WO2018028489A1 - 一种数据传输的方法和装置 - Google Patents

一种数据传输的方法和装置 Download PDF

Info

Publication number
WO2018028489A1
WO2018028489A1 PCT/CN2017/095646 CN2017095646W WO2018028489A1 WO 2018028489 A1 WO2018028489 A1 WO 2018028489A1 CN 2017095646 W CN2017095646 W CN 2017095646W WO 2018028489 A1 WO2018028489 A1 WO 2018028489A1
Authority
WO
WIPO (PCT)
Prior art keywords
cca
time
length
data
channel
Prior art date
Application number
PCT/CN2017/095646
Other languages
English (en)
French (fr)
Inventor
李新彩
赵亚军
杨玲
徐汉青
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/322,822 priority Critical patent/US20190289614A1/en
Publication of WO2018028489A1 publication Critical patent/WO2018028489A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance

Definitions

  • the present application relates to, but is not limited to, the field of mobile communication technologies, and in particular, to a method and an apparatus for data transmission.
  • 5G (5th-Generation, fifth-generation mobile communication technology) needs to solve some of the challenges brought by diverse application scenarios. For example, for applications with low latency and high reliability, there are high metrics for delay and reliability, and users need to provide millisecond-level end-to-end delay and nearly 100% service reliability guarantee. At the same time, the limited licensed carrier resources are insufficient to meet the needs of large-capacity communication. The use of unlicensed carriers or shared carriers will greatly enhance the potential spectrum resources of the communication system, and enable operators to obtain lower spectrum costs, which is the future communication development. the trend of.
  • eCCA refers to the detection of the number of corresponding random backoffs.
  • the present application provides a method and apparatus for data transmission, which can satisfy fairness between different systems and improve resource utilization.
  • an embodiment of the present application provides a data transmission method, including:
  • CCA channel idle channel assessment
  • the data of the service type is transmitted on the contending channel.
  • the idle channel assessment CCA of the preset mechanism may include:
  • performing CCA with random backoff may include:
  • the foregoing method may further include:
  • the carrier is divided into multiple priorities, wherein carriers of different priorities are used to transmit data of different service types.
  • adjusting the LBT contention window or CCA fallback value may include one of the following:
  • the LBT contention window is adjusted or the CCA backoff value is lowered;
  • the LBT contention window is increased or the CCA backoff value is increased;
  • the LBT contention window is decreased or the CCA fallback value is lowered;
  • the LBT competition window or tone is adjusted. High CCA fallback value
  • the LBT competition window is adjusted or the CCA backoff value is lowered;
  • the LBT competition window is increased or the CCA backoff value is increased;
  • the LBT contention window is reduced when the number of channel busy times or the number of channel busy slots or the number of channel busy slots or the number of total CCA slots or the number of CCA failures exceeds a third threshold within a predetermined time. Or lower the CCA fallback value;
  • the LBT contention window is increased when the number of channel idle times or the number of channel idle time slots or the number of channels idle time slots or the number of total CCA time slots or the number of CCA successes exceeds a fourth threshold in a predetermined time period. Or increase the CCA fallback value;
  • reducing the LBT contention window or lowering the CCA fallback value may include:
  • Increasing the LBT competition window or increasing the CCA fallback value can include:
  • the LBT contention window is doubled or the CCA backoff value is doubled.
  • determining the size of the LBT contention window or the size of the CCA backoff value according to the indication information sent by the predetermined node may include:
  • the CCA performing one detection may include:
  • the CCA is performed once in each frame period, and the start position of the CCA is randomly selected within a preset time window; wherein the preset time window is one time slot or one subframe or one OFDM symbol.
  • transmitting the data of the service type on the contending channel may include:
  • Quiet according to the predefined time domain pattern, or send data of the service type in a dynamic on/off manner.
  • sending the data of the service type may include:
  • the data of the service type is transmitted on the unlicensed carrier that is competing by deleting the transmission time interval (TTI) or the frequency domain resource of other service types other than the service type.
  • TTI transmission time interval
  • the foregoing method may further include:
  • the TTI length at the time of data transmission is determined, or the TTI length at the time of data transmission is selected from the candidate TTI lengths.
  • determining the TTI length at the time of data transmission may include one of the following:
  • the TTI length within the channel occupancy time is determined according to a predefined or network configuration.
  • selecting a TTI length when data transmission is selected from candidate TTI lengths may include:
  • t1 is the time domain length of the CCA success time interval from the subframe boundary, and t2 is already occupied. The difference between the duration and the MCOT.
  • the initial TTI length and the last TTI length in the channel occupation time are less than or equal to the intermediate TTI length in the channel occupation time.
  • the embodiment of the present application provides a data transmission method, including:
  • the transmitted data is received on the corresponding carrier in accordance with the TTI length.
  • determining the TTI length at the time of data transmission may include:
  • the TTI length is obtained by performing blind detection according to a predefined candidate TTI set on the corresponding carrier, or obtaining the TTI length according to the indication information.
  • the embodiment of the present application provides an apparatus for data transmission, including:
  • a priority module configured to determine a priority of using a carrier according to a service type
  • An execution module configured to perform channel competition by performing a corresponding CCA process according to the CCA of the preset carrier mechanism according to the carrier priority
  • a transmission module configured to transmit data of the service type on the contending channel.
  • the CCA of the preset mechanism executed by the execution module may include: not performing CCA, performing CCA for one detection, and performing CCA with random backoff.
  • the execution module may be configured to perform a CCA with a random backoff in the following manner:
  • the foregoing apparatus may further include:
  • the dividing module is configured to divide the carrier into multiple priorities, where different priority carriers are used to send data of different service types.
  • the execution module may be configured to adjust an LBT contention window or a CCA fallback value in one of the following ways:
  • the LBT contention window is adjusted or the CCA backoff value is lowered;
  • the LBT contention window is increased or the CCA backoff value is increased;
  • the LBT contention window is decreased or the CCA fallback value is lowered;
  • the LBT contention window is increased or the CCA fallback value is increased;
  • the LBT competition window is adjusted or the CCA backoff value is lowered;
  • the LBT competition window is increased or the CCA backoff value is increased;
  • the LBT contention window is reduced when the number of channel busy times or the number of channel busy slots or the number of channel busy slots or the number of total CCA slots or the number of CCA failures exceeds a third threshold within a predetermined time. Or lower the CCA fallback value;
  • the LBT contention window is increased when the number of channel idle times or the number of channel idle time slots or the number of channels idle time slots or the number of total CCA time slots or the number of CCA successes exceeds a fourth threshold in a predetermined time period. Or increase the CCA fallback value;
  • the execution module may be configured to determine a size of the LBT contention window or a size of a CCA backoff value according to the indication information sent by the predetermined node in the following manner:
  • the execution module may be configured to perform a detected CCA by:
  • the CCA is performed once in each frame period, and the start position of the CCA is randomly selected within a preset time window; wherein the preset time window is one time slot or one subframe or one OFDM symbol.
  • the transmission module may be configured to transmit data of the traffic type on a contending channel by:
  • Quiet according to the predefined time domain pattern, or send data of the service type in a dynamic on/off manner.
  • the transmission module may be configured to transmit data of the service type by:
  • the data of the service type is transmitted on the unlicensed carrier that is competitive by canceling the TTI or the frequency domain resource of the other service type except the service type.
  • the transmission module may also be configured to:
  • the TTI length at the time of data transmission is determined, or the TTI length at the time of data transmission is selected from the candidate TTI lengths.
  • the transmission module may be configured to determine a TTI length at the time of data transmission by:
  • the TTI length within the channel occupancy time is determined according to a predefined or network configuration.
  • the transmission module may be configured to select a TTI length at the time of data transmission from among candidate TTI lengths by:
  • t1 is the time domain length of the CCA success time interval from the subframe boundary
  • t2 is the difference between the occupied duration and the MCOT.
  • the embodiment of the present application further provides an apparatus for data transmission, including:
  • Determining a module configured to determine a TTI length at the time of data transmission
  • the receiving module is configured to receive the transmitted data on the corresponding carrier according to the TTI length.
  • the determining module may be configured to determine the TTI length at the time of data transmission by:
  • the TTI length is obtained by performing blind detection according to a predefined candidate TTI set on the corresponding carrier, or obtaining the TTI length according to the indication information.
  • the embodiment of the present application further provides a computer readable medium storing a program for data transmission, the step of the method for implementing data transmission of the first aspect when the program is executed by the processor.
  • the embodiment of the present application further provides a computer readable medium storing a program for data transmission, the step of the method for implementing data transmission of the second aspect when the program is executed by the processor.
  • the data transmission method of the CCA provided by the embodiment of the present application provides feasibility for unlicensed carrier transmission for services with high latency requirements. Moreover, the method provided by the embodiment of the present invention can ensure the fairness between the operator and the different system, and can ensure that the service to be sent is preferentially transmitted on the unlicensed carrier, and the data transmission delay is reduced.
  • the station selects the corresponding initial subframe length through the CCA success time and the subframe alignment relationship, and selects the corresponding end subframe length according to the difference between the occupied duration and the MCOT, thereby improving the utilization of resources during the channel occupation period. The rate reduces the transmission of the original occupied signal.
  • FIG. 1 is a flowchart of a method for data transmission according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an apparatus for data transmission according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of another apparatus for data transmission according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a site performing CCA and data transmission of an exemplary embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a data transmission corresponding frame in an exemplary embodiment of the present application.
  • FIG. 7 is a schematic diagram of different TTI lengths for data transmission in an exemplary embodiment of the present application.
  • FIG. 1 is a flowchart of a method for data transmission according to an embodiment of the present application. As shown in FIG. 1, the data transmission method provided in this embodiment includes the following steps:
  • S101 Determine a priority of using a carrier according to a service type.
  • S102 Perform a channel competition by performing a corresponding CCA process by using a preset channel idle channel assessment (CCA) according to the carrier priority.
  • CCA channel idle channel assessment
  • step S102 the CCA of the preset mechanism may include:
  • the CCA with random backoff may include:
  • the method in this embodiment may further include:
  • the carrier is divided into multiple priorities, wherein carriers of different priorities are used to transmit data of different service types.
  • the carrier priority is determined by the negotiation between the carriers. After the priority is determined, different service types are sent on the corresponding carrier. Carrier sites with high priority can use the competition window when performing CCA Or the adjustment mechanism of the rollback value, which is used to send a service type with a higher latency.
  • the indication information of the predetermined node determines a contention window of the LBT.
  • adjusting the LBT contention window or the CCA fallback value may include one of the following:
  • the LBT contention window is adjusted or the CCA backoff value is lowered;
  • the LBT contention window is increased or the CCA backoff value is increased;
  • the LBT contention window is decreased or the CCA fallback value is lowered;
  • the LBT contention window is increased or the CCA fallback value is increased;
  • the LBT competition window is adjusted or the CCA backoff value is lowered;
  • the LBT competition window is increased or the CCA backoff value is increased;
  • the LBT contention window is reduced when the number of channel busy times or the number of channel busy slots or the number of channel busy slots or the number of total CCA slots or the number of CCA failures exceeds a third threshold within a predetermined time. Or lower the CCA fallback value;
  • the LBT contention window is increased when the number of channel idle times or the number of channel idle time slots or the number of channels idle time slots or the number of total CCA time slots or the number of CCA successes exceeds a fourth threshold in a predetermined time period. Or increase the CCA fallback value;
  • adjusting the LBT competition window or lowering the CCA fallback value may include:
  • Increasing the LBT competition window or increasing the CCA fallback value can include:
  • the LBT contention window is doubled or the CCA backoff value is doubled.
  • the adjusted contention window and the backoff value do not exceed the maximum contention window corresponding to the LBT priority type of the service.
  • Determining the size of the LBT contention window or the size of the CCA backoff value according to the indication information sent by the predetermined node may include:
  • the CCA performing the detection may include:
  • Performing CCA once in each frame period, and starting position of the CCA is randomly selected within a preset time window; wherein the preset time window is one time slot or one subframe or one OFDM (Orthogonal Frequency Division Multiplexing) , Orthogonal Frequency Division Multiplexing) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • sending data of the service type after the CCA succeeds may include:
  • Quiet according to the predefined time domain pattern, or send data of the service type in a dynamic on/off manner.
  • sending the data of the service type may include:
  • the data of the service type is transmitted on the unlicensed carrier that is contending by deleting the transmission time interval (TTI) or the frequency domain resource of other service types other than the service type.
  • TTI transmission time interval
  • the method in this embodiment may further include:
  • the TTI length at the time of data transmission is determined, or the TTI length at the time of data transmission is selected from the candidate TTI lengths.
  • Determining the TTI length at the time of data transmission may include one of the following:
  • the TTI length within the channel occupancy time is determined according to a predefined or network configuration.
  • the station may also arbitrarily combine the TTI lengths of the most suitable data transmission according to the predefined or configured TTI length.
  • the flexible TTI length selection improves resource utilization and reduces or avoids the transmission of occupied signals.
  • Selecting the TTI length at the time of data transmission from the candidate TTI lengths may include:
  • t1 is the time domain length of the CCA success time interval from the subframe boundary
  • t2 is the difference between the occupied duration and the MCOT.
  • the initial TTI length and the last TTI length in the channel occupation time are less than or equal to the intermediate TTI length in the channel occupation time.
  • FIG. 2 is a flowchart of another method for data transmission according to an embodiment of the present application. As shown in FIG. 2, the data transmission method provided in this embodiment includes the following steps:
  • S202 Receive transmitted data on a corresponding carrier according to the length of the TTI.
  • determining the length of the TTI when the data is transmitted may include:
  • the TTI length is obtained by performing blind detection according to a predefined candidate TTI set on the corresponding carrier, or obtaining the TTI length according to the indication information.
  • FIG. 3 is a structural diagram of an apparatus for data transmission according to an embodiment of the present application. As shown in FIG. 3, the apparatus for data transmission provided by this embodiment includes:
  • the priority module 301 is configured to determine a priority of using the carrier according to the service type
  • the execution module 302 is configured to perform channel competition by performing a corresponding CCA process according to the CCA of the preset mechanism according to the carrier priority.
  • the transmission module 303 is configured to transmit data of the service type on the contending channel.
  • the CCA of the preset mechanism executed by the execution module 302 may include: not performing CCA, performing CCA for one detection, and performing CCA with random backoff.
  • the execution module 302 is configured to perform a CCA with a random backoff in the following manner:
  • the apparatus of this embodiment may further include: a dividing module, configured to divide the carrier into multiple priorities, where carriers of different priorities are used to send data of different service types.
  • the execution module 302 can be configured to adjust the LBT contention window or the CCA fallback value by one of the following methods:
  • the LBT contention window is adjusted or the CCA backoff value is lowered;
  • the LBT contention window is increased or the CCA backoff value is increased;
  • the LBT contention window is decreased or the CCA fallback value is lowered;
  • the LBT competition window or tone is adjusted. High CCA fallback value
  • the LBT competition window is adjusted or the CCA backoff value is lowered;
  • the LBT competition window is increased or the CCA backoff value is increased;
  • the LBT contention window is reduced when the number of channel busy times or the number of channel busy slots or the number of channel busy slots or the number of total CCA slots or the number of CCA failures exceeds a third threshold within a predetermined time. Or lower the CCA fallback value;
  • the LBT contention window is increased when the number of channel idle times or the number of channel idle time slots or the number of channels idle time slots or the number of total CCA time slots or the number of CCA successes exceeds a fourth threshold in a predetermined time period. Or increase the CCA fallback value;
  • the execution module 302 may be configured to determine the size of the LBT contention window or the size of the CCA backoff value according to the indication information of the predetermined node by:
  • the execution module 302 can be configured to perform a CCA for one detection in the following manner:
  • the CCA is performed once in each frame period, and the start position of the CCA is randomly selected within a preset time window; wherein the preset time window is one time slot or one subframe or one OFDM symbol.
  • the transmission module 303 can be configured to transmit data of the service type on a contending channel by:
  • Quiet according to the predefined time domain pattern, or send data of the service type in a dynamic on/off manner.
  • the transmission module 303 may be configured to transmit the location by Data for the type of business:
  • the data of the service type is transmitted on the unlicensed carrier that is competitive by canceling the TTI or the frequency domain resource of the other service type except the service type.
  • the transmission module 303 may be further configured to: determine a TTI length at the time of data transmission, or select a TTI length at the time of data transmission from the candidate TTI lengths.
  • the transmission module 303 can be configured to determine the TTI length when data is transmitted by:
  • the TTI length within the channel occupancy time is determined according to a predefined or network configuration.
  • the transmission module 303 may be configured to select a TTI length at the time of data transmission from the candidate TTI lengths by:
  • t1 is the time domain length of the CCA success time interval from the subframe boundary
  • t2 is the difference between the occupied duration and the MCOT.
  • FIG. 4 is a structural diagram of another apparatus for data transmission according to an embodiment of the present application. As shown in FIG. 4, the apparatus for data transmission provided by this embodiment includes:
  • the determining module 401 is configured to determine a TTI length when the data is transmitted;
  • the receiving module 402 is configured to receive the transmitted data on the corresponding carrier according to the TTI length.
  • the determining module 401 can be configured to determine the TTI length of the data transmission by the following manner degree:
  • the TTI length is obtained by performing blind detection according to a predefined candidate TTI set on the corresponding carrier, or obtaining the TTI length according to the indication information.
  • FIG. 5 is a flow chart of a site performing CCA and data transmission in an exemplary embodiment of the present application. As shown in FIG. 5, this embodiment provides a method for performing CCA and data transmission, including:
  • the site determines the mechanism of the CCA according to the type of service, and then executes the corresponding CCA process, and sends the data after successful.
  • the CCA mechanism includes: performing CCA without performing CCA, performing CCA for one detection, and performing CCA with random backoff.
  • the process of CCA with random backoff is: when the first CCA is used, the minimum CW (Contention Window), for example, 3 or 7; the competition window is adjusted according to one of the following four methods.
  • the site itself determines or adjusts according to one of the following parameters:
  • the number of times the channel is busy the number of busy and idle slots, the ratio of the number of busy slots in the channel to the total number of CCA slots, the number of CCA failures, and the number of CCA successes.
  • the principle of adjustment can include:
  • the CW or the backoff value becomes minimum or becomes half of the original and rounded up or up;
  • the CW or backoff value becomes minimum.
  • the transmitting end adjusts itself according to the reference subframe that is fed back by the receiving end or the value or proportion of the ACK/NACK corresponding to the reference uplink burst (UL burst) subframe.
  • the receiving end feeds back the ACK corresponding to the data packet transmitted by the reference subframe
  • the value of the contention window becomes the minimum.
  • the transmitting end minimizes the value of the contention window or the backoff value.
  • the transmitting end minimizes the value of the contention window or the backoff value.
  • the receiving end adjusts according to the demodulation result of the reference subframe, and sends the adjusted CW value to the transmitting end by signaling.
  • the CCA parameters used by the transmitting end are all controlled by the base station.
  • the reference subframe is the last subframe that is transmitted by using the CCA mode with random backoff.
  • the principle of CW adjustment can include:
  • the value of the contention window becomes minimum.
  • the receiver transmits a packet demodulation error corresponding to the reference subframe the value of the contention window or the backoff value is minimized.
  • the base station changes the value of the contention window or the backoff value to a minimum value.
  • the size of the competition window is adjusted according to the order of the competition success time and the predetermined position.
  • the contention window or the value of N is minimized, and if the time at which the site CCA succeeds is later than the reference time, the CW or the backoff value is minimized or becomes half of the original and Round down or up.
  • the probability of the site accessing the unlicensed carrier can be improved, and the transmission delay of the URL data (Ultra-Reliable and Low Latency Communication) can be satisfied.
  • the carrier to which the CCA mode is applied may be a shared carrier.
  • each operator divides the unlicensed carriers into different priorities, and different carriers define the same carrier as different priorities.
  • the priority of three carriers corresponding to three carriers is as shown in Table 1 below.
  • a carrier with a higher priority is used for a service type with a higher transmission delay requirement, such as a URLLC service type.
  • the carrier in the priority class may adopt a CCA type with a fixed contention window.
  • the existing cat4 (Category 4) LBT process is adopted, that is, the rule of window adjustment is used to transmit the service type that is insensitive to the delay requirement, such as mMTC (massive) Machine Type of Communication, service type or partial eMBB (enhanced mobile broadband) service type.
  • the carrier with high priority performs CCA with random backoff.
  • the channel priority type is 1, the corresponding maximum contention window is 7 or 3, and the minimum contention window is 3 or 1.
  • the following CCA process can be used:
  • the CW used each time is dynamically adjusted.
  • the CW becomes minimum.
  • the CW becomes half of the original and rounds up or up or becomes minimum.
  • the CW when the terminal performs CCA may be configured by the base station according to the demodulation result of the data packet.
  • the adjustment process may include:
  • the adjustment process of the demodulation result of the PUSCH (Physical Uplink Shared Channel) of the base station according to k4 (k4 is greater than or equal to 1) is as follows:
  • the CW is adjusted to the minimum or minus m, and the number less than the predefined threshold is equal to the threshold. Adjust the CW value to the minimum or reduce it to half.
  • the CW value becomes minimum, or the CW value is reduced by one step n1. If there is a solution, the CW value is increased by one step n2, and the step size n2 can be 1 or 2.
  • the observation window may be between two adjacent uplink subframes, and the reference value is the last uplink subframe scheduling UE from the current scheduling UE.
  • the N value of the nearest UE or the demodulation of the PUSCH is used as the basis for the scheduling UE adjustment.
  • the method can ensure the fairness between the operators, and can ensure that the services to be sent, for example, a certain service in the low delay can be preferentially transmitted on the unlicensed carrier, which reduces the data transmission delay.
  • the site adopting the contention window adjustment method may be executed according to the following method in the data transmission process after the CCA succeeds.
  • the base station or UE cannot transmit data on whether or not the unlicensed carrier is occupied.
  • each subframe 6 cannot be transmitted, or a certain period of the sixth subframe of an integer multiple of the system frame number 2 cannot be transmitted.
  • the time that cannot be transmitted is at least 34 ⁇ s, such as 40 ⁇ s, or one symbol, or one time slot.
  • At least the Distributed Inter-frame Spacing (DIFS) length is for access by devices or other sites in a Wireless Fidelity Network (WIFI) system.
  • DIFS Distributed Inter-frame Spacing
  • a station forcibly fails to perform CCA and data transmission after continuously transmitting n subframes.
  • the following describes the CCA mode in which the service to be transmitted is transmitted on an unlicensed carrier.
  • the CCA mode of the service to be sent on the unlicensed carrier may also include the following methods:
  • the enhanced cat2LBT includes: performing channel idle detection for one predefined duration only once, detecting the location is fixed periodically, or randomly selecting the detection location within a certain time window. When the energy of the detected signal is less than a predefined threshold within the detection duration, the channel is considered to be idle for data transmission.
  • the process of CCA and data transmission can be:
  • the UE receives the DCI (Downlink Control Information) sent by the base station, and the information is sent by an unlicensed carrier, and the information indicates that the UE sends the uplink data packet.
  • DCI Downlink Control Information
  • the timing relationship between the DCI and the UE sending uplink data includes:
  • the DCI and the uplink data are in the same subframe, and the frame structure is as shown in FIG. 6. There is a gap in the middle for the downlink to uplink conversion and the UE performs the cat2 type CCA.
  • the CCA and data transfer process can be:
  • the base station first executes the cat4LBT, and after successfully transmitting the DCI, the DCI includes at least one of the following:
  • Scheduling indication information including resource allocation information, MCS (Modulation and Coding Scheme) information, HARQ (Hybrid Automatic Repeat reQuest) process number information, transmission subframe position or scheduling subframe position At least one of the indication information.
  • MCS Modulation and Coding Scheme
  • HARQ Hybrid Automatic Repeat reQuest
  • the UE After receiving the information, the UE transmits the uplink data from the subframe, transmits one subframe, or continuously transmits m uplink subframes, where the m subframes cannot exceed the MCOT.
  • the subframe where the DCI is located and the uplink data subframe are different by k subframes or k TTIs.
  • K is 1 or 2.
  • the data is transmitted when the UE performs CCA success before data transmission.
  • the UE adopts a non-scheduled access mode.
  • the UE When the UE has a data packet to be sent, the UE simultaneously listens on multiple carriers whether there are carriers that have other UEs of the current cell or the associated base station has occupied the channel.
  • the terminal or the station may adopt an enhanced cat2 LBT mode.
  • the following describes the URLLC service type CCA and data transmission mode of the same device on the unlicensed carrier.
  • the method of the URLLC service type CCA and the data transmission of the same device on the unlicensed carrier may further include:
  • a device performs contention on one or more carriers and then transmits an eMBB service or mMTC service type to continuously transmit one or more data packets in multiple subframes.
  • an eMBB service or mMTC service type to continuously transmit one or more data packets in multiple subframes.
  • the station may send the low-latency data on some frequency domain resources at a certain moment by means of destroying the data packet being transmitted. package.
  • a site performs the LBT process of cat4 to send the mMTC or eMBB service type.
  • the site can occupy 10ms continuously. It is assumed that a certain subframe of the mMTC service repeatedly transmits the fifth subframe continuously, and the station suddenly has the new one. The data packet needs to be sent as soon as possible, and the station can choose to delete the duplicate packet sent in the fifth subframe and select to send a new packet with high delay requirement. Alternatively, some frequency domain resources of the eMBB service are destroyed for transmission of the URLLC service.
  • the device flexibly selects the corresponding TTI size according to the time domain length of the subframe boundary from the success time of the CCA.
  • the system pre-defined or high-level semi-static configuration device can support TTI lengths including 1ms, 0.5ms, 0.25ms, 0.2ms, and 0.125ms, or support TTI lengths or subframes of 1, 2, 4, 7, 14 symbols. Length, the length of each symbol is a predefined size.
  • the device can transmit a subframe with a length of 0.2 ms or TTI for data transmission.
  • the device may first transmit an initial signal of 0.05 ms, and then send a subframe of 0.25 ms or TTI.
  • the device may first send a subframe of length 0.2 ms, and then send a subframe of 0.125 ms or TTI; or send a length of 0.125 ms first.
  • the sub-frame is then sent a 0.2ms sub-frame or TTI.
  • transmission TB Transmission Block
  • small packets are transmitted with a short TTI or subframe length
  • large packets are transmitted with a large subframe length.
  • the signal can be minimized or not occupied, and the utilization of resources is improved.
  • the end subframe length is also selected according to the subframe boundary and the length of the MCOT, or the corresponding symbol according to the subframe boundary and the length of the MCOT. Number selection.
  • the device can send a 0.5ms first. Subframes are then sent a 0.25ms sub-frame to avoid wasting resources.
  • the frame structure of the data transmission can also be adjusted according to the length of the TTI.
  • the site 1 first adopts a data length L1, for example, 0.5 ms TTI, and then after receiving the data, the site 2 does not need to perform LBT direct feedback ACK/NACK after a Gap time, and the time of the three is combined. 0.75ms.
  • station 1 adopts a TTI of length L2, for example, 2 subframes are continuously transmitted in 1 ms, and only L1 length data or only control information is transmitted, and then TTI is transmitted by using T1 of length T1.
  • the length of the occupied signal can be minimized and the utilization of resources can be improved.
  • the TTI length determination at this time includes the following two methods:
  • Manner 1 The UE determines the TTI length of the transmitting end according to the signaling indication.
  • Manner 2 The UE performs blind detection according to the length of the candidate TTI.
  • the determination of the length of the TTI at the receiving end includes:
  • the TTI length is determined by the UE itself according to the time when the CCA is successful. At this time, the base station does not know the TTI length adopted by the UE, and the base station performs blindness according to multiple predefined systems. Check. Alternatively, the UE carries the TTI length indication information used for data transmission when the data is sent.
  • the TTI length used for data transmission is indicated by the base station, and then the base station receives the data according to the configured TTI length.
  • the base station When the TTI length is not indicated by the base station, the base station performs blind detection according to several predefined types of the system.
  • the sender indicates that the TTI length can include:
  • the downlink control information or the uplink control information includes the TTI length of each subframe in the MCOT, for example, the occupied subframe and the corresponding TTI length bitmap mode indication.
  • the system defines four TTI lengths, which are represented by 2 bits. Assuming that the station has transmitted four sub-frames after preempting the channel, it can use 8 bits to correspond to the TTI length of each sub-frame one by one. Or just give the TTI length of the first subframe and the last subframe with a predefined maximum TTI length.
  • the following describes the case where the station performing the CCA determines the contention window based on the indication information of the other predetermined nodes.
  • the other predetermined nodes may be the base station, and the base station may notify the UE of the adjusted contention window by using indication signaling.
  • the base station may notify the UE by means of joint coding with other indication signaling.
  • the signaling indications of the LBT type, the start symbol position, and the CW joint coding are as shown in Table 2 below.
  • the enhanced cat2 and the enhanced cat4 in Table 2 are the above-mentioned LBT methods provided by the embodiments of the present application.
  • the UE performs CCA and data transmission according to the indication information.
  • the station in this embodiment may be a base station (Node B), an evolved base station (eNode B), a home base station (Home Node B), a relay station (RN), a user equipment (User Equipment, UE), or the like.
  • Node B a base station
  • eNode B evolved base station
  • Home Node B home base station
  • RN relay station
  • UE user equipment
  • competition window adjustment principle or method in the CCA process included in the present application can also be used for the adjustment of the random backoff value.
  • the site directly adjusts the random backoff value according to the principle.
  • the embodiment of the present application further provides a computer readable medium storing a program for data transmission, where the program is executed by the processor to implement the steps of the data transmission method provided by the embodiment shown in FIG.
  • the embodiment of the present application further provides a computer readable medium storing a program for data transmission, where the program is executed by a processor to implement the steps of the data transmission method provided by the embodiment shown in FIG. 2.
  • the functional modules/units in the system, device can be implemented as software, firmware, hardware, and suitable combinations thereof.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical The components work together.
  • Some or all of the components may be implemented as software executed by a processor, such as a digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • Such software may be distributed on a computer readable medium, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the embodiment of the present invention provides a data transmission method and device, which provides feasibility for an unlicensed carrier to transmit a service with high delay requirement, and can ensure fairness between the operator and the different system, and can also ensure low
  • the service to be sent can be preferentially transmitted on the unlicensed carrier, which reduces the data transmission delay.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输的方法,包括:根据业务类型确定使用载波的优先级;根据所述载波优先级采用预设机制的空闲信道评估CCA执行对应的CCA过程进行信道竞争;在竞争到的信道上发送所述业务类型的数据。

Description

一种数据传输的方法和装置 技术领域
本申请涉及但不限于移动通信技术领域,尤其涉及一种数据传输的方法和装置。
背景技术
5G(5th-Generation,第五代移动通信技术)需要解决多样化应用场景带来的一些挑战。例如,对于低时延高可靠的这类应用对时延和可靠性具有较高的指标要求,需要为用户提供毫秒级的端到端时延和接近100%的业务可靠性保证。同时,目前有限的授权载波资源不足以满足大容量通信的需求,使用非授权载波或者共享载波将大大提升通信***的潜在频谱资源,并且能够使得运营商获得更低的频谱成本,是未来通信发展的趋势。
但利用非授权载波时会面临诸多问题,首先,在有些国家和地区,对于非授权频谱的使用,有相应的管制政策。例如在欧洲,需要站点发送数据之前执行监听(Listen Before Talk,LBT)机制,也即在传输数据前需要进行空闲信道评估(Clear Channel Assessment,CCA)或扩展空闲信道评估(enhanced Clear Channel Assessment,eCCA),eCCA是指执行相应随机回退次数的检测。
目前,在某些非授权或共享载波频段已经有车联网相关的技术在使用。如果也将5G的某些应用的业务类型搬到非授权载波发送,并且仍然采用原来的CCA过程或机制,则接入时延将会非常大。并且,如果CCA成功的时刻离数据允许传输的预定义时刻比较远,则需要站点一直发送占用信号,因此频谱效率就会比较低。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种数据传输的方法和装置,能够满足异***之间的公平性,并提高资源的利用率。
第一方面,本申请实施例提供一种数据传输的方法,包括:
根据业务类型确定使用载波的优先级;
根据所述载波优先级采用预设机制的空闲信道评估(CCA)执行对应的CCA过程进行信道竞争;
在竞争到的信道上发送所述业务类型的数据。
在示例性实施方式中,预设机制的空闲信道评估CCA可以包括:
不执行CCA、执行一次检测的CCA、执行带随机回退的CCA。
在示例性实施方式中,执行带随机回退的CCA可以包括:
当回退值递减到预定值时,则所述CCA成功;或者,
当回退值递减到预定值后,等待至预定义时刻再执行一次预定义长度的CCA;或者,
调整LBT竞争窗或CCA回退值,执行CCA。
在示例性实施方式中,所述根据业务类型确定使用载波的优先级之前,上述方法还可以包括:
将载波划分为多个优先级,其中,不同优先级的载波用于发送不同业务类型的数据。
在示例性实施方式中,调整LBT竞争窗或CCA回退值可以包括以下之一:
当预定参考子帧传输的数据包发送错误,则调小LBT竞争窗或调低CCA回退值;
当预定参考子帧传输的数据包发送正确,则调大LBT竞争窗或调高CCA回退值;
当传输的数据包在预定参考时刻没有发送成功或者在所述预定参考时刻之后发送成功,则调小LBT竞争窗或调低CCA回退值;
当传输的数据包在预定参考时刻之前发送成功,则调大LBT竞争窗或调 高CCA回退值;
当预定时间内信道忙的次数超过第一阈值时,则调小LBT竞争窗或调低CCA回退值;
当预定时间内信道空闲的次数超过第二阈值时,则调大LBT竞争窗或调高CCA回退值;
当预定时间内信道忙的次数或信道忙时隙的数目或信道忙的时隙的数目与总的CCA时隙的数目的比值或CCA失败的次数超过第三阈值时,则调小LBT竞争窗或调低CCA回退值;
当预定时间内信道空闲的次数或信道空闲时隙的数目或者信道空闲的时隙的数目与总的CCA时隙的数目的比值或CCA成功的次数超过第四阈值时,则调大LBT竞争窗或调高CCA回退值;
根据预定节点发送的指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小。
在示例性实施方式中,调小LBT竞争窗或调低CCA回退值可以包括:
将所述LBT竞争窗或者CCA回退值调整为预设最小值、或者当前值的一半、或者当前值的一半向上或者向下取整;
调大LBT竞争窗或调高CCA回退值可以包括:
将所述LBT竞争窗加倍,或者将所述CCA回退值加倍。
在示例性实施方式中,根据预定节点发送的指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小可以包括:
接收所述预定节点根据数据接收情况发送的反馈信息,调整所述LBT竞争窗的大小或者CCA回退值的大小;或者,
根据所述指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小。
在示例性实施方式中,执行一次检测的CCA可以包括:
在每个帧周期内执行一次CCA,且所述CCA的开始位置在预设时间窗内随机选取;其中,所述预设时间窗为一个时隙或者一个子帧或一个OFDM符号。
在示例性实施方式中,在竞争到的信道上发送所述业务类型的数据可以包括:
按照预定义时域图样静默,或者采用动态开/关(on/off)方式发送所述业务类型的数据。
在示例性实施方式中,当不执行CCA时,发送所述业务类型的数据可以包括:
通过打掉所述业务类型之外的其他业务类型的传输时间间隔(TTI)或者频域资源的方式,在竞争到的非授权载波上传输所述业务类型的数据。
在示例性实施方式中,发送所述业务类型的数据之前,上述方法还可以包括:
确定数据传输时的TTI长度,或者从候选TTI长度中选择数据传输时的TTI长度。
在示例性实施方式中,确定数据传输时的TTI长度可以包括以下之一:
根据CCA成功时刻距离子帧边界的时域长度,确定信道占用时间内的初始TTI长度或初始子帧长度;
根据已经占用的时长与最大信道占用时长(MCOT)的差值,确定信道占用时间内的最后一个TTI长度或最后一个子帧长度;
根据预定义或者网络配置确定信道占用时间内的TTI长度。
在示例性实施方式中,从候选TTI长度中选择数据传输时的TTI长度可以包括:
从候选TTI长度中选择TTI长度最接近t1的TTI长度作为数据传输的初始子帧长度;
从候选TTI长度中选择TTI长度最接近t2的TTI长度作为数据传输的末尾最后一个子帧长度;
从候选TTI长度中选择两种以上TTI长度组合成最接近t1或t2的子帧长度作为数据传输的子帧长度;
其中,t1为CCA成功时刻距离子帧边界的时域长度,t2为已经占用的 时长与MCOT的差值。
在示例性实施方式中,所述信道占用时间内的初始TTI长度及最后一个TTI长度小于或等于信道占用时间内中间TTI长度。
第二方面,本申请实施例提供一种数据传输的方法,包括:
确定数据传输时的TTI长度;
按照所述TTI长度在相应的载波上接收传输的数据。
在示例性实施方式中,确定数据传输时的TTI长度可以包括:
在相应的载波上根据预定义的候选TTI集合进行盲检获得所述TTI长度,或者根据指示信息获得所述TTI长度。
第三方面,本申请实施例提供一种数据传输的装置,包括:
优先级模块,设置为根据业务类型确定使用载波的优先级;
执行模块,设置为根据所述载波优先级采用预设机制的CCA执行对应的CCA过程进行信道竞争;
传输模块,设置为在竞争到的信道上发送所述业务类型的数据。
在示例性实施方式中,所述执行模块执行的预设机制的CCA可以包括:不执行CCA、执行一次检测的CCA、执行带随机回退的CCA。
在示例性实施方式中,所述执行模块可以设置为通过以下方式执行带随机回退的CCA:
当回退值递减到预定值时,则所述CCA成功;或者,
当回退值递减到预定值后,等待至预定义时刻再执行一次预定义长度的CCA;或者,
调整LBT竞争窗或CCA回退值,执行CCA。
在示例性实施方式中,上述装置还可以包括:
划分模块,设置为将载波划分为多个优先级,其中,不同优先级的载波用于发送不同业务类型的数据。
在示例性实施方式中,所述执行模块可以设置为通过以下方式之一调整LBT竞争窗或CCA回退值:
当预定参考子帧传输的数据包发送错误,则调小LBT竞争窗或调低CCA回退值;
当预定参考子帧传输的数据包发送正确,则调大LBT竞争窗或调高CCA回退值;
当传输的数据包在预定参考时刻没有发送成功或者在所述预定参考时刻之后发送成功,则调小LBT竞争窗或调低CCA回退值;
当传输的数据包在预定参考时刻之前发送成功,则调大LBT竞争窗或调高CCA回退值;
当预定时间内信道忙的次数超过第一阈值时,则调小LBT竞争窗或调低CCA回退值;
当预定时间内信道空闲的次数超过第二阈值时,则调大LBT竞争窗或调高CCA回退值;
当预定时间内信道忙的次数或信道忙时隙的数目或信道忙的时隙的数目与总的CCA时隙的数目的比值或CCA失败的次数超过第三阈值时,则调小LBT竞争窗或调低CCA回退值;
当预定时间内信道空闲的次数或信道空闲时隙的数目或者信道空闲的时隙的数目与总的CCA时隙的数目的比值或CCA成功的次数超过第四阈值时,则调大LBT竞争窗或调高CCA回退值;
根据预定节点发送的指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小。
在示例性实施方式中,所述执行模块可以设置为通过以下方式根据预定节点发送的指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小:
接收所述预定节点根据数据接收情况发送的反馈信息,调整所述LBT竞争窗的大小或者CCA回退值的大小;或者,
根据所述指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小。
在示例性实施方式中,所述执行模块可以设置为通过以下方式执行一次检测的CCA:
在每个帧周期内执行一次CCA,且所述CCA的开始位置在预设时间窗内随机选取;其中,所述预设时间窗为一个时隙或者一个子帧或一个OFDM符号。
在示例性实施方式中,所述传输模块可以设置为通过以下方式在竞争到的信道上发送所述业务类型的数据:
按照预定义时域图样静默,或者采用动态开/关(on/off)方式发送所述业务类型的数据。
在示例性实施方式中,当不执行CCA时,所述传输模块可以设置为通过以下方式发送所述业务类型的数据:
通过打掉所述业务类型之外的其他业务类型的TTI或者频域资源的方式,在竞争到的非授权载波上传输所述业务类型的数据。
在示例性实施方式中,所述传输模块还可以设置为:
确定数据传输时的TTI长度,或者从候选TTI长度中选择数据传输时的TTI长度。
在示例性实施方式中,所述传输模块可以设置为通过以下方式确定数据传输时的TTI长度:
根据CCA成功时刻距离子帧边界的时域长度,确定信道占用时间内的初始TTI长度或初始子帧长度;或者,
根据已经占用的时长与MCOT的差值确定信道占用时间内的最后一个TTI长度或最后一个子帧长度;或者,
根据预定义或者网络配置确定信道占用时间内的TTI长度。
在示例性实施方式中,所述传输模块可以设置为通过以下方式从候选TTI长度中选择数据传输时的TTI长度:
从候选TTI长度中选择TTI长度最接近t1的TTI长度作为数据传输的初始子帧长度;
从候选TTI长度中选择TTI长度最接近t2的TTI长度作为数据传输的末尾最后一个子帧长度;
从候选TTI长度中选择两种以上TTI长度组合成最接近t1或t2的子帧长度作为数据传输的子帧长度;
其中,t1为CCA成功时刻距离子帧边界的时域长度,t2为已经占用的时长与MCOT的差值。
第四方面,本申请实施例还提供一种数据传输的装置,包括:
确定模块,设置为确定数据传输时的TTI长度;
接收模块,设置为按照所述TTI长度在相应的载波上接收传输的数据。
在示例性实施方式中,确定模块可以设置为通过以下方式确定数据传输时的TTI长度:
在相应的载波上根据预定义的候选TTI集合进行盲检获得所述TTI长度,或者根据指示信息获得所述TTI长度。
此外,本申请实施例还提供一种计算机可读介质,存储有数据传输的程序,所述程序被处理器执行时实现第一方面的数据传输的方法的步骤。
此外,本申请实施例还提供一种计算机可读介质,存储有数据传输的程序,所述程序被处理器执行时实现第二方面的数据传输的方法的步骤。
通过本申请实施例所提供的CCA的数据传输方法,为时延要求高的业务在非授权载波发送提供了可行性。而且,本申请实施例提供的方法既可以保证运营商及异***之间的公平性,又能确保低待发送的业务能够优先在非授权载波发送,降低了数据传输时延。另外,站点通过CCA成功时刻及子帧对齐关系,灵活选择相应的初始子帧长度,并根据已经占用的时长与MCOT的差值选择相应的结束子帧长度,提高了信道占用期内资源的利用率,减小了原来占用信号的发送。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本申请实施例提供的一种数据传输的方法的流程图;
图2为本申请实施例提供的另一种数据传输的方法的流程图;
图3为本申请实施例提供的一种数据传输的装置的结构示意图;
图4为本申请实施例提供的另一种数据传输的装置的结构示意图;
图5是本申请示例性实施例的站点执行CCA及数据传输的流程图;
图6是本申请示例性实施例中的数据传输对应帧结构示意图;
图7是本申请示例性实施例中的数据传输时采用不同TTI长度的示意图。
详述
下面结合附图对本申请的实施例进行说明。
图1为本申请实施例提供的一种数据传输的方法的流程图。如图1所示,本实施例提供的数据传输的方法,包括以下步骤:
S101、根据业务类型确定使用载波的优先级;
S102、根据所述载波优先级采用预设机制的空闲信道评估(CCA)执行对应的CCA过程进行信道竞争;
S103、在竞争到的信道上发送所述业务类型的数据。
其中,步骤S102中,预设机制的CCA可以包括:
不执行CCA、执行一次检测的CCA、执行带随机回退的CCA。
其中,执行带随机回退的CCA可以包括:
当回退值递减到预定值时,则所述CCA成功;或者,
当回退值递减到预定值后,等待至预定义时刻再执行一次预定义长度的CCA;或者,
调整LBT竞争窗或CCA回退值,执行CCA。
步骤S101之前,本实施例的方法还可以包括:
将载波划分为多个优先级,其中,不同优先级的载波用于发送不同业务类型的数据。
载波优先级是运营商之间协商确定的,优先级确定后不同业务类型在对应的载波上发送。优先级高的载波站点在执行CCA的时候可以采用竞争窗 或回退值的调整机制,用于发送时延要求较高的业务类型。
当存在冲突时,下次竞争窗或回退值缩小,使得竞争到的概率增大。
调整LBT竞争窗或CCA回退值可以参考以下参数之一进行:
信道忙闲的次数,或信道忙闲时隙的数目,或信道忙闲的时隙的数目与总的CCA时隙的数目的比值,或CCA失败的次数,或CCA成功的次数;
参考子帧或者参考数据突发(burst)子帧内对应的ACK/NACK的值或者比例;
预定节点的指示信息确定所述LBT的竞争窗。
其中,调整LBT竞争窗或CCA回退值可以包括以下之一:
当预定参考子帧传输的数据包发送错误,则调小LBT竞争窗或调低CCA回退值;
当预定参考子帧传输的数据包发送正确,则调大LBT竞争窗或调高CCA回退值;
当传输的数据包在预定参考时刻没有发送成功或者在所述预定参考时刻之后发送成功,则调小LBT竞争窗或调低CCA回退值;
当传输的数据包在预定参考时刻之前发送成功,则调大LBT竞争窗或调高CCA回退值;
当预定时间内信道忙的次数超过第一阈值时,则调小LBT竞争窗或调低CCA回退值;
当预定时间内信道空闲的次数超过第二阈值时,则调大LBT竞争窗或调高CCA回退值;
当预定时间内信道忙的次数或信道忙时隙的数目或信道忙的时隙的数目与总的CCA时隙的数目的比值或CCA失败的次数超过第三阈值时,则调小LBT竞争窗或调低CCA回退值;
当预定时间内信道空闲的次数或信道空闲时隙的数目或者信道空闲的时隙的数目与总的CCA时隙的数目的比值或CCA成功的次数超过第四阈值时,则调大LBT竞争窗或调高CCA回退值;
根据预定节点发送的指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小。
其中,调小LBT竞争窗或调低CCA回退值可以包括:
将所述LBT竞争窗或者CCA回退值调整为预设最小值、或者当前值的一半、或者当前值的一半向上或者向下取整;
调大LBT竞争窗或调高CCA回退值可以包括:
将所述LBT竞争窗加倍,或者将所述CCA回退值加倍。
本实施例中,限制调整后的竞争窗及回退值不超过该业务对应LBT优先级类型对应的最大竞争窗。
根据预定节点发送的指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小,可以包括:
接收所述预定节点根据数据接收情况发送的反馈信息,调整所述LBT竞争窗的大小或者CCA回退值的大小;或者,
根据所述指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小。
其中,执行一次检测的CCA可以包括:
在每个帧周期内执行一次CCA,且所述CCA的开始位置在预设时间窗内随机选取;其中,所述预设时间窗为一个时隙或者一个子帧或一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号。
为确保异***之间的公平,在所述CCA成功后发送所述业务类型的数据可以包括:
按照预定义时域图样静默,或者采用动态开/关(on/off)方式发送所述业务类型的数据。
当不执行CCA时,发送所述业务类型的数据可以包括:
通过打掉所述业务类型之外的其他业务类型的传输时间间隔(TTI,Transmission Time Interval)或者频域资源的方式,在竞争到的非授权载波上传输所述业务类型的数据。
发送所述业务类型的数据之前,本实施例的方法还可以包括:
确定数据传输时的TTI长度,或者从候选TTI长度中选择数据传输时的TTI长度。
确定数据传输时的TTI长度可以包括以下之一:
根据CCA成功时刻距离子帧边界的时域长度,确定信道占用时间内的初始TTI长度或初始子帧长度;
根据已经占用的时长与最大信道占用时长(MCOT,Maximum Channel Occupation Time)的差值,确定信道占用时间内的最后一个TTI长度或最后一个子帧长度;
根据预定义或者网络配置确定信道占用时间内的TTI长度。
本实施例中,站点还可以根据预定义或配置的TTI长度任意组合成最适合的数据传输的TTI长度。通过灵活TTI长度选择提高了资源利用率,减少或者避免了占用信号的发送。
从候选TTI长度中选择数据传输时的TTI长度,可以包括:
从候选TTI长度中选择TTI长度最接近t1的TTI长度作为数据传输的初始子帧长度;
从候选TTI长度中选择TTI长度最接近t2的TTI长度作为数据传输的末尾最后一个子帧长度;
从候选TTI长度中选择两种以上TTI长度组合成最接近t1或t2的子帧长度作为数据传输的子帧长度;
其中,t1为CCA成功时刻距离子帧边界的时域长度,t2为已经占用的时长与MCOT的差值。
所述信道占用时间内的初始TTI长度及最后一个TTI长度小于或等于信道占用时间内中间TTI长度。
图2为本申请实施例提供的另一数据传输的方法的流程图。如图2所示,本实施例提供的数据传输的方法,包括以下步骤:
S201、确定数据传输时的TTI长度;
S202、按照所述TTI长度在相应的载波上接收传输的数据。
其中,确定数据传输时的TTI长度可以包括:
在相应的载波上根据预定义的候选TTI集合进行盲检获得所述TTI长度,或者根据指示信息获得所述TTI长度。
图3为本申请实施例提供的一种数据传输的装置的结构图。如图3所示,本实施例提供的数据传输的装置,包括:
优先级模块301,设置为根据业务类型确定使用载波的优先级;
执行模块302,设置为根据所述载波优先级采用预设机制的CCA执行对应的CCA过程进行信道竞争;
传输模块303,设置为在竞争到的信道上发送所述业务类型的数据。
其中,所述执行模块302执行的预设机制的CCA可以包括:不执行CCA、执行一次检测的CCA、执行带随机回退的CCA。
所述执行模块302设置为通过以下方式执行带随机回退的CCA:
当回退值递减到预定值时,则所述CCA成功;或者,
当回退值递减到预定值后,等待至预定义时刻再执行一次预定义长度的CCA;或者,
调整LBT竞争窗或CCA回退值,执行CCA。
本实施例的装置还可以包括:划分模块,设置为将载波划分为多个优先级,其中,不同优先级的载波用于发送不同业务类型的数据。
所述执行模块302可以设置为通过以下方式之一调整LBT竞争窗或CCA回退值:
当预定参考子帧传输的数据包发送错误,则调小LBT竞争窗或调低CCA回退值;
当预定参考子帧传输的数据包发送正确,则调大LBT竞争窗或调高CCA回退值;
当传输的数据包在预定参考时刻没有发送成功或者在所述预定参考时刻之后发送成功,则调小LBT竞争窗或调低CCA回退值;
当传输的数据包在预定参考时刻之前发送成功,则调大LBT竞争窗或调 高CCA回退值;
当预定时间内信道忙的次数超过第一阈值时,则调小LBT竞争窗或调低CCA回退值;
当预定时间内信道空闲的次数超过第二阈值时,则调大LBT竞争窗或调高CCA回退值;
当预定时间内信道忙的次数或信道忙时隙的数目或信道忙的时隙的数目与总的CCA时隙的数目的比值或CCA失败的次数超过第三阈值时,则调小LBT竞争窗或调低CCA回退值;
当预定时间内信道空闲的次数或信道空闲时隙的数目或者信道空闲的时隙的数目与总的CCA时隙的数目的比值或CCA成功的次数超过第四阈值时,则调大LBT竞争窗或调高CCA回退值;
根据预定节点发送的指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小。
所述执行模块302可以设置为通过以下方式根据预定节点的指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小:
接收所述预定节点根据数据接收情况发送的反馈信息,调整所述LBT竞争窗的大小或者CCA回退值的大小;或,
根据所述指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小。
所述执行模块302可以设置为通过以下方式执行一次检测的CCA:
在每个帧周期内执行一次CCA,且所述CCA的开始位置在预设时间窗内随机选取;其中,所述预设时间窗为一个时隙或者一个子帧或一个OFDM符号。
所述传输模块303可以设置为通过以下方式在竞争到的信道上发送所述业务类型的数据:
按照预定义时域图样静默,或者采用动态开/关(on/off)方式发送所述业务类型的数据。
当不执行CCA时,所述传输模块303可以设置为通过以下方式发送所 述业务类型的数据:
通过打掉所述业务类型之外的其他业务类型的TTI或者频域资源的方式,在竞争到的非授权载波上传输所述业务类型的数据。
所述传输模块303还可以设置为:确定数据传输时的TTI长度,或者从候选TTI长度中选择数据传输时的TTI长度。
所述传输模块303可以设置为通过以下方式确定数据传输时的TTI长度:
根据CCA成功时刻距离子帧边界的时域长度,确定信道占用时间内的初始TTI长度或初始子帧长度;或者,
根据已经占用的时长与MCOT的差值,确定信道占用时间内的最后一个TTI长度或最后一个子帧长度;或者,
根据预定义或者网络配置确定信道占用时间内的TTI长度。
所述传输模块303可以设置为通过以下方式从候选TTI长度中选择数据传输时的TTI长度:
从候选TTI长度中选择TTI长度最接近t1的TTI长度作为数据传输的初始子帧长度;
从候选TTI长度中选择TTI长度最接近t2的TTI长度作为数据传输的末尾最后一个子帧长度;
从候选TTI长度中选择两种以上TTI长度组合成最接近t1或t2的子帧长度作为数据传输的子帧长度;
其中,t1为CCA成功时刻距离子帧边界的时域长度,t2为已经占用的时长与MCOT的差值。
图4为本申请实施例提供的另一数据传输的装置的结构图。如图4所示,本实施例提供的数据传输的装置,包括:
确定模块401,设置为确定数据传输时的TTI长度;
接收模块402,设置为按照所述TTI长度在相应的载波上接收传输的数据。
其中,确定模块401可以设置为通过以下方式确定数据传输时的TTI长 度:
在相应的载波上根据预定义的候选TTI集合进行盲检获得所述TTI长度,或者根据指示信息获得所述TTI长度。
下面通过多个实施例对本申请进行说明。
图5为本申请示例性实施例中的站点执行CCA及数据传输的流程图。如图5所示,本实施例提供一种执行CCA及数据传输的方法,包括:
站点根据业务类型确定CCA的机制,然后执行相应的CCA过程,成功后发送数据。
所述CCA机制包括:不执行CCA,执行一次检测的CCA,执行随机回退的CCA。
其中,带随机回退的CCA的过程为:初次CCA的时候采用最小的CW(Contention Window,竞争窗),例如3或者7;后续按照以下的四种方式之一进行竞争窗的调整。
调整方式一:
站点自己根据以下参数之一确定或调整:
信道忙闲的次数,信道忙闲时隙的数目,信道忙闲的时隙的数目与总的CCA时隙的数目的比值,CCA失败的次数,CCA成功的次数。
其中,调整的原则可以包括:
当信道忙的次数超过阈值的时候,CW或回退值变为最小或变为原来的一半且向下或向上取整;
当信道空闲的次数超过阈值的时候,CW或回退值变为最小。
调整方式二:
发送端根据接收端反馈的参考子帧或者参考上行突发(UL burst)子帧对应的ACK/NACK的值或者比例自己进行调整。
例如,当接收端对应参考子帧传输的数据包反馈ACK的时候,则竞争窗的值变为最小。当接收端对应参考子帧传输的数据包反馈NACK的时候,则发送端将竞争窗的值或回退值变为最小。
或者,当最近上行burst中或预定义时间窗内所传输数据包所对应的NACK比例超过阈值的时候,则发送端将竞争窗的值或回退值变为最小。
调整方式三:
接收端根据参考子帧的解调结果进行调整,并将调整后的CW值通过信令发送给发送端。该方式下,发送端所采用的CCA参数都是由基站控制调节的。其中,参考子帧为最近一次采用带随机回退的CCA方式接入发送的子帧。
其中,CW调整的原则可以包括:
当接收端对应参考子帧传输的数据包解调错误的时候,则竞争窗的值变为最小。当接收端对应参考子帧传输的数据包解调错误的时候,则将竞争窗的值或回退值变为最小。
或者,当最近上行burst中或预定义时间窗内所传输数据包所对应的解调错误的比例超过阈值的时候,则基站将竞争窗的值或回退值变为最小值。
调整方式四:
根据竞争成功时刻跟预定位置的先后关系来调整竞争窗的大小。
如果站点CCA成功的时刻早于参考时刻,则将竞争窗或者N值变为最小,如果站点CCA成功的时刻晚于参考时刻,则将CW或回退值变为最小或变为原来的一半且向下或向上取整。
通过采用上述的CCA参数的调整方法可以提高站点接入非授权载波的概率,确保了URLLC(Ultra-Reliable and Low Latency Communication,低时延高可靠通信)业务数据的传输时延能满足要求。
所述CCA方式应用的载波可以为共享载波。
下面对站点执行CCA的方法进行说明。
首先,每个运营商将非授权载波分为不同的优先级,不同运营商将同一个载波定义为不同的优先级。
例如,三个运营商对应三个载波的优先级如下表1所示。
表1
运营商编号 载波1 载波2 载波3
1
2
3
预定义对于优先级高的载波用于发送时延要求较高的业务类型,例如URLLC业务类型。优先级中的载波可以采用竞争窗固定的CCA类型。对于优先级低的载波采用现有的cat4(Category 4,能力等级4)的LBT过程,即窗调整的规则沿用现有的,用于发送对时延要求不敏感的业务类型,例如mMTC(massive Machine Type of Communication,海量机器类通信)业务类型或者部分eMBB(enhanced Mobile Broadband,增强移动宽带)业务类型。
优先级高的载波执行带随机回退的CCA采用的信道优先级类型为1,对应的最大竞争窗为7或3,最小竞争窗为3或1。可以采用如下的CCA过程:
站点先检测信道,如果空闲,则产生一个计数器N,N=random[0,CW],其中,CW为竞争窗;若信道空闲则递减随机数N,减到0后发送数据;若信道变忙,则停止减随机数,等待下次信道再次变为空闲则递减N。
同时每次所采用的CW为动态调整的。
当数据包传输正确一次,则CW变为最小,当数据包传输错误,则CW变为原来的一半且向下或向上取整或变为最小。
对于基站调度的、终端执行CCA时候的CW可以是基站根据数据包的解调结果配置的。
其中,调整过程可以包括:
基站根据k4(k4大于或等于1)次的PUSCH(Physical Uplink Shared Channel,物理上行共享信道)解调结果调整过程如下:
BLER(Block Error Rate,块误码率)大于预定义阈值一的数目达到门限,或者没有检测到UE发送PUSCH,则将CW调整为最小或减m,小于预定义阈值二的数目达到门限,则将CW值调整为最小或减为原来的一半。
或者,直接按上个子帧或上Q个子帧中确认字符(Acknowledgement, 简称为ACK)/非确认字符(Non-Acknowledgement,简称为NACK)结果及数目来调整。
对于上行如果是连续传输多个子帧,所有包如果都解对了,则CW值变为最小,或CW值减小一个步长n1。如果有一个解错了,则CW值增大一个步长n2,步长n2可以为1或2。
当同一UE上次调度和本次调度的时间差大于预定义值的时候,观测窗可以为相邻两个上行子帧之间,且参考值为上一个上行子帧调度UE中离本次调度UE地理位置最近的UE的N值或PUSCH的解调作为本次调度UE调整的依据。
通过该方法既可以保证运营商之间的公平性,同时能确保待发送的业务,例如低时延中的某种业务能够优先在非授权载波发送,降低了数据传输时延。
下面对上述CCA方法如何保证异***之间的公平性进行说明。
对于采用本申请实施例提供的带随机回退的LBT机制,采用竞争窗调整方法的站点在CCA成功后数据传输过程中可以按照下面的方法执行。
通过在数据发送过程中时域图样muting(静默),或者动态on/off的方式提供其他***接入的机会。
例如,对于采用所述竞争窗调整的站点,定义某些子帧,子帧可以为连续或者离散的,比如子帧号满足mod(n,T)=k,n是***帧号,T是预定义的周期,k是偏移量时,不同站点T或者K的取值不同。基站或UE不管是否占用该非授权载波都不能在上面发送数据。
比如每个子帧6都不能传输,或者***帧号为2的整数倍帧的第6个子帧的某段时间不能传输。不能传输的时间至少为34μs,比如40μs,或者一个符号,或者一个时隙。至少是分布式帧间间隙(Distributed Inter-frame Spacing,DIFS)长度供无线保真网络(WIFI)***中的设备或其它站点接入。
或者,某站点在连续传输n个子帧后强制不能再进行CCA及数据传输。
下面说明待发送的业务在非授权载波发送的CCA方式。
待发送的业务在非授权载波发送的CCA方式还可以包括如下方式:
不采用带随机回退的竞争机制,采用增强的cat2LBT。其中,增强的cat2方式的LBT包括:仅进行一次一个预定义时长的信道空闲检测,检测的位置为周期固定的,或者在某个时间窗内随机选择检测位置。当在该检测时长内检测到信号的能量小于预定义阈值的时候,则认为信道空闲可以进行数据的发送。
CCA及数据传输的过程可以为:
UE接收到基站发送的DCI(Downlink Control Information,下行控制信息),该信息在某个非授权载波发送的,该信息指示UE进行上行数据包的发送。
所述DCI和UE发送上行数据的定时关系包括:
DCI和上行数据在相同的子帧,帧结构如图6所示。中间有个gap(间隙)用于下行到上行的转换及UE执行cat2类型的CCA。
CCA及数据传输过程可以为:
基站先执行cat4LBT,成功后发送DCI,所述DCI包括以下至少之一:
调度指示信息,其中包括资源分配信息,MCS(Modulation and Coding Scheme,调制与编码策略)信息,HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号信息,传输子帧位置或调度子帧位置指示信息中的至少之一。
UE接收到该信息后经过一个gap时间后如果CCA成功,则从本子帧传输上行数据,传输一个子帧,或者连续传输m个上行子帧,其中,m个子帧不能超过MCOT。
或者,DCI所在子帧和上行数据子帧相差k个子帧或k个TTI。K为1或者2。
当UE在数据传输之前执行CCA成功后就发送所述的数据。
或者,UE采用免调度的接入方式,当UE有数据包要发送的时候,UE同时在多个载波上侦听是否有载波已经有本小区的其他UE或者所属的基站已经占用该信道。
当检测到某载波为同小区的其他UE或者所属基站占用的时候,终端或站点可以采用增强的cat2的LBT方式。
下面说明在非授权载波上同一设备的URLLC业务类型CCA及数据发送方式。
在非授权载波上同一设备的URLLC业务类型CCA及数据发送的方法还可以包括:
通过打掉其他业务类型TTI或者频域资源的方式在竞争到的非授权载波上传输。
例如,某个设备在一个或者多个载波上执行竞争,然后发送eMBB业务或者mMTC业务类型连续在多个子帧进行一个或者多个数据包的发送。在连续占用的过程中,突然有一个低时延的数据包需要发送,则站点可以采用打掉正在传输数据包的方式,在某个时刻的某些频域资源上发送该低时延的数据包。
假设某个站点执行cat4的LBT过程发送mMTC或者eMBB业务类型,根据管制要求该站点可以连续占用10ms,假设在mMTC业务的某个数据包连续重复发送的第5个子帧,站点突然有该新的数据包需要尽快发送,则站点可以选择打掉第5个子帧发送的重复小包,而选择发送对时延要求高的新的数据包。或者,打掉eMBB业务的某些频域资源用于URLLC业务的传输。
下面对设备根据CCA成功的时刻确定帧结构的方法进行说明。
设备根据CCA成功时刻距离子帧边界的时域长度,灵活选择相应的TTI大小。
还可以利用已有的候选的TTI长度组合成更长的TTI。
例如,***预定义或者高层半静态配置设备可以支持的TTI长度包括1ms、0.5ms、0.25ms、0.2ms及0.125ms,或者支持1、2、4、7、14个符号的TTI长度或子帧长度,每个符号的长度为预定义的大小。
例如,设备CCA成功的时刻离子帧边界的时刻长度为0.2ms的时候,设备就可以发送长度为0.2ms的子帧或者TTI进行数据的发送。
当设备CCA成功的时刻离子帧边界的长度为0.3ms的时候,设备可以先发送0.05ms的初始信号,然后再发送0.25ms的子帧或TTI。
当设备CCA成功的时刻离子帧边界的长度为0.325ms的时候,设备可以先发送一个长度为0.2ms的子帧,然后再发送一个0.125ms的子帧或TTI;或者先发送一个长度为0.125ms的子帧,然后再发送一个0.2ms的子帧或TTI。
还可以根据不同的TTI长度选择传输的TB(Transmission Block,传输块)大小。例如用短TTI或子帧长度传输小数据包,大的子帧长度传输大的数据包。
通过该方式可以尽量减小或没有占用信号,提高资源的利用率。
同理,由于设备受最大占用时长的限制,结束的子帧长度也要根据子帧边界跟MCOT的长度进行相应的TTI或子帧长度选择,或者根据子帧边界跟MCOT的长度进行相应的符号数目选择。
例如,假设占用时长为6ms,设备在完整的1ms子帧的前面已经占了0.25ms,则在连续传输5个1ms的完整子帧后,还剩下0.75ms,则设备可以先发送一个0.5ms的子帧,然后再发送一个0.25ms的子帧,这样可以避免资源的浪费。
另外,数据传输的帧结构还可以根据TTI长度进行相应的调整。如图7所示。站点1在LBT成功后先采用一个长度为L1,例如0.5msTTI的数据,然后站点2接收到该数据后,在一个Gap时间后不用执行LBT直接反馈ACK/NACK,这三者的时间合起来为0.75ms。然后站点1采用长度为L2的TTI,例如1ms连续传输了2个子帧,后面仅有L1长度的数据或者仅仅发送控制信息,则又采用长度为T1的TTI发送数据。
通过该方式可以尽量减小占用信号的长度,提高资源的利用率。
下面对接收端进行数据接收的过程进行说明。
当传输的数据为下行数据的时候,发送端为基站,接收端为用户设备,则这个时候的TTI长度的确定包括下面两种方式:
方式一:UE根据信令指示确定发送端的TTI长度。
方式二:UE根据候选的TTI长度进行盲检接收。
当数据为上行数据的时候,接收端TTI的长度的确定包括:
当UE是自主方式而非基站调度接入***的时候,TTI长度是UE自己根据CCA成功的时刻确定的,这个时候基站不知道UE所采用的TTI长度,基站根据***预定义的多种进行盲检。或者,UE在数据发送的时候携带数据传输所采用的TTI长度指示信息。
当UE是基于基站调度进行数据传输的时候,数据发送所用的TTI长度是基站指示的,然后基站根据配置的TTI长度对数据进行接收。
当TTI长度不是基站指示的时候,基站根据***预定义的几种进行盲检。
发送端指示TTI长度可以包括:
下行控制信息或者上行控制信息里面包含MCOT内每个子帧的TTI长度,例如,占用子帧跟对应TTI长度bitmap方式指示。例如***定义了四种TTI长度,用2bit表示。假设站点抢占到信道后发送了四个子帧,则可以用8bit来一一对应每个子帧的TTI长度。或者仅给出第一个子帧和最后一个子帧的TTI长度,中间用预定义的最大的TTI长度。
下面对执行CCA的站点根据接收到其他预定节点的指示信息确定竞争窗的情形进行说明。
例如,当执行CCA的节点为UE的时候,其他预定节点可以为基站,基站可以通过指示信令来通知UE调整后的竞争窗。
其中,基站可以通过跟其他指示信令联合编码的方式通知UE。例如LBT类型、起始符号位置及CW联合编码后的信令指示如下表2所示。
表2
Figure PCTCN2017095646-appb-000001
Figure PCTCN2017095646-appb-000002
其中,表2中增强的cat2和增强的cat4为本申请实施例所提供的上述LBT方法。
然后,UE按照此指示信息进行CCA及数据的发送。
本实施例中的站点可以是基站(Node B)、演进型基站(eNode B)家庭基站(Home Node B)、中继站(Relay Node,RN)、用户设备(User Equipment,UE)、或者其他可以使用非授权载波的设备。
需要说明的是,本申请中包含的CCA过程中的竞争窗调整原则或方法还可以用于随机回退值的调整。站点根据原则直接调整随机回退值。
此外,本申请实施例还提供一种计算机可读介质,存储有数据传输的程序,所述程序被处理器执行时实现图1所示实施例提供的数据传输的方法的步骤。
此外,本申请实施例还提供一种计算机可读介质,存储有数据传输的程序,所述程序被处理器执行时实现图2所示实施例提供的数据传输的方法的步骤。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、 ***、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本申请所揭示的实施方式如上,但其内容只是为了便于理解本申请的技术方案而采用的实施方式,并非用于限定本申请。任何本申请所属技术领域内的技术人员,在不脱离本申请所揭示的核心技术方案的前提下,可以在实施的形式和细节上做任何修改与变化,但本申请所限定的保护范围,仍须以所附的权利要求书限定的范围为准。
工业实用性
本申请实施例提供一种数据传输的方法和装置,给时延要求高的业务在非授权载波发送提供了可行性,而且既可以保证运营商及异***之间的公平性,也能确保低待发送的业务能够优先在非授权载波发送,降低了数据传输时延。

Claims (30)

  1. 一种数据传输的方法,包括:
    根据业务类型确定使用载波的优先级;
    根据所述载波优先级采用预设机制的空闲信道评估CCA执行对应的CCA过程进行信道竞争;
    在竞争到的信道上发送所述业务类型的数据。
  2. 如权利要求1所述的方法,其中,所述预设机制的CCA包括:不执行CCA、执行一次检测的CCA、执行带随机回退的CCA。
  3. 如权利要求2所述的方法,其中所述执行带随机回退的CCA包括:
    当回退值递减到预定值时,则所述CCA成功;或者,
    当回退值递减到预定值后,等待至预定义时刻再执行一次预定义长度的CCA;或者,
    调整监听LBT竞争窗或CCA回退值,执行CCA。
  4. 如权利要求1所述的方法,所述根据业务类型确定使用载波的优先级之前,所述方法还包括:
    将载波划分为多个优先级,其中,不同优先级的载波用于发送不同业务类型的数据。
  5. 如权利要求3所述的方法,其中,所述调整LBT竞争窗或CCA回退值包括以下之一:
    当预定参考子帧传输的数据包发送错误,则调小LBT竞争窗或调低CCA回退值;
    当预定参考子帧传输的数据包发送正确,则调大LBT竞争窗或调高CCA回退值;
    当传输的数据包在预定参考时刻没有发送成功或者在所述预定参考时刻之后发送成功,则调小LBT竞争窗或调低CCA回退值;
    当传输的数据包在预定参考时刻之前发送成功,则调大LBT竞争窗或调高CCA回退值;
    当预定时间内信道忙的次数超过第一阈值时,则调小LBT竞争窗或调低CCA回退值;
    当预定时间内信道空闲的次数超过第二阈值时,则调大LBT竞争窗或调高CCA回退值;
    当预定时间内信道忙的次数或信道忙时隙的数目或信道忙的时隙的数目与总的CCA时隙的数目的比值或CCA失败的次数超过第三阈值时,则调小LBT竞争窗或调低CCA回退值;
    当预定时间内信道空闲的次数或信道空闲时隙的数目或者信道空闲的时隙的数目与总的CCA时隙的数目的比值或CCA成功的次数超过第四阈值时,则调大LBT竞争窗或调高CCA回退值;
    根据预定节点发送的指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小。
  6. 如权利要求5所述的方法,其中,所述调小LBT竞争窗或调低CCA回退值包括:将所述LBT竞争窗或者CCA回退值调整为预设最小值、或者当前值的一半、或者当前值的一半向上或者向下取整;
    所述调大LBT竞争窗或调高CCA回退值包括:将所述LBT竞争窗加倍,或者将所述CCA回退值加倍。
  7. 如权利要求5所述的方法,其中,所述根据预定节点发送的指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小包括:
    接收所述预定节点根据数据接收情况发送的反馈信息,调整所述LBT竞争窗的大小或者CCA回退值的大小;或者,
    根据所述指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小。
  8. 如权利要求2所述的方法,其中,所述执行一次检测的CCA包括:
    在每个帧周期内执行一次CCA,且所述CCA的开始位置在预设时间窗内随机选取;其中,所述预设时间窗为一个时隙或者一个子帧或一个正交频分复用OFDM符号。
  9. 如权利要求1所述的方法,其中,所述在竞争到的信道上发送所述业务类型的数据包括:按照预定义时域图样静默,或者采用动态开/关on/off方 式发送所述业务类型的数据。
  10. 如权利要求2所述的方法,其中,当不执行CCA时,发送所述业务类型的数据包括:通过打掉所述业务类型之外的其他业务类型的传输时间间隔TTI或者频域资源的方式,在竞争到的非授权载波上传输所述业务类型的数据。
  11. 如权利要求1所述的方法,所述发送所述业务类型的数据之前,所述方法还包括:确定数据传输时的传输时间间隔TTI长度,或者从候选TTI长度中选择数据传输时的TTI长度。
  12. 如权利要求11所述的方法,其中,所述确定数据传输时的TTI长度包括以下之一:
    根据CCA成功时刻距离子帧边界的时域长度,确定信道占用时间内的初始TTI长度或初始子帧长度;
    根据已经占用的时长与最大信道占用时长MCOT的差值,确定信道占用时间内的最后一个TTI长度或最后一个子帧长度;
    根据预定义或者网络配置确定信道占用时间内的TTI长度。
  13. 如权利要求11所述的方法,其中,所述从候选TTI长度中选择数据传输时的TTI长度包括:
    从候选TTI长度中选择TTI长度最接近t1的TTI长度作为数据传输的初始子帧长度;
    从候选TTI长度中选择TTI长度最接近t2的TTI长度作为数据传输的末尾最后一个子帧长度;
    从候选TTI长度中选择两种以上TTI长度组合成最接近t1或t2的子帧长度作为数据传输的子帧长度;
    其中,t1为CCA成功时刻距离子帧边界的时域长度,t2为已经占用的时长与最大信道占用时长MCOT的差值。
  14. 如权利要求12所述的方法,其中,所述信道占用时间内的初始TTI长度及最后一个TTI长度小于或等于信道占用时间内中间TTI长度。
  15. 一种数据传输的方法,包括:
    确定数据传输时的传输时间间隔TTI长度;
    按照所述TTI长度在相应的载波上接收传输的数据。
  16. 如权利要求15所述的方法,其中,所述确定数据传输时的TTI长度包括:在相应的载波上根据预定义的候选TTI集合进行盲检获得所述TTI长度,或者根据指示信息获得所述TTI长度。
  17. 一种数据传输的装置,包括:
    优先级模块,设置为根据业务类型确定使用载波的优先级;
    执行模块,设置为根据所述载波优先级采用预设机制的空闲信道评估CCA执行对应的CCA过程进行信道竞争;
    传输模块,设置为在竞争到的信道上发送所述业务类型的数据。
  18. 如权利要求17所述的装置,其中,所述执行模块执行的预设机制的CCA包括:不执行CCA、执行一次检测的CCA、执行带随机回退的CCA。
  19. 如权利要求18所述的装置,其中,所述执行模块设置为通过以下方式执行带随机回退的CCA:
    当回退值递减到预定值时,则所述CCA成功;或者,
    当回退值递减到预定值后,等待至预定义时刻再执行一次预定义长度的CCA;或者,
    调整监听LBT竞争窗或CCA回退值,执行CCA。
  20. 如权利要求17所述的装置,所述装置还包括:划分模块,设置为将载波划分为多个优先级,其中,不同优先级的载波用于发送不同业务类型的数据。
  21. 如权利要求19所述的装置,其中,所述执行模块设置为通过以下方式之一调整LBT竞争窗或CCA回退值:
    当预定参考子帧传输的数据包发送错误,则调小LBT竞争窗或调低CCA回退值;
    当预定参考子帧传输的数据包发送正确,则调大LBT竞争窗或调高CCA 回退值;
    当传输的数据包在预定参考时刻没有发送成功或者在所述预定参考时刻之后发送成功,则调小LBT竞争窗或调低CCA回退值;
    当传输的数据包在预定参考时刻之前发送成功,则调大LBT竞争窗或调高CCA回退值;
    当预定时间内信道忙的次数超过第一阈值时,则调小LBT竞争窗或调低CCA回退值;
    当预定时间内信道空闲的次数超过第二阈值时,则调大LBT竞争窗或调高CCA回退值;
    当预定时间内信道忙的次数或信道忙时隙的数目或信道忙的时隙的数目与总的CCA时隙的数目的比值或CCA失败的次数超过第三阈值时,则调小LBT竞争窗或调低CCA回退值;
    当预定时间内信道空闲的次数或信道空闲时隙的数目或者信道空闲的时隙的数目与总的CCA时隙的数目的比值或CCA成功的次数超过第四阈值时,则调大LBT竞争窗或调高CCA回退值;
    根据预定节点发送的指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小。
  22. 如权利要求21所述的装置,其中,所述执行模块设置为通过以下方式根据预定节点发送的指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小:
    接收所述预定节点根据数据接收情况发送的反馈信息,调整所述LBT竞争窗的大小或者CCA回退值的大小;或者,
    根据所述指示信息确定所述LBT竞争窗的大小或者CCA回退值的大小。
  23. 如权利要求18所述的装置,其中,所述执行模块设置为通过以下方式执行一次检测的CCA:
    在每个帧周期内执行一次CCA,且所述CCA的开始位置在预设时间窗内随机选取;其中,所述预设时间窗为一个时隙或者一个子帧或一个正交频分复用OFDM符号。
  24. 如权利要求17所述的装置,其中,所述传输模块设置为通过以下方式在竞争到的信道上发送所述业务类型的数据:
    按照预定义时域图样静默,或者采用动态开/关on/off方式发送所述业务类型的数据。
  25. 如权利要求18所述的装置,其中,当不执行CCA时,所述传输模块设置为通过以下方式发送所述业务类型的数据:
    通过打掉所述业务类型之外的其他业务类型的传输时间间隔TTI或者频域资源的方式,在竞争到的非授权载波上传输所述业务类型的数据。
  26. 如权利要求17所述的装置,其中所述传输模块还设置为:确定数据传输时的传输时间间隔TTI长度,或者从候选TTI长度中选择数据传输时的TTI长度。
  27. 如权利要求26所述的装置,其中,所述传输模块设置为通过以下方式确定数据传输时的TTI长度:
    根据CCA成功时刻距离子帧边界的时域长度,确定信道占用时间内的初始TTI长度或初始子帧长度;或者,
    根据已经占用的时长与最大信道占用时长MCOT的差值,确定信道占用时间内的最后一个TTI长度或最后一个子帧长度;或者,
    根据预定义或者网络配置确定信道占用时间内的TTI长度。
  28. 如权利要求27所述的装置,其中,所述传输模块设置为通过以下方式从候选TTI长度中选择数据传输时的TTI长度:
    从候选TTI长度中选择TTI长度最接近t1的TTI长度作为数据传输的初始子帧长度;
    从候选TTI长度中选择TTI长度最接近t2的TTI长度作为数据传输的末尾最后一个子帧长度;
    从候选TTI长度中选择两种以上TTI长度组合成最接近t1或t2的子帧长度作为数据传输的子帧长度;
    其中,t1为CCA成功时刻距离子帧边界的时域长度,t2为已经占用的 时长与最大信道占用时长MCOT的差值。
  29. 一种数据传输的装置,包括:
    确定模块,设置为确定数据传输时的传输时间间隔TTI长度;
    接收模块,设置为按照所述TTI长度在相应的载波上接收传输的数据。
  30. 如权利要求29所述的装置,其中,所述确定模块设置为通过以下方式确定数据传输时的TTI长度:
    在相应的载波上根据预定义的候选TTI集合进行盲检获得所述TTI长度,或者根据指示信息获得所述TTI长度。
PCT/CN2017/095646 2016-08-12 2017-08-02 一种数据传输的方法和装置 WO2018028489A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/322,822 US20190289614A1 (en) 2016-08-12 2017-08-02 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610666398.1 2016-08-12
CN201610666398.1A CN107734713B (zh) 2016-08-12 2016-08-12 一种数据传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2018028489A1 true WO2018028489A1 (zh) 2018-02-15

Family

ID=61162861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095646 WO2018028489A1 (zh) 2016-08-12 2017-08-02 一种数据传输的方法和装置

Country Status (3)

Country Link
US (1) US20190289614A1 (zh)
CN (1) CN107734713B (zh)
WO (1) WO2018028489A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3567963B1 (en) * 2018-03-15 2021-09-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and device
CN110366248B (zh) * 2018-04-04 2024-04-30 中兴通讯股份有限公司 上行传输、通信方法、装置及基站、终端、存储介质
CN110890953B (zh) * 2018-09-11 2022-07-19 华为技术有限公司 使用免授权频段的通信方法和通信装置
US11374867B2 (en) * 2019-06-03 2022-06-28 The Regents Of The University Of California Dynamic tuning of contention windows in computer networks
CN112788607B (zh) * 2019-11-07 2022-11-11 维沃移动通信有限公司 共享信道占用时间cot的信息传输方法、通信设备
WO2021168765A1 (en) * 2020-02-28 2021-09-02 Qualcomm Incorporated Configured grant uplink transmission for a physical uplink shared channel with multiple listen-before-talk channels
CN115428575A (zh) * 2020-04-22 2022-12-02 联想(新加坡)私人有限公司 更新竞争窗口大小
JP2023525262A (ja) * 2020-05-08 2023-06-15 ノキア テクノロジーズ オサケユイチア アンライセンスバンドにおけるトラフィック優先度に基づくエネルギー検出閾値適応

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104468030A (zh) * 2014-08-26 2015-03-25 上海华为技术有限公司 一种数据传输方法、用户设备及基站
CN105556888A (zh) * 2013-09-23 2016-05-04 高通股份有限公司 Lte-u上行链路波形和可变多子帧调度
WO2016105126A1 (ko) * 2014-12-23 2016-06-30 엘지전자 주식회사 비면허 대역을 지원하는 무선 접속 시스템에서 부분 서브프레임을 구성하고 스케줄링하는 방법 및 이를 지원하는 장치
CN106559892A (zh) * 2015-09-25 2017-04-05 上海贝尔股份有限公司 用于会话前侦听的方法和设备
CN106559797A (zh) * 2015-09-25 2017-04-05 上海贝尔股份有限公司 用于在多载波传输中的会话前侦听的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682241B (zh) * 2014-11-21 2020-06-16 中兴通讯股份有限公司 一种非授权载波的占用方法和设备
CN104936303B (zh) * 2015-06-17 2018-09-21 西安电子科技大学 一种载波监听门限与竞争窗口联合控制的方法
WO2017171350A1 (ko) * 2016-03-29 2017-10-05 엘지전자 주식회사 무선 통신 시스템에서 상향링크 신호의 전송 또는 수신 방법 및 이를 위한 장치
CN107682923B (zh) * 2016-08-01 2023-05-12 北京三星通信技术研究有限公司 功率余量上报的方法及相应的用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105556888A (zh) * 2013-09-23 2016-05-04 高通股份有限公司 Lte-u上行链路波形和可变多子帧调度
CN104468030A (zh) * 2014-08-26 2015-03-25 上海华为技术有限公司 一种数据传输方法、用户设备及基站
WO2016105126A1 (ko) * 2014-12-23 2016-06-30 엘지전자 주식회사 비면허 대역을 지원하는 무선 접속 시스템에서 부분 서브프레임을 구성하고 스케줄링하는 방법 및 이를 지원하는 장치
CN106559892A (zh) * 2015-09-25 2017-04-05 上海贝尔股份有限公司 用于会话前侦听的方法和设备
CN106559797A (zh) * 2015-09-25 2017-04-05 上海贝尔股份有限公司 用于在多载波传输中的会话前侦听的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "Mapping of QCI to LBT priority class", 3GPP TSG-RAN WG2 MEETING #93 R2-161302, 14 February 2016 (2016-02-14), XP051055225 *
HUAWEI: "DL LBT Operation", 3GPP TSG-RAN WG2 MEETING #91 R2-153314, 23 August 2015 (2015-08-23), XP051004060 *

Also Published As

Publication number Publication date
CN107734713B (zh) 2023-05-16
US20190289614A1 (en) 2019-09-19
CN107734713A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
US11929833B2 (en) HARQ feedback for unscheduled uplink
US12041666B2 (en) Communication device and a method therein for determining a contention window size in a communication network
WO2018028489A1 (zh) 一种数据传输的方法和装置
US20240056227A1 (en) Method and apparatus for transmitting uplink signal
US20220377813A1 (en) Transmission method and apparatus
US10681730B2 (en) Contention window adaptation in multi-carrier listen-before-talk protocols
CN108174445B (zh) 一种上行信息处理的方法及装置
WO2018202032A1 (zh) 数据传输方法、装置、存储介质及处理器
WO2016206483A1 (zh) 数据的传输方法及装置
WO2017076157A1 (zh) 数据调度及传输的方法、装置及***
US20170041805A1 (en) Uplink channel access, reservation and data transmission for licensed assist access long term evolution (laa-lte)
WO2017050126A1 (zh) 数据传输方法、指示信息的发送方法及装置
KR102149262B1 (ko) 클리어 채널 평가에서 경쟁 윈도우 크기를 결정하는 방법 및 장치
WO2017167014A1 (zh) 数据传输方法、装置及存储介质
KR102412963B1 (ko) 업링크 통신들을 위한 공동 자원 풀들
EP3648384B1 (en) Method for repeated transmission and terminal device
KR20240043070A (ko) 사이드링크 통신에서 채널 접속을 위한 방법 및 장치
CN112399631A (zh) 一种竞争窗口维护方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838619

Country of ref document: EP

Kind code of ref document: A1