸デスミア(ATOTECH社製)、無電解銅めっき(スルカップPEA、上村工業社製)、電解銅めっき処理の順に処理を行い、樹脂層上に銅厚み25μmの銅めっき処理を施した。次いで、熱風循環式乾燥炉にて190℃で60分間アニール処理を行い、銅めっき処理を施した試験基板を得た。なお、組成物の粘度が高く、アプリケーターで塗布できなかった組成物は不能とした。
<Preparation of a sample for measuring peel strength of plated copper>
(Thermosetting resin composition)
Each composition was applied to a PET film having a thickness of 38 μm with an applicator having a gap of 120 μm, and dried at 90 ° C. for 10 minutes in a hot air circulating drying oven to obtain a dry film having a resin layer of each composition. After that, the resin layer of each composition was laminated to a 1.6 mm thick FR-4 copper clad laminate with a vacuum laminator at 60 ° C. under a pressure of 0.5 MPa for 60 seconds, and the PET film was peeled off. It was. Subsequently, it was cured by heating at 180 ° C. for 30 minutes in a hot air circulation drying furnace. Then, permanganate desmear (manufactured by ATOTECH), electroless copper plating (Sulcup PEA, manufactured by Uemura Kogyo Co., Ltd.), and electrolytic copper plating treatment were performed in this order, and a copper plating treatment with a copper thickness of 25 μm was performed on the resin layer. . Next, an annealing process was performed at 190 ° C. for 60 minutes in a hot-air circulating drying furnace to obtain a test substrate subjected to a copper plating process. In addition, the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
(光硬化性樹脂組成物)
 厚さ1.6mmのFR-4銅張積層板に、ギャップ120μmのアプリケーターで各組成物を塗布し、熱風循環式乾燥炉にて90℃10分間乾燥させた。その後、120W/cmのコンベア型高圧水銀灯にて積算光量2000mJ/cmにて乾燥膜に照射した。そして、過マンガン酸デスミア(ATOTECH社製)、無電解銅めっき(スルカップPEA、上村工業社製)、電解銅めっき処理の順に処理を行い、硬化膜上に銅厚み25μmの銅めっき処理を施した。次いで、熱風循環式乾燥炉にて190℃で60分間アニール処理を行い、銅めっき処理を施した試験基板を得た。なお、組成物の粘度が高く、アプリケーターで塗布できなかった組成物は不能とした。
(Photocurable resin composition)
Each composition was applied to an FR-4 copper clad laminate having a thickness of 1.6 mm with an applicator having a gap of 120 μm, and dried at 90 ° C. for 10 minutes in a hot air circulating drying oven. Then, the dried film was irradiated with a cumulative light quantity of 2000 mJ / cm 2 with a 120 W / cm conveyor type high-pressure mercury lamp. Then, permanganate desmear (manufactured by ATOTECH), electroless copper plating (Sulcup PEA, manufactured by Uemura Kogyo Co., Ltd.), and electrolytic copper plating treatment were performed in this order, and a copper plating treatment with a copper thickness of 25 μm was performed on the cured film. . Next, an annealing process was performed at 190 ° C. for 60 minutes in a hot-air circulating drying furnace to obtain a test substrate subjected to a copper plating process. In addition, the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
(光硬化性熱硬化性樹脂組成物)
 厚さ1.6mmのFR-4銅張積層板に、ギャップ120μmのアプリケーターで各組成物を塗布し、熱風循環式乾燥炉にて90℃10分間乾燥させた。その後、全面透明のマスクを密着させ、プリント配線板用メタルハライドランプ露光機で700mJ/cmにて露光した。次に、30℃の1wt%NaCOの現像液を用いて、現像機で60秒間現像した。その後、熱風循環式乾燥炉にて150℃60分加熱して硬化させた。そして、過マンガン酸デスミア(ATOTECH社製)、無電解銅めっき(スルカップPEA、上村工業社製)、電解銅めっき処理の順に処理を行い、硬化膜上に銅厚み25μmの銅めっき処理を施した。次いで、熱風循環式乾燥炉にて190℃で60分間アニール処理を行い、銅めっき処理を施した試験基板を得た。組成物の粘度が高く、アプリケーターで塗布できなかった組成物は不能とした。
(Photo-curable thermosetting resin composition)
Each composition was applied to an FR-4 copper clad laminate having a thickness of 1.6 mm with an applicator having a gap of 120 μm, and dried at 90 ° C. for 10 minutes in a hot air circulating drying oven. Thereafter, an entirely transparent mask was brought into close contact, and exposed at 700 mJ / cm 2 with a metal halide lamp exposure machine for printed wiring boards. Next, development was performed with a developing machine for 60 seconds using a 1 wt% Na 2 CO 3 developer at 30 ° C. Then, it was cured by heating at 150 ° C. for 60 minutes in a hot air circulation drying furnace. Then, permanganate desmear (manufactured by ATOTECH), electroless copper plating (Sulcup PEA, manufactured by Uemura Kogyo Co., Ltd.), and electrolytic copper plating treatment were performed in this order, and a copper plating treatment with a copper thickness of 25 μm was performed on the cured film. . Next, an annealing process was performed at 190 ° C. for 60 minutes in a hot-air circulating drying furnace to obtain a test substrate subjected to a copper plating process. Compositions that were too viscous to be applied with an applicator were considered impossible.
<めっき銅のピール強度測定>
 作製しためっき銅処理サンプルを1cm幅、長さ7cm以上で切り出し、島津製作所製小型卓上試験機EZ-SXを使用し、90°プリントハクリ治具を用いて、90度の角度での剥離強度を求めた。その結果を表2~6に示す。
<Measurement of peel strength of plated copper>
The prepared plated copper treated sample was cut out with a width of 1 cm and a length of 7 cm or more. Using a small desktop tester EZ-SX manufactured by Shimadzu Corporation, the peel strength at an angle of 90 degrees was obtained using a 90 ° print peeling tool. Asked. The results are shown in Tables 2-6.
<化学研磨処理銅箔のピール強度測定用サンプルの作製>
(熱硬化性樹脂組成物)
(工程1)
 厚さ38μmのPETフィルムに、ギャップ120μmのアプリケーターで各組成物を塗布し、熱風循環式乾燥炉にて90℃10分間乾燥させ、各組成物の樹脂層を形成したフィルムを作製した。なお、組成物の粘度が高く、アプリケーターで塗布できなかった組成物は不能とした。
(工程2)
 厚さ1.6mmのFR-4銅張積層板に塩化第二鉄を使用したエッチング法にて完全に銅箔を除去した板(以下、単に「エッチアウト板」という)に、4辺がこの第1のエッチアウト板よりも少し小さい18μm厚の電解銅箔の4辺を耐薬品性粘着テープで固定した。この状態ではテープ貼り付け箇所以外は電解銅箔が露出している状態である。次に、メック社製エッチボンドCZ-8101で張り付けた電解銅箔を化学研磨し、銅箔付き基板を作製した。
(工程3)
 前記工程1で作製したフィルムの樹脂層面を、前記工程2で作製した銅箔付き基板の銅箔面に、真空ラミネーターにて60℃、圧力0.5MPaの条件で60秒間圧着した。その後PETフィルムを剥がした。次いで、熱風循環式乾燥炉にて180℃30分加熱して硬化させて、銅箔付き基板の銅箔上に各組成物の硬化膜が形成された試験片を作製した。
(工程4)
 工程3で作製した試験片の硬化膜面に、試験片の銅箔よりも4辺が少し小さい第2のエッチアウト板を2液性エポキシ系接着剤(アラルダイトスタンダード)にて接着し、室温で60分放置後60℃5時間硬化させた。硬化後に接着した第2のエッチアウト板の大きさにカッターで切り出して、第1のエッチアウト板から離脱して表裏を逆転し、第2のエッチアウト板に接着された各組成物の硬化膜に化学研磨された銅箔が形成されているピール強度測定用サンプルを作製した。
<Preparation of sample for peel strength measurement of chemically polished copper foil>
(Thermosetting resin composition)
(Process 1)
Each composition was applied to a PET film having a thickness of 38 μm with an applicator having a gap of 120 μm, and dried at 90 ° C. for 10 minutes in a hot air circulation type drying furnace to prepare a film in which a resin layer of each composition was formed. In addition, the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
(Process 2)
A plate with copper foil completely removed by an etching method using ferric chloride on an FR-4 copper clad laminate with a thickness of 1.6 mm (hereinafter simply referred to as “etch-out plate”) has four sides. Four sides of an 18 μm thick electrolytic copper foil slightly smaller than the first etch-out plate were fixed with a chemical-resistant adhesive tape. In this state, the electrolytic copper foil is exposed except for the portion where the tape is applied. Next, the electrolytic copper foil adhered with MEC's etch bond CZ-8101 was chemically polished to produce a substrate with copper foil.
(Process 3)
The resin layer surface of the film prepared in Step 1 was pressure-bonded to the copper foil surface of the substrate with copper foil prepared in Step 2 for 60 seconds using a vacuum laminator at 60 ° C. and a pressure of 0.5 MPa. Thereafter, the PET film was peeled off. Then, it heated and hardened | cured for 30 minutes at 180 degreeC with the hot-air circulation type drying furnace, and produced the test piece by which the cured film of each composition was formed on the copper foil of a board | substrate with copper foil.
(Process 4)
Adhere the second etch-out plate, which is slightly smaller than the copper foil of the test piece, to the cured film surface of the test piece prepared in step 3 with a two-component epoxy adhesive (Araldite Standard) at room temperature. After standing for 60 minutes, it was cured at 60 ° C. for 5 hours. A cured film of each composition bonded to the second etch-out plate, cut out with a cutter into the size of the second etch-out plate adhered after curing, separated from the first etch-out plate, and turned upside down A sample for peel strength measurement in which a chemically polished copper foil was formed was prepared.
(光硬化性樹脂組成物)
(工程1)
 厚さ1.6mmのFR-4銅張積層板に塩化第二鉄を使用したエッチング法にて完全に銅箔を除去した板(以下、単に「エッチアウト板」という)に、4辺がこの第1のエッチアウト板よりも少し小さい18μm厚の電解銅箔の4辺を耐薬品性粘着テープで固定した。この状態ではテープ貼り付け箇所以外は電解銅箔が露出している状態である。次に、メック社製エッチボンドCZ-8101で張り付けた電解銅箔を化学研磨し、銅箔付き基板を作製した。
(工程2)
 前記工程1で作製した銅箔付き基板に、ギャップ120μmのアプリケーターで各組成物を塗布し、熱風循環式乾燥炉にて90℃10分間乾燥させた。その後、120W/cmのコンベア型高圧水銀灯で積算光量2000mJ/cmにて照射して、銅箔付き基板の銅箔上に各組成物の硬化膜が形成された試験片を作製した。なお、組成物の粘度が高く、アプリケーターで塗布できなかった組成物は不能とした。
(工程3)
 前記工程2で作製した試験片の硬化膜面に、試験片の銅箔よりも4辺が少し小さい第2のエッチアウト板を2液性エポキシ系接着剤(アラルダイトスタンダード)にて接着し、室温で60分放置後60℃5時間硬化させた。硬化後に接着した第2のエッチアウト板の大きさにカッターで切り出して、第1のエッチアウト板から離脱して表裏を逆転し、第2のエッチアウト板に接着された各組成物の硬化膜に化学研磨された銅箔が形成されているピール強度測定用サンプルを作製した。
(Photocurable resin composition)
(Process 1)
A plate with copper foil completely removed by an etching method using ferric chloride on an FR-4 copper clad laminate with a thickness of 1.6 mm (hereinafter simply referred to as “etch-out plate”) has four sides. Four sides of an 18 μm thick electrolytic copper foil slightly smaller than the first etch-out plate were fixed with a chemical-resistant adhesive tape. In this state, the electrolytic copper foil is exposed except for the portion where the tape is applied. Next, the electrolytic copper foil adhered with MEC's etch bond CZ-8101 was chemically polished to produce a substrate with copper foil.
(Process 2)
Each composition was apply | coated to the board | substrate with copper foil produced at the said process 1 with the applicator with a gap of 120 micrometers, and it was made to dry at 90 degreeC for 10 minute (s) with a hot air circulation type drying furnace. Then, it irradiated with the integrated light quantity 2000mJ / cm < 2 > with the conveyor type | mold high pressure mercury lamp of 120W / cm, and produced the test piece by which the cured film of each composition was formed on the copper foil of a board | substrate with copper foil. In addition, the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
(Process 3)
A second etch-out plate having 4 sides slightly smaller than the copper foil of the test piece is adhered to the cured film surface of the test piece prepared in step 2 with a two-component epoxy adhesive (Araldite Standard), and room temperature is obtained. And then cured at 60 ° C. for 5 hours. A cured film of each composition bonded to the second etch-out plate, cut out with a cutter into the size of the second etch-out plate adhered after curing, separated from the first etch-out plate, and turned upside down A sample for peel strength measurement in which a chemically polished copper foil was formed was prepared.
(光硬化性熱硬化性樹脂組成物)
(工程1)
 厚さ1.6mmのFR-4銅張積層板に塩化第二鉄を使用したエッチング法にて完全に銅箔を除去した板(以下、単に「エッチアウト板」という)に、4辺がこの第1のエッチアウト板よりも少し小さい18μm厚の電解銅箔の4辺を耐薬品性粘着テープで固定した。この状態ではテープ貼り付け箇所以外は電解銅箔が露出している状態である。次に、メック社製エッチボンドCZ-8101で張り付けた電解銅箔を化学研磨し、銅箔付き基板を作製した。
(工程2)
 前記工程1で作製した銅箔付き基板に、ギャップ120μmのアプリケーターで各組成物を塗布し、熱風循環式乾燥炉にて90℃10分間乾燥させた。その後、全面透明のマスクを密着させ、プリント配線板用メタルハライドランプ露光機で700mJ/cmにて露光した。次に、30℃の1wt%NaCOの現像液を用いて、現像機で60秒間現像した。その後、熱風循環式乾燥炉にて150℃60分加熱して硬化させて、銅箔付き基板の銅箔上に各組成物の硬化膜が形成された試験片を作製した。なお、組成物の粘度が高く、アプリケーターで塗布できなかった組成物は不能とした。
(工程3)
 前記工程2で作製した試験片の硬化膜面に、試験片の銅箔よりも4辺が少し小さい第2のエッチアウト板を2液性エポキシ系接着剤(アラルダイトスタンダード)にて接着し、室温で60分放置後60℃5時間硬化させた。硬化後に接着した第2のエッチアウト板の大きさにカッターで切り出して、第1のエッチアウト板から離脱して表裏を逆転し、第2のエッチアウト板に接着された各組成物の硬化膜に化学研磨された銅箔が形成されているピール強度測定用サンプルを作製した。
(Photo-curable thermosetting resin composition)
(Process 1)
A plate with copper foil completely removed by an etching method using ferric chloride on an FR-4 copper clad laminate with a thickness of 1.6 mm (hereinafter simply referred to as “etch-out plate”) has four sides. Four sides of an 18 μm thick electrolytic copper foil slightly smaller than the first etch-out plate were fixed with a chemical-resistant adhesive tape. In this state, the electrolytic copper foil is exposed except for the portion where the tape is applied. Next, the electrolytic copper foil adhered with MEC's etch bond CZ-8101 was chemically polished to produce a substrate with copper foil.
(Process 2)
Each composition was apply | coated to the board | substrate with copper foil produced at the said process 1 with the applicator with a gap of 120 micrometers, and it was made to dry at 90 degreeC for 10 minute (s) with a hot air circulation type drying furnace. Thereafter, an entirely transparent mask was brought into close contact, and exposed at 700 mJ / cm 2 with a metal halide lamp exposure machine for printed wiring boards. Next, development was performed with a developing machine for 60 seconds using a 1 wt% Na 2 CO 3 developer at 30 ° C. Then, it heated and hardened at 150 degreeC 60 minutes in the hot-air circulation type drying furnace, and produced the test piece by which the cured film of each composition was formed on the copper foil of a board | substrate with copper foil. In addition, the viscosity of the composition was high, and the composition which could not be applied with an applicator was made impossible.
(Process 3)
A second etch-out plate having 4 sides slightly smaller than the copper foil of the test piece is adhered to the cured film surface of the test piece prepared in step 2 with a two-component epoxy adhesive (Araldite Standard), and room temperature is obtained. And then cured at 60 ° C. for 5 hours. A cured film of each composition bonded to the second etch-out plate, cut out with a cutter into the size of the second etch-out plate adhered after curing, separated from the first etch-out plate, and turned upside down A sample for peel strength measurement in which a chemically polished copper foil was formed was prepared.
<化学研磨処理銅箔のピール強度測定>
 作製したピール強度測定用サンプルを1cm幅、長さ7cm以上で切り出し、島津製作所製小型卓上試験機EZ-SXを使用し、90°プリントハクリ治具を用いて、90度の角度での剥離強度を求めた。その結果を、表2~6に示す。
<Measurement of peel strength of chemically polished copper foil>
The peel strength measurement sample was cut out with a width of 1 cm and a length of 7 cm or more, and peel strength at an angle of 90 degrees using a 90 ° print stripping jig using a small desktop tester EZ-SX manufactured by Shimadzu Corporation. Asked. The results are shown in Tables 2-6.
<熱処理後の化学研磨処理銅箔の剥がれ>
 作製した化学研磨処理銅箔付きサンプルを1cm幅、長さ7cm以上で切り出し、吸湿した水分を除去するため100℃で60分間乾燥した。乾燥後のサンプルをリフロー炉(最高270℃)で3回繰り返し処理した後、化学研磨処理銅箔の剥がれの有無を目視で確認した。剥がれがなかったものを○、剥がれたものを×とした。その結果を、表2~6に示す。
<Peeling of chemically polished copper foil after heat treatment>
The produced chemically polished sample with copper foil was cut out with a width of 1 cm and a length of 7 cm or more, and dried at 100 ° C. for 60 minutes in order to remove moisture absorbed. The dried sample was repeatedly treated three times in a reflow furnace (maximum 270 ° C.), and then the presence or absence of peeling of the chemically polished copper foil was visually confirmed. The case where peeling did not occur was marked with ◯, and the case where peeling did not occur. The results are shown in Tables 2-6.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
熱硬化性樹脂1:エピクロン830(ビスフェノールF型エポキシ樹脂) DIC(株)製
熱硬化性樹脂2:JER827(ビスフェノールA型エポキシ樹脂) 三菱化学(株)製
熱硬化性樹脂3:EPPN-502H(トリフェニルメタン型エポキシ樹脂) 日本化薬(株)製(固形分60%シクロヘキサノンワニス)
熱硬化性樹脂4:FX-293(フルオレン型フェノキシ樹脂) 新日鉄住友化学(株)製 (固形分30%シクロヘキサノンワニス)
熱硬化性樹脂5:HF-1(フェノールノボラック樹脂) 明和化成(株)製 (固形分60%シクロヘキサノンワニス)
硬化触媒1:2E4MZ(2-エチル-4-メチルイミダゾール) 四国化成工業(株)製
フィラー1:シリカ,アドマファインSO-C2 (株)アドマテックス製
フィラー2:硫酸バリウム,B-30 堺化学工業(株)製
有機溶剤1:ジメチルホルムアミド
消泡剤1:ビックケミー・ジャパン(株)製 BYK-352
Thermosetting resin 1: Epicron 830 (bisphenol F type epoxy resin) Thermosetting resin made by DIC Corporation 2: JER827 (bisphenol A type epoxy resin) Thermosetting resin made by Mitsubishi Chemical Corporation 3: EPPN-502H ( Triphenylmethane type epoxy resin) Nippon Kayaku Co., Ltd. (solid content 60% cyclohexanone varnish)
Thermosetting resin 4: FX-293 (fluorene type phenoxy resin) manufactured by Nippon Steel & Sumitomo Chemical Co., Ltd. (solid content 30% cyclohexanone varnish)
Thermosetting resin 5: HF-1 (phenol novolac resin) manufactured by Meiwa Kasei Co., Ltd. (solid content 60% cyclohexanone varnish)
Curing catalyst 1: 2E4MZ (2-ethyl-4-methylimidazole) Shikoku Kasei Kogyo Co., Ltd. Filler 1: Silica, Admafine SO-C2 Admatex Co., Ltd. Filler 2: Barium sulfate, B-30 Sakai Chemical Industry Co., Ltd. Organic solvent 1: Dimethylformamide antifoam 1: BYK-Japan Japan Co., Ltd. BYK-352
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
光硬化性樹脂1 :ビスフェノールA型エポキシアクリレート 三菱化学(株)製
光硬化性樹脂2 :トリメチロールプロパントリアクリレート
光硬化性樹脂3 :カヤマーPM2(りん酸水素=ビス[2-(メタクリロイルオキシ)エチル]) 日本化薬(株)製
光硬化性樹脂4 :ライトエステルHO 共栄社化学(株)製
光重合開始剤1 :2-エチルアントラキノン
着色剤1:フタロシアニンブルー
Photo curable resin 1: bisphenol A type epoxy acrylate Photo curable resin 2 manufactured by Mitsubishi Chemical Corporation: Trimethylolpropane triacrylate photo curable resin 3: Kayamar PM2 (hydrogen phosphate = bis [2- (methacryloyloxy) ethyl ] Nippon Kayaku Co., Ltd. photocurable resin 4: Light Ester HO Kyoeisha Chemical Co., Ltd. photopolymerization initiator 1: 2-ethylanthraquinone colorant 1: phthalocyanine blue
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
硬化触媒2:微粉砕メラミン 日産化学(株)製
硬化触媒3:ジシアンジアミド
光重合開始剤2:イルガキュア907 BASF(株)製
光硬化性樹脂5:ジペンタエリスリトルテトラアクリレート
熱硬化性樹脂6:TEPIC-H(トリグリシジルイソシアヌレート) 日産化学(株)製
Curing catalyst 2: Finely pulverized melamine Curing catalyst manufactured by Nissan Chemical Co., Ltd. 3: Dicyandiamide photopolymerization initiator 2: Irgacure 907 Photocurable resin manufactured by BASF Co., Ltd. 5: Dipentaerythritol tetraacrylate thermosetting resin 6: TEPIC -H (triglycidyl isocyanurate) manufactured by Nissan Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上詳述した通り、平均繊維径が0.1nm以上200nm以下であり、平均繊維長が600nm以下であって、平均繊維径と平均繊維長との比を表すアスペクト比が1以上200以下であるカルボキシル基含有微細セルロース繊維より得られる疎水化微細セルロース繊維と、硬化性樹脂とを含む硬化性樹脂組成物を用いることにより、低熱膨張性で、金属導体との密着性に優れた硬化物を得ることができることが確認された。 As detailed above, the average fiber diameter is 0.1 nm or more and 200 nm or less, the average fiber length is 600 nm or less, and the aspect ratio representing the ratio between the average fiber diameter and the average fiber length is 1 or more and 200 or less. By using a curable resin composition containing a hydrophobic fine cellulose fiber obtained from a carboxyl group-containing fine cellulose fiber and a curable resin, a cured product having low thermal expansion and excellent adhesion to a metal conductor is obtained. It was confirmed that it was possible.

Claims (6)

  1.  カルボキシル基を有する微細セルロース繊維の該カルボキシル基がアミン化合物および第4級アンモニウム化合物のうちの少なくともいずれか一種により修飾されて疎水化されてなる微細セルロース繊維と、硬化性樹脂とを含む樹脂組成物であって、
     前記カルボキシル基を有する微細セルロース繊維の、平均繊維径が0.1nm以上200nm以下であり、平均繊維長が600nm以下であり、かつ、平均アスペクト比が1以上200以下であることを特徴とするプリント配線板用硬化性樹脂組成物。
    A resin composition comprising fine cellulose fibers in which the carboxyl groups of the fine cellulose fibers having a carboxyl group are modified with at least one of an amine compound and a quaternary ammonium compound to be hydrophobized, and a curable resin. Because
    The fine cellulose fiber having a carboxyl group has an average fiber diameter of 0.1 nm or more and 200 nm or less, an average fiber length of 600 nm or less, and an average aspect ratio of 1 or more and 200 or less. A curable resin composition for wiring boards.
  2.  さらに、シリカを含む請求項1記載のプリント配線板用硬化性樹脂組成物。 The curable resin composition for a printed wiring board according to claim 1, further comprising silica.
  3.  前記硬化性樹脂として、熱硬化性樹脂および光硬化性樹脂のうちの少なくともいずれか一種を含む請求項1または2記載のプリント配線板用硬化性樹脂組成物。 The curable resin composition for printed wiring boards according to claim 1 or 2, comprising at least one of a thermosetting resin and a photocurable resin as the curable resin.
  4.  請求項1~3のうちいずれか一項記載のプリント配線板用硬化性樹脂組成物が、フィルム上に塗布、乾燥されてなる樹脂層を有することを特徴とするドライフィルム。 A dry film comprising a resin layer obtained by applying and drying a curable resin composition for a printed wiring board according to any one of claims 1 to 3 on a film.
  5.  請求項1~3のうちいずれか一項記載のプリント配線板用硬化性樹脂組成物、または、請求項4記載のドライフィルムの前記樹脂層が、硬化されてなることを特徴とする硬化物。 A cured product obtained by curing the curable resin composition for printed wiring boards according to any one of claims 1 to 3 or the resin layer of the dry film according to claim 4.
  6.  請求項5記載の硬化物を備えることを特徴とするプリント配線板。 A printed wiring board comprising the cured product according to claim 5.
PCT/JP2017/028927 2016-08-09 2017-08-09 Curable resin composition for printed wiring board, dry film, cured product, and printed wiring board WO2018030465A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780048663.2A CN109565932A (en) 2016-08-09 2017-08-09 Printed circuit board hardening resin composition, dry film, solidfied material and printed circuit board
KR1020197006887A KR20190050980A (en) 2016-08-09 2017-08-09 Curable resin composition for printed wiring board, dry film, cured product and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-156944 2016-08-09
JP2016156944 2016-08-09

Publications (1)

Publication Number Publication Date
WO2018030465A1 true WO2018030465A1 (en) 2018-02-15

Family

ID=61162357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028927 WO2018030465A1 (en) 2016-08-09 2017-08-09 Curable resin composition for printed wiring board, dry film, cured product, and printed wiring board

Country Status (5)

Country Link
JP (1) JP2018024878A (en)
KR (1) KR20190050980A (en)
CN (1) CN109565932A (en)
TW (1) TW201817783A (en)
WO (1) WO2018030465A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105434A (en) * 2018-12-28 2020-07-09 太陽ホールディングス株式会社 Curable resin composition, dry film, cured matter, wiring board and electric component
JPWO2019235557A1 (en) * 2018-06-08 2021-07-15 花王株式会社 Method for Producing Shortened Anion-Modified Cellulose Fiber
JP2021157860A (en) * 2020-03-25 2021-10-07 第一工業製薬株式会社 Insulation paste
WO2023161663A3 (en) * 2022-02-28 2024-01-11 Kiss House Ltd Material arid method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6910703B2 (en) * 2016-09-16 2021-07-28 第一工業製薬株式会社 Thermosetting resin composition
KR102511228B1 (en) * 2017-03-31 2023-03-17 다이요 홀딩스 가부시키가이샤 Curable resin composition, dry film, cured product, electronic component and printed wiring board
JP2019119868A (en) * 2017-12-27 2019-07-22 花王株式会社 Fine cellulose fiber composite dispersion
JP6993245B2 (en) * 2018-01-18 2022-01-13 関西ペイント株式会社 Nanocellulose dispersion composition and paint composition
US20200385538A1 (en) * 2018-02-23 2020-12-10 Oji Holdings Corporation Method for producing cellulose fiber-containing film, and resin composition, film and laminate
JP7176945B2 (en) * 2018-12-27 2022-11-22 太陽ホールディングス株式会社 Curable resin composition, dry film, cured product, wiring board and electronic component
JP6708274B1 (en) * 2019-02-12 2020-06-10 王子ホールディングス株式会社 Method for producing fibrous cellulose-containing coating, resin composition, coating and laminate
JP7359560B2 (en) * 2019-03-29 2023-10-11 太陽ホールディングス株式会社 Curable resin compositions, dry films, cured products, and electronic components
CN111880371B (en) * 2020-08-13 2022-05-03 常州华睿芯材科技有限公司 Photoresist and method for patterning imine material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001403A (en) * 2008-06-20 2010-01-07 Taiyo Ink Mfg Ltd Thermosetting resin composition
JP2014125607A (en) * 2012-12-27 2014-07-07 Kao Corp Rubber composition
JP2014220342A (en) * 2013-05-07 2014-11-20 太陽ホールディングス株式会社 Printed wiring board material and printed wiring board using the same
JP2015143337A (en) * 2013-12-26 2015-08-06 花王株式会社 fine cellulose fiber composite

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004027498D1 (en) 2003-07-31 2010-07-15 Hitachi Ltd FIBER-REINFORCED COMPOSITE MATERIAL, MANUFACTURING METHOD AND USE THEREOF
JP2008103622A (en) * 2006-10-20 2008-05-01 Fujifilm Corp Laminate for fabricating printed wiring board and method for fabricating printed wiring board using it
JP5355918B2 (en) * 2008-03-26 2013-11-27 太陽ホールディングス株式会社 Thermosetting resin composition, cured product thereof and printed wiring board using the same
JP2012119470A (en) 2010-11-30 2012-06-21 Mitsubishi Chemicals Corp Wiring board
TWI662867B (en) * 2013-04-23 2019-06-11 日商太陽控股股份有限公司 Printed wiring board material and printed wiring board using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001403A (en) * 2008-06-20 2010-01-07 Taiyo Ink Mfg Ltd Thermosetting resin composition
JP2014125607A (en) * 2012-12-27 2014-07-07 Kao Corp Rubber composition
JP2014220342A (en) * 2013-05-07 2014-11-20 太陽ホールディングス株式会社 Printed wiring board material and printed wiring board using the same
JP2015143337A (en) * 2013-12-26 2015-08-06 花王株式会社 fine cellulose fiber composite

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019235557A1 (en) * 2018-06-08 2021-07-15 花王株式会社 Method for Producing Shortened Anion-Modified Cellulose Fiber
JP7395472B2 (en) 2018-06-08 2023-12-11 花王株式会社 Method for producing short anion-modified cellulose fibers
US11959194B2 (en) 2018-06-08 2024-04-16 Kao Corporation Method for producing shortened anionically modified cellulose fibers
JP2020105434A (en) * 2018-12-28 2020-07-09 太陽ホールディングス株式会社 Curable resin composition, dry film, cured matter, wiring board and electric component
JP7168443B2 (en) 2018-12-28 2022-11-09 太陽ホールディングス株式会社 Curable resin composition, dry film, cured product, wiring board and electronic component
JP2021157860A (en) * 2020-03-25 2021-10-07 第一工業製薬株式会社 Insulation paste
JP7393268B2 (en) 2020-03-25 2023-12-06 第一工業製薬株式会社 insulating paste
WO2023161663A3 (en) * 2022-02-28 2024-01-11 Kiss House Ltd Material arid method

Also Published As

Publication number Publication date
JP2018024878A (en) 2018-02-15
CN109565932A (en) 2019-04-02
KR20190050980A (en) 2019-05-14
TW201817783A (en) 2018-05-16

Similar Documents

Publication Publication Date Title
WO2018030465A1 (en) Curable resin composition for printed wiring board, dry film, cured product, and printed wiring board
JP7134166B2 (en) Curable resin composition, dry film, cured product, electronic component and printed wiring board
KR102218425B1 (en) Solder-resist composition and printed circuit board using same
TWI745366B (en) Curable resin composition, dry film, cured product, and printed wiring board
KR101499926B1 (en) White curable resin composition
WO2019189186A1 (en) Curable composition for inkjet printing, cured product of same, and electronic component having said cured product
JP2014219522A (en) Solder resist composition and printed wiring boar using the same
WO2019189190A1 (en) Curable composition, cured product of same, and electronic component comprising said cured product
JP7053485B2 (en) A method for producing a curable insulating composition for a printed wiring board, a dry film, a cured product, a printed wiring board, and a curable insulating composition for a printed wiring board.
WO2017169166A1 (en) Curable composition for ink-jet printing, cured object, and printed wiring board
JP6317068B2 (en) Printed wiring board material and printed wiring board using the same
TWI775993B (en) Curable resin composition, dry film, cured product, and printed wiring board
JP2014191001A (en) Photosensitive resin composition
JP6531201B2 (en) Alkali-developing type solder resist composition
JP2020047654A (en) Curable resin composition, dry film, cured product, and printed wiring board
KR101701100B1 (en) Curable resin composition, dry film, cured article, and printed wiring board
JP7176945B2 (en) Curable resin composition, dry film, cured product, wiring board and electronic component
JP6644828B2 (en) Composition and cured product using the same
JP2014220342A (en) Printed wiring board material and printed wiring board using the same
JP7405803B2 (en) Photosensitive resin composition, photocured product of the photosensitive resin composition, and printed wiring board coated with the photosensitive resin composition
JP7273592B2 (en) Curable resin composition, dry film, cured product and electronic parts
KR102411951B1 (en) Photo-curable and Thermo-curable Resin Composition
TW202003650A (en) Dry film, cured product, and printed wiring board
JP2017125101A (en) Curable resin composition, dry film, cured product and printed wiring board
JP2017125102A (en) Curable resin composition, dry film, cured product and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197006887

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17839532

Country of ref document: EP

Kind code of ref document: A1