WO2018028281A1 - 生理体征模拟器及健康监测产品的检测*** - Google Patents

生理体征模拟器及健康监测产品的检测*** Download PDF

Info

Publication number
WO2018028281A1
WO2018028281A1 PCT/CN2017/086918 CN2017086918W WO2018028281A1 WO 2018028281 A1 WO2018028281 A1 WO 2018028281A1 CN 2017086918 W CN2017086918 W CN 2017086918W WO 2018028281 A1 WO2018028281 A1 WO 2018028281A1
Authority
WO
WIPO (PCT)
Prior art keywords
deflation
time
gas
valve
inflation
Prior art date
Application number
PCT/CN2017/086918
Other languages
English (en)
French (fr)
Inventor
钟强
赵豪
郝立星
程驰
赵颖
王珊
徐传毅
Original Assignee
纳智源科技(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳智源科技(唐山)有限责任公司 filed Critical 纳智源科技(唐山)有限责任公司
Publication of WO2018028281A1 publication Critical patent/WO2018028281A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs

Definitions

  • the present invention relates to the field of electronic communication technologies, and in particular, to a physiological body simulator and a detection system for a health monitoring product.
  • physiological sign simulators Although some companies have produced physiological sign simulators, these physiological sign simulators only simulate the output of the sign, which does not reflect the true state of the physical signs.
  • the main reason is that the physiological and physical information of the human body is unstable. For different people, the physiological signs are different. Even if the same person changes with time, physical condition and exercise state, the physiological signs will change. For example, people breathe differently before and after exercise. The respiratory rate and respiratory intensity after exercise are significantly higher than the respiratory rate and respiratory intensity before exercise. The existing sign simulator can only provide stable physiological signs and is stable. The physiological signs are not sufficient for accurate verification and analysis of the quality of health monitoring products.
  • the invention provides a detection system for a physiological sign simulator and a health monitoring product, which is used for overcoming the defects that the existing physiological sign simulator can only output stable physiological sign information and cannot reflect the change of the physiological signs of the human body.
  • the invention provides a physiological sign simulator, comprising: a gas generating device, a control device and a physiological sign output device;
  • a gas generating device connected to the control device for generating a gas and conveying the generated gas to the control device;
  • the control device is connected to the physiological sign output device for controlling the gas flow parameter of the gas, and controlling the physiological sign output device according to the air flow parameter to output a corresponding simulated physiological sign signal.
  • the invention provides a detection system for a health monitoring product, comprising the above physiological sign simulator, and a health monitoring product and an analysis device;
  • the health monitoring product is used to monitor the simulated physiological signs of the physiological sign simulator output to obtain monitoring results
  • the analysis device is used to analyze the monitoring results to enable detection of health monitoring products.
  • the health monitoring product is a friction generator based health monitoring product and/or a piezoelectric generator based health monitoring product.
  • the physiological sign simulator and the health monitoring product detection system provided by the invention can accurately simulate the physiological signs in different states of the human body by controlling the gas flow parameters of the gas and controlling the physiological sign output device according to the airflow parameter to output corresponding simulated physiological sign signals.
  • the information which truly reflects the physiological and physical signs of the human body, overcomes the shortcomings of the prior art that can only output a stable simulated sign signal, but cannot reflect the true state of the human physiological signs.
  • 1a is a schematic structural view of a physiological sign simulator provided by the present invention.
  • Figure 1b is a functional block diagram of a physiological sign simulator provided by the present invention.
  • Embodiment 1 of a physiological sign simulator provided by the present invention
  • FIG. 3 is a functional block diagram of a second embodiment of a physiological sign simulator provided by the present invention.
  • FIG. 4 is a schematic view of a capillary simulated pulse provided by the present invention.
  • FIG. 5 is a functional block diagram of Embodiment 3 of a physiological sign simulator provided by the present invention.
  • Embodiment 4 of a physiological sign simulator provided by the present invention
  • Embodiment 7 is a functional block diagram of Embodiment 5 of a physiological sign simulator provided by the present invention.
  • Embodiment 8 is a functional block diagram of Embodiment 6 of a physiological sign simulator provided by the present invention.
  • Embodiment 9 is a functional block diagram of Embodiment 7 of a physiological sign simulator provided by the present invention.
  • Embodiment 8 of a physiological sign simulator provided by the present invention
  • FIG. 11 is a functional block diagram of a detection system of a health monitoring product provided by the present invention.
  • Figure 12a is a test diagram of a simulated respiratory signal of the present invention.
  • Figure 12b is a test diagram of the simulated pulse signal of the present invention.
  • Figure 12c is a test diagram of a simulated respiratory signal and an analog pulse signal of the present invention.
  • FIG. 1a is a schematic structural view of a physiological sign simulator provided by the present invention.
  • Figure 1b is a functional block diagram of a physiological sign simulator provided by the present invention.
  • the physiological sign simulator 100 includes a gas generating device 10, a control device 20, and a physiological sign output device 30.
  • the gas generating device 10 is connected to the control device 20 for generating a gas and delivering the generated gas to the control device 20.
  • the gas generating device 10 may be a gas pump or other forms of gas source, which is not specifically limited herein, and a person skilled in the art may select a suitable gas source according to actual needs.
  • the gas generating device 10 is one of physiological source power sources, and may preferably be an electric air pump that generates a gas and delivers the generated gas to the control device 20.
  • the control device 20 is connected to the physiological sign output device 30 for controlling the airflow parameter of the gas, and controls the physiological sign output device 30 to output a corresponding simulated physiological sign signal according to the airflow parameter.
  • the physiological sign simulator provided by the present invention is mainly used for simulating human physiological signs, and therefore, the gas delivered from the gas generating device 10 to the control device 20 may not be suitable for direct delivery to the physiological sign output device 30, so it is necessary to pass the gas.
  • Airflow parameters are controlled to allow gas to be adapted It is delivered to the physiological sign output device 30.
  • the airflow parameters include: gas pressure, inflation gas flow, deflation gas flow, inflation time, and/or deflation time.
  • the gas pressure includes a first gas pressure and/or a second gas pressure
  • the inflation gas flow rate includes a first inflation gas flow rate and/or a second inflation gas flow rate
  • the deflation gas flow rate includes a first deflation gas flow rate and/or The second deflation gas flow rate
  • the inflation time includes a first inflation time and/or a second inflation time
  • the deflation time includes a first deflation time and/or a second deflation time.
  • Human breathing is the process of exchanging gas between the body and the external environment, inhaling oxygen and exhaling carbon dioxide.
  • the physiological sign simulator of the present invention can be used to simulate human physiological signs information, for example, to simulate human breathing, and specifically, can simulate the respiratory frequency and respiratory intensity of the human body under different conditions, wherein the respiratory frequency refers to the number of breaths per minute, One undulation of the chest is a breathing, that is, one inhalation and one exhalation.
  • the simulated breathing frequency can be controlled by controlling the first inflation time and/or the first deflation time; the respiratory intensity is absorbed in a unit time.
  • the amount of oxygen or released carbon dioxide can be controlled in the present invention by controlling the first inflation gas flow rate and/or the first deflation gas flow rate, that is, the first inflation gas flow rate and/or the first The greater the deflation gas flow rate, the greater the respiratory intensity, and the smaller the first inflation gas flow rate and/or the first deflation gas flow rate, the smaller the respiratory intensity.
  • the physiological sign output device of the present invention may include an air bag, and a process of simulating human breathing is achieved by inflating and/or deflation of the air bag, wherein the control device can further control the first gas pressure, the first inflating The gas flow rate, the first deflation gas flow rate, the first inflation time, and/or the first deflation time, thereby controlling the air bag to output a simulated breathing signal.
  • FIG. 2 is a functional block diagram of Embodiment 1 of a physiological sign simulator provided by the present invention.
  • the gas generating device is the air pump 101
  • the physiological sign output device is an example in which the air bag 301 simulates human body breathing.
  • the physiological sign simulator of the first embodiment shown in FIG. 2 and FIG. 1b The physiological sign simulator shown is different in that the control device specifically includes a first pressure regulating valve 201, a throttle valve 202, a first central control circuit 203, and a first electromagnetic valve 204.
  • the first pressure regulating valve 201 and the throttle valve 202 are controlled by a mechanical control manner.
  • the first gas pressure and the passage of the adjusting gas after passing through the first pressure regulating valve 201 can be manually set according to actual needs.
  • the first pressure regulating valve 201 is connected to the air pump 101 for adjusting the output gas of the air pump 101.
  • the first gas pressure is connected to the air pump 101 for adjusting the output gas of the air pump 101.
  • the first pressure regulating valve 201 adjusts the first gas pressure of the gas outputted by the air pump 101 because the gas pressure of the inhaled gas is a standard atmospheric pressure when the human body is breathing. Therefore, in order to better simulate the human body breathing, the first pressure regulating voltage can be utilized.
  • the valve 201 manually adjusts the first gas pressure of the gas generated by the air pump 101 to a standard atmospheric pressure.
  • the first pressure regulating valve 201 can also be used to manually apply the first gas pressure of the gas generated by the air pump 101 according to actual needs. The setting is adjusted to other pressures, which is not limited here.
  • the throttle valve 202 is connected to the first pressure regulating valve 201, the first electromagnetic valve 204 and the air bag 301, respectively, for controlling the first inflation gas flow rate and/or the first deflation gas flow rate.
  • the gas flow rate indicates the volume of the passing gas per unit time
  • the throttle valve 202 is a valve that controls the flow rate of the fluid by changing the throttle section and/or the throttle length, and thus, can pass through the throttle valve 202.
  • the gas flow rate of the gas flowing through the throttle valve 202 is controlled to include a first inflation gas flow rate and/or a first deflation gas flow rate.
  • the first inflation gas flow rate during inflation and/or the first deflation gas flow rate during deflation can reflect the respiratory intensity during exhalation or inhalation, so the throttle valve 202 can be adjusted by setting.
  • the throttling section and/or the throttling length are used to control the first inflation gas flow rate and/or the first deflation gas flow rate to achieve a breathing intensity that mimics human breathing.
  • the throttle valve 202 includes an intake throttle valve 2021 and an outlet throttle valve 2022.
  • the air intake throttle valve 2021 is respectively connected to the first pressure regulating valve 201 and the first electromagnetic valve 204 for controlling the flow rate of the first inflation gas.
  • the air intake throttle valve can be manually set according to actual needs.
  • the throttle section and/or the throttle length of 2021 are used to control the first inflation gas flow rate;
  • the outlet throttle valve 2022 is connected to the airbag 301 for controlling the flow of the first deflation gas, and deflated the airbag 301.
  • the outlet throttle valve 2022 is in communication with the outside, that is, the gas discharged from the airbag 301 can be released into the outside air. Further, in the embodiment, the outlet throttle valve 2022 is in a normally open state. After the pressure of the gas in the airbag 301 is increased to a certain extent, the airbag 301 can be deflated by the air outlet throttle valve 2022.
  • a throttle valve having both an inflation and a deflation function may be utilized in place of the intake throttle valve 2021 and the outlet throttle valve 2022 to control the first inflation gas flow and/or The first deflation gas flow rate, the specific implementation manner, will not be described here.
  • the first central control circuit 203 is electrically connected to the first electromagnetic valve 204 for The first inflation time and/or the first deflation time are set to output a corresponding first inflation time control electrical signal and/or first deflation time control electrical signal to the first solenoid valve 204.
  • the first central control circuit 203 is a single chip microcomputer, a microprocessor or a microcontroller, for example, TI's low power consumption chip MSP430, 51 series single chip microcomputer, ARM series single chip microcomputer, etc., or a plurality of circuits are used together to implement the controller.
  • the function, or a combination of the above, can be selected by a person skilled in the art according to the actual needs, and is not limited herein. It should be noted that the above circuits are all implemented by a circuit formed by a combination of hardware components without any program control.
  • the first solenoid valve 204 is connected to the airbag 301 for controlling the electrical signal according to the first inflation time and/or the first deflation time control electrical signal, correspondingly controlling the first inflation time of the airbag 301 and/or the first release. Gas time.
  • the first central control circuit 203 can correspondingly control the inflation function and/or the deflation function of the first electromagnetic valve 204 according to the preset first inflation time and/or the first deflation time. For example, when the air bag 301 is charged and discharged once every second, the first central control circuit 203 outputs a first inflation time control electric signal to the first electromagnetic valve 204 to open the inflation function of the first electromagnetic valve 204 to the air bag. The 301 is inflated, at the same time, the timer in the first central control circuit 203 starts to count for 1 second, and when the chronograph time reaches 1 second, the first central control circuit 203 outputs the first deflation time control power to the first electromagnetic valve 204.
  • the signal causes the deflation function of the first solenoid valve 204 to be opened, and the air bag 301 is deflated.
  • the timer in the first central control circuit 203 is restarted for 1 second.
  • the chronograph time reaches 1 second, the above is repeated. Process to achieve a respiratory rate that mimics human breathing.
  • the first solenoid valve 204 includes a first intake solenoid valve 2041 and a first outlet solenoid valve 2042.
  • the first central control circuit 203 is electrically connected to the first intake electromagnetic valve 2041 and the first air outlet electromagnetic valve 2042, respectively, for outputting the first inflation time to the first intake electromagnetic valve 2041 according to the preset first inflation time. Controlling the electrical signal, controlling the first intake solenoid valve 2041 to open, and controlling the first outlet solenoid valve 2042 to be closed; and outputting the first deflation time control power to the first outlet solenoid valve 2042 according to the preset first deflation time The signal controls the first outlet solenoid valve 2042 to open and controls the first intake solenoid valve 2041 to close.
  • the first central control circuit 203 will control the first intake electromagnetic valve 2041 to be opened, and the first air outlet electromagnetic valve 2042 is closed to prevent the air bag 301 from deflation.
  • the inflation process of the air bag 301 is implemented; when the air bag 301 is deflated, the first central control circuit 203 will control the first air outlet solenoid valve 2042 to be opened, the first air intake electromagnetic valve 2041 is closed, and the air bag 301 is stopped from being inflated to achieve The deflation process of the air bag 301.
  • the first intake solenoid valve 2041 is connected to the intake throttle valve 2021 and the airbag 301, respectively, for controlling the first inflation time of the airbag 301 according to the first inflation time control electrical signal.
  • the first air outlet solenoid valve 2042 is connected to the air bag 301 for controlling the electric signal according to the first deflation time, controlling the first deflation time of the air bag 301, and deflation of the air bag 301.
  • the first air outlet solenoid valve 2042 is in communication with the outside, that is, the gas discharged from the air bag 301 can be released into the outside air.
  • the air outlet throttle valve 2022 and the first air outlet electromagnetic valve 2042 are used to deflate the airbag 301, which not only prevents sudden changes in the gas pressure in the airbag 301, but also enhances the simulated breathing signal.
  • the first intake solenoid valve 2041 and the first air outlet solenoid valve 2042 can be simultaneously connected to the airbag 301 by using a two-in-one lead method, that is, the airflow passage of the airbag 301 is simultaneously with the first intake electromagnetic valve 2041.
  • the air flow passage communicates with the air flow passage of the first air outlet solenoid valve 2042, so that the opening of the airbag 301 can be reduced, and the airbag 301 can be more closed.
  • FIG. 3 is a functional block diagram of a second embodiment of a physiological sign simulator provided by the present invention.
  • the gas generating device is the air pump 101
  • the physiological sign output device is an example in which the air bag 301 simulates human body breathing.
  • the physiological sign simulator of the second embodiment shown in FIG. 3 and FIG. 2 The physiological sign simulator of the first embodiment is different in that the first pressure regulating valve 201, the throttle valve 202 and the first electromagnetic valve 204 are controlled by the first central control circuit 203 in the electronic control mode in this embodiment.
  • the first pressure regulating valve 201, the throttle valve 202, and the first electromagnetic valve 204 perform corresponding control according to the corresponding control electric signal output by the first central control circuit 203, without the user directly setting and adjusting the first voltage regulation.
  • the valve 201, the throttle valve 202 and the first solenoid valve 204 make the physiological sign simulator more intelligent.
  • control device also includes a first pressure regulating valve 201, a throttle valve 202, a first central control circuit 203, and a first electromagnetic valve 204.
  • the first central control circuit 203 is respectively connected to the first pressure regulating valve 201, the throttle valve 202, and the a solenoid valve 204 is electrically connected for outputting a first gas pressure control electric signal to the first pressure regulating valve 201 according to a preset first gas pressure; according to a preset first inflation gas flow rate and/or a first deflation a gas flow rate, outputting a corresponding first inflation gas flow control electrical signal and/or a first deflation gas flow control electrical signal to the throttle valve 202; and according to a preset first inflation time and/or a first deflation time, A corresponding first inflation time control electrical signal and/or first deflation time control electrical signal is output to the first solenoid valve 204.
  • the first pressure regulating valve 201 is connected to the air pump 101 for adjusting the first gas pressure of the gas outputted by the air pump 101 according to the first gas pressure control electric signal.
  • the gas pressure of the inhaled gas is a standard atmospheric pressure when the human body is breathing, in order to better simulate the human body breathing, it is necessary to regulate the gas generated by the air pump, specifically, the first pressure regulation.
  • the valve 201 can control the electric signal according to the first gas pressure outputted by the first central control circuit 203, and adjust the first gas pressure of the gas generated by the air pump 101 to a standard atmospheric pressure.
  • the gas generated by the air pump can also be used as needed.
  • the first gas pressure is adjusted to other pressures, which is not limited herein.
  • the throttle valve 202 is connected to the first pressure regulating valve 201, the first electromagnetic valve 204 and the air bag 301, respectively, for controlling the electrical signal according to the first inflation gas flow control electrical signal and/or the first deflation gas flow rate, Correspondingly controlling the first inflation gas flow rate and/or the first deflation gas flow rate.
  • the gas flow rate indicates the volume of the passing gas per unit time
  • the throttle valve 202 is a valve that controls the flow rate of the fluid by changing the throttle section and/or the throttle length, and thus, can pass through the throttle valve 202.
  • the gas flow rate of the gas flowing through the throttle valve 202 is controlled to include a first inflation gas flow rate and/or a first deflation gas flow rate.
  • the first inflation gas flow rate during inflation and/or the first deflation gas flow rate during deflation can reflect the respiratory intensity during exhalation or inhalation, so that the section of the throttle valve 202 can be set.
  • the flow section and/or the throttle length are used to control the first inflation gas flow rate and/or the first deflation gas flow rate to achieve a breathing intensity that mimics human breathing.
  • the throttle valve 202 controls the electrical signal according to the first inflation gas flow rate and / or the first deflation gas flow control electrical signal adjusts the opening area of the throttle opening of the throttle valve 202 to control the first inflation gas flow and/or the first deflation gas flow that inflates and/or deflates the air bag 301 To achieve the breathing intensity that simulates human breathing.
  • the throttle valve 202 includes an intake throttle valve 2021 and an outlet throttle valve 2022.
  • the first central control circuit 203 is electrically connected to the air intake throttle valve 2021 and the air outlet throttle valve 2022, respectively, for outputting the first inflation gas flow rate control to the air intake throttle valve 2021 according to the preset first inflation gas flow rate.
  • the air intake throttle valve 2021 is respectively connected to the first pressure regulating valve 201 and the first electromagnetic valve 204 for controlling the first inflation gas flow rate according to the first inflation gas flow rate control electrical signal.
  • the air outlet throttle valve 2022 is connected to the air bag 301 for controlling the electric signal according to the first deflation gas flow rate, controlling the flow rate of the first deflation gas, and deflation of the air bag 301.
  • the outlet throttle valve 2022 is in communication with the outside, that is, the gas discharged from the airbag 301 can be released into the outside air.
  • a throttle valve having both an inflation and a deflation function may be utilized in place of the intake throttle valve 2021 and the outlet throttle valve 2022 to control the first inflation gas flow and/or The first deflation gas flow rate, the specific implementation manner, will not be described here.
  • the first electromagnetic valve 204 is connected to the airbag 301 for controlling the electrical signal according to the first inflation time and/or the first deflation time control electrical signal, correspondingly controlling the first inflation time of the airbag 301 and/or the first deflation time. .
  • the first inflation time indicates the length of time required to inflate the airbag 301
  • the first deflation time indicates the length of time required to deflate the airbag 301 according to the first inflation time preset by the first central control circuit 203 and/or Or the first deflation time, outputting a corresponding first inflation time control electrical signal and/or a first deflation time control electrical signal to the first electromagnetic valve 204, corresponding to controlling the first inflation time of the airbag 301 and/or the first release Gas time.
  • the first solenoid valve 204 includes a first intake solenoid valve 2041 and a first outlet solenoid valve 2042.
  • the first central control circuit 203 is electrically connected to the first intake electromagnetic valve 2041 and the first air outlet electromagnetic valve 2042, respectively, for outputting the first inflation time to the first intake electromagnetic valve 2041 according to the preset first inflation time. Controlling the electrical signal, controlling the first intake solenoid valve 2041 to open, and controlling the first air outlet The solenoid valve 2042 is closed; and outputting a first deflation time control electric signal to the first air outlet solenoid valve 2042 according to the preset first deflation time, controlling the first air outlet electromagnetic valve 2042 to open, and controlling the first air intake electromagnetic valve 2041 is closed.
  • the first central control circuit 203 will control the first intake electromagnetic valve 2041 to be opened, and the first air outlet electromagnetic valve 2042 is closed to prevent the air bag 301 from being deflated to achieve the inflation process of the air bag 301.
  • the first central control circuit 203 will control the first air outlet solenoid valve 2042 to be opened, the first air intake electromagnetic valve 2041 is closed, and the air bag 301 is stopped from being inflated to realize the deflation process of the air bag 301.
  • the first intake solenoid valve 2041 is connected to the intake throttle valve 2021 and the airbag 301, respectively, for controlling the first inflation time of the airbag 301 according to the first inflation time control electrical signal.
  • the first air outlet solenoid valve 2042 is connected to the air bag 301 for controlling the electric signal according to the first deflation time, controlling the first deflation time of the air bag 301, and deflation of the air bag 301.
  • the first air outlet solenoid valve 2042 is in communication with the outside, that is, the gas discharged from the air bag 301 can be released into the outside air.
  • the physiological sign simulator of the second embodiment shown in FIG. 3 is similar to the physiological sign simulator of the first embodiment shown in FIG. 2, and the other can refer to the first embodiment shown in FIG. The description of the physiological sign simulator will not be repeated here.
  • the physiological sign simulator of the present invention can also be used to simulate a human body pulse, which is an arterial pulse that can be touched by a body surface, and blood is squeezed into the artery through contraction of the left ventricle of the heart, and blood entering the artery will cause arterial pressure to change. Large and expanded.
  • the physiological sign output device of the present invention may include a capillary tube, replacing the human blood vessel with a capillary tube, injecting a liquid inside the capillary tube, and the liquid should not completely fill the entire capillary tube, and a small space is left inside the capillary tube for the liquid to be in the capillary tube.
  • the control device controls the capillary output analog pulse signal by controlling the second gas pressure, the second inflation time and/or the second deflation time, as shown in FIG.
  • FIG. 5 is a functional block diagram of a third embodiment of a physiological sign simulator provided by the present invention.
  • the gas generator 101 is used as the air pump 101
  • the physiological sign output device is used as the capillary 302 to simulate the pulse of the human body.
  • the physiological sign simulator of the third embodiment shown in FIG. 5 and FIG. 1b are shown.
  • the physiological sign simulator shown differs in that the control device specifically includes a second pressure regulating valve 205, a second central control circuit 206, and a second electromagnetic valve 207.
  • the second pressure regulating valve 205 is controlled by a mechanical control mode.
  • the second gas pressure after the adjusting gas passes through the second pressure regulating valve 205 can be manually set according to actual needs.
  • the second pressure regulating valve 205 is connected to the air pump 101 for adjusting the second gas pressure of the gas outputted by the air pump 101.
  • the liquid can be caused to flow to the right, thereby forcing the capillary to expand.
  • the intensity of the analog pulse signal can be changed by manually setting the second gas pressure, that is, the larger the second gas pressure is, the stronger the simulated pulse signal is; the smaller the second gas pressure is, the weaker the analog pulse signal is.
  • the second central control circuit 206 is electrically connected to the second electromagnetic valve 207 for outputting a corresponding second inflation time to the second electromagnetic valve 207 according to the preset second inflation time and/or the second deflation time.
  • the control electrical signal and/or the second deflation time control electrical signal.
  • the simulated human body pulse (i.e., simulating the body pulse beat) is achieved by inflating and/or deflation of the capillary 302, and the simulation is achieved by controlling the second inflation time and/or the second deflation time to the capillary 302.
  • the frequency of the human body pulse (that is, the frequency of simulating the pulse of the human body).
  • the second solenoid valve 207 is respectively connected to the second pressure regulating valve 205 and the capillary tube 302 for controlling the electrical signal according to the second inflation time and/or the second deflation time control electrical signal, corresponding to the second control capillary 302. Inflation time and / or second deflation time.
  • the second solenoid valve 207 controls the valve to open to inflate the capillary 302, and when the capillary 302 is inflated, the gas is delivered to The capillary 302, the liquid in the capillary 302 flows to the right under the action of the gas, and applies pressure to the tube wall of the capillary 302, causing the tube wall of the capillary 302 to expand; the second solenoid valve 207 receives the output of the second central control circuit 206.
  • the control valve is opened to deflate the capillary 302.
  • the capillary 302 is deflated
  • the gas is delivered to the outside through the second solenoid valve 207, and the tube wall of the capillary 302 is contracted. Achieved the simulation of the human body pulse.
  • the second solenoid valve 207 includes a second intake solenoid valve 2071 and a second outlet solenoid valve 2072.
  • the electrical connection 2072 is configured to output a second inflation time control electric signal to the second intake electromagnetic valve 2071 according to the preset second inflation time, control the second intake electromagnetic valve 2071 to open, and control the second air outlet electromagnetic valve 2072 Turning off to deliver gas to the capillary 302; and outputting a second deflation time control electrical signal to the second venting solenoid valve 2072 according to a preset second deflation time, controlling the second venting solenoid valve 2072 to open, and controlling the second The intake solenoid valve 2071 is closed to stop the delivery of gas to the capillary 302.
  • the second intake solenoid valve 2071 is connected to the second pressure regulating valve 205 and the capillary 302, respectively, for controlling the electrical signal according to the second inflation time to control the second inflation time of the capillary 302.
  • the second outlet solenoid valve 2072 is connected to the capillary 302 for controlling the electrical signal according to the second deflation time, controlling the second deflation time of the capillary 302, and deflation of the capillary 302.
  • the second air outlet solenoid valve 2072 is in communication with the outside, that is, the gas discharged from the capillary tube 302 can be released into the outside air.
  • the second intake solenoid valve 2071 and the second outlet solenoid valve 2072 can be simultaneously connected to the capillary 302 by using a two-in-one lead method, that is, the air flow passage of the capillary 302 and the second intake electromagnetic valve 2071 simultaneously.
  • the air flow passage communicates with the air flow passage of the second air outlet solenoid valve 2072, which can reduce the opening of the capillary 302 and make the capillary 302 more closed.
  • FIG. 6 is a functional block diagram of Embodiment 4 of a physiological sign simulator provided by the present invention.
  • the gas generator 101 is used as the air pump 101
  • the physiological sign output device is used as the capillary 302 to simulate the human body pulse.
  • the physiological sign simulator of the fourth embodiment shown in FIG. 6 and FIG. 5 are shown.
  • the physiological sign simulator of the third embodiment shown is different in that the second pressure regulating valve 205 and the second solenoid valve 207, that is, the second, are controlled by the second central control circuit 206 in the electronic control mode in this embodiment.
  • the pressure regulating valve 205 and the second electromagnetic valve 207 perform corresponding control according to the corresponding control electric signal output by the second central control circuit 206, without the user manually setting and adjusting the second pressure regulating valve 205 and the second electromagnetic valve 207, so that Physiological sign simulators are more intelligent.
  • the control device specifically includes a second pressure regulating valve 205, a second central control circuit 206, and a second electromagnetic valve 207.
  • the second central control circuit 206 is electrically connected to the second pressure regulating valve 205 and the second electromagnetic valve 207, respectively, for outputting the second gas pressure control to the second pressure regulating valve 205 according to the preset second gas pressure. And outputting a corresponding second inflation time control electrical signal and/or second deflation time control telecommunications to the second solenoid valve 207 according to the preset second inflation time and/or the second deflation time number.
  • the second pressure regulating valve 205 is connected to the air pump 101 for controlling the electrical signal according to the second gas pressure to adjust the second gas pressure of the gas outputted by the air pump 101.
  • the second solenoid valve 207 is respectively connected to the second pressure regulating valve 205 and the capillary tube 302 for controlling the electrical signal according to the second inflation time and/or the second deflation time control electrical signal, corresponding to the second control capillary 302. Inflation time and / or second deflation time.
  • the second solenoid valve 207 includes a second intake solenoid valve 2071 and a second outlet solenoid valve 2072.
  • the second central control circuit 206 is electrically connected to the second intake solenoid valve 2071 and the second outlet solenoid valve 2072, respectively, for outputting the second inflation time to the second intake solenoid valve 2071 according to the preset second inflation time. Controlling the electric signal, controlling the second intake solenoid valve 2071 to open, and controlling the second outlet solenoid valve 2072 to be closed; and outputting the second deflation time control power to the second outlet solenoid valve 2072 according to the preset second deflation time The signal controls the second outlet solenoid valve 2072 to open and controls the second intake solenoid valve 2071 to close.
  • the second intake solenoid valve 2071 is connected to the second pressure regulating valve 205 and the capillary 302, respectively, for controlling the electrical signal according to the second inflation time to control the second inflation time of the capillary 302.
  • the second outlet solenoid valve 2072 is connected to the capillary 302 for controlling the electrical signal according to the second deflation time, controlling the second deflation time of the capillary 302, and deflation of the capillary 302.
  • the second air outlet solenoid valve 2072 is in communication with the outside, that is, the gas discharged from the capillary tube 302 can be released into the outside air.
  • the physiological sign simulator of the fourth embodiment shown in FIG. 6 is similar to the physiological sign simulator of the third embodiment shown in FIG. 5, and the other can refer to the third embodiment shown in FIG. The description of the physiological sign simulator will not be repeated here.
  • the physiological sign simulator of the present invention can also be used to simulate human breathing and pulse at the same time.
  • the physiological sign output device can include a balloon and a capillary tube, which will be further described below through specific embodiments.
  • FIG. 7 is a functional block diagram of Embodiment 5 of a physiological sign simulator provided by the present invention. As shown in FIG. 7, the physiological sign simulator of the fifth embodiment shown in FIG. 7 is different from the physiological sign simulator shown in FIG. 1b.
  • the control device is further configured to: control the first gas pressure, the first inflation gas flow rate, the first deflation gas flow rate, the first inflation time, and/or the first deflation time, thereby controlling the airbag to output a simulated respiratory signal;
  • the second gas pressure, the second inflation time, and/or the second deflation time are controlled to control the capillary output analog pulse signal.
  • the control device specifically includes a first pressure regulating valve 201, a throttle valve 202, a first central control circuit 203, a first electromagnetic valve 204, a second pressure regulating valve 205, a second central control circuit 206, and a second electromagnetic valve 207.
  • the first pressure regulating valve 201 and the throttle valve 202 are controlled by a mechanical control manner.
  • the first gas pressure and the passage of the adjusting gas after passing through the first pressure regulating valve 201 can be manually set according to actual needs.
  • the first pressure regulating valve 201 is connected to the air pump 101 for adjusting the first gas pressure of the gas outputted by the air pump 101.
  • the first pressure regulating valve 201 adjusts the first gas pressure of the gas outputted by the air pump 101 because the gas pressure of the inhaled gas is a standard atmospheric pressure when the human body is breathing. Therefore, in order to better simulate the human body breathing, the first pressure regulating voltage can be utilized.
  • the valve 201 manually adjusts the first gas pressure of the gas generated by the air pump 101 to a standard atmospheric pressure.
  • the first pressure regulating valve 201 can also be used to manually apply the first gas pressure of the gas generated by the air pump 101 according to actual needs. The setting is adjusted to other pressures, which is not limited here.
  • the throttle valve 202 is connected to the first pressure regulating valve 201, the first electromagnetic valve 204 and the air bag 301, respectively, for controlling the first inflation gas flow rate and/or the first deflation gas flow rate.
  • the gas flow rate indicates the volume of the passing gas per unit time
  • the throttle valve 202 is a valve that controls the flow rate of the fluid by changing the throttle section and/or the throttle length, and thus, can pass through the throttle valve 202.
  • the gas flow rate of the gas flowing through the throttle valve 202 is controlled to include a first inflation gas flow rate and/or a first deflation gas flow rate.
  • the first inflation gas flow rate during inflation and/or the first deflation gas flow rate during deflation can reflect the respiratory intensity during exhalation or inhalation, so the throttle valve 202 can be adjusted by setting.
  • the throttling section and/or the throttling length are used to control the first inflation gas flow rate and/or the first deflation gas flow rate to achieve a breathing intensity that mimics human breathing.
  • the throttle valve 202 includes an intake throttle valve 2021 and an outlet throttle valve 2022.
  • the air intake throttle valve 2021 is respectively connected to the first pressure regulating valve 201 and the first electromagnetic valve 204 for controlling the flow rate of the first inflation gas.
  • the first inflation gas flow rate is controlled by manually setting the throttle section and/or the throttle length of the intake throttle valve 2021 according to actual needs;
  • the outlet throttle valve 2022 is connected to the airbag 301 for controlling the first deflation
  • the gas flow rate is used to deflate the air bag 301.
  • the air outlet throttle valve 2022 is in communication with the outside, that is, the gas discharged from the air bag 301 can be released into the outside air, and further, in this embodiment. In the middle, the outlet throttle valve 2022 is in the normally open state, and after the pressure of the gas in the airbag 301 is increased to a certain extent, the airbag 301 can be deflated by the outlet throttle valve 2022.
  • a throttle valve having both an inflation and a deflation function may be utilized in place of the intake throttle valve 2021 and the outlet throttle valve 2022 to control the first inflation gas flow and/or The first deflation gas flow rate, the specific implementation manner, will not be described here.
  • the first central control circuit 203 is electrically connected to the first electromagnetic valve 204 for outputting a corresponding first inflation time to the first electromagnetic valve 204 according to the preset first inflation time and/or the first deflation time.
  • the electrical signal is controlled and/or the first deflation time controls the electrical signal.
  • the first central control circuit 203 is a single chip microcomputer, a microprocessor or a microcontroller, for example, TI's low power consumption chip MSP430, 51 series single chip microcomputer, ARM series single chip microcomputer, etc., or a plurality of circuits are used together to implement the controller.
  • the function, or a combination of the above, can be selected by a person skilled in the art according to the actual needs, and is not limited herein. It should be noted that the above circuits are all implemented by a circuit formed by a combination of hardware components without any program control.
  • the first solenoid valve 204 is connected to the airbag 301 for controlling the electrical signal according to the first inflation time and/or the first deflation time control electrical signal, correspondingly controlling the first inflation time of the airbag 301 and/or the first release. Gas time.
  • the first central control circuit 203 can correspondingly control the inflation function and/or the deflation function of the first electromagnetic valve 204 according to the preset first inflation time and/or the first deflation time. For example, when the air bag 301 is charged and discharged once every second, the first central control circuit 203 outputs a first inflation time control electric signal to the first electromagnetic valve 204 to open the inflation function of the first electromagnetic valve 204 to the air bag. The 301 is inflated, at the same time, the timer in the first central control circuit 203 starts to count for 1 second, and when the chronograph time reaches 1 second, the first central control circuit 203 outputs the first deflation time control power to the first electromagnetic valve 204.
  • the signal causes the deflation function of the first solenoid valve 204 to be opened, and the air bag 301 is deflated.
  • the timer in the first central control circuit 203 is restarted for 1 second.
  • the chronograph time reaches 1 second, the above is repeated. Process to achieve a respiratory rate that mimics human breathing.
  • the first electromagnetic valve 204 includes a first intake solenoid valve 2041 and a first outlet solenoid valve 2042.
  • the first central control circuit 203 is electrically connected to the first intake electromagnetic valve 2041 and the first air outlet electromagnetic valve 2042, respectively, for outputting the first inflation time to the first intake electromagnetic valve 2041 according to the preset first inflation time. Controlling the electrical signal, controlling the first intake solenoid valve 2041 to open, and controlling the first outlet solenoid valve 2042 to be closed; and outputting the first deflation time control power to the first outlet solenoid valve 2042 according to the preset first deflation time The signal controls the first outlet solenoid valve 2042 to open and controls the first intake solenoid valve 2041 to close.
  • the first central control circuit 203 will control the first intake electromagnetic valve 2041 to be opened, and the first air outlet electromagnetic valve 2042 is closed to prevent the air bag 301 from being deflated to achieve the inflation process of the air bag 301.
  • the first central control circuit 203 will control the first air outlet solenoid valve 2042 to be opened, the first air intake electromagnetic valve 2041 is closed, and the air bag 301 is stopped from being inflated to realize the deflation process of the air bag 301.
  • the first intake solenoid valve 2041 is connected to the intake throttle valve 2021 and the airbag 301, respectively, for controlling the first inflation time of the airbag 301 according to the first inflation time control electrical signal.
  • the first air outlet solenoid valve 2042 is connected to the air bag 301 for controlling the electric signal according to the first deflation time, controlling the first deflation time of the air bag 301, and deflation of the air bag 301.
  • the first air outlet solenoid valve 2042 is in communication with the outside, that is, the gas discharged from the air bag 301 can be released into the outside air.
  • the air outlet throttle valve 2022 and the first air outlet electromagnetic valve 2042 are used to deflate the airbag 301, which not only prevents sudden changes in the gas pressure in the airbag 301, but also enhances the simulated breathing signal.
  • the first intake solenoid valve 2041 and the first air outlet solenoid valve 2042 can be simultaneously connected to the airbag 301 by using a two-in-one lead method, that is, the airflow passage of the airbag 301 is simultaneously with the first intake electromagnetic valve 2041.
  • the air flow passage communicates with the air flow passage of the first air outlet solenoid valve 2042, so that the opening of the airbag 301 can be reduced, and the airbag 301 can be more closed.
  • the second pressure regulating valve 205 is connected to the air pump 101 for adjusting the second gas pressure of the gas outputted by the air pump 101.
  • the liquid can be caused to flow to the right, thereby forcing the capillary to expand.
  • the intensity of the analog pulse signal can be changed by manually setting the second gas pressure, that is, the larger the second gas pressure is, the stronger the simulated pulse signal is; the smaller the second gas pressure is, the weaker the analog pulse signal is.
  • the second central control circuit 206 is electrically connected to the second electromagnetic valve 207 for outputting a corresponding second inflation time to the second electromagnetic valve 207 according to the preset second inflation time and/or the second deflation time.
  • the control electrical signal and/or the second deflation time control electrical signal.
  • the simulated human body pulse (i.e., simulating the body pulse beat) is achieved by inflating and/or deflation of the capillary 302, and the simulation is achieved by controlling the second inflation time and/or the second deflation time to the capillary 302.
  • the frequency of the human body pulse (that is, the frequency of simulating the pulse of the human body).
  • the second solenoid valve 207 is respectively connected to the second pressure regulating valve 205 and the capillary tube 302 for controlling the electrical signal according to the second inflation time and/or the second deflation time control electrical signal, corresponding to the second control capillary 302. Inflation time and / or second deflation time.
  • the second solenoid valve 207 controls the valve to open to inflate the capillary 302, and when the capillary 302 is inflated, the gas is delivered to The capillary 302, the liquid in the capillary 302 flows to the right under the action of the gas, and applies pressure to the tube wall of the capillary 302, causing the tube wall of the capillary 302 to expand; the second solenoid valve 207 receives the output of the second central control circuit 206.
  • the control valve is opened to deflate the capillary 302.
  • the capillary 302 is deflated
  • the gas is delivered to the outside through the second solenoid valve 207, and the tube wall of the capillary 302 is contracted. Achieved the simulation of the human body pulse.
  • the second solenoid valve 207 includes a second intake solenoid valve 2071 and a second outlet solenoid valve 2072.
  • the second central control circuit 206 is electrically connected to the second intake solenoid valve 2071 and the second outlet solenoid valve 2072, respectively, for outputting the second inflation time to the second intake solenoid valve 2071 according to the preset second inflation time. Controlling the electric signal, controlling the second intake solenoid valve 2071 to open, and controlling the second outlet solenoid valve 2072 to close to deliver the gas to the capillary 302; and outputting to the second outlet solenoid valve 2072 according to the preset second deflation time The second deflation time controls the electrical signal, controls the second outlet solenoid valve 2072 to open, and controls the second intake solenoid valve 2071 to close to stop the delivery of gas to the capillary 302. body.
  • the second intake solenoid valve 2071 is connected to the second pressure regulating valve 205 and the capillary 302, respectively, for controlling the electrical signal according to the second inflation time to control the second inflation time of the capillary 302.
  • the second outlet solenoid valve 2072 is connected to the capillary 302 for controlling the electrical signal according to the second deflation time, controlling the second deflation time of the capillary 302, and deflation of the capillary 302.
  • the second air outlet solenoid valve 2072 is in communication with the outside, that is, the gas discharged from the capillary tube 302 can be released into the outside air.
  • the second intake solenoid valve 2071 and the second outlet solenoid valve 2072 can be simultaneously connected to the capillary 302 by using a two-in-one lead method, that is, the air flow passage of the capillary 302 and the second intake electromagnetic valve 2071 simultaneously.
  • the air flow passage communicates with the air flow passage of the second air outlet solenoid valve 2072, which can reduce the opening of the capillary 302 and make the capillary 302 more closed.
  • the first central control circuit is used to control the first electromagnetic valve and the second central control circuit is used to control the second electromagnetic valve.
  • the first central control circuit can also be used to simultaneously implement the first electromagnetic valve and the second
  • the control of the solenoid valve can be selected by a person skilled in the art according to actual needs, which is not limited herein.
  • FIG. 8 is a functional block diagram of Embodiment 6 of a physiological sign simulator provided by the present invention.
  • the physiological sign simulator of the sixth embodiment shown in FIG. 8 is different from the physiological sign simulator of the fifth embodiment shown in FIG. 7 in that the control device further includes: a first air flow switch 208 and a second Air flow switch 209.
  • the first air flow switch 208 is respectively connected to the first electromagnetic valve 204 and the air bag 301 for controlling whether to inflate the air bag 301;
  • the second air flow switch 209 is respectively connected with the second electromagnetic valve 207 and the capillary 302 for controlling Whether gas is delivered to the capillary 302.
  • the first air flow switch 208 and the second air flow switch 209 are controlled in a mechanical control manner in this embodiment.
  • first air flow switch and the second air flow switch may be controlled by using an electronic control manner.
  • first air flow switch is further electrically connected to the first central control circuit for the first switch according to the output of the first central control circuit.
  • the electrical signal is controlled to control whether to inflate the airbag;
  • the second airflow switch is further electrically connected to the second central control circuit for controlling whether to inflate the capillary according to the second switch control electrical signal output by the second central control circuit.
  • the physiological body simulator can be adjusted by controlling the first air flow switch and the second air flow switch. Specifically, the first air flow switch can be controlled to be turned on, and the second air flow switch can be turned off to realize the adjustment of the simulated human body breathing; The second air flow switch turns off the first air flow switch to realize the adjustment of the simulated human body pulse.
  • the physiological sign simulator in this embodiment can be used only to simulate human body breathing or simulate a human body pulse, that is, to simulate a human body breathing by turning on the first air flow switch, turning off the second air flow switch, or by turning off the first The air flow switch and the opening of the second air flow switch realize the simulation of the human body pulse.
  • the first electromagnetic valve can be operated by the first central control circuit, and the second central control circuit stops the second electromagnetic valve to simulate the human body breathing or pass the first
  • a central control circuit stops the first solenoid valve, and the second central control circuit operates the second solenoid valve to simulate a human body pulse.
  • the first central control circuit is used to control the first electromagnetic valve and/or the first air flow switch
  • the second central control circuit is used to control the second electromagnetic valve and/or the second air flow switch, but may also utilize
  • the first central control circuit simultaneously controls the first electromagnetic valve and/or the first air flow switch, the second electromagnetic valve and/or the second air flow switch, and can be selected by a person skilled in the art according to actual needs, which is not limited herein. .
  • the physiological sign simulator of the sixth embodiment shown in FIG. 8 is similar to the physiological sign simulator of the fifth embodiment shown in FIG. 7, and the other can refer to the fifth embodiment shown in FIG. The description of the physiological sign simulator will not be repeated here.
  • FIG. 9 is a functional block diagram of Embodiment 7 of the physiological sign simulator provided by the present invention.
  • the physiological sign simulator of the seventh embodiment shown in FIG. 9 is different from the physiological sign simulator shown in FIG. 1b in that the control device is further configured to: control the first gas pressure, the first inflation gas Flow rate, first deflation gas flow rate, first inflation time, and/or first deflation time, thereby controlling the air bag to output a simulated breathing signal; and controlling the second gas pressure, the second inflation time, and/or the second deflation time Control the capillary output to simulate a pulse signal.
  • the control device specifically includes: a first pressure regulating valve 201, a throttle valve 202, a first central control circuit 203, a first electromagnetic valve 204, a second pressure regulating valve 205, a second central control circuit 206, and a second electromagnetic valve. 207.
  • the first pressure regulating valve 201, the throttle valve 202 and the first electromagnetic valve 204 are controlled by the first central control circuit 203 in an electronic control manner, and the second central control circuit 206 controls the second
  • the pressure regulating valve 205 and the second electromagnetic valve 207 that is, the first pressure regulating valve 201, the throttle valve 202, and the first electromagnetic valve 204 are corresponding to the control electric signals output by the first central control circuit 203, and the second pressure regulating valve.
  • 205 and the second electromagnetic valve 207 perform corresponding control according to the corresponding control electric signal output by the second central control circuit 206, without the user manually setting and adjusting the first pressure regulating valve 201, the throttle valve 202, and the first electromagnetic valve 204.
  • the second pressure regulating valve 205 and the second electromagnetic valve 207 make the physiological sign simulator more intelligent.
  • the simulated human breathing in this embodiment is similar to the simulated human breathing in the second embodiment shown in FIG. 3.
  • the analog human body pulse in this embodiment is similar to the simulated human body pulse in the fourth embodiment shown in FIG. 6.
  • FIG. 10 is a functional block diagram of Embodiment 8 of a physiological sign simulator provided by the present invention.
  • the physiological sign simulator of the eighth embodiment shown in FIG. 10 is different from the physiological sign simulator of the seventh embodiment shown in FIG. 9 in that the control device further includes: a first air flow switch 208 and a second air flow switch 209.
  • the first air flow switch 208 is electrically connected to the first central control circuit 203, and is respectively connected to the first electromagnetic valve 204 and the air bag 301, and is configured to control the electrical signal according to the first switch output by the first central control circuit 203.
  • the second air flow switch 209 is electrically connected to the second central control circuit 206, and is respectively connected to the second electromagnetic valve 207 and the capillary 302 for controlling the electric power according to the second switch outputted by the second central control circuit 206.
  • a signal that controls whether gas is delivered to the capillary 302. It should be noted that the first air flow switch 208 and the second air flow switch 209 are controlled in an electronic control manner in this embodiment.
  • the physiological sign simulator needs to be adjusted.
  • the physiological sign simulator can be adjusted by controlling the first air flow switch and the second air flow switch, specifically, the control can be turned on.
  • the first air flow switch turns off the second air flow switch to realize the adjustment of the simulated human body breathing;
  • the second air flow switch is controlled to be turned on, and the first air flow switch is turned off to realize the adjustment of the simulated human body pulse.
  • the physiological sign simulator in this embodiment can be used only to simulate human body breathing or simulate a human body pulse, that is, to simulate a human body breathing by turning on the first air flow switch, turning off the second air flow switch, or by turning off the first Air flow switch, open the second air flow switch to simulate the human body Pulse
  • the first solenoid valve can be operated by the first central control circuit, and the second central control circuit stops the second solenoid valve to simulate the human body breathing or stop the first solenoid valve through the first central control circuit.
  • the second central control circuit operates the second solenoid valve to simulate a human body pulse.
  • the first central control circuit is used to control the first electromagnetic valve and/or the first air flow switch
  • the second central control circuit is used to control the second electromagnetic valve and/or the second air flow switch, but may also utilize
  • the first central control circuit simultaneously controls the first electromagnetic valve and/or the first air flow switch, the second electromagnetic valve and/or the second air flow switch, and can be selected by a person skilled in the art according to actual needs, which is not limited herein. .
  • the physiological sign simulator of the eighth embodiment shown in FIG. 10 is similar to the physiological sign simulator of the seventh embodiment shown in FIG. 9, and the other can refer to the seventh embodiment shown in FIG. The description of the physiological sign simulator will not be repeated here.
  • the physiological sign simulator further includes: a pressure source (not shown) disposed above the physiological sign output device for enhancing the simulated physiological sign signal output by the physiological sign output device.
  • a pressure source (not shown) disposed above the physiological sign output device for enhancing the simulated physiological sign signal output by the physiological sign output device.
  • the physiological sign signal output by the physiological sign output device in the present invention may affect the detection of the health monitoring product due to the weak signal. Therefore, the physiological sign output device may be enhanced by applying a pressure source above the physiological sign output device. The simulated physiological sign of the signal is output.
  • the airbag of the above various embodiments of the present invention is preferably composed of a flexible material so that the airbag is inflated when the airbag is inflated, and the airbag is contracted when the airbag is deflated.
  • the capillaries in various embodiments of the present invention are preferably composed of a flexible material to enable the capillaries to expand and contract better. Specifically, when a certain gas pressure is applied to the capillaries, the wall of the capillaries is expanded. After the air pressure is turned off, the capillary shrinks.
  • the thickness of the capillary wall can be set to be less than or equal to a preset threshold, for example, the wall thickness is less than or equal to 1.5 mm, to better achieve expansion and contraction of the capillary, if the wall Too thick, it may require a high gas pressure to expand the wall of the capillary, resulting in waste of resources; if the wall is too thin, the wall may be broken when the gas pressure is applied, causing the physiological sign simulator to be unusable. .
  • first pressure regulating valve, the throttle valve, and the first central control in the above various embodiments
  • the circuit, the first solenoid valve, the first air flow switch, the second pressure regulating valve, the second central control circuit, the second electromagnetic valve and the second air flow switch are electrically connected to the power source according to actual needs, and if electrical energy is required, Electrically connected to the power source, if no electrical energy is required, there is no need to be electrically connected to the power source.
  • the switch, the second pressure regulating valve, the second central control circuit, the second electromagnetic valve and the second air flow switch are internally provided with a built-in power supply, so that no electrical connection is required to the power source.
  • the first gas pressure preset in the above various embodiments, the preset first inflation gas flow rate, the preset first deflation gas flow rate, the preset first inflation time, and the preset The first deflation time can be input through the input button of the first central control circuit and displayed on the display screen of the first central control circuit, or can be directly written into the interior of the first central control circuit;
  • the preset second gas The pressure, the preset second inflation gas flow rate, the preset second deflation gas flow rate, the preset second inflation time, and the preset second deflation time may be input through an input button of the second central control circuit. And displayed on the display screen of the second central control circuit, or directly written into the interior of the second central control circuit.
  • the physiological sign simulator provided by the invention controls the physiological sign output device according to the airflow parameter to output the corresponding simulated physiological sign signal according to the airflow parameter, so as to accurately simulate the physiological sign information under different states of the human body, thereby realizing the reaction physiology.
  • the condition of the sign overcomes the defect that the prior art can only output a stable simulated sign signal, but cannot reflect the true condition of the physiological sign.
  • the detection system 1000 of the health monitoring product includes a physiological sign simulator 100, a health monitoring product 200, and an analysis device 300.
  • the physiological sign simulator 100 is the physiological sign simulator in each of the above embodiments; the health monitoring product 200 is configured to monitor the simulated physiological sign signals output by the physiological sign simulator 100 to obtain monitoring results; and the analyzing device 300 is configured to analyze the monitoring results. To achieve detection of the health monitoring product 200.
  • the health monitoring product 200 is a friction generator based health monitoring product and/or a piezoelectric generator based health monitoring product.
  • the simulated physiological sign signal output by the physiological sign simulator can be used to verify the quality of the health monitoring product.
  • the health monitoring product monitors the simulated physiological sign signal output by the physiological sign simulator, and obtains the monitoring result, and The monitoring result is output to the analysis device, and the analysis device analyzes the monitoring result, thereby realizing the detection of the health monitoring product, thereby accurately detecting whether the health monitoring product has quality problems, for example, by simulating breathing, simulating pulse, and simulating breathing And the pulse is used to detect the health monitoring product.
  • Figures 12a, 12b, and 12c show a test chart of the simulated respiratory signal, a test chart of the simulated pulse signal, and a test chart of the simulated respiratory signal and the simulated pulse signal, respectively.
  • the physiological signs of the physiological sign simulator output may be weak, and the defects are not easily detected by the health monitoring product.
  • the physiological sign output device of the physiological sign simulator may be used.
  • the application of the pressure source enhances the simulated physiological signs output from the physiological sign simulator, so that the health monitoring product can accurately monitor the simulated physiological signs, thereby better verifying the quality of the health monitoring product.
  • the detection system of the health monitoring product provided by the invention can output a simulated physiological sign signal that truly reflects the physiological and physical signs of the human body, and can accurately detect the quality of the health monitoring product, thereby enabling the health monitoring product to be better. User service.
  • the various modules and circuits mentioned in the present invention are circuits implemented by hardware. Although some of the modules and circuits integrate software, the present invention protects the hardware circuits of the functions corresponding to the integrated software, not just the hardware circuits. It is the software itself.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Invalid Beds And Related Equipment (AREA)
  • Massaging Devices (AREA)

Abstract

一种生理体征模拟器(100)及健康监测产品(200)的检测***(1000)。其中,生理体征模拟器(100)包括:气体发生装置(10)、控制装置(20)和生理体征输出装置(30);气体发生装置(10),与控制装置(20)相连,用于产生气体,并将所产生的气体输送至控制装置(20);控制装置(20),与生理体征输出装置(30)相连,用于控制气体的气流参数,根据气流参数控制生理体征输出装置(30)输出相应的模拟生理体征信号,由此可以准确地模拟人体不同状态下的生理体征信息。

Description

生理体征模拟器及健康监测产品的检测***
相关申请的交叉参考
本申请要求于2016年8月11日提交中国专利局、申请号为201610656304.2、名称为“生理体征模拟器及健康监测产品的检测***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子通信技术领域,具体涉及一种生理体征模拟器及健康监测产品的检测***。
背景技术
当今,人们更加注重个人健康问题,因此,对健康监测产品需求量也越来越大。这些健康监测产品通常是通过获取人体生理体征信息,然后对所获取的人体生理体征信息进行对比分析,根据比对分析结果判断个人的健康状况。据调查,现在一些公司正在开发或已经开发出许多不同种类的健康监测产品,这些公司在开发或生产健康监测产品过程中,需要一个能够真实反映人体生理体征的生理体征输出源来检验产品的质量,而市场又缺少这种生理体征输出源。
虽然已经有部分公司生产出生理体征模拟器,然而这些生理体征模拟器只是模拟体征信号输出,其并不能反映生理体征的真实状况。
主要原因在于,人体的生理体征信息是不稳定的,对于不同的人,其生理体征信息不同,即使是同一个人,随着时间、身体状况、运动状态的变化,生理体征信息也会发生变化,例如人在运动前和运动后,呼吸就不同,运动后的呼吸频率和呼吸强度明显高于运动前的呼吸频率和呼吸强度;现有的体征模拟器仅能够提供稳定的生理体征信息,而稳定的生理体征信息又不足以用于准确验证、分析健康监测产品的质量。
发明内容
本发明提供一种生理体征模拟器及健康监测产品的检测***,用于克服现有的生理体征模拟器仅能输出稳定的生理体征信息而无法反映人体生理体征时刻变化的缺陷。
本发明提供一种生理体征模拟器,包括:气体发生装置、控制装置和生理体征输出装置;
气体发生装置,与控制装置相连,用于产生气体,并将所产生的气体输送至控制装置;
控制装置,与生理体征输出装置相连,用于控制气体的气流参数,根据气流参数控制生理体征输出装置输出相应的模拟生理体征信号。
本发明提供一种健康监测产品的检测***,包括上述生理体征模拟器,以及健康监测产品、分析装置;
健康监测产品用于监测生理体征模拟器输出的模拟生理体征信号得到监测结果;
分析装置用于分析监测结果,以实现对健康监测产品的检测。
进一步地,健康监测产品为基于摩擦发电机的健康监测产品和/或基于压电发电机的健康监测产品。
本发明提供的生理体征模拟器及健康监测产品的检测***,通过控制气体的气流参数,根据气流参数控制生理体征输出装置输出相应的模拟生理体征信号,可以准确地模拟人体不同状态下的生理体征信息,从而真实的反应人体生理体征的状况,克服了现有技术仅能输出稳定的模拟体征信号,而无法反映人体生理体征的真实状况的缺陷。
附图说明
图1a为本发明提供的生理体征模拟器的结构示意图;
图1b为本发明提供的生理体征模拟器的功能框图;
图2为本发明提供的生理体征模拟器实施例一的功能框图;
图3为本发明提供的生理体征模拟器实施例二的功能框图;
图4为本发明提供的毛细管模拟脉搏的示意图;
图5为本发明提供的生理体征模拟器实施例三的功能框图;
图6为本发明提供的生理体征模拟器实施例四的功能框图;
图7为本发明提供的生理体征模拟器实施例五的功能框图;
图8为本发明提供的生理体征模拟器实施例六的功能框图;
图9为本发明提供的生理体征模拟器实施例七的功能框图;
图10为本发明提供的生理体征模拟器实施例八的功能框图;
图11为本发明提供的健康监测产品的检测***的功能框图;
图12a为本发明模拟呼吸信号的测试图;
图12b为本发明模拟脉搏信号的测试图;
图12c为本发明模拟呼吸信号和模拟脉搏信号的测试图。
具体实施方式
为充分了解本发明之目的、特征及功效,借由下述具体的实施方式,对本发明做详细说明,但本发明并不仅仅限于此。
图1a为本发明提供的生理体征模拟器的结构示意图。图1b为本发明提供的生理体征模拟器的功能框图。如图1a和图1b所示,该生理体征模拟器100包括:气体发生装置10、控制装置20和生理体征输出装置30。
其中,气体发生装置10,与控制装置20相连,用于产生气体,并将所产生的气体输送至控制装置20。
具体地,上述气体发生装置10可以是气泵或者其它形式的气源,这里不做具体限定,本领域技术人员可以根据实际需要选择合适的气源。在本实施例中,气体发生装置10作为生理体征动力源之一,可以优选为电动气泵,该电动气泵可以产生气体,并将所产生的气体输送至控制装置20。
其中,控制装置20,与生理体征输出装置30相连,用于控制气体的气流参数,根据气流参数控制生理体征输出装置30输出相应的模拟生理体征信号。
本发明提供的生理体征模拟器主要是用于模拟人体生理体征信号,因此,由气体发生装置10输送至控制装置20的气体可能并不适于直接输送至生理体征输出装置30,故需要通过对气体的气流参数进行控制,使气体能够适于 被输送至生理体征输出装置30。其中,气流参数包括:气体压强、充气气体流量、放气气体流量、充气时间和/或放气时间。具体地,气体压强包括第一气体压强和/或第二气体压强;充气气体流量包括第一充气气体流量和/或第二充气气体流量;放气气体流量包括第一放气气体流量和/或第二放气气体流量;充气时间包括第一充气时间和/或第二充气时间;放气时间包括第一放气时间和/或第二放气时间。
人体呼吸是机体与外界环境之间交换气体的过程,吸入氧气,呼出二氧化碳。本发明的生理体征模拟器可以用于模拟人体生理体征信息,例如,模拟人体呼吸,具体地,可以模拟人体在不同状况下的呼吸频率和呼吸强度,其中,呼吸频率指每分钟呼吸的次数,胸部的一次起伏就是一次呼吸,即一次吸气一次呼气,在本发明中可以通过控制第一充气时间和/或第一放气时间实现控制模拟呼吸频率;呼吸强度指在单位时间内所吸收的氧气或释放的二氧化碳的量,在本发明中可以通过控制第一充气气体流量和/或第一放气气体流量实现控制模拟呼吸强度,也就是说,第一充气气体流量和/或第一放气气体流量越大,呼吸强度越大,第一充气气体流量和/或第一放气气体流量越小,呼吸强度越小。
在模拟人体呼吸时,本发明的生理体征输出装置可以包括气囊,通过给气囊充气和/或放气,实现模拟人体呼吸的过程,其中,控制装置进一步可以通过控制第一气体压强、第一充气气体流量、第一放气气体流量、第一充气时间和/或第一放气时间,进而控制气囊输出模拟呼吸信号。
图2为本发明提供的生理体征模拟器实施例一的功能框图。如图2所示,在本实施例中,以气体发生装置为气泵101、生理体征输出装置为气囊301模拟人体呼吸为例进行说明,图2所示实施例一的生理体征模拟器与图1b所示的生理体征模拟器的不同之处在于,控制装置具体包括:第一调压阀201、节流阀202、第一中央控制电路203和第一电磁阀204。
在本实施例中采用机械式控制方式控制第一调压阀201和节流阀202,例如,可以根据实际需要手动设定调整气体通过第一调压阀201后的第一气体压强以及通过节流阀202的第一充气气体流量和/或第一放气气体流量。
其中,第一调压阀201,与气泵101相连,用于调整气泵101输出气体 的第一气体压强。
利用第一调压阀201调整气泵101输出气体的第一气体压强是由于人体在呼吸时,吸入气体的气体压强为标准大气压强,因此,为了更好地模拟人体呼吸,可以利用第一调压阀201将气泵101所产生的气体的第一气体压强手动设定调整为标准大气压强,当然,也可以根据实际需要利用第一调压阀201将气泵101所产生的气体的第一气体压强手动设定调整为其它压强,此处不做限定。
其中,节流阀202,分别与第一调压阀201、第一电磁阀204和气囊301相连,用于控制第一充气气体流量和/或第一放气气体流量。
在本实施例中,气体流量表明了单位时间内通过气体的体积大小,节流阀202是通过改变节流截面和/或节流长度以控制流体流量的阀门,因此,可以通过节流阀202来控制流经节流阀202的气体的气体流量,包括第一充气气体流量和/或第一放气气体流量。在模拟人体呼吸时,充气时的第一充气气体流量和/或放气时的第一放气气体流量能够反映呼气或吸气时的呼吸强度,故可以通过设定调整节流阀202的节流截面和/或节流长度,来控制第一充气气体流量和/或第一放气气体流量,进而实现模拟人体呼吸的呼吸强度。
在本发明的一种具体实现方式中,如图2所示,节流阀202包括:进气节流阀2021和出气节流阀2022。其中,进气节流阀2021,分别与第一调压阀201和第一电磁阀204相连,用于控制第一充气气体流量,具体地,可以根据实际需要手动设定调整进气节流阀2021的节流截面和/或节流长度,来控制第一充气气体流量;出气节流阀2022,与气囊301相连,用于控制第一放气气体流量,对气囊301进行放气,在本实施例中,出气节流阀2022是与外界相通的,也就是说,气囊301放出的气体可以被释放到外部空气中,此外,在本实施例中,出气节流阀2022处于常开状态,在气囊301中的气体的压强增大到一定程度后,可以通过出气节流阀2022对气囊301进行放气。
另外,在本发明的一种可选实施方式中,可以利用同时具有充气和放气功能的节流阀来替代进气节流阀2021和出气节流阀2022控制第一充气气体流量和/或第一放气气体流量,具体实现方式,此处不再赘述。
其中,第一中央控制电路203,与第一电磁阀204电连接,用于根据预 设的第一充气时间和/或第一放气时间,向第一电磁阀204输出对应的第一充气时间控制电信号和/或第一放气时间控制电信号。
可选地,第一中央控制电路203为单片机、微处理器或微控制器,例如:TI的低功耗芯片MSP430、51系列单片机、ARM系列单片机等,或者采用多种电路共同实现控制器的功能,或以上的结合,本领域技术人员可以根据实际需求的方式进行选择,此处不做限定。应当注意的是,上述电路均由硬件元件组合形成的电路实现,无需借助任何程序控制。
其中,第一电磁阀204,与气囊301相连,用于根据第一充气时间控制电信号和/或第一放气时间控制电信号,对应控制气囊301的第一充气时间和/或第一放气时间。
具体地,第一中央控制电路203可以根据预设的第一充气时间和/或第一放气时间,对应控制第一电磁阀204的充气功能和/或放气功能。以给气囊301每隔1秒进行一次充放气为例,第一中央控制电路203向第一电磁阀204输出第一充气时间控制电信号,使第一电磁阀204的充气功能开启,给气囊301充气,与此同时,第一中央控制电路203中的计时器开始计时1秒,当计时时间到达1秒后,第一中央控制电路203向第一电磁阀204输出第一放气时间控制电信号,使第一电磁阀204的放气功能开启,给气囊301放气,与此同时,第一中央控制电路203中的计时器重新开始计时1秒,当计时时间到达1秒后,重复上述过程,从而实现模拟人体呼吸的呼吸频率。
在本发明的一种具体实现方式中,如图2所示,第一电磁阀204包括:第一进气电磁阀2041和第一出气电磁阀2042。
第一中央控制电路203,分别与第一进气电磁阀2041和第一出气电磁阀2042电连接,用于根据预设的第一充气时间,向第一进气电磁阀2041输出第一充气时间控制电信号,控制第一进气电磁阀2041开启,并控制第一出气电磁阀2042关闭;以及根据预设的第一放气时间,向第一出气电磁阀2042输出第一放气时间控制电信号,控制第一出气电磁阀2042开启,并控制第一进气电磁阀2041关闭。
具体地,在给气囊301进行充气时,第一中央控制电路203将控制第一进气电磁阀2041开启,第一出气电磁阀2042关闭,避免气囊301放气,以 实现给气囊301的充气过程;在给气囊301进行放气时,第一中央控制电路203将控制第一出气电磁阀2042开启,第一进气电磁阀2041关闭,停止向气囊301充气,以实现给气囊301的放气过程。
第一进气电磁阀2041,分别与进气节流阀2021和气囊301相连,用于根据第一充气时间控制电信号,控制气囊301的第一充气时间。
第一出气电磁阀2042,与气囊301相连,用于根据第一放气时间控制电信号,控制气囊301的第一放气时间,对气囊301进行放气。在本实施例中,第一出气电磁阀2042是与外界相通的,也就是说,气囊301放出的气体可以被释放到外部空气中。
在本实施例中,采用出气节流阀2022和第一出气电磁阀2042给气囊301放气,不仅可以防止气囊301中气体压强突然变化,而且还增强了模拟呼吸信号。
此外,在实际应用中,可以采用二合一引线方式将第一进气电磁阀2041和第一出气电磁阀2042同时与气囊301连接,即气囊301的气流通道同时与第一进气电磁阀2041的气流通道和第一出气电磁阀2042的气流通道相连通,这样可以减少气囊301的开口,使气囊301的封闭性更好。
图3为本发明提供的生理体征模拟器实施例二的功能框图。如图3所示,在本实施例中,以气体发生装置为气泵101、生理体征输出装置为气囊301模拟人体呼吸为例进行说明,图3所示实施例二的生理体征模拟器与图2所示实施例一的生理体征模拟器的不同之处在于,本实施例中采用电子式控制方式通过第一中央控制电路203控制第一调压阀201、节流阀202和第一电磁阀204,即第一调压阀201、节流阀202和第一电磁阀204根据第一中央控制电路203输出的对应的控制电信号,执行相应的控制,无需用户直接手动设定调整第一调压阀201、节流阀202和第一电磁阀204,使得生理体征模拟器更加智能化。
在本实施例中,控制装置也包括:第一调压阀201、节流阀202、第一中央控制电路203和第一电磁阀204。
其中,第一中央控制电路203,分别与第一调压阀201、节流阀202和第 一电磁阀204电连接,用于根据预设的第一气体压强,向第一调压阀201输出第一气体压强控制电信号;根据预设的第一充气气体流量和/或第一放气气体流量,向节流阀202输出对应的第一充气气体流量控制电信号和/或第一放气气体流量控制电信号;以及根据预设的第一充气时间和/或第一放气时间,向第一电磁阀204输出对应的第一充气时间控制电信号和/或第一放气时间控制电信号。
其中,第一调压阀201,与气泵101相连,用于根据第一气体压强控制电信号,调整气泵101输出气体的第一气体压强。
在本实施例中,由于人体在呼吸时,吸入气体的气体压强为标准大气压强,因此,为了更好地模拟人体呼吸,需要对气泵所产生的气体进行调压,具体地,第一调压阀201可以根据第一中央控制电路203输出的第一气体压强控制电信号,将气泵101所产生的气体的第一气体压强调整为标准大气压强,当然,也可以根据需要将气泵所产生的气体的第一气体压强调整为其它压强,此处不做限定。
其中,节流阀202,分别与第一调压阀201、第一电磁阀204和气囊301相连,用于根据第一充气气体流量控制电信号和/或第一放气气体流量控制电信号,对应控制第一充气气体流量和/或第一放气气体流量。
在本实施例中,气体流量表明了单位时间内通过气体的体积大小,节流阀202是通过改变节流截面和/或节流长度以控制流体流量的阀门,因此,可以通过节流阀202来控制流经节流阀202的气体的气体流量,包括第一充气气体流量和/或第一放气气体流量。在模拟人体呼吸时,充气时的第一充气气体流量和/或放气时的第一放气气体流量能够反映呼气或吸气时的呼吸强度,故可以通过设定节流阀202的节流截面和/或节流长度,来控制第一充气气体流量和/或第一放气气体流量,进而实现模拟人体呼吸的呼吸强度。具体地,节流阀202在接收到第一中央控制电路203输出的第一充气气体流量控制电信号和/或第一放气气体流量控制电信号后,根据第一充气气体流量控制电信号和/或第一放气气体流量控制电信号调整节流阀202的节流口的开启面积,从而控制给气囊301充气和/或放气的第一充气气体流量和/或第一放气气体流量,以实现模拟人体呼吸的呼吸强度。
在本发明的一种具体实现方式中,如图3所示,节流阀202包括:进气节流阀2021和出气节流阀2022。
第一中央控制电路203,分别与进气节流阀2021和出气节流阀2022电连接,用于根据预设的第一充气气体流量,向进气节流阀2021输出第一充气气体流量控制电信号;以及根据预设的第一放气气体流量,向出气节流阀2022输出第一放气气体流量控制电信号。
进气节流阀2021,分别与第一调压阀201和第一电磁阀204相连,用于根据第一充气气体流量控制电信号,控制第一充气气体流量。
出气节流阀2022,与气囊301相连,用于根据第一放气气体流量控制电信号,控制第一放气气体流量,对气囊301进行放气。在本实施例中,出气节流阀2022是与外界相通的,也就是说,气囊301放出的气体可以被释放到外部空气中。
另外,在本发明的一种可选实施方式中,可以利用同时具有充气和放气功能的节流阀来替代进气节流阀2021和出气节流阀2022控制第一充气气体流量和/或第一放气气体流量,具体实现方式,此处不再赘述。
第一电磁阀204,与气囊301相连,用于根据第一充气时间控制电信号和/或第一放气时间控制电信号,对应控制气囊301的第一充气时间和/或第一放气时间。
具体地,第一充气时间表明了需要给气囊301充气的时长,第一放气时间表明了需要给气囊301放气的时长,根据通过第一中央控制电路203预设的第一充气时间和/或第一放气时间,向第一电磁阀204输出对应的第一充气时间控制电信号和/或第一放气时间控制电信号,对应控制气囊301的第一充气时间和/或第一放气时间。
在本发明的一种具体实现方式中,第一电磁阀204包括:第一进气电磁阀2041和第一出气电磁阀2042。
第一中央控制电路203,分别与第一进气电磁阀2041和第一出气电磁阀2042电连接,用于根据预设的第一充气时间,向第一进气电磁阀2041输出第一充气时间控制电信号,控制第一进气电磁阀2041开启,并控制第一出气 电磁阀2042关闭;以及根据预设的第一放气时间,向第一出气电磁阀2042输出第一放气时间控制电信号,控制第一出气电磁阀2042开启,并控制第一进气电磁阀2041关闭。
具体地,在给气囊301进行充气时,第一中央控制电路203将控制第一进气电磁阀2041开启,第一出气电磁阀2042关闭,避免气囊301放气,以实现给气囊301的充气过程;在给气囊301进行放气时,第一中央控制电路203将控制第一出气电磁阀2042开启,第一进气电磁阀2041关闭,停止向气囊301充气,以实现给气囊301的放气过程。
第一进气电磁阀2041,分别与进气节流阀2021和气囊301相连,用于根据第一充气时间控制电信号,控制气囊301的第一充气时间。
第一出气电磁阀2042,与气囊301相连,用于根据第一放气时间控制电信号,控制气囊301的第一放气时间,对气囊301进行放气。在本实施例中,第一出气电磁阀2042是与外界相通的,也就是说,气囊301放出的气体可以被释放到外部空气中。
应当注意的是,除上述不同之外,图3所示实施例二的生理体征模拟器与图2所示实施例一的生理体征模拟器相似,其它均可参照图2所示实施例一的生理体征模拟器的描述,此处不再赘述。
此外,本发明的生理体征模拟器还可以用于模拟人体脉搏,人体脉搏是体表可触摸到的动脉搏动,血液经由心脏的左心室收缩而挤压流入动脉,血液进入动脉将使动脉压力变大而管径扩张。在模拟人体脉搏时,本发明的生理体征输出装置可以包括毛细管,用毛细管代***血管,在毛细管内部注入液体,液体不宜完全注满整个毛细管,可以在毛细管内部留有少量的空间便于液体在毛细管内部流动,控制装置通过控制第二气体压强、第二充气时间和/或第二放气时间,进而控制毛细管输出模拟脉搏信号,如图4所示。
图5为本发明提供的生理体征模拟器实施例三的功能框图。如图5所示,在本实施例中,以气体发生装置为气泵101、生理体征输出装置为毛细管302模拟人体脉搏为例进行说明,图5所示实施例三的生理体征模拟器与图1b所示的生理体征模拟器的不同之处在于,控制装置具体包括:第二调压阀205、第二中央控制电路206和第二电磁阀207。
在本实施例中采用机械式控制方式控制第二调压阀205,例如,可以根据实际需要手动设定调整气体通过第二调压阀205后的第二气体压强。
其中,第二调压阀205,与气泵101相连,用于调整气泵101输出气体的第二气体压强。
具体地,通过给输送至毛细管302的气体一定的气体压强,可以使液体向右方流动聚集,进而迫使毛细管扩张。其中,通过手动设定调整第二气体压强可以改变模拟脉搏信号的强弱,也就是说,第二气体压强越大,模拟脉搏信号越强;第二气体压强越小,模拟脉搏信号越弱。
其中,第二中央控制电路206,与第二电磁阀207电连接,用于根据预设的第二充气时间和/或第二放气时间,向第二电磁阀207输出对应的第二充气时间控制电信号和/或第二放气时间控制电信号。
在本实施例中,通过给毛细管302充气和/或放气实现模拟人体脉搏(即模拟人体脉搏跳动),并且通过控制给毛细管302的第二充气时间和/或第二放气时间来实现模拟人体脉搏的频率(即模拟人体脉搏跳动的频率)。
其中,第二电磁阀207,分别与第二调压阀205和毛细管302相连,用于根据第二充气时间控制电信号和/或第二放气时间控制电信号,对应控制毛细管302的第二充气时间和/或第二放气时间。
具体地,第二电磁阀207在接收到第二中央控制电路206输出的第二充气时间控制电信号后,控制阀门打开,实现给毛细管302的充气,在给毛细管302充气时,气体被输送至毛细管302,毛细管302内液体在气体推动作用下,向右方流动,给毛细管302的管壁施加压力,致使毛细管302的管壁扩张;第二电磁阀207在接收到第二中央控制电路206输出的第二放气时间控制电信号后,控制阀门打开,实现给毛细管302的放气,在给毛细管302放气时,气体经第二电磁阀207输送至外部,毛细管302的管壁收缩,从而实现了模拟人体脉搏。
在本发明的一种具体实现方式中,第二电磁阀207包括:第二进气电磁阀2071和第二出气电磁阀2072。
第二中央控制电路206,分别与第二进气电磁阀2071和第二出气电磁阀 2072电连接,用于根据预设的第二充气时间,向第二进气电磁阀2071输出第二充气时间控制电信号,控制第二进气电磁阀2071开启,并控制第二出气电磁阀2072关闭,以向毛细管302输送气体;以及根据预设的第二放气时间,向第二出气电磁阀2072输出第二放气时间控制电信号,控制第二出气电磁阀2072开启,并控制第二进气电磁阀2071关闭,以停止向毛细管302输送气体。
第二进气电磁阀2071,分别与第二调压阀205和毛细管302相连,用于根据第二充气时间控制电信号,控制毛细管302的第二充气时间。
第二出气电磁阀2072,与毛细管302相连,用于根据第二放气时间控制电信号,控制毛细管302的第二放气时间,对毛细管302进行放气。在本实施例中,第二出气电磁阀2072是与外界相通的,也就是说,毛细管302放出的气体可以被释放到外部空气中。
此外,在实际应用中,可以采用二合一引线方式将第二进气电磁阀2071和第二出气电磁阀2072同时与毛细管302连接,即毛细管302的气流通道同时与第二进气电磁阀2071的气流通道和第二出气电磁阀2072的气流通道相连通,这样可以减少毛细管302的开口,使毛细管302的封闭性更好。
图6为本发明提供的生理体征模拟器实施例四的功能框图。如图6所示,在本实施例中,以气体发生装置为气泵101、生理体征输出装置为毛细管302模拟人体脉搏为例进行说明,图6所示实施例四的生理体征模拟器与图5所示实施例三的生理体征模拟器的不同之处在于,在本实施例中采用电子式控制方式通过第二中央控制电路206控制第二调压阀205和第二电磁阀207,即第二调压阀205和第二电磁阀207根据第二中央控制电路206输出的对应的控制电信号,执行相应的控制,无需用户手动设定调整第二调压阀205和第二电磁阀207,使得生理体征模拟器更加智能化。控制装置具体包括:第二调压阀205、第二中央控制电路206和第二电磁阀207。
其中,第二中央控制电路206,分别与第二调压阀205和第二电磁阀207电连接,用于根据预设的第二气体压强,向第二调压阀205输出第二气体压强控制电信号;以及根据预设的第二充气时间和/或第二放气时间,向第二电磁阀207输出对应的第二充气时间控制电信号和/或第二放气时间控制电信 号。
其中,第二调压阀205,与气泵101相连,用于根据第二气体压强控制电信号,调整气泵101输出气体的第二气体压强。
其中,第二电磁阀207,分别与第二调压阀205和毛细管302相连,用于根据第二充气时间控制电信号和/或第二放气时间控制电信号,对应控制毛细管302的第二充气时间和/或第二放气时间。
在本发明的一种具体实现方式中,第二电磁阀207包括:第二进气电磁阀2071和第二出气电磁阀2072。
第二中央控制电路206,分别与第二进气电磁阀2071和第二出气电磁阀2072电连接,用于根据预设的第二充气时间,向第二进气电磁阀2071输出第二充气时间控制电信号,控制第二进气电磁阀2071开启,并控制第二出气电磁阀2072关闭;以及根据预设的第二放气时间,向第二出气电磁阀2072输出第二放气时间控制电信号,控制第二出气电磁阀2072开启,并控制第二进气电磁阀2071关闭。
第二进气电磁阀2071,分别与第二调压阀205和毛细管302相连,用于根据第二充气时间控制电信号,控制毛细管302的第二充气时间。
第二出气电磁阀2072,与毛细管302相连,用于根据第二放气时间控制电信号,控制毛细管302的第二放气时间,对毛细管302进行放气。在本实施例中,第二出气电磁阀2072是与外界相通的,也就是说,毛细管302放出的气体可以被释放到外部空气中。
应当注意的是,除上述不同之外,图6所示实施例四的生理体征模拟器与图5所示实施例三的生理体征模拟器相似,其它均可参照图5所示实施例三的生理体征模拟器的描述,此处不再赘述。
此外,本发明中的生理体征模拟器还可以同时用于模拟人体呼吸和脉搏,此时,生理体征输出装置可以包括气囊和毛细管,下面将通过具体实施例做进一步介绍。
图7为本发明提供的生理体征模拟器实施例五的功能框图。如图7所示,图7所示实施例五的生理体征模拟器与图1b所示的生理体征模拟器的不同之 处在于,控制装置进一步用于:控制第一气体压强、第一充气气体流量、第一放气气体流量、第一充气时间和/或第一放气时间,进而控制气囊输出模拟呼吸信号;以及控制第二气体压强、第二充气时间和/或第二放气时间进而控制毛细管输出模拟脉搏信号。控制装置具体包括:第一调压阀201、节流阀202、第一中央控制电路203、第一电磁阀204、第二调压阀205、第二中央控制电路206和第二电磁阀207。
在本实施例中采用机械式控制方式控制第一调压阀201和节流阀202,例如,可以根据实际需要手动设定调整气体通过第一调压阀201后的第一气体压强以及通过节流阀202的第一充气气体流量和/或第一放气气体流量。
其中,第一调压阀201,与气泵101相连,用于调整气泵101输出气体的第一气体压强。
利用第一调压阀201调整气泵101输出气体的第一气体压强是由于人体在呼吸时,吸入气体的气体压强为标准大气压强,因此,为了更好地模拟人体呼吸,可以利用第一调压阀201将气泵101所产生的气体的第一气体压强手动设定调整为标准大气压强,当然,也可以根据实际需要利用第一调压阀201将气泵101所产生的气体的第一气体压强手动设定调整为其它压强,此处不做限定。
其中,节流阀202,分别与第一调压阀201、第一电磁阀204和气囊301相连,用于控制第一充气气体流量和/或第一放气气体流量。
在本实施例中,气体流量表明了单位时间内通过气体的体积大小,节流阀202是通过改变节流截面和/或节流长度以控制流体流量的阀门,因此,可以通过节流阀202来控制流经节流阀202的气体的气体流量,包括第一充气气体流量和/或第一放气气体流量。在模拟人体呼吸时,充气时的第一充气气体流量和/或放气时的第一放气气体流量能够反映呼气或吸气时的呼吸强度,故可以通过设定调整节流阀202的节流截面和/或节流长度,来控制第一充气气体流量和/或第一放气气体流量,进而实现模拟人体呼吸的呼吸强度。
在本发明的一种具体实现方式中,如图7所示,节流阀202包括:进气节流阀2021和出气节流阀2022。其中,进气节流阀2021,分别与第一调压阀201和第一电磁阀204相连,用于控制第一充气气体流量,具体地,可以 根据实际需要手动设定调整进气节流阀2021的节流截面和/或节流长度,来控制第一充气气体流量;出气节流阀2022,与气囊301相连,用于控制第一放气气体流量,对气囊301进行放气,在本实施例中,出气节流阀2022是与外界相通的,也就是说,气囊301放出的气体可以被释放到外部空气中,此外,在本实施例中,出气节流阀2022处于常开状态,在气囊301中的气体的压强增大到一定程度后,可以通过出气节流阀2022对气囊301进行放气。
另外,在本发明的一种可选实施方式中,可以利用同时具有充气和放气功能的节流阀来替代进气节流阀2021和出气节流阀2022控制第一充气气体流量和/或第一放气气体流量,具体实现方式,此处不再赘述。
其中,第一中央控制电路203,与第一电磁阀204电连接,用于根据预设的第一充气时间和/或第一放气时间,向第一电磁阀204输出对应的第一充气时间控制电信号和/或第一放气时间控制电信号。
可选地,第一中央控制电路203为单片机、微处理器或微控制器,例如:TI的低功耗芯片MSP430、51系列单片机、ARM系列单片机等,或者采用多种电路共同实现控制器的功能,或以上的结合,本领域技术人员可以根据实际需求的方式进行选择,此处不做限定。应当注意的是,上述电路均由硬件元件组合形成的电路实现,无需借助任何程序控制。
其中,第一电磁阀204,与气囊301相连,用于根据第一充气时间控制电信号和/或第一放气时间控制电信号,对应控制气囊301的第一充气时间和/或第一放气时间。
具体地,第一中央控制电路203可以根据预设的第一充气时间和/或第一放气时间,对应控制第一电磁阀204的充气功能和/或放气功能。以给气囊301每隔1秒进行一次充放气为例,第一中央控制电路203向第一电磁阀204输出第一充气时间控制电信号,使第一电磁阀204的充气功能开启,给气囊301充气,与此同时,第一中央控制电路203中的计时器开始计时1秒,当计时时间到达1秒后,第一中央控制电路203向第一电磁阀204输出第一放气时间控制电信号,使第一电磁阀204的放气功能开启,给气囊301放气,与此同时,第一中央控制电路203中的计时器重新开始计时1秒,当计时时间到达1秒后,重复上述过程,从而实现模拟人体呼吸的呼吸频率。
在本发明的一种具体实现方式中,如图7所示,第一电磁阀204包括:第一进气电磁阀2041和第一出气电磁阀2042。
第一中央控制电路203,分别与第一进气电磁阀2041和第一出气电磁阀2042电连接,用于根据预设的第一充气时间,向第一进气电磁阀2041输出第一充气时间控制电信号,控制第一进气电磁阀2041开启,并控制第一出气电磁阀2042关闭;以及根据预设的第一放气时间,向第一出气电磁阀2042输出第一放气时间控制电信号,控制第一出气电磁阀2042开启,并控制第一进气电磁阀2041关闭。
具体地,在给气囊301进行充气时,第一中央控制电路203将控制第一进气电磁阀2041开启,第一出气电磁阀2042关闭,避免气囊301放气,以实现给气囊301的充气过程;在给气囊301进行放气时,第一中央控制电路203将控制第一出气电磁阀2042开启,第一进气电磁阀2041关闭,停止向气囊301充气,以实现给气囊301的放气过程。
第一进气电磁阀2041,分别与进气节流阀2021和气囊301相连,用于根据第一充气时间控制电信号,控制气囊301的第一充气时间。
第一出气电磁阀2042,与气囊301相连,用于根据第一放气时间控制电信号,控制气囊301的第一放气时间,对气囊301进行放气。在本实施例中,第一出气电磁阀2042是与外界相通的,也就是说,气囊301放出的气体可以被释放到外部空气中。
在本实施例中,采用出气节流阀2022和第一出气电磁阀2042给气囊301放气,不仅可以防止气囊301中气体压强突然变化,而且还增强了模拟呼吸信号。
此外,在实际应用中,可以采用二合一引线方式将第一进气电磁阀2041和第一出气电磁阀2042同时与气囊301连接,即气囊301的气流通道同时与第一进气电磁阀2041的气流通道和第一出气电磁阀2042的气流通道相连通,这样可以减少气囊301的开口,使气囊301的封闭性更好。
其中,第二调压阀205,与气泵101相连,用于调整气泵101输出气体的第二气体压强。
具体地,通过给输送至毛细管302的气体一定的气体压强,可以使液体向右方流动聚集,进而迫使毛细管扩张。其中,通过手动设定调整第二气体压强可以改变模拟脉搏信号的强弱,也就是说,第二气体压强越大,模拟脉搏信号越强;第二气体压强越小,模拟脉搏信号越弱。
其中,第二中央控制电路206,与第二电磁阀207电连接,用于根据预设的第二充气时间和/或第二放气时间,向第二电磁阀207输出对应的第二充气时间控制电信号和/或第二放气时间控制电信号。
在本实施例中,通过给毛细管302充气和/或放气实现模拟人体脉搏(即模拟人体脉搏跳动),并且通过控制给毛细管302的第二充气时间和/或第二放气时间来实现模拟人体脉搏的频率(即模拟人体脉搏跳动的频率)。
其中,第二电磁阀207,分别与第二调压阀205和毛细管302相连,用于根据第二充气时间控制电信号和/或第二放气时间控制电信号,对应控制毛细管302的第二充气时间和/或第二放气时间。
具体地,第二电磁阀207在接收到第二中央控制电路206输出的第二充气时间控制电信号后,控制阀门打开,实现给毛细管302的充气,在给毛细管302充气时,气体被输送至毛细管302,毛细管302内液体在气体推动作用下,向右方流动,给毛细管302的管壁施加压力,致使毛细管302的管壁扩张;第二电磁阀207在接收到第二中央控制电路206输出的第二放气时间控制电信号后,控制阀门打开,实现给毛细管302的放气,在给毛细管302放气时,气体经第二电磁阀207输送至外部,毛细管302的管壁收缩,从而实现了模拟人体脉搏。
在本发明的一种具体实现方式中,第二电磁阀207包括:第二进气电磁阀2071和第二出气电磁阀2072。
第二中央控制电路206,分别与第二进气电磁阀2071和第二出气电磁阀2072电连接,用于根据预设的第二充气时间,向第二进气电磁阀2071输出第二充气时间控制电信号,控制第二进气电磁阀2071开启,并控制第二出气电磁阀2072关闭,以向毛细管302输送气体;以及根据预设的第二放气时间,向第二出气电磁阀2072输出第二放气时间控制电信号,控制第二出气电磁阀2072开启,并控制第二进气电磁阀2071关闭,以停止向毛细管302输送气 体。
第二进气电磁阀2071,分别与第二调压阀205和毛细管302相连,用于根据第二充气时间控制电信号,控制毛细管302的第二充气时间。
第二出气电磁阀2072,与毛细管302相连,用于根据第二放气时间控制电信号,控制毛细管302的第二放气时间,对毛细管302进行放气。在本实施例中,第二出气电磁阀2072是与外界相通的,也就是说,毛细管302放出的气体可以被释放到外部空气中。
此外,在实际应用中,可以采用二合一引线方式将第二进气电磁阀2071和第二出气电磁阀2072同时与毛细管302连接,即毛细管302的气流通道同时与第二进气电磁阀2071的气流通道和第二出气电磁阀2072的气流通道相连通,这样可以减少毛细管302的开口,使毛细管302的封闭性更好。
在本实施例中,利用第一中央控制电路控制第一电磁阀和利用第二中央控制电路控制第二电磁阀,但是,也可以利用第一中央控制电路同时实现对第一电磁阀和第二电磁阀的控制,本领域技术人员可以根据实际需要进行选择,此处不做限定。
图8为本发明提供的生理体征模拟器实施例六的功能框图。如图8所示,图8所示实施例六的生理体征模拟器与图7所示实施例五的生理体征模拟器的不同之处在于,控制装置还包括:第一气流开关208和第二气流开关209。其中,第一气流开关208,分别与第一电磁阀204和气囊301相连,用于控制是否向气囊301充气;第二气流开关209,分别与第二电磁阀207与毛细管302相连,用于控制是否向毛细管302输送气体。应当注意的是,在本实施例中采用机械式控制方式控制第一气流开关208和第二气流开关209。
此外,还可以采用电子式控制方式控制第一气流开关和第二气流开关,具体地,第一气流开关还与第一中央控制电路电连接,用于根据第一中央控制电路输出的第一开关控制电信号,控制是否向气囊充气;第二气流开关还与第二中央控制电路电连接,用于根据第二中央控制电路输出的第二开关控制电信号,控制是否向毛细管充气。
在使用本实施例中的生理体征模拟器时,需要对生理体征模拟器进行调 节,这里可以通过控制第一气流开关和第二气流开关来对生理体征模拟器进行调节,具体地,可以控制打开第一气流开关,关闭第二气流开关,实现模拟人体呼吸的调节;控制打开第二气流开关,关闭第一气流开关,实现模拟人体脉搏的调节。
另外,本实施例中的生理体征模拟器可以仅用于模拟人体呼吸或模拟人体脉搏,也就是说,可以通过打开第一气流开关、关闭第二气流开关实现模拟人体呼吸或可以通过关闭第一气流开关、打开第二气流开关实现模拟人体脉搏,当然,也可以通过第一中央控制电路使第一电磁阀工作,第二中央控制电路使第二电磁阀停止工作来实现模拟人体呼吸或通过第一中央控制电路使第一电磁阀停止工作,第二中央控制电路使第二电磁阀工作来实现模拟人体脉搏。
在本实施例中,利用第一中央控制电路控制第一电磁阀和/或第一气流开关,且利用第二中央控制电路控制第二电磁阀和/或第二气流开关,但是,也可以利用第一中央控制电路同时实现对第一电磁阀和/或第一气流开关、第二电磁阀和/或第二气流开关的控制,本领域技术人员可以根据实际需要进行选择,此处不做限定。
应当注意的是,除上述不同之外,图8所示实施例六的生理体征模拟器与图7所示实施例五的生理体征模拟器相似,其它均可参照图7所示实施例五的生理体征模拟器的描述,此处不再赘述。
图9为本发明提供的生理体征模拟器实施例七的功能框图。如图9所示,图9所示实施例七的生理体征模拟器与图1b所示的生理体征模拟器的不同之处在于,控制装置进一步用于:控制第一气体压强、第一充气气体流量、第一放气气体流量、第一充气时间和/或第一放气时间,进而控制气囊输出模拟呼吸信号;以及控制第二气体压强、第二充气时间和/或第二放气时间进而控制毛细管输出模拟脉搏信号。其中,控制装置具体包括:第一调压阀201、节流阀202、第一中央控制电路203、第一电磁阀204、第二调压阀205、第二中央控制电路206和第二电磁阀207。
在本实施例中采用电子式控制方式通过第一中央控制电路203控制第一调压阀201、节流阀202和第一电磁阀204,第二中央控制电路206控制第二 调压阀205和第二电磁阀207,即第一调压阀201、节流阀202和第一电磁阀204根据第一中央控制电路203输出的对应的控制电信号,以及第二调压阀205和第二电磁阀207根据第二中央控制电路206输出的对应的控制电信号,执行相应的控制,无需用户手动设定调整第一调压阀201、节流阀202、第一电磁阀204、第二调压阀205和第二电磁阀207,使得生理体征模拟器更加智能化。
本实施例中模拟人体呼吸与图3所示实施例二中模拟人体呼吸类似,对于本实施例中模拟人体呼吸的描述均可参照图3所示实施例二中模拟人体呼吸的描述,此处不再赘述;本实施例中模拟人体脉搏与图6所示实施例四中模拟人体脉搏类似,对于本实施例中模拟人体脉搏的描述均可参照图6所示实施例四中模拟人体脉搏的描述,此处不再赘述。
图10为本发明提供的生理体征模拟器实施例八的功能框图。图10所示实施例八的生理体征模拟器与图9所示实施例七的生理体征模拟器不同之处在于,控制装置还包括:第一气流开关208和第二气流开关209。其中,第一气流开关208,与第一中央控制电路203电连接,且分别与第一电磁阀204和气囊301相连,用于根据第一中央控制电路203输出的第一开关控制电信号,控制是否向气囊充气;第二气流开关209,与第二中央控制电路206电连接,且分别与第二电磁阀207与毛细管302相连,用于根据第二中央控制电路206输出的第二开关控制电信号,控制是否向毛细管302输送气体。应当注意的是,在本实施例中采用电子式控制方式控制第一气流开关208和第二气流开关209。
在使用本实施例中的生理体征模拟器时,需要对生理体征模拟器进行调节,这里可以通过控制第一气流开关和第二气流开关来对生理体征模拟器进行调节,具体地,可以控制打开第一气流开关,关闭第二气流开关,实现模拟人体呼吸的调节;控制打开第二气流开关,关闭第一气流开关,实现模拟人体脉搏的调节。
另外,本实施例中的生理体征模拟器可以仅用于模拟人体呼吸或模拟人体脉搏,也就是说,可以通过打开第一气流开关、关闭第二气流开关实现模拟人体呼吸或可以通过关闭第一气流开关、打开第二气流开关实现模拟人体 脉搏,当然,也可以通过第一中央控制电路使第一电磁阀工作,第二中央控制电路使第二电磁阀停止工作来实现模拟人体呼吸或通过第一中央控制电路使第一电磁阀停止工作,第二中央控制电路使第二电磁阀工作来实现模拟人体脉搏。
在本实施例中,利用第一中央控制电路控制第一电磁阀和/或第一气流开关,且利用第二中央控制电路控制第二电磁阀和/或第二气流开关,但是,也可以利用第一中央控制电路同时实现对第一电磁阀和/或第一气流开关、第二电磁阀和/或第二气流开关的控制,本领域技术人员可以根据实际需要进行选择,此处不做限定。
应当注意的是,除上述不同之外,图10所示实施例八的生理体征模拟器与图9所示实施例七的生理体征模拟器相似,其它均可参照图9所示实施例七的生理体征模拟器的描述,此处不再赘述。
可选地,在上述各个实施例中,生理体征模拟器还包括:压力源(图中未示出),设置在生理体征输出装置的上方,用于加强生理体征输出装置输出的模拟生理体征信号。本发明中的生理体征输出装置所输出的生理体征信号可能会由于信号较弱而影响对健康监测产品的检测,因此,可以通过在生理体征输出装置上方施加压力源的方式,加强生理体征输出装置输出的模拟生理体征信号。
为了能够更好地模拟人体呼吸,本发明上述各个实施例中的气囊优选由柔性材料组成,从而实现在给气囊充气时,气囊体积膨胀;在给气囊放气时,气囊体积收缩。
为了能够更好地模拟人体呼吸,本发明各个实施例中的毛细管优选由柔性材料组成,以使毛细管能够更好地扩张与收缩,具体地,给毛细管一定的气体压强时,毛细管的管壁扩张,关闭气压后,毛细管收缩,此外,还可以设定毛细管的管壁厚度小于或等于预设阈值,例如管壁厚度小于或等于1.5毫米,以更好的实现毛细管的扩张与收缩,如果管壁太厚,则可能需要很高的气体压强才能使毛细管的管壁扩张,而造成资源浪费;如果管壁太薄,则可能在施加气体压强时,使管壁破裂,造成生理体征模拟器无法使用。
应当理解的是,上述各个实施例中的第一调压阀、节流阀、第一中央控 制电路、第一电磁阀、第一气流开关、第二调压阀、第二中央控制电路、第二电磁阀和第二气流开关,根据实际需求会与电源电连接,若需要电能,则会与电源电连接,若不需要电能,则无需与电源电连接,当然,若上述各个实施例中的第一调压阀、节流阀、第一中央控制电路、第一电磁阀、第一气流开关、第二调压阀、第二中央控制电路、第二电磁阀和第二气流开关内部设有内置电源,则无需与电源电连接。
此外,应当注意的是,上述各个实施例中预设的第一气体压强、预设的第一充气气体流量、预设的第一放气气体流量、预设的第一充气时间和预设的第一放气时间,可以通过第一中央控制电路的输入按键输入,并显示在第一中央控制电路的显示屏上,也可以直接写入第一中央控制电路的内部;预设的第二气体压强、预设的第二充气气体流量、预设的第二放气气体流量、预设的第二充气时间和预设的第二放气时间,可以通过第二中央控制电路的输入按键输入,并显示在第二中央控制电路的显示屏上,也可以直接写入第二中央控制电路的内部。本领域技术人员可以根据需要进行选择,此处不做限定。
本发明提供的生理体征模拟器,通过控制气体的气流参数,根据气流参数控制生理体征输出装置输出相应的模拟生理体征信号,可以准确地模拟人体不同状态下的生理体征信息,从而真实的反应生理体征的状况,克服了现有技术仅能输出稳定的模拟体征信号,而无法反映生理体征的真实状况的缺陷。
图11为本发明提供的健康监测产品的检测***的功能框图。如图11所示,该健康监测产品的检测***1000包括:生理体征模拟器100、健康监测产品200以及分析装置300。
其中,生理体征模拟器100为上述各个实施例中的生理体征模拟器;健康监测产品200用于监测生理体征模拟器100输出的模拟生理体征信号得到监测结果;分析装置300用于分析监测结果,以实现对健康监测产品200的检测。
可选地,健康监测产品200为基于摩擦发电机的健康监测产品和/或基于压电发电机的健康监测产品。
在本发明中,生理体征模拟器输出的模拟生理体征信号可以用于验证健康监测产品的质量,具体地,健康监测产品对生理体征模拟器输出的模拟生理体征信号进行监测,得到监测结果,并将监测结果输出至分析装置,分析装置对监测结果进行分析,从而实现对健康监测产品的检测,从而可以准确地检测出健康监测产品是否存在质量问题,例如可以通过模拟呼吸、模拟脉搏以及模拟呼吸和脉搏对健康监测产品进行检测,图12a、图12b和图12c分别示出了模拟呼吸信号的测试图、模拟脉搏信号的测试图、以及模拟呼吸信号和模拟脉搏信号的测试图。
在实际应用时,可能会出现生理体征模拟器输出的模拟生理体征信号较弱,不容易被健康监测产品监测到的缺陷,为了克服上述缺陷,可以通过在生理体征模拟器的生理体征输出装置上施加压力源的方式,增强生理体征模拟器输出的模拟生理体征信号,从而使健康监测产品能够准确地监测到模拟生理体征信号,从而能够更好的验证健康监测产品的质量。
本发明提供的健康监测产品的检测***,生理体征模拟器能够输出真实反映人体生理体征状况的模拟生理体征信号,进行可精确地检测健康监测产品的质量,从而能够使健康监测产品更好的为用户服务。
本发明中所提到的各种模块、电路均为由硬件实现的电路,虽然其中某些模块、电路集成了软件,但本发明所要保护的是集成软件对应的功能的硬件电路,而不仅仅是软件本身。
本领域技术人员应该理解,附图或实施例中所示的装置结构仅仅是示意性的,表示逻辑结构。其中作为分离部件显示的模块可能是或者可能不是物理上分开的,作为模块显示的部件可能是或者可能不是物理模块。
最后,需要注意的是:以上列举的仅是本发明的具体实施例子,当然本领域的技术人员可以对本发明进行改动和变型,倘若这些修改和变型属于本发明权利要求及其等同技术的范围之内,均应认为是本发明的保护范围。

Claims (21)

  1. 一种生理体征模拟器,其特征在于,包括:气体发生装置、控制装置和生理体征输出装置;
    所述气体发生装置,与所述控制装置相连,用于产生气体,并将所产生的气体输送至所述控制装置;
    所述控制装置,与所述生理体征输出装置相连,用于控制气体的气流参数,根据所述气流参数控制所述生理体征输出装置输出相应的模拟生理体征信号。
  2. 根据权利要求1所述的生理体征模拟器,其特征在于,所述气流参数包括:气体压强、充气气体流量、放气气体流量、充气时间和/或放气时间;其中,所述气体压强包括第一气体压强和/或第二气体压强;所述充气气体流量包括第一充气气体流量和/或第二充气气体流量;所述放气气体流量包括第一放气气体流量和/或第二放气气体流量;所述充气时间包括第一充气时间和/或第二充气时间;所述放气时间包括第一放气时间和/或第二放气时间。
  3. 根据权利要求2所述的生理体征模拟器,其特征在于,所述生理体征输出装置包括气囊;
    其中,所述控制装置进一步用于:控制所述第一气体压强、所述第一充气气体流量、所述第一放气气体流量、所述第一充气时间和/或所述第一放气时间,进而控制所述气囊输出模拟呼吸信号。
  4. 根据权利要求3所述的生理体征模拟器,其特征在于,所述控制装置包括:第一调压阀、节流阀、第一中央控制电路和第一电磁阀;
    所述第一调压阀,与所述气体发生装置相连,用于调整所述气体发生装置输出气体的第一气体压强;
    所述节流阀,用于控制所述第一充气气体流量和/或所述第一放气气体流量;
    所述第一中央控制电路,与所述第一电磁阀相连,用于根据预设的第一充气时间和/或第一放气时间,向所述第一电磁阀输出对应的第一充气时间控制电信号和/或第一放气时间控制电信号;
    所述第一电磁阀,用于根据所述第一充气时间控制电信号和/或所述第一放气时间控制电信号,对应控制所述气囊的第一充气时间和/或第一放气时间。
  5. 根据权利要求4所述的生理体征模拟器,其特征在于,所述节流阀包括:进气节流阀和出气节流阀;
    所述进气节流阀,分别与所述第一调压阀和所述第一电磁阀相连,用于控制所述第一充气气体流量;
    所述出气节流阀,与所述气囊相连,用于控制所述第一放气气体流量,对所述气囊进行放气。
  6. 根据权利要求5所述的生理体征模拟器,其特征在于,所述第一电磁阀包括:第一进气电磁阀和第一出气电磁阀;
    所述第一中央控制电路,分别与所述第一进气电磁阀和所述第一出气电磁阀相连,用于根据所述预设的第一充气时间,向所述第一进气电磁阀输出所述第一充气时间控制电信号,控制所述第一进气电磁阀开启,并控制所述第一出气电磁阀关闭;以及根据所述预设的第一放气时间,向所述第一出气电磁阀输出所述第一放气时间控制电信号,控制所述第一出气电磁阀开启,并控制所述第一进气电磁阀关闭;
    所述第一进气电磁阀,分别与所述进气节流阀和所述气囊相连,用于根据所述第一充气时间控制电信号,控制所述气囊的第一充气时间;
    所述第一出气电磁阀,与所述气囊相连,用于根据所述第一放气时间控制电信号,控制所述气囊的第一放气时间,对所述气囊进行放气。
  7. 根据权利要求3所述的生理体征模拟器,其特征在于,所述控制装置包括:第一中央控制电路、第一调压阀、节流阀和第一电磁阀;
    所述第一中央控制电路,分别与所述第一调压阀、所述节流阀和所述第一电磁阀相连,用于根据预设的第一气体压强,向所述第一调压阀输出第一气体压强控制电信号;根据预设的第一充气气体流量和/或第一放气气体流量,向所述节流阀输出对应的第一充气气体流量控制电信号和/或第一放气气体流量控制电信号;以及根据预设的第一充气时间和/或第一放气时间,向所 述第一电磁阀输出对应的第一充气时间控制电信号和/或第一放气时间控制电信号;
    所述第一调压阀,与所述气体发生装置相连,用于根据所述第一气体压强控制电信号,调整所述气体发生装置输出气体的第一气体压强;
    所述节流阀,用于根据所述第一充气气体流量控制电信号和/或所述第一放气气体流量控制电信号,对应控制所述第一充气气体流量和/或所述第一放气气体流量;
    所述第一电磁阀,用于根据所述第一充气时间控制电信号和/或所述第一放气时间控制电信号,对应控制所述气囊的第一充气时间和/或第一放气时间。
  8. 根据权利要求7所述的生理体征模拟器,其特征在于,所述节流阀包括:进气节流阀和出气节流阀;
    所述第一中央控制电路,分别与所述进气节流阀和所述出气节流阀相连,用于根据所述预设的第一充气气体流量,向所述进气节流阀输出所述第一充气气体流量控制电信号;以及根据所述预设的第一放气气体流量,向所述出气节流阀输出所述第一放气气体流量控制电信号;
    所述进气节流阀,分别与所述第一调压阀和所述第一电磁阀相连,用于根据所述第一充气气体流量控制电信号,控制所述第一充气气体流量;
    所述出气节流阀,与所述气囊相连,用于根据所述第一放气气体流量控制电信号,控制所述第一放气气体流量,对所述气囊进行放气。
  9. 根据权利要求8所述的生理体征模拟器,其特征在于,所述第一电磁阀包括:第一进气电磁阀和第一出气电磁阀;
    所述第一中央控制电路,分别与所述第一进气电磁阀和第一出气电磁阀相连,用于根据所述预设的第一充气时间,向所述第一进气电磁阀输出所述第一充气时间控制电信号,控制所述第一进气电磁阀开启,并控制所述第一出气电磁阀关闭;以及根据所述预设的第一放气时间,向所述第一出气电磁阀输出所述第一放气时间控制电信号,控制所述第一出气电磁阀开启,并控制所述第一进气电磁阀关闭;
    所述第一进气电磁阀,分别与所述进气节流阀和所述气囊相连,用于根据所述第一充气时间控制电信号,控制所述气囊的第一充气时间;
    所述第一出气电磁阀,与所述气囊相连,用于根据所述第一放气时间控制电信号,控制所述气囊的第一放气时间,对所述气囊进行放气。
  10. 根据权利要求2-9任一项所述的生理体征模拟器,其特征在于,所述生理体征输出装置包括毛细管;
    所述控制装置进一步用于:控制所述第二气体压强、所述第二充气时间和/或所述第二放气时间,进而控制所述毛细管输出模拟脉搏信号。
  11. 根据权利要求10所述的生理体征模拟器,其特征在于,所述控制装置包括:第二调压阀、第二中央控制电路和第二电磁阀;
    所述第二调压阀,与所述气体发生装置相连,用于调整所述气体发生装置输出气体的第二气体压强;
    所述第二中央控制电路,与所述第二电磁阀相连,用于根据预设的第二充气时间和/或第二放气时间,向所述第二电磁阀输出对应的第二充气时间控制电信号和/或第二放气时间控制电信号;
    所述第二电磁阀,用于根据所述第二充气时间控制电信号和/或所述第二放气时间控制电信号,对应控制所述毛细管的第二充气时间和/或第二放气时间。
  12. 根据权利要求11所述的生理体征模拟器,其特征在于,所述第二电磁阀包括:第二进气电磁阀和第二出气电磁阀;
    所述第二中央控制电路,分别与所述第二进气电磁阀和第二出气电磁阀相连,用于根据所述预设的第二充气时间,向所述第二进气电磁阀输出所述第二充气时间控制电信号,控制所述第二进气电磁阀开启,并控制所述第二出气电磁阀关闭,以向所述毛细管输送气体;以及根据所述预设的第二放气时间,向所述第二出气电磁阀输出所述第二放气时间控制电信号,控制所述第二出气电磁阀开启,并控制所述第二进气电磁阀关闭,以停止向所述毛细管输送气体;
    所述第二进气电磁阀,分别与所述第二调压阀和所述毛细管相连,用于 根据所述第二充气时间控制电信号,控制所述毛细管的第二充气时间;
    所述第二出气电磁阀,与所述毛细管相连,用于根据所述第二放气时间控制电信号,控制所述毛细管的第二放气时间,对所述毛细管进行放气。
  13. 根据权利要求10所述的生理体征模拟器,其特征在于,所述控制装置包括:第二中央控制电路、第二调压阀和第二电磁阀;
    所述第二中央控制电路,分别与所述第二调压阀和所述第二电磁阀相连,用于根据预设的第二气体压强,向所述第二调压阀输出第二气体压强控制电信号;以及根据预设的第二充气时间和/或第二放气时间,向所述第二电磁阀输出对应的第二充气时间控制电信号和/或第二放气时间控制电信号;
    所述第二调压阀,与所述气体发生装置相连,用于根据所述第二气体压强控制电信号,调整所述气体发生装置输出气体的第二气体压强;
    所述第二电磁阀,用于根据所述第二充气时间控制电信号和/或所述第二放气时间控制电信号,对应控制所述毛细管的第二充气时间和/或第二放气时间。
  14. 根据权利要求13所述的生理体征模拟器,其特征在于,所述第二电磁阀包括:第二进气电磁阀和第二出气电磁阀;
    所述第二中央控制电路,分别与所述第二进气电磁阀和第二出气电磁阀相连,用于根据所述预设的第二充气时间,向所述第二进气电磁阀输出所述第二充气时间控制电信号,控制所述第二进气电磁阀开启,并控制所述第二出气电磁阀关闭;以及根据所述预设的第二放气时间,向所述第二出气电磁阀输出所述第二放气时间控制电信号,控制所述第二出气电磁阀开启,并控制所述第二进气电磁阀关闭;
    所述第二进气电磁阀,分别与所述第二调压阀和所述毛细管相连,用于根据所述第二充气时间控制电信号,控制所述毛细管的第二充气时间;
    所述第二出气电磁阀,与所述毛细管相连,用于根据所述第二放气时间控制电信号,控制所述毛细管的第二放气时间,对所述毛细管进行放气。
  15. 根据权利要求10-14任一项所述的生理体征模拟器,其特征在于,所述毛细管的管壁厚度小于或等于1.5毫米。
  16. 根据权利要求10-14任一项所述的生理体征模拟器,其特征在于,所述控制装置还包括:第一气流开关和第二气流开关;
    所述第一气流开关,与所述第一电磁阀相连,用于控制是否向所述气囊充气;
    所述第二气流开关,与所述第二电磁阀相连,用于控制是否向所述毛细管输送气体。
  17. 根据权利要求16所述的生理体征模拟器,其特征在于,所述第一气流开关还与所述第一中央控制电路相连,用于根据所述第一中央控制电路输出的第一开关控制电信号,控制是否向所述气囊充气;
    所述第二气流开关还与所述第二中央控制电路相连,用于根据所述第二中央控制电路输出的第二开关控制电信号,控制是否向所述毛细管充气。
  18. 根据权利要求1所述的生理体征模拟器,其特征在于,所述生理体征模拟器还包括:压力源,设置在所述生理体征输出装置上方,用于加强所述生理体征输出装置输出的模拟生理体征信号。
  19. 根据权利要求1所述的生理体征模拟器,其特征在于,所述气体发生装置为气泵。
  20. 一种健康监测产品的检测***,其特征在于,包括权利要求1-19任一项所述的生理体征模拟器,以及健康监测产品、分析装置;
    所述健康监测产品,用于监测所述生理体征模拟器输出的模拟生理体征信号得到监测结果;
    所述分析装置,用于分析所述监测结果,以实现对所述健康监测产品的检测。
  21. 根据权利要求20所述的健康监测产品的检测***,其特征在于,所述健康监测产品为基于摩擦发电机的健康监测产品和/或基于压电发电机的健康监测产品。
PCT/CN2017/086918 2016-08-11 2017-06-02 生理体征模拟器及健康监测产品的检测*** WO2018028281A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610656304.2A CN107088097B (zh) 2016-08-11 2016-08-11 生理体征模拟器及健康监测产品的检测***
CN201610656304.2 2016-08-11

Publications (1)

Publication Number Publication Date
WO2018028281A1 true WO2018028281A1 (zh) 2018-02-15

Family

ID=59648666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086918 WO2018028281A1 (zh) 2016-08-11 2017-06-02 生理体征模拟器及健康监测产品的检测***

Country Status (2)

Country Link
CN (1) CN107088097B (zh)
WO (1) WO2018028281A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109645960A (zh) * 2019-01-15 2019-04-19 浙江大学 仿人机器人的生理参数发生装置及其方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110426223A (zh) * 2019-07-24 2019-11-08 康泰医学***(秦皇岛)股份有限公司 医疗仪器自动检测装置及自动检测方法
CN113012545B (zh) * 2021-02-05 2022-12-06 西安交通大学 一种模拟人体呼吸流动的装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114290A (zh) * 2009-12-31 2011-07-06 北京谊安医疗***股份有限公司 呼吸机的检测方法、设备及***
US20120071729A1 (en) * 2010-09-21 2012-03-22 Nellcor Puritan Bennett Llc Medical Ventilator With Integrated Oximeter Data
CN202485723U (zh) * 2012-03-29 2012-10-10 中国医科大学附属第一医院 一种新型气体分析装置
CN103366625A (zh) * 2013-07-25 2013-10-23 中山大学 一种模拟人肺自主呼吸运动装置及控制方法
CN105381526A (zh) * 2015-12-08 2016-03-09 杭州电子科技大学 智能型流出阻力切换模拟呼吸装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7021940B2 (en) * 2002-11-21 2006-04-04 Northern Sydney Area Health Service Patient simulator manikin and system
CN102495202B (zh) * 2011-12-21 2013-10-23 东南大学 人体呼吸性能参数检测装置
CN103892813A (zh) * 2014-03-09 2014-07-02 浙江大学 人体生理参数监测装置
CN105662356A (zh) * 2014-11-20 2016-06-15 中兴通讯股份有限公司 一种生理体征监测方法及装置
CN105632312A (zh) * 2016-03-22 2016-06-01 上海大学 人体呼吸模拟装置
CN206463058U (zh) * 2016-08-11 2017-09-05 纳智源科技(唐山)有限责任公司 生理体征模拟器及健康监测产品的检测***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114290A (zh) * 2009-12-31 2011-07-06 北京谊安医疗***股份有限公司 呼吸机的检测方法、设备及***
US20120071729A1 (en) * 2010-09-21 2012-03-22 Nellcor Puritan Bennett Llc Medical Ventilator With Integrated Oximeter Data
CN202485723U (zh) * 2012-03-29 2012-10-10 中国医科大学附属第一医院 一种新型气体分析装置
CN103366625A (zh) * 2013-07-25 2013-10-23 中山大学 一种模拟人肺自主呼吸运动装置及控制方法
CN105381526A (zh) * 2015-12-08 2016-03-09 杭州电子科技大学 智能型流出阻力切换模拟呼吸装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109645960A (zh) * 2019-01-15 2019-04-19 浙江大学 仿人机器人的生理参数发生装置及其方法
CN109645960B (zh) * 2019-01-15 2023-05-23 浙江大学 仿人机器人的生理参数发生装置及其方法

Also Published As

Publication number Publication date
CN107088097A (zh) 2017-08-25
CN107088097B (zh) 2023-09-15

Similar Documents

Publication Publication Date Title
US7021940B2 (en) Patient simulator manikin and system
CN206388419U (zh) 一种自动心肺复苏训练***
US6910896B1 (en) Mechanical lungs
US20110250578A1 (en) Ventilator test lung and trigger assembly
CA2354810C (en) Ventilation training analyzer manikin
WO2018028281A1 (zh) 生理体征模拟器及健康监测产品的检测***
US6921267B2 (en) Lung simulator for an integrated human patient simulator
US7959443B1 (en) Lung simulator
WO2014111828A1 (en) System and method for intra-pulmonary percussive ventilation integrated with a ventilator
JP2002011099A (ja) 肺変曲点モニタ装置および方法
JP6275033B2 (ja) 呼吸ペースによる出産陣痛指導
US20140373844A1 (en) Method and apparatus for increasing cough flow
JP6034383B2 (ja) 圧力サポート装置を監視するための及び制御するための方法並びに装置
JP2017532129A (ja) 有効な人工呼吸を教授、演習及び遂行するためのシステム及び方法
CN206463058U (zh) 生理体征模拟器及健康监测产品的检测***
JP2021536034A (ja) 蘇生法ファントム
US20230405248A1 (en) Respiratory Tidal Volume Monitor and Feedback Device
US9750431B2 (en) Pulmonary compliance and air flow resistance
JP2014501123A (ja) 呼気同期
Bautsch et al. Development of a novel low-cost lung function simulator
AU2002302094B2 (en) Patient Simulator Manikin and System
US20240173495A1 (en) Ventilation assistance
JPS62231638A (ja) 香気供給装置
WO2005104062A1 (en) Lung simulator
KR102232810B1 (ko) 영아용 심폐소생술 실습장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838413

Country of ref document: EP

Kind code of ref document: A1