WO2018027821A1 - 一种通信方法、相关设备及*** - Google Patents

一种通信方法、相关设备及*** Download PDF

Info

Publication number
WO2018027821A1
WO2018027821A1 PCT/CN2016/094712 CN2016094712W WO2018027821A1 WO 2018027821 A1 WO2018027821 A1 WO 2018027821A1 CN 2016094712 W CN2016094712 W CN 2016094712W WO 2018027821 A1 WO2018027821 A1 WO 2018027821A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
message
discontinuous transmission
configuration information
transmission configuration
Prior art date
Application number
PCT/CN2016/094712
Other languages
English (en)
French (fr)
Inventor
张亮亮
张向东
常俊仁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/094712 priority Critical patent/WO2018027821A1/zh
Publication of WO2018027821A1 publication Critical patent/WO2018027821A1/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method, related device, and system.
  • the terminals can perform terminal-to-terminal (D2D) communication without forwarding through the base station, and D2D communication is a control at the base station.
  • D2D communication is a control at the base station.
  • the technology for allowing direct communication between terminals by multiplexing cell resources, that is, D2D communication is to change the communication mode originally transferred by the base station to direct communication between terminals requiring communication, but the base station still performs D2D communication with the terminal.
  • the terminal maintains the transmission of control information, implements interference control, allocates resources for the D2D terminal, and enables D2D communication to operate in the licensed band.
  • the remote device performs D2D communication through the relay device (Relay UE), thereby implementing data transmission with the base station through the relay device.
  • a D2D communication connection is established between the two D2D terminal devices for data transmission.
  • both the remote device and the relay device must be in a connected state.
  • the D2D terminal devices will release the connection and no longer communicate. If the Remote UE does not have any data transmission with the base station at this time, the Remote UE will be in an idle state, and the idle state will reside in a certain cell.
  • the Remote UE may select the direct access base station to perform data communication with the base station, or may select a Relay UE again, and the Remote UE enters the connected state and obtains communication with the Relay UE through the base station. Resources to utilize this resource with The Relay UE performs D2D communication to transmit data to and from the base station through the Relay UE. Repeatedly, the D2D communication process is not perfect enough, the transmission power between the terminal devices is large, and the communication efficiency is low.
  • the Remote UE When the idle state Remote UE is paged by the base station (when the network notifies the Remote UE that there is a service and the data is transmitted), the Remote UE does not have the assistance of the Relay UE at this time, and cannot perform data transmission with the base station through the Relay. Therefore, no matter what kind of service, the Remote UE must access the base station, perform direct data communication with the base station, and cannot quickly obtain the Relay support to implement data communication with the base station if the network has a service to page the Remote UE. For services with low QoS level, Remote can assist the data transmission with the base station through Relay, which greatly reduces the power consumption of the Remote UE, thereby improving the efficiency of Relay UE assisting D2D communication. Based on the above, the current D2D communication process is not perfect enough, and the transmission power consumption between the terminal devices is large, and the communication efficiency is low.
  • the technical problem to be solved by the embodiments of the present invention is to provide a communication method, related device and system, which solves the problem that the power consumption of the terminal device and the D2D communication efficiency are low in the D2D communication process.
  • an embodiment of the present invention provides a communication method, which may include:
  • the first node receives the first message, where the first message includes discontinuous transmission configuration information
  • the first node performs discontinuous transmission of the device to the device D2D with the second node according to the discontinuous transmission configuration information, where the second node provides a relay service for the first node or is the A node and a third node provide a node of a relay service, and the third node is a service site of the first node or the second node.
  • the first node performs the device-to-device D2D discontinuous transmission with the second node according to the discontinuous transmission configuration information, including:
  • the first node sends a message and/or data to the second node according to the discontinuous transmission configuration information.
  • the D2D non-contiguous transmission interface is a PC5 interface;
  • the discontinuous transmission configuration information includes At least one of the following:
  • PC5_DRX Inactivity Timer The time at which the PC5 interface receives data and then receives data.
  • the first node performs a device-to-device D2D discontinuous transmission with the second node according to the discontinuous transmission configuration information, include:
  • the first node sends a message and/or data to the second node at the start time PC5_StartOffset of the discontinuous transmission according to the discontinuous transmission configuration information.
  • the method further includes:
  • the third section a point is a service node of the first node or the second node, where the second message is used to indicate that the first node resides under the second node, or that the first node is in a low configuration Mode, or indicating that the first node is in a high configuration mode, or instructing the first node to receive a paging message from the second node, or instructing the first node to receive a system message, or instructing the first node to receive Synchronizing information, or instructing the first node to begin discontinuous transmission according to a discontinuous transmission configuration.
  • the first node is in the low configuration mode, including at least one of the following:
  • the first node resides under the second node; or,
  • the first node only receives information sent by the second node.
  • the first node only receives signaling and/or data sent by the second node; or
  • the first node only receives signaling and/or data sent by the D2D communication node;
  • the first node receives signaling and/or data sent by a D2D communication node
  • the first node does not receive a system message sent by the cell; or,
  • the first node does not receive a system message sent by the cell; or,
  • the first node does not receive synchronization information sent by the cell; or,
  • the first node receives the information sent by the second node, but does not perform at least one of the following operations: camping in a cell, receiving a system message sent by the cell, receiving a paging message sent by the cell, and receiving the sent by the cell Synchronization signal, receiving the system message sent by the station, receiving the paging message sent by the station, receiving the synchronization signal sent by the station, neighbor cell measurement, co-frequency cell measurement, and inter-frequency cell measurement; or
  • the first node receives the information sent by the D2D communication node, but does not perform at least one of the following operations: camping in a cell, receiving a system message sent by the cell, receiving a paging message sent by the cell, and receiving a synchronization signal sent by the cell Receiving a system message sent by the station, receiving a paging message sent by the station, receiving a synchronization signal sent by the station, measuring the neighboring cell, measuring the same frequency cell, and measuring the inter-frequency cell;
  • the first node is in the high configuration mode, and includes at least one of the following:
  • the first node camps in the cell, or receives a system message sent by the cell, or receives a small message
  • the synchronization signal sent by the area, or the paging message sent by the receiving cell receiving the system message sent by the station, or receiving the synchronization signal sent by the station, or receiving the paging message sent by the station, or performing cell selection, or performing cell reselection, Or perform neighbor cell measurement, or perform intra-frequency cell measurement, or perform inter-frequency cell measurement.
  • the specific calculation manner of the T1 is any one of the following Calculation:
  • the period T1 during which the PC5 interface performs discontinuous transmission is obtained according to the discovery equipment period of the D2D communication;
  • the period T1 of discontinuous transmission on the PC5 interface is obtained according to a communication cycle of D2D communication;
  • the period T1 of discontinuous transmission on the PC5 interface is obtained according to a paging cycle
  • the period T1 of discontinuous transmission on the PC5 interface is obtained according to the DRX cycle
  • the period T1 at which the discontinuous transmission is performed on the PC5 interface is obtained according to the DTX period;
  • T1 N1*T_Discovery, where T_Discovery is a discovery device period for D2D communication of the first node, and N1 is a number greater than 0;
  • T1 N2*T_communication, where T_communication is a D2D communication cycle for D2D communication of the first node, and N2 is a number greater than 0;
  • T1 K*T_Relay_DRX, where T_Relay_DRX is a DRX cycle in which discontinuous reception is performed between the second node and the third node, and K is a number greater than 0; or
  • the specific calculation manner of the PC5_StartOffset is any one of the following calculation methods:
  • the PC5_StartOffset is obtained according to the start time of the DRX of the Uu port;
  • the PC5_StartOffset is obtained according to a starting moment of paging the paging radio frame of the second node
  • the PC5_StartOffset is obtained according to a starting moment of paging the paging radio frame of the first node
  • the PC5_StartOffset is obtained according to a paging moment of paging the paging subframe of the second node
  • the SFN is a system frame number
  • the subframe number is a subframe number
  • T1 is the discontinuous transmission period T1;
  • the SFN is a system frame number
  • the subframe number is a subframe number
  • T1 is the discontinuous transmission period T1;
  • Yth subframes PC5_StartOffset, where Y is greater than or equal to zero.
  • the specific calculation manner of the T1 is any one of the following Calculation:
  • T1 M*T_Relay_Paging, where T_Relay_Paging is a paging cycle in which the second node receives a base station paging on the Uu port; or
  • the specific calculation manner of the PC5_StartOffset is any one of the following methods:
  • the discontinuous transmission configuration information includes discontinuous transmission configuration information and/or non-connection reception configuration information
  • the discontinuous transmission includes discontinuous transmission and/or discontinuous connection.
  • the first node receives the first message, including:
  • the first node receives a first message sent by the second node or the third node, where the third node is a service station of the first node or the second node.
  • the method includes:
  • the first node resides under the second node
  • the first node is in the low configuration mode
  • the first node is in the high configuration mode
  • the first node listens to and receives a paging message from the second node;
  • the first node listens for and receives a system message from the second node;
  • the first node listens for and receives a synchronization message from the second node.
  • the method further includes:
  • the first node replies with a third message, which is used to confirm that the first node resides under the second node, or confirms that the first node is in a low configuration mode, or confirms that the first node is in In the high-match mode, either confirming that the first node listens to and receives a paging message from the second node, or confirms that the first node listens to and receives a synchronization message from the second node, or the first node listens and receives The synchronization message from the second node, or the first node performs discontinuous transmission based on the discontinuous transmission configuration information.
  • the method includes:
  • the first node performs D2D communication with the second node
  • the first node maintains a D2D connection between the first node and the second node;
  • the first node releases a D2D connection between the first node and the second node
  • the first node accesses a network or the third node.
  • the method includes:
  • the first node sends a fifth message to the second node, where the fifth message includes a failure to indicate that the first node accesses the third node successfully or accesses the third node, Or, comprising: indicating that the first node accesses the network successfully or fails to access the network.
  • the fourth message includes: a network identifier of the first node; or
  • the fourth message is a device discovery message
  • the fourth message is a message that is scrambled by the network identifier of the first node.
  • an embodiment of the present invention provides a communication method, which may include:
  • the second node performs discontinuous transmission of the device to the device D2D with the first node according to the discontinuous transmission configuration information, and the first node receives and performs D2D discontinuity with the second node according to the discontinuous transmission configuration information.
  • the node of the transmission
  • the second node is a node that provides a relay service for the first node or provides a relay service for the first node and the third node, where the third node is the first node or the The service site of the second node.
  • the second node performs the device-to-device D2D discontinuous transmission with the first node according to the discontinuous transmission configuration information, including:
  • the second node sends a message and/or data to the first node according to the discontinuous transmission configuration information.
  • the second node performs device-to-device D2D with the first node according to the discontinuous transmission configuration information.
  • the discontinuous transmission including:
  • the second node sends a first message to the first node, where the first message includes the discontinuous transmission configuration information, and the first message is used to indicate that the first node is configured according to the discontinuous transmission
  • the information is transmitted to the second node by the device to the device D2D.
  • the sending, by the second node, the first message to the first node includes:
  • the second node receives the sixth message sent by the third node, and sends a first message to the first node according to the sixth message, where the third node is the first node or the second node Service site;
  • the sixth message includes discontinuous transmission configuration information, and the third node sends a first message to the first node, where the first message includes the discontinuous transmission configuration information.
  • the method further includes:
  • the first node Receiving, by the second node, the first node to send a message and/or data in a preset time domain and/or a frequency domain of the discontinuous transmission period T1 according to the discontinuous transmission configuration information;
  • the second node receives the message and/or data sent by the first node in the preset time domain and/or the frequency domain of the discontinuous transmission period T1 according to the discontinuous transmission configuration information.
  • the method further includes:
  • the method further includes:
  • the fourth message is used to indicate that the first node performs D2D communication with the second node.
  • the fourth message is used to wake up the first node and instruct the first node to perform D2D communication with the second node;
  • the fourth message is used to indicate that the first node accesses the network or accesses the third node, and the third node is a service station of the first node or the second node.
  • the sending, by the second node, the fourth message to the first node includes:
  • the eighth message is used to page the first node; or the eighth message is used to page the first node to access the network; or the eighth message is used to indicate that the second node accesses the network, In order to provide a communication service for the first node; or the eighth message is used to instruct the second node to page the first node, and provide a relay for the first node and the third node service.
  • a fifth possible implementation manner in a sixth possible implementation manner, when the eighth message is used to page the first node, the fourth message is used to page the first node access
  • the network is used to page the first node to access the third node, or to instruct the first node to communicate with the second node;
  • the fourth message is used to page the first node to access the network, or to page the first node to access the Third node;
  • the fourth message is used to indicate The first node performs D2D communication with the second node.
  • the method further includes:
  • the second node sends a seventh message to the third node, where the seventh message includes the discontinuous transmission configuration information, and the seventh message is used to notify the third node that the second node is according to the non-continuous Continuously transmitting configuration information to the first node for D2D discontinuous transmission, the third node being a service node of the first node or the second node.
  • the sending, by the second node, the second message to the first node includes:
  • the second node sends a second message to the first node according to the discontinuous transmission configuration information.
  • the method includes:
  • the sending, by the second node, the fourth message to the first node includes:
  • the second node sends a fourth message to the first node according to the discontinuous transmission configuration information.
  • an embodiment of the present invention provides a communication method, which may include:
  • the third node sends a first message to the first node, where the first message includes discontinuous transmission configuration information, where the first message is used by the first node to perform equipment with the second node according to the discontinuous transmission configuration information.
  • a discontinuous transmission to device D2D wherein the second node is a node that performs D2D discontinuous transmission with the first node according to the discontinuous transmission configuration information;
  • the third node sends a sixth message to the second node, where the sixth message includes discontinuous transmission configuration information, and the sixth message is used by the second node to perform equipment with the first node according to the discontinuous transmission configuration information.
  • a discontinuous transmission to device D2D wherein the first node is a node that receives and performs D2D discontinuous transmission with the second node according to the discontinuous transmission configuration information; or
  • the third node receives the seventh message sent by the second node, where the seventh message includes discontinuous transmission configuration information, and the seventh message is used to notify the third node that the second node is configured according to the discontinuous transmission And performing non-continuous transmission of D2D with the first node, where the third node is a service station of the first node or the second node, where the first node is received and according to the discontinuity A node that transmits configuration information to the second node for D2D discontinuous transmission.
  • the second node is a node that provides a relay service for the first node or provides a relay service for the first node and the third node.
  • the third node is a service station of the first node or the second node.
  • the third node sends the first message to the first node, or in combination with the first possible implementation manner of the third aspect, in a second possible implementation manner, the third node sends the first message to the first node, or in the case that the third node sends the sixth message to the second node, the method further includes:
  • the third node sends a second message to the first node, where the second message is used to indicate that the first node resides under the second node or the first node enters a low configuration mode, or indicates The first node enters a high configuration mode, or instructs the first node to receive a paging message from the second node, or instructs the first node to receive a system message, or instructs the first node to receive synchronization information, Or triggering the first node to perform discontinuous transmission according to the discontinuous transmission configuration information.
  • the third node sends the first message to the first node, or the third In the case that the node sends the sixth message to the second node, the method further includes:
  • the eighth message is used to page the first node.
  • the eighth message is used to page the first node to access the network.
  • the eighth message is used to indicate that the second node accesses a network, so as to provide a communication service for the first node;
  • the eighth message is used to instruct the second node to page the first node, and provide a relay service for the first node and the third node.
  • the method includes:
  • the third node Receiving, by the third node, a third message replied by the first node, where the third message is used to confirm that the first node resides under the second node, or that the first node is in a low configuration mode Or confirming that the first node is in the high-match mode, or confirming that the first node listens to and receives a paging message from the second node, or the first node performs discontinuous transmission according to the discontinuous transmission configuration information.
  • an embodiment of the present invention provides a terminal device, where the terminal device is a first node, and the first node may include: an input unit, an output unit, a storage unit, and a processing unit;
  • the storage unit is configured to store program code
  • the processing unit is configured to invoke the program code stored by the storage unit to perform the following steps:
  • the processing unit is configured to perform device-to-device D2D discontinuous transmission with the second node according to the discontinuous transmission configuration information, specifically:
  • the processing unit is further configured to:
  • the first node camps under the second node, or indicates that the first node is in a low configuration mode, or indicates that the first node is in a high configuration mode, or indicates that the first node receives from the second a paging message of the node, or instructing the first node to receive a system message, or instructing the first node to receive synchronization information, or instructing the first node to start discontinuous transmission according to a discontinuous transmission configuration.
  • an embodiment of the present invention provides a terminal device, where the terminal device is a second node, and the second node may include: an input unit, an output unit, a storage unit, and a processing unit;
  • the storage unit is configured to store program code
  • the processing unit is configured to invoke the program code stored by the storage unit to perform the following steps:
  • the processing unit is configured to perform non-continuous transmission of the device to the device D2D with the first node according to the discontinuous transmission configuration information, specifically:
  • the processing unit is configured to perform device-to-device with the first node according to the discontinuous transmission configuration information. Before the discontinuous transmission of D2D, it is also used to:
  • the configuration information is transmitted to the second node for discontinuous transmission of the device to the device D2D.
  • the processing unit is configured to send the first message to the first node, specifically:
  • the processing unit is further configured to:
  • an embodiment of the present invention provides a base station, where the base station is a third node, and the third node may include: an input unit, an output unit, a storage unit, and a processing unit;
  • the storage unit is configured to store program code
  • the processing unit is configured to invoke the program code stored by the storage unit to perform the following steps:
  • a seventh message sent by the second node where the seventh message includes discontinuous transmission configuration information, where the seventh message is used to notify the third node that the second node is according to the discontinuity Transmitting configuration information to the first node for D2D discontinuous transmission, the third node being a service node of the first node or the second node, wherein the first node is received and according to the A node that discontinuously transmits configuration information to the second node for D2D discontinuous transmission.
  • the third node sends a first message to the first node, or in a case where the third node sends a sixth message to the second node,
  • the processing unit is also used to:
  • the processing unit is also used to:
  • the eighth message is used to page the first node.
  • the eighth message is used to page the first node to access the network.
  • the eighth message is used to indicate that the second node accesses a network, so as to provide a communication service for the first node;
  • the eighth message is used to instruct the second node to page the first node, and provide a relay service for the first node and the third node.
  • a seventh aspect of the embodiments of the present invention provides a communication system, which may include: a first terminal device, a second terminal device, and a base station, where
  • the first terminal device is a first node that performs the method of any one of the first aspects
  • the second terminal device is a second node that performs the method of the second aspect
  • the base station is a third node that performs the method of any of the third aspects.
  • An eighth aspect of the embodiments of the present invention provides a device, where the device includes a processor, and the processor is configured to support the device to perform a corresponding function in a communication method provided by the first aspect.
  • the device can also include a memory for coupling with the processor that holds the program instructions and data necessary for the device.
  • the device can also include a communication interface for the device to communicate with other devices or communication networks.
  • a ninth aspect of the embodiments of the present invention provides a device, where the device includes a processor, and the processor is configured to support the device to perform a corresponding function in a communication method provided by the second aspect.
  • the device can also include a memory for coupling with the processor that holds the program instructions and data necessary for the device.
  • the device can also include a communication interface for the device to communicate with other devices or communication networks.
  • a tenth aspect of the embodiments of the present invention provides a device, where the device includes a processor, and the processor is configured to support the device to perform a corresponding function in a communication method provided by the third aspect.
  • the device can also include a memory for coupling with the processor that holds the program instructions and data necessary for the device.
  • the device can also include a communication interface for the device to communicate with other devices or communication networks.
  • An eleventh aspect of the present invention provides a computer storage medium for storing computer software instructions for use in the apparatus provided in the above eighth aspect, comprising a program designed to perform the above aspects.
  • a twelfth aspect of the embodiments of the present invention provides a computer storage medium for storing computer software instructions for use in the apparatus provided in the above ninth aspect, comprising a program designed to perform the above aspects.
  • a thirteenth aspect of the present invention provides a computer storage medium for storing computer software instructions for use in the apparatus provided in the above tenth aspect, comprising a program designed to perform the above aspects.
  • the first message is received by the first node, where the first message includes discontinuous transmission configuration information; the first node performs equipment with the second node according to the discontinuous transmission configuration information.
  • Discontinuous transmission to device D2D wherein the second node is a node that performs D2D discontinuous transmission with the first node according to the discontinuous transmission configuration information. That is, the terminal device that performs the D2D communication performs the discontinuous transmission, thereby prompting the Remote UE to not need to be always in the listening state, and can perform data transmission with the base station through the Relay UE at any time, thereby achieving power consumption reduction and improving D2D communication. effectiveness.
  • the non-continuous Uu port data/message is also implemented in the embodiment of the present invention, and the second node is quickly transmitted to the first node on the PC5 interface, which not only ensures the low power consumption of the first node, but also further improves the D2D communication. s efficiency.
  • FIG. 1 is a schematic structural diagram of a D2D communication network according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another communication method according to an embodiment of the present invention.
  • FIG. 3A is a schematic diagram of message sending and receiving based on a base station paging cycle provided by an embodiment of the present invention
  • FIG. 3B is a schematic diagram of message and/or data transmission based on a discontinuous reception DRX cycle of a base station according to an embodiment of the present invention
  • 3C is a schematic diagram of preset time-frequency resources in a time-frequency resource of a Discovery cycle according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of still another communication method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another communication apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another terminal device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another terminal device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of still another terminal device according to an embodiment of the present invention.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the invention.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • the first node/second node may be various types of devices or User Equipments (UEs), and the UE may be referred to as an access terminal, a terminal device, a subscriber unit, a subscriber station, a mobile station, and a mobile station. , remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • UEs User Equipments
  • the UE can be a cellular phone, a cordless phone, a smart phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a smart bracelet, a smart wearable device, an MP3 player (Moving) Picture Experts Group Audio Layer III, Motion Picture Experts Compress Standard Audio Level 3), MP4 (Moving Picture Experts Group Audio Layer IV, Motion Picture Experts Compress Standard Audio Level 3) Player, Personal Digital Assistant (PDA), a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, and a terminal device in a future 5G network.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the third node may be various types of stations or base stations, such as a Base Transceiver Station (BTS) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolution in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • LTE Evolution in LTE
  • the present invention is not limited to the type of base station (Evolutional Node B, eNB or eNodeB), or the base station equipment in the future 5G network.
  • DRX Discontinuous Reception
  • the UE also uses discontinuous reception DRX in the connected state in order to save power consumption, that is, wake up at certain moments of the DRX cycle, if the base station receives the scheduling The PDCCH of the UE, then the terminal starts to receive data of the base station. If the terminal wakes up for a period of time and has not received the PDCCH of the UE scheduled by the base station, the terminal sleeps.
  • IDLE DRX is the discontinuous reception when the UE is in the IDLE state. In fact, it is the listening paging message. Since it is in the IDLE state, there is no RRC connection.
  • the user's proprietary resources so this is mainly to listen to the paging channel.
  • the UE listens to the paging message according to the defined paging cycle according to the defined paging cycle. If the base station sends a paging message belonging to the UE at this time, the UE receives the paging message, and the UE can reach the paging message. The purpose of discontinuous reception. However, if the UE wants to listen to the user data channel, it must first enter the connection state from the IDLE state.
  • ACTIVE DRX is the DRX in the RRC-CONNECTED state of the UE. When the UE remains in the connected state, it wakes up according to the defined DRX cycle, and listens to whether the base station sends data to itself.
  • the UE will sleep. Go, wait until the next DRX cycle will wake up again.
  • some non-real-time applications such as web browsing, instant messaging, etc., always exist for a period of time, the mobile phone does not need to constantly monitor the downlink data and related processing, then DRX can be applied to such a situation, and because this state still exists The RRC connection, so the UE has to go to the support state very quickly.
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 is a schematic structural diagram of a D2D communication network according to an embodiment of the present invention.
  • the network architecture includes a core network, a third node (base station), a first node (Remote UE), and a second node (Relay UE). And wherein the first node may be within the coverage of the third node or outside the coverage of the third node.
  • the base station is responsible for allocating resources for D2D connection and communication between the Remote UE and the Relay UE, and the Remote UE and the Relay UE perform D2D connection according to the resources allocated by the base station, and directly perform D2D communication, wherein the core network is mainly the D2D communication process. Provide data support and related services.
  • the base station after receiving the D2D communication connection request of the second node, the base station usually sends downlink control information to the second node to indicate the time-frequency resource for performing D2D communication, and then the second node sends the received base station. After the downlink control information, the control information is sent to the first node, and then D2D transmission is performed according to the control information.
  • the second node may establish a D2D transmission connection with a first node, or may establish a D2D transmission connection with multiple first nodes at the same time.
  • the network architecture in FIG. 1 is only one of the preferred embodiments of the present invention.
  • the network architecture in the embodiment of the present invention includes, but is not limited to, the foregoing network architecture.
  • the system to which the embodiment of the present invention is applied includes, but is not limited to, the above-mentioned D2D communication system, and can also be applied to Wi-Fi, Zigbee, IR, Bluetooth, LTE, GSM, etc., which are integrated with the D2D communication system.
  • the converged network system as long as the system to which the D2D communication method of the present invention can be applied, is within the scope of protection and coverage of the present invention.
  • FIG. 2 is a schematic flowchart of a communication method in the embodiment of the present invention, which can be applied to the D2D communication system described in FIG. 2, and the following description will be made from the first node (Remote UE) and FIG.
  • the interaction side of the second node (Relay UE) is described, wherein the second node is a node that provides a relay service for the first node or provides a relay service for the first node and the third node, and the third node is the first node. Or the service site of the second node.
  • the method may include the following steps S201 to S203, and further may further include steps S204 to S209.
  • Step S201 The first node receives the first message, where the first message includes discontinuous transmission configuration information.
  • the first message may be sent by the third node (base station), may be sent by the second node, or may be forwarded by the second node generated by the third node, or sent by other nodes.
  • the present invention does not specifically limit this, no matter which node is generated, as long as the first message is finally sent to the first node.
  • the first node may perform D2D transmission with the D2D device (second node) according to the discontinuous transmission configuration provided by the first message.
  • the implementation of the method steps can enable D2D communication by means of discontinuous transmission or reception when the device communicates with the device, thereby saving power consumption and improving D2D communication efficiency.
  • the discontinuous transmission configuration information includes discontinuous transmission configuration information and/or non-connection reception configuration information; or the discontinuous transmission includes discontinuous transmission and/or discontinuous connection.
  • Step S202 The first node performs discontinuous transmission of the device to the device D2D with the second node according to the discontinuous transmission configuration information.
  • the first node or the second node when the first node or the second node performs discontinuous transmission of the device to the device D2D according to the discontinuous transmission configuration information, the first node or the second node sleeps in a discontinuous transmission period. (not waking up), maintain D2D connections, or maintain context information for device-to-device communication.
  • the first node receives the message sent by the second node according to the discontinuous transmission configuration information (that is, in a time period corresponding to the related parameter in the discontinuous transmission configuration information). And/or data; or the first node sends a message and/or data to the second node according to the discontinuous transmission configuration information, so as to save the situation in the case that there is no data interaction between devices in the D2D communication process. Waste of power consumption caused by paging and monitoring.
  • the discontinuous transmission configuration information may include that the first node performs the discontinuous transmission period T1 (that is, the period in which the second node performs the discontinuous transmission, because the second node needs to cooperate with the first node to perform the non-continuous transmission. Continuous transmission), in all possible implementation manners of the present invention, the first node performs the device-to-device D2D discontinuous transmission with the second node according to the discontinuous transmission configuration information, which may be specifically:
  • the first node according to the discontinuous transmission configuration information, in the discontinuous transmission period T1, to the second section Send messages and/or data; or
  • the first node sends a message and/or data to the second node in a preset time domain and/or frequency domain of the discontinuous transmission period T1 according to the discontinuous transmission configuration information;
  • the first node receives the message and/or data sent by the second node at the start time PC5_StartOffset of the discontinuous transmission according to the discontinuous transmission configuration information; or
  • the first node sends a message and/or data to the second node at the start time PC5_StartOffset of the discontinuous transmission according to the discontinuous transmission configuration information.
  • the second node and the first node are nodes that perform discontinuous transmission, the actions of transmitting data and receiving data are mutually corresponding, that is, the second node must also perform configuration information according to the discontinuous transmission.
  • Send or receive data For example, the second node sends signaling or data to the first node within a predetermined time period, and the first node also needs to wake up to receive the signaling or data during the predetermined time period.
  • Step S203 The second node performs discontinuous transmission of the device to the device D2D with the first node according to the discontinuous transmission configuration information.
  • the first node is a node that receives and performs D2D discontinuous transmission with the second node according to the discontinuous transmission configuration information. Further, the second node receives the message and/or data sent by the first node according to the discontinuous transmission configuration information; or the second node sends the message according to the discontinuous transmission configuration information. A node sends messages and/or data.
  • the discontinuous transmission configuration information may include that the first node performs the discontinuous transmission period T1 (that is, the period in which the second node performs the discontinuous transmission, because the second node needs to cooperate with the first node to perform the non-continuous transmission. Continuous transmission), in all possible implementation manners of the present invention, the second node performs the discontinuous transmission of the device to the device D2D with the first node according to the discontinuous transmission configuration information, which may specifically be:
  • the first node Receiving, by the second node, the first node to send a message and/or data in a preset time domain and/or a frequency domain of the discontinuous transmission period T1 according to the discontinuous transmission configuration information;
  • the second node receives the message and/or data sent by the first node in the preset time domain and/or the frequency domain of the discontinuous transmission period T1 according to the discontinuous transmission configuration information.
  • the second node receives the message sent by the first node according to the discontinuous transmission configuration information, and specifically, for example, the second node may perform the discontinuous transmission according to the discontinuous transmission configuration information.
  • Receiving the third message, the fifth message, and the like sent by the first node in the period T1 but the present invention is not limited to the enumerated messages, and the specific content or role of each type of message will be specifically described in the subsequent process steps.
  • the second node sends a message to the first node according to the discontinuous transmission configuration information, which may be, for example, the second node: according to the discontinuous transmission configuration information,
  • the second message, or the fourth message, etc. is sent to the first node in the non-continuous transmission period T1 (but the invention is not limited to the listed messages), and the specific content or role of each type of message will be specifically described in the subsequent process steps.
  • the second node since the second node needs to perform D2D communication according to the discontinuous transmission configuration information, the second node must also obtain the discontinuous transmission configuration information before the D2D communication.
  • the second node obtains the discontinuous transmission configuration information in multiple ways. First, it may be obtained from the third node as the first node, and second, may be generated by the second node itself as a relay node, and generated. Then, it is sent to the first node, and is also sent to the third node.
  • the present invention does not specifically limit this.
  • the steps S202 and S203 only the actions of the first node and the second node are respectively described.
  • the execution steps are performed in no particular order, for example, S202 and S203 are performed simultaneously, or two steps are preceded.
  • the first node is discontinuously transmitted, which means that the second node is required to receive or receive discontinuously; correspondingly, the first node is discontinuously received, which means that the second node needs to be discontinuously transmitted.
  • the foregoing method embodiment is described from the perspective that the first node is a Remote UE, and the second node is a Relay UE, but the above embodiment does not mean that the related steps can only be performed from the perspective of the executing entity.
  • the first node may also be a Relay UE, and the second node may also be a Remote UE.
  • the embodiment of the present invention may further include a combination of any of the following steps S204 to S209. Steps S204-S209 are optional execution steps.
  • Step S204 The second node sends a second message to the first node.
  • the second node may be to send the second message to the first node before, after or at the same time that the first node receives the first message.
  • the second message is used to indicate that the first node resides under the second node, or indicates that the first node is in a low configuration mode, or indicates that the first node is in a high configuration mode, or indicates
  • the first node receives a paging message from the second node, or instructs the first node to receive a system message from the second node, or instructs the first node to receive synchronization information from the second node, or indicates the
  • the first node begins discontinuous transmission according to the discontinuous transmission configuration.
  • the second message is used to indicate that the first node starts to perform discontinuous transmission according to the discontinuous transmission configuration.
  • the specific implementation may be performed by performing step S201 (for example, the second node sends the first message to the first After the node, the second node performs step S204 (the second node sends a second message to the first node for indicating discontinuous transmission according to the discontinuous transmission configuration), and correspondingly, the second message is received by the first node.
  • step S202 is performed to start discontinuous transmission using the discontinuous transmission configuration provided in the first message, or the second node performs step S203.
  • the present invention does not specifically limit this.
  • the second message is used to indicate that the first node resides under the second node, or that the first node is in a low configuration mode, or that the first node is in a high configuration.
  • Mode or instructing the first node to receive a paging message from the second node, or instructing the first node to receive a system message from the second node, or instructing the first node to receive synchronization information from the second node ”:
  • the present invention does not limit the time for sending the second message, for example, the second node may be Sending a second message to the first node before, after, or at the same time that the first node receives the first message.
  • the second message may be that the second node may send the second message to the first node in the discontinuous transmission period T1 according to the discontinuous transmission configuration information, or the second message may be in the first The message is sent before, and the second node does not have the second message sent in the discontinuous transmission period.
  • the low configuration mode refers to at least one of the following: the first node stays under the second node, or the first node only receives the information sent by the second node, or the first node only receives the second node. Signaling and/or data, or the first node only receives signaling and/or data sent by the D2D communication node, or the first node receives signaling and/or data sent by the second node, or the first node receives the D2D communication node Signaling and/or data sent; or the first node receives the paging message sent by the second node, or the first node receives the system message sent by the second node, or the first node receives the synchronization signal sent by the second node, or The first node does not receive the system message sent by the cell, or the first node does not receive the system message sent by the cell, or the first node does not receive the synchronization information sent by the cell, or the first node receives the information sent by the second node, but does not execute At
  • the first node in the low configuration mode typically does not communicate directly with the second node, but rather with the second node.
  • the first node when the “first node resides under the second node”, the first node performs at least one or more of the following operations: the first node only receives information sent by the second node, or the first node only receives the second node Signaling and/or data sent, or the first node only receives signaling and/or data sent by the D2D communication node, or the first node receives signaling and/or data sent by the second node, or the first node receives D2D Signaling and/or data sent by the communication node, or the first node receives the paging message sent by the second node, or the first node receives the system message sent by the second node, or the first node receives the synchronization signal sent by the second node.
  • the first node does not receive the system message sent by the cell, or the first node does not receive the system message sent by the cell, or the first node does not receive the cell transmission.
  • Synchronization information or the first node receives the information sent by the second node, but does not perform at least one of the following operations: camping in a cell, receiving a system message sent by the cell, receiving a paging message sent by the cell, and receiving the cell sending Synchronization signal, receiving the system message sent by the station, receiving the paging message sent by the station, receiving the synchronization signal neighbor cell measurement sent by the station, the same frequency cell measurement, the inter-frequency cell measurement, or the first node receiving the information sent by the D2D communication node
  • the following at least one operation is not performed: camping in a cell, receiving a system message sent by the cell, receiving a paging message sent by the cell, receiving a synchronization signal sent by the cell, receiving a system message sent by the station, and receiving the system message sent by the station Paging
  • the signaling mentioned in the low configuration mode in this embodiment for example, “receiving signaling sent by a D2D communication node”, “receiving signaling sent by a second node communication node”, etc., signaling is seeking The call message, or the system message, or the synchronization signal, or the reconfiguration message, or the second message mentioned in this embodiment, or the seventh message, etc., the "signaling" in this embodiment is not limited to An example message.
  • the “system message sent by the receiving station”, the “paging message sent by the receiving station”, and the “synchronization sent by the receiving station” are base station devices, such as an eNB in LTE. , or a NodeB of WCDMA, or a BTS in GSM or CDMA, or a micro station, etc., this embodiment does not limit the type of base station of the station.
  • the “system message sent by the receiving cell” mentioned in this embodiment is equivalent to the system message sent by the receiving station, and the “paging message sent by the receiving cell” is equivalent to the paging message sent by the receiving station.
  • the "synchronization signal transmitted by the receiving cell” is equivalent to the synchronization signal transmitted by the receiving station.
  • D2D communication node refers to a D2D communication device, for example, including a second node, or other D2D device synchronized with the second node, or having the same synchronization source as the second node. D2D device.
  • the high configuration mode includes at least one of the following:
  • the first node camps in the cell, or receives a system message sent by the cell, or receives a synchronization signal sent by the cell, or receives a paging message sent by the cell, receives a system message sent by the station, or receives a synchronization signal sent by the station, or Receiving a paging message sent by the station, or performing cell selection, performing cell reselection, or performing neighbor cell measurement, or performing intra-frequency cell measurement, or Perform inter-frequency cell measurements.
  • the first node in the high configuration mode usually communicates directly with the site, which may be a base station, may be a second node, or the like.
  • the first node in the high configuration mode usually communicates directly with the cell, for example, a cell of a certain site, or a cell of the third site, for example.
  • Step S205 The first node receives the second message sent by the second node.
  • the first node receives the second message sent by the second node before, after, or after receiving the first message, and after the first node receives the second message, the first node may reside in the second node. Under the second node; or the first node is in the low configuration mode; or the first node is in the high configuration mode; or the first node listens to and receives the paging message from the second node; or the first node listens and receives from the second node System message; or the first node listens for and receives a synchronization message from the second node.
  • steps S206-207 are sequential for the optional process.
  • Step S206 The first node replies to the second node with a third message.
  • the first node after receiving the second message sent by the second node, the first node also sends a third message to the second node, where the third message is used to confirm to the second node or the third node that the first node resides in the third message.
  • the third message is used to confirm to the second node or the third node that the first node resides in the third message.
  • the second node or confirm that the first node is in the low configuration mode, or confirm that the first node is in the high configuration mode, or confirm that the first node listens and receives the paging message from the second node, or confirms that the first node listens
  • Step S207 The second node receives the third message replied by the first node.
  • steps S208-209 are sequential for the optional process.
  • Step S208 The second node sends a fourth message to the first node.
  • the fourth message is used to indicate that the first node performs D2D communication with the second node; or the fourth message is used to wake up the first node and indicate the first node and the The second node performs D2D communication; or the fourth message is used to indicate that the first node accesses the network or accesses the third node, and the third node is the first node or the second node Service site.
  • the second node may send the first node to the first node according to the discontinuous transmission configuration information.
  • the fourth message is sent, that is, the fourth message may be sent on the discontinuous transmission configuration period T1, or may not be sent on the period T1.
  • the fourth message is a device discovery message sent by the second node; or the fourth message is a message that is scrambled by the network identifier of the first node. Still further, the fourth message may also be a paging message.
  • the fourth message includes: a network identifier of the first node; or, the fourth message is a device discovery message; or the fourth message is that the The first node's network identifies the scrambled message.
  • Step S209 The first node receives the fourth message sent by the second node.
  • the first node receives the fourth message sent by the second node before, after or at the same time, the fourth node is used to indicate that the first node performs D2D communication with the second node; Or the fourth message is used to wake up the first node and instruct the first node to perform D2D communication with the second node; or the fourth message is used to indicate that the first node accesses the network or accesses the third node, and the third node is the first node. Or the service site of the second node. That is, at this time, the second node issues a prompt to the first node, and needs to perform D2D communication with the first node.
  • the fourth message is used to indicate that the first node performs D2D communication with the second node; or the fourth message is used to wake up the first node and instruct the first node to perform D2D communication with the second node, the first node and the second node D2D communication is performed; wherein the D2D communication includes data communication and/or data communication.
  • the first node accesses the network or accesses a certain base station; after selecting the ground, after accessing the third network, the first node maintains the first node and the second node. a D2D connection; or, the first node releases a D2D connection between the first node and the second node;
  • the first node When the fourth message is used to indicate that the first node accesses the third node, the first node is a third node, and the third node is a service node of the first node or the second node.
  • the first node after accessing the third node, the first node maintains a D2D connection between the first node and the second node; or the first node releases the D2D connection between the first node and the second node;
  • the fourth message may include: an identifier of the first node, a system information update indication, system information, a paging indication, a service type of the third node, and a service priority of the third node.
  • Step S210 The first node sends a fifth message to the second node.
  • the first node sends a fifth message to the second node, where the fifth message includes, to indicate that the first node accesses the third node successfully or accesses
  • the third node fails, or includes indicating that the first node accesses the network successfully or fails to access the network.
  • the fourth message may include: a network identifier of the first node; or the fourth message is a device discovery message; or the fourth message is a message that is scrambled by the network identifier of the first node.
  • the signaling in all embodiments of the present invention includes, but is not limited to, a paging message, a system message, a transmitted synchronization signal, or a reconfiguration message.
  • the information in all embodiments of the invention includes signaling and/or data.
  • the D2D communication device includes a first node, or other D2D device synchronized with the first node, or a D2D device having the same synchronization source as the first node.
  • D2D discontinuous transmission mentioned in the present invention refers to the discontinuous transmission between the first node and the second node, which is mentioned in the present invention.
  • “Discontinuous transmission between the second node and the first node” is equivalent to “discontinuous transmission of D2D between the second node and the first node", which is equivalent to "the second node and the first node perform device-to-device D2D" "Discontinuous transmission” and vice versa, the subsequent corresponding concepts will not be described again.
  • FIG. 3 is a schematic flowchart of a communication method in the embodiment of the present invention, which can be applied to the D2D communication system described in FIG. 1 , and will be followed from the first node (Remote UE) and the second in conjunction with FIG. 3 .
  • the interaction side of the node (Relay UE) and the third node (base station) is described, wherein the second node is a node that provides a relay service for the first node or provides a relay service for the first node and the third node, and a third A node is a service site of a first node or a second node.
  • the method may include the following steps S301-S306, and further may further include steps S307-S315.
  • Step S301 The third node sends a sixth message to the second node.
  • the sixth message includes discontinuous transmission configuration information, where the sixth message is used by the second node to perform device-to-device D2D discontinuous transmission with the first node according to the discontinuous transmission configuration information, where The first node is a node that receives and performs D2D discontinuous transmission with the second node according to the discontinuous transmission configuration information. That is, the discontinuous transmission configuration information used for the discontinuous transmission of D2D between the first node and the second node is generated by the third node configuration.
  • Step S302 The second node receives the sixth message sent by the third node.
  • Step S303 The second node sends the first message to the first node according to the sixth message.
  • the second node may send the first message to the first node according to the discontinuous transmission configuration information in the sixth message, where the first message is used to include The discontinuous transmission configuration information is used for discontinuous transmission between the second node and the first node.
  • Step S304 The first node receives the first message, where the first message includes discontinuous transmission configuration information.
  • Step S305 The first node performs discontinuous transmission of the device to the device D2D according to the discontinuous transmission configuration information, where the second node is configured according to the discontinuous transmission configuration information.
  • the present invention refers to "the first node performs device-to-device D2D discontinuous transmission with the second node according to the discontinuous transmission configuration information", which is equivalent to "the first The two nodes perform discontinuous transmission with the second node according to the discontinuous transmission configuration information;
  • the “first node performs the device-to-device D2D discontinuous transmission with the second node according to the discontinuous transmission configuration information" as mentioned in the present invention, which is equivalent to "the first node performs non-continuous transmission configuration information with the second node. Continuous transmission”;
  • the “first node performs discontinuous transmission of the device to the device D2D according to the discontinuous transmission configuration information according to the non-continuous transmission configuration information", and the first node performs the device-to-device with the second node according to the discontinuous transmission configuration information.
  • the "first node performs discontinuous transmission with the second node according to the discontinuous transmission configuration information" mentioned in the present invention includes the first node performing discontinuous transmission and/or reception with the second node according to the discontinuous transmission configuration information;
  • Discontinuous transmission in the present invention includes discontinuous transmission of messages and/or data.
  • the message may include a message (eg, a second message, a third message, a fourth message, or a fifth message, etc.) enumerated by the present invention, but is not limited to the messages listed in the present invention;
  • Discontinuous reception in the present invention includes discontinuous reception of messages and/or data.
  • the message may include a message (e.g., a second message, a third message, a fourth message, or a fifth message, etc.) enumerated by the present invention, but is not limited to the messages enumerated herein.
  • the second message, the third message, the fourth message, and the fifth message listed in the present invention are not necessarily transmitted in a discontinuous transmission period according to the discontinuous transmission configuration.
  • Step S306 The second node performs device-to-device with the first node according to the discontinuous transmission configuration information.
  • the first node is a node that receives and performs D2D discontinuous transmission with the second node according to the discontinuous transmission configuration information.
  • the second node receives the message sent by the first node according to the discontinuous transmission configuration information, and may be: the second node receives the first node according to the discontinuous transmission configuration information.
  • the second node sends a message to the first node according to the discontinuous transmission configuration information, where the second node sends the second message to the first node according to the discontinuous transmission configuration information. , or the fourth message.
  • the second node receives the data sent by the first node according to the discontinuous transmission configuration information, and may be: the second node receives the first node according to the discontinuous transmission configuration information. The data sent. And sending, by the second node, data to the first node according to the discontinuous transmission configuration information, where the second node sends data to the first node according to the discontinuous transmission configuration information.
  • step S304 to step S306 can refer to step S204 to step S203 in the foregoing embodiment of FIG. 2, and details are not described herein again.
  • Step S307 The third node sends a second message to the first node.
  • Step S308 The first node receives the second message sent by the third node.
  • Step S309 The first node replies to the third node with a third message.
  • Step S310 The third node receives the third message replied by the first node.
  • step S307 to step S310 may refer to step S201 to step S207 in the foregoing embodiment of FIG. 2, except that the second node sends the second message instead of sending the second message by the third node, and receiving the second node.
  • the action of the third message is replaced by receiving the third message by the third node, and the method and principle are the same, and details are not described herein again.
  • Step S311 The third node sends an eighth message to the second node.
  • the eighth message is used to page the first node; or the eighth message is used to page the first node to access the network; or the eighth message is used to indicate that the second node is connected Entering a network to provide a communication service for the first node; or the eighth message is used to instruct the second node to page the first node, and for the first node and the third node Provide relay service.
  • Step S312 The second node receives the eight messages sent by the third node.
  • FIG. 3A is based on base station searching. Schematic diagram of message transmission and reception based on the call period.
  • the third node (base station) in FIG. 3A sends the eighth node to the second node in the paging cycle of the interface (Uu port) between the third node and the second node.
  • the message eg, the eighth message is a paging message for paging the first node.
  • the non-contiguous transmission period of the interface between the second node and the first node (PC5 port) is designed, and the second node can set the Pc5 port to the first node according to the paging cycle of the third node sending the eighth message.
  • a discontinuous transmission period of transmitting a fourth message (the second node sends a fourth message to the first node according to the eighth message). Since the second node receives and parses out the eighth message sent by the third node, it takes a certain time, so the start time of the fourth message sent by the second node can be performed at a certain time of the paging cycle. Delay delay, that is, the second node can know that the third node needs to page or indicate the first node at the first time, and promptly informs the first node to perform corresponding action feedback. In this way, the second node and the third node can be fully brought into a sleep state when there is no data, and when there is data demand, the user can wake up in time to save the second node and the third node.
  • the message listening time and power consumption not only saves the power consumption overhead of each node from the system level, but also allows the message of the third node to be transmitted between the second node and the third node in time in the transmission time.
  • the overall transmission efficiency of the communication system may also be an integer multiple of the paging period, that is, the timeliness of the message acquisition is sacrificed, and the power consumption of the second node and the third node is further reduced.
  • Figure 3A illustrates discontinuous transmission between a first node and a second node, in particular for a second node, the first node receiving a second node to send a message. In fact, correspondingly, for the first node to send a message, the second node receives the message sent by the first node, which is also applicable.
  • the present invention is not exemplified.
  • the second node in FIG. 3B is a wake-up in the DRX cycle of the Uu port, and listens to the third node to transmit the eighth message or data in the duration time.
  • the second node is able to quickly get the Uu port
  • the message and/or data are delivered to the first node as soon as possible.
  • the design of the discontinuous transmission cycle of the PC5 port is: the second node Uu port DRX cycle sets the discontinuous transmission period of the PC5.
  • the second node Since the second node receives and parses the message (for example, the eighth message) or the data sent by the third node, it takes a certain time, so the message sent by the second node to the first node (for example, the fourth message) or the discontinuity of the data may be
  • the period of the transmission is based on the DRX period and delays a certain delay delay. That is, the second node can learn that the third node needs to page or indicate the first node at the first time, and notify the first node to perform corresponding action in time. Feedback. In this way, the second node and the third node can be fully brought into a sleep state when there is no data, and when there is data demand, the user can wake up in time to save the second node and the third node.
  • the message listening time and power consumption not only saves the power consumption overhead of each node from the system level, but also allows the message of the third node to be transmitted between the second node and the third node in time in the transmission time.
  • the overall transmission efficiency of the communication system may also be an integer multiple of the DRX cycle, that is, the timeliness of the message acquisition is sacrificed, and the power consumption of the second node and the third node is further reduced.
  • the discontinuous transmission period T1 of the PC5 port in FIG. 3B is T_Relay_DRX
  • the time duration of the first node waking up ie, the length of time waking up during the discontinuous transmission period T1, PC5_DurationTime
  • the time duration of the wakeup of the first node of the PC5 and the time duration of the wakeup of the second node of the Uu port are not necessarily the same. Need the same length. T1 does not have to be equal to T_Relay_DRX.
  • FIG. 3B is only an example of the data of the first node of the PC5 port receiving the second node according to the discontinuous transmission configuration. Similarly, the first node sends data to the second node according to the discontinuous transmission configuration, and the same applies. I will not draw examples here.
  • FIG. 3A and FIG. 3B illustrate how the second node performs the discontinuous transmission with the first node when the Uu port is in an idle state or is not continuously received.
  • the second node can support multiple terminal devices while providing non-continuous transmission services for multiple terminal devices. For example, for the first node UE1 and the first node UE2, the second node performs discontinuous transmission with the first node UE1 according to the discontinuous transmission configuration 1, and the second node performs discontinuous transmission with the first node UE2 according to the discontinuous transmission configuration 2.
  • the discontinuous transmission configuration 1 and the discontinuous configuration 2 may be the same or may be different.
  • the second node For the case of supporting multiple first nodes, due to different discontinuous transmissions In the transmission configuration, the second node only needs to send and/or receive messages to and send and/or receive data according to different discontinuous transmission configurations. There is even a phenomenon that the second node is always in the connected state at the Uu port and communicates with the base station; since the plurality of different first nodes are supported, the second node can remain in the awake state (working state) for the PC5 port, Different communication with different first nodes according to different discontinuous transmission configurations realizes the effect that the first node reduces power consumption and provides D2d communication efficiency.
  • Step S313 The second node sends a fourth message to the first node according to the eighth message.
  • the second node after receiving the eighth message sent by the third node, the second node sends a fourth message to the first node, where, when the eighth message is used to page the first node, the The fourth message is used to page the first node to access the network, or to page the first node to access the third node, or to instruct the first node to communicate with the second node;
  • the fourth message is used to page the first node to access the network, or to page the first node to access the Third node;
  • the fourth message is used to indicate The first node performs D2D communication with the second node.
  • the second node performs discontinuous transmission of the device to the device D2D with the first node according to the discontinuous transmission configuration information, and the second node sends a message to the first node according to the discontinuous transmission configuration information. / or data.
  • the “the second node sends a message to the first node according to the discontinuous transmission configuration information” includes the second node sending a fourth message to the first node according to the discontinuous transmission configuration information (for example, the second message may also be sent) ).
  • Step S314 The first node receives the fourth message sent by the second node.
  • the fourth message is used to indicate that the first node performs D2D communication with the second node; or the fourth message is used to wake up the first node and instruct the first node to perform D2D communication with the second node, the first node and the first node
  • the two nodes perform D2D communication; wherein the D2D communication includes data communication and/or data communication.
  • the present invention specifically implements how the "the second node sends a message to the first node according to the discontinuous transmission configuration information" is implemented by transmitting the fourth message according to the discontinuous transmission configuration information.
  • the fourth message is sent on a discontinuous transmission period
  • the first node is in the The specific calculation method of the discontinuous transmission period T1 of the discontinuous transmission reception of the PC5 interface (based on the paging cycle configuration of the second node paging by the base station):
  • T1 M*T_Relay_Paging, where T_Relay_Paging is a paging cycle in which the second node receives a base station page on the Uu port (the interface between the base station and the second node).
  • M is a number greater than 0, such as a natural number greater than zero.
  • the specific calculation manner of the starting time PC5_StartOffset of the first node to transmit in the discontinuous transmission period T1 may be any one of the following calculation manners:
  • the second node After receiving the paging message (for example, the eighth message) sent by the third node, the second node sends the fourth message to the first node as soon as possible, and the first node can also receive the second node at this time. After the paging message sent by the third node, wake up as soon as possible to quickly obtain an indication to access the network or perform data communication with the base station through the second node.
  • the paging message for example, the eighth message
  • the calculation of the PF and the PO may provide the paging configuration to the UE along with the prior art base station, and calculate the PF and PO for paging the UE.
  • the paging configuration to be obtained to calculate the PF and PO includes the IMSI, T1, nB of the Relay UE.
  • N can be calculated by obtaining nB, and then the result of (UE_ID mod N) is calculated as A and (T1div N) is B, (UE_ID mod N)*(T1div N The result is C. Then the Remote UE obtains the following configuration through the Relay or the base station.
  • the Remote UE can obtain the PO through the table content, or directly obtain the configuration information of which subframe the PO is.
  • the discontinuous transmission configuration includes at least one of the following: the UE performs a discontinuous transmission period T at the PC5 port, a discontinuous transmission start time PC5_StartOffset, and a length of time waking up in the discontinuous transmission period, PC5_DurationTime;
  • the discontinuous transmission configuration may include at least one of the following: T_Relay_Paging is a paging period in which the second node receives a base station paging on a Uu interface (an interface between a base station and a second node); and Relay_PO (for paging) The starting time of the paging subframe of the second node, or the starting moment of paging the paging subframe of the first node; Relay_PF (for paging the paging radio frame of the second node) The start time, or Relay_PF is the start time of paging the paging radio frame of the first node; parameter M, the Relay UE receives the paging cycle of the base station paging (T_Relay_Paging) on the Uu interface, parameter A, parameter N, Parameter B, parameter C, parameter Ns parameter i_s, parameter delay.
  • T_Relay_Paging is a paging period in which the second node receives a base station paging
  • the fourth message is sent on the discontinuous transmission period, and specifically may be a specific calculation manner in which the first node performs the discontinuous transmission period T1 on the PC5 interface: the first node performs discontinuity on the PC5 interface.
  • the specific calculation method of the transmission period T1 (the unit of T1 is ms or subframe) is any of the following calculation methods:
  • T1 N1*T_Discovery, where T_Discovery is a discovery device period for D2D communication of the first node, and N1 is a number greater than 0;
  • the second node transmits data and/or messages belonging to the first node in the T1 period.
  • the message may for example be a fourth message.
  • the first node listens to its own data and/or message during the T1 period, for example the message may be a fourth message.
  • the second node transmits data and/or messages belonging to the first node within a preset subinterval within the T1 period.
  • the preset subinterval within the T1 period is within a preset time domain and/or frequency domain within the T1 period.
  • the first node wakes up in the preset time domain and/or frequency domain within the T1 period to listen to data and/or messages belonging to itself, for example, the message Is the fourth message, if the second node in the sub-interval sends a fourth message to the first node, the first node can receive the fourth message.
  • FIG. 3C FIG.
  • 3C is a schematic diagram of preset time-frequency resources in a time-frequency resource of a Discovery cycle, where a white rectangle is a time-frequency resource of a Discovery cycle, and a gray rectangle in a white rectangle is a first node receiving a second node.
  • the preset time-frequency resource in the Discovery cycle used when sending the fourth message.
  • the fourth message may be within a certain sub-interval of the Discovery message sending period, thereby saving time for the first node to listen to the fourth message and reducing energy consumption.
  • the existing Discovery technology is used, and this method does not affect the existing UE that listens to the regular Discovery message.
  • the first node When the first node detects that a Discovery message includes the first node identifier, it explicitly indicates that the message is sent by the second node to the first node. At the same time, the Discovery message of the first node is included, and optionally, it can be used as a regular discvoery message by other D2D terminals for D2D device discovery.
  • the fourth message is used to indicate that the first node performs D2D communication with the second node; or the fourth message is used to wake up the first node and instruct the first node to perform D2D communication with the second node, the first node and the second node D2D communication is performed; wherein the D2D communication includes data communication and/or data communication.
  • the first node accesses the network or accesses a certain base station; optionally, after accessing the third network, the first node maintains the first node and the second node a D2D connection between the two; or, the first node releases the D2D connection between the first node and the second node;
  • the first node accesses the third node, and the third node is the service node of the first node or the second node.
  • the first node maintains a D2D connection between the first node and the second node; or the first node releases the D2D connection between the first node and the second node;
  • the fourth message may include: an identifier of the first node, a system information update indication, system information, a paging indication, a service type of the third node, and a service priority of the third node.
  • T1 N2*T_communication, where T_communication is a D2D communication cycle for D2D communication of the first node, and N2 is a number greater than 0;
  • the fourth message is a D2D communication message.
  • T1 K*T_Relay_DRX, where T_Relay_DRX is a DRX cycle in which discontinuous reception is performed between the second node and the third node, and K is a number greater than 0.
  • T1 calculation method 4 Define an independent periodic configuration T (the first node performs the DRX cycle T on the PC5 port)
  • T1 T_PC5
  • the specific calculation manner of the starting time PC5_StartOffset for the first node to transmit in the discontinuous transmission period T1 may be any of the following calculation manners:
  • the SFN is a system frame number
  • the subframe number is a subframe number
  • T1 is a discontinuous transmission period T1.
  • the SFN is a system frame number
  • the subframe number is a subframe number
  • T1 is a discontinuous transmission period T1.
  • Yth subframes PC5_StartOffset, where Y is greater than or equal to zero.
  • the first section sends a fifth message according to the discontinuous transmission configuration, with reference to the above specific description about the first node receiving the fourth message according to the discontinuous transmission configuration.
  • Step S315 Optionally, the first node sends a fifth message to the second node.
  • the first node after receiving the fourth message sent by the second node, the first node optionally feeds back the related result to the second node, that is, sends a fifth message to the second node, where the fifth message includes Instructing the first node to access the third node successfully or failing to access the third node, or
  • the method is configured to indicate that the first node accesses the network successfully or fails to access the network, so as to let the second node know the access status of the current node or the current node of the first node.
  • the first node performs discontinuous transmission of the device to the device D2D according to the discontinuous transmission configuration information, and the first node sends a message to the second node according to the discontinuous transmission configuration information. / or data. Specifically, the “the first node sends a message to the second node according to the discontinuous transmission configuration information”, where the second node sends the fifth message to the first node according to the discontinuous transmission configuration information (for example, the third message may also be sent). ).
  • FIG. 4 it is a schematic flowchart of still another communication method in the embodiment of the present invention, which can be applied to the D2D communication system described in FIG. 1 above, and will be referred to from the first node (Remote UE),
  • the interaction between the two nodes (Relay UE) and the third node (base station) is described, wherein the second node is a node that provides a relay service for the first node or provides a relay service for the first node and the third node,
  • the three nodes are service sites of the first node or the second node.
  • the method may include the following steps S401 to S406.
  • Step S401 The third node sends the first message to the first node.
  • the base station sends a first message to the first node, where the first message includes discontinuous transmission configuration information, where the first message is used by the first node to perform the second node according to the discontinuous transmission configuration information.
  • the first message includes discontinuous transmission configuration information
  • the first message is used by the first node to perform the second node according to the discontinuous transmission configuration information.
  • Discontinuous transmission of device to device D2D wherein the second node is a node that performs D2D discontinuous transmission with the first node according to the discontinuous transmission configuration information.
  • Step S402 The first node receives the first message, where the first message includes discontinuous transmission configuration information.
  • Step S403 Optionally, the third node sends a sixth message to the second node.
  • the third node can directly send the sixth node to the second node. a message, and the sixth message includes the discontinuous transmission configuration information in the first message, and the second node performs D2D discontinuous transmission with the first node according to the discontinuous transmission configuration information.
  • Step S404 Optionally, the second node receives the sixth message sent by the third node.
  • the second node may perform the sixth cancellation according to the sixth message.
  • the non-continuous transmission configuration information included in the information is discontinuously transmitted by the first node with D2D.
  • Step S405 The first node performs discontinuous transmission of the device to the device D2D with the second node according to the discontinuous transmission configuration information.
  • Step S406 The second node performs discontinuous transmission of the device to the device D2D with the first node according to the discontinuous transmission configuration information.
  • step S405 to step S406 may refer to step S202 to step S203 in the foregoing embodiment of FIG. 2, and details are not described herein again.
  • the embodiment of the present invention may further include some or all of the steps S204 to S210 in the embodiment of FIG. 2, and/or include some or all of steps S307 to S315 in the embodiment of FIG. Steps, no more details here.
  • FIG. 5 is a schematic flowchart of still another communication method in the embodiment of the present invention, which can be applied to the D2D communication system described in FIG. 1 above, and will be referred to from the first node (Remote UE),
  • the interaction between the two nodes (Relay UE) and the third node (base station) is described, wherein the second node is a node that provides a relay service for the first node or provides a relay service for the first node and the third node,
  • the three nodes are service sites of the first node or the second node.
  • the method may include the following steps S501 to S506.
  • Step S501 The second node sends a first message to the first node.
  • the first message used to indicate that the first node performs discontinuous transmission of the device to the device D2D according to the discontinuous transmission configuration information and the second node may be directly used by the second node. Generating and transmitting directly to the first node, the first message including the discontinuous transmission configuration information.
  • Step S502 The first node receives the first message, where the first message includes discontinuous transmission configuration information.
  • Step S503 The second node sends a seventh message to the third node.
  • the second node sends a seventh message to the third node before, after, or at the same time as the first message is sent to the first node, where the seventh message includes the discontinuous transmission configuration information, and is used to notify the
  • the second node performs D2D discontinuous transmission with the first node according to the discontinuous transmission configuration information, that is, let the base station know that the D2D discontinuity is performed between the second node and the first node.
  • the relevant parameters used for transmission are convenient for the base station to regulate the first node or the second node.
  • Step S504 The third node receives the seventh message sent by the second node.
  • the third node after receiving the seventh message sent by the second node, stores the message, so that the third node needs to communicate with the first node or the second node according to the discontinuity in the seventh message.
  • the configuration information is transmitted, and reasonable paging is performed in a corresponding time period to avoid waste of communication resources and improve communication efficiency.
  • Step S505 The first node performs discontinuous transmission of the device to the device D2D according to the discontinuous transmission configuration information, where the second node is configured according to the discontinuous transmission configuration information and the first node.
  • Step S506 The second node performs discontinuous transmission of the device to the device D2D according to the discontinuous transmission configuration information, where the first node receives and performs D2D with the second node according to the discontinuous transmission configuration information. The node of the discontinuous transmission.
  • step S304 to step S306 may refer to step S204 to step S203 in the foregoing embodiment of FIG. 1, and details are not described herein again.
  • the embodiment of the present invention may further include some or all of the steps S204 to S210 in the embodiment of FIG. 2, and/or include some or all of steps S307 to S315 in the embodiment of FIG. Steps, no more details here.
  • the specific content of the discontinuous transmission configuration information may include a plurality of parameters or information, and further, due to the role of the discontinuous transmission configuration information, the D2D device may be Receiving and receiving receipts in a certain period of time, specifically including the start time of the cycle, and the time of waking up in the cycle, etc., therefore, the D2D communication interface between the first node and the second node
  • the discontinuous transmission configuration information includes at least one of the following information:
  • the first node performs a discontinuous transmission period T1 on the PC5 interface
  • the waiting time of the first node receiving the data retransmission scheduling on the PC5 interface is PC5_DRX Retransmission Timer
  • the present invention provides a possible implementation manner, but is not limited to the implementations listed below.
  • the unit of T1 is ms or a subframe.
  • the specific calculation manner of the discontinuous transmission period T1 of the first node on the PC5 interface is any one of the following calculation methods:
  • the period T1 in which the PC5 interface performs discontinuous transmission is obtained according to the discovery equipment period of the D2D communication;
  • the period T1 in which the PC5 interface performs discontinuous transmission is obtained according to a communication cycle of D2D communication;
  • the period T1 in which the PC5 interface performs discontinuous transmission is obtained according to a paging cycle
  • the period T1 in which the PC5 interface performs discontinuous transmission is obtained according to the DRX cycle.
  • the period T1 in which the PC5 interface performs discontinuous transmission is obtained according to the DTX period.
  • the period T1 for "discontinuous transmission of the PC5 interface is obtained according to a paging cycle";
  • the paging period may be a paging period of the first node, or a seek of the second node. Call cycle.
  • the paging period of the first node may be a period in which the first node receives the paging message under the cellular network;
  • the paging period of the second node may be a period in which the second node receives the paging message under the cellular network.
  • the period T1 for "discontinuous transmission of the PC5 interface is obtained according to a DRX cycle", and the DRX cycle may be a DRX cycle of the first node, or a second node DRX cycle.
  • the DRX period of the first node may be a period in the cellular network in which the first node is discontinuously received within the serving cell or within the base station.
  • the period T1 for "discontinuous transmission of the PC5 interface is obtained according to a DTX period"
  • the DTX (discontinuous transmission) period may be a DTX period of the first node, or a DTX period of the second node .
  • the DTX period of the first node may be a period in the cellular network in which the first node is not continuously transmitted within the serving cell or within the base station.
  • T1 may be any one of the following, but is not limited to the categories listed below:
  • T1 N1*T_Discovery, where T_Discovery is a discovery device period for D2D communication of the first node, and N1 is a number greater than 0;
  • T1 N2*T_communication, where T_communication is a D2D communication cycle for D2D communication of the first node, and N2 is a number greater than 0;
  • T1 K*T_Relay_DRX, where T_Relay_DRX is a DRX cycle in which discontinuous reception is performed between the second node and the third node, and K is a number greater than 0.
  • T1 calculation method 4 Define an independent periodic configuration T (the first node performs the DRX cycle T on the PC5 port)
  • T1 T_PC5
  • the specific calculation manner of the starting time PC5_StartOffset for the first node to transmit in the discontinuous transmission period T1 may be any of the following calculation manners:
  • the PC5_StartOffset is obtained according to the start time of the DRX of the Uu port;
  • the PC5_StartOffset is obtained according to a starting moment of paging the paging radio frame of the second node
  • the PC5_StartOffset is obtained according to a starting moment of paging the paging radio frame of the first node
  • the PC5_StartOffset is obtained according to a paging moment of paging the paging subframe of the second node
  • PC5_StartOffset T1 may be any one of the following, but is not limited to the categories listed below:
  • the SFN is a system frame number
  • the subframe number is a subframe number
  • T1 is a discontinuous transmission period T1.
  • the SFN is a system frame number
  • the subframe number is a subframe number
  • T1 is a discontinuous transmission period T1.
  • Yth subframes PC5_StartOffset, where Y is greater than or equal to zero.
  • the discontinuous transmission period T1 is calculated in the manner 5: (based on the paging cycle configuration of the second node paging the second node):
  • T1 M*T_Relay_Paging, where T_Relay_Paging is a paging cycle in which the second node receives a base station page on the Uu port (the interface between the base station and the second node).
  • M is a number greater than 0, such as a natural number greater than zero.
  • the specific calculation manner of the starting time PC5_StartOffset of the first node to transmit in the discontinuous transmission period T1 may be any one of the following calculation manners:
  • the second node After receiving the paging message (for example, the eighth message) sent by the third node, the second node sends the fourth message to the first node as soon as possible, and the first node can also receive the second node at this time. After the paging message sent by the third node, wake up as soon as possible to quickly obtain an indication to access the network or perform data communication with the base station through the second node.
  • the paging message for example, the eighth message
  • the calculation of the PF and the PO may provide the paging configuration to the UE along with the prior art base station, and calculate the PF and PO for paging the UE.
  • the paging configuration to be obtained to calculate the PF and PO includes the IMSI, T1, nB of the Relay UE.
  • N can be calculated by obtaining nB, and then the result of (UE_ID mod N) is calculated as A and (T1div N) is B, (UE_ID mod N)*(T1div N The result is C. Then the Remote UE obtains the following configuration through the Relay or the base station.
  • the Remote UE can obtain the PO through the table content, or directly obtain the configuration information of which subframe the PO is.
  • the discontinuous transmission configuration includes at least one of the following: the UE performs a discontinuous transmission period T at the PC5 port, a discontinuous transmission start time PC5_StartOffset, and a length of time waking up in the discontinuous transmission period, PC5_DurationTime;
  • the discontinuous transmission configuration may include at least one of the following: T_Relay_Paging is a paging period in which the second node receives a base station paging on a Uu interface (an interface between a base station and a second node); and Relay_PO (for paging) The starting time of the paging subframe of the second node, or the starting moment of paging the paging subframe of the first node; Relay_PF (for paging the paging radio frame of the second node) The start time, or Relay_PF is the start time of paging the paging radio frame of the first node; parameter M, the Relay UE receives the paging cycle of the base station paging (T_Relay_Paging) on the Uu interface, parameter A, parameter N, Parameter B, parameter C, parameter Ns parameter i_s, parameter delay.
  • T_Relay_Paging is a paging period in which the second node receives a base station paging
  • the first message includes at least one of the following: an identifier of the first node, an identifier of the third node, a system information update indication, system information, and a search
  • the second message includes at least one of the following: an identifier of the first node, an identifier of the third node, a system information update indication, system information, and a search
  • the fourth message includes at least one of the following: an identifier of the first node, an identifier of the third node, an indication of system information update, system information, and a search
  • the sixth message includes at least one of the following: an identifier of the first node, an identifier of the third node, an indication of system information update, system information, and a search
  • the eighth message includes at least one of the following: an identifier of the first node, an identifier of the third node, an indication of system information update, system information, and a search The call indication, the service type of the third node, and the service priority of the third node.
  • the ninth message includes at least At least one of the following: an identifier of the first node, an identifier of the third node, a system information update indication, system information, a paging indication, a service type of the third node, and a service priority of the third node.
  • the terminal device that performs the D2D communication is configured to perform the discontinuous transmission, so that the Remote UE may not need to be in the listening state all the time, and can perform data transmission with the base station through the Relay UE at any time to reduce the power consumption.
  • the non-continuous Uu port data/message is also implemented in the embodiment of the present invention, and the second node is quickly transmitted to the first node on the PC5 interface, which not only ensures the low power consumption of the first node, but also further improves the D2D communication. s efficiency.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • the structure of the communication device 10 will be described in detail below with reference to FIG. .
  • the device 10 can include: a first receiving module 101 and a transmission module 102, wherein
  • the first receiving module 101 is configured to receive a first message, where the first message includes discontinuous transmission configuration information;
  • the transmitting module 102 is configured to perform discontinuous transmission of the device to the device D2D with the second node according to the discontinuous transmission configuration information, where the second node is to provide a relay service for the first node or The first node and the third node provide a node for relay service, and the third node is a service site of the first node or the second node.
  • the transmission module 102 is specifically configured to:
  • the device further includes a second receiving module 103, wherein
  • a second receiving module 103 configured to receive a second message sent by the second node or a third node, where the third node is a service station of the first node or the second node, and the second message is And indicating that the first node resides under the second node, or indicates that the first node is in a low configuration mode, or indicates that the first node is in a high configuration mode, or indicates that the first node receives a paging message from the second node, or instructing the first node to receive a system message, or instructing the first node to receive synchronization information, or instructing the first node to start discontinuous according to a discontinuous transmission configuration transmission.
  • the communication device 10 is presented in the form of a module.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality.
  • the transmission module 102 can be implemented by the processing unit 401 of the terminal device shown in FIG. 9, and the first receiving module 101 and the second receiving module 103 can be implemented by the input unit 401 of the terminal device shown in FIG.
  • FIG. 7 is a schematic structural diagram of another communication device according to an embodiment of the present invention. The structure is described in detail.
  • the device 20 can include: a discontinuous transmission module 201, wherein
  • the discontinuous transmission module 201 is configured to perform discontinuous transmission of the device to the device D2D with the first node according to the discontinuous transmission configuration information, where the first node receives and according to the discontinuous transmission configuration information and the second node a node that performs discontinuous transmission of D2D; wherein the second node is a node that provides a relay service for the first node or provides a relay service for the first node and the third node, the third node Is the service node of the first node or the second node.
  • the discontinuous transmission module 201 is specifically configured to:
  • the device further includes a first sending module 202, wherein
  • the first sending module 202 is configured to send a first message to the first node, where the first message includes the discontinuous transmission configuration information, where the first message is used to indicate that the first node is according to the non-continuous Continuously transmitting configuration information and the second node performs a discontinuous transmission of the device to the device D2D.
  • the first sending module 202 is specifically configured to:
  • the sixth message includes discontinuous transmission configuration information
  • the third node sends a first message to the first node, where the first message includes the discontinuous transmission configuration information.
  • the device further includes a second sending module 203, wherein
  • a second sending module 203 configured to send a second message to the first node, where the second message is used to indicate that the first node resides under the second node, or that the first node is in a low configuration mode, or indicating that the first node is in a high configuration mode, or instructing the first node to receive a paging message from the second node, or instructing the first node to receive a system message, or indicating the first
  • the node receives the synchronization information or instructs the first node to begin discontinuous transmission according to the discontinuous transmission configuration.
  • modules in the communication device 20 may be corresponding to the specific implementation manners in the foregoing method embodiments in FIG. 1 to FIG. 5 , and details are not described herein again.
  • the communication device 20 is presented in the form of a module.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality.
  • ASIC application-specific integrated circuit
  • the discontinuous transmission module 201 can be implemented by the processing unit 501 of the terminal device shown in FIG. 10, and the first transmitting module 202 and the second transmitting module 203 can be implemented by the output unit 502 of the terminal device shown in FIG.
  • FIG. 8 is a schematic structural diagram of still another communication device according to an embodiment of the present invention. The structure is described in detail.
  • the device 30 may include: a first sending module 301 or a second sending module 302 or a receiving module 303.
  • the first sending module 301 is configured to send a first message to the first node, where the first message includes discontinuous transmission configuration information, where the first message is used by the first node according to the discontinuous transmission configuration information
  • the second node performs discontinuous transmission of the device to the device D2D, wherein the second node is a node that performs D2D discontinuous transmission with the first node according to the discontinuous transmission configuration information; or
  • a second sending module 302 configured to send a sixth message to the second node, where the sixth message includes discontinuous transmission configuration information, where the sixth message is used by the second node according to the discontinuous transmission configuration And performing, by the first node, a discontinuous transmission of the device to the device D2D, wherein the first node is a node that receives and performs D2D discontinuous transmission with the second node according to the discontinuous transmission configuration information; or
  • the receiving module 303 is configured to receive a seventh message sent by the second node, where the seventh message includes discontinuous transmission configuration information, where the seventh message is used to notify the third node that the second node is according to the non-continuous Continuously transmitting configuration information to the first node for D2D discontinuous transmission, the third node being a service node of the first node or the second node, where the first node is received and according to the A node that discontinuously transmits configuration information and performs discontinuous transmission of D2D by the second node.
  • the device 30 may further include a third sending module 304, where
  • a third sending module 304 configured to send a second message to the first node, where the second message is used to indicate that the first node resides under the second node or the first node enters a low configuration mode, Or instructing the first node to enter a high configuration mode, or instructing the first node to receive a paging message from the second node, or instructing the first node to receive a system message, or instructing the first node to receive Synchronizing information, or triggering the first node to perform discontinuous transmission according to the discontinuous transmission configuration information.
  • the device 30 may further include a fourth sending module 305, where
  • a fourth sending module 305 configured to send an eighth message to the second node
  • the eighth message is used to page the first node.
  • the eighth message is used to page the first node to access the network.
  • the eighth message is used to indicate that the second node accesses a network, so as to provide a communication service for the first node;
  • the eighth message is used to instruct the second node to page the first node, and provide a relay service for the first node and the third node.
  • communication device 30 is presented in the form of a module.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality.
  • ASIC application-specific integrated circuit
  • the first sending module 301 or the second sending module 302 or the receiving module 303 can be implemented by the processing unit 604 of the base station shown in FIG. 11 in combination with the output unit 602 or the input unit 601.
  • FIG. 9 is a terminal device 40 according to an embodiment of the present invention.
  • the terminal device 40 is a first node, and may include: an input unit 401, an output unit 402, a storage unit 403, and a processing unit 404.
  • the bus is used to implement the communication connection between the components.
  • the input unit 401 can be a touch panel of the terminal, and includes a touch screen and a touch screen for detecting an operation instruction on the touch panel of the terminal.
  • the output unit 402 can include a display of the terminal for outputting, displaying an image or data; the storage unit 403 may be a high-speed RAM display or a non-volatile memory, such as at least one disk display, and the storage unit 403 may be The selection may also be at least one display device located remotely from the aforementioned processing unit 401.
  • An operating system, a network communication module, a user interface module, and a data processing program may be included in the storage unit 403 as a computer display medium.
  • the storage unit 403 is configured to store program code
  • the processing unit 404 is configured to invoke the program code stored by the storage unit 403 to perform the following steps:
  • the processing unit 404 is configured to perform non-continuous transmission of the device to the device D2D according to the discontinuous transmission configuration information and the second node, specifically:
  • Messages and/or data are sent to the second node by the output unit 401 according to the discontinuous transmission configuration information.
  • processing unit 404 is further configured to:
  • a second message sent by the second node or the third node where the third node is a service station of the first node or the second node, and the second message is used by Instructing the first node to camp under the second node, or indicating that the first node is in a low configuration mode, or indicating that the first node is in a high configuration mode, or indicating that the first node receives from the first
  • the paging message of the two nodes or instructing the first node to receive the system message, or instructing the first node to receive synchronization information, or instructing the first node to start discontinuous transmission according to the discontinuous transmission configuration.
  • FIG. 10 is a terminal device 50 according to an embodiment of the present invention.
  • the second node of the terminal device 50 may include: an input unit 501, an output unit 502, a storage unit 503, and a processing unit 504.
  • the bus is used to implement the communication connection between the components.
  • the input unit 501 is specifically a touch panel of the terminal, and includes a touch screen and a touch screen for detecting an operation instruction on the touch panel of the terminal.
  • the output unit 502 may include a display of the terminal for outputting, displaying an image or data; the storage unit 503 may be a high-speed RAM display or a non-volatile memory, such as at least one disk display, and the storage unit 503 may be Optionally, at least one display device located away from the aforementioned processing unit 501 can also be selected.
  • An operating system, a network communication module, a user interface module, and a data processing program may be included in the storage unit 503 as a computer display medium.
  • the storage unit 503 is configured to store program code
  • the processing unit 504 is configured to invoke the program code stored by the storage unit 503 to perform the following steps:
  • the processing unit is configured to perform device-to-device D2D discontinuous transmission with the first node according to the discontinuous transmission configuration information, specifically:
  • Messages and/or data are sent to the first node by the output unit 502 in accordance with the discontinuous transmission configuration information.
  • the processing unit is configured to: before the non-continuous transmission of the device to the device D2D by the first node according to the discontinuous transmission configuration information,
  • the configuration information performs a discontinuous transmission of the device to the device D2D with the second node.
  • the processing unit is configured to send the first message to the first node, specifically:
  • processing unit is further configured to:
  • the second message Sending, by the output unit 502, the second message to the first node, where the second message is used to indicate that the first node resides under the second node, or that the first node is in a low configuration Mode, or indicating that the first node is in a high configuration mode, or instructing the first node to receive a paging message from the second node, or instructing the first node to receive a system message, or instructing the first node to receive Synchronizing information, or instructing the first node to begin discontinuous transmission according to a discontinuous transmission configuration.
  • FIG. 11 is a base station 60 according to an embodiment of the present invention.
  • the node, the third node may include an input unit 601, an output unit 602, a storage unit 603, and a processing unit 604, in some embodiments of the invention.
  • the bus is used to implement the communication connection between the components.
  • the input unit 601 can be a touch panel of the terminal, and includes a touch screen and a touch screen for detecting an operation instruction on the touch panel of the terminal.
  • the output unit 602 can include a display of the terminal for outputting, displaying an image or data; the storage unit 603 may be a high-speed RAM display or a non-volatile memory, such as at least one disk display, and the storage unit 603 may be Optionally, at least one display device located away from the aforementioned processing unit 601 can also be selected.
  • An operating system, a network communication module, a user interface module, and a data processing program may be included in the storage unit 603 as a computer display medium.
  • the storage unit 603 is configured to store program code
  • the processing unit 604 is configured to invoke the program code stored by the storage unit 603 to perform the following steps:
  • the node performs discontinuous transmission of the device to the device D2D, wherein the second node is a node that performs D2D discontinuous transmission with the first node according to the discontinuous transmission configuration information;
  • a sixth message to the second node where the sixth message includes discontinuous transmission configuration information, where the sixth message is used by the second node according to the discontinuous transmission configuration information and the first
  • the node performs discontinuous transmission of the device to the device D2D, wherein the first node is a node that receives and performs D2D discontinuous transmission with the second node according to the discontinuous transmission configuration information; or
  • a seventh message sent by the second node where the seventh message includes discontinuous transmission configuration information, where the seventh message is used to notify the third node that the second node is according to the non-continuous Continuously transmitting configuration information to the first node for D2D discontinuous transmission, the third node being a service node of the first node or the second node, where the first node is received and according to the A node that discontinuously transmits configuration information and performs discontinuous transmission of D2D by the second node.
  • the processing unit is further configured to: :
  • the processing unit is further used to :
  • the eighth message is used to page the first node.
  • the eighth message is used to page the first node to access the network.
  • the eighth message is used to indicate that the second node accesses a network, so as to provide a communication service for the first node;
  • the eighth message is used to instruct the second node to page the first node, and provide a relay service for the first node and the third node.
  • FIG. 12 is a communication system according to an embodiment of the present invention.
  • the system 70 includes a base station 701, a first terminal device 702, and a second terminal device 703.
  • the base station 701 may be the communication device 30 in the foregoing embodiment of FIG. 9 or the base station 60 in the embodiment of FIG. 12; the first terminal device 702 may be the communication device 10 in the foregoing embodiment of FIG. 7 or the terminal device in the embodiment of FIG.
  • the second terminal device 703 may be the communication device 20 in the above-mentioned embodiment of FIG. 8 or the terminal device 50 in the embodiment of FIG. 11; it is understood that the system 40 in the embodiment of the present invention may further include a core.
  • Devices such as networks, servers, routing devices, switching devices, and service centers.
  • the functions of the base station 701, the first terminal device 702, and the second terminal device 703 in the communication system 70 may be corresponding to the specific implementation manners in the foregoing method embodiments in FIG. 1 to FIG. Narration.
  • FIG. 13 is a schematic structural diagram of still another embodiment of a terminal device according to an embodiment of the present invention.
  • the terminal device 80 can be a smart mobile terminal (such as a mobile phone).
  • the terminal device 80 includes: a radio frequency (RF) circuit 801, a storage unit 802 storing one or more computer programs, an input device 803, and an output device. 804, sensor 805, audio circuit 806, wireless fidelity (WiFi) module 807, processor 808 including one or more processing cores, and power supply 803 and the like.
  • RF radio frequency
  • WiFi wireless fidelity
  • FIG. 13 does not constitute a limitation of the terminal device, and may include more or less components than those illustrated, or a combination of certain components, or different component arrangements. among them:
  • the RF circuit 801 can be used for receiving and transmitting signals during and after receiving or transmitting information, and in particular, receiving downlink information of the base station and then processing it by one or more processors 808; in addition, transmitting data related to the uplink to the base station .
  • the RF circuit 801 includes, but is not limited to, an antenna, at least one amplifier, a tuner, one or more oscillators, a subscriber identity module (SIM) card, a transceiver, a coupler, a low noise amplifier ( English: low noise amplifier, LNA), duplexer, etc.
  • SIM subscriber identity module
  • the RF circuit 801 can also communicate with a network or other terminal device through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), code division. Code division multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), e-mail, short message service (English) :short messaging service,SMS), etc.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • CDMA Code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • e-mail e-mail
  • SMS short message service
  • Memory 802 can be used to store computer programs and modules, and processor 808 executes various functional applications and data processing by running computer programs and modules stored in memory 802.
  • the memory 802 can mainly include a storage program area and a storage data area, wherein the storage program area can store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area can be stored according to The data created by the use of the terminal device 80 (such as photographed photos, audio data, video data, etc.) and the like.
  • memory 802 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device. Accordingly, memory 802 may also include a memory controller to provide access to memory 802 by processor 808 and input device 803.
  • Input device 803 can be used to receive input numeric or character information, as well as to generate keyboard, mouse, joystick, optical or trackball signal inputs related to user settings and function controls.
  • input device 803 can include touch-sensitive surface 8031 and other input devices 8032.
  • Touch-sensitive surface 8031 also referred to as a touch display panel or trackpad, can collect touch operations on or near the user (eg, the user uses a finger, stylus, etc., any suitable object or accessory on touch-sensitive surface 8031 or The operation near the touch-sensitive surface 8031) and driving the corresponding connecting device according to a preset program.
  • the touch sensitive surface 8031 can include two portions of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 808 is provided and can receive commands from the processor 808 and execute them.
  • the touch sensitive surface 8031 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input device 803 can also include other input devices 8032.
  • other input devices 8032 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • Output device 804 can be used to display information entered by the user or information provided to the user and various graphical user interfaces of terminal device 80, which can be constructed from graphics, text, icons, video, and any combination thereof.
  • the output device 804 can include a display panel 8041.
  • the display panel 8041 can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch-sensitive surface 8031 can cover the display panel 8041, and when the touch-sensitive surface 8031 detects a touch operation thereon or nearby, it is transmitted to the processor 808 to determine the type of the touch event, and then the processor 808 according to the touch event The type provides a corresponding visual output on display panel 8041.
  • touch-sensitive surface 8031 and display panel 8041 are implemented as two separate components to implement input and input functions, in some embodiments, touch-sensitive surface 8031 can be integrated with display panel 8041 for input. And output function.
  • Terminal device 80 may also include at least one type of sensor 805, such as a distance sensor, a light sensor, a motion sensor, and other sensors.
  • the distance sensor is configured to detect a distance between the screen of the terminal device and an object covering the terminal device
  • the light sensor is configured to detect an optical signal of an environment external to the terminal device.
  • the gravity acceleration sensor can detect in all directions (usually three-axis) acceleration, the magnitude and direction of gravity can be detected at rest, can be used to identify the attitude of the terminal device 80 (such as horizontal and vertical screen switching, related games, magnetometer attitude calibration), vibration recognition related functions ( For example, a pedometer, a tap, etc.; other sensors such as a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, and the like that can be configured by the terminal device 80 are not described herein.
  • the audio circuit 806, the speaker 8061, and the microphone 8062 can provide an audio interface between the user and the terminal device 80.
  • the audio circuit 806 can transmit the converted electrical data of the received audio data to the speaker 8061, and convert it into a sound signal output by the speaker 8061.
  • the microphone 8062 converts the collected sound signal into an electrical signal, and the audio circuit 806 is used by the audio circuit 806. After receiving, it is converted into audio data, and then processed by the audio data output processor 808, transmitted to the device, for example, by the RF circuit 801, or outputted to the memory 802 for further processing.
  • the audio circuit 806 may also include an earbud jack to provide communication of the peripheral earphones with the terminal device 80.
  • WiFi is a short-range wireless transmission technology
  • the terminal device 80 can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 807, which provides wireless broadband Internet access for users.
  • FIG. 13 shows the WiFi module 807, it can be understood that it does not belong to the essential configuration of the terminal device 80, and may be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 808 is a control center of the terminal device 80 that connects various portions of the entire terminal device 80 using various interfaces and lines, by running or executing computer programs and/or modules stored in the memory 802, and for recalling storage in the memory 802.
  • the data performs various functions and processing data of the terminal device 80, thereby performing overall monitoring of the terminal device 80.
  • the processor 808 may include one or more processing cores; preferably, the processor 808 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 808.
  • the terminal device 80 further includes a power source 803 (such as a battery) for supplying power to the various components.
  • the power source can be logically connected to the processor 808 through the power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the power supply 803 may also include any one or more of a DC or AC power source, a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator, and the like.
  • the terminal device 80 may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the output device 804 (or the input device 803) of the terminal device is a touch screen display
  • the terminal device 80 further includes a memory 802, a processor 808, and one or more computer programs, one or more of which The computer program is stored in the memory 802.
  • the program of the communication method used by the processor 808 for invoking the memory 802 performs the flow of each method step in the foregoing method embodiment, and details are not described herein again.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium can store a program, and the program includes some or all of the steps of any one of the communication methods described in the foregoing method embodiments.
  • embodiments of the present invention can be provided as a method, apparatus (device), or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program is stored/distributed in a suitable medium, provided with other hardware or as part of the hardware, or in other distributed forms, such as over the Internet or other wired or wireless telecommunication systems.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种通信方法、相关设备及***,其中的方法可包括:第一节点接收第一消息,所述第一消息包括非连续传输配置信息;所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。采用本发明可解决D2D通信过程终端设备功耗和D2D通信效率低的问题。

Description

一种通信方法、相关设备及*** 技术领域
本发明涉及通信技术领域,尤其涉及一种通信方法、相关设备及***。
背景技术
为了提高***效率以及资源利用率,当终端之间距离较近时,终端之间可以不通过基站转发而进行终端到终端(Device to Device,D2D)的通信,D2D通信是一种在基站的控制下,允许终端之间通过复用小区资源直接进行通信的技术,即D2D通信是把本来通过基站转发的通信方式,改为需要通信的终端之间的直接通信,但是基站仍然与该进行D2D通信的终端保持控制信息的传输,实现干扰控制,为D2D终端分配资源,使得D2D通信工作在许可频段。
由于D2D通信终端之间的数据不需要通过基站的转接,而是终端之间进行直传,减少了基站通信的负担,节省了所占用的通信资源,而且D2D终端可以和进行正常蜂窝通信的蜂窝用户复用时频资源,从而使得通信速率和频率效率大大提高,在一定程度上解决无线通信***频谱资源匮乏的问题。此外,还可以节省D2D终端的功耗。在终端到终端的中继通信即D2D Relay通信的情况下,远端设备(Remote UE)通过中继设备(Relay UE)进行D2D通信,从而实现通过中继设备与基站进行数据传输。其中,两个D2D终端设备之间建立了D2D通信连接进行数据传输,此时的远端设备和中继设备都必须处于连接态。当D2D终端设备之间没有数据需要交互时,D2D终端设备之间就会释放连接不再通信。如果Remote UE此时与基站没有任何数据传输,Remote UE会处于空闲态,空闲态驻留在某个小区。
当该空闲态Remote UE再次有数据要传输时,Remote UE可以选择直接接入基站与基站进行数据通信,也可以再次选择一个Relay UE,Remote UE会进入连接态后通过基站获得了与Relay UE通信的资源,从而利用该资源与 Relay UE进行D2D通信,实现通过Relay UE来与基站传输数据。如此反复,D2D通信过程还不够完善,终端设备之间的传输功耗较大,通信的效率较低。
当该空闲态Remote UE被基站寻呼时(此时网络通知Remote UE有业务,数据传输了),Remote UE此时没有Relay UE协助,无法通过Relay与基站进行数据传输。因此无论是何种业务,Remote UE都必须接入基站,与基站进行直接数据通信,也无法在网络有业务寻呼该Remote UE的情况下,快速获得Relay支持实现与基站数据通信。针对对QoS等级比较低的业务,Remote大可以通过Relay协助与基站进行数据传输,大大降低Remote UE的功耗,从而提高了Relay UE协助进行D2D通信的效率。基于上述,目前D2D通信过程还不够完善,终端设备之间的传输功耗较大,通信的效率较低。
发明内容
本发明实施例所要解决的技术问题在于,提供一种通信方法、相关设备及***,解决了D2D通信过程终端设备功耗和D2D通信效率低的问题。
第一方面,本发明实施例提供了一种通信方法,可包括:
第一节点接收第一消息,所述第一消息包括非连续传输配置信息;
所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
结合第一方面,在第一种可能的实现方式中,所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,包括:
所述第一节点根据所述非连续传输配置信息,接收所述第二节点发送的消息和/或数据;或者
所述第一节点根据所述非连续传输配置信息,向所述第二节点发送消息和/或数据。
结合第一方面,或者,结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述D2D的非连续传输接口为PC5接口;所述非连续传输配置信息包括以下至少一项信息:
在所述PC5接口进行非连续传输的周期T1;
在所述非连续传输周期T1内进行传输的起始时刻PC5_StartOffset;
在所述非连续传输周期T1内持续醒来的时间长度PC5_DurationTime;
在所述PC5接口接收数据后再接收数据的时间PC5_DRX Inactivity Timer;
在所述PC5接口上最小的重传数据调度间隔PC5_HARQ RTT Timer;
在所述PC5接口接收数据重传调度的等待时间PC5_DRX Retransmission Timer;
在所述PC5接口从短生命周期PC5_Short Cycle切换到长生命周期PC5_Long Cycle的定时器PC5_Short Cycle Timer;
指示立即进入休眠期的命令PC5_Command MAC CE。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,包括:
所述第一节点根据所述非连续传输配置信息,在所述非连续传输周期T1内,接收所述第二节点发送的消息和/或数据;或者
所述第一节点根据所述非连续传输配置信息,在所述非连续传输周期T1内,向所述第二节点发送消息和/或数据;或者
所述第一节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,接收所述第二节点发送的消息和/或数据;或者
所述第一节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,向所述第二节点发送消息和/或数据;或者
所述第一节点根据所述非连续传输配置信息,在所述非连续传输的起始时刻PC5_StartOffset,接收所述第二节点发送的消息和/或数据;或者
所述第一节点根据所述非连续传输配置信息,在所述非连续传输的起始时刻PC5_StartOffset,向所述第二节点发送消息和/或数据。
结合第一方面,或者,结合第一方面的第一种可能的实现方式,或者,结合第一方面的第二种可能的实现方式,或者,结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,所述方法还包括:
所述第一节点接收所述第二节点或第三节点发送的第二消息,所述第三节 点是所述第一节点或所述第二节点的服务站点,所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续传输。
结合第一方面的第四种可能的实现方式,在第五种可能的实现方式中,所述第一节点处于所述低配置模式,包括以下至少一项:
所述第一节点驻留在所述第二节点下;或者,
所述第一节点仅接收所述第二节点发送的信息;或者,
所述第一节点仅接收所述第二节点发送的信令和/或数据;或者,
所述第一节点仅接收D2D通信节点发送的信令和/或数据;或者,
所述第一节点接收所述第二节点发送的信令和/或数据;或者,
所述第一节点接收D2D通信节点发送的信令和/或数据;或者,
所述第一节点接收所述第二节点发送的寻呼消息;或者,
所述第一节点接收所述第二节点发送的***消息;或者,
所述第一节点接收所述第二节点发送的同步信号;或者,
所述第一节点不接收小区发送的***消息;或者,
所述第一节点不接收小区发送的***消息;或者,
所述第一节点不接收小区发送的同步信息;或者,
所述第一节点接收所述第二节点发送的信息,但不执行以下至少一项操作:驻留在一个小区内,接收小区发送的***消息,接收小区发送的寻呼消息,接收小区发送的同步信号,接收站点发送的***消息,接收站点发送的寻呼消息,接收站点发送的同步信号邻居小区测量,同频小区测量,异频小区测量;或者,
所述第一节点接收D2D通信节点发送的信息,但不执行以下至少一项操作:驻留在一个小区内,接收小区发送的***消息,接收小区发送的寻呼消息,接收小区发送的同步信号,接收站点发送的***消息,接收站点发送的寻呼消息,接收站点发送的同步信号邻居小区测量,同频小区测量,异频小区测量;
所述第一节点处于所述高配置模式,包括以下至少一项:
所述第一节点驻留在小区内,或者接收小区发送的***消息,或者接收小 区发送的同步信号,或者接收小区发送的寻呼消息,接收站点发送的***消息,或者接收站点发送的同步信号,或者接收站点发送的寻呼消息,或者执行小区选择,或者执行小区重选,或者执行邻居小区测量,或者执行同频小区测量,或者执行异频小区测量。
结合第一方面的第二种可能的实现方式,或者,结合第一方面的第三种可能的实现方式,在第六种可能的实现方式中,所述T1的具体计算方式为以下任意一种计算方式:
在所述PC5接口进行非连续传输的周期T1是根据D2D通信的发现设备周期来获得的;
在所述PC5接口进行非连续传输的周期T1是根据D2D通信的通信周期来获得的;
在所述PC5接口进行非连续传输的周期T1是根据寻呼周期来获得的;
在所述PC5接口进行非连续传输的周期T1是根据DRX周期来获得的;
在所述PC5接口进行非连续传输的周期T1是根据DTX周期来获得的;
T1=N1*T_Discovery,其中,T_Discovery为所述第一节点进行D2D通信的发现设备周期,N1为大于0的数;
T1=N2*T_communication,其中,T_communication为所述第一节点进行D2D通信的D2D通信周期,N2为大于0的数;
T1=K*T_Relay_DRX,其中,T_Relay_DRX为所述第二节点与所述第三节点之间进行非连续接收的DRX周期,K为大于0的数;或者,
所述PC5_StartOffset的具体计算方式为以下任意一种计算方式:
所述PC5_StartOffset是根据Uu口的DRX的起始时刻获得的;
所述PC5_StartOffset是根据寻呼所述第二节点的寻呼无线帧的起始时刻获得的;
所述PC5_StartOffset是根据寻呼所述第一节点的寻呼无线帧的起始时刻获得的;
所述PC5_StartOffset是根据寻呼所述第二节点的寻呼子帧的起始时刻获得的;
PC5_StartOffset=K*Uu_DRXStartOffset+delay
其中,Uu_DRXStartOffset为第二节点在所述T_Relay_DRX内进行DRX的起始时刻,delay=X ms,或者delay=X个子帧,X为大于等于零;
PC5_StartOffset=[(SFN*10)+subframe number]modulo(T1)
其中,SFN为***帧号,subframe number为子帧编号,T1为所述非连续传输周期T1;
(PC5_StartOffset)modulo(T1)=[(SFN*10)+subframe number]modulo(T1)
其中,SFN为***帧号,subframe number为子帧编号,T1为所述非连续传输周期T1;
Yth subframes=PC5_StartOffset,其中,Y大于等于零。
结合第一方面的第二种可能的实现方式,或者,结合第一方面的第三种可能的实现方式,在第七种可能的实现方式中,所述T1的具体计算方式为以下任意一种计算方式:
T1=M*T_Relay_Paging,其中,T_Relay_Paging为所述第二节点在Uu口上接收基站寻呼的寻呼周期;或者
所述PC5_StartOffset的具体计算方式为以下任意一种方式:
PC5_StartOffset=Relay_PF+delay,其中,Relay_PF为寻呼所述第二节点的寻呼无线帧的起始时刻,delay=L ms,或者delay=L个子帧,L大于等于零;或者
PC5_StartOffset=Relay_PF+delay,其中,Relay_PF为寻呼所述第一节点的寻呼无线帧的起始时刻,delay=L ms,或者delay=L个子帧,L大于等于零;或者
PC5_StartOffset=Relay_PO+delay,其中Relay_PO为寻呼所述第二节点的寻呼子帧的起始时刻,delay=L ms,或者delay=L个子帧,L大于等于零;
PC5_StartOffset=Relay_PO+delay,其中Relay_PO为寻呼所述第一节点的寻呼子帧的起始时刻,delay=L ms,或者delay=L个子帧,L大于等于零。
结合第一方面,或者,结合第一方面的第一种可能的实现方式,或者,结合第一方面的第二种可能的实现方式,或者,结合第一方面的第三种可能的实现方式,或者,结合第一方面的第四种可能的实现方式,或者,结合第一方面 的第五种可能的实现方式,或者,结合第一方面的第六种可能的实现方式,或者,结合第一方面的第七种可能的实现方式,在第八种可能的实现方式中,所述非连续传输配置信息包括非连续发送配置信息和/或非连接接收配置信息;或者
所述非连续传输包括非连续发送和/或非连续连接。
可选地,在一种可能的实现方式中,所述第一节点接收第一消息,包括:
所述第一节点接收第二节点或第三节点发送的第一消息,所述第三节点是所述第一节点或所述第二节点的服务站点。
可选地,在一种可能的实现方式中,所述第一节点接收第二消息之后,包括:
所述第一节点驻留在所述第二节点下;或者
所述第一节点处于所述低配置模式;或者
所述第一节点处于所述高配置模式;或者
所述第一节点监听并接收来自第二节点的寻呼消息;或者
所述第一节点监听并接收来自第二节点的***消息;或者
所述第一节点监听并接收来自第二节点的同步消息。
可选地,在一种可能的实现方式中,所述第一节点接收所述第二节点或第三节点发送的第二消息之后,还包括:
第一节点回复第三消息,所述第三消息用于确认第一节点驻留在所述第二节点下,或者确认所述第一节点处于低配置模式下,或者确认所述第一节点处于高配模式下,或者确认所述第一节点监听并接收来自第二节点的寻呼消息,或者确认所述第一节点监听并接收来自第二节点的同步消息,或者所述第一节点监听并接收来自第二节点的同步消息,或者第一节点执行根据非连续传输配置信息进行非连续传输。
可选地,在一种可能的实现方式中,所述第一节点接收所述第二节点发送的第四消息之后,包括:
所述第一节点与所述第二节点进行D2D通信;或者
所述第一节点维护所述第一节点与所述第二节点之间的D2D连接;或者
所述第一节点释放所述第一节点与所述第二节点之间的D2D连接;或者
所述第一节点接入网络或所述第三节点。
可选地,在一种可能的实现方式中,所述第一节点接收所述第二节点发送的第四消息之后,包括:
所述第一节点向所述第二节点发送第五消息,其中,所述第五消息包括用于指示所述第一节点接入所述第三节点成功或者接入所述第三节点失败,或者,包括用于指示所述第一节点接入网络成功或者接入网络失败。
可选地,在一种可能的实现方式中,所述第四消息包括:所述第一节点的网络标识;或者,
所述第四消息是为设备发现消息;或者,
所述第四消息为经过了所述第一节点的网络标识加扰的消息。
第二方面,本发明实施例提供了一种通信方法,可包括:
第二节点根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点;
其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
结合第二方面,在第一种可能的实现方式中,所述第二节点根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,包括:
所述第二节点根据所述非连续传输配置信息,接收所述第一节点发送的消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,向所述第一节点发送消息和/或数据。
结合第二方面,或者,结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第二节点根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输之前,包括:
所述第二节点向所述第一节点发送第一消息,所述第一消息包括所述非连续传输配置信息,所述第一消息用于指示所述第一节点根据所述非连续传输配 置信息与所述第二节点进行设备到设备D2D的非连续传输。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述第二节点向所述第一节点发送第一消息,包括:
所述第二节点接收第三节点发送的第六消息,并根据所述第六消息向所述第一节点发送第一消息,所述第三节点为所述第一节点或所述第二节点的服务站点;
其中,所述第六消息包括非连续传输配置信息,且所述第三节点向所述第一节点发送第一消息,所述第一消息包括所述非连续传输配置信息。
结合第二方面,或者,结合第二方面的第一种可能的实现方式,或者,结合第二方面的第二种可能的实现方式,或者,结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中,所述方法还包括:
所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1内,接收所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1内,向所述第一节点发送消息和/或数据;或者,
所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,接收所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,向所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输的起始时刻PC5_StartOffset,接收所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输的起始时刻PC5_StartOffset,向所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,向所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,接收第一节点发送的消息和/或数据。
结合第二方面,或者,结合第二方面的第一种可能的实现方式,或者,结合第二方面的第二种可能的实现方式,或者,结合第二方面的第三种可能的实 现方式,或者,结合第二方面的第四种可能的实现方式,或者,结合第二方面的第五种可能的实现方式,在第五种可能的实现方式中,所述方法还包括:
所述第二节点向所述第一节点发送第二消息,所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续传输。
结合第二方面,或者,结合第二方面的第一种可能的实现方式,或者,结合第二方面的第二种可能的实现方式,或者,结合第二方面的第三种可能的实现方式,或者,结合第二方面的第四种可能的实现方式,或者,结合第二方面的第五种可能的实现方式,在第六种可能的实现方式中,所述方法,还包括:
所述第二节点向所述第一节点发送第四消息,其中
所述第四消息用于指示所述第一节点与所述第二节点进行D2D通信;或者
所述第四消息用于唤醒所述第一节点并指示所述第一节点与所述第二节点进行D2D通信;或者
所述第四消息用于指示所述第一节点接入网络或者接入所述第三节点,所述第三节点为所述第一节点或所述第二节点的服务站点。
结合第二方面的第六种可能的实现方式,在第七种可能的实现方式中,所述第二节点向所述第一节点发送第四消息,包括:
所述第二节点接收第三节点发送的八消息;
所述第二节点根据所述第八消息向所述第一节点发送第四消息;其中
所述第八消息用于寻呼第一节点;或者所述第八消息用于寻呼所述第一节点接入网络;或者所述第八消息用于指示所述第二节点接入网络,以便于为所述第一节点提供通信服务;或者所述第八消息用于指示所述第二节点寻呼所述第一节点,并为所述第一节点和所述第三节点提供中继服务。
结合第二方面,或者,结合第二方面的第一种可能的实现方式,或者,结合第二方面的第二种可能的实现方式,或者,结合第二方面的第三种可能的实现方式,或者,结合第二方面的第四种可能的实现方式,或者,结合第二方面 的第五种可能的实现方式,在第六种可能的实现方式中,当所述第八消息用于寻呼所述第一节点时,所述第四消息用于寻呼第一节点接入网络,或者用于寻呼第一节点接入第三节点,或者用于指示所述第一节点与所述第二节点通信;
当所述第八消息用于寻呼所述第一节点接入网络时,所述第四消息用于寻呼第一节点接入网络,或者用于寻呼所述第一节点接入所述第三节点;
当所述第八消息用于指示所述第二节点寻呼所述第一节点,并为所述第一节点和所述第三节点提供中继服务时,所述第四消息用于指示所述第一节点与所述第二节点进行D2D通信。
可选地,在一种可能的实现方式中,所述方法还包括:
所述第二节点向第三节点发送第七消息,所述第七消息包括所述非连续传输配置信息,所述第七消息用于通知所述第三节点所述第二节点根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输,所述第三节点为所述第一节点或所述第二节点的服务站点。
可选地,在一种可能的实现方式中,所述第二节点向所述第一节点发送第二消息,包括:
所述第二节点根据所述非连续传输配置信息,向所述第一节点发送第二消息。
可选地,在一种可能的实现方式中,所述第二节点向所述第一节点发送第二消息之后,包括:
所述第二节点接收所述第一节点回复的第三消息,所述第三消息用于确认第一节点驻留在所述第二节点下,或者确认所述第一节点处于低配置模式下,或者确认所述第一节点处于高配模式下,或者确认所述第一节点监听并接收来自第二节点的寻呼消息,或者第一节点执行根据非连续传输配置信息进行非连续传输。
可选地,在一种可能的实现方式中,所述第二节点向所述第一节点发送第四消息,包括:
所述第二节点根据所述非连续传输配置信息,向所述第一节点发送第四消息。
第三方面,本发明实施例提供了一种通信方法,可包括:
第三节点向第一节点发送第一消息,所述第一消息包括非连续传输配置信息,所述第一消息用于所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输的节点;或
第三节点向第二节点发送第六消息,所述第六消息包括非连续传输配置信息,所述第六消息用于所述第二节点根据所述非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点;或
第三节点接收第二节点发送的第七消息,所述第七消息包括非连续传输配置信息,所述第七消息用于通知所述第三节点所述第二节点根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输,所述第三节点为所述第一节点或所述第二节点的服务站点,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点。
结合第三方面,在第一种可能的实现方式中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
结合第三方面,或者,结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,在所述第三节点向第一节点发送第一消息,或者在所述第三节点向第二节点发送第六消息的情况下,所述方法还包括:
所述第三节点向所述第一节点发送第二消息,所述第二消息用于指示所述第一节点驻留在所述第二节点下或者第一节点进入低配置模式,或者指示所述第一节点进入高配置模式,或者指示所述第一节点接收来自所述第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者触发所述第一节点根据所述非连续传输配置信息进行非连续传输。
结合第三方面,或者,结合第三方面的第一种可能的实现方式,在第三种可能的实现方式中,在所述第三节点向第一节点发送第一消息,或者所述第三节点向第二节点发送第六消息的情况下,所述方法还包括:
所述第三节点向所述第二节点发送第八消息,其中
所述第八消息用于寻呼第一节点;或者
所述第八消息用于寻呼所述第一节点接入网络;或者
所述第八消息用于指示所述第二节点接入网络,以便于为所述第一节点提供通信服务;或者
所述第八消息用于指示所述第二节点寻呼所述第一节点,并为所述第一节点和所述第三节点提供中继服务。
可选地,在一种可能的实现方式中,所述第三节点向所述第一节点发送第二消息之后,包括:
所述第三节点接收所述第一节点回复的第三消息,所述第三消息用于确认第一节点驻留在所述第二节点下,或者确认所述第一节点处于低配置模式下,或者确认所述第一节点处于高配模式下,或者确认所述第一节点监听并接收来自第二节点的寻呼消息,或者第一节点执行根据非连续传输配置信息进行非连续传输。
第四方面,本发明实施例提供了一种终端设备,所述终端设备为第一节点,所述第一节点可包括:输入单元、输出单元、存储单元和处理单元;
其中,所述存储单元用于存储程序代码,所述处理单元用于调用所述存储单元存储的程序代码执行如下步骤:
通过所述输入单元接收第一消息,所述第一消息包括非连续传输配置信息;
通过所述输入单元或所述输出单元,根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
结合第四方面,在第一种可能的实现方式中,所述处理单元用于根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,具体为:
根据所述非连续传输配置信息,通过所述输入单元接收所述第二节点发送的消息和/或数据;或者
根据所述非连续传输配置信息,通过所述输出单元向所述第二节点发送消息和/或数据。
结合第四方面,或者,结合第四方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理单元还用于:
通过所述输入单元接收所述第二节点或第三节点发送的第二消息,所述第三节点是所述第一节点或所述第二节点的服务站点,所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续传输。
第五方面,本发明实施例提供了一种终端设备,所述终端设备为第二节点,所述第二节点可包括:输入单元、输出单元、存储单元和处理单元;
其中,所述存储单元用于存储程序代码,所述处理单元用于调用所述存储单元存储的程序代码执行如下步骤:
通过所述输入单元或输出单元,根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点;其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
结合第五方面,在第一种可能的实现方式中,所述处理单元用于根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,具体为:
根据所述非连续传输配置信息,通过所述输入单元接收所述第一节点发送的消息和/或数据;或者
根据所述非连续传输配置信息,通过所述输出单元向所述第一节点发送消息和/或数据。
结合第五方面,或者,结合第五方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理单元用于根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输之前,还用于:
通过所述输出单元向所述第一节点发送第一消息,所述第一消息包括所述非连续传输配置信息,所述第一消息用于指示所述第一节点根据所述非连续传 输配置信息与所述第二节点进行设备到设备D2D的非连续传输。
结合第五方面的第二种可能的实现方式,在第三种可能的实现方式中,所述处理单元用于向所述第一节点发送第一消息,具体为:
通过所述输入单元接收第三节点发送的第六消息,并根据所述第六消息向所述第一节点发送第一消息,所述第三节点为所述第一节点或所述第二节点的服务站点;其中,所述第六消息包括非连续传输配置信息,且所述第三节点向所述第一节点发送第一消息,所述第一消息包括所述非连续传输配置信息。
结合第五方面,或者,结合第五方面的第一种可能的实现方式,或者,结合第五方面的第二种可能的实现方式,或者,结合第五方面的第三种可能的实现方式,在第四种可能的实现方式中,所述处理单元还用于:
通过所述输出单元向所述第一节点发送第二消息,所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续传输。
第六方面,本发明实施例提供了一种基站,所述基站为第三节点,所述第三节点可包括:输入单元、输出单元、存储单元和处理单元;
其中,所述存储单元用于存储程序代码,所述处理单元用于调用所述存储单元存储的程序代码执行如下步骤:
通过所述输出单元向第一节点发送第一消息,所述第一消息包括非连续传输配置信息,所述第一消息用于所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输的节点;或
通过所述输出单元向第二节点发送第六消息,所述第六消息包括非连续传输配置信息,所述第六消息用于所述第二节点根据所述非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点;或
通过所述输入单元接收第二节点发送的第七消息,所述第七消息包括非连续传输配置信息,所述第七消息用于通知所述第三节点所述第二节点根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输,所述第三节点为所述第一节点或所述第二节点的服务站点,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点。
结合第六方面,在第一种可能的实现方式中,在所述第三节点向第一节点发送第一消息,或者在所述第三节点向第二节点发送第六消息的情况下,所述处理单元还用于:
通过所述输出单元向所述第一节点发送第二消息,所述第二消息用于指示所述第一节点驻留在所述第二节点下或者第一节点进入低配置模式,或者指示所述第一节点进入高配置模式,或者指示所述第一节点接收来自所述第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者触发所述第一节点根据所述非连续传输配置信息进行非连续传输。
结合第六方面,在第二种可能的实现方式中,在所述第三节点向第一节点发送第一消息,或者所述第三节点向第二节点发送第六消息的情况下,所述处理单元还用于:
通过所述输出单元向所述第二节点发送第八消息,其中
所述第八消息用于寻呼第一节点;或者
所述第八消息用于寻呼所述第一节点接入网络;或者
所述第八消息用于指示所述第二节点接入网络,以便于为所述第一节点提供通信服务;或者
所述第八消息用于指示所述第二节点寻呼所述第一节点,并为所述第一节点和所述第三节点提供中继服务。
本发明实施例第七方面提供一种通信***,可包括:第一终端设备、第二终端设备和基站,其中
所述第一终端设备为执行第一方面任意一项所述的方法的第一节点;
所述第二终端设备为执行第二方面一项所述的方法的第二节点;
所述基站为执行第三方面任意一项所述的方法的第三节点。
本发明实施例第八方面提供一种设备,该设备中包括处理器,处理器被配置为支持该设备执行第一方面提供的一种通信方法中相应的功能。该设备还可以包括存储器,存储器用于与处理器耦合,其保存该设备必要的程序指令和数据。该设备还可以包括通信接口,用于该设备与其他设备或通信网络通信。
本发明实施例第九方面提供一种设备,该设备中包括处理器,处理器被配置为支持该设备执行第二方面提供的一种通信方法中相应的功能。该设备还可以包括存储器,存储器用于与处理器耦合,其保存该设备必要的程序指令和数据。该设备还可以包括通信接口,用于该设备与其他设备或通信网络通信。
本发明实施例第十方面提供一种设备,该设备中包括处理器,处理器被配置为支持该设备执行第三方面提供的一种通信方法中相应的功能。该设备还可以包括存储器,存储器用于与处理器耦合,其保存该设备必要的程序指令和数据。该设备还可以包括通信接口,用于该设备与其他设备或通信网络通信。
本发明实施例第十一方面提供一种计算机存储介质,用于储存为上述第八方面提供的设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例第十二方面提供一种计算机存储介质,用于储存为上述第九方面提供的设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例第十三方面提供一种计算机存储介质,用于储存为上述第十方面提供的设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
本发明实施例,通过第一节点接收第一消息,所述第一消息包括非连续传输配置信息;所述第一节点根据所述非连续传输配置信息与第二节点进行设备 到设备D2D的非连续传输,其中,所述第二节点是根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输的节点。即让进行D2D通信的终端设备通过进行非连续传输,从而促使Remote UE可以不需要一直处于侦听状态,且能随时通过Relay UE来与基站进行数据传输进而实现功耗的降低,提高D2D的通信效率。此外,本发明实施例中还实现了非连续的Uu口数据/消息,通过第二节点在PC5接口迅速传递给第一节点,不仅保证了第一节点的低功耗,也进一步提高了D2D通信的效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的D2D通信网络架构图;
图2是本发明实施例提供的一种通信方法的流程示意图;
图3是本发明实施例提供的另一种通信方法的流程示意图;
图3A是本发明实施例提供的基于基站寻呼周期为基础设计的消息发送与接收示意图;
图3B是本发明实施例提供的基于基站非连续接收DRX周期的消息和/数据发送示意图;
图3C是本发明实施例提供的Discovery周期的时频资源中的预设时频资源的示意图;
图4是本发明实施例提供的又一种通信方法的流程示意图;
图5是本发明实施例提供的又一种通信方法的流程示意图;
图6是本发明实施例提供的一种通信装置的结构示意图;
图7是本发明实施例提供的另一种通信装置的结构示意图;
图8是本发明实施例提供的又一种通信装置的结构示意图;
图9是本发明实施例提供的一种终端设备的结构示意图;
图10是本发明实施例提供的另一种终端设备的结构示意图;
图11是本发明实施例提供的又一种终端设备的结构示意图;
图12是本发明实施例提供的一种通信***的结构示意图;
图13是本发明实施例提供的又一种终端设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)第一节点/第二节点,均可以为各种类型的设备或者用户设备(User Equipment,UE),UE可称为接入终端、终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。UE可以是蜂窝电话、无绳电话、智能手机、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、智能手环、智能穿戴设备、MP3播放器(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面3)播放器、 个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备以及未来5G网络中的终端设备等。
2)第三节点,可以为各种类型的站点或者基站,例如是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是未来5G网络中的基站设备等,本发明对此并不限定。
3)非连续接收(Discontinuous Reception,DRX),在蜂窝网络中,UE为了节省功耗会在连接态也使用非连续接收DRX,即在DRX周期的某些时刻醒来,如果收到基站调度该UE的PDCCH,那么该终端就开始接收基站的数据,如果终端醒来一段时间一直没有收到基站调度该UE的PDCCH,那么终端就睡去。DRX具体分为两种:IDLE DRX和ACTIVE DRX,其中,IDLE DRX也就是当UE处于IDLE状态下的非连续性接收,其实就是侦听寻呼消息,由于处于IDLE状态时,已经没有RRC连接以及用户的专有资源,因此这个主要是监听寻呼信道。只要根据定义好的寻呼周期,UE按照约定的寻呼周期去侦听寻呼消息,如果基站此时发送属于该UE的寻呼消息,那么UE就会接收到该寻呼消息,就可以达到非连续接收的目的。但是UE要监听用户数据信道,则必须从IDLE状态先进入连接状态。ACTIVE DRX也就是UE处在RRC-CONNECTED状态下的DRX,即UE保持连接态的情况下,根据定义好的DRX周期醒来,侦听基站是否发送数据给自己,如果没有,那么UE就会睡去,等到下一DRX周期会再醒来。例如一些非实时应用,像web浏览,即时通信等,总是存在一段时间,手机不需要不停的监听下行数据以及相关处理,那么DRX就可以应用到这样的情况,另外由于这个状态下依然存在RRC连接,因此UE要转到支持状态的速度非常快。
4)“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
下面结合附图对本申请的实施例进行描述。
为了便于理解本发明实施例,下面先对本发明实施例所基于的D2D通信网络构架进行描述。请参阅图1,图1为本发明实施例提供的D2D通信网络架构图,该网络架构中包含了核心网、第三节点(基站)、第一节点(Remote UE)以及第二节点(Relay UE),其中,第一节点可以在第三节点的覆盖范围之内,也可以在第三节点的覆盖范围之外。基站负责为Remote UE和Relay UE之间的D2D连接和通信分配资源,Remote UE和Relay UE则根据基站为其分配的资源进行D2D连接,并直接进行D2D通信,其中核心网主要为该D2D通信过程提供数据支持和相关服务。在现有技术中,基站通常在接收到第二节点的D2D通信连接请求后,向第二节点发送下行控制信息,指示其进行D2D通信的时频资源,随后,第二节点在接收到基站发送的下行控制信息后,将该控制信息发送给第一节点,然后彼此之间根据该控制信息进行D2D传输。需要说明的是,第二节点可以与一个第一节点建立D2D传输连接,也可以同时与多个第一节点建立D2D传输连接。可以理解的是,以上图1中的网络架构只是本发明实施例中较优的一种实施方式,本发明实施例中的网络架构包括但不仅限于以上网络架构。
可以理解的是,本发明实施例具体所应用的***包括但不仅限于上述D2D通信***,也可以应用于融合了该D2D通信***的Wi-Fi、Zigbee、IR、蓝牙、LTE、GSM等异构融合网络***,只要可以应用本发明中的D2D的通信方法的***均属于本发明所保护和涵盖的范围。
参见图2,是本发明实施例中的一种通信方法的流程示意图,可应用于上述图2中所述的D2D通信***,下面举例说明将结合附图2从第一节点(Remote UE)和第二节点(Relay UE)的交互侧进行描述,其中,第二节点是为第一节点提供中继服务或者为第一节点和第三节点提供中继服务的节点,第三节点是第一节点或第二节点的服务站点。如图2所示,该方法可以包括以下步骤S201-步骤S203,进一步地还可以包括步骤S204-步骤S209。
步骤S201:第一节点接收第一消息,所述第一消息包括非连续传输配置信息。
具体地,该第一消息例如可以是第三节点(基站)发送的,也可以是第二节点发送的,还可以是第三节点生成的由第二节点转发的,或者其他节点发送 给第一节点的。本发明对此不作具体限定,无论是哪个节点生成的,只要最终发送给了第一节点第一消息即可。第一节点可以根据该第一消息提供的非连续传输配置与D2D设备(第二节点)进行D2D的传输。本方法步骤的实施可以让设备与设备之间通信时,可以通过非连续发送或接收的方式进行D2D通信,节省功耗,同时提升D2D通信效率。进一步地,所述非连续传输配置信息包括非连续发送配置信息和/或非连接接收配置信息;或者所述非连续传输包括非连续发送和/或非连续连接。
步骤S202:所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输。
可选地,当第一节点或第二节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输时,第一节点或第二节点在非连续传输周期内睡眠时刻(非醒来时刻),保持D2D连接,或者维护设备对设备通信的上下文信息。
具体地,由于在现有技术中,非连续传输只是针对基站与UE之间的,即UE有选择性的在合适的时间醒过来进行数据的接收或发送,可以大大的减少因持续监听信道带来的功耗损失。因此,本发明实施例中,通过让第一节点根据所述非连续传输配置信息(即在非连续传输配置信息中的相关参数对应的时间周期中),接收所述第二节点发送的消息和/或数据;或者所述第一节点根据所述非连续传输配置信息,向所述第二节点发送消息和/或数据,以利于节省D2D通信过程中设备之间在没有数据交互的情况下的寻呼和监听所带来功耗的浪费。
在一种可能的实现方式中,非连续传输配置信息可以包括第一节点进行非连续传输周期T1(也即是第二节点进行非连续传输的周期,因为第二节点需要配合第一节点进行非连续传输),在本发明中所有可能实施的方式中,第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,具体可以为:
第一节点根据非连续传输配置信息,在非连续传输周期T1内,接收第二节点发送的消息和/或数据;或者
第一节点根据非连续传输配置信息,在非连续传输周期T1内,向第二节 点发送消息和/或数据;或者
第一节点根据非连续传输配置信息,在非连续传输周期T1的预设时域和/或频域内,接收第二节点发送的消息和/或数据;或者
第一节点根据非连续传输配置信息,在非连续传输周期T1的预设时域和/或频域内,向第二节点发送消息和/或数据;或者
第一节点根据非连续传输配置信息,在非连续传输的起始时刻PC5_StartOffset,接收第二节点发送的消息和/或数据;或者
第一节点根据非连续传输配置信息,在非连续传输的起始时刻PC5_StartOffset,向第二节点发送消息和/或数据。
可以理解的是,由于第二节点与第一节点是进行非连续传输的交互的节点因此发送数据和接收数据的动作是相互对应的,即第二节点也必须要根据所述非连续传输配置信息进行数据的发送或接收。例如,第二节点在预定的时间周期内向第一节点发送信令或数据,则第一节点也需要在此预定的时间周期上醒来接收该信令或数据。
步骤S203:第二节点根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输。
具体地,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点。进一步地,所述第二节点根据所述非连续传输配置信息,接收所述第一节点发送的消息和/或数据;或者所述第二节点根据所述非连续传输配置信息,向所述第一节点发送消息和/或数据。
在一种可能的实现方式中,非连续传输配置信息可以包括第一节点进行非连续传输周期T1(也即是第二节点进行非连续传输的周期,因为第二节点需要配合第一节点进行非连续传输),在本发明中所有可能实施的方式中,第二节点根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,具体可以为:
所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1内,接收所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1内,向所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,接收所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,向所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输的起始时刻PC5_StartOffset,接收所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输的起始时刻PC5_StartOffset,向所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,向所述第一节点发送消息和/或数据;或者
所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,接收第一节点发送的消息和/或数据。
进一步地,第二节点根据所述非连续传输配置信息,接收所述第一节点发送的消息,具体例如可以为:所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1内接收所述第一节点发送的第三消息,或第五消息等,(但本发明不仅限于列举的消息)关于各类消息的具体内容或作用后续流程步骤中将具体描述。
或者,进一步地,所述第二节点根据所述非连续传输配置信息,向所述第一节点发送消息,具体例如可以为包括:所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1内向所述第一节点发送第二消息,或第四消息等(但本发明不仅限于列举的消息),关于各类消息的具体内容或作用后续流程步骤中将具体描述。
可以理解的是,由于第二节点需要根据该非连续传输配置信息进行D2D通信,则第二节点也必须在D2D通信之前获得该非连续传输配置信息。而第二节点获取该非连续传输配置信息的方式有多种,其一,可以与第一节点一样,从第三节点处获得,其二,可以是第二节点自己作为中继站节点生成的,生成之后发送给第一节点,同样也发送给第三节点,本发明对此不作具体限定。
针对步骤S202和步骤S203只是分别说明第一节点和第二节点的动作,该执行步骤不分先后,例如S202与S203同时执行,或者,两个步骤有先有后。 具体地,第一节点非连续发送,也就意味着对应地需要第二节点非连续接收或者接收;对应地,第一节点非连续接收,意味着需要第二节点的非连续发送。
可以理解的是上述方法实施例虽然是从第一节点为Remote UE,和第二节点为Relay UE的角度进行的阐述,但是并不代表以上实施例只能从该执行主体的角度进行相关的步骤的执行,第一节点还可以是Relay UE,第二节点还可以是Remote UE。
进一步地,本发明实施例还可以包括以下的步骤S204-步骤S209中的任意步骤的组合。其中步骤S204-S209都是可选的执行步骤。
针对可选的步骤S204-S205:
步骤S204:第二节点向所述第一节点发送第二消息。
具体地,第二节点可以是在第一节点接收到第一消息之前、之后或同时向第一节点发送第二消息。所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收来自第二节点的***消息,或者指示所述第一节点接收来自第二节点的同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续传输。
其中,针对“第二消息用于指示所述第一节点开始根据非连续传输配置进行非连续传输”,具体的实施方式可以是:先执行步骤S201(例如第二节点发送第一消息给第一节点)后,第二节点执行步骤S204(第二节点发送第二消息给第一节点用于指示根据非连续传输配置进行非连续传输”),对应地,第一节点收到后该第二消息后,执行步骤S202开始使用第一消息中提供的非连续传输配置进行非连续传输,或者第二节点执行步骤S203。本发明对此不作具体限定。
其中,针对S204“所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收来自第二节点的***消息,或者指示所述第一节点接收来自第二节点的同步信息”:本发明不限制该第二消息发送的时间,例如第二节点可以是 在第一节点接收到第一消息之前、之后或同时向第一节点发送第二消息。因此,可选地,第二消息可以是第二节点可以根据所述非连续传输配置信息,在非连续传输周期T1内向所述第一节点发送第二消息,也可以是第二消息在第一消息之前发送的,此时第二节点没有在非连续传输周期内发送的第二消息。
其中,低配置模式是指以下至少一项:第一节点驻留(stay)在第二节点下,或者第一节点仅接收第二节点发送的信息,或者第一节点仅接收第二节点发送的信令和/或数据,或者第一节点仅接收D2D通信节点发送的信令和/或数据,或者第一节点接收第二节点发送的信令和/或数据,或者第一节点接收D2D通信节点发送的信令和/或数据;或者第一节点接收第二节点发送的寻呼消息,或者第一节点接收第二节点发送的***消息,或者第一节点接收第二节点发送的同步信号,或者第一节点不接收小区发送的***消息,或者第一节点不接收小区发送的***消息,或者第一节点不接收小区发送的同步信息,或者第一节点接收第二节点发送的信息,但不执行以下至少一项操作:驻留在一个小区内,接收小区发送的***消息,接收小区发送的寻呼消息,接收小区发送的同步信号,接收站点发送的***消息,接收站点发送的寻呼消息,接收站点发送的同步信号邻居小区测量,同频小区测量,异频小区测量,或者第一节点接收D2D通信节点发送的信息,但不执行以下至少一项操作:驻留在一个小区内,接收小区发送的***消息,接收小区发送的寻呼消息,接收小区发送的同步信号,接收站点发送的***消息,接收站点发送的寻呼消息,接收站点发送的同步信号邻居小区测量,同频小区测量,异频小区测量。
也就是说,低配置模式下的第一节点通常不与第二节点直接通信,而是与第二节点通信。
其中,当“第一节点驻留在第二节点下”时,第一节点至少执行以下一个或者多个操作:第一节点仅接收第二节点发送的信息,或者第一节点仅接收第二节点发送的信令和/或数据,或者第一节点仅接收D2D通信节点发送的信令和/或数据,或者第一节点接收第二节点发送的信令和/或数据,或者第一节点接收D2D通信节点发送的信令和/或数据,或者第一节点接收第二节点发送的寻呼消息,或者第一节点接收第二节点发送的***消息,或者第一节点接收第二节点发送的同步信号,或者第一节点不接收小区发送的***消息,或者第一节点不接收小区发送的***消息,或者第一节点不接收小区发送的 同步信息,或者,第一节点接收第二节点发送的信息,但不执行以下至少一项操作:驻留在一个小区内,接收小区发送的***消息,接收小区发送的寻呼消息,接收小区发送的同步信号,接收站点发送的***消息,接收站点发送的寻呼消息,接收站点发送的同步信号邻居小区测量,同频小区测量,异频小区测量,或者第一节点接收D2D通信节点发送的信息,但不执行以下至少一项操作:驻留在一个小区内,接收小区发送的***消息,接收小区发送的寻呼消息,接收小区发送的同步信号,接收站点发送的***消息,接收站点发送的寻呼消息,接收站点发送的同步信号邻居小区测量,同频小区测量,异频小区测量。其中,本实施例中提到的“第一节点仅接收第二节点发送的信息”中的“信息”为信令和/或数据。
可以理解的是,本实施例中在低配置模式中提到的信令,例如“接收D2D通信节点发送的信令”,“接收第二节点通信节点发送的信令”等,信令是寻呼消息,或者是***消息,或者是同步信号,或者是重配置消息,或者是本实施例中提到的第二消息,或者是第七消息等,本实施例中的“信令”不仅限于举例说明的消息。
需要说明的是,本实施例中提到的“接收站点发送的***消息”、“接收站点发送的寻呼消息”以及“接收站点发送的同步”中的站点是基站设备,例如LTE中的eNB,或者WCDMA的NodeB,或者GSM或CDMA中的BTS,或者微站等,本实施例不对站点的基站类型进行限制。
本实施例中提到的,本实施例中提到的“接收小区发送的***消息”等同于接收站点发送的***消息,“接收小区发送的寻呼消息”等同于接收站点发送的寻呼消息,“接收小区发送的同步信号”等同于接收站点发送的同步信号。
还需要说明的是,本实施例中提到的“D2D通信节点”是指D2D通信设备,例如包括第二节点,或者与第二节点同步的其他D2D设备,或者与第二节点有相同同步源的D2D设备。
其中,高配置模式下包括以下至少一项:
第一节点驻留在小区内,或者接收小区发送的***消息,或者接收小区发送的同步信号,或者接收小区发送的寻呼消息,接收站点发送的***消息,或者接收站点发送的同步信号,或者接收站点发送的寻呼消息,或者执行小区选择,或者执行小区重选,或者执行邻居小区测量,或者执行同频小区测量,或 者执行异频小区测量。
也就是说,高配置模式下的第一节点通常直接与站点通信,该站点可以是基站,可以是第二节点等。或者,也可以说,高配置模式下的第一节点通常直接与小区进行通信,例如可以是某个站点的小区,或者例如是第三站点的小区等。
步骤S205:第一节点接收第二节点发送的第二消息。
具体地,第一节点在接收第一消息之前、之后或接收第一消息的同时,接收第二节点发送的第二消息,而在第一节点接收第二消息之后,第一节点可以驻留在第二节点下;或者第一节点处于低配置模式;或者第一节点处于高配置模式;或者第一节点监听并接收来自第二节点的寻呼消息;或者第一节点监听并接收来自第二节点的***消息;或者第一节点监听并接收来自第二节点的同步消息。
针对可选流程,步骤S206-207:
步骤S206:所述第一节点向所述第二节点回复第三消息。
具体地,第一节点接收第二节点发送的第二消息之后,还向第二节点回复第三消息,其中,该第三消息用于向第二节点或第三节点确认第一节点驻留在第二节点下,或者确认第一节点处于低配置模式下,或者确认第一节点处于高配置模式下,或者确认第一节点监听并接收来自第二节点的寻呼消息,或者确认第一节点监听并接收来自第二节点的同步信息,或者第一节点监听并接收来自第二节点的同步消息,或者第一节点执行根据非连续传输配置信息进行非连续传输。
步骤S207:所述第二节点接收所述第一节点回复的第三消息。
针对可选流程,步骤S208-209:
步骤S208:所述第二节点向所述第一节点发送第四消息。
具体地,所述第四消息用于指示所述第一节点与所述第二节点进行D2D通信;或者所述第四消息用于唤醒所述第一节点并指示所述第一节点与所述第二节点进行D2D通信;或者所述第四消息用于指示所述第一节点接入网络或者接入所述第三节点,所述第三节点为所述第一节点或所述第二节点的服务站点。进一步地,第二节点可以根据所述非连续传输配置信息,向所述第一节点 发送第四消息,即该第四消息可以是在非连续传输配置周期T1上进行发送的,也可以不在该周期T1上发送的。再进一步地,所述第四消息为所述第二节点发送的设备发现消息;或所述第四消息为经过了所述第一节点的网络标识加扰的消息。再进一步地,第四消息还可以是寻呼消息。
在一种可能的实现方式中,所述第四消息包括:所述第一节点的网络标识;或者,所述第四消息是为设备发现消息;或者,所述第四消息为经过了所述第一节点的网络标识加扰的消息。
步骤S209:第一节点接收所述第二节点发送的第四消息。
具体地,第一节点在接收第一消息之前、之后或同时,第一节点还接收第二节点发送的第四消息,其中,第四消息用于指示第一节点与第二节点进行D2D通信;或者第四消息用于唤醒第一节点并指示第一节点与第二节点进行D2D通信;或者第四消息用于指示第一节点接入网络或者接入第三节点,第三节点为第一节点或第二节点的服务站点。即此时第二节点向第一节点发出提示,需要和第一节点进行D2D通信。
进一步地,第一节点接收第二节点发送的第四消息之后,
当第四消息用于指示第一节点与第二节点进行D2D通信时;或者第四消息用于唤醒第一节点并指示第一节点与第二节点进行D2D通信时,第一节点与第二节点进行D2D通信;其中,D2D通信包括数据通信和/或数据通信。
当第四消息用于指示第一节点接入网络时,第一节点接入网络或者接入某个基站;选地,接入第三网络后,第一节点维护第一节点与第二节点之间的D2D连接;或者,第一节点释放第一节点与第二节点之间的D2D连接;
当第四消息用于指示第一节点接入第三节点时,第一节点第三节点,第三节点为第一节点或第二节点的服务站点。可选地,接入第三节点后,第一节点维护第一节点与第二节点之间的D2D连接;或者,第一节点释放第一节点与第二节点之间的D2D连接;
具体地,第四消息可以包含:第一节点的标识、***信息更新指示、***信息、寻呼指示、所述第三节点的业务类型和第三节点的业务优先级。
针对可选步骤S210:
步骤S210:第一节点向所述第二节点发送第五消息。
具体地,第一节点接收第二节点发送的第四消息之后,第一节点向第二节点发送第五消息,其中,第五消息包括用于指示第一节点接入第三节点成功或者接入第三节点失败,或者,包括用于指示第一节点接入网络成功或者接入网络失败。其中,第四消息可以包括:第一节点的网络标识;或者第四消息是为设备发现消息;或者,第四消息为经过了第一节点的网络标识加扰的消息。
需要说明的是,本发明所有实施例中的信令包括但不仅限于寻呼消息、***消息、发送的同步信号、或者重配置消息等。本发明所有实施例中的信息包括信令和/或者数据。而D2D通信设备包括第一节点,或与第一节点同步的其他D2D设备,或者与第一节点有相同同步源的D2D设备。
需要强调说明的是,本发明(包含了本发明所有可能的实施例)中所提到的D2D非连续传输,指的就是第一节点与第二节点之间的非连续传输,本发明提到“第二节点与第一节点之间进行非连续传输”,等同于“第二节点与第一节点进行D2D的非连续传输”,等同于“第二节点与第一节点进行设备到设备D2D的非连续传输”,反之亦然,后续相对应的相同概念不再赘述。
参见图3,是本发明实施例中的一种通信方法的流程示意图,可应用于上述图1中所述的D2D通信***,下面将结合附图3从第一节点(Remote UE)、第二节点(Relay UE)和第三节点(基站)的交互侧进行描述,其中,第二节点是为第一节点提供中继服务或者为第一节点和第三节点提供中继服务的节点,第三节点是第一节点或第二节点的服务站点。如图3所示,该方法可以包括以下步骤S301-步骤S306,进一步地还可以包括步骤S307-步骤S315。
步骤S301:第三节点向第二节点发送第六消息。
具体地,所述第六消息包括非连续传输配置信息,所述第六消息用于所述第二节点根据所述非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点。即第一节点与第二节点之间的D2D的非连续传输所使用的非连续传输配置信息是由第三节点配置生成的。
步骤S302:第二节点接收第三节点发送的第六消息。
步骤S303:第二节点根据所述第六消息向所述第一节点发送第一消息。
具体地,第二节点在接收到第三节点发送的第六消息之后,可以根据该第六消息中的非连续传输配置信息,向第一节点发送第一消息,所述第一消息用于包括非连续传输配置信息,用于第二节点与第一节点之间进行非连续传输。
步骤S304:第一节点接收第一消息,所述第一消息包括非连续传输配置信息。
步骤S305:所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输的节点。
具体地,本发明(包含了本发明所有可能的实施例)中所提到的“第一节点根据非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输”,等同于“第二节点根据非连续传输配置信息与第二节点进行非连续传输”;
本发明中所提到的“第一节点根据非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输”,等同于“第一节点根据非连续传输配置信息与第二节点进行非连续传输”;
本发明中所提到的“第一节点根据非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输”,包括第一节点根据非连续传输配置信息与第二节点进行设备到设备D2D的非连续发送和/或接收;
本发明中所提到的“第一节点根据非连续传输配置信息与第二节点进行非连续传输”包括第一节点根据非连续传输配置信息与第二节点进行非连续发送和/或接收;
本发明中的非连续发送包括非连续发送消息和/或数据。所述消息可以包括本发明列举的消息(例如第二消息,第三消息,第四消息,或第五消息等等)但不仅限于本发明列举的消息;
本发明(包含了本发明所有可能的实施例)中的非连续接收包括非连续接收消息和/或数据。所述消息可以包括本发明列举的消息(例如第二消息,第三消息,第四消息,或第五消息等等)但不仅限于本发明列举的消息。
需要强调说明的是,本发明列举的第二消息,第三消息,第四消息,第五消息,不一定是根据非连续传输配置,在非连续传输周期内传输。
步骤S306:第二节点根据非连续传输配置信息与第一节点进行设备到设 备D2D的非连续传输,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点。
具体地,所述第二节点根据所述非连续传输配置信息,接收所述第一节点发送的消息,可以为:所述第二节点根据所述非连续传输配置信息,接收所述第一节点发送的第三消息,或第五消息。所述第二节点根据所述非连续传输配置信息,向所述第一节点发送消息,可以为:所述第二节点根据所述非连续传输配置信息,向所述第一节点发送第二消息,或第四消息。
具体地,所述第二节点根据所述非连续传输配置信息,接收所述第一节点发送的数据,可以为:所述第二节点根据所述非连续传输配置信息,接收所述第一节点发送的数据。所述第二节点根据所述非连续传输配置信息,向所述第一节点发送数据,可以为:所述第二节点根据所述非连续传输配置信息,向所述第一节点发送数据。
更具体地,步骤S304至步骤S306可参考上述图2实施例中的步骤S204至步骤S203,这里不再赘述。
步骤S307:第三节点向所述第一节点发送第二消息。
步骤S308:第一节点接收第三节点发送的第二消息。
步骤S309:第一节点向所述第三节点回复第三消息。
步骤S310:第三节点接收所述第一节点回复的第三消息。
具体地,步骤S307至步骤S310可参考上述图2实施例中的步骤S201至步骤S207,只是将第二节点发送第二消息的替换为由第三节点发送第二消息,以及将第二节点接收第三消息的动作替换为由第三节点接收第三消息,方法和原理一致,这里不再赘述。
步骤S311:第三节点向所述第二节点发送第八消息。
具体地,所述第八消息用于寻呼第一节点;或者所述第八消息用于寻呼所述第一节点接入网络;或者所述第八消息用于指示所述第二节点接入网络,以便于为所述第一节点提供通信服务;或者所述第八消息用于指示所述第二节点寻呼所述第一节点,并为所述第一节点和所述第三节点提供中继服务。
步骤S312:第二节点接收第三节点发送的八消息。
具体地,在一种可能的实现方式中,如图3A所示,图3A为基于基站寻 呼周期为基础设计的消息发送与接收示意图,图3A中第三节点(基站)是在第三节点与第二节点之间的接口(Uu口)的寻呼周期中向第二节点发送第八消息(例如该第八消息是寻呼消息,用于寻呼第一节点)。针对第二节点与第一节点之间接口(PC5口)的非连续传输周期设计,而第二节点则可以依据第三节点发送第八消息的寻呼周期来设置其通过Pc5口向第一节点发送第四消息(根据第八消息,第二节点会发送第四消息给第一节点)的非连续传输周期。由于第二节点接收到并解析出第三节点发送的第八消息需要一定的时间,因此可以将第二节点发送的第四消息的起始时间点在寻呼周期的起始时刻进行一定的时延delay,即可以让第二节点在第一时间获知第三节点需要寻呼或指示第一节点,并及时的通知第一节点进行相应的动作反馈。如此一来,即可以充分的让第二节点和第三节点,在没有数据来的时候进入睡眠状态,而在有数据需求的时候则可以及时的醒过来,节省第二节点和第三节点的消息侦听时间和功耗,既从***层面上节省了各个节点的功耗开销,又可以在传输时间上让第三节点的消息可以及时的在第二节点和第三节点之间传递,提升了通信***的整体传输效率。可以理解的是,本发明实施例中的D2D传输周期也可以是寻呼周期的整数倍,即牺牲消息获取的及时性,进一步减少第二节点和第三节点的功耗开销。图3A举例说明了第一节点与第二节点之间进行的非连续传输,特别地是针对第二节点发送消息,第一节点接收第二节点发送消息。实际上,对应地,针对第一节点发送消息,第二节点接收第一节点发送的消息,也是可以适用的。本发明不一一举例。
同理,若基于基站非连续接收DRX周期来进行消息收发(第八消息的接收/发送和第四消息的接收/发送)或者数据的收发,则可以在一种可能的实现方式中,如图3B所示,图3B为基于基站非连续接收DRX周期的消息和/数据发送示意图(其中T1=K*T_Relay_DRX,其中,T_Relay_DRX为所述第二节点与所述第三节点之间进行非连续接收的DRX周期,该图3B中以K=1为例说明发明内容,K可以是大于0的数,例如0,5,2,3,4等等不做限制)
图3B中第二节点是Uu口的DRX周期中的醒来在Duration时间内侦听第三节点发送第八消息或者数据。第二节点为了能够迅速地把从Uu口中获得的 消息和/数据尽快传递给第一节点,PC5口的非连续传输周期设计思路是:第二节点Uu口DRX周期来设置PC5的非连续传输周期。由于第二节点接收并解析第三节点发送的消息(例如第八消息)或数据需要一定的时间,因此可以将第二节点给第一节点发送的消息(例如第四消息)或者数据的非连续传输的周期,基于DRX周期并延后一定的时延delay,即可以让第二节点在第一时间获知第三节点需要寻呼或指示第一节点,并及时的通知第一节点进行相应的动作反馈。如此一来,即可以充分的让第二节点和第三节点,在没有数据来的时候进入睡眠状态,而在有数据需求的时候则可以及时的醒过来,节省第二节点和第三节点的消息侦听时间和功耗,既从***层面上节省了各个节点的功耗开销,又可以在传输时间上让第三节点的消息可以及时的在第二节点和第三节点之间传递,提升了通信***的整体传输效率。可以理解的是,本发明实施例中的D2D传输周期也可以是DRX周期的整数倍,即牺牲消息获取的及时性,进一步减少第二节点和第三节点的功耗开销。
为了简单说明问题,该图3B中PC5口的非连续传输周期T1=T_Relay_DRX,第一节点醒来的时间duration(即在所述非连续传输周期T1内持续醒来的时间长度PC5_DurationTime)也设置为与Uu口第二节点持续醒来的时间duration(持续醒来的时间长度Uu_PC5_DurationTime)保持一致,但事实上,PC5第一节点醒来的时间duration与Uu口第二节点醒来的时间duration不一定需要一样长度。T1也不一定要等于T_Relay_DRX。
需要说明的是,图3B只是举例PC5口第一节点根据非连续传输配置接收第二节点的数据例子。同理,第一节点根据非连续传输配置向第二节点发送数据,同样适用。在此不一一画图举例。
需要说明的是,图3A和图3B列举了第二节点在Uu口处于空闲态,或者非连续接收的情况,如何与第一节点进行非连续传输。特别地,在实际应用中,第二节点可以支持多个终端设备,同时为多个终端设备提供非连续传输服务。例如针对第一节点UE1和第一节点UE2,第二节点根据非连续传输配置1与第一节点UE1进行非连续传输,第二节点根据非连续传输配置2与第一节点UE2进行非连续传输。非连续传输配置1和非连续配置2有可能是一样的,也有可能是不一样的。针对支持多个第一节点的情况,由于存在不同的非连续传 输配置,第二节点只需要根据不同的非连续传输配置向各个不同的第一节点发送和/或接收消息,发送和/或接收数据即可。甚至存在的现象是,第二节点在Uu口一直处于连接态,与基站进行通信;由于支持多个不同的第一节点,该第二节点可以PC5口一直保持醒着状态(工作状态),针对不同的根据不同的非连续传输配置与各个不同的第一节点通信,实现了第一节点降低功耗,提供D2d通信效率的效果。
步骤S313:第二节点根据所述第八消息向所述第一节点发送第四消息。
具体地,第二节点在接收到第三节点发出的第八消息之后,向第一节点发送第四消息,其中,当所述第八消息用于寻呼所述第一节点时,所述第四消息用于寻呼第一节点接入网络,或者用于寻呼第一节点接入第三节点,或者用于指示所述第一节点与所述第二节点通信;
当所述第八消息用于寻呼所述第一节点接入网络时,所述第四消息用于寻呼第一节点接入网络,或者用于寻呼所述第一节点接入所述第三节点;
当所述第八消息用于指示所述第二节点寻呼所述第一节点,并为所述第一节点和所述第三节点提供中继服务时,所述第四消息用于指示所述第一节点与所述第二节点进行D2D通信。
特别需要说明的是,所述第二节点根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,包括所述第二节点根据非连续传输配置信息向第一节点发送消息和/或数据。具体地“所述第二节点根据非连续传输配置信息向第一节点发送消息”包括所述第二节点根据非连续传输配置信息向第一节点发送第四消息(例如还可以是发送第二消息)。
步骤S314:第一节点接收所述第二节点发送的第四消息。
具体地,第四消息用于指示第一节点与第二节点进行D2D通信时;或者第四消息用于唤醒第一节点并指示第一节点与第二节点进行D2D通信时,第一节点与第二节点进行D2D通信;其中,D2D通信包括数据通信和/或数据通信。
本发明以根据非连续传输配置信息发送第四消息为例具体说明针对“所述第二节点根据非连续传输配置信息向第一节点发送消息”是如何执行实现的。
假设,第四消息是在非连续传输周期上发送,具体可以是第一节点在所述 PC5接口进行非连续传输接收的非连续传输周期T1的具体计算方式(以基站寻呼第二节点的寻呼周期配置为基础):
T1=M*T_Relay_Paging,其中,T_Relay_Paging为所述第二节点在Uu口(基站与第二节点的接口)上接收基站寻呼的寻呼周期。M为大于0的数,例如大于0的自然数。
第一节点在所述非连续传输周期T1内进行传输的起始时刻PC5_StartOffset的具体计算方式可以为以下任意一种计算方式:
计算方式1:
PC5_StartOffset=Relay_PF+delay,其中,Relay_PF为寻呼所述第二节点的寻呼无线帧的起始时刻,或者Relay_PF为寻呼所述第一节点的寻呼无线帧的起始时刻,delay=L ms,或者delay=L个子帧,L是大于等于零;或者
计算方式2:
PC5_StartOffset=Relay_PO+delay,其中Relay_PO为寻呼所述第二节点的寻呼子帧的起始时刻,或者,Relay_PO为寻呼所述第一节点的寻呼子帧的起始时刻;delay=L ms,或者delay=L个子帧,L是大于等于零的。
由此,第二节点实现收到第三节点发送的寻呼消息(例如第8消息)后,尽快地发送第4消息给第一节点,而此时第一节点也能在第二节点收到第三节点发送的寻呼消息后,尽快醒来迅速获得指示从而接入网络或者通过第二节点与基站进行数据通信。
具体地,关于PF和PO的计算可以沿用现有技术基站给UE提供寻呼配置,计算出寻呼该UE的PF和PO。要计算PF和PO需要获得的寻呼配置包括Relay UE的IMSI,T1,nB。
例如根据现有技术(如下表格),通过获得nB后就可以算出N,即可计算出(UE_ID mod N)结果为A和(T1div N)的结果为B,(UE_ID mod N)*(T1div N)的结果为C。那么Remote UE通过Relay或者基站获得以下配置
获得A=(UE_ID mod N),T1和N,Remote UE就可以通过计算公式获得PF;或者
获得A=(UE_ID mod N),B=(T1div N)和T1,Remote UE就可以通 过计算公式获得PF或者
获得C=(UE_ID mod N)*(T1div N)和T1,Remote UE就可以通过计算公式获得PF或者
进一步地,获得Ns和i_s,Remote UE就可以通过表格内容获得PO,或者,直接获得PO是哪个子帧的配置信息
Figure PCTCN2016094712-appb-000001
DRX周期内持续醒来的时间长度(PC5_DurationTime):PC5_DurationTime=Zms(毫秒),Z是大于等于零。
总之,非连续传输配置包括以下至少一项:UE在PC5口进行非连续传输周期T,非连续传输起始时刻PC5_StartOffset,非连续传输周期内持续醒来的时间长度PC5_DurationTime;
具体地,非连续传输配置可以包括以下至少一项:T_Relay_Paging为所述第二节点在Uu口(基站与第二节点的接口)上接收基站寻呼的寻呼周期;Relay_PO(为寻呼所述第二节点的寻呼子帧的起始时刻,或者为寻呼所述第一节点的寻呼子帧的起始时刻);Relay_PF(为寻呼所述第二节点的寻呼无线帧的起始时刻,或者Relay_PF为寻呼所述第一节点的寻呼无线帧的起始时刻);参数M,Relay UE在Uu口上接收基站寻呼的寻呼周期(T_Relay_Paging),参数A,参数N,参数B,参数C,参数Ns参数i_s,参数delay。
或者,具体地,第四消息是在非连续传输周期上发送,具体可以是第一节点在所述PC5接口进行非连续传输周期T1的具体计算方式:第一节点在所述PC5接口进行非连续传输周期T1(T1的单位为ms或者子帧)的具体计算方式为以下任意一种计算方式:
计算方式1:
T1=N1*T_Discovery,其中,T_Discovery为所述第一节点进行D2D通信的发现设备周期,N1为大于0的数;
具体地,可选,第四消息就是一个D2D Discovery消息,消息中可以包含了:第一节点的标示。例如当N1等于1时,T1=N1*T_Discovery=T_Discovery,即第四消息在发送disvoery消息的周期上发送。具体地,第二节点在所述T1周期内发送属于第一节点的数据和/或消息。所述消息例如可以是第四消息。对应地,第一节点在所述的T1周期内侦听属于自己的数据和/或消息,例如所述消息可以是第四消息。特别地,可选地,第二节点在所述T1周期内的预设子区间内发送属于第一节点的数据和/或消息。所述T1周期内的预设子区间内即所述T1周期内的预设时域和/或频域内。对应地,第一节点在所述T1周期内的预设时域和/或频域内醒来侦听属于自己的数据和/或消息,所述消息例如 是第四消息,如果这个子区间内第二节点向第一节点发送第四消息,那么第一节点就能接收到该第四消息。如图3C所示,图3C为Discovery周期的时频资源中的预设时频资源的示意图,其中白色矩形为Discovery周期的时频资源,白色矩形中的灰色矩形为第一节点接收第二节点发送的第四消息时所使用的Discovery周期中的预设时频资源。由此可见,第一节点不需要一直在Discovery周期内所有时间里侦听第四消息。第四消息可以在Discovery消息发送周期的某个子区间内,由此节省了第一节点侦听第四消息的时间降低能耗。同时沿用了现有的Discovery技术,该方法不影响现有侦听常规Discovery消息的UE。当第一节点侦听到一个Discovery消息中包含了第一节点标示后,明确该消息指第二节点发送给第一节点的消息。同时该包含了第一节点的Discovery消息,可选地,依旧可以作为常规的discvoery消息被其他D2D终端使用,用于D2D设备发现。
当第四消息用于指示第一节点与第二节点进行D2D通信时;或者第四消息用于唤醒第一节点并指示第一节点与第二节点进行D2D通信时,第一节点与第二节点进行D2D通信;其中,D2D通信包括数据通信和/或数据通信。
当第四消息用于指示第一节点接入网络时,第一节点接入网络或者接入某个基站;可选地,接入第三网络后,第一节点维护第一节点与第二节点之间的D2D连接;或者,第一节点释放第一节点与第二节点之间的D2D连接;
当第四消息用于指示第一节点接入第三节点时,第一节点接入第三节点,第三节点为第一节点或第二节点的服务站点。可选地,接入第三节点后,第一节点维护第一节点与第二节点之间的D2D连接;或者,第一节点释放第一节点与第二节点之间的D2D连接;
具体地,第四消息可以包含:第一节点的标识、***信息更新指示、***信息、寻呼指示、所述第三节点的业务类型和第三节点的业务优先级。
同理,T1计算方式2:
T1=N2*T_communication,其中,T_communication为所述第一节点进行D2D通信的D2D通信周期,N2为大于0的数;
具体地,可选,第四消息是D2D communication消息。
T1计算方式3:
T1=K*T_Relay_DRX,其中,T_Relay_DRX为所述第二节点与所述第三节点之间进行非连续接收的DRX周期,K为大于0的数。
T1计算方式4:定义一个独立的周期配置T(第一节点在PC5口进行DRX周期T)
T1=T_PC5,单位是ms或者子帧(例如T=20ms,T=60subframes)
结合上述T1的四种计算方式,第一节点在所述非连续传输周期T1内进行传输的起始时刻PC5_StartOffset的具体计算方式可以为以下任意一种计算方式:
计算方式1:
PC5_StartOffset=K*Uu_DRXStartOffset+delay
其中,Uu_DRXStartOffset为第二节点在所述T_Relay_DRX内进行DRX的起始时刻,delay=X ms,或者delay=X个子帧,X为大于等于零,例如可以是大于等于0的自然数。具体地,例如delay的0。3ms,delay=5个子帧;
计算方式2:
PC5_StartOffset=[(SFN*10)+subframe number]modulo(T1)
其中,SFN为***帧号,subframe number为子帧编号,T1为非连续传输周期T1;
计算方式3:
(PC5_StartOffset)modulo(T1)=[(SFN*10)+subframe number]modulo(T1)
其中,SFN为***帧号,subframe number为子帧编号,T1为非连续传输周期T1;
Yth subframes=PC5_StartOffset,其中,Y是大于等于零。
同理,第一节根据非连续传输配置发送第五消息,参考上述关于第一节点根据非连续传输配置接收第四消息的具体描述。
步骤S315:可选,第一节点向所述第二节点发送第五消息。
具体地,第一节点在接收到第二节点发送的第四消息后,可选地向第二节点反馈相关的结果,即向第二节点发送第五消息,其中,所述第五消息包括用于指示所述第一节点接入所述第三节点成功或者接入所述第三节点失败,或者, 包括用于指示所述第一节点接入网络成功或者接入网络失败,以便于让第二节点了解第一节点当前的网络或站点的接入情况。
特别需要说明的是,所述第一节点根据非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,包括所述第一节点根据非连续传输配置信息向第二节点发送消息和/或数据。具体地“所述第一节点根据非连续传输配置信息向第二节点发送消息”包括所述第二节点根据非连续传输配置信息向第一节点发送第五消息(例如还可以是发送第三消息)。
参见图4,是本发明实施例中的又一种通信方法的流程示意图,可应用于上述图1中所述的D2D通信***,下面将结合附图4从第一节点(Remote UE)、第二节点(Relay UE)和第三节点(基站)的交互侧进行描述,其中,第二节点是为第一节点提供中继服务或者为第一节点和第三节点提供中继服务的节点,第三节点是第一节点或第二节点的服务站点。如图4所示,该方法可以包括以下步骤S401-步骤S406。
步骤S401:第三节点向第一节点发送第一消息。
具体地,基站向第一节点发送第一消息,所述第一消息包括非连续传输配置信息,所述第一消息用于所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输的节点。
步骤S402:第一节点接收第一消息,所述第一消息包括非连续传输配置信息。
步骤S403:可选,第三节点向第二节点发送第六消息。
具体地,由于第二节点要配合第一节点进行D2D的非连续传输,也必须获取和第一节点获得的一致的非连续配置信息,因此,可以通过第三节点直接向第二节点发送第六消息,且该第六消息包括所述第一消息中的所述非连续传输配置信息的方式,让第二节点根据所述非连续传输配置信息与第一节点进行D2D的非连续传输。
步骤S404:可选,第二节点接收第三节点发送的第六消息。
具体地,第二节点接收第三消息发送的第六消息后,便可以根据该第六消 息中包含的,非连续传输配置信息与第一节点进行D2D的非连续传输。
步骤S405:所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输。
步骤S406:第二节点根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输。
具体地,步骤S405至步骤S406可参考上述图2实施例中的步骤S202至步骤S203,这里不再赘述。
可以理解的是,本发明实施例还可以包含图2实施例中的步骤S204至步骤S210中的部分或全部步骤,和/或包含图3实施例中的步骤S307至步骤S315中的部分或全部步骤,这里不再赘述。
参见图5,是本发明实施例中的又一种通信方法的流程示意图,可应用于上述图1中所述的D2D通信***,下面将结合附图5从第一节点(Remote UE)、第二节点(Relay UE)和第三节点(基站)的交互侧进行描述,其中,第二节点是为第一节点提供中继服务或者为第一节点和第三节点提供中继服务的节点,第三节点是第一节点或第二节点的服务站点。如图5所示,该方法可以包括以下步骤S501-步骤S506。
步骤S501:所述第二节点向所述第一节点发送第一消息。
具体地,本发明实施例中,用于指示所述第一节点根据所述非连续传输配置信息与所述第二节点进行设备到设备D2D的非连续传输的第一消息可以直接由第二节点生成并直接发送给第一节点,所述第一消息包括所述非连续传输配置信息。
步骤S502:第一节点接收第一消息,所述第一消息包括非连续传输配置信息。
步骤S503:所述第二节点向第三节点发送第七消息。
具体地,第二节点在向第一节点发送第一消息之前、之后或同时,还向第三节点发送第七消息,该第七消息包括所述非连续传输配置信息,用于通知所述第三节点所述第二节点根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输,即让基站获知第二节点和第一节点之间进行D2D非连续 传输所使用的相关参数,便于基站对第一节点或第二节点进行调控。
步骤S504:第三节点接收第二节点发送的第七消息。
具体地,第三节点接收到第二节点发送的第七消息后,对该消息进行存储,以便于第三节点需要与第一节点或第二节点通信时可以根据该第七消息中的非连续传输配置信息,在相应的时间周期内进行合理的寻呼,避免通信资源的浪费,提高通信效率。
步骤S505:所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输的节点。
步骤S506:第二节点根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点。
具体地,步骤S304至步骤S306可参考上述图1实施例中的步骤S204至步骤S203,这里不再赘述。
可以理解的是,本发明实施例还可以包含图2实施例中的步骤S204至步骤S210中的部分或全部步骤,和/或包含图3实施例中的步骤S307至步骤S315中的部分或全部步骤,这里不再赘述。
在以上所有实施例以及本发明中所有的可能实施方式中,非连续传输配置信息的具体内容可以包括多种参数或信息,进一步地,由于非连续传输配置信息的作用,就是让D2D设备可以在一定的时间周期内进行收据的收发,具体就需要包括周期的起始时刻,以及在周期内持续醒来的时间等等参数,因此,当第一节点和第二节点之间的D2D的通信接口为PC5接口时,则非连续传输配置信息包括以下至少一项信息:
(1)第一节点在所述PC5接口进行非连续传输周期T1;
(2)第一节点在所述非连续传输周期T1内进行传输的起始时刻PC5_StartOffset;
(3)第一节点在所述非连续传输周期T1内持续醒来的时间长度PC5_DurationTime;
(4)第一节点在所述PC5接口接收数据后再持续接收数据的时间PC5_DRX Inactivity Timer;
(5)第一节点在所述PC5接口上最小的重传数据调度间隔PC5_HARQ RTT Timer;
(6)第一节点在所述PC5接口接收数据重传调度的等待时间PC5_DRX Retransmission Timer;
(7)指示所述第一节点在所述PC5接口从短非连续传输周期PC5_Short Cycle切换到长非连续传输周期PC5_Long Cycle的定时器PC5_Short Cycle Timer;
(8)指示所述第一节点立即进入休眠期的命令PC5_Command MAC CE。
具体地,上述参数的计算方式,本发明提供可能的实现方式,但不限于下述列举的实现方式。
在一种可能的实现方式中,可选地例如所述T1的单位为ms或者子帧。第一节点在所述PC5接口进行非连续传输周期T1的具体计算方式为以下任意一种计算方式:
所述PC5接口进行非连续传输的周期T1是根据D2D通信的发现设备周期来获得的;
所述PC5接口进行非连续传输的周期T1是根据D2D通信的通信周期来获得的;
所述PC5接口进行非连续传输的周期T1是根据寻呼周期来获得的;
所述PC5接口进行非连续传输的周期T1是根据DRX周期来获得的。
所述PC5接口进行非连续传输的周期T1是根据DTX周期来获得的。
特别地,针对“所述PC5接口进行非连续传输的周期T1是根据寻呼周期来获得的”;所述的寻呼周期,可以是第一节点的寻呼周期,或者是第二节点的寻呼周期。例如,第一节点的寻呼周期可以是第一节点在蜂窝网络下接收寻呼消息的周期;第二节点的寻呼周期可以是第二节点在蜂窝网络下接收寻呼消息的周期。
特别地,针对“所述PC5接口进行非连续传输的周期T1是根据DRX周期来获得的”,所述DRX周期可以是第一节点的DRX周期,或者第二节点的 DRX周期。所述第一节点的DRX周期,可以是在蜂窝网络中第一节点在服务小区内或者基站内非连续接收的周期。
特别地,针对“所述PC5接口进行非连续传输的周期T1是根据DTX周期来获得的”,所述DTX(非连续发送)周期可以是第一节点的DTX周期,或者第二节点的DTX周期。所述第一节点的DTX周期,可以是在蜂窝网络中第一节点在服务小区内或者基站内非连续发送的周期。
具体地,例如T1的设计方式可以是以下任意一种,但不仅限于以下列举的种类:
T1计算方式1:
T1=N1*T_Discovery,其中,T_Discovery为所述第一节点进行D2D通信的发现设备周期,N1为大于0的数;
T1计算方式2:
T1=N2*T_communication,其中,T_communication为所述第一节点进行D2D通信的D2D通信周期,N2为大于0的数;
T1计算方式3:
T1=K*T_Relay_DRX,其中,T_Relay_DRX为所述第二节点与所述第三节点之间进行非连续接收的DRX周期,K为大于0的数。
T1计算方式4:定义一个独立的周期配置T(第一节点在PC5口进行DRX周期T)
T1=T_PC5,单位是ms或者子帧(例如T=20ms,T=60subframes)
结合上述T1的四种计算方式,第一节点在所述非连续传输周期T1内进行传输的起始时刻PC5_StartOffset的具体计算方式可以为以下任意一种计算方式:
所述PC5_StartOffset是根据Uu口的DRX的起始时刻获得的;
所述PC5_StartOffset是根据寻呼所述第二节点的寻呼无线帧的起始时刻获得的;
所述PC5_StartOffset是根据寻呼所述第一节点的寻呼无线帧的起始时刻获得的;
所述PC5_StartOffset是根据寻呼所述第二节点的寻呼子帧的起始时刻获得的;
具体地,例如PC5_StartOffset T1的设计方式可以是以下任意一种,但不仅限于以下列举的种类:
PC5_StartOffset计算方式1:
PC5_StartOffset=K*Uu_DRXStartOffset+delay
其中,Uu_DRXStartOffset为第二节点在所述T_Relay_DRX内进行DRX的起始时刻,delay=X ms,或者delay=X个子帧,X为大于等于零,例如可以是大于等于0的自然数。具体地,例如delay的0。3ms,delay=5个子帧;K大于等于0.
PC5_StartOffset计算方式2:
PC5_StartOffset=[(SFN*10)+subframe number]modulo(T1)
其中,SFN为***帧号,subframe number为子帧编号,T1为非连续传输周期T1;
PC5_StartOffset计算方式3:
(PC5_StartOffset)modulo(T1)=[(SFN*10)+subframe number]modulo(T1)
其中,SFN为***帧号,subframe number为子帧编号,T1为非连续传输周期T1;
Yth subframes=PC5_StartOffset,其中,Y是大于等于零。
非连续传输周期T1计算方式5:(以基站寻呼第二节点的寻呼周期配置为基础):
T1=M*T_Relay_Paging,其中,T_Relay_Paging为所述第二节点在Uu口(基站与第二节点的接口)上接收基站寻呼的寻呼周期。M为大于0的数,例如大于0的自然数。
第一节点在所述非连续传输周期T1内进行传输的起始时刻PC5_StartOffset的具体计算方式可以为以下任意一种计算方式:
计算方式1:
PC5_StartOffset=Relay_PF+delay,其中,Relay_PF为寻呼所述第二节点的寻呼无线帧的起始时刻,或者Relay_PF为寻呼所述第一节点的寻呼无线帧的起始时刻,delay=L ms,或者delay=L个子帧,L是大于等于零;或者
计算方式2:
PC5_StartOffset=Relay_PO+delay,其中Relay_PO为寻呼所述第二节点的寻呼子帧的起始时刻,或者,Relay_PO为寻呼所述第一节点的寻呼子帧的起始时刻;delay=L ms,或者delay=L个子帧,L是大于等于零的;或者,
计算方式3:
PC5_StartOffset=Relay_PF+delay,其中,Relay_PF为寻呼所述第一节点的寻呼无线帧的起始时刻,delay=L ms,或者delay=L个子帧,L大于等于零;或者
计算方式4:
PC5_StartOffset=Relay_PO+delay,其中Relay_PO为寻呼所述第一节点的寻呼子帧的起始时刻,delay=L ms,或者delay=L个子帧,L大于等于零。
由此,第二节点实现收到第三节点发送的寻呼消息(例如第8消息)后,尽快地发送第4消息给第一节点,而此时第一节点也能在第二节点收到第三节点发送的寻呼消息后,尽快醒来迅速获得指示从而接入网络或者通过第二节点与基站进行数据通信。
具体地,关于PF和PO的计算可以沿用现有技术基站给UE提供寻呼配置,计算出寻呼该UE的PF和PO。要计算PF和PO需要获得的寻呼配置包括Relay UE的IMSI,T1,nB。
例如根据现有技术(如下表格),通过获得nB后就可以算出N,即可计算出(UE_ID mod N)结果为A和(T1div N)的结果为B,(UE_ID mod N)*(T1div N)的结果为C。那么Remote UE通过Relay或者基站获得以下配置
获得A=(UE_ID mod N),T1和N,Remote UE就可以通过计算公式获得PF;或者
获得A=(UE_ID mod N),B=(T1div N)和T1,Remote UE就可以通 过计算公式获得PF或者
获得C=(UE_ID mod N)*(T1div N)和T1,Remote UE就可以通过计算公式获得PF或者
进一步地,获得Ns和i_s,Remote UE就可以通过表格内容获得PO,或者,直接获得PO是哪个子帧的配置信息
Figure PCTCN2016094712-appb-000002
DRX周期内持续醒来的时间长度(PC5_DurationTime):PC5_DurationTime=Zms(毫秒),Z是大于等于零。
总之,非连续传输配置包括以下至少一项:UE在PC5口进行非连续传输周期T,非连续传输起始时刻PC5_StartOffset,非连续传输周期内持续醒来的时间长度PC5_DurationTime;
具体地,非连续传输配置可以包括以下至少一项:T_Relay_Paging为所述第二节点在Uu口(基站与第二节点的接口)上接收基站寻呼的寻呼周期;Relay_PO(为寻呼所述第二节点的寻呼子帧的起始时刻,或者为寻呼所述第一节点的寻呼子帧的起始时刻);Relay_PF(为寻呼所述第二节点的寻呼无线帧的起始时刻,或者Relay_PF为寻呼所述第一节点的寻呼无线帧的起始时刻);参数M,Relay UE在Uu口上接收基站寻呼的寻呼周期(T_Relay_Paging),参数A,参数N,参数B,参数C,参数Ns参数i_s,参数delay。
还需要说明的是:
本发明(包含了本发明所有可能的实施例)中,所述第一消息至少包括以下至少一项:第一节点的标识,所述第三节点的标识、***信息更新指示、***信息、寻呼指示、所述第三节点的业务类型和第三节点的业务优先级。
本发明(包含了本发明所有可能的实施例)中,所述第二消息至少包括以下至少一项:第一节点的标识,所述第三节点的标识、***信息更新指示、***信息、寻呼指示、所述第三节点的业务类型和第三节点的业务优先级。
本发明(包含了本发明所有可能的实施例)中,所述第四消息至少包括以下至少一项:第一节点的标识,所述第三节点的标识、***信息更新指示、***信息、寻呼指示、所述第三节点的业务类型和第三节点的业务优先级。
本发明(包含了本发明所有可能的实施例)中,所述第六消息至少包括以下至少一项:第一节点的标识,所述第三节点的标识、***信息更新指示、***信息、寻呼指示、所述第三节点的业务类型和第三节点的业务优先级。
本发明(包含了本发明所有可能的实施例)中,所述第八消息至少包括以下至少一项:第一节点的标识,所述第三节点的标识、***信息更新指示、***信息、寻呼指示、所述第三节点的业务类型和第三节点的业务优先级。
本发明(包含了本发明所有可能的实施例)中,所述第九消息至少包括以 下至少一项:第一节点的标识,所述第三节点的标识、***信息更新指示、***信息、寻呼指示、所述第三节点的业务类型和第三节点的业务优先级。
本发明实施例,通过让进行D2D通信的终端设备通过进行非连续传输,从而促使Remote UE可以不需要一直处于侦听状态,且能随时通过Relay UE来与基站进行数据传输进而实现功耗的降低,提高D2D的通信效率。此外,本发明实施例中还实现了非连续的Uu口数据/消息,通过第二节点在PC5接口迅速传递给第一节点,不仅保证了第一节点的低功耗,也进一步提高了D2D通信的效率。
本发明实施例还提供了一种通信装置10,如图6所示,图6是本发明实施例中的通信装置的结构示意图,下面将结合附图6,对通信装置10的结构进行详细介绍。该装置10可包括:第一接收模块101和传输模块102,其中
第一接收模块101,用于接收第一消息,所述第一消息包括非连续传输配置信息;
传输模块102,用于根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
具体地,传输模块102,具体用于:
根据所述非连续传输配置信息,通过所述输入单元接收所述第二节点发送的消息和/或数据;或者根据所述非连续传输配置信息,通过所述输出单元向所述第二节点发送消息和/或数据。
进一步地,所述装置还包括第二接收模块103,其中
第二接收模块103,用于接收所述第二节点或第三节点发送的第二消息,所述第三节点是所述第一节点或所述第二节点的服务站点,所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续 传输。
可理解的是,通信装置10中各模块的功能可对应参考上述图1至图5中的各方法实施例中的具体实现方式,这里不再赘述。
在本实施例中,通信装置10是以模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,传输模块102可通过图9所示的终端设备的处理单元401来实现,第一接收模块101和第二接收模块103可通过图9所示的终端设备的输入单元401来实现。
本发明实施例还提供了另一种通信装置20,如图7所示,图7是本发明实施例中的另一种通信装置的结构示意图,下面将结合附图7,对通信装置20的结构进行详细介绍。该装置20可包括:非连续传输模块201,其中
非连续传输模块201,用于根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点;其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
具体地,非连续传输模块201,具体用于:
根据所述非连续传输配置信息,通过所述输入单元接收所述第一节点发送的消息和/或数据;或者根据所述非连续传输配置信息,通过所述输出单元向所述第一节点发送消息和/或数据。
进一步地,所述装置,还包括第一发送模块202,其中
第一发送模块202,用于向所述第一节点发送第一消息,所述第一消息包括所述非连续传输配置信息,所述第一消息用于指示所述第一节点根据所述非连续传输配置信息与所述第二节点进行设备到设备D2D的非连续传输。
再进一步地,所述第一发送模块202,具体用于:
接收第三节点发送的第六消息,并根据所述第六消息向所述第一节点发送第一消息,所述第三节点为所述第一节点或所述第二节点的服务站点;其中, 所述第六消息包括非连续传输配置信息,且所述第三节点向所述第一节点发送第一消息,所述第一消息包括所述非连续传输配置信息。
再进一步地,所述装置,还包括第二发送模块203,其中
第二发送模块203,用于向所述第一节点发送第二消息,所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续传输。
可理解的是,通信装置20中各模块的功能可对应参考上述图1至图5中的各方法实施例中的具体实现方式,这里不再赘述。
在本实施例中,通信装置20是以模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,非连续传输模块201可通过图10所示的终端设备的处理单元501来实现,第一发送模块202和第二发送模块203可通过图10所示的终端设备的输出单元502来实现。
本发明实施例还提供了又一种通信装置30,如图8所示,图8是本发明实施例中的又一种通信装置的结构示意图,下面将结合附图8,对通信装置30的结构进行详细介绍。该装置30可包括:第一发送模块301或第二发送模块302或接收模块303其中
第一发送模块301,用于向第一节点发送第一消息,所述第一消息包括非连续传输配置信息,所述第一消息用于所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输的节点;或
第二发送模块302,用于向第二节点发送第六消息,所述第六消息包括非连续传输配置信息,所述第六消息用于所述第二节点根据所述非连续传输配置 信息与第一节点进行设备到设备D2D的非连续传输,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点;或
接收模块303,用于接收第二节点发送的第七消息,所述第七消息包括非连续传输配置信息,所述第七消息用于通知所述第三节点所述第二节点根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输,所述第三节点为所述第一节点或所述第二节点的服务站点,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点。
具体地,在所述第三节点向第一节点发送第一消息,或者在所述第三节点向第二节点发送第六消息的情况下,装置30还可以包括第三发送模块304,其中
第三发送模块304,用于向所述第一节点发送第二消息,所述第二消息用于指示所述第一节点驻留在所述第二节点下或者第一节点进入低配置模式,或者指示所述第一节点进入高配置模式,或者指示所述第一节点接收来自所述第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者触发所述第一节点根据所述非连续传输配置信息进行非连续传输。
进一步地,在所述第三节点向第一节点发送第一消息,或者所述第三节点向第二节点发送第六消息的情况下,装置30还可以包括第四发送模块305,其中
第四发送模块305,用于向所述第二节点发送第八消息,其中
所述第八消息用于寻呼第一节点;或者
所述第八消息用于寻呼所述第一节点接入网络;或者
所述第八消息用于指示所述第二节点接入网络,以便于为所述第一节点提供通信服务;或者
所述第八消息用于指示所述第二节点寻呼所述第一节点,并为所述第一节点和所述第三节点提供中继服务。
可理解的是,通信装置30中各模块的功能可对应参考上述图1至图5中的各方法实施例中的具体实现方式,这里不再赘述。
在本实施例中,通信装置30是以模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。此外,第一发送模块301或第二发送模块302或接收模块303等均可以通过图11所示的基站的处理单元604结合输出单元602或输入单元601来实现。
请参见图9,图9是本发明实施例提供的一种终端设备40,终端设备40为第一节点,可包括:输入单元401、输出单元402、存储单元403和处理单元404,在本发明的一些实施例中。其中,总线用于实现这些组件之间的通信连接;输入单元401具体可为终端的触控面板,包括触摸屏和触控屏,用于检测终端触控面板上的操作指令;输出单元402可以包括终端的显示屏(Display),用于输出、显示图像或者数据;存储单元403可以是高速RAM显示器,也可以是非不稳定的显示器(non-volatile memory),例如至少一个磁盘显示器,存储单元403可选的还可以是至少一个位于远离前述处理单元401的显示装置。作为一种计算机显示介质的存储单元403中可以包括操作***、网络通信模块、用户接口模块以及数据处理程序。
其中,所述存储单元403用于存储程序代码,处理单元404用于调用所述存储单元403存储的程序代码执行如下步骤:
通过所述输入单元401接收第一消息,所述第一消息包括非连续传输配置信息;
通过所述输入单元401或所述输出单元402,根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
在一种可选的方案中,所述处理单元404用于根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,具体为:
根据所述非连续传输配置信息,通过所述输入单元401接收所述第二节点发送的消息和/或数据;或者
根据所述非连续传输配置信息,通过所述输出单元401向所述第二节点发送消息和/或数据。
在另一种可选的方案中,所述处理单元404还用于:
通过所述输入单元401接收所述第二节点或第三节点发送的第二消息,所述第三节点是所述第一节点或所述第二节点的服务站点,所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续传输。
可理解的是,终端设备40中各单元的功能可对应参考上述图1-5中方法实施例中的具体实现方式,这里不再赘述。
请参见图10,图10是本发明实施例提供的一种终端设备50,终端设备50为第二节点可以包括:输入单元501、输出单元502、存储单元503和处理单元504,在本发明的一些实施例中。其中,总线用于实现这些组件之间的通信连接;输入单元501具体可为终端的触控面板,包括触摸屏和触控屏,用于检测终端触控面板上的操作指令;输出单元502可以包括终端的显示屏(Display),用于输出、显示图像或者数据;存储单元503可以是高速RAM显示器,也可以是非不稳定的显示器(non-volatile memory),例如至少一个磁盘显示器,存储单元503可选的还可以是至少一个位于远离前述处理单元501的显示装置。作为一种计算机显示介质的存储单元503中可以包括操作***、网络通信模块、用户接口模块以及数据处理程序。
其中,所述存储单元503用于存储程序代码,处理单元504用于调用所述存储单元503存储的程序代码执行如下步骤:
通过所述输入单元501或输出单元502,根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点;其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站 点。
在一种可选的方案中,所述处理单元用于根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,具体为:
根据所述非连续传输配置信息,通过所述输入单元501接收所述第一节点发送的消息和/或数据;或者
根据所述非连续传输配置信息,通过所述输出单元502向所述第一节点发送消息和/或数据。
在另一种可选的方案中,所述处理单元用于根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输之前,还用于:
通过所述输出单元502向所述第一节点发送第一消息,所述第一消息包括所述非连续传输配置信息,所述第一消息用于指示所述第一节点根据所述非连续传输配置信息与所述第二节点进行设备到设备D2D的非连续传输。
在又一种可选的方案中,所述处理单元用于向所述第一节点发送第一消息,具体为:
通过所述输入单元501接收第三节点发送的第六消息,并根据所述第六消息向所述第一节点发送第一消息,所述第三节点为所述第一节点或所述第二节点的服务站点;其中,所述第六消息包括非连续传输配置信息,且所述第三节点向所述第一节点发送第一消息,所述第一消息包括所述非连续传输配置信息。
在又一种可选的方案中,所述处理单元还用于:
通过所述输出单元502向所述第一节点发送第二消息,所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续传输。
可理解的是,终端设备50中各单元的功能可对应参考上述图1-5中方法实施例中的具体实现方式,这里不再赘述。
请参见图11,图11是本发明实施例提供的一种基站60,基站60为第三 节点,第三节点可以包括:输入单元601、输出单元602、存储单元603和处理单元604,在本发明的一些实施例中。其中,总线用于实现这些组件之间的通信连接;输入单元601具体可为终端的触控面板,包括触摸屏和触控屏,用于检测终端触控面板上的操作指令;输出单元602可以包括终端的显示屏(Display),用于输出、显示图像或者数据;存储单元603可以是高速RAM显示器,也可以是非不稳定的显示器(non-volatile memory),例如至少一个磁盘显示器,存储单元603可选的还可以是至少一个位于远离前述处理单元601的显示装置。作为一种计算机显示介质的存储单元603中可以包括操作***、网络通信模块、用户接口模块以及数据处理程序。
其中,所述存储单元603用于存储程序代码,处理单元604用于调用所述存储单元603存储的程序代码执行如下步骤:
通过所述输出单元602向第一节点发送第一消息,所述第一消息包括非连续传输配置信息,所述第一消息用于所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输的节点;或
通过所述输出单元602向第二节点发送第六消息,所述第六消息包括非连续传输配置信息,所述第六消息用于所述第二节点根据所述非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点;或
通过所述输入单元601接收第二节点发送的第七消息,所述第七消息包括非连续传输配置信息,所述第七消息用于通知所述第三节点所述第二节点根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输,所述第三节点为所述第一节点或所述第二节点的服务站点,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点。
在一种可选的方案中,在所述第三节点向第一节点发送第一消息,或者在所述第三节点向第二节点发送第六消息的情况下,所述处理单元还用于:
通过所述输出单元602向所述第一节点发送第二消息,所述第二消息用于指示所述第一节点驻留在所述第二节点下或者第一节点进入低配置模式,或者指示所述第一节点进入高配置模式,或者指示所述第一节点接收来自所述第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者触发所述第一节点根据所述非连续传输配置信息进行非连续传输。
在另一种可选的方案中,在所述第三节点向第一节点发送第一消息,或者所述第三节点向第二节点发送第六消息的情况下,所述处理单元还用于:
通过所述输出单元602向所述第二节点发送第八消息,其中
所述第八消息用于寻呼第一节点;或者
所述第八消息用于寻呼所述第一节点接入网络;或者
所述第八消息用于指示所述第二节点接入网络,以便于为所述第一节点提供通信服务;或者
所述第八消息用于指示所述第二节点寻呼所述第一节点,并为所述第一节点和所述第三节点提供中继服务。
可理解的是,基站60中各单元的功能可对应参考上述图1-5中方法实施例中的具体实现方式,这里不再赘述。
请参阅图12,图12是本发明实施例提供的一种通信***,该***70包括基站701、第一终端设备702和第二终端设备703,其中
基站701可以为上述图9实施例中的通信装置30或图12实施例中的基站60;第一终端设备702可以为上述图7实施例中的通信装置10或图10实施例中的终端设备40;所述第二终端设备703为可以为上述图8实施例中的通信装置20或图11实施例中的终端设备50;可理解的是,本发明实施例中的***40还可以包括核心网、服务器、路由设备、交换设备和业务中心等设备。
可理解的是,该通信***70中的基站701、第一终端设备702和第二终端设备703的功能可对应参考上述图1-图5中各个方法实施例中的具体实现方式,这里不再赘述。
请参阅图13,图13是本发明实施例提供的终端设备的又一实施例的结构示意图。该终端设备80可以为智能移动终端(如手机),终端设备80包括:射频(英文:radio frequency,RF)电路801、存储有一个或多个计算机程序的存储单元802、输入装置803、输出装置804、传感器805、音频电路806、无线保真(英文:wireless fidelity,WiFi)模块807、包括有一个或多个处理核心的处理器808、以及电源803等部件。本领域技术人员可以理解,图13中示出的终端设备结构并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
RF电路801可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,交由一个或多个处理器808处理;另外,将涉及上行的数据发送给基站。通常,RF电路801包括但不限于天线、至少一个放大器、调谐器、一个或多个振荡器、用户身份模块(英文:subscriber identity module,SIM)卡、收发信机、耦合器、低噪声放大器(英文:low noise amplifier,LNA)、双工器等。此外,RF电路801还可以通过无线通信与网络或其他终端设备进行通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯***(英文:global system of mobile communication,GSM)、通用分组无线服务(英文:general packet radio service,GPRS)、码分多址(英文:code division multiple access,CDMA)、宽带码分多址(英文:wideband code division multiple access,WCDMA)、长期演进(英文:long term evolution,LTE)、电子邮件、短消息服务(英文:short messaging service,SMS)等。
存储器802可用于存储计算机程序以及模块,处理器808通过运行存储在存储器802的计算机程序以及模块,从而执行各种功能应用以及数据处理。存储器802可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据终端设备80的使用所创建的数据(比如拍摄的照片、音频数据、视频数据等)等。此外,存储器802可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。相应地,存储器802还可以包括存储器控制器,以提供处理器808和输入装置803对存储器802的访问。
输入装置803可用于接收输入的数字或字符信息,以及产生与用户设置以及功能控制有关的键盘、鼠标、操作杆、光学或者轨迹球信号输入。具体地,输入装置803可包括触敏表面8031以及其他输入设备8032。触敏表面8031,也称为触摸显示面板或者触控板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触敏表面8031上或在触敏表面8031附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触敏表面8031可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器808,并能接收处理器808发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触敏表面8031。除了触敏表面8031,输入装置803还可以包括其他输入设备8032。具体地,其他输入设备8032可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
输出装置804可用于显示由用户输入的信息或提供给用户的信息以及终端设备80的各种图形用户界面,这些图形用户界面可以由图形、文本、图标、视频和其任意组合来构成。输出装置804可包括显示面板8041,可选的,显示面板8041可以采用液晶显示器(英文:liquid crystal display,LCD)、有机发光二极管(英文:organic light-emitting diode,OLED)等形式来配置。进一步的,触敏表面8031可覆盖显示面板8041,当触敏表面8031检测到在其上或附近的触摸操作后,传送给处理器808以确定触摸事件的类型,随后处理器808根据触摸事件的类型在显示面板8041上提供相应的视觉输出。虽然在图3中,触敏表面8031与显示面板8041是作为两个独立的部件来实现输入和输入功能,但是在某些实施例中,可以将触敏表面8031与显示面板8041集成而实现输入和输出功能。
终端设备80还可包括至少一种传感器805,比如距离传感器、光传感器、运动传感器以及其他传感器。具体地,距离传感器用于检测所述终端设备屏幕与覆盖所述终端设备的物体之间的距离,光传感器用于检测所述终端设备外部环境的光信号。作为运动传感器的一种,重力加速度传感器可检测各个方向上 (一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端设备80姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于终端设备80还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,此处不再赘述。
音频电路806、扬声器8061、传声器8062可提供用户与终端设备80之间的音频接口。音频电路806可将接收到的音频数据转换后的电信号,传输到扬声器8061,由扬声器8061转换为声音信号输出;另一方面,传声器8062将收集的声音信号转换为电信号,由音频电路806接收后转换为音频数据,再将音频数据输出处理器808处理后,经RF电路801以发送给比如另一设备,或者将音频数据输出至存储器802以便进一步处理。音频电路806还可能包括耳塞插孔,以提供外设耳机与终端设备80的通信。
WiFi属于短距离无线传输技术,终端设备80通过WiFi模块807可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图13示出了WiFi模块807,但是可以理解的是,其并不属于终端设备80的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器808是终端设备80的控制中心,利用各种接口和线路连接整个终端设备80的各个部分,通过运行或执行存储在存储器802内的计算机程序和/或模块,以及调用存储在存储器802内的数据,执行终端设备80的各种功能和处理数据,从而对终端设备80进行整体监控。可选的,处理器808可包括一个或多个处理核心;优选的,处理器808可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器808中。
终端设备80还包括给各个部件供电的电源803(比如电池),优选的,电源可以通过电源管理***与处理器808逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。电源803还可以包括一个或多个直流或交流电源、再充电***、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。
尽管未示出,终端设备80还可以包括摄像头、蓝牙模块等,此处不再赘述。具体在本发明实施例中,终端设备的输出装置804(或输入装置803)是触摸屏显示器,终端设备80还包括有存储器802、处理器808、以及一个或多个的计算机程序,其中一个或多个计算机程序存储于存储器802中,处理器808用于调用存储器802(非易失性存储器)存储的通信方法的程序执行前述方法实施例中的各方法步骤流程,在此不再赘述。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何一种通信方法的部分或全部步骤。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
本领域技术人员应明白,本发明的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机程序存储/分布在合适的介质中,与其它硬件一起提供或作为硬件的一部分,也可以采用其他分布形式,如通过Internet或其它有线或无线电信***。
本发明是参照本发明实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程 数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (34)

  1. 一种通信方法,其特征在于,包括:
    第一节点接收第一消息,所述第一消息包括非连续传输配置信息;
    所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
  2. 如权利要求1所述的方法,其特征在于,所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,包括:
    所述第一节点根据所述非连续传输配置信息,接收所述第二节点发送的消息和/或数据;或者
    所述第一节点根据所述非连续传输配置信息,向所述第二节点发送消息和/或数据。
  3. 如权利要求1或2所述的方法,其特征在于,所述D2D的非连续传输接口为PC5接口;所述非连续传输配置信息包括以下至少一项信息:
    在所述PC5接口进行非连续传输的周期T1;
    在所述非连续传输周期T1内进行传输的起始时刻PC5_StartOffset;
    在所述非连续传输周期T1内持续醒来的时间长度PC5_DurationTime;
    在所述PC5接口接收数据后再接收数据的时间PC5_DRX Inactivity Timer;
    在所述PC5接口上最小的重传数据调度间隔PC5_HARQ RTT Timer;
    在所述PC5接口接收数据重传调度的等待时间PC5_DRX Retransmission Timer;
    在所述PC5接口从短生命周期PC5_Short Cycle切换到长生命周期PC5_Long Cycle的定时器PC5_Short Cycle Timer;
    指示立即进入休眠期的命令PC5_Command MAC CE。
  4. 如权利要求3所述的方法,其特征在于,所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,包括:
    所述第一节点根据所述非连续传输配置信息,在所述非连续传输周期T1内,接收所述第二节点发送的消息和/或数据;或者
    所述第一节点根据所述非连续传输配置信息,在所述非连续传输周期T1内,向所述第二节点发送消息和/或数据;或者
    所述第一节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,接收所述第二节点发送的消息和/或数据;或者
    所述第一节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,向所述第二节点发送消息和/或数据;或者
    所述第一节点根据所述非连续传输配置信息,在所述非连续传输的起始时刻PC5_StartOffset,接收所述第二节点发送的消息和/或数据;或者
    所述第一节点根据所述非连续传输配置信息,在所述非连续传输的起始时刻PC5_StartOffset,向所述第二节点发送消息和/或数据。
  5. 如权利要求1-4任意一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收所述第二节点或第三节点发送的第二消息,所述第三节点是所述第一节点或所述第二节点的服务站点,所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续传输。
  6. 如权利要求5所述的方法,其特征在于,所述第一节点处于所述低配置模式,包括以下至少一项:
    所述第一节点驻留在所述第二节点下;或者,
    所述第一节点仅接收所述第二节点发送的信息;或者,
    所述第一节点仅接收所述第二节点发送的信令和/或数据;或者,
    所述第一节点仅接收D2D通信节点发送的信令和/或数据;或者,
    所述第一节点接收所述第二节点发送的信令和/或数据;或者,
    所述第一节点接收D2D通信节点发送的信令和/或数据;或者,
    所述第一节点接收所述第二节点发送的寻呼消息;或者,
    所述第一节点接收所述第二节点发送的***消息;或者,
    所述第一节点接收所述第二节点发送的同步信号;或者,
    所述第一节点不接收小区发送的***消息;或者,
    所述第一节点不接收小区发送的***消息;或者,
    所述第一节点不接收小区发送的同步信息;或者,
    所述第一节点接收所述第二节点发送的信息,但不执行以下至少一项操作:驻留在一个小区内,接收小区发送的***消息,接收小区发送的寻呼消息,接收小区发送的同步信号,接收站点发送的***消息,接收站点发送的寻呼消息,接收站点发送的同步信号邻居小区测量,同频小区测量,异频小区测量;或者,
    所述第一节点接收D2D通信节点发送的信息,但不执行以下至少一项操作:驻留在一个小区内,接收小区发送的***消息,接收小区发送的寻呼消息,接收小区发送的同步信号,接收站点发送的***消息,接收站点发送的寻呼消息,接收站点发送的同步信号邻居小区测量,同频小区测量,异频小区测量;
    所述第一节点处于所述高配置模式,包括以下至少一项:
    所述第一节点驻留在小区内,或者接收小区发送的***消息,或者接收小区发送的同步信号,或者接收小区发送的寻呼消息,接收站点发送的***消息,或者接收站点发送的同步信号,或者接收站点发送的寻呼消息,或者执行小区选择,或者执行小区重选,或者执行邻居小区测量,或者执行同频小区测量,或者执行异频小区测量。
  7. 如权利要求3或4所述的方法,其特征在于,所述T1的具体计算方式为以下任意一种计算方式:
    在所述PC5接口进行非连续传输的周期T1是根据D2D通信的发现设备周期来获得的;
    在所述PC5接口进行非连续传输的周期T1是根据D2D通信的通信周期来获得的;
    在所述PC5接口进行非连续传输的周期T1是根据寻呼周期来获得的;
    在所述PC5接口进行非连续传输的周期T1是根据DRX周期来获得的;
    在所述PC5接口进行非连续传输的周期T1是根据DTX周期来获得的;
    T1=N1*T_Discovery,其中,T_Discovery为所述第一节点进行D2D通信的发现设备周期,N1为大于0的数;
    T1=N2*T_communication,其中,T_communication为所述第一节点进行D2D通信的D2D通信周期,N2为大于0的数;
    T1=K*T_Relay_DRX,其中,T_Relay_DRX为所述第二节点与所述第三节点之间进行非连续接收的DRX周期,K为大于0的数;或者,
    所述PC5_StartOffset的具体计算方式为以下任意一种计算方式:
    所述PC5_StartOffset是根据Uu口的DRX的起始时刻获得的;
    所述PC5_StartOffset是根据寻呼所述第二节点的寻呼无线帧的起始时刻获得的;
    所述PC5_StartOffset是根据寻呼所述第一节点的寻呼无线帧的起始时刻获得的;
    所述PC5_StartOffset是根据寻呼所述第二节点的寻呼子帧的起始时刻获得的;
    PC5_StartOffset=K*Uu_DRXStartOffset+delay
    其中,Uu_DRXStartOffset为第二节点在所述T_Relay_DRX内进行DRX的起始时刻,delay=X ms,或者delay=X个子帧,X为大于等于零,K大于等于零;
    PC5_StartOffset=[(SFN*10)+subframe number]modulo(T1)
    其中,SFN为***帧号,subframe number为子帧编号,T1为所述非连续传输周期T1;
    (PC5_StartOffset)modulo(T1)=[(SFN*10)+subframe number]modulo(T1)
    其中,SFN为***帧号,subframe number为子帧编号,T1为所述非连续传输周期T1;
    Yth subframes=PC5_StartOffset,其中,Y大于等于零。
  8. 如权利要求3或4所述的方法,其特征在于,所述T1的具体计算方式为以下任意一种计算方式:
    T1=M*T_Relay_Paging,其中,T_Relay_Paging为所述第二节点在Uu口上接收基站寻呼的寻呼周期;或者
    所述PC5_StartOffset的具体计算方式为以下任意一种方式:
    PC5_StartOffset=Relay_PF+delay,其中,Relay_PF为寻呼所述第二节点的寻呼无线帧的起始时刻,delay=L ms,或者delay=L个子帧,L大于等于零;或者
    PC5_StartOffset=Relay_PF+delay,其中,Relay_PF为寻呼所述第一节点的寻呼无线帧的起始时刻,delay=L ms,或者delay=L个子帧,L大于等于零;或者
    PC5_StartOffset=Relay_PO+delay,其中Relay_PO为寻呼所述第二节点的寻呼子帧的起始时刻,delay=L ms,或者delay=L个子帧,L大于等于零;
    PC5_StartOffset=Relay_PO+delay,其中Relay_PO为寻呼所述第一节点的寻呼子帧的起始时刻,delay=L ms,或者delay=L个子帧,L大于等于零。
  9. 如权利要求1-8任意一项所述的方法,其特征在于,所述非连续传输配置信息包括非连续发送配置信息和/或非连接接收配置信息;或者
    所述非连续传输包括非连续发送和/或非连续连接。
  10. 一种通信方法,其特征在于,包括:
    第二节点根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点;
    其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
  11. 如权利要求10所述的方法,其特征在于,所述第二节点根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,包括:
    所述第二节点根据所述非连续传输配置信息,接收所述第一节点发送的消息和/或数据;或者
    所述第二节点根据所述非连续传输配置信息,向所述第一节点发送消息和/或数据。
  12. 如权利要求10或11所述的方法,其特征在于,所述第二节点根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输之前,包括:
    所述第二节点向所述第一节点发送第一消息,所述第一消息包括所述非连续传输配置信息,所述第一消息用于指示所述第一节点根据所述非连续传输配置信息与所述第二节点进行设备到设备D2D的非连续传输。
  13. 如权利要求12所述的方法,其特征在于,所述第二节点向所述第一节点发送第一消息,包括:
    所述第二节点接收第三节点发送的第六消息,并根据所述第六消息向所述第一节点发送第一消息,所述第三节点为所述第一节点或所述第二节点的服务站点;
    其中,所述第六消息包括非连续传输配置信息,且所述第三节点向所述第一节点发送第一消息,所述第一消息包括所述非连续传输配置信息。
  14. 如权利要求10-13任意一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1内,接收所述第一节点发送消息和/或数据;或者
    所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1内,向所述第一节点发送消息和/或数据;或者,
    所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,接收所述第一节点发送消息和/或数据;或者
    所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,向所述第一节点发送消息和/或数据;或者
    所述第二节点根据所述非连续传输配置信息,在所述非连续传输的起始时刻PC5_StartOffset,接收所述第一节点发送消息和/或数据;或者
    所述第二节点根据所述非连续传输配置信息,在所述非连续传输的起始时刻PC5_StartOffset,向所述第一节点发送消息和/或数据;或者
    所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,向所述第一节点发送消息和/或数据;或者
    所述第二节点根据所述非连续传输配置信息,在所述非连续传输周期T1的预设时域和/或频域内,接收第一节点发送的消息和/或数据。
  15. 如权利要求10-14任意一项所述的方法,其特征在于,所述方法还包括:
    所述第二节点向所述第一节点发送第二消息,所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续传输。
  16. 如权利要求10-15任意一项所述的方法,其特征在于,所述方法,还包括:
    所述第二节点向所述第一节点发送第四消息,其中
    所述第四消息用于指示所述第一节点与所述第二节点进行D2D通信;或者
    所述第四消息用于唤醒所述第一节点并指示所述第一节点与所述第二节点进行D2D通信;或者
    所述第四消息用于指示所述第一节点接入网络或者接入所述第三节点,所述第三节点为所述第一节点或所述第二节点的服务站点。
  17. 如权利要求16所述的方法,其特征在于,所述第二节点向所述第一节点发送第四消息,包括:
    所述第二节点接收第三节点发送的八消息;
    所述第二节点根据所述第八消息向所述第一节点发送第四消息;其中
    所述第八消息用于寻呼第一节点;或者所述第八消息用于寻呼所述第一节点接入网络;或者所述第八消息用于指示所述第二节点接入网络,以便于为所述第一节点提供通信服务;或者所述第八消息用于指示所述第二节点寻呼所述第一节点,并为所述第一节点和所述第三节点提供中继服务。
  18. 如权利要求17所述的方法,其特征在于,
    当所述第八消息用于寻呼所述第一节点时,所述第四消息用于寻呼第一节点接入网络,或者用于寻呼第一节点接入第三节点,或者用于指示所述第一节点与所述第二节点通信;
    当所述第八消息用于寻呼所述第一节点接入网络时,所述第四消息用于寻呼第一节点接入网络,或者用于寻呼所述第一节点接入所述第三节点;
    当所述第八消息用于指示所述第二节点寻呼所述第一节点,并为所述第一节点和所述第三节点提供中继服务时,所述第四消息用于指示所述第一节点与所述第二节点进行D2D通信。
  19. 一种通信方法,其特征在于,包括:
    第三节点向第一节点发送第一消息,所述第一消息包括非连续传输配置信息,所述第一消息用于所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输的节点;或
    第三节点向第二节点发送第六消息,所述第六消息包括非连续传输配置信息,所述第六消息用于所述第二节点根据所述非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点;或
    第三节点接收第二节点发送的第七消息,所述第七消息包括非连续传输配 置信息,所述第七消息用于通知所述第三节点所述第二节点根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输,所述第三节点为所述第一节点或所述第二节点的服务站点,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点。
  20. 如权利要求19所述的方法,其特征在于,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
  21. 如权利要求19或20所述的方法,其特征在于,在所述第三节点向第一节点发送第一消息,或者在所述第三节点向第二节点发送第六消息的情况下,所述方法还包括:
    所述第三节点向所述第一节点发送第二消息,所述第二消息用于指示所述第一节点驻留在所述第二节点下或者第一节点进入低配置模式,或者指示所述第一节点进入高配置模式,或者指示所述第一节点接收来自所述第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者触发所述第一节点根据所述非连续传输配置信息进行非连续传输。
  22. 如权利要求19或20所述的方法,其特征在于,在所述第三节点向第一节点发送第一消息,或者所述第三节点向第二节点发送第六消息的情况下,所述方法还包括:
    所述第三节点向所述第二节点发送第八消息,其中
    所述第八消息用于寻呼第一节点;或者
    所述第八消息用于寻呼所述第一节点接入网络;或者
    所述第八消息用于指示所述第二节点接入网络,以便于为所述第一节点提供通信服务;或者
    所述第八消息用于指示所述第二节点寻呼所述第一节点,并为所述第一节点和所述第三节点提供中继服务。
  23. 一种终端设备,其特征在于,所述终端设备为第一节点,所述第一节点包括:输入单元、输出单元、存储单元和处理单元;
    其中,所述存储单元用于存储程序代码,所述处理单元用于调用所述存储单元存储的程序代码执行如下步骤:
    通过所述输入单元接收第一消息,所述第一消息包括非连续传输配置信息;
    通过所述输入单元或所述输出单元,根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
  24. 如权利要求23所述的终端设备,其特征在于,所述处理单元用于根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,具体为:
    根据所述非连续传输配置信息,通过所述输入单元接收所述第二节点发送的消息和/或数据;或者
    根据所述非连续传输配置信息,通过所述输出单元向所述第二节点发送消息和/或数据。
  25. 如权利要求23或24所述的终端设备,其特征在于,所述处理单元还用于:
    通过所述输入单元接收所述第二节点或第三节点发送的第二消息,所述第三节点是所述第一节点或所述第二节点的服务站点,所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续传输。
  26. 一种终端设备,其特征在于,所述终端设备为第二节点,所述第二节点包括:输入单元、输出单元、存储单元和处理单元;
    其中,所述存储单元用于存储程序代码,所述处理单元用于调用所述存储单元存储的程序代码执行如下步骤:
    通过所述输入单元或输出单元,根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点;其中,所述第二节点是为所述第一节点提供中继服务或者为所述第一节点和第三节点提供中继服务的节点,所述第三节点是所述第一节点或所述第二节点的服务站点。
  27. 如权利要求26所述的终端设备,其特征在于,所述处理单元用于根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,具体为:
    根据所述非连续传输配置信息,通过所述输入单元接收所述第一节点发送的消息和/或数据;或者
    根据所述非连续传输配置信息,通过所述输出单元向所述第一节点发送消息和/或数据。
  28. 如权利要求26或27所述的终端设备,其特征在于,所述处理单元用于根据非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输之前,还用于:
    通过所述输出单元向所述第一节点发送第一消息,所述第一消息包括所述非连续传输配置信息,所述第一消息用于指示所述第一节点根据所述非连续传输配置信息与所述第二节点进行设备到设备D2D的非连续传输。
  29. 如权利要求28所述的终端设备,其特征在于,所述处理单元用于向所述第一节点发送第一消息,具体为:
    通过所述输入单元接收第三节点发送的第六消息,并根据所述第六消息向所述第一节点发送第一消息,所述第三节点为所述第一节点或所述第二节点的服务站点;其中,所述第六消息包括非连续传输配置信息,且所述第三节点向所述第一节点发送第一消息,所述第一消息包括所述非连续传输配置信息。
  30. 如权利要求26-29任意一项所述的终端设备,其特征在于,所述处理单元还用于:
    通过所述输出单元向所述第一节点发送第二消息,所述第二消息用于指示所述第一节点驻留在所述第二节点下,或指示所述第一节点处于低配置模式,或指示所述第一节点处于高配置模式,或指示所述第一节点接收来自第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者指示所述第一节点开始根据非连续传输配置进行非连续传输。
  31. 一种基站,其特征在于,所述基站为第三节点,所述第三节点包括:输入单元、输出单元、存储单元和处理单元;
    其中,所述存储单元用于存储程序代码,所述处理单元用于调用所述存储单元存储的程序代码执行如下步骤:
    通过所述输出单元向第一节点发送第一消息,所述第一消息包括非连续传输配置信息,所述第一消息用于所述第一节点根据所述非连续传输配置信息与第二节点进行设备到设备D2D的非连续传输,其中,所述第二节点是根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输的节点;或
    通过所述输出单元向第二节点发送第六消息,所述第六消息包括非连续传输配置信息,所述第六消息用于所述第二节点根据所述非连续传输配置信息与第一节点进行设备到设备D2D的非连续传输,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点;或
    通过所述输入单元接收第二节点发送的第七消息,所述第七消息包括非连续传输配置信息,所述第七消息用于通知所述第三节点所述第二节点根据所述非连续传输配置信息与所述第一节点进行D2D的非连续传输,所述第三节点为所述第一节点或所述第二节点的服务站点,其中,所述第一节点是接收并根据所述非连续传输配置信息与所述第二节点进行D2D的非连续传输的节点。
  32. 如权利要求31所述的基站,其特征在于,在所述第三节点向第一节点发送第一消息,或者在所述第三节点向第二节点发送第六消息的情况下,所 述处理单元还用于:
    通过所述输出单元向所述第一节点发送第二消息,所述第二消息用于指示所述第一节点驻留在所述第二节点下或者第一节点进入低配置模式,或者指示所述第一节点进入高配置模式,或者指示所述第一节点接收来自所述第二节点的寻呼消息,或者指示所述第一节点接收***消息,或者指示所述第一节点接收同步信息,或者触发所述第一节点根据所述非连续传输配置信息进行非连续传输。
  33. 如权利要求31所述的基站,其特征在于,在所述第三节点向第一节点发送第一消息,或者所述第三节点向第二节点发送第六消息的情况下,所述处理单元还用于:
    通过所述输出单元向所述第二节点发送第八消息,其中
    所述第八消息用于寻呼第一节点;或者
    所述第八消息用于寻呼所述第一节点接入网络;或者
    所述第八消息用于指示所述第二节点接入网络,以便于为所述第一节点提供通信服务;或者
    所述第八消息用于指示所述第二节点寻呼所述第一节点,并为所述第一节点和所述第三节点提供中继服务。
  34. 一种通信***,其特征在于,包括:第一终端设备、第二终端设备和基站,其中
    所述第一终端设备为执行如权利要求1-9任意一项所述的方法的第一节点;
    所述第二终端设备为执行如权利要求10-18任意一项所述的方法的第二节点;
    所述基站为执行如权利要求19-22任意一项所述的方法的第三节点。
PCT/CN2016/094712 2016-08-11 2016-08-11 一种通信方法、相关设备及*** WO2018027821A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094712 WO2018027821A1 (zh) 2016-08-11 2016-08-11 一种通信方法、相关设备及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094712 WO2018027821A1 (zh) 2016-08-11 2016-08-11 一种通信方法、相关设备及***

Publications (1)

Publication Number Publication Date
WO2018027821A1 true WO2018027821A1 (zh) 2018-02-15

Family

ID=61161462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094712 WO2018027821A1 (zh) 2016-08-11 2016-08-11 一种通信方法、相关设备及***

Country Status (1)

Country Link
WO (1) WO2018027821A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800894A (zh) * 2019-08-22 2020-10-20 维沃移动通信有限公司 sidelink的DRX配置方法和设备
CN111800893A (zh) * 2019-08-22 2020-10-20 维沃移动通信有限公司 边链路非连续发送、接收方法与装置及终端设备
CN113099518A (zh) * 2020-01-08 2021-07-09 华为技术有限公司 非连续接收drx参数配置方法和装置
CN114223312A (zh) * 2020-06-15 2022-03-22 北京小米移动软件有限公司 数据传输方法、装置、通信设备及存储介质
WO2022217468A1 (zh) * 2021-04-13 2022-10-20 Oppo广东移动通信有限公司 非连续接收方法及相关装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841920A (zh) * 2009-03-17 2010-09-22 华为技术有限公司 一种无线中继***和无线中继***的通信方法
CN102378329A (zh) * 2010-08-16 2012-03-14 华为技术有限公司 实现非连续接收的方法和装置
WO2015170866A1 (en) * 2014-05-06 2015-11-12 Lg Electronics Inc. Method and apparatus for configuring transmission of d2d control information in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841920A (zh) * 2009-03-17 2010-09-22 华为技术有限公司 一种无线中继***和无线中继***的通信方法
CN102378329A (zh) * 2010-08-16 2012-03-14 华为技术有限公司 实现非连续接收的方法和装置
WO2015170866A1 (en) * 2014-05-06 2015-11-12 Lg Electronics Inc. Method and apparatus for configuring transmission of d2d control information in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT ET AL.: "D2D relay and performance analysis", 3GPP TSG-RAN1 MEETING 74 R1- 132992, 23 August 2013 (2013-08-23), XP050716222 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111800894A (zh) * 2019-08-22 2020-10-20 维沃移动通信有限公司 sidelink的DRX配置方法和设备
CN111800893A (zh) * 2019-08-22 2020-10-20 维沃移动通信有限公司 边链路非连续发送、接收方法与装置及终端设备
CN111800893B (zh) * 2019-08-22 2022-06-17 维沃移动通信有限公司 边链路非连续发送、接收方法与装置及终端设备
CN113099518A (zh) * 2020-01-08 2021-07-09 华为技术有限公司 非连续接收drx参数配置方法和装置
CN113099518B (zh) * 2020-01-08 2022-08-09 华为技术有限公司 非连续接收drx参数配置方法和装置
CN114223312A (zh) * 2020-06-15 2022-03-22 北京小米移动软件有限公司 数据传输方法、装置、通信设备及存储介质
CN114223312B (zh) * 2020-06-15 2024-04-30 北京小米移动软件有限公司 数据传输方法、装置、通信设备及存储介质
WO2022217468A1 (zh) * 2021-04-13 2022-10-20 Oppo广东移动通信有限公司 非连续接收方法及相关装置

Similar Documents

Publication Publication Date Title
KR102473025B1 (ko) 불연속 수신(drx)의 구성 방법 및 단말
KR102565567B1 (ko) 포지셔닝 방법 및 단말
WO2018040039A1 (zh) 一种小数据的传输方法、相关设备及***
CN110730504B (zh) 一种寻呼指示方法、装置及***
WO2018027821A1 (zh) 一种通信方法、相关设备及***
WO2021185276A1 (zh) Srs的发送、配置及测量方法、定位方法及设备
CN111615179B (zh) Pdcch监听方法和终端
CN112533235B (zh) 信道监听控制方法和终端
WO2021129507A1 (zh) 唤醒信号配置方法、唤醒信号处理方法及相关设备
CN113382459B (zh) 一种ps-pdcch配置方法、终端设备和网络侧设备
WO2021129508A1 (zh) 唤醒信号处理方法、唤醒信号配置方法及相关设备
WO2021180197A1 (zh) 传输配置方法及电子设备
WO2017201720A1 (zh) 一种***消息的传输方法、相关设备及通信***
EP3547752B1 (en) Cell switching method and terminal device
WO2022021787A1 (zh) 一种天线控制方法、装置及终端设备
CN114375597B (zh) 信号接收方法、信号发送方法及相关设备
JPWO2020140725A5 (zh)
CN115039473A (zh) 一种参考信号传输方法及相关设备
WO2022067544A1 (zh) 一种无线通信方法、终端设备及网络设备
WO2017166161A1 (zh) 一种寻呼方法以及相关设备
WO2020024876A1 (zh) 信息接收方法、信息发送方法、终端及网络侧设备
WO2023123179A1 (zh) 终端设备节能的方法,终端设备、网络设备及存储介质
CN111642034B (zh) 一种数据传输的方法、终端设备以及网络设备
WO2020228614A1 (zh) 检测位置的确定方法、配置方法、终端及网络侧设备
WO2021248376A1 (zh) 一种监听物理下行控制信道pdcch的方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912276

Country of ref document: EP

Kind code of ref document: A1