WO2018202032A1 - 数据传输方法、装置、存储介质及处理器 - Google Patents

数据传输方法、装置、存储介质及处理器 Download PDF

Info

Publication number
WO2018202032A1
WO2018202032A1 PCT/CN2018/085305 CN2018085305W WO2018202032A1 WO 2018202032 A1 WO2018202032 A1 WO 2018202032A1 CN 2018085305 W CN2018085305 W CN 2018085305W WO 2018202032 A1 WO2018202032 A1 WO 2018202032A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
information
slot
downlink control
configuration
Prior art date
Application number
PCT/CN2018/085305
Other languages
English (en)
French (fr)
Inventor
李新彩
赵亚军
徐汉青
杨玲
刘娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/610,987 priority Critical patent/US11239974B2/en
Priority to EP18794377.4A priority patent/EP3621382A4/en
Publication of WO2018202032A1 publication Critical patent/WO2018202032A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to the field of communications, and in particular to a data transmission method and apparatus, and a computer storage medium and a processor.
  • Service adaptation refers to allowing semi-static configuration and/or dynamic configuration of uplink and downlink transmission directions to meet the requirements.
  • TDD Time-Driven Development
  • the base station sends a DCI (Downlink Control Information) scheduling time slot 3 and time slot 4 for uplink data transmission in time slot 1, but a high priority downlink data is suddenly sent in time slot 2,
  • DCI Downlink Control Information
  • a downlink URLLC Reliability Low latency
  • LTE TDD long-term evolution
  • SIB System Information Block
  • the uplink and downlink configurations have only seven predefined configurations.
  • the base station configures a certain transmission direction at a time, it will not change at least for a period of time.
  • eIMTA Enhanced Interference Traffic Adaptation, enhanced interference management and traffic adaptation
  • the frequency of the subframe structure change increased, but the uplink and downlink transmission directions are still one of the original fixed seven types.
  • eIMTA is solved by defining a reference configuration.
  • Embodiments of the present invention provide a data transmission method, apparatus, computer storage medium, and processor to solve at least the cross-link interference problem existing in the related art.
  • a data transmission method comprising: configuring configuration information of each time unit in a cycle, wherein the configuration information comprises: a transmission direction and transmission in each time unit Contenting; notifying the configuration information to the second site; and performing data transmission and reception between the first site and the second site according to the configuration information.
  • configuring configuration information of each time unit in one cycle includes: determining one transmission period; configuring transmission resources for uplink transmission in the transmission period, and configuring transmission resources for downlink transmission in the transmission period. And configuring a transmission direction in the transmission period, where the transmission direction includes at least one of: an uplink transmission direction and a downlink transmission direction.
  • determining one transmission period includes one of: configuring the transmission period by operation management and maintenance (OAM); configuring the transmission period by using RRC (Radio Resource Control) signaling; and broadcasting
  • OAM operation management and maintenance
  • RRC Radio Resource Control
  • PBCH Physical Broadcast Channel
  • configuring the transmission resource for the uplink transmission in the transmission period includes: configuring a time unit for uplink transmission in the transmission period by using SIB or higher layer signaling, and transmitting a sounding reference signal SRS (Sounding Reference Signal)
  • SRS Sounding Reference Signal
  • the physical uplink control channel PUCCH Physical Uplink Control Channel
  • PRACH physical random access channel
  • configuring the transmission resource for the downlink transmission in the transmission period includes: configuring a time unit fixed for downlink transmission in the transmission period, and using a downlink synchronization signal block SS (Synchronization Signal) block, and transmitting
  • the periodic channel state indicates a time unit of a reference signal CSI-RS (Channel State Information-Reference Signal).
  • configuring a transmission direction in the transmission period, and notifying the configuration information to the second station including one of: semi-statically configuring a transmission direction of each time unit or a potential time slot structure of each time unit. And indicating, by the dynamic downlink control information DCI, the adjusted transmission direction when the presence time unit has the adjustment of the transmission direction or the time slot structure requirement; configuring the structure of the flexible resource portion of the remaining time slot of each time slot in the transmission period and The DCI notifies that the structure indicates at least the transmission direction of the remaining resource portion of each time slot in the transmission period; the transmission direction in one transmission period is notified by the group common downlink control channel group common PDCCH or the common PDCCH, and through the UE- The specific notification schedules the changed transmission direction of the UE; determines the structure of the current time unit and the later time unit by means of the licensed spectrum assisted access LAA, the structure at least indicating the transmission direction of the time unit; using a semi-static configuration or a predefined manner Determine the first or first two symbols of each time
  • the group common PDCCH is sent to a group of second stations, and each second station in the same group of second stations capable of receiving the time unit structure sent by the same group common downlink control channel passes at least the following manner.
  • Forming a group of second stations according to geographical location; according to beam division; dividing according to traffic volume; dividing according to resources; dividing a plurality of second sites according to coverage into a group of second sites.
  • the group identity ID information of the group common PDCCH is obtained in an initial access procedure or configured by using RRC signaling.
  • the group common PDCCH carries at least one of the following information: information related to the slot structure, scheduling request resource information, and the group hybrid automatic repeat request command correctly responding to the HARQ-ACK feedback information, and reserving the bit field information,
  • the indication information used to indicate the resources that are destroyed by the ultra-low latency and high reliability URLLC is used to indicate the indication information of the slot structure to the edge UE, and the resource of the aperiodic CSI-RS is used to indicate the candidate PDCCH in the mini-slot. Location information.
  • the configuration information includes a time slot aggregation and a flexible duplex combined time slot structure.
  • the slot structure is determined by semi-statically configuring the length or level of slot aggregation.
  • the time slot structure includes one of the following: uplink and downlink control information and a group common PDCCH appear in each time slot, and each time slot has the same structure; the control information is only in the first aggregated time slot. Appears; the uplink and downlink control information and the Group common PDCCH appear in each time slot, and the structure of each time slot is different.
  • the time slot structure includes uplink and downlink control information and the Group common PDCCH occurs in each time slot, and the structure of each time slot is the same, the structure of multiple time slots is configured by semi-static configuration, multiple The aggregation level of the time slot is determined by the Group common PDCCH.
  • the location of the Group common PDCCH is configured at the same time when the aggregation level is configured by using the semi-static RRC signaling configuration.
  • the time slot structure includes uplink and downlink control information and the Group common PDCCH occurs in each time slot, and the structure of each time slot is different, the upper layer signaling semi-static configuration pattern is notified, and the Group common PDCCH is used.
  • the structure of each time slot is indicated by means of a bitmap.
  • the aggregated time slot is used to transmit one transmission block TB (transmission block); or used to retransmit a code block group (CBG); or part of it is used for URLLC service, and other resources are used for heavy Passed CBG.
  • transmission block transmission block
  • CBG code block group
  • the first station performs data transmission and reception with the second station according to the configuration information, including: semi-static configuration scheduling and HARQ-ACK (Hybrid Automatic Repeat Request, ACK, correct command)
  • the configuration information including: semi-static configuration scheduling and HARQ-ACK (Hybrid Automatic Repeat Request, ACK, correct command)
  • HARQ-ACK Hybrid Automatic Repeat Request, ACK, correct command
  • the data transmitted in the original direction is processed according to one of the following methods: discarding; if there is spare resource in the next time slot, the vacant resource transmission is transferred to the next time slot.
  • the UE is in the same frequency domain position as the next time slot, the UE in the same frequency domain position as the next time slot performs multi-user multiplexing; re-instructs the new data transmission position; pre-configures two time domain positions in the initial scheduling.
  • Transmitting data at the first available location scheduling the UE of the current time slot to perform the preset time perception on the first OFDM symbol of the next time slot and the scheduled frequency domain resource, and the sensing succeeds In the case of data transmission; in the absence of perceptual success, abandon transmission or modulation coding mode below the preset threshold MCS (Modulation and Coding) Scheme) or transmission power.
  • MCS Modulation and Coding
  • the first station performs data transceiving with the second station according to the configuration information, where the time slot attribute of the original acknowledgment/non-acknowledgment ACK/NACK feedback cannot be transmitted for the NR dynamic TDD.
  • the original ACK/NACK is processed according to one of the following modes: no feedback or abandonment; ACK/NACK with the next slot is sent by channel selection or multiplexing; all subsequent feedbacks are in accordance with a reference Configuration feedback; all deferred; the slot position or symbol position of the new ACK/NACK feedback is given in the DCI.
  • another data transmission method including: receiving configuration information of a first site configuration, where the configuration information includes: a transmission direction and a transmission content; and the UE according to the configuration information Data transmission and reception.
  • the configuration information is generated by semi-static and dynamic configuration.
  • the performing, by the UE, data transmission and reception according to the configuration information includes: prior to the semi-static and dynamically configured information, the priority of the UE according to the recently received dynamic DCI signaling or the configured information to be transmitted. To determine the direction of transmission and the content of the transmission.
  • the determining, by the UE, the transmission direction and the transmission content according to the recently received dynamic DCI signaling or the configured priority of the information to be transmitted includes one of the following:
  • the scheduled UE performs data transmission according to the latest scheduling signaling or slot format.
  • the transmission position of the reference signal in the original direction is punctured according to the semi-statically configured signaling, and the uplink or downlink transmission is performed at the puncturing position.
  • Dynamically adjusting an indication of a transmission position of the aperiodic reference signal wherein, for the scheduled UE, the UE-specific DCI indication is indicated by the group common PDCCH for the non-scheduled non-scheduled UEs; and semi-static for the SPS (semi-persistence scheduling, semi-static Scheduling) scheduling and grant-free UE data transmission re-using DCI to schedule new resources, or indicating the suspension of the current transmission; for ZP-CSI-RS, retaining transmission data;
  • the fixed resource priority of the semi-static configuration is higher than the resource priority of the DCI notification
  • the transmission direction and transmission content are determined according to pre-configured information or proprietary DCI information.
  • a data transmission apparatus which is applied to a first site, and includes: a configuration module configured to configure configuration information of each time unit in a period, where the configuration information includes: a transmission direction and a transmission content of each of the time units; a notification module configured to notify the second site of the configuration information; and a communication module configured to perform data transmission and reception with the second site according to the configuration information.
  • the configuration module includes: a determining unit configured to determine a transmission period; a first configuration unit configured to configure a transmission resource configured for uplink transmission in the transmission period, and configured to be configured as a downlink in the transmission period a transmission resource of the transmission; the second configuration unit is configured to configure a transmission direction in the transmission period, wherein the transmission direction includes at least one of the following: an uplink transmission direction and a downlink transmission direction.
  • a data transmission apparatus which is applied to a user equipment UE, and includes: a receiving module, configured to receive configuration information of a first station configuration, where the configuration information includes: a transmission direction and Transmitting content; the communication module is configured to perform data transmission and reception according to the configuration information by the UE.
  • the configuration information is generated by semi-static and dynamic configuration.
  • the communication module includes: a communication unit configured to determine, according to a slot format or information priority indicated by the most recently received dynamic DCI signaling, when the semi-static and dynamically configured information conflicts Transmission direction and transmission content.
  • a storage medium is also provided.
  • the storage medium is configured to store program code configured to perform the following steps:
  • Configuring configuration information of each time unit in a period where the configuration information includes: a transmission direction and a transmission content in each time unit;
  • Data is transmitted and received with the second station according to the configuration information.
  • the first station configures configuration information of each time unit in a transmission period, where the configuration information includes: a transmission direction and a transmission content in each time unit; and notifying the configuration information to the second station; Configuration information
  • the first site and the second site perform data transmission and reception. Since each time unit is configured with a transmission direction and a transmission content, a combination of a semi-static configuration method and a dynamic (signaling) notification method effectively avoids cross-link interference problems.
  • FIG. 1 is a flow chart of a data transmission method according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of another data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of another data transmission apparatus according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a base station side according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a Group common PDCCH in an embodiment of the present invention.
  • FIG. 7 is a time slot structure diagram of a combination of Slot aggregation and dynamic TDD in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a slot that is aggregated in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the impact of dynamic TDD on scheduling according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a slot configuration in an embodiment of the present invention.
  • 11 is a schematic diagram of a base station transmitting scheduling information indicating that a transport block TB is transmitted in four slots according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of the remaining slot transmitting URLLC data or scheduling a new TB in the embodiment of the present invention.
  • FIG. 13 is a schematic diagram of scheduling retransmission by mini-slot when one of the CBG transmission errors is performed in the embodiment of the present invention.
  • FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 the first station configures configuration information of each time unit in a transmission period, where the configuration information includes: a transmission direction and a transmission content in each time unit;
  • Step S104 the first station notifies the configuration information to the second site
  • Step S106 The first station performs data transmission and reception with the second station according to the configuration information.
  • the first station configures configuration information of each time unit in a transmission period, where the configuration information includes: a transmission direction and a transmission content in each time unit; the first station notifies the configuration information to the second station; The first station performs data transmission and reception with the second site according to the configuration information.
  • the configuration information of the time unit is configured in only one transmission period (within the appropriate period), and the manner in which only the configuration information in one transmission period is configured in the time unit may be referred to as a semi-static configuration manner, that is, in this embodiment.
  • the transmission direction and transmission content are configured for each time unit in a semi-static configuration.
  • the first station configures the configuration information in one transmission period for the time unit, the first station notifies the second station, and the notification manner can be regarded as a dynamic notification manner. It can be seen that, in this embodiment, a combination of a semi-static configuration mode and a dynamic (signaling) notification mode can effectively avoid the cross-link interference problem.
  • the first station of the foregoing step may be a network side network element, such as a base station, an evolved base station, or a small base station; or may be another network element that can serve as a base station, such as a central node.
  • the second site is a terminal side device, such as a user equipment UE, a mobile phone, etc., but is not limited thereto.
  • FIG. 2 is a flowchart of another data transmission method according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 the second station receives the configuration information of the first site configuration, where the configuration information includes: a transmission direction and a transmission content;
  • Step S204 The second station performs data transmission and reception according to the configuration information.
  • the time unit may be one of the following: a subframe, a time slot, a mini-slot, an orthogonal frequency division multiplexing symbol, an aggregation time slot (a time slot in 5G).
  • the configuration information of each time unit configured by the base station in one cycle includes:
  • the implementation manner of determining one transmission period includes one of: configuring a transmission period by operation management and maintenance; configuring a transmission period by using radio resource control signaling; configuring a transmission period by using a physical broadcast channel; and notifying transmission by using a system information block Period; the transmission period is configured by the medium access control unit; the transmission period is obtained during the random access procedure.
  • configuring the transmission resource for the uplink transmission in the transmission period includes: configuring, by using the system information block or the high layer signaling, a time unit for the uplink transmission, a transmission period sounding reference signal, a physical uplink control channel, And physical random access channels.
  • configuring the transmission resource for downlink transmission in the transmission period includes: configuring a time unit fixed for downlink transmission, a transmission synchronization signal block, and a transmission period channel state indication reference signal in the transmission period.
  • configuring the transmission direction within the transmission period includes one of the following:
  • the semi-static configuration or a predefined manner is used to determine whether the first or first two symbols of each time unit are downlink, and the last symbol or the last two symbols are uplink;
  • the candidate time unit structure is semi-statically configured, and the notification structure index is performed using the group common downlink control channel or the medium access control unit.
  • the group common downlink control channel is sent to a group of second sites, and each group of second sites is divided by one of the following methods:
  • the first station after configuring the configuration information for the multiple time units, sends the configuration information to the multiple second sites through the group common downlink control channel.
  • the first station sends configuration information to the same or similar geographical locations, the same or similar beam directions, the same or similar traffic sizes, the same or similar time-frequency domain resources, and/or coverage through a group common downlink control channel.
  • the same multiple second sites It is also possible that the second stations in the same group of second stations need to meet the same or similar geographical locations, the beam directions are the same or similar, the traffic volume is the same or similar, the time-frequency domain resources are the same or similar, and the coverage is the same. At least one of these elements.
  • the group identity information of the group common downlink control channel is obtained in an initial access process or configured by using a radio resource control signaling or a media access control unit.
  • the group common downlink control channel carries at least one of the following information:
  • the information related to the time slot structure, the scheduling request resource information, the group hybrid automatic repeat request command, the correct response feedback information, and the reserved bit field information which are used to indicate the indication information of the resources that are destroyed by the ultra low latency high reliability communication.
  • the potential transmission direction information of each time unit, the resource of the non-periodic channel status indication reference signal, is used to indicate the indication information of the location of the candidate downlink control channel in the mini slot.
  • the configuration information includes a time slot aggregation and a flexible duplex combined time slot structure, and the time slot structure is determined by semi-statically configuring the length or level of the time slot aggregation.
  • the time slot structure includes one of the following: the uplink and downlink control information and the group common downlink control channel are present in each time slot, and each time slot has the same structure; the downlink control information is only in the first aggregation time slot. Appears, the uplink control information appears only in the last aggregation time slot, and the remaining resources are resources for data transmission; the uplink and downlink control information and the group common downlink control channel appear in each time slot, and the structure of each time slot is different.
  • the time slot structure includes uplink and downlink control information and the group common downlink control channel occurs in each time slot, and the structure of each time slot is the same
  • the structure of the multiple time slots is configured by semi-static configuration, and multiple The aggregation level of the time slot is determined by the group common downlink control channel.
  • the downlink control information is only present in the first aggregation time slot, the uplink control information is only present in the last aggregation time slot, and the remaining resources are data transmission resources, and semi-static radio resource control is adopted.
  • the signaling configuration mode configures the aggregation level and the resource location of the group common downlink control channel.
  • the time slot structure includes uplink control information and downlink control information
  • the group common downlink control channel appears in each time slot
  • the first station configures the time slot structure pattern through high-level signaling semi-statically, and passes through the group public downlink.
  • the control channel indicates the structure of each time slot in the aggregated time slot in a manner indicated by the bitmap, wherein the structure of each time slot is different.
  • the slot aggregation configuration information is used to transmit a transport block; or is used to retransmit a coded block group; or part is used for ultra-low latency and high reliability communication services, except for ultra low latency and high reliability communication services. The rest of the part is used to retransmit the coded block group.
  • the first station performs data transmission and reception with the second site according to the configuration information, including:
  • the data transmitted in the original direction is processed in one of the following ways: discarding; if the next same transmission The time slot of the direction has spare resources, and is transferred to the next time slot for free transmission; if the time slot of the second station in the same transmission direction is the same as the frequency position of the next station in the same transmission direction, the same frequency as the next time slot of the same transmission direction
  • the second site of the domain location performs multi-user multiplexing for transmission; re-instructs the new data transmission location; pre-configures two time domain locations during initial scheduling, and transmits data in the first available time domain location; scheduling current time
  • the second station of the slot performs the preset time sensing on the frequency domain resource scheduled by the first orthogonal frequency division multiplexing symbol in the next time slot of the same transmission direction, and performs data transmission in the case of successful sensing; In the case of successful perception, the transmission is abandoned or the modulation coding or
  • the first station performs data transmission and reception with the second station according to the configuration information, and includes: for dynamic time division duplexing, when the uplink and downlink attributes of the time slot in which the original acknowledgment/non-acknowledgment feedback is changed cannot be transmitted, the original confirmation is performed.
  • /Non-acknowledgment is processed according to one of the following methods: discarding; acknowledgment/non-confirmation with the next slot is transmitted by channel selection or multiplexing; all acknowledgment/non-acknowledgement feedback is configured according to a reference uplink and downlink transmission direction Feedback; all deferred; the downlink control information gives the slot position or symbol position of the new acknowledgment/non-acknowledgment feedback.
  • configuration information is generated by semi-static and dynamic configuration.
  • the second station performs data transmission and reception according to the configuration information, including: when the semi-static and dynamically configured information conflicts, the second station according to the recently received dynamic downlink control information signaling or the configured priority of the to-be-transmitted information. To determine the direction of transmission and the content of the transmission.
  • the second station determines, according to the recently received dynamic downlink control information signaling or the configured priority of the information to be transmitted, the transmission direction and the transmission content, including one of the following:
  • the scheduled second station performs data transmission according to the latest scheduling signaling or slot format.
  • the transmission position of the reference signals in different directions is punctured according to the semi-statically configured signaling, and the punched position is transmitted in the uplink or downlink.
  • Performing a dynamic adjustment indication on a transmission location of the aperiodic reference signal where, for the scheduled second station, the UE indicates the downlink control information indication, and the non-scheduled second station indicates the group common downlink control channel; for the semi-persistent scheduling
  • the data transmission of the scheduling and non-scheduling second station re-uses the downlink control information to schedule new resources, or indicates the suspension of the current transmission; for the zero-power channel status indication reference signal, the transmission data is reserved;
  • the transmission direction and the transmission content are determined according to the group common downlink control channel;
  • the fixed resource priority of the semi-static configuration is higher than the resource priority of the downlink control information notification
  • the transmission direction and transmission content are determined according to pre-configured information or proprietary downlink control information.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a data transmission device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • FIG. 3 is a structural block diagram of a data transmission apparatus according to an embodiment of the present invention, which is applied to a base station, as shown in FIG. 3, the apparatus includes:
  • the configuration module 30 is configured to configure configuration information of each time unit in a period, where the configuration information includes: a transmission direction and a transmission content in each time unit;
  • the notification module 32 is configured to notify the configuration information to the second site
  • the communication module 34 is configured to perform data transmission and reception with the second station according to the configuration information.
  • the configuration module includes: determining a submodule configured to determine a transmission period; and configuring, by the first configuration submodule, a transmission resource configured to be uplink transmission in the transmission period, and configured to be configured as a downlink transmission in the transmission period.
  • the second configuration sub-module is configured to configure a transmission direction in a transmission period, where the transmission direction includes at least one of the following: an uplink transmission direction and a downlink transmission direction.
  • the data transmission device shown in FIG. 3 may be a network side network element, such as a base station, an evolved base station, or a small base station; or may be another network element that can serve as a base station, such as a central node.
  • a network side network element such as a base station, an evolved base station, or a small base station
  • another network element that can serve as a base station, such as a central node.
  • FIG. 4 is a structural block diagram of another data transmission apparatus according to an embodiment of the present invention, which is applied to a UE, as shown in FIG. 4, the apparatus includes:
  • the receiving module 40 is configured to receive configuration information of the first site configuration, where the configuration information includes: a transmission direction and a transmission content;
  • the communication module 42 is configured to perform data transmission and reception according to the configuration information by the second station.
  • configuration information is generated through semi-static and dynamic configuration.
  • the communication module 42 is configured to determine a transmission direction and a transmission content according to a slot format or an information priority indicated by the most recently received dynamic downlink control information signaling when the semi-static and dynamically configured information conflicts.
  • the data transmission device shown in FIG. 4 may be a terminal side network element, such as a user equipment UE, a mobile phone, or the like.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • This embodiment is an optional embodiment according to the present invention, and is used to describe the present application in detail in conjunction with a specific embodiment:
  • This embodiment considers some small and fine aspects of flexible duplex or dynamic TDD (time division duplex), and the overall includes the following:
  • the terminal is designed as follows:
  • the slot structure design combined with slot aggregation and flexible duplexing, and configuration to the UE.
  • FIG. 5 is a flowchart of a data transmission method applied to a base station according to an embodiment of the present invention.
  • a data transmission process is as follows: FIG. 5: First, a base station pre-configures a transmission direction of each time unit in one cycle. And transfer the content, and then re-allocate or adjust these resources and notify the terminal in time, and send and receive data according to the information.
  • the time slot structure of the embodiment (including the transmission direction and the content of the transmission at a certain time) is determined and indicated, and includes:
  • OAM Operaation Management Maintenance
  • RRC Radio Resource Control
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • PUCCH Physical Uplink Control Channel
  • CSI/ Beam related reporting SR request
  • PRACH Physical Random Access Channel
  • Certain time units within a predefined period are fixed as downlink slots (slots) for downlink transmission SS block (synchronization signal block), periodic CSI-RS (channel status indication reference signal).
  • SS block synchronization signal block
  • periodic CSI-RS channel status indication reference signal
  • the transmission period is set to 5 ms
  • the first slot in the configuration transmission period is downlink
  • the third slot is fixed as the uplink.
  • the time unit in the embodiment of the present application includes a slot, a mini-slot (mini slot), and an orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the above is a scheme in which the transmission direction of part of the time domain resource is fixedly configured, which can be regarded as a part of the time domain resource in which the transmission direction in the semi-static configuration does not change in one transmission period, except that this part of the time domain resource is configured.
  • the time domain resource also includes (others not) a time domain resource that does not need to be configured with a fixed transmission direction.
  • the transmission direction configuration may be performed by at least one of the following methods one to six.
  • Manner 1 Semi-statically configure a potential time slot structure. If there is an adjustment requirement, it is indicated by dynamic DCI (Radio Resource Control) (the time slot structure needs to be adjusted by DCI). If there is no subsequent dynamic DCI, then follow Semi-statically configured transmission direction or time slot structure for data transmission. Further, for the scheduled UE, the slot structure configured by the first station is notified to the scheduled UE by UE-specific (UE-specific) DCI, and for the non-scheduled UE, the non-scheduled is notified by the group common PDCCH. UE.
  • DCI Radio Resource Control
  • Manner 2 Structure of the remaining flexible slot portion of the current slot by DCI of each slot The structure indicates at least the transmission direction of the remaining resource portion of each slot in the transmission period.
  • Manner 3 The configuration in one configuration period is notified by the group common PDCCH or the common PDCCH.
  • the time unit that changes the transmission direction may notify the scheduled UE through the UE-specific PDCCH, and the corresponding time unit used changes the change of the transmission direction.
  • the UE specific DCI is used to indicate the starting symbol position and offset of the scheduled PDSCH/PUSCH, or the occupied symbol position.
  • the group common DCI is used to perform a unified indication, first indicating the offset of the slot, and then indicating the length.
  • Manner 4 In a manner similar to Auxiliary Authorized Access (LAA), the structure of the current and subsequent one or more time slots is notified by the group PDCCH, and the structure indicates at least the transmission direction of the time slot.
  • LAA Auxiliary Authorized Access
  • the public DCI indicates the structure of the current slot and the structure of the next slot (current slot type, next slot type), wherein the slot type only includes uplink, downlink, downlink, and uplink.
  • the control region is blindly detected, and then the data start and length are obtained by the UE-specific DCI, thereby determining the structure of each mixed slot.
  • the first or first two symbols of each slot are downlink, and the last symbol or the last two symbols are uplink.
  • a slot it includes a plurality of symbols, and among the plurality of symbols included therein, other symbols may be regarded as remaining symbols except for the symbols configured in a semi-static configuration or a predefined manner.
  • the communication itself there is a signal with an uplink or downlink direction.
  • the PUSCH itself is an uplink signal
  • the PDSCH itself is a downlink signal, and there is no need to additionally indicate its transmission direction, but it needs to indicate its occupied position on the slot.
  • a signal having an upstream or downstream direction can be regarded as a residual symbol having an intrinsic property.
  • the PUSCH For the remaining symbols, indicating the transmission direction of the remaining symbols according to the intrinsic attributes of the remaining symbols, and indicating, by the UE-specific UL grant, the offset of the scheduled PUSCH relative to the last symbol of the scheduled DCI, that is, by the UL grant.
  • the starting position of the PUSCH indicating the scheduling is the last symbol position of the called DCI. It can be understood that the length of the PUSCH in this solution may be semi-statically configured or dynamically indicated.
  • the starting position of the reference signal is the data channel start symbol position, and the offset thereof, that is, the length of the reference signal is semi-statically configured or dynamically indicated according to the actual situation.
  • the symbol positions other than the PUSCH, PDSCH, and reference signal positions in the remaining symbols default to gap.
  • Manner 6 Pre-defined or semi-statically configure several slot structures according to the deployment or application scenario, and then the base station notifies the terminal to the terminal through the group common PDCCH, or notifies the terminal to the terminal through the Medium Access Control (MAC) Command Entity (CE).
  • MAC Medium Access Control
  • CE Medium Access Control
  • the behavior of the UE includes:
  • the direction and content of the transmission are determined according to the slot format or information priority indicated by the most recently received dynamic DCI signaling. Specifically, the following situations are included:
  • Case 1 Semi-static configuration of some slots or mini-slots is uplink.
  • the uplink dynamics may be adjusted to downlink due to the URLLC service.
  • the periodic CSI-RS channel state information reference signal
  • SRS probe reference signal
  • SS block synchronization information block
  • SPS semi-static scheduling
  • grant-free (scheduled) resource transmission have an impact. This effect can be eliminated by the following rules.
  • the scheduled UE performs PDSCH/PUSCH transmission according to the latest scheduling signaling or slot format, and puncts the transmission position of the reference signal in the original direction according to the semi-statically configured signaling. Then, when the data is transmitted upstream or downstream, the data transmitted at the location is destroyed.
  • the indication When the indication is downlink, there is a periodic CSI-RS transmission. There is no periodic SRS and periodic CSI/beam related feedback transmission. When the indication is uplink, there is no periodic CSI-RS transmission, and there will be periodic SRS and periodicity. Transmission of CSI feedback.
  • CSI-RS aperiodic reference signal
  • SRS aperiodic reference signal
  • PUCCH aperiodic reference signal
  • the non-scheduled (non-scheduled) UEs are indicated by the common PDCCH for measurement by the UE-specific DCI indication.
  • DCI is used to schedule new resources, or to indicate the suspension of this transmission.
  • ZP-CSI-RS Zero Power Channel Status Indication Reference Signal
  • Case 2 The rules for the collision of the unicast DCI information and the slot common indication information in the group common PDCCH can be as shown in Table 1:
  • the slot format indication information in the group common PDCCH indicates that the transmission direction of a slot is the downlink transmission direction (DL).
  • the UE determines that the transmission direction of the slot is the downlink transmission direction;
  • the UE When the unicast DCI information indicates that the transmission direction of the slot is also the uplink transmission direction (UL), contrary to the indication by the group common PDCCH, the UE does not define the transmission direction of the slot, and is considered to be an error (Error);
  • the UE determines, according to the indication of the group common PDCCH, that the transmission direction of the slot is the downlink transmission direction.
  • Case 3 The transmission direction is determined according to the priority of the transmitted data.
  • Semi-statically configured fixed resources have higher priority than DCI.
  • Prioritize the transmitted information for example: ACK/NACK, beam feedback, DCI related information is the highest priority, SRS related to the measurement reference signal, CSI-RS resource priority, and finally scheduled Business data is of the lowest priority.
  • the terminal receives the dynamic indication information indicating that the resource originally used for the uplink ACK/NACK feedback is dynamically adjusted to the downlink data channel transmission, the DCI information is considered invalid.
  • the structure or transmission direction indicated by the new DCI shall prevail.
  • the slot structure is determined according to pre-configured or proprietary DCI information.
  • the scenario related to the group common PDCCH includes: determining the group (that is, determining which second sites can transmit the configuration information through the same group common PDCCH):
  • a group of UEs are simultaneously scheduled for multi-slot scheduling
  • the group ID information can be configured through RRC signaling of the initial access procedure.
  • the contents of the group common PDCCH are configurable, at least related to the attributes of the group.
  • Information related to the slot structure scheduling request resource information, group HARQ-ACK feedback information, and reserved bit field information. And some of the following information:
  • the Group common PDCCH indicates the resources that are dropped for the URLLC.
  • the group common PDCCH indicates the slot structure to the edge UE, and then the edge UE notifies other base stations to perform interference coordination.
  • the Group common PDCCH carries resources of aperiodic CSI-RS, which is convenient for UE measurement.
  • FIG. 6 is a schematic diagram of the Group common PDCCH candidate location in the embodiment of the present invention. As shown in FIG. 6, the UCI is uplink control information.
  • the following includes:
  • the length or level of semi-statically configured slot aggregation for example, four candidate lengths or levels of configurations 2, 4, 8, and 16.
  • 2 bits are used to indicate the length or level of slot aggregation.
  • the blind check of the PDCCH can be reduced for the slot of the UE that does not need to be scheduled.
  • the number of slots that need to schedule UE transmissions is given by grant.
  • FIG. 7(a), (b) and (c) are time slot structure diagrams after Slot aggregation and dynamic TDD are combined in the embodiment of the present invention, such as 7(a), (b) and (c), in FIGS. 7(a), (b) and (c), the lateral direction can be regarded as a time domain resource, and the longitudinal direction can be regarded as a frequency domain resource:
  • Case c The uplink and downlink control and the GC PDCCH appear in each slot, but the structure of each slot is different.
  • the structure of the slot can be semi-statically configured, and the aggregation level is given by the GC PDCCH.
  • the location of the GC PDCCH can be configured at the same time when the aggregation level is configured in a semi-static RRC signaling configuration, and the signaling overhead is the smallest.
  • the start and end symbols of each slot data may be different.
  • the high-level signaling semi-statically configures a pattern of some slot structures, and the GC PDCCH indicates the structure of each slot by means of a bitmap.
  • NR (5G, fifth generation mobile communication technology) PDCCH, NR PDSCH, CSI-RS, NR PUCCH, and the like are respectively in time. Occupancy in the domain and frequency domain.
  • the aggregated slot is used to transmit a transport block TB, or to retransmit a CBG (coded block group), or a part of it is used to transmit a URLLC service, and other slots are used to transmit a retransmitted CBG.
  • CBG coded block group
  • FIG. 8 is a schematic structural diagram of a slot that is aggregated in the embodiment of the present invention. As shown in FIG. 8, one TB is initially scheduled to be transmitted in four aggregated slots, and the terminal in the middle is notified by the group common PDCCH to the four slots in the aggregation. The first slot is modified to an uplink-led (UL) structure for transporting URLLC services. The next three slots are used for retransmission of one of the previous TBs.
  • UL uplink-led
  • the present embodiment is to explain the transmission feedback (HARQ-ACK feedback). How to determine the location.
  • FIG. 9 is a schematic diagram of the impact of dynamic TDD on scheduling according to an embodiment of the present invention, and the impact on scheduling transmission is as shown in FIG. 9:
  • the meaning of the dynamic TDD in this embodiment refers to: dynamically adjusting by the TDD method when the transmission direction of the time unit is changed, and solving a series of transmissions due to the change by the adjustment. problem.
  • the MU (multi-user) multiplexing can be performed with the UE in the same frequency domain location of slot8, and then transmitted.
  • Two time domain locations are pre-configured during initial scheduling, and data is sent at the first available time domain location.
  • a 25 microsecond LBT (sensing) is performed on the frequency domain resource scheduled by the first OFDM (Orthogonal Frequency Division Multiplexing) symbol of slot 8. If the sensing is successful, the UE can perform data transmission. If no perceptual success, the UE abandons transmission, or the UE transmits with low MCS (Modulation Coding) or power.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the ACK/NACK may be processed according to at least one of the following schemes:
  • the ACK/NACK with the next slot is transmitted by channel selection or multiplexing.
  • the slot position or symbol position of the new ACK/NACK feedback is given in the DCI.
  • the cross-link interference problem can be effectively avoided by combining semi-static and dynamic signaling.
  • important control class information for example, for information such as PDCCH, uplink control information, and ACK/NACK, the location of the control class information and the sending method thereof are indicated, and how to implement dynamic uplink and downlink data transmission according to service requirements is solved. problem.
  • This embodiment describes a method of notifying the transmission direction.
  • the semi-statically configured transmission period is an integer multiple of a certain number, such as ⁇ 2, 4, 6, 8 ⁇ , ⁇ 4, 8, 12, 16 ⁇ or ⁇ 5, 10, 15, 20 ⁇ , the transmission period
  • the transmission period that has been set can be obtained through OAM configuration, or through RRC signaling configuration, or through broadcast PBCH configuration, or through SIB notification, or in a random access procedure.
  • the base station notifies the UE through the SIB:
  • the last slot in the transmission period is fixed as an uplink slot, which is used for the uplink transmission period SRS, PUCCH (further, mainly includes periodic CSI/beam related reporting, SR request), PRACH, SRS in the slot structure, and short PUCCH.
  • SRS uplink transmission period
  • PUCCH frequently, mainly includes periodic CSI/beam related reporting, SR request
  • PRACH Physical Uplink Control Channel
  • SRS in the slot structure mainly includes periodic CSI/beam related reporting, SR request
  • short PUCCH short PUCCH.
  • the time domain location is also semi-statically configured and TDM.
  • the first slot in the predefined transmission period is a downlink slot for downlink transmission broadcast information, SS block (synchronization signal block), and periodic CSI-RS.
  • the uplink and downlink subsets can be adjusted to be aligned with the existing configuration of the LTE, that is, the same transmission direction as the transmission direction of the LTE slot.
  • the transmission period can be fixed to 5 ms, the first slot in the transmission period is configured to transmit downlink data, and the third slot is configured to transmit uplink data (information).
  • the manner of indicating the direction of the slot transmission includes:
  • Manner 1 Semi-static configuration of a potential time slot structure requires dynamic adjustment.
  • the DCI is required to indicate this adjustment. If there is no subsequent dynamic DCI, the configuration is semi-static. Further, for the scheduled UE, the scheduling of the slot structure by the UE scheduled by the UE-specific DCI is notified, and for the non-scheduled UE, the adjustment of the slot structure by the non-scheduled UE is notified by the group common PDCCH.
  • Manner 2 The structure of the remaining flexible resource part of the time slot is notified by the DCI of each time slot, and the structure indicates at least the transmission direction of the remaining resource part of each time slot in the transmission period.
  • Manner 3 The base station notifies the transmission content and direction of each time slot in a transmission period by using the group common PDCCH or the common PDCCH. For the case that the UE is the scheduled UE, the UE is specifically notified by the UE-specific.
  • the starting symbol position and offset of the scheduled PDSCH/PUSCH, or the occupied symbol position are indicated by the UE specific DCI.
  • the group common DCI is used to perform a unified indication indicating the offset and indication length of the slot.
  • Case 2 The granularity of the resources used for uplink and downlink is mini-slot (small slot) level or symbol level.
  • the transmission period of semi-static configuration is the length (time unit) of 1 slot.
  • the PDCCH and PDSCH of each UE occupy different lengths on the slot. Therefore, after the base station notifies the transmission content and direction of each time slot in a transmission period by using the group common PDCCH or the common PDCCH, the UE needs to notify the uplink and downlink transmission direction of each symbol in the slot through UE-specific DCI signaling (flexible Resources). If there is no gap between the PDSCH and the PDCCH, the length of the control resource set or the end symbol position of the control resource set is indicated, or the start symbol position of the PDSCH is indicated; the length of the control resource set may be specifically regarded as the length of the PDCCH.
  • the structure of at least one time slot is notified by common downlink control information, and the structure of the at least one time slot may be the current time slot and the structure of one or more subsequent time slots ( The current slot type, the next slot type), where the slot type only includes the uplink, downlink, downlink, and uplink.
  • the control region is blindly detected, and then the data start and length are obtained by the UE-specific DCI, thereby determining the structure of each mixed slot.
  • the first or first two symbols of each slot are downlink, and the last symbol or the last two symbols are uplink.
  • the attribute of the remaining symbols indicates that the scheduled UE is indicated by the UE-specific UL grant with an offset of the scheduled PUSCH relative to the last symbol of the scheduled DCI.
  • the length of the PUSCH can be semi-statically configured or dynamically indicated.
  • the position of the reference signal is also an offset from the start of the data channel position.
  • the length of the control resource set such as the PDCCH, may be configured in any of the following two ways:
  • Mode 1 (Alt1): semi-static configuration through high-level signaling
  • Mode 2 (Alt2): indicated by the group common PDCCH.
  • Manner 2 Pre-defined or semi-statically configure several slot structures according to the deployment or application scenario, and then group common PDCCH notification.
  • FIG. 10 is a schematic diagram of a slot configuration structure in the embodiment of the present invention.
  • the intermediate configured downlink symbol is used to send downlink control information indicating multiplexing of eMBB and URLLC.
  • Mode 3 Or in the LAA mode, the granularity of the allocation is changed from sub-frame to symbol.
  • Manner 4 The UE of the downlink control channel is blindly detected by the UE, the UE-specific DCI indicates the starting symbol position of the scheduled PDSCH/PUSCH, and the symbol position of the short PUCCH is a semi-static configuration.
  • This embodiment describes the data transmission method in the embodiment of the present invention from the terminal side.
  • the terminal receives the transmission period in the uplink and downlink transmission direction determined by the base station side.
  • the transmission period of the transmission direction is configured by using RRC signaling, or configured by using a broadcast PBCH, or notified by an SIB, or by a random access procedure, or by configuration of a MAC CE.
  • the base station notifies the terminal of the transmission period, and the terminal receives the transmission period.
  • the information received by the terminal receives the transmission direction and the transmission content in addition to the reception transmission period.
  • the terminal determines the transmission direction and the transmission content of the transmission unit according to some slot structure information in the transmission period sent by the base station, that is, the terminal determines the transmission unit used for the uplink and downlink transmission according to the indication of the base station side. Transmission direction and transmission content.
  • the slot structure information and the transmitted content are determined to be received by at least one of the following:
  • High-level RRC signaling system messages, common downlink control information, group common downlink control information, and proprietary downlink control information. That is, the terminal receives the configuration information by using at least one of the above information.
  • the UE Based on this information, the UE performs PRACH random access, system information reception, reference signal transmission and measurement, and channel estimation on the determined resources (the transmission unit designated by the terminal).
  • the receiving information of the terminal is: the terminal starts blind detection on the common downlink control information, the group common downlink control information, and the proprietary downlink control information on the first OFDM symbol of the downlink time slot or the uplink and downlink dominant time slot. When it is detected, it is determined that the configuration information is received.
  • the uplink service data is transmitted and the downlink service data is received according to the proprietary scheduling information and the information of the upper semi-static configuration. Specifically, the terminal performs uplink and downlink service data transmission according to the received configuration information.
  • one transmission block TB scheduled to be transmitted in multiple time slots when one of the time slots is transmitted incorrectly, the next retransmission only emphasizes the content of the time slot. It is not necessary to retransmit the contents of other time slots in which no transmission error has occurred.
  • the terminal processes the data according to some rules.
  • the specific rules are as shown in Table 1 in Embodiment 3 above.
  • This embodiment describes a case of a plurality of slot aggregation scheduling.
  • FIG. 11 is a schematic diagram of the base station transmitting scheduling information indicating that one transport block TB is performed in four slots according to an embodiment of the present invention. Schematic diagram of the transmission, a TB is first transmitted in four slots, two CBGs.
  • the specific feedback and retransmission processing combined with the dynamic TDD is as follows:
  • FIG. 12 is a schematic diagram of the remaining slot transmission URLLC data or scheduling a new TB in the embodiment of the present invention.
  • FIG. 13 is a scheduling retransmission by mini-slot when one of the CBG transmission errors is in the embodiment of the present invention.
  • Example 1 One DCI schedules all CBGs of one TB (all DCIs are scheduled by one DCI), indicating downlink control information of all CBGs.
  • the content of the downlink control information is divided into three categories.
  • the first category the content of all CBG public DCI (this part of the DCI content is the same for all CBGs): including MCS, resource allocation indicates the bit field.
  • the second category the content of each CBG independent DCI (this part of the DCI content is different for each CBG): including NDI/ACK/NACK, the HARQ process index indicates the bit field.
  • the third category DCI content used only for some of the slots (some information in DCI is only used for partial CBG or slot): Some information bit fields are included as follows.
  • DM-RS transmission uplink demodulation reference signal transmission: DMRS can be shared by multiple slots.
  • SRS transmission Indicates which slot is transmitted, whether it is transmitted once or multiple times.
  • the location of the reference signal in the multi-slot scheduling can be given by the group common PDCCH. (including the position and specific symbol position in the scheduled multiple slots)
  • Example 2 One DCI schedules one CBG of multiple CBGs in one TB, and one TB is scheduled by multiple DCI information.
  • certain information can be configured in an SPS-like manner, such as the number of scheduled slots and the pattern of frequency hopping.
  • the time-frequency resource can be re-instructed by means of two-step indication.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Configure configuration information of each time unit in a period where the configuration information includes: a transmission direction and a transmission content in each time unit;
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs configuration information configured for each time unit in one cycle according to the stored program code in the storage medium, where the configuration information includes: in each time unit Transmission direction and transmission content;
  • the processor is configured to notify the terminal according to the stored program code in the storage medium
  • the processor performs data transmission and reception with the terminal according to the configuration information according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the first station configures configuration information of each time unit in a transmission period, where the configuration information includes: a transmission direction and a transmission content in each time unit; and notifies the configuration information to the second station;
  • the first site of the information and the second site perform data transmission and reception. Since each time unit is configured with a transmission direction and a transmission content, the cross-link interference problem is effectively avoided by combining the semi-static configuration mode and the dynamic (signaling) notification mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种数据传输方法及装置,其中,该方法包括:第一站点配置一个传输周期内每个时间单元的配置信息,其中,所述配置信息包括:在所述每个时间单元的传输方向和传输内容;所述第一站点将所述配置信息通知给第二站点;所述第一站点根据所述配置信息与所述第二站点进行数据收发。通过本发明,解决了相关技术中存在的跨链路干扰问题。

Description

数据传输方法、装置、存储介质及处理器
相关申请的交叉引用
本申请基于申请号为201710313815.9、申请日为2017年05月05日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的内容在此以引入方式并入本申请。
技术领域
本发明涉及通信领域,具体而言,涉及一种数据传输方法、装置及计算机存储介质及处理器。
背景技术
5G(New Radio,简称为NR)通讯中为了实现前向兼容,支持业务自适应是一个必然趋势,业务自适应指的是允许上下行链路传输方向半静态配置和/或动态配置,从而满足业务负载需求或者匹配业务负载变化。要想实现业务自适应,如何支持或实现灵活双工或动态时分双工(Time-Driven Development,简称为TDD)是首先要解决的一个问题,同时,还要考虑动态改变带来的跨链路干扰问题。该问题目前在第三代合作伙伴计划(3GPP)标准讨论中还没有完成。在无线接口物理层(RAN1)4月份的88bis会议中如何确定某个时刻的传输方向及传输内容目前还没有完整的结论。
另外,由于动态改变上下行带来的调度及混合自动重传请求HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)过程的相关问题也需要考虑。例如,基站在时隙1发送一个DCI(Downlink Control Information,下行控制信息)调度时隙3和时隙4为上行数据传输,但在时隙2突然来了一个优先级高的下行数据要发送,如一个下行的URLLC(Reliability low latency,超低时延高可靠)业务的数据包,或者测量到干扰比较强,则为了 满足业务需求这个时候基站应如何处理、如何通知UE以及对应调度数据的HARQ处理问题都需要考虑。
相关技术中的长期演进(LTE)的TDD的配置都是通过SIB(System Information Block,***信息块)通知的,并且上下行配置仅有预定义的7种配置。基站一次配置某个传输方向后,至少在一段时间内将不会发生改变。虽然后来LTE R12阶段引入了eIMTA(Enhanced Interference Traffic Adaptation,增强干扰管理和话务适配),子帧结构改变的频率增加,但是上下行传输方向仍然是原来的固定7种中的一种。对于改变子帧结构带来的HARQ的问题,eIMTA采用定义参考配置的方式来解决的。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种数据传输方法、装置、计算机存储介质及处理器,以至少解决相关技术中存在的跨链路干扰问题。
根据本发明的一个实施例,提供了一种数据传输方法,包括:配置一个周期内每个时间单元的配置信息,其中,所述配置信息包括:在所述每个时间单元的传输方向和传输内容;将所述配置信息通知给第二站点;根据所述配置信息第一站点与所述第二站点进行数据收发。
可选地,配置一个周期内每个时间单元的配置信息包括:确定一个传输周期;配置所述传输周期内用于上行传输的传输资源,以及配置所述传输周期内用于下行传输的传输资源;配置所述传输周期内的传输方向,其中,所述传输方向至少包括以下之一:上行传输方向,下行传输方向。
可选地,确定一个传输周期包括以下之一:通过操作管理维护OAM(operation administrator and maintenance)配置所述传输周期;通过无线资源控制RRC(Radio Resource Control)信令配置所述传输周期;通过广播物理广播信道PBCH(Physical broadcast Channel)配置所述传输周期;通 过***信息块SIB通知所述传输周期;通过随机接入过程中获得所述传输周期。
可选地,配置所述传输周期内用于上行传输的传输资源包括:通过SIB或者高层信令配置所述传输周期内用于上行传输的时间单元,传输周期探测参考信号SRS(Sounding Reference Signal),物理上行控制信道PUCCH(Physical Uplink Control Channel),物理随机接入信道PRACH(Physical Random Access Channel)。
可选地,配置所述传输周期内用于下行传输的传输资源包括:配置所述传输周期内固定用于下行传输的时间单元,和用于下行传输同步信号块SS(Synchronization Signal)block,传输周期信道状态指示参考信号CSI-RS(Channel State Information-Reference Signal)的时间单元。
可选地,配置所述传输周期内的传输方向,将所述配置信息通知给第二站点,包括以下之一:半静态配置每个时间单元的传输方向或每个时间单元潜在的时隙结构,在存在时间单元有调整传输方向或时隙结构需求时通过动态下行控制信息DCI来指示所述调整的传输方向;配置每个时隙在传输周期内本时隙剩余的灵活资源部分的结构并通过DCI通知,所述结构至少指示了传输周期内每个时隙的剩余资源部分的传输方向;通过组公共下行控制信道group common PDCCH或者公共PDCCH通知一个传输周期内的传输方向,以及通过UE-specific通知调度UE改变的传输方向;采用授权频谱辅助接入LAA的方式,确定当前时间单元和以后时间单元的结构,所述结构至少能够指示时间单元的传输方向;采用半静态配置或者预定义方式确定每个时间单元的第一个或前二个符号为下行,最后一个符号或最后两个符号为上行,并通知;半静态配置候选的时间单元结构,并使用group common PDCCH或者MAC CE进行通知结构索引。
可选地,所述group common PDCCH发送给一组第二站点,能够接收由同一个组公共下行控制信道发送的时间单元结构的同一组第二站点中的 各个第二站点间通过至少以下方式之一形成一组第二站点:根据地理位置划分;根据波束划分;根据业务量大小划分;根据资源划分;根据覆盖范围划分多个第二站点为一组第二站点。
可选地,所述group common PDCCH的组标识ID信息在初始接入过程中获得或者通过RRC信令进行配置。
可选地,所述group common PDCCH携带如下信息至少之一:与时隙结构相关的信息,调度请求资源信息,组混合自动重传请求命令正确应答HARQ-ACK反馈信息,预留比特域信息,用于指示为超低时延高可靠URLLC打掉的资源的指示信息,用于指示时隙结构给边缘UE的指示信息,非周期CSI-RS的资源,用于指示mini-slot中候选PDCCH的位置的指示信息。
可选地,所述配置信息包括时隙聚合和灵活双工结合的时隙结构。
可选地,通过半静态配置时隙聚合的长度或等级确定所述时隙结构。
可选地,所述时隙结构包括以下之一:上下行控制信息及Group common PDCCH在每个时隙都出现,且每个时隙的结构相同;控制信息仅在第一个聚合的时隙出现;上下行控制信息及Group common PDCCH在每个时隙都出现,且每个时隙的结构是不同。
可选地,在所述时隙结构包括上下行控制信息及Group common PDCCH在每个时隙都出现,且每个时隙的结构相同时,多个时隙的结构通过半静态配置,多个时隙的聚合等级通过Group common PDCCH确定。
可选地,在所述时隙结构包括控制信息仅在第一个聚合的时隙出现时,采用半静态RRC信令配置的方式在配置聚合等级的时候同时配置Group common PDCCH的位置。
可选地,在所述时隙结构包括上下行控制信息及Group common PDCCH在每个时隙都出现,且每个时隙的结构是不同时,通知高层信令半静态配置图样,Group common PDCCH通过位图的方式指示每个时隙的结 构。
可选地,聚合的时隙用于传输一个传输块TB(transmission block);或者用于重传一个编码块组CBG(code block group);或者其中的一部分用于URLLC业务,其他资源用于重传的CBG。
可选地,所述第一站点根据所述配置信息与所述第二站点进行数据收发包括:在半静态配置调度及HARQ-ACK(Hybrid Automatic Repeat Request,混合自动重传请求;ACK,命令正确应答)反馈定时的情况下,当时隙方向发生改变时,对原方向传输的数据根据以下方式之一进行处理:丢弃;如果下一个时隙有空余的资源,转到下一个时隙空余资源传输;如果跟下一个时隙调度UE频域位置相同,跟下一个时隙同一频域位置的UE做多用户复用;重新指示新的数据传输位置;在初始调度时预配置两个时域位置,在可用的第一个位置上发送数据;调度当前时隙的UE在下一个时隙第一个正交频分复用OFDM符号且调度的频域资源上做预设时间的感知,在感知成功的情况下,进行数据传输;在没有感知成功的情况下,放弃传输或者以预设阈值以下的调制编码方式MCS(Modulation and Coding Scheme)或功率发送。
可选地,所述第一站点根据所述配置信息与所述第二站点进行数据收发包括:对于NR动态TDD,当原确认/非确认ACK/NACK反馈的时隙属性发生改变不能传的情况下,对所述原ACK/NACK根据以下方式之一进行处理:不反馈或放弃;跟下一个时隙的ACK/NACK采用信道选择或者复用的方式发送;所有后续的反馈都按照一个参考的配置反馈;都依次递延;在DCI给出新的ACK/NACK反馈的时隙位置或符号位置。
根据本发明的一个实施例,提供了另一种数据传输方法,包括:接收第一站点配置的配置信息,其中,所述配置信息包括:传输方向和传输内容;所述UE根据所述配置信息进行数据收发。
可选地,所述配置信息通过半静态和动态配置生成。
可选地,所述UE根据所述配置信息进行数据收发包括:在半静态和动态配置的信息有冲突时,所述UE根据最近接收到的动态DCI信令或者配置的待传输信息的优先级来确定传输方向及传输内容。
可选地,所述UE根据最近接收到的动态DCI信令或者配置的待传输信息的优先级来确定传输方向及传输内容包括以下之一:
调度的UE按照最新的调度信令或者时隙格式进行数据传输,对于原来不同方向的参考信号的传输位置按照半静态配置的信令进行打孔,打掉在打孔位置在上行或者下行传输的数据;
对非周期参考信号的传输位置进行动态调整指示,其中,对于调度的UE,通过UE-specific DCI指示,对于非调度non-scheduled UEs通过group common PDCCH指示;对于SPS(semi-persistence scheduling,半静态调度)调度及grant-free UE的数据传输重新采用DCI调度新的资源,或者指示本次传输的中止;对于ZP-CSI-RS,保留传输数据;
在没有接收到UE单播的DCI指示,或者单播的DCI中没有指示传输方向信息时根据group common PDCCH确定传输方向及传输内容;
半静态配置的确保的固定资源优先级高于DCI通知的资源优先级;
按照预配置的信息或者专有的DCI信息确定传输方向及传输内容。
根据本发明的另一个实施例,提供了一种数据传输装置,应用在第一站点,包括:配置模块,配置为配置一个周期内每个时间单元的配置信息,其中,所述配置信息包括:在所述每个时间单元的传输方向和传输内容;通知模块,配置为将所述配置信息通知给第二站点;通信模块,配置为根据所述配置信息与所述第二站点进行数据收发。
可选地,所述配置模块包括:确定单元,配置为确定传输周期;第一配置单元,配置为配置所述传输周期内配置为上行传输的传输资源,以及配置所述传输周期内配置为下行传输的传输资源;第二配置单元,配置为配置所述传输周期内的传输方向,其中,所述传输方向至少包括以下之一: 上行传输方向,下行传输方向。
根据本发明的另一个实施例,提供了一种数据传输装置,应用在用户设备UE,包括:接收模块,配置为接收第一站点配置的配置信息,其中,所述配置信息包括:传输方向和传输内容;通信模块,配置为所述UE根据所述配置信息进行数据收发。
可选地,所述配置信息通过半静态和动态配置生成。
可选地,所述通信模块包括:通信单元,配置为在半静态和动态配置的信息有冲突时,所述UE根据最近接收到的动态DCI信令指示的时隙格式或者信息优先级来确定传输方向及传输内容。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储配置为执行以下步骤的程序代码:
配置一个周期内每个时间单元的配置信息,其中,所述配置信息包括:在所述每个时间单元的传输方向和传输内容;
将所述配置信息通知给第二站点;
根据所述配置信息与所述第二站点进行数据收发。
通过本发明实施例,第一站点配置一个传输周期内每个时间单元的配置信息,其中,配置信息包括:在每个时间单元的传输方向和传输内容;将配置信息通知给第二站点;根据配置信息第一站点与第二站点进行数据收发。由于每个时间单元都配置了传输方向和传输内容,通过半静态配置方式和动态(信令)通知的方式二种相结合的方式,有效避免跨链路干扰问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种数据传输方法的流程图;
图2是根据本发明实施例的另一种数据传输方法的流程图;
图3是根据本发明实施例的一种数据传输装置的结构框图;
图4是根据本发明实施例的另一种数据传输装置的结构框图;
图5是本发明实施例在基站侧流程图;
图6是本发明实施例中Group common PDCCH的示意图;
图7是本发明实施例中Slot聚合和动态TDD结合后的时隙结构图;
图8是本发明实施例中聚合的slot的结构示意图;
图9是本发明实施例动态TDD对调度影响的示意图;
图10是本发明实施例中slot配置结构示意图;
图11是本发明实施例基站发送调度信息指示一个传输块TB在四个slot进行传输的示意图;
图12是本发明实施例中的剩余slot传输URLLC数据或者调度新的TB的示意图;
图13是本发明实施例中当其中一个CBG传输错误时通过mini-slot进行调度重传的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种数据传输方法,图1是根据本发明实施例的一种数据传输方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,第一站点配置一个传输周期内每个时间单元的配置信息,其中,配置信息包括:在每个时间单元的传输方向和传输内容;
步骤S104,第一站点将配置信息通知给第二站点;
步骤S106,第一站点根据配置信息与第二站点进行数据收发。
通过上述步骤,第一站点配置一个传输周期内每个时间单元的配置信息,其中,配置信息包括:在每个时间单元的传输方向和传输内容;第一站点将配置信息通知给第二站点;第一站点根据配置信息与第二站点进行数据收发。其中,为时间单元仅配置一个传输周期内(适当周期内)的配置信息,这种为时间单元仅配置一个传输周期内的配置信息的方式可称为半静态配置方式,也即本实施例中采用半静态配置方式为每个时间单元都配置了传输方向和传输内容。此外,本实施例中只要第一站点为时间单元配置了一个传输周期内的配置信息,第一站点就通知至第二站点,这种通知方式可视为一种动态通知方式。可见,本实施例中,采用半静态配置方式和动态(信令)通知方式两种相结合的方式,可以有效避免跨链路干扰问题。
可选地,上述步骤的执行主体第一站点可以是网络侧网元,如基站,演进基站,小基站;还可以为可充当基站的其它网元如中心节点。第二站点是终端侧设备,如用户设备UE,手机等,但不限于此。
在本实施例中提供了另一种数据传输方法,图2是根据本发明实施例的另一种数据传输方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,第二站点接收第一站点配置的配置信息,其中,配置信息包括:传输方向和传输内容;
步骤S204,第二站点根据配置信息进行数据收发。
时间单元可以是以下之一:子帧,时隙,迷你时隙,正交频分复用符号,聚合时隙(5G中的时隙)。
可选地,基站配置一个周期内每个时间单元的配置信息包括:
S11,确定一个传输周期;
S12,配置传输周期内用于上行传输的传输资源,以及配置传输周期内用于下行传输的传输资源;
S13,配置传输周期内的传输方向,其中,传输方向至少包括以下之一:上行传输方向、下行传输方向。
在本实施例中,确定一个传输周期的实现方式包括以下之一:通过操作管理维护配置传输周期;通过无线资源控制信令配置传输周期;通过物理广播信道配置传输周期;通过***信息块通知传输周期;通过媒体接入控制单元配置传输周期;在随机接入过程中获得传输周期。
在本实施例中,配置传输周期内用于上行传输的传输资源包括:通过***信息块或者高层信令配置传输周期内用于上行传输的时间单元、传输周期探测参考信号、物理上行控制信道、和物理随机接入信道。
可选地,配置传输周期内用于下行传输的传输资源包括:配置传输周期内固定用于下行传输的时间单元、传输同步信号块、和传输周期信道状态指示参考信号。
在根据本实施例的可选实施方式中,配置传输周期内的传输方向包括以下之一:
半静态配置每个时间单元的传输方向或每个时间单元潜在的时隙结构,在存在时间单元有调整传输方向或时隙结构需求时通过动态下行控制信息来指示调整的时间单元的传输方向;
配置每个时隙在传输周期内本时隙剩余的灵活资源部分的结构并通过DCI通知,所述结构至少指示了传输周期内每个时隙的剩余资源部分的传输方向;
通过组公共下行控制信道或者公共通知一个传输周期内的传输方向,以及在时间单元的传输方向发生改变时通过UE专有的下行控制信息通知调度第二站点改变传输方向的时间单元;
采用授权频谱辅助接入的方式,通知当前时间单元和下一个或多个时间单元的结构;
采用半静态配置或者预定义方式确定每个时间单元的第一个或前二个符号为下行,最后一个符号或最后两个符号为上行;
半静态配置候选的时间单元结构,并使用组公共下行控制信道或者媒体接入控制单元进行通知结构索引。
在根据本实施例的可选实施方式中,组公共下行控制信道发送给一组第二站点,每组第二站点通过以下方式之一进行划分:
根据地理位置划分;
根据波束划分;
根据业务量大小划分;
根据资源划分;
根据覆盖范围划分。
这里,第一站点在为多个时间单元配置好配置信息后,通过组公共下行控制信道将配置信息发送至多个第二站点。本方案中第一站点通过一个组公共下行控制信道将配置信息发送至地理位置相同或相近、波束方向相同或相近、业务量大小相同或相近、时频域资源相同或相近、和/或覆盖范围相同的多个第二站点。也即可划分在同一组第二站点中的各个第二站点之间需要满足地理位置相同或相近、波束方向相同或相近、业务量大小相同或相近、时频域资源相同或相近、覆盖范围相同这些要素中的至少一个要素。
可选的,组公共下行控制信道的组标识信息在初始接入过程中获得或者通过无线资源控制信令或者媒体接入控制单元进行配置。
在根据本实施例的可选实施方式中,组公共下行控制信道携带如下信息至少之一:
与时隙结构相关的信息,调度请求资源信息,组混合自动重传请求命 令正确应答反馈信息,预留比特域信息,用于指示为超低时延高可靠通讯打掉的资源的指示信息,潜在的每个时间单元的传输方向信息,非周期信道状态指示参考信号的资源,用于指示迷你时隙中候选下行控制信道的位置的指示信息。
可选的,配置信息包括时隙聚合和灵活双工结合的时隙结构,通过半静态配置时隙聚合的长度或等级确定时隙结构。
可选的,时隙结构包括以下之一:上下行控制信息及组公共下行控制信道在每个时隙都出现,且每个时隙的结构相同;下行控制信息仅在第一个聚合时隙出现,上行控制信息仅在最后一个聚合时隙出现,剩余的资源为数据传输的资源;上下行控制信息及组公共下行控制信道在每个时隙都出现,且每个时隙的结构不同。
可选的,在时隙结构包括上下行控制信息及组公共下行控制信道在每个时隙都出现,且每个时隙的结构相同时,多个时隙的结构通过半静态配置,多个时隙的聚合等级通过组公共下行控制信道确定。
可选的,在时隙结构包括下行控制信息仅在第一个聚合时隙出现,上行控制信息仅在最后一个聚合时隙出现,剩余的资源为数据传输的资源时,采用半静态无线资源控制信令配置的方式配置聚合等级以及组公共下行控制信道的资源位置。
可选的,在时隙结构包括上行控制信息、下行控制信息,且组公共下行控制信道在每个时隙都出现,第一站点通过高层信令半静态配置时隙结构图样,通过组公共下行控制信道以位图的指示方式指示聚合时隙中每个时隙的结构,其中,每个时隙的结构不同。
可选的,时隙聚合的配置信息用于传输一个传输块;或者用于重传一个编码块组;或者一部分用于超低时延高可靠通讯业务,除超低时延高可靠通讯业务之外的其他部分用于重传编码块组。
可选的,第一站点根据配置信息与第二站点进行数据收发包括:
在半静态配置调度及组混合自动重传请求命令正确应答反馈定时的情况下,时隙传输方向发生改变,则对在原方向传输的数据采用以下方式之一进行处理:丢弃;如果下一个相同传输方向的时隙有空余的资源,转到下一个时隙空余资源进行传输;如果与下一个相同传输方向的时隙调度第二站点频域位置相同,与下一个相同传输方向的时隙同一频域位置的第二站点做多用户复用进行传输;重新指示新的数据传输位置;在初始调度时预配置两个时域位置,在第一个可用的时域位置上发送数据;调度当前时隙的第二站点在下一个相同传输方向的时隙第一个正交频分复用符号所调度的频域资源上做预设时间的感知,在感知成功的情况下,进行数据传输;在没有感知成功的情况下,放弃传输或者以预设阈值以下的调制编码方式或功率传输。
可选的,第一站点根据配置信息与第二站点进行数据收发包括:对于动态时分双工,当原确认/非确认反馈所在时隙的上下行属性发生改变不能传的情况下,对原确认/非确认根据以下方式之一进行处理:丢弃;跟下一个时隙的确认/非确认采用信道选择或者复用的方式发送;所有的确认/非确认反馈都按照一个参考的上下行传输方向配置反馈;都依次递延;在下行控制信息给出新的确认/非确认反馈的时隙位置或符号位置。
对应的,在第二站点侧,配置信息通过半静态和动态配置生成。
可选的,第二站点根据配置信息进行数据收发包括:在半静态和动态配置的信息有冲突时,第二站点根据最近接收到的动态下行控制信息信令或者配置的待传输信息的优先级来确定传输方向及传输内容。
在根据本实施例的可选实施方式中,第二站点根据最近接收到的动态下行控制信息信令或者配置的待传输信息的优先级来确定传输方向及传输内容包括以下之一:
调度的第二站点按照最新的调度信令或者时隙格式进行数据传输,对于原来不同方向的参考信号的传输位置按照半静态配置的信令进行打孔, 打掉打孔位置在上行或者下行传输的数据;
对非周期参考信号的传输位置进行动态调整指示,其中,对于调度的第二站点,通过UE专有的下行控制信息指示,对于非调度第二站点通过组公共下行控制信道指示;对于半静态调度调度及免调度第二站点的数据传输重新采用下行控制信息调度新的资源,或者指示本次传输的中止;对于零功率信道状态指示参考信号,保留传输数据;
在没有接收到第二站点单播的下行控制信息指示,或者单播的下行控制信息中没有指示传输方向信息时根据组公共下行控制信道确定传输方向及传输内容;
半静态配置的确保的固定资源优先级高于下行控制信息通知的资源优先级;
按照预配置的信息或者专有的下行控制信息确定传输方向及传输内容。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种数据传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现 也是可能并被构想的。
图3是根据本发明实施例的一种数据传输装置的结构框图,应用在基站,如图3所示,该装置包括:
配置模块30,配置为配置一个周期内每个时间单元的配置信息,其中,配置信息包括:在每个时间单元的传输方向和传输内容;
通知模块32,配置为将配置信息通知给第二站点;
通信模块34,配置为根据配置信息与第二站点进行数据收发。
可选的,配置模块包括:确定子模块,配置为确定一个传输周期;第一配置子模块,配置为配置传输周期内配置为上行传输的传输资源,以及配置传输周期内配置为下行传输的传输资源;第二配置子模块,配置为配置传输周期内的传输方向,其中,传输方向至少包括以下之一:上行传输方向,下行传输方向。
图3所示的数据传输装置可以为网络侧网元,如基站、演进基站,小基站;还可以为可充当基站的其它网元如中心节点。
图4是根据本发明实施例的另一种数据传输装置的结构框图,应用在UE,如图4所示,该装置包括:
接收模块40,配置为接收第一站点配置的配置信息,其中,配置信息包括:传输方向和传输内容;
通信模块42,配置为第二站点根据配置信息进行数据收发。
可选的,配置信息通过半静态和动态配置生成。
所述通信模块42,配置为在半静态和动态配置的信息有冲突时,根据最近接收到的动态下行控制信息信令指示的时隙格式或者信息优先级来确定传输方向及传输内容。
图4所示的数据传输装置可以为终端侧网元,如用户设备UE,手机等。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器 中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本实施例是根据本发明的可选实施例,用于结合具体的实施方式对本申请进行详细说明:
本实施例针对灵活双工或动态TDD(时分双工)的一些小的细的方面进行考虑,整体包括如下:
如何确定某个传输单元的数据传输方向及内容,并通知给终端。
当两次配置的传输方向不同的时候,对终端进行如下设计:
组公共下行控制信道(group common PDCCH)结合动态TDD需求的设计;
时隙聚合与灵活双工结合后的时隙结构设计,以及配置给UE。
对半静态配置的HARQ定时、动态TDD的调度及HARQ处理。
图5是本发明实施例实现应用于基站中的数据传输方法的流程图,对于基站侧,数据传输的流程如下图5所示:首先,基站预配置一个周期内的每个时间单元的传输方向及传输内容,然后对这些资源进行重配或调整并及时的通知给终端,并根据这些信息进行数据收发。
本实施例的时隙结构(包括某个时刻的传输方向及传输的内容)确定及指示,包括:
先通过以下方式之一确定一个传输周期:
通过OAM(操作管理维护)配置,或者通过RRC(无线资源控制)信令配置的,或者通过广播PBCH(物理广播信道)配置的,或者通过SIB(***信息块)通知的,或者通过随机接入过程中获得。其中,所涉及的配置传输周期,就是预先设置一个传输周期,如在RRC信令中设置,在PBCH信令中设置;或者对于预先设置好的传输周期在随机接入过程中获得已设置好的传输周期。
然后,再通过SIB或者高层信令配置该周期内的某些时间单元用于上 行,以及配置传输周期SRS(探测参考信号),PUCCH(进一步的,PUCCH(物理上行控制信道)主要承载周期CSI/beam相关的上报,SR请求),PRACH(物理随机接入信道)。
预定义周期内的某些时间单元固定为下行slot(时隙),用于下行传输SS block(同步信号块),周期CSI-RS(信道状态指示参考信号)。特殊的,对于与LTE(长期演进)临频的情况下,将传输周期设置为5ms,配置传输周期内的第一个slot为下行,配置第三个slot固定为上行。
本申请实施例中的时间单元包括一个slot,一个mini-slot(迷你时隙),一个正交频分复用(OFDM)符号。
以上为部分时域资源的传输方向被固定配置的方案,其可视为半静态配置中的传输方向在一个传输周期内不会发生变化的一部分时域资源,除了这部分时域资源,被配置的时域资源还包括(其他非)不需要配置固定传输方向的时域资源,对于这部分时域资源(剩余资源),可通过如下方式一至六中至少一种方案进行传输方向的配置。
方式一:半静态配置一个潜在的时隙结构,如果有调整需求则通过动态DCI(无线资源控制)来指示(由DCI来指示时隙结构需要调整),如果没有后续的动态DCI,则就按照半静态配置的传输方向或时隙结构进行数据传输。进一步的,对于调度的UE,第一站点配置的时隙结构,通过UE-specific(UE专有的)的DCI通知给调度的UE,对于非调度的UE,通过group common PDCCH通知给非调度的UE。
方式二:通过每个时隙的DCI通知本时隙剩余的灵活时隙部分的结构所述结构至少指示了传输周期内每个时隙的剩余资源部分的传输方向。
方式三:通过group common PDCCH或者公共PDCCH通知一个配置周期内的配置,对于传输方向发生改变的时间单元可通过UE-specific PDCCH通知调度的UE,其使用的相应时间单元改变了传输方向的改变。
与调度方式结合:
对于自时隙调度self-slot scheduling,用UE specific DCI指示调度的PDSCH/PUSCH的起始符号位置和偏移量、或者占用的符号位置。
对于跨时隙调度cross-slot scheduling,用group common DCI来进行统一指示,首先指示slot的偏移量,然后再指示长度。
方式四:采用类似辅助授权接入(LAA)的方式,通过组PDCCH通知当前及后续一个或多个时隙的结构,该结构至少指示了时隙的传输方向。
公共DCI指示当前slot的结构及下一个slot的结构(当前slot类型,下一个slot类型)其中slot类型仅包含上行,下行,下行主导,上行主导。
进一步,对于上下行主导,先盲检控制区域,然后通过UE-specific DCI获得数据起始及长度,从而确定每个混合slot的结构。
方式五:
半静态的配置或者预定义方式每个slot的第一个或前二个符号为下行,最后一个符号或最后两个符号为上行。
可以理解,对于一个slot而言,其包括多个符号,在其所包括的多个符号中,除上述被半静态配置或预定义方式配置的符号之外,其它符号均可视为剩余符号。对于通信中的本身就有具有上行或下行方向的信号而言,如PUSCH本身就是上行信号,PDSCH本身就是下行信号,无需再额外指示其传输方向,但需要指示其在slot上的占用位置。本身就有具有上行或下行方向的信号可视为具有固有属性的剩余符号。
对于剩余符号,根据剩余符号的固有属性指示剩余符号的传输方向,对于调度的UE通过UE-specific的UL grant来指示调度的PUSCH相对于调度DCI最后一个符号的偏移量,也即通过UL grant来指示调度的PUSCH的起始位置为调用的DCI的最后一个符号位置。可以理解,本方案中的PUSCH的长度可以是半静态配置的,或者是动态指示的。
此外,对于参考信号,参考信号的起始位置是数据信道起始符号位置其偏移量也即参考信号的长度根据实际情况而半静态配置或动态指示。
在所述剩余符号中除PUSCH、PDSCH和参考信号位置之外的其它符号位置默认为gap(空)。
方式六:预定义或根据部署或应用场景半静态配置几种slot结构,然后基站通过group common PDCCH通知至终端,或者通过媒体访问控制(MAC)命令实体(CE)通知至终端。
本实施例在半静态和动态配置的信息有冲突的场景中,UE的行为包括:
考虑冲突时候解决的规则,总的原则如下:根据最近接收到的动态DCI信令指示的slot格式或者信息优先级来确定传输的方向及内容。具体包括以下几种情况:
情况一:半静态配置某些slot或mini-slot为上行,可能会由于URLLC业务需要将上行动态调整为下行,针对这种传输方向被改变的情况,存在对周期信号发送的影响,例如,对周期CSI-RS(信道状态信息参考信号)、SRS(探测参考信号)SS block(同步信息块)、SPS(半静态调度),grant-free(免调度)的资源传输存在影响。这种影响可通过如下规则进行消除。
规则:
调度的UE按照最新的调度信令或者slot格式进行PDSCH/PUSCH传输,对于原来不同方向的参考信号的传输位置按照半静态配置的信令进行打孔。然后上行,或者下行进行数据传输的时候要打掉该位置传输的数据。
或者:
当指示为下行的时候默认会有周期CSI-RS的传输,没有周期SRS及周期CSI/beam相关反馈的传输,当指示为上行的时候,没有周期CSI-RS的传输,会有周期SRS及周期CSI反馈的传输。
动态对非周期参考信号(CSI-RS,SRS,动态PUCCH)的传输位置进行调整指示:
对于调度的UE,通过UE-specific DCI指示,对于non-scheduled(非 调度)UEs通过common PDCCH指示以便于测量。
对于SPS调度及grant-free UE的数据传输重新采用DCI调度新的资源,或者指示本次传输的中止。
对于ZP-CSI-RS(零功率信道状态指示参考信号)不需要打掉。
情况二:单播DCI信息和group common PDCCH中slot格式指示信息碰撞时候的规则可以如表1所示:
表1
Figure PCTCN2018085305-appb-000001
Figure PCTCN2018085305-appb-000002
对于表1所述的内容,举其中一种情况进行说明,以方案对表1所表示信息进行理解,其它情况请对应理解。
以group common PDCCH中slot格式指示信息指示某个slot的传输方向为下行传输方向(DL)为例,
当单播DCI信息指示该slot的传输方向也为下行传输方向时,与前述group common PDCCH指示的相同,则UE确定该slot的传输方向为下行传输方向;
当单播DCI信息指示该slot的传输方向也为上行传输方向(UL)时,与前述group common PDCCH指示的相反,则UE不对该slot的传输方向进行定义,认为是错误的(Error);
当没有接收到单播PDCCH,或者DCI没有指示方向信息时,UE根据group common PDCCH的指示,确定该slot的传输方向为下行传输方向。
情况三:根据传输数据的优先级确定传输方向。
半静态配置的固定资源的优先级高于由DCI通知的。
对于传输的信息进行优先级划分,例如:ACK/NACK,beam反馈,DCI相关的信息为最高优先级的,与测量参考信号相关的SRS,CSI-RS的资源的优先级次之,最后调度的业务数据为最低优先级的。
如果终端收到动态指示信息指示原来用于上行ACK/NACK反馈的资源动态调整为下行数据信道传输,则认为该DCI信息无效。
情况四:
对于为grant-free传输半静态配置的资源,或者是multi-slot PDSCH接收,或者是multi-slot PUSCH/PUCCH传输,当接收到新的DCI为URLLC的时候,按照如下方案进行处理。
以新的DCI指示的结构或传输方向为准。
情况五:
当UE没有被配置为检测到group common PDCCH的时候,按照预配置的或者专有的DCI信息确定时隙结构。
本实施例在与group common PDCCH相关的场景中,包括:组的确定(也即确定哪些第二站点可通过同一group common PDCCH进行配置信息的传输):
根据地理位置划分;
根据波束方向(beam)划分;
根据业务量大小划分,同时执行一组UE进行多slot的调度;
根据资源(frequency/numerology resource)划分;
根据覆盖范围划分;
组ID信息可以通过初始接入过程的RRC信令配置。
因此group common PDCCH的内容是可配置的,至少跟group的属性有关系。
可以携带如下信息:
时隙结构相关的信息,调度请求资源信息,组HARQ-ACK反馈信息,预留比特域信息。以及如下的一些信息:
Group common PDCCH指示为URLLC打掉的资源。
Group common PDCCH指示slot结构给边缘UE,然后边缘UE通知给其他基站做干扰协调。
Group common PDCCH携带非周期CSI-RS的资源,便于UE测量。
还可以指示mini-slot中候选的PDCCH的位置,或者候选位置的激活去激活,图6是本发明实施例中Group common PDCCH候选位置的示意图,如图6所示,UCI是上行控制信息。
在本实施例的时隙聚合和灵活双工结合的场景中,包括:
半静态配置slot聚合的长度或等级,例如配置2、4、8、16四种候选长度或等级,在Group common PDCCH中,其中2比特用于指示slot聚合的长度或等级。对于不需要调度的UE的slot而言可以降低PDCCH的盲检。对于需要调度UE传输的slot的数目通过grant里面给出。
Slot聚合和动态TDD结合后的情况有下面三种时隙结构,图7(a)、(b)及(c)是本发明实施例中Slot聚合和动态TDD结合后的时隙结构图,如图7(a)、(b)及(c)所示,在图7(a)、(b)及(c)中横向方向可视为时域资源、纵向方向可视为频域资源:
情况a:上下行控制及GC(Group common)PDCCH在每个slot都出现,但每个slot的结构是一样的。
情况b:控制仅在一个slot出现。
情况c:上下行控制及GC PDCCH在每个slot都出现,但每个slot的结构是不一样的。
对应的,聚合的多个slot结构的指示方式:
对于a的情况,slot的结构可以半静态配置,聚合等级通过GC PDCCH给出。
对于b的情况,可以采用半静态RRC信令配置的方式在配置聚合等级的时候同时配置GC PDCCH的位置,信令开销最小。
对于c的情况,每个slot数据起始和结束符号可能不同。高层信令半静态配置一些时隙结构的图样,GC PDCCH通过bitmap(位图)的方式指示每个slot的结构。在图7(c)的Slot#n至Slot#n+3这四个时隙中,NR(5G,第五代移动通信技术)PDCCH、NR PDSCH、CSI-RS、NR PUCCH等信号各自在时域与频域上的占用情况。
进一步的,该聚合的slot用于传输一个传输块TB,或者用于重传一个CBG(编码块组),或者其中的一部分用于传输URLLC业务,其他slot 用于传输重传的CBG。
图8是本发明实施例中聚合的slot的结构示意图,如图8所示,初始调度一个TB在聚合的四个slot进行传输,中间对调度的终端通过group common PDCCH通知聚合的四个slot中的第一个slot修改为上行主导(UL)的结构,用于传输URLLC业务。后续三个slot用于之前TB中的一个CBG的重传。
本实施例动态TDD对调度及HARQ定时的影响处理的场景中,包括:
当调度信息和数据传输的定时量、以及数据传输与对应的HARQ-ACK反馈的定时量为半静态配置的一个值的时候,针对动态TDD,本实施例在于说明这个传输反馈(HARQ-ACK反馈)位置如何确定。
图9是本发明实施例动态TDD对调度影响的示意图,对于调度传输的影响如下图9所示:
可以理解,本实施例中的动态TDD的含义指的是:在时间单元的传输方向发生改变时,通过TDD方式进行动态调整,并通过该调整来解决由于这个改变而带来的一系列的传输问题。
假设半静态配置调度和PUSCH(物理上行共享信道)之间的slot定时为n+3,则原来slot4和slot5调度的PUSCH分别在slot7和slot8进行传输不会冲突。但由于动态TDD,slot7临时调整为下行,则对原来slot7的上行数据的处理可参见如下方案:
丢弃,slot8仅传输最近DCI调度的数据。
如果slot8有空余的资源,则可以转到slot8传输。
如果与slot8调度UE的频域位置相同,则可以与slot8同一频域位置的UE做MU(多用户)复用,然后再进行传输。
重新指示新的数据传输位置。
初始调度的时候预配置两个时域位置,在可用的第一个时域位置上发送数据。
对slot8的第一个OFDM(正交频分复用)符号所调度的频域资源做25微秒的LBT(感知),如果感知成功,则该UE就可以进行数据传输。如果没有感知成功,该UE放弃传输,或者该UE以低的MCS(调制编码方式)或功率发送。
对ACK/NACK(确认/非确认,或,命令正确应答/命令错误应答)的影响处理:
对于NR动态TDD,当原来的ACK/NACK反馈的slot属性发生改变不能传的时候,则可按照如下至少其中一种方案对该ACK/NACK进行处理:
不反馈或放弃,类似DTX(不连续发送)。
与下一个slot的ACK/NACK采用信道选择或者复用的方式发送。
类似eIMTA(LTE-A中的动态TDD),所有后续的反馈都按照一个参考的配置反馈。
都依次递延。
DCI里面给出新的ACK/NACK反馈的slot位置或符号位置。
根据本发明实施例,通过半静态和动态信令结合的方式可以有效避免跨链路干扰问题。特别是对于重要的控制类信息,例如,对于PDCCH、上行控制信息和ACK/NACK等信息,指示了这些控制类信息的位置及其发送方法,解决了如何根据业务需求实现动态上下行数据发送的问题。
针对本实施例的配置一个传输周期内的配置信息并通知的方案,对后续调度及HARQ的影响给出了相应的解决方案,保证了***的性能。
下面通过具体的应用实施例对一些过程的细节进行详细的说明:
应用实施例1:
本实施例对通知传输方向的方法进行说明。
1.半静态配置的传输周期为某个数的整数倍,如{2,4,6,8},{4,8,12,16}或{5,10,15,20},该传输周期可通过OAM配置,或者通过RRC信令配置,或者通过广播PBCH配置的,或者通过SIB通知,或者在随机接入过程中获 得已经设置好的该传输周期。
2.对于半静态固定的资源,基站通过SIB通知UE:
传输周期内的最后一个slot固定为上行slot,其用于上行传输周期SRS,PUCCH(进一步的,主要包括周期CSI/beam相关的上报,SR请求)、PRACH、该slot的结构中SRS以及short PUCCH的时域位置也是半静态配置的,并且是TDM的。
预定义传输周期内的第一个slot为下行slot,用于下行传输广播消息Broadcast information、SS block(同步信号块)、周期CSI-RS。
其他slot动态配置为上下行。
特殊的,对于与LTE临频的情况下,通过调整上下行子集,可以与LTE已有的配置对齐,也即采用与LTE时隙的传输方向相同的传输方向。
可以将传输周期固定为5ms,配置该传输周期内的第一个slot用于传输下行数据,配置第三个slot用于传输上行数据(信息)。
3.对于其他非固定传输方向的时域资源(剩余资源),指示slot传输方向的方式包括:
方式一:半静态配置一个潜在的时隙结构,需要存在动态调整,则需要通过DCI来指示这种调整,如果没有后续的动态DCI,则就按照半静态配置。进一步的,对于调度的UE,通过UE-specific的DCI通知调度的UE针对时隙结构的调整,对于非调度的UE,通过group common PDCCH通知非调度的UE针对时隙结构的调整。
方式二:由每个时隙的DCI通知本时隙剩余的灵活资源部分的结构,所述结构至少指示了传输周期内每个时隙的剩余资源部分的传输方向。
方式三:基站通过group common PDCCH或者公共PDCCH通知一个传输周期内的每个时隙的传输内容及方向;针对UE为调度的UE的情况,通过UE-specific通知调度的UE。
与调度方式结合:
对于self-slot scheduling,用UE specific DCI指示调度的PDSCH/PUSCH的起始符号位置和偏移量,或所占的符号位置。
对于cross-slot scheduling,用group common DCI来进行统一指示,指示slot的偏移量和指示长度。
情况二:固定用于上下行的资源粒度为mini-slot(迷你时隙)级别的或符号级别的,此时半静态配置的传输周期为1个slot的长度(时间单位)。
然后考虑低时延每个slot动态TDD结构。
对于下行主导的slot结构:
由于存在PDCCH和PDSCH资源共享,且每个UE的PDCCH和PDSCH在slot上所占用的长度不同。因此在基站通过group common PDCCH或者公共PDCCH通知一个传输周期内的每个时隙的传输内容及方向后,还需要通过UE-specific的DCI信令通知Slot内每个符号的上下行传输方向(灵活资源)。如果PDSCH和PDCCH之间没有gap,则指示控制资源集合的长度或者控制资源集合的结束符号位置,或者指示PDSCH的起始符号位置;控制资源集合的长度具体可以视为PDCCH的长度。
具体通知的方式:
类似LAA(授权频谱辅助接入)的方式,通过公共下行控制信息来通知至少一个时隙的结构,所述至少一个时隙的结构可以是当前时隙以及后续一个或者多个时隙的结构(当前slot类型,下一个slot类型),其中slot类型仅包含上行,下行,下行主导,上行主导。
进一步,对于上下行主导,先盲检控制区域,然后通过UE-specific DCI获得数据起始及长度,从而确定每个混合slot的结构。
其他的方式:
方式一:
半静态的配置或者预定义方式每个slot的第一个或前二个符号为下行,最后一个符号或最后两个符号为上行。
然后剩余的符号的属性指示,对于调度的UE通过UE-specific的UL grant来指示调度的PUSCH相对于调度DCI最后一个符号的偏移量。
PUSCH的长度可以是半静态配置的,或者是动态指示的。
同时参考信号的位置也是相对于数据信道起始符号位置的偏移量。
剩余的符号默认为gap。
对于非调度的UE,通过group common PDCCH通知:
对于DL dominant的slot通知duration of control resource set或者The end of control resource set或者,starting position of downlink data,
对于DL dominant的slot通知duration of UL。
其中,控制资源集合如PDCCH的长度配置可采用如下两种方式中的任意一种:
方式一(Alt1):通过高层信令半静态配置;
方式二(Alt2):通过group common PDCCH指示。
方式二:预定义或根据部署或应用场景半静态配置几种slot结构,然后group common PDCCH通知。
因为每个符号都有可能是UL,DL,blank,sidelink,如果每种情况都支持,则信令开销会很大,因此可以采用该指示方式来节省信令开销。至少包含下图10所示的几种slot配置结构,图10是本发明实施例中slot配置结构示意图。
中间配置的下行符号用于发送下行控制信息指示eMBB和URLLC的复用。
方式三:或者采用LAA的方式,分配的粒度由子帧改为符号。
方式四:下行控制信道的资源UE盲检得到,UE-specific DCI指示调度的PDSCH/PUSCH的起始符号位置,short PUCCH的符号位置为半静态配置。
应用实施例2:
本实施例从终端侧对本发明实施例中的数据传输方法进行描述。
终端接收由基站侧确定的在上下行传输方向上的传输周期。具体的,在基站侧,该传输方向的传输周期通过RRC信令配置的,或者通过广播PBCH配置的,或者通过SIB通知的,或者通过随机接入过程,或者从MAC CE的配置获得。基站将这个传输周期通知至终端,终端接收这个传输周期。
此外,终端接收的信息除了接收传输周期,还接收传输方向以及传输内容。其中,终端根据基站发送的传输周期内的一些时隙结构信息来确定某个/些传输单元的传输方向及传输内容,也即终端按照基站侧的指示来确定用于上下行传输的传输单元的传输方向及传输内容。
所述时隙结构信息及传输的内容通过以下至少之一确定接收的:
高层RRC信令,***消息,公共下行控制信息,组公共下行控制信息,专有下行控制信息。也即终端通过以上信息中的至少一种信息进行配置信息的接收。
基于此信息,UE在确定的资源(在终端指定的传输单元)上进行PRACH随机接入,***信息的接收、参考信号的发送与测量以及信道估计。
其中,终端进行配置信息的接收为:终端在下行时隙或上下行主导时隙的第一个OFDM符号上对公共下行控制信息,组公共下行控制信息,及专有下行控制信息开始进行盲检测,检测到时,确定接收到配置信息。
根据专有调度信息及高层半静态配置的信息进行上行业务数据的发送及下行业务数据的接收。具体的,终端根据接收到的配置信息进行上下行业务数据的传输。
其中,考虑到在上下行业务数据传输时,调度的一个传输块TB会在多个时隙进行传输,当其中一个时隙传输错误的时候,下次重传仅对该时隙的内容进行重传,不需要对其它没有发生传输错误的时隙的内容进行重传。
当调度的时隙传输方向发生改变的时候,终端按照一些规则对数据进行处理。具体的规则如上面实施例3中表一所示。
应用实施例3:
本实施例对多个slot聚合调度的情况进行说明。
当基站发送调度信息,该调度信息指示一个传输块TB在四个slot中进行传输的示意图如图11所示,图11是本发明实施例基站发送调度信息指示一个传输块TB在四个slot进行传输的示意图,一个TB初传在四个slot,两个CBG。具体反馈及重传的处理结合动态TDD如下:
假设bitmap反馈四比特的ACK/NACK,ACK/NACK指示1000,1000中000代表后三个CBG都传输错误,则基站下次对这三个错误的CBG进行一起重传,同时基站DCI指示第一个重传CBG的slot位置,且这三个传输错误的CBG的先后顺序不变,避免重传合并错误。如果slot聚合的数目是半静态配置的,在重传的四个Slot中,其中三个用于对错误的CBG进行重传,剩下的一个slot可以传输URLLC数据或者调度新的TB,如下图12所示,图12是本发明实施例中的剩余slot传输URLLC数据或者调度新的TB的示意图。
或者,当其中一个CBG传输错误的时候,通过mini-slot进行调度重传,如图13所示,图13是本发明实施例中当其中一个CBG传输错误时通过mini-slot进行调度重传的示意图。
其中,本实施例中的多slot调度信息设计如下:
实例1:一个DCI调度一个TB的所有CBG(所有DCI由一个DCI调度),指示所有CBG的下行控制信息。
将下行控制信息的内容分为三类。
第一类:所有CBG公共DCI的内容(这部分DCI内容所有CBG都相同):包括MCS,resource allocation指示比特域。
第二类:每个CBG独立DCI的内容(这部分DCI内容每个CBG都不 同):包括NDI/ACK/NACK,HARQ process index指示比特域。
第三类:只用于其中部分slot的DCI内容(DCI中的某些信息仅用于部分CBG或slot):包括如下的一些信息比特域。
DM-RS transmission(上行解调参考信号)传输:可以多个slot共用DMRS。
SRS transmission(信道探测参考信号):指示具体在哪个slot传输,传输一次还是多次。
CSI-RS的传输时域位置指示:
或者多slot调度中参考信号的位置可以通过group common PDCCH里面给出。(包括在调度的多个slot中的位置及具体符号位置)
实例2:一个DCI调度一个TB中多个CBG中的一个CBG,一个TB由多个DCI信息调度。
该方式对于基于CBG的重传实现起来方便一些。但是DCI开销比较大。
为节省信令开销,某些信息可以通过类似SPS的方式进行配置,例如调度的slot的数目,跳频的图样。
如果由于动态TDD,则可以通过两步指示的方式对时频资源重新指示。
实施例4
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,配置一个周期内每个时间单元的配置信息,其中,所述配置信息包括:在所述每个时间单元的传输方向和传输内容;
S2,将所述配置信息通知给终端;
S3,根据所述配置信息与所述终端进行数据收发。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random  Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行配置一个周期内每个时间单元的配置信息,其中,所述配置信息包括:在所述每个时间单元的传输方向和传输内容;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行将所述配置信息通知给终端;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行根据所述配置信息与所述终端进行数据收发。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
本领域内的技术人员应明白,本发明的实施例可提供为方法、***、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其 中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
本实施例中,第一站点配置一个传输周期内每个时间单元的配置信息,其中,配置信息包括:在每个时间单元的传输方向和传输内容;将配置信 息通知给第二站点;根据配置信息第一站点与第二站点进行数据收发。由于每个时间单元都配置了传输方向和传输内容,通过半静态配置方式和动态(信令)通知方式二种相结合的方式,有效避免跨链路干扰问题。

Claims (30)

  1. 一种数据传输方法,包括:
    配置一个传输周期内每个时间单元的配置信息,其中,所述配置信息包括:在所述每个时间单元的传输方向和传输内容;
    将所述配置信息通知给第二站点;
    根据所述配置信息第一站点与所述第二站点进行数据收发。
  2. 根据权利要求1所述的方法,其中,所述配置一个周期内每个时间单元的配置信息,包括:
    确定一个传输周期;
    配置所述传输周期内用于上行传输的传输资源、以及配置所述传输周期内用于下行传输的传输资源;
    配置所述传输周期内的传输方向,其中,所述传输方向至少包括以下之一:上行传输方向、下行传输方向。
  3. 根据权利要求2所述的方法,其中,通过以下方式之一确定所述传输周期:
    通过操作管理维护配置所述传输周期;
    通过无线资源控制信令配置所述传输周期;
    通过物理广播信道配置所述传输周期;
    通过***信息块通知所述传输周期;
    通过媒体接入控制单元配置所述传输周期;
    在随机接入过程中获得所述传输周期。
  4. 根据权利要求2所述的方法,其中,配置所述传输周期内用于上行传输的传输资源,包括:
    通过***信息块、或者高层信令配置所述传输周期内用于上行传输的时间单元、传输周期探测参考信号、物理上行控制信道、以及物 理随机接入信道。
  5. 根据权利要求2所述的方法,其中,配置所述传输周期内用于下行传输的传输资源,包括:
    配置所述传输周期内固定用于下行传输的时间单元、传输同步信号块以及传输周期信道状态指示参考信号。
  6. 根据权利要求2所述的方法,其中,配置所述传输周期内的传输方向,将所述配置信息通知给第二站点,包括以下之一:
    半静态配置每个时间单元的传输方向或每个时间单元潜在的时隙结构,通过动态下行控制信息来指示需要调整的时间单元的传输方向;
    配置每个时隙在传输周期内本时隙剩余的灵活资源部分的结构并通过DCI通知,所述结构至少指示了传输周期内每个时隙的剩余资源部分的传输方向;
    通过组公共下行控制信道或者公共通知时间单元在一个传输周期内的传输方向,以及通过UE专有的下行控制信息通知第二站点改变传输方向的时间单元;
    采用授权频谱辅助接入的方式,通知当前时间单元和下一个或多个时间单元的结构,所述结构至少能够指示时间单元的传输方向;
    采用半静态配置或者预定义方式确定每个时间单元的第一个或前二个符号为下行,最后一个符号或最后两个符号为上行,并通知;
    半静态配置候选的时间单元结构,所述结构至少能够指示时间单元的传输方向。
  7. 根据权利要求6所述的方法,其中,所述由组公共下行控制信道将半静态配置的候选的时间单元结构发送给一组第二站点,能够接收由同一个组公共下行控制信道发送的时间单元结构的同一组第二站点中的各个第二站点间通过至少以下方式之一形成一组第二站点:
    根据地理位置划分;
    根据波束划分;
    根据业务量大小划分;
    根据资源划分;
    根据覆盖范围划分多个第二站点为一组第二站点。
  8. 根据权利要求7所述的方法,其中,所述发送半静态配置的候选的时间单元结构的组公共下行控制信道具有预定的组标识信息,所述组标识信息在初始接入过程中获得或者通过无线资源控制信令或者媒体接入控制单元进行配置。
  9. 根据权利要求7所述的方法,其中,所述组公共下行控制信道携带如下信息至少之一:
    与时隙结构相关的信息,调度请求资源信息,组混合自动重传请求命令正确应答反馈信息,预留比特域信息,用于指示为超低时延高可靠通讯业务打掉的资源的指示信息,潜在的每个时间单元的传输方向信息,非周期信道状态指示参考信号的资源,用于指示迷你时隙中候选下行控制信道的位置的指示信息。
  10. 根据权利要求1所述的方法,其中,所述配置信息包括时隙聚合和灵活双工结合的时隙结构。
  11. 根据权利要求10所述的方法,其中,通过半静态配置时隙聚合的长度或等级确定所述时隙结构。
  12. 根据权利要求10所述的方法,其中,所述时隙结构包括以下之一:
    上、下行控制信息及组公共下行控制信道在每个时隙都出现,且每个时隙的结构相同;
    下行控制信息仅在第一个聚合时隙出现,上行控制信息仅在最后一个聚合时隙出现;
    上、下行控制信息及组公共下行控制信道在每个时隙都出现,且每 个时隙的结构不同。
  13. 根据权利要求10所述的方法,其中,在所述时隙结构包括上下行控制信息及组公共下行控制信道在每个时隙都出现,且每个时隙的结构相同时,多个时隙的结构通过半静态配置,多个时隙的聚合等级通过组公共下行控制信道确定。
  14. 根据权利要求10所述的方法,其中,在所述时隙结构包括下行控制信息仅在第一个聚合时隙出现,上行控制信息仅在最后一个聚合时隙出现时,采用半静态无线资源控制信令配置的方式配置聚合等级以及组公共下行控制信道的资源位置。
  15. 根据权利要求10所述的方法,其中,在所述时隙结构包括上行控制信息、下行控制信息,且组公共下行控制信道在每个时隙都出现时,第一站点通过高层信令半静态配置时隙结构,其中,基于组公共下行控制信道的位图的指示方式对时隙结构进行配置,所述指示方式用于指示聚合时隙中每个时隙的结构且指示为每个时隙的结构不同。
  16. 根据权利要求10所述的方法,其中,所述时隙聚合的配置信息用于传输一个传输块;或者用于重传一个编码块组;或者一部分配置信息用于传输超低时延高可靠通讯业务,除所述一部分配置信息之外的其他部分用于重传编码块组。
  17. 根据权利要求1所述的方法,其中,所述根据所述配置信息第一站点与所述第二站点进行数据收发,包括:
    在半静态配置调度及组混合自动重传请求命令正确应答反馈在定时时间内反馈的情况下,时隙传输方向发生改变,则对原方向传输的数据采用以下方式之一进行处理:
    丢弃;
    如果下一个相同传输方向的时隙有空余的资源,转到下一个时隙空 余资源进行传输;
    如果与下一个相同传输方向的时隙调度第二站点频域位置相同,与下一个相同传输方向的时隙同一频域位置的第二站点做多用户复用进行传输;
    重新指示新的数据传输位置;
    在初始调度时预配置两个时域位置,在第一个可用的时域位置上发送数据;
    对调度当前时隙的第二站点在下一个相同传输方向的时隙第一个正交频分复用符号所调度的频域资源上做预设时间的感知,在感知成功的情况下,进行数据传输;在没有感知成功的情况下,放弃传输或者以预设阈值以下的调制编码方式或功率传输。
  18. 根据权利要求1所述的方法,其中,所述根据所述配置信息第一站点与所述第二站点进行数据收发,包括:
    对于动态时分双工,当原确认/非确认反馈所在时隙的上下行属性发生改变不能传的情况下,对所述原确认/非确认根据以下方式之一进行处理:
    丢弃;
    与下一个时隙的确认/非确认采用信道选择或者复用的方式发送;
    所有的确认/非确认反馈都按照一个参考的上下行传输方向配置反馈;
    都依次递延;
    在下行控制信息给出新的确认/非确认反馈的时隙位置或符号位置。
  19. 根据权利要求1所述的方法,其中,所述时间单元包括以下之一:
    子帧,时隙,迷你时隙,正交频分复用符号,聚合时隙。
  20. 一种数据传输方法,包括:
    接收第一站点配置的配置信息,其中,所述配置信息包括:传输方向和传输内容;
    根据所述配置信息所述第二站点与所述第一站点进行数据收发。
  21. 根据权利要求20所述的方法,其中,所述配置信息通过半静态和动态配置生成。
  22. 根据权利要求21所述的方法,其中,所述根据所述配置信息所述第二站点进行数据收发,包括:
    在半静态和动态配置的信息有冲突时,所述第二站点根据最近接收到的动态下行控制信息信令或者配置的待传输信息的优先级来确定传输方向及传输内容。
  23. 根据权利要求22所述的方法,其中,所述第二站点根据最近接收到的动态下行控制信息信令或者配置的待传输信息的优先级来确定传输方向及传输内容包括以下之一:
    调度的第二站点按照最新的调度信令或者时隙格式进行数据传输,对于原来不同方向的参考信号的传输位置按照半静态配置的信令进行打孔,打掉在打孔位置在上行或者下行传输的数据;
    对非周期参考信号的传输位置进行动态调整指示,其中,对于调度的第二站点,通过UE专有的下行控制信息指示,对于非调度第二站点通过组公共下行控制信道指示;对于半静态调度及免调度第二站点的数据传输重新采用下行控制信息调度新的资源,或者指示本次传输的中止;对于零功率信道状态指示参考信号,保留传输数据;
    在没有接收到第二站点单播的下行控制信息指示,或者单播的下行控制信息中没有指示传输方向信息时根据组公共下行控制信道确定传输方向及传输内容;
    半静态配置的确保的固定资源优先级高于下行控制信息通知的资 源优先级;
    按照预配置的信息或者专有的下行控制信息确定传输方向及传输内容。
  24. 一种数据传输装置,应用在第一站点,包括:
    配置模块,配置为配置一个周期内每个时间单元的配置信息,其中,所述配置信息包括:在所述每个时间单元的传输方向和传输内容;
    通知模块,配置为将所述配置信息通知给第二站点;
    通信模块,配置为根据所述配置信息第一站点与所述第二站点进行数据收发。
  25. 根据权利要求24所述的装置,其中,所述配置模块包括:
    确定单元,配置为确定一个传输周期;
    第一配置单元,配置为配置所述传输周期内配置为上行传输的传输资源,以及配置所述传输周期内配置为下行传输的传输资源;
    第二配置单元,配置为配置所述传输周期内的传输方向,其中,所述传输方向至少包括以下之一:上行传输方向、下行传输方向。
  26. 一种数据传输装置,应用在用户设备第二站点,包括:
    接收模块,配置为接收第一站点配置的配置信息,其中,所述配置信息包括:传输方向和传输内容;
    通信模块,配置为所述第二站点根据所述配置信息进行数据收发。
  27. 根据权利要求26所述的装置,其中,所述配置信息通过半静态和动态配置生成。
  28. 根据权利要求27所述的装置,其中,所述通信模块,还配置为在半静态和动态配置的信息有冲突时,所述第二站点根据最近接收到的动态下行控制信息信令指示的时隙格式或者信息优先级来确定传输方向及传输内容。
  29. 一种存储介质,所述存储介质包括存储的程序,其中,所述 程序运行时执行权利要求1至23中任一项所述的方法。
  30. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至23中任一项所述的方法。
PCT/CN2018/085305 2017-05-05 2018-05-02 数据传输方法、装置、存储介质及处理器 WO2018202032A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/610,987 US11239974B2 (en) 2017-05-05 2018-05-02 Data transmission method and apparatus, storage medium and processor
EP18794377.4A EP3621382A4 (en) 2017-05-05 2018-05-02 DATA TRANSFER METHOD AND DEVICE, STORAGE MEDIUM AND PROCESSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313815.9A CN108811120B (zh) 2017-05-05 2017-05-05 数据传输方法及装置
CN201710313815.9 2017-05-05

Publications (1)

Publication Number Publication Date
WO2018202032A1 true WO2018202032A1 (zh) 2018-11-08

Family

ID=64015848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085305 WO2018202032A1 (zh) 2017-05-05 2018-05-02 数据传输方法、装置、存储介质及处理器

Country Status (4)

Country Link
US (1) US11239974B2 (zh)
EP (1) EP3621382A4 (zh)
CN (1) CN108811120B (zh)
WO (1) WO2018202032A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435894A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 资源配置的方法及装置、存储介质及电子装置
CN112262607A (zh) * 2018-12-26 2021-01-22 Oppo广东移动通信有限公司 一种dmrs配置方法、终端设备及网络设备
RU2774979C1 (ru) * 2018-11-15 2022-06-24 Бейджин Сяоми Мобайл Софтвеа Ко., Лтд. Способ и устройство широковещательной передачи информации о конфигурации блока сигналов синхронизации и способ и устройство приема информации о конфигурации блока сигналов синхронизации
US11856538B2 (en) 2018-11-15 2023-12-26 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for broadcasting configuration information of synchronizing signal block, and method and apparatus for receiving configuration information of synchronizing signal block

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4236550A3 (en) * 2017-09-29 2023-10-11 Sony Group Corporation Methods, infrastructure equipment and communications device
CN110167170B (zh) * 2018-02-13 2023-01-13 华为技术有限公司 通信方法、装置和***
CN110708750B (zh) * 2018-07-09 2021-06-22 华为技术有限公司 一种功率调整方法、终端及存储介质
US11991690B2 (en) * 2018-09-07 2024-05-21 Lenovo (Beijing) Limited Method and apparatus for flexible transmission on unlicensed spectrum
WO2020047655A1 (en) * 2018-09-07 2020-03-12 Sierra Wireless, Inc. Methods and apparatuses for small data transmissions
CN111246587B (zh) * 2018-11-29 2021-10-19 华为技术有限公司 传输方法和装置
CN111356243B (zh) * 2018-12-21 2023-08-11 中兴通讯股份有限公司 数据的传输方法、装置、存储介质及电子装置
CN111278056A (zh) * 2019-01-02 2020-06-12 维沃移动通信有限公司 信息传输方法、终端及网络设备
CN111432349B (zh) * 2019-01-10 2021-10-15 华为技术有限公司 一种通信方法及装置
EP3681233B1 (en) * 2019-01-10 2022-06-15 Panasonic Intellectual Property Corporation of America Transceiver device and scheduling device
CN111263450B (zh) * 2019-01-11 2022-09-30 维沃移动通信有限公司 Pdcch监测方法、装置、终端、基站和存储介质
WO2020143062A1 (zh) * 2019-01-11 2020-07-16 Oppo广东移动通信有限公司 无线通信方法和终端
CN111436123B (zh) * 2019-01-11 2023-06-23 华为技术有限公司 一种通信方法及装置
CN111526588B (zh) * 2019-02-02 2023-05-12 华为技术有限公司 确定传输资源的方法和装置
US11497042B2 (en) * 2019-02-15 2022-11-08 Qualcomm Incorporated Resource scheduling techniques in wireless systems
CN111585692B (zh) 2019-02-15 2021-10-26 华为技术有限公司 初始信号检测方法、装置
KR20210134777A (ko) * 2019-03-11 2021-11-10 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 전송 지시 방법 및 장치(transmission indication method and apparatus)
CN111294127B (zh) * 2019-03-29 2022-03-18 北京紫光展锐通信技术有限公司 基于同步资源的数据传输方法及装置、存储介质、用户设备
EP4016939A4 (en) * 2019-08-16 2022-08-10 Huawei Technologies Co., Ltd. TRANSMITTER RESOURCE CONFIGURATION METHOD AND APPARATUS
CN114448577B (zh) * 2019-09-18 2024-03-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2021056593A1 (zh) * 2019-09-29 2021-04-01 华为技术有限公司 通信方法、设备及***
EP4044707A4 (en) * 2019-09-30 2022-11-09 Huawei Technologies Co., Ltd. DYNAMIC RESOURCE DISPLAY METHOD AND APPARATUS
WO2021163929A1 (zh) * 2020-02-19 2021-08-26 华为技术有限公司 业务传输的方法和通信装置
US11558885B2 (en) * 2020-04-22 2023-01-17 Qualcomm Incorporated Simultaneous bandwidth part (BWP) switch on multiple cells
WO2022060738A1 (en) * 2020-09-18 2022-03-24 Qualcomm Incorporated Delayed harq-ack report for sps
WO2022077249A1 (en) * 2020-10-14 2022-04-21 Lenovo (Beijing) Limited Ta update during uplink transmission
US20220317635A1 (en) * 2021-04-06 2022-10-06 International Business Machines Corporation Smart ecosystem curiosity-based self-learning
US11991686B2 (en) * 2021-07-14 2024-05-21 Nokia Technologies Oy CG/SPS in cross-division duplex
CN117042142A (zh) * 2022-04-29 2023-11-10 北京紫光展锐通信技术有限公司 数据传输方法及装置、计算机可读存储介质
WO2024005621A1 (ko) * 2022-06-27 2024-01-04 삼성전자 주식회사 무선 통신 시스템에서 xdd(cross division duplex)에 기반하여 신호를 송수신하기 위한 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110783A1 (en) * 2013-01-18 2014-07-24 Broadcom Corporation Inter-cell cross-link interference coordination in flexible time division duplex communication
CN104703205A (zh) * 2013-12-07 2015-06-10 上海朗帛通信技术有限公司 一种网络辅助干扰消除的方法和装置
CN105917601A (zh) * 2014-02-24 2016-08-31 英特尔公司 使用混合信令的干扰减小

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130016241A (ko) * 2010-03-05 2013-02-14 엘지전자 주식회사 상향링크 전력을 제어하는 단말 장치 및 그 방법
US8948111B2 (en) * 2011-10-03 2015-02-03 Qualcomm Incorporated Uplink resource management under coordinated multipoint transmission
US9107191B2 (en) * 2011-11-11 2015-08-11 Qualcomm Incorporated System and method for managing simultaneous uplink signal transmissions in carrier aggregation systems
CN103220802B (zh) * 2012-01-19 2019-04-05 中兴通讯股份有限公司 下行数据处理方法及装置
CN104105215A (zh) * 2013-04-02 2014-10-15 中兴通讯股份有限公司 一种数据发送方法和站点设备
EP3253160B1 (en) * 2015-01-28 2020-07-29 Sharp Kabushiki Kaisha Terminal device and method
CN106255207B (zh) * 2015-08-31 2019-11-01 北京智谷技术服务有限公司 上行资源配置方法、上行传输方法、及其装置
US10841946B2 (en) * 2015-08-31 2020-11-17 Ntt Docomo, Inc. User terminal, radio base station, and radio communication method
ES2875004T3 (es) * 2016-02-05 2021-11-08 Samsung Electronics Co Ltd Procedimiento y dispositivo de comunicación en un sistema de comunicación móvil
WO2018082778A1 (en) * 2016-11-03 2018-05-11 Nokia Technologies Oy Uci transmission in a communication system
RU2730967C1 (ru) * 2017-04-21 2020-08-26 Хуавей Текнолоджиз Ко., Лтд. Устройство и способ конфигурирования направления передачи частотно-временного ресурса

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110783A1 (en) * 2013-01-18 2014-07-24 Broadcom Corporation Inter-cell cross-link interference coordination in flexible time division duplex communication
CN104703205A (zh) * 2013-12-07 2015-06-10 上海朗帛通信技术有限公司 一种网络辅助干扰消除的方法和装置
CN105917601A (zh) * 2014-02-24 2016-08-31 英特尔公司 使用混合信令的干扰减小

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "On UL multiplexing of URLLC and eMBB transmissions", 3GPP TSG RAN WG1 MEETING #88 R1-1701666, 13 February 2017 (2017-02-13), XP051208833 *
See also references of EP3621382A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2774979C1 (ru) * 2018-11-15 2022-06-24 Бейджин Сяоми Мобайл Софтвеа Ко., Лтд. Способ и устройство широковещательной передачи информации о конфигурации блока сигналов синхронизации и способ и устройство приема информации о конфигурации блока сигналов синхронизации
US11856538B2 (en) 2018-11-15 2023-12-26 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for broadcasting configuration information of synchronizing signal block, and method and apparatus for receiving configuration information of synchronizing signal block
CN112262607A (zh) * 2018-12-26 2021-01-22 Oppo广东移动通信有限公司 一种dmrs配置方法、终端设备及网络设备
CN112262607B (zh) * 2018-12-26 2024-03-05 Oppo广东移动通信有限公司 一种dmrs配置方法、终端设备及网络设备
CN111435894A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 资源配置的方法及装置、存储介质及电子装置
CN111435894B (zh) * 2019-01-11 2023-07-14 中兴通讯股份有限公司 资源配置的方法及装置、存储介质及电子装置

Also Published As

Publication number Publication date
CN108811120B (zh) 2023-05-02
EP3621382A4 (en) 2020-12-30
CN108811120A (zh) 2018-11-13
EP3621382A1 (en) 2020-03-11
US11239974B2 (en) 2022-02-01
US20200177341A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
WO2018202032A1 (zh) 数据传输方法、装置、存储介质及处理器
US20230007519A1 (en) Downlink assignments for downlink control channels
US10574421B2 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
US10278136B2 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
US10813150B2 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
US10595166B2 (en) Systems and methods for processing time reduction signaling
US10277367B2 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
US10542503B2 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
WO2018126932A1 (zh) 数据传输方法、装置及存储介质
WO2018082468A1 (zh) 一种数据传输方法、基站、用户设备及***
US9723627B2 (en) Method and device for transmitting uplink data in support of multi-subframe scheduling
US10581559B2 (en) User Equipment, base stations and methods
US11870584B2 (en) Method and apparatus for grant free based data transmission in wireless communication system
WO2017132810A1 (zh) 上行控制信息的传输方法、装置
WO2017132811A1 (zh) 上行信息传输的方法、装置
CN108781159B (zh) 以减少的延迟调度上行链路传输的方法和设备
KR20210158322A (ko) 무선 통신 시스템에서 시간 지연을 표시하는 방법 및 장치
US11825472B2 (en) ACK-NACK PUCCH dropping schemes for TDD cell
US12035161B2 (en) Downlink assignments for downlink control channels
KR20210080179A (ko) 무선 통신 시스템에서 주기적 데이터의 송수신 방법 및 장치
CN116491202A (zh) 无线通信***中的免授权数据发射的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018794377

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018794377

Country of ref document: EP

Effective date: 20191205