WO2018027600A1 - 一种tti切换方法和装置 - Google Patents

一种tti切换方法和装置 Download PDF

Info

Publication number
WO2018027600A1
WO2018027600A1 PCT/CN2016/094251 CN2016094251W WO2018027600A1 WO 2018027600 A1 WO2018027600 A1 WO 2018027600A1 CN 2016094251 W CN2016094251 W CN 2016094251W WO 2018027600 A1 WO2018027600 A1 WO 2018027600A1
Authority
WO
WIPO (PCT)
Prior art keywords
tti
carrier
combination
target
mapping relationship
Prior art date
Application number
PCT/CN2016/094251
Other languages
English (en)
French (fr)
Inventor
黄雯雯
张鹏
赵悦莹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/094251 priority Critical patent/WO2018027600A1/zh
Priority to CN201680082810.3A priority patent/CN108702652B/zh
Publication of WO2018027600A1 publication Critical patent/WO2018027600A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a transmission time interval (TTI) switching method and apparatus.
  • TTI transmission time interval
  • the high speed uplink packet access (HSUPA) single carrier technology (hereinafter referred to as single carrier technology) of the universal mobile telecommunications system (UMTS) supports two TTIs, one of which is 2ms (milliseconds) TTI, the other is 10msTTI.
  • the base station can send an instruction (ie, HS-SCCH order) to the user equipment (UE) through a high speed shared control channel (HS-SCCH), thereby implementing TTI for the carrier of the UE.
  • HS-SCCH high speed shared control channel
  • the TTI of the carrier refers to the TTI adopted by the channel on the carrier, and for the UMTS, the channel refers to an enhanced dedicated channel (E-DCH).
  • the dual carrier technology For the HSUPA dual carrier (including the primary carrier and the secondary carrier) technology (hereinafter referred to as the dual carrier technology), only the TTI combination of 2 ms + 2 ms is currently supported, that is, the TTI of both carriers is 2 ms.
  • the 3rd generation partnership project (3GPP) R14 proposed the study of “multi-carrier enhancement”.
  • the dual-carrier technology can also support the following two TTI combinations: 2ms+10msTTI combination, 10ms+10ms. TTI combination. This requires the introduction of new methods to achieve the switching of TTI combinations supported by dual carrier technology.
  • an implementation scheme is proposed in the 3GPP: for the dual carrier technology, an HS-SCCH order is configured for the primary carrier and the secondary carrier, wherein the HS-SCCH order configured for the primary carrier is used for control.
  • the switching of the TTI of the primary carrier, the HS-SCCH order configured for the secondary carrier is used to control the switching of the TTI of the secondary carrier.
  • the 3GPP protocol stipulates that after receiving an HS-SCCH order, the UE needs to send a hybrid to the base station.
  • a hybrid automatic repeat request (HARQ) message is sent to inform the base station whether the UE successfully receives the HS-SCCH order.
  • HARQ hybrid automatic repeat request
  • the base station needs to switch the TTI of the primary carrier and the TTI of the secondary carrier at the same time, it is necessary to send two HS-SCCH orders to the UE, which causes a problem of large signaling overhead; or, if the base station needs to simultaneously When the TTI of the carrier and the TTI of the secondary carrier are switched, the two HS-SCCH orders need to be sent to the UE, and the UE needs to reply to the base station with two HARQ messages, thereby causing a problem of large signaling overhead.
  • Embodiments of the present invention provide a TTI handover method and apparatus to save signaling overhead.
  • a TTI handover method is provided.
  • the system is configured to support a multi-carrier technology.
  • the multi-carrier technology supports at least two TTI combinations.
  • the method may include: receiving, by the UE, a handover instruction sent by the base station; where the handover instruction is used by the UE. Instructing a TTI handover, and the mapping instruction has a mapping relationship with a target TTI combination supported by the multi-carrier technology, where the target TTI combination is one of the at least two TTI combinations; and then, the UE according to the handover instruction and the target The mapping relationship between the TTI combinations determines the target TTI combination.
  • the TTI combination supported by the multi-carrier technology can be understood as: a set of TTIs of each carrier in the multi-carrier; the target TTI combination can be understood as a set of target TTIs of each carrier in the multi-carrier.
  • the handover instruction may be an HS-SCCH order or a coding combination reserved in the HS-SCCH order.
  • the switching instruction may also be a newly defined switching instruction. It can be seen that, in the method, a TTI combination is indicated by a handover instruction, so that the TTI combination supported by the multi-carrier technology is switched, so that when the TTIs of multiple carriers are simultaneously switched, the base station only needs to send to the UE.
  • the UE For a handover command, the UE only needs to reply to the base station with one HARQ message. Therefore, when the handover occurs simultaneously with the TTI of multiple carriers in the prior art, the base station needs to send multiple handover instruction technical solutions to the UE. Can save signaling overhead.
  • the foregoing switching instruction also has a mapping relationship with a target TTI supported by the single carrier technology; wherein the target TTI may be any one of the TTIs supported by the single carrier technology.
  • the UE determines the target TTI combination according to the mapping relationship between the handover command and the target TTI combination, and may include: if the UE adopts the multi-carrier technology, the UE combines with the target TTI supported by the multi-carrier technology according to the handover instruction. A mapping relationship between the target TTI combinations is determined.
  • the switching instruction of the switching TTI combination in the multi-carrier technology multiplexes the switching instruction of switching the TTI in the single carrier technology, so that the type of the switching instruction between the base station and the UE can be reduced, thereby improving the UE. Decoding performance.
  • the specific analysis process can be referred to below. For example, reference can be made to Table 2 below.
  • the foregoing switching instruction also has a mapping relationship with the target TTI supported by the single carrier technology
  • the method may further include: if the UE adopts a single carrier technology, the UE according to the handover instruction and the single carrier
  • the mapping relationship between the target TTIs supported by the technology determines the target TTI.
  • a handover command is only relevant to the single-carrier technology; however, for this possible design (ie, a system that supports both single-carrier and multi-carrier technologies), one handover The instruction is related to the single carrier technology and the multi-carrier technology. Therefore, for the possible design, after receiving the handover instruction, the UE needs to first determine whether it is currently using single carrier technology or multi-carrier technology.
  • a mapping relationship exists between the foregoing switching instruction and a preset current TTI combination, where the preset current TTI combination and the target TTI combination have a mapping relationship, wherein the switching instruction may be associated with one or There is a mapping relationship between multiple preset current TTI combinations, and different preset current TTIs may have a mapping relationship with the same target TTI, or may have a mapping relationship with different target TTI combinations.
  • the switching instruction has a mapping relationship with the first preset current TTI combination (for example, 2ms+2msTTI combination) and the second preset current TTI combination (for example, 2ms+10msTTI combination), and the first preset current TTI Combination and second preset current TTI
  • the UE determines the target TTI combination according to the mapping relationship between the handover command and the target TTI combination, and may include: if the TTI combination adopted by the UE is the preset current TTI combination, according to the preset current TTI The mapping relationship between the combination and the target TTI combination is determined to determine the target TTI combination.
  • the method may further include: the UE transmitting data to the base station by using the target TTI combination on multiple carriers; specifically: the UE is in an active carrier on the multi-carrier, using the target TTI combination
  • the TTI of the active carrier transmits data to the base station.
  • some carriers in the multi-carrier may be in an active state, and other carriers are in an active state; or each carrier in the multi-carrier is in an active state.
  • This possible design provides a specific implementation of TTI switching for carriers in an active state. For a carrier in a deactivated state, its TTI may or may not be switched.
  • a UE for use in a system supporting multi-carrier technology.
  • the multi-carrier technology supports at least two transmission time interval TTI combinations
  • the UE may include: a receiver and a processor.
  • the receiver is configured to receive a handover command sent by the base station, where the handover instruction is used to indicate a TTI handover, and the mapping instruction has a mapping relationship with a target TTI combination supported by the multi-carrier technology; the target TTI combination is at least two types.
  • a processor configured to determine a target TTI combination according to a mapping relationship between the handover instruction and the target TTI combination.
  • the foregoing switching instruction also has a mapping relationship with a target TTI supported by the single carrier technology.
  • the processor may be specifically configured to: if the UE adopts a multi-carrier technology, the UE is configured according to Switching instructions and multi-carrier technology The mapping relationship between the target TTI combinations is determined to determine the target TTI combination.
  • the foregoing switching instruction also has a mapping relationship with the target TTI supported by the single carrier technology
  • the processor may be further configured to: if the UE adopts a single carrier technology, the UE according to the switching instruction and the single The mapping relationship between the target TTIs supported by the carrier technology determines the target TTI.
  • the processor may be specifically configured to: if the TTI combination adopted by the UE is a preset current TTI combination, determine a target TTI combination according to a mapping relationship between the preset current TTI combination and the target TTI combination.
  • the UE may further include: a transmitter, configured to send data to the base station by using a TTI of the active carrier in the target TTI combination on the active carrier in the multi-carrier.
  • the UE provided by the second aspect or any of the possible designs of the second aspect is configured to perform the corresponding TTI switching method provided in the corresponding possible design of the first aspect or the first aspect, and therefore, The beneficial effects achieved can be referred to the benefits of the corresponding possible design of the first aspect or the first aspect, and are not described herein again.
  • a third aspect provides a TTI handover method, where a multi-carrier technology supports at least two TTI combinations, where the multi-carrier includes a primary carrier and at least one secondary carrier.
  • the method includes: the user equipment UE receives the base station.
  • the secondary carrier activation command is sent, wherein the secondary carrier activation command is used to indicate that the secondary carrier is activated, and the secondary carrier activation command has a mapping relationship with the target TTI of the secondary carrier; and the UE uses the secondary carrier activation command and the target TTI of the secondary carrier.
  • a mapping relationship between the target TTIs of the secondary carrier is determined.
  • the UE after receiving the secondary carrier activation, determines the target TTI of the secondary carrier by using a mapping relationship between the secondary carrier activation command and the target TTI of the secondary carrier, and is used in the prior art as each of the multiple carriers.
  • a technical scheme in which one carrier is configured with one handover instruction, and the secondary carrier activation command is separately transmitted from the secondary carrier's TTI handover instruction In contrast, the handover command for the secondary carrier can be saved, thereby saving the handover command for the multi-carrier configuration, thereby saving the number of HARQ messages that the UE replies to the base station, thereby saving signaling overhead.
  • a UE is provided, which is applied to a system supporting multi-carrier technology, where multi-carrier technology supports at least two transmission time interval TTI combinations, and the multi-carrier includes a primary carrier and at least one secondary carrier;
  • the UE may include: a receiver And a processor, where the receiver is configured to receive a secondary carrier activation command sent by the base station, where the secondary carrier activation command is used to indicate that the secondary carrier is activated, and the secondary carrier activation command has a mapping relationship with the target TTI of the secondary carrier.
  • a processor configured to determine a target TTI of the secondary carrier according to a mapping relationship between the secondary carrier activation command and the target TTI of the secondary carrier.
  • the UE provided by the fourth aspect is used to perform the TTI handover method provided by the foregoing third aspect. Therefore, the beneficial effects that can be achieved by the UE can be referred to the beneficial effects of the TTI handover method provided by the third aspect, and details are not described herein again.
  • the fifth aspect provides a TTI handover method, where the multi-carrier technology supports at least two TTI combinations in a system supporting the multi-carrier technology, the method may include: the UE receives the handover instruction sent by the base station in a preset time window, The mapping between the handover command and the target carrier in the multi-carrier; the specific: the UE receives one or more handover commands sent by the base station in a preset time window, where each handover command and one of the multiple carriers There is a mapping relationship between the target carriers for switching the TTI of the target carrier.
  • the UE sends a HARQ message to the base station, where the HARQ message is used to indicate whether the UE successfully receives the handover command received in the preset receiving window, that is, the HARQ message can be used to indicate whether the UE successfully receives the UE.
  • Each switching instruction received within the receiving window is preset.
  • the UE determines the target TTI according to the handover instruction received in the preset time window. It can be seen that, by adopting the concept of a preset time window, the one or more handover instructions received by the UE in a preset time window can be sent to the base station through a HARQ message to indicate whether the UE successfully receives the Multiple switching instructions.
  • the signaling overhead can be saved.
  • the UE sending the HARQ message to the base station may include: the UE sending the HARQ message to the base station when the first preset time period starts from the first moment; wherein, the first moment is that the UE is in advance Set the end of the subframe where the last toggle instruction received in the time window is located.
  • the possible design provides a transmission mechanism of the HARQ message. The specific description and the difference from the transmission mechanism of the HARQ message provided in the prior art can be referred to below. For example, reference may be made to FIG. 6 and FIG. 7.
  • the method may further include: when the second preset time period from the first moment arrives, the UE sends data to the base station by using the target TTI on the target carrier; wherein, the first moment is that the UE is The end of the sub-frame where the last switching instruction was received within the preset time window.
  • the UE transmitting data to the base station by using the target TTI on the target carrier may include: the UE transmitting data to the base station by using the target carrier on the target carrier in the active state.
  • This possible design provides a specific implementation of TTI switching for carriers in an active state. For a carrier in a deactivated state, its TTI may or may not be switched.
  • a UE is provided, which is applied to a system supporting multi-carrier technology.
  • the multi-carrier technology supports at least two transmission time interval TTI combinations, and the UE may include: a receiver, a transmitter, and a processor.
  • the receiver is configured to receive a handover instruction sent by the base station in a preset time window.
  • the mapping instruction has a mapping relationship with the target carrier in the multiple carrier.
  • a transmitter configured to send a HARQ message to the base station, where the HARQ message is used to indicate the base station: whether the UE successfully receives the handover instruction received in the preset receiving window.
  • a processor configured to determine a target TTI according to the switching instruction received within the preset time window.
  • the transmitter may be configured to: when the UE arrives at the first preset time period from the first moment, send the HARQ message to the base station; where the first moment is the UE in the preset time window. The end of the subframe where the last switching instruction received is located.
  • the transmitter may be further configured to: when the second preset time period starts from the first moment, the UE sends the data to the base station by using the target TTI on the target carrier; where the first moment is the UE. The end of the subframe in which the last switching instruction was received within the preset time window.
  • the transmitter may be specifically configured to: send data to the base station by using the target carrier on the target carrier that is in an active state.
  • the UE provided by any of the possible aspects of the sixth aspect or the sixth aspect is configured to perform the corresponding TTI switching method provided in the corresponding possible design of the fifth aspect or the fifth aspect, and therefore,
  • the beneficial effects achieved can be referred to the beneficial effects of the corresponding possible design of the fifth aspect or the fifth aspect, and are not described herein again.
  • the seventh aspect provides a TTI handover method, where the multi-carrier technology supports at least two TTI combinations in a system supporting multi-carrier technology
  • the method may include: determining, by the UE, a target TTI combination; wherein, the target TTI combination is at least two A TTI combination is used in the TTI combination; the UE sends a TTI command to the base station, where the TTI command includes an identifier of the target TTI combination, and is used to indicate that the base station uses the target TTI combination to receive the data sent by the UE on the multiple carriers.
  • the TTI handover method provided by any of the foregoing aspects or the TTI handover method provided in the prior art is determined by the base station to determine the target TTI or the target TTI combination, and then sent to the UE; this aspect provides a target TTI determined by the UE.
  • a method of combining and then transmitting a TTI instruction to a base station It enables flexible switching of TTI combinations in multi-carrier technology.
  • the UE determining the target TTI combination may include: the UE determining the target TTI combination according to the UPH of each carrier in the multi-carrier; wherein, the UPH is the maximum allowed transmit power of the UE and the dedicated physical control channel DPCCH code Powerful ratio.
  • This possible implementation provides a mechanism by which the UE determines the target TTI combination.
  • the multi-carrier may include a primary carrier and at least one secondary carrier; determining, by the UE, the target TTI combination according to the UPH of each carrier in the multiple carrier, may include: receiving, by the UE, the secondary carrier activation command sent by the base station Thereafter, the target TTI of the secondary carrier is determined according to the UPH of the secondary carrier; wherein the secondary carrier activation command is used to activate the secondary carrier.
  • This possible implementation provides a mechanism by which the UE determines the target TTI of the secondary carrier.
  • the UE sending a TTI command to the base station may include: the UE sending a TTI command to the base station through the DPCCH.
  • the UE sending the TTI instruction to the base station by using the DPCCH may include: the UE indicates the target TTI combination by using the bit in the FBI or TFCI transmitted in the DPCCH.
  • a UE which is applied to a system supporting multi-carrier technology.
  • the multi-carrier technology supports at least two TTI combinations, and the UE may include: a processor and a transmitter.
  • the processor is configured to determine a target TTI combination; wherein the target TTI combination is any one of at least two TTI combinations.
  • the transmitter is configured to send a TTI command to the base station, where the TTI command includes an identifier of the target TTI combination, and is used to indicate that the base station uses the target TTI combination to receive the data sent by the UE on the multiple carriers.
  • the processor may be specifically configured to determine a target TTI combination according to an UPH of each carrier in the multi-carrier; wherein, the UPH is a ratio of a maximum allowed transmit power of the UE and a DPCCH code power.
  • the multi-carrier may include a primary carrier and at least one secondary carrier; the UE may further include: a receiver, configured to receive a secondary carrier activation command sent by the base station.
  • the processor may be configured to: after the receiver receives the secondary carrier activation command, determine a target TTI of the secondary carrier according to the UPH of the secondary carrier; where the secondary carrier activation command is used to activate the secondary carrier.
  • the transmitter can be specifically used to: through the DPCCH
  • the base station sends a TTI command.
  • the bits in the FBI or TFCI transmitted in the DPCCH indicate the target TTI combination.
  • a ninth aspect provides a TTI handover method, where the multi-carrier technology supports at least two TTI combinations, and the method includes: the base station receives a TTI command sent by the UE, where the TTI command includes The identifier of the multi-carrier target TTI combination, the target TTI is any one of the at least two TTI combinations; the base station receives the data sent by the UE by using the target TTI combination on the multiple carriers.
  • a tenth aspect provides a base station, which is applied to a system supporting multi-carrier technology, where a multi-carrier technology supports at least two combinations of TTIs, where the base station may include: a receiver and a transmitter, where the receiver is configured to receive the UE.
  • the TTI instruction includes the identifier of the target TTI combination of the multi-carrier, the target TTI is any one of the at least two TTI combinations, and the transmitter is configured to send the UE by using the target TTI combination on the multi-carrier.
  • a UE in another aspect, and the UE may implement the functions performed by the UE in the TTI handover method provided by any one of the foregoing aspects or the first aspect, where the function may be implemented by hardware, or The corresponding software implementation is performed by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the UE includes a processor memory, a system bus, and a communication interface; the processor is configured to support the UE to perform corresponding functions in the above methods.
  • the communication interface is used to support communication between the UE and other network elements (e.g., base stations).
  • the UE may also include a memory for coupling with the processor that stores the necessary program instructions and data for the UE.
  • the communication interface may specifically be a transceiver.
  • the embodiment of the present invention provides a computer storage medium, which is used for storing the computer software instructions corresponding to the TTI switching method provided by any one of the above aspects or the first aspect, which is used for Executing the program corresponding to the above first aspect or any of the possible designs of the first aspect.
  • a UE in another aspect, and the UE may implement the functions performed by the UE in the TTI handover method provided by the foregoing third aspect, and the functions may be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the UE includes a processor, a memory, a system bus, and a communication interface; the processor is configured to support the UE to perform a corresponding function in the above method.
  • the communication interface is used to support communication between the UE and other network elements (e.g., base stations).
  • the UE may also include a memory for coupling with the processor that stores the necessary program instructions and data for the UE.
  • the communication interface may specifically be a transceiver.
  • the embodiment of the present invention provides a computer storage medium for storing computer software instructions corresponding to the TTI switching method provided by the foregoing third aspect, which includes any of the foregoing third or third aspects.
  • a UE in another aspect, and the UE may implement the function performed by the UE in the TTI handover method provided by any one of the foregoing fifth aspect or the fifth aspect, where the function may be implemented by using hardware, or
  • the corresponding software implementation is performed by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the UE includes a processor, a memory, a system bus, and a communication interface; the processor is configured to support the UE to perform a corresponding function in the above method.
  • the communication interface is used to support communication between the UE and other network elements (e.g., base stations).
  • the UE may also include a memory for coupling with the processor that stores the necessary program instructions and data for the UE.
  • the communication interface may specifically be a transceiver.
  • the embodiment of the present invention provides a computer storage medium for storing the computer software instructions corresponding to the TTI switching method provided by any one of the fifth aspect or the fifth aspect, which is used for The program corresponding to any of the possible aspects of the fifth aspect or the fifth aspect described above is executed.
  • a UE in another aspect, and the UE may implement the function performed by the UE in the TTI handover method provided by any one of the foregoing seventh aspect or the seventh aspect, where the function may be implemented by hardware, or The corresponding software implementation is performed by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the UE includes a processor, a memory, a system bus, and a communication interface; the processor is configured to support the UE to perform a corresponding function in the above method.
  • the communication interface is used to support communication between the UE and other network elements (e.g., base stations).
  • the UE may also include a memory for coupling with the processor that stores the necessary program instructions and data for the UE.
  • the communication interface may specifically be a transceiver.
  • the embodiment of the present invention provides a computer storage medium for storing the computer software instructions corresponding to the TTI switching method provided by any one of the seventh aspect or the seventh aspect, which is used for The program corresponding to any of the possible aspects of the seventh aspect or the seventh aspect described above is executed.
  • a base station in another aspect, can implement the function performed by the base station in the TTI handover method provided by any one of the foregoing ninth or ninth aspects, and the function may be implemented by hardware, or The corresponding software implementation is performed by hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the base station includes a processor, a memory, a system bus, and a communication interface; the processor is configured to support the base station to perform corresponding functions in the above methods.
  • the communication interface is used to support communication between the base station and other network elements (e.g., base stations).
  • the base station can also include a memory for coupling with the processor that holds the necessary program instructions and data for the base station.
  • the communication interface may specifically be a transceiver.
  • the embodiment of the present invention provides a computer storage medium for storing the computer software instructions corresponding to the TTI switching method provided by any one of the foregoing ninth or ninth aspects, which is used for Perform the above ninth aspect or Any of the nine aspects of the possible design of the program.
  • any of the UE or base station or computer storage media provided above is used to perform the TTI handover method provided above, and therefore, the beneficial effects that can be achieved can be referred to the corresponding model update provided above.
  • the beneficial effects in the method are not described here.
  • FIG. 1 is a system architecture diagram applicable to a technical solution provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of interaction of a TTI handover method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of interaction of a TTI handover method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of interaction of a TTI handover method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of interaction of a TTI handover method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a sending mechanism of a HARQ message provided by the prior art
  • FIG. 7 is a schematic diagram of a sending mechanism of a HARQ message according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of interaction of a TTI handover method according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the present application provides a TTI handover method and apparatus, which are applied to a system supporting multi-carrier technology, the multi-carrier technology supports at least two TTI combinations; the basic principle of one implementation is: indicating a TTI by a handover instruction Combine to achieve switching of TTI combinations supported by multi-carrier technology, such that TTI over multiple carriers
  • the base station only needs to send a handover command to the UE, and the UE only needs to reply to the base station with one HARQ message. Therefore, in the case of switching with the TTI of multiple carriers in the prior art, The base station needs to save signaling overhead when it needs to send multiple handover instruction technical solutions to the UE.
  • FIG. 1 The system to which the technical solution provided by the present application is applied is as shown in FIG. 1.
  • the system shown in FIG. 1 includes one or more base stations and one or more UEs connected to each base station, wherein FIG. 1 is a
  • the base station connects multiple UEs as an example for description.
  • the system can be various communication systems such as current 2G, 3G, 4G communication systems and next generation communication systems.
  • UMTS Universal Mobile Telecommunications
  • GPRS general packet radio service
  • LTE long term evolution
  • a UE is a terminal device, which may be a mobile terminal device or a non-mobile terminal device.
  • the device is mainly used to receive or send business data.
  • UEs may be distributed in a network, and UEs have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, laptops. Computers, cordless phones, wireless local loop stations, etc.
  • the UE may communicate with one or more core networks via a radio access network (RAN) (ie, an access portion of the wireless communication network), such as exchanging voice and/or data with the radio access network.
  • RAN radio access network
  • a base station is a device deployed in a wireless access network to provide wireless communication functions.
  • a base station is a base transceiver station (BTS)
  • a base station in a 3G network is called a Node B (NodeB)
  • a device providing a base station function in a 4G network includes an evolved Node B (evolved NodeB, eNB)
  • the device providing the function of the base station is an access point (AP).
  • a base station may also be referred to as an access point, a node, a Node B, an evolved Node B, or some other network entity, and may include some or all of the functions of the above network entities.
  • the base station can communicate with the wireless terminal over the air interface. The communication can be through one or more sectors get on.
  • the following is an example in which the technical solution provided by the present application is applied to UMTS as an example.
  • the HSUPA technology in UMTS can support the UE and the base station to perform uplink communication using single carrier technology or multi-carrier technology. It should be noted that the specific examples of the present application are described by taking a multi-carrier as a dual carrier as an example.
  • HSUPA technology can support one or more TTIs.
  • the TTI supported by the single carrier technology may include, but is not limited to, 2 ms TTI, 10 ms TTI, etc.
  • the TTI combination supported by the dual carrier technology may include, but is not limited to, 2 ms + 2 ms TTI combination, 2 ms + 10 ms TTI combination, 10 ms + 10 ms TTI combination, and the like.
  • the 2ms+10ms TTI combination can have two meanings. One indicates that the TTI on the primary carrier is 2ms, and the TTI on the secondary carrier is 10ms. The other indicates that the TTI on the primary carrier is 10ms, and the TTI on the secondary carrier is 2ms.
  • a combination of 2ms+10msTTI is pre-agreed between the base station and a certain UE to indicate one or both of these two meanings.
  • the 10ms+2ms TTI combination may also be considered as: the TTI of the primary carrier is 10 ms, the TTI of the secondary carrier is 2 ms, and the TTI of the primary carrier is 2 ms, and the TTI of the secondary carrier is 10 ms. +10msTTI combination representation.
  • the primary carrier refers to the uplink primary carrier, and specifically: if the UE adopts the single carrier technology, the carrier used by the UE is the primary carrier; if the UE adopts the multi-carrier technology, then the uplink primary carrier refers to the associated HS-DSCH cell.
  • the secondary carrier refers to an uplink secondary carrier, and specifically refers to a carrier used by the E-DCH of the serving E-DCH cell associated with the secondary serving HS-DSCH cell. If the UE adopts multi-carrier technology, which carrier is used as the primary carrier and which carrier is used as the secondary carrier is indicated by the upper layer.
  • multi-carrier technology can support one TTI combination or a fixed number of TTI combinations.
  • the dual carrier technology can support only 2ms + 2ms TTI combination, and can also support 2ms + 2ms TTI combination and 2ms + 10ms TTI combination.
  • the UEs in the same base station may send data to the base station by using a single carrier technology, or may transmit data to the base station by using a multi-carrier technology.
  • the different UEs using the single carrier technology may use different TTIs to send data to the base station, and adopt multi-carrier.
  • Different UEs of the technology can transmit data to the base station using different TTIs on different carriers.
  • a plurality of in the present application means two or more.
  • First, “second”, etc. are for the sake of clarity and are not to be construed as limiting.
  • "And/or” is merely an association relationship describing the associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, A and B exist simultaneously, and B exists separately.
  • the character "/" in this article generally indicates that the contextual object is an "or” relationship.
  • the TTI of the carrier refers to the TTI used by the channel on the carrier.
  • the channel refers to the E-DCH.
  • the “secondary carrier” in this application refers to the secondary carrier in the uplink direction.
  • FIG. 2 is a schematic diagram of interaction of a TTI handover method according to an embodiment of the present invention.
  • the method shown in FIG. 2 can be applied to a system supporting multi-carrier technology, and the multi-carrier technology supports at least two TTI combinations.
  • the method shown in Figure 2 can include:
  • the base station sends a handover instruction to the UE, where the handover instruction is used to indicate a TTI handover, and the handover instruction has a mapping relationship with a target TTI combination supported by the multi-carrier technology, where the target TTI combination is supported by the multi-carrier technology.
  • a TTI combination The base station sends a handover instruction to the UE, where the handover instruction is used to indicate a TTI handover, and the handover instruction has a mapping relationship with a target TTI combination supported by the multi-carrier technology, where the target TTI combination is supported by the multi-carrier technology.
  • a TTI combination is mapped to the target TTI combination supported by the multi-carrier technology.
  • the base station may send a handover instruction to the UE on the HS-SCCH.
  • the handover instruction is an HS-SCCH order in the following, or may be a coding combination reserved in the HS-SCCH order.
  • the switching instruction may also be a newly defined switching instruction.
  • the base station in S101 may be any one of the base stations in the system; the UE in S101 may be any one of the UEs in the base station.
  • the specific implementation manner of the method for generating a handover instruction by the base station and triggering the transmission of the handover instruction to the UE is not limited.
  • the base station may pre-store a mapping relationship set formed by a mapping relationship between each switching instruction and each TTI combination; and then, according to the UPH reported by the UE, select a target TTI combination and an uplink carrier technology and/or a capability of the UE, and based on the mapping.
  • the relationship set determines a handover instruction corresponding to the target TTI combination, and sends the handover instruction to the UE.
  • the PDPCCH is the power at which the UE transmits the DPCCH.
  • S102 The UE receives a handover instruction sent by the base station.
  • the UE receives the handover instruction sent by the base station on the HS-SCCH.
  • S103 The UE determines a target TTI combination according to a mapping relationship between the handover command and the target TTI combination.
  • the UE may pre-store the mapping relationship set formed by the mapping relationship between each switching instruction and each TTI combination, so that after the UE receives the switching instruction, the TTI corresponding to the switching instruction may be queried in the mapping relationship set.
  • Combination ie target TTI combination.
  • the method may further include: S104: the UE sends the data to the base station by using the target TTI combination on the multiple carriers. Specifically, after correctly receiving the handover instruction (that is, successfully decoding the handover instruction), the UE transmits the data to the base station by using the target TTI combination on multiple carriers. For example, the UE transmits data to the base station using the target TTI combination on the multi-carrier E-DCH.
  • the TTI handover method provided by the embodiment of the present invention is applied to a system supporting multi-carrier technology, and the multi-carrier technology can support at least two TTI combinations, and the method adopts one
  • the handover command indicates a TTI combination, so as to implement handover of the TTI combination supported by the multi-carrier technology, so that in the case that the TTIs of the multiple carriers are simultaneously switched, the base station only needs to send a handover command to the UE, and the UE only needs to It is sufficient to reply to the base station with one HARQ message. Therefore, in the case of the handover of the TTIs of the multiple carriers in the prior art, the base station needs to save multiple signaling instructions to the UE, which can save signaling overhead.
  • the S104 may include: the UE sends the data to the base station by using the TTI of the active carrier in the target TTI combination on the carrier in the active state in the multi-carrier.
  • part of the multiple carriers may be in an active state, and other carriers are in an active state; or each of the multiple carriers is in an active state.
  • the UE may only switch the TTI of the carrier in the activated state; for the carrier in the deactivated state, the UE may not perform the TTI handover, so that when these are in After the deactivated carrier is activated, the UE still sends data to the base station according to the original TTI on these carriers; or, for the carrier in the deactivated state, the UE can perform TTI handover, so that when these are deactivated After the carrier is activated, the UE transmits data to the base station using the switched TTI on these carriers.
  • the TTI of the primary carrier and the secondary carrier are both 2 ms and the target TTI is combined to be 10 ms+10 ms.
  • the UE can only use the primary carrier.
  • the TTI is switched from 2ms to 10ms, that is, the UE transmits data to the base station by using the 10ms TTI on the primary carrier, so that after the secondary carrier is activated, the UE still uses the 2ms TTI to send data to the base station on the secondary carrier; or, in this case, the UE
  • the TTI of the primary carrier and the secondary carrier can be switched from 2 ms to 10 ms.
  • the UE transmits data to the base station by using the 10 ms TTI on the primary carrier, and after the secondary carrier is activated, the UE transmits data to the base station at the secondary carrier 10 ms TTI.
  • the handover instruction in S101 is also related to the target TTI supported by the single carrier technology.
  • S103 may include:
  • the UE determines a target TTI combination according to a mapping relationship between the handover command and a target TTI combination supported by the multi-carrier technology.
  • the base station and the UE may pre-store a first mapping relationship set formed by a mapping relationship between each switching instruction and each TTI supported by the single carrier technology, and each TTI combination supported by each switching instruction and the multi-carrier technology. A mapping relationship between the second mapping relationship set.
  • the base station and the UE may save the first mapping relationship set and the second mapping relationship set as two mapping relationship sets, or may use the first mapping relationship set and the second mapping relationship set as one mapping relationship set. save.
  • the base station transmits an HS-SCCH order to the UE through the HS-SCCH; the UE switches the current TTI according to the received HS-SCCH order and Table 1.
  • the HS-SCCH order can contain the following fields:
  • Order type (3bits) (command type: xodt, 1, xodt, 2, xodt, 3;
  • the UE When the TTI switching in the single-carrier technology is implemented in Table 1, since a switching instruction (ie, a coding combination) in Table 1 has a mapping relationship with only one carrier technology (ie, a single carrier technology), the UE is in a After receiving the HS-SCCH order, it is not necessary to determine which carrier technology the UE uses, and the TTI after the handover can be directly determined. However, in this optional implementation, since a switching instruction can be mapped to multiple carrier technologies (for example, single carrier technology and multi-carrier technology), in specific implementation, the UE needs to determine the adopted Whether it is a single carrier technique or a multi-carrier technique, thereby determining which mapping relationship is represented by the handover instruction.
  • a switching instruction ie, a coding combination
  • the HS-SCCH order is used as an example, and the specific implementation manner and related description of the HS-SCCH order in the optional implementation may be as shown in Table 2.
  • Table 2 is an example in which the dual carrier technology supports a combination of 2 ms + 2 ms TTI and 2 ms + 10 ms TTI to form a TTI combination.
  • the switching instruction can be 11011000 or 11011001.
  • Table 2 there is a mapping relationship between the handover command 11011000 and the "switch from 2ms TTI to 10ms TTI" in the single carrier technology, and there is a mapping relationship between the target TTI and the target TTI in the dual carrier technology, specifically 2ms + 10msTTI.
  • mapping relationship between the handover command 11011001 and the "switch from 10ms TTI to 2ms TTI” in the single-carrier technology and there is a mapping relationship between the target TTI and the target TTI in the dual-carrier technology, specifically 2ms+2msTTI.
  • the target TTI combination determined by the UE is a 2ms+10msTTI combination; if the handover command is 11011001, and the UE adopts dual-carrier technology, the UE determines the target.
  • the TTI combination is a 2ms + 2ms TTI combination.
  • the switching instruction of the switching TTI combination in the multi-carrier technology multiplexes the switching instruction of switching the TTI in the single carrier technology, so that the type of the switching instruction between the base station and the UE can be reduced, thereby improving The decoding performance of the UE.
  • the specific reason is as follows: In actual implementation, in S101, the base station needs to encode the handover instruction before sending the handover instruction to the UE; correspondingly, in S102, the handover instruction received by the UE is substantially the coded handover instruction. The UE needs to decode the encoded switching instruction before obtaining the switching instruction. However, the more types of handover instructions, after the UE receives the encoded handover instruction, the decoded handover instruction is decoded into another cut.
  • the type of handover instruction between the base station and the UE can be reduced, thereby improving the decoding performance of the UE.
  • the foregoing switching instruction further has a mapping relationship with the target TTI supported by the single carrier technology.
  • the method may further include:
  • S105 If the UE adopts a single carrier, the UE determines a target TTI according to a mapping relationship between the handover command and a target TTI supported by the single carrier technology.
  • the method may further include: S106: the UE transmits data to the base station by using the target TTI on a single carrier. For example, the UE transmits data to the base station using the target TTI on the E-DCH of the single carrier.
  • the 2ms TTI (ie, the current TTI) is switched to 10ms TTI, that is, the subsequent UE transmits data to the base station by using the 10ms TTI; if the UE receives the HS-SCCH order is 0001001 Then, the 10ms TTI (ie, the current TTI) is switched to the 2ms TTI, that is, the subsequent UE transmits data to the base station by using the 2ms TTI.
  • a mapping relationship exists between the switching instruction and the preset current TTI combination, and a mapping relationship between the current TTI combination and the target TTI combination is preset.
  • the S103 may include: if the TTI combination currently adopted by the UE is a preset current TTI combination, determining a target TTI combination according to a mapping relationship between the preset current TTI combination and the target TTI combination.
  • the switching instruction may have a mapping relationship with one or more preset current TTI combinations, and different preset current TTIs may have a mapping relationship with the same target TTI, or may be combined with different target TTI combinations. There is a mapping relationship.
  • the “preset current TTI combination” in the optional implementation manner may be any preset current TTI combination that has a mapping relationship with the switching instruction.
  • Table 3 An example in which the switching instruction is an HS-SCCH order, and a mapping relationship between the switching instruction and a preset current TTI is as shown in Table 3, wherein Table 3 The description is based on the case where the dual carrier technology supports the combination of 2ms+2msTTI and 2ms+10msTTI. It should be noted that the following Tables 3 to 7 are all examples of switching instructions in the single carrier technique shown in Table 1 by switching instruction multiplexing (including partial multiplexing or full multiplexing) in the multi-carrier technique. .
  • the switching instruction is an HS-SCCH order
  • an example of a mapping relationship between the switching instruction and a preset current TTI is shown in Table 4.
  • the table 4 supports the 2ms+2msTTI with dual carrier technology. Combination, 2ms+10msTTI combination and The 10ms+10msTTI combination is described as an example.
  • Table 4 the description of a specific example of the mapping relationship between the switching instruction and the preset current TTI combination, and the mapping relationship between the current TTI combination and the target TTI combination may be referred to the description about the specific example of Table 3, I won't go into details here. It should be noted that some of the handover instructions in the multi-carrier technology in Table 4, for example, the handover instruction 11011000 and the handover instruction 11011001, multiplex the handover instruction in the single carrier technology; another part of the handover instruction uses the single carrier technology. Reserve a combination of codes.
  • the handover command is an HS-SCCH order
  • an example of a mapping relationship between a handover command and a plurality of preset current TTIs is shown in Table 5, wherein Table 5 supports dual-carrier technology for 2ms+2msTTI. The combination and the combination of 2ms + 10ms TTI are described as an example.
  • the switching instruction 11011000 is combined with two preset current TTIs, and the 2ms+2msTTI combination and the 2ms+10msTTI combination have a mapping relationship; and the 2ms+2msTTI combination (that is, the preset current TTI combination) and the 2ms+10msTTI There is a mapping relationship between the combination (ie, the target TTI combination), and there is a mapping relationship between the 2ms+10msTTI combination (ie, the preset current TTI combination) and the 2ms+2msTTI combination (ie, the target TTI combination). It should be noted that Table 5 is described by taking the handover command 11011000 in the single-carrier technology of the handover instruction multiplexing in the multi-carrier technology as an example.
  • the HS-SCCH order is used as an example, and an example of a mapping relationship between a handover command and a plurality of preset current TTIs is shown in Table 6.
  • the table 6 supports dual-carrier technology for 2ms+2msTTI.
  • the combination, 2ms+10msTTI combination and 10ms+10msTTI combination are taken as an example for description.
  • the handover instruction 11011000 is combined with three preset current TTIs, and the 2ms+2msTTI combination, the 2ms+10msTTI combination, and the 10ms+10msTTI combination have a mapping relationship; and the 2ms+2msTTI combination (ie, the preset current TTI combination) There is a mapping relationship between the 2ms+10msTTI combination (ie, the target TTI combination), and the mapping relationship between the 2ms+10msTTI combination (that is, the preset current TTI combination) and the 2ms+2msTTI combination (ie, the target TTI combination) exists, 10ms+10msTTI There is a mapping relationship between the combination (ie, the preset current TTI combination) and the 2ms+10ms TTI combination (ie, the target TTI combination).
  • the switching instruction 11011001 is combined with three preset current TTIs, and the 2ms+2msTTI combination, the 2ms+10msTTI combination, and the 10ms+10msTTI combination have a mapping relationship; and the 2ms+2msTTI combination (that is, the preset current TTI combination) and the 10ms+10msTTI There is a mapping relationship between the combinations (ie target TTI combinations), 2ms+10msTTI combination (ie There is a mapping relationship between the preset current TTI combination and the 10ms+10ms TTI combination (ie, the target TTI combination), and there is a mapping between the 10ms+10msTTI combination (ie, the preset current TTI combination) and the 2ms+2msTTI combination (ie, the target TTI combination). relationship.
  • the handover command is an HS-SCCH order
  • an example of a mapping relationship between the handover command and a plurality of preset current TTIs is shown in Table 7.
  • the dual carrier technology supports 2ms+2msTTI. The combination, the 2ms+10msTTI combination, the 10ms+2msTTI combination, and the 10ms+10msTTI combination are described as an example.
  • the multi-carrier technology is an example of a dual-carrier technology. It can be understood that, in actual implementation, if the multi-carrier technology includes three carriers or three or more carriers, the switching instruction in the multi-carrier technology can also multiplex the switching instructions in the above tables. Includes 3 carriers in multi-carrier technology In a system of three or more carriers, if all the codes in the above tables are insufficient to indicate a mapping relationship between each type of handover command and TTI combination handover (for example, switching from 2 ms + 10 ms TTI combination to 10 ms + 10 ms TTI combination), It can be achieved by adding a combination of codes.
  • FIG. 4 is a schematic diagram of interaction of a TTI handover method according to an embodiment of the present invention.
  • the method shown in FIG. 4 is applied to a system supporting multi-carrier technology.
  • the multi-carrier technology supports at least two TTI combinations, and the multi-carrier includes a primary carrier and at least one secondary carrier; the method may include the following steps S201-S204:
  • the base station sends a secondary carrier activation command to the UE, where the secondary carrier activation command is used to indicate that the secondary carrier is activated, and the secondary carrier activation command has a mapping relationship with the TTI of the secondary carrier.
  • the base station may send a secondary carrier activation command to the UE on the HS-SCCH; in this case, the secondary carrier activation command may be the HS-SCCH order in the above.
  • the HS-SCCH order may have many functions, such as the function of switching the TTI (see the above embodiments); and the function of activating/deactivating the secondary carrier.
  • the TTI is switched by the HS-SCCH order indication; in this embodiment, the secondary carrier activation/deactivation is indicated by the HS-SCCH order, specifically, the switching function of the secondary carrier state.
  • the base station in S201 may be any one of the base stations in the system; the UE in S201 may be any one of the UEs in the base station.
  • the specific implementation manner of the method for generating a secondary carrier activation command by the base station and triggering the transmission of the secondary carrier activation command to the UE is not limited.
  • the base station may select the TTI of the secondary carrier according to the UPH message reported by the UE, and then obtain the secondary carrier activation command in the process of activating the secondary carrier according to the mapping relationship between the secondary carrier activation command and the TTI of the secondary carrier, and then send the UE to the UE.
  • the secondary carrier activation command is sent.
  • the difference between the UPH in this embodiment and the UPH in the foregoing is that the P DPCCH used in the UPH in this embodiment is the initial power of the UE to transmit the DPCCH.
  • the following four directions are used as an example to activate/deactivate the secondary carrier.
  • the specific implementation and description of the HS-SCCH order can be as shown in Table 8, where Table 8 includes the mapping relationship between the secondary carrier activation command and the TTI of the secondary carrier.
  • the secondary carrier activation command may be any one of the following coding combinations: 01 001 011, 01 001 101, 01 010 000, 01 010 011, 01 010 100, 01 010 101, 01 010 110, 01 010 111.
  • S202 The UE receives a secondary carrier activation command sent by the base station.
  • the UE may receive the secondary carrier activation command sent by the base station on the HS-SCCH.
  • S203 The UE determines a target TTI of the secondary carrier according to a mapping relationship between the secondary carrier activation command and the target TTI of the secondary carrier.
  • the target TTI of the secondary carrier determined by the UE is 2 ms TTI; when the secondary carrier activation command is 01010100, 01010101, 01010110, In any of 01010111, the target TTI of the secondary carrier determined by the UE is 10 ms TTI.
  • the method may further include: S204: the UE activates the secondary carrier according to the secondary carrier activation command, and sends the data to the base station by using the determined TTI on the secondary carrier.
  • the UE activates the secondary carrier according to the secondary carrier activation command, and when the determined TTI is 2 ms TTI, the UE transmits data to the base station by using the 2 ms TTI on the secondary carrier, and the base station receives the data sent by the UE by using the 2 ms TTI on the secondary carrier.
  • the UE transmits data to the base station by using the 10 ms TTI on the secondary carrier, and the base station receives the data sent by the UE by using the 10 ms TTI on the secondary carrier.
  • the four carriers are used in the downlink direction, and the secondary carriers in the uplink direction support 2ms TTI and 10 ms TTI as an example.
  • the secondary carrier may also support other TTIs, or in the downlink direction.
  • more than 4 carriers e.g., 8 carriers
  • the bits of the secondary carrier activation command For example, when the HS-SCCH order uses type 1 (ie type 1), the New Data indicator (1 bit) field can be used; when HS-SCCH When order is type3 or type4, the Transport-block size information (6bits) field can be used.
  • the UE uses the mapping relationship between the secondary carrier activation command and the TTI of the secondary carrier, and the target TTI of the secondary carrier is compared with that in the prior art.
  • Each carrier in the carrier is configured with one handover command, and the secondary carrier activation command can save the handover instruction for the secondary carrier compared to the technical solution that the TTI handover instruction of the secondary carrier is separately transmitted, thereby saving the handover instruction configured for multiple carriers.
  • the number of HARQ messages that the UE replies to the base station is saved to save signaling overhead.
  • the flexibility of the secondary carrier TTI handover method is higher than that of the scheme of switching the secondary carrier TTI provided below, and the effective time of the TTI configuration process is saved.
  • the TTI of the secondary carrier may be switched in the following manner: the initial state of the secondary carrier is a deactivated state, and the TTI is 2 ms when the active state is switched to the active state; if the secondary carrier is in a non-initial state, The UE saves the TTI configuration before the deactivation, and maintains the TTI configuration before the previous deactivation when the switch to the active state, that is, if the TTI before the deactivation is 10 ms, the TTI of the next secondary carrier activation is still 10 ms; The TTI before deactivation is 2ms, then the TTI of the next secondary carrier activation is still 2ms.
  • the TTI of the secondary carrier in the active state is affected by the TTI of the secondary carrier in the last active state, so the method has limitations and cannot be flexibly configured; and the method needs to pass after the secondary carrier is activated.
  • a handover command can switch the TTI of the secondary carrier, and the UE has an effective time when performing any operation, including the secondary carrier activation and the TTI handover. Therefore, the TTI handover process takes effect longer.
  • the secondary carrier activation command and the handover instruction may be represented by an HS-SCCH order.
  • the UE needs to send a HARQ message to the base station after receiving each HS-SCCH order, to notify Base station: whether the UE successfully receives the HS-SCCH order; that is, if the UE receives the secondary transmission sent by the base station.
  • the wave activation command and the handover instruction for switching the TTI of the secondary carrier the UE needs to reply to the base station with two HARQ messages.
  • the UE only needs to reply to the base station with one HARQ message, thereby saving signaling overhead.
  • FIG. 5 it is an interaction diagram of another TTI handover method provided by an embodiment of the present invention.
  • the method shown in FIG. 5 is applied to a system supporting multi-carrier technology, and the multi-carrier technology supports at least two TTI combinations.
  • the handover instruction in this embodiment may be the HS-SCCH order in the above, and the related description may refer to the above.
  • the method can include:
  • S301 The base station sends a handover instruction to the UE. There is a mapping relationship between the handover command and the target carrier in the multi-carrier.
  • the base station sends one or more handover instructions to the UE, where each handover instruction has a mapping relationship with a target TTI of one carrier, or “switches from the current TTI to the target TTI” for each handover instruction and one carrier. There is a mapping relationship between them (as shown in Table 1).
  • one handover instruction may be configured for each carrier of the multiple carriers.
  • one HS-SCCH order is configured for the primary carrier and the secondary carrier, where the primary carrier is configured.
  • the HS-SCCH order is used to control the handover of the TTI of the primary carrier
  • the HS-SCCH order configured for the secondary carrier is used to control the handover of the TTI of the secondary carrier.
  • the base station may send the handover instruction 1 to the UE at time t1, and send the handover instruction 2 to the UE at time t2; wherein the handover instruction 1 and the "from 2 ms TTI to 10 ms TTI" of the primary carrier are between There is a mapping relationship, and there is a mapping relationship between the handover instruction 2 and the "switch from 10 ms TTI to 2 ms TTI" of the secondary carrier.
  • S302 The UE receives the handover instruction sent by the base station in a preset time window.
  • the UE receives one or more handover instructions sent by the base station within a preset time window.
  • the preset time window may be a certain period of time after the UE receives a handover instruction (which may be an HS-SCCH order example) (for example, X time slots or Subframe or millisecond, etc.; or, may be a certain period of time from the moment when the UE receives the handover instruction (the example may be HS-SCCH order), in which case the preset time window includes the UE receiving the first one The time to switch instructions.
  • the embodiment of the present invention does not limit the size of the preset time window. In actual implementation, the size of the preset time window may be determined according to factors such as the delay allowed by the UE.
  • S303 The UE sends a HARQ message to the base station to indicate to the base station whether the UE successfully receives the handover instruction received in the preset receiving window.
  • the HARQ message in S303 can be expressed as: 11; If the UE successfully receives the handover instruction 1 and does not successfully receive the handover instruction 2, the HARQ message may be expressed as: 10.
  • a HARQ message is used to indicate whether the UE successfully receives an HS-SCCH order, including a HARQ-ACK (acknowledgement) message and a HARQ-NACK (Non-acknowledgement).
  • a HARQ message is used to indicate whether the UE successfully receives all HS-SCCH orders received within a preset time window.
  • S304 The UE determines the target TTI according to the handover instruction received in the preset time window.
  • the target TTI corresponding to each handover instruction is determined. Based on the example in S301, the UE needs to determine the target TTI (ie, 10 ms) of the primary carrier and the target TTI (ie, 2 ms) of the secondary carrier.
  • the UE may determine, after successfully receiving all the handover instructions received within the preset time window, the target corresponding to each handover instruction. TTI.
  • the method can also The method includes: if the UE does not successfully receive any one or more of the plurality of switching instructions received in the preset time window, then executing S304, that is, in this case, receiving the preset time window All switching instructions do not take effect.
  • the UE may determine the one or more after successfully receiving one or more handover instructions received within the preset time window.
  • the target TTI corresponding to the switching instruction if the UE does not successfully receive one or more handover instructions received within the preset time window, the one or more handover instructions are not valid.
  • the method may further include: S305: the UE sends the data to the base station by using the target TTI on the target carrier. Specifically, if the UE receives multiple handover commands within a preset time window, and the multiple handover instructions are used to switch TTIs of multiple carriers, in S304, the target TTI determined by the UE is determined in S302. A target TTI of each of the plurality of carriers; in this case, in S305, the UE transmits data to the base station using the target TTI of the carrier on each of the plurality of carriers.
  • one or more handover instructions received by the UE in a preset time window may be sent to the base station through a HARQ message, Indicates whether the UE successfully receives the plurality of handover instructions.
  • the signaling overhead can be saved compared with the prior art UE transmitting a HARQ message to the base station after receiving each handover instruction.
  • the S303 may include: sending, by the UE, a HARQ message to the base station when the first preset time period starts from the first time; wherein, the first time is at least two UEs received by the UE in the preset time window. The end of the subframe where the last toggle instruction in the switch instruction is located.
  • the base station may send the HS-SCCH order for the primary carrier or the HS-SCCH order for the secondary carrier to the UE at different times, so that the base station needs to receive the HARQ message sent by the UE at different times;
  • HS-SCCH In order for the base station to know which HS-SCCH order response the received HARQ message is for, HS-SCCH
  • HS-PDSCH high speed physical downlink shared channel
  • the UE starts to try to receive the data of the HS-PDSCH (ie, the start of the 0th subframe of the HS-PDSCH) in the 2 slots after the start of the subframe where the HS-SCCH order is received, in the
  • FIG. 6 it is a schematic diagram of a sending mechanism of a HARQ message provided in the prior art.
  • 6 is an example of an HS-SCCH order control uplink primary carrier of an HS-DSCH serving cell, and an HS-SCCH order control uplink secondary carrier of an HS-DSCH secondary serving cell as an example.
  • the HS-DSCH serving cell can be understood as The downlink primary carrier
  • the HS-DSCH secondary serving cell can be understood as a downlink secondary carrier.
  • the UE starts receiving the HS-SCCH order for the primary carrier at the beginning of the 0th subframe of the HS-SCCH of the primary carrier, at the beginning of the first subframe of the HS-SCCH of the secondary carrier.
  • the HS-DPCCH in FIG. 6 is an abbreviation of High Speed dedicated physical control channel, which is used to indicate that the UE sends a HARQ message to the base station on the HS-DPCCH.
  • This optional implementation provides a new mechanism for sending HARQ messages. For example, based on the example shown in FIG. 6, under the sending mechanism, the UE receives the start of the subframe where the last HS-SCCH order is located within a preset time window (ie, the beginning of the HS-SCCH subframe) When about 12.5 slots are followed, a HARQ message is sent to the base station, as shown in FIG.
  • the S305 may include: when the second preset time period starts from the first time, the UE sends the data TTI to the base station by using the target TTI on the target carrier; The first moment is the end of the subframe where the last one of the at least two handover instructions received by the UE within the preset time window is located.
  • the TTI handover effective time includes two parts: the activation time (configured by the upper layer) and the time of the TTI reconfiguration.
  • the activation time is changed from the beginning of the first E-DCH frame after the last handover instruction (for example, HS-SCCH order) in the preset reception window (ie, the first moment) a period of time at which the timing starts (ie, the second preset time period); for example, if the end of the subframe of the last HS-SCCH order is within the 0th E-DCH subframe, the UE is at the 1st The start of the E-DCH subframe begins.
  • the UE after receiving the handover instruction (for example, HS-SCCH order), the UE transmits data by using a new TTI after the TTI handover effective time.
  • the TTI handover effective time includes two parts: the activation time (configured by the upper layer) and the time of the TTI reconfiguration.
  • the activation time is a period of time from when the UE receives the HS-SCCH order (ie, at the end of the subframe receiving the HS-SCCH order); the TTI reconfiguration time is another period after the activation time (generally 20 ms) .
  • the S305 may include: the UE sends the data to the base station by using the target carrier on the target carrier that is in an active state.
  • the UE may determine, according to the handover instruction received in the preset time window, a target TTI of the carrier corresponding to the handover instruction received in the preset time window, and then The current TTI of the active state carrier is switched to the target TTI; in addition, for the carrier in the deactivated state among the carriers, the UE may perform TTI handover without performing TTI handover.
  • the UE may perform TTI handover without performing TTI handover.
  • FIG. 8 is a schematic diagram of interaction of another TTI handover method according to an embodiment of the present invention.
  • the method shown in FIG. 8 is applied to a system supporting multi-carrier technology.
  • the multi-carrier technology supports at least two TTI combinations, and the method may include the following steps:
  • the UE determines a target TTI combination, where the target TTI combination is any one of the at least two TTI combinations.
  • the UE in S401 may be any UE in the system.
  • the UE sends a TTI command to the base station, where the TTI command includes an identifier of the target TTI combination, and is used to indicate that the base station receives the data sent by the UE by using the target TTI combination on multiple carriers.
  • the base station in S402 refers to the base station to which the UE in S401 is connected.
  • the identifier of the target TTI combination may be “00”; when the target TTI combination is a 2ms+10msTTI combination, the identifier of the target TTI combination may be “01”; when the target TTI When the combination is 10ms+10ms, the identifier of the target TTI combination may be "10".
  • the specific implementation time is not limited thereto, and the bit occupied by the identifier of the target TTI combination may be determined according to the total number of TTI combinations supported by the system.
  • S403 The UE sends data to the base station by using the target TTI combination on multiple carriers.
  • the UE in S402, sends a TTI command to the base station through the control channel; in S404, the UE sends data to the base station through the data channel; and, generally, the UE first sends an instruction to send data, and therefore, may perform first.
  • S402 performs S403 again, and S403 may also be executed during the process of executing S402.
  • the base station receives the TTI command sent by the UE, and receives the data sent by the UE by using the target TTI combination.
  • the UE determines and transmits a target TTI combination to the base station, thereby implementing flexible configuration of the TTI combination in the multi-carrier technology.
  • S401 may include: determining, by the UE, a target TTI combination according to an UPH of each carrier in the multiple carriers.
  • the UPH refers to the ratio of the maximum allowed transmit power of the UE to the DPCCH code power of the dedicated physical control channel.
  • the process of acquiring the UPH by the UE and the specific implementation manner of obtaining the UPH under the triggering condition are not limited.
  • the UPH may be acquired according to any method provided in the prior art.
  • the explanation of the volume can be referred to above.
  • a specific implementation manner in which the UE determines the target TTI combination according to the UPH may be similar to the specific implementation manner in which the base station in the prior art determines the target TTI combination according to the UPH, and details are not described herein again.
  • the multi-carrier includes a primary carrier and at least one secondary carrier. Further, the UE determines the target TTI combination according to the UPH of each carrier in the multiple carrier, and may include: the UE sends the received by the base station. After the secondary carrier activation command, the target TTI of the secondary carrier is determined according to the UPH of the secondary carrier; wherein the secondary carrier activation command is used to activate the secondary carrier.
  • the target TTI combination is composed of TTIs of each carrier in the multi-carrier; this further optional implementation provides a trigger mechanism for determining the target TTI of the secondary carrier.
  • the method may further include: the UE activates the secondary carrier according to the secondary carrier activation command.
  • the UE transmits the data to the base station by using the target secondary carrier on the secondary carrier.
  • S402 may include: the UE sends a TTI instruction to the base station by using the DPCCH. Further optionally, the bits in the feedback information (FBI) or the transport format combination indicator (TFCI) transmitted by the UE in the DPCCH indicate the target TTI combination.
  • FBI feedback information
  • TFCI transport format combination indicator
  • the UE or the base station includes hardware structures and/or software modules corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the modules and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiment of the present invention may perform a function module on a UE or a base station according to the foregoing method example.
  • the division of the blocks for example, can divide each functional module for each function, or integrate two or more functions into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 9 shows a schematic structural diagram of a UE 9.
  • the UE 9 may be the UE involved in the above method (for example, the methods shown in FIGS. 2 to 5 and FIG. 8).
  • the UE 9 may include a processing module 901 and a communication module 902.
  • the processing module 901 is configured to perform control management on the work of the UE 9.
  • the communication module 902 is configured to support communication of the UE 9 with other network entities, such as communication with a base station.
  • the UE9 may further include: a storage module 903, configured to store the UE 9 to execute the program and data corresponding to any of the method embodiments provided above.
  • the processing module 901 is configured to support the UE 9 to perform S93 in FIG. 2; the communication module 902 is configured to support the UE 9 to perform S91, S92, and S94 in FIG. 2; and the storage module 903 is configured to store the UE 9 to perform FIG.
  • the processing module 901 is configured to support the UE 9 to perform S93 ′ in FIG. 3 , and optionally, to support the UE 9 to perform S95 in FIG. 3 ;
  • the communication module 902 is configured to support the UE 9 to perform FIG. 3 .
  • S91, S92, and S94 optionally, are also used to support the UE 9 to execute S96 in FIG. 3;
  • the storage module 903 is configured to store the program and data corresponding to the steps performed by the UE 9 in FIG.
  • the processing module 901 is configured to support the UE 9 to perform S203 and S204 in FIG. 4; the communication module 902 is configured to support the UE 9 to perform S201, S202, and S204 in FIG. 4; and the storage module 903 is configured to store the UE9.
  • the program and data corresponding to each step in FIG. 4 are executed.
  • the processing module 901 is configured to support the UE 9 to perform S302 and S304 in FIG. 5; the communication module 902 is configured to support the UE 9 to perform S301 in FIG. 5, S303 and S305; the storage module 903 is configured to store the program and data corresponding to the steps performed by the UE 9 in FIG. 5.
  • the processing module 901 is configured to support the UE 9 to perform S401 in FIG. 8; the communication module 902 is configured to support the UE 9 to perform S401, S403, and S404 in FIG. 8; and the storage module 903 is configured to store the UE 9 execution map.
  • each of the above possible designs is exemplary.
  • each module in the UE 9 may also be used to support other processes for performing the techniques described herein.
  • the processing module 901 can be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application-specific). Integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out various exemplary logical blocks, modules and circuits described in connection with the disclosure of the embodiments of the invention.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 902 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 903 can be a memory.
  • the processing module 901 is a processor
  • the communication module 902 is a transceiver
  • the storage module 903 is a memory
  • the UE 9 according to the embodiment of the present invention may be the UE 10 shown in FIG.
  • the UE 10 may include a processor 1012, a transceiver 1013, a memory 1011, and a bus 1014.
  • the transceiver 1013, the processor 1012, and the memory 1011 are connected to each other through a bus 1014.
  • the bus 1014 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus. Wait. Place
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • Wait. Place The bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • a UE 11 is provided for performing the steps performed by the UE in FIG. 2 or FIG. 3 according to an embodiment of the present invention. For related descriptions of these steps, reference may be made to the above.
  • the UE 11 is applied to a system supporting multi-carrier technology, and the multi-carrier technology supports at least two TTI combinations.
  • the UE 11 may include: a receiving module 1101 and a determining module 1102. among them:
  • the receiving module 1101 is configured to receive a handover instruction sent by the base station, where the handover instruction is used to indicate a TTI handover, and the mapping instruction has a mapping relationship with a target TTI combination supported by the multi-carrier technology; the target TTI combination is at least two TTIs. A combination of TTIs in a combination.
  • the determining module 1102 is configured to determine a target TTI combination according to a mapping relationship between the switching instruction and the target TTI combination.
  • the switching instruction further has a mapping relationship with the target TTI supported by the single carrier technology.
  • the determining module 1101 may be specifically configured to: if the UE adopts the multi-carrier technology, the UE according to the switching instruction The mapping relationship between the target TTI combinations supported by the carrier technology determines the target TTI combination.
  • the switching instruction further has a mapping relationship with the target TTI supported by the single carrier technology.
  • the determining module 1101 may be further configured to: if the UE adopts a single carrier technology, according to the handover instruction and the single carrier There is a mapping relationship between the target TTIs supported by the technology to determine the target TTI.
  • the mapping between the switching instruction and the preset current TTI combination is performed, and the mapping between the current TTI combination and the target TTI combination is preset.
  • the determining module 1101 may be specifically used to: if the UE adopts the TTI The combination is to preset the current TTI combination, and then determine the target TTI combination according to the mapping relationship between the preset current TTI combination and the target TTI combination.
  • modules in the UE 11 provided by the embodiments of the present invention are used to perform the TTI switching method provided in FIG. 2 or FIG. 3 above. Therefore, the beneficial effects that can be achieved can be referred to the above, and details are not described herein again. .
  • a UE 12 is provided for performing the steps performed by the UE in FIG. 4 according to an embodiment of the present invention. For related descriptions of these steps, reference may be made to the above.
  • the UE 12 is applied to a system supporting multi-carrier technology, and the multi-carrier technology supports at least two TTI combinations.
  • the UE 11 may include: a receiving module 1201 and a determining module 1202. among them:
  • the receiving module 1201 is configured to receive a secondary carrier activation command sent by the base station, where the secondary carrier activation command is used to indicate that the secondary carrier is activated, and the secondary carrier activation command has a mapping relationship with the target TTI of the secondary carrier.
  • the determining module 1202 is configured to determine a target TTI of the secondary carrier according to a mapping relationship between the secondary carrier activation command and the target TTI of the secondary carrier.
  • each module in the UE 12 provided by the embodiment of the present invention is used for execution.
  • the TTI switching method provided in FIG. 2 or FIG. 4 and therefore the beneficial effects that can be achieved can be referred to the above, and details are not described herein again.
  • a UE 13 is provided for performing the steps performed by the UE in FIG. 5 according to an embodiment of the present invention. For related descriptions of these steps, reference may be made to the above.
  • the UE 13 is applied to a system supporting multi-carrier technology.
  • the multi-carrier technology supports at least two TTI combinations.
  • the UE 13 may include: a receiving module 1301, a sending module 1302, and a determining module 1303. among them:
  • the receiving module 1301 is configured to receive, in a preset time window, a handover instruction sent by the base station, where the handover instruction has a mapping relationship with the target carrier in the multi-carrier.
  • the sending module 1302 is configured to send a hybrid automatic repeat request HARQ message to the base station, where the HARQ message is used to indicate whether the UE successfully receives the handover instruction received in the preset receiving window.
  • the determining module 1303 is configured to determine a target TTI according to the switching instruction received in the preset time window.
  • the sending module 1302 is specifically configured to: send a HARQ message to the base station when the first preset time period starts from the first moment; where the first moment is received by the UE in the preset time window. The end of the last subframe where the switch instruction is located.
  • the sending module 1302 is further configured to: when the second preset time period starts from the first time, send data to the base station by using the target TTI on the target carrier; where the first time is the UE at the preset time The end of the sub-frame where the last toggle instruction received in the window is located.
  • modules in the UE 13 provided by the embodiments of the present invention are used to perform the TTI switching method provided in FIG. 5 or FIG. 5 above. Therefore, the beneficial effects that can be achieved can be referred to the above, and details are not described herein again. .
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种TTI配置方法和装置,涉及通信技术领域,用以节省信令开销。本发明实施例提供的方法,应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,该方法包括:UE接收基站发送的切换指令;其中,该切换指令用于指示TTI切换,且该切换指令与多载波技术所支持的目标TTI组合之间存在映射关系;目标TTI组合是至少两种TTI组合中的一种TTI组合;UE根据切换指令与目标TTI组合之间的映射关系,确定目标TTI组合。

Description

一种TTI切换方法和装置 技术领域
本发明涉及通信技术领域,尤其涉及一种传输时间间隔(transmission time interval,TTI)切换方法和装置。
背景技术
通用移动通信***(universal mobile telecommunications system,UMTS)的高速上行链路分组接入(high speed uplink packet access,HSUPA)单载波技术(下文中称为单载波技术)支持两种TTI,其中一种是2ms(毫秒)TTI,另一种是10msTTI。具体实现时,基站可以通过高速共享控制信道(high speed shared control channel,HS-SCCH)向用户设备(user equipment,UE)发送指令(即HS-SCCH order),从而实现对UE的载波的TTI的切换。其中,载波的TTI是指该载波上信道采用的TTI,对于UMTS来说,该信道是指增强的专用信道(enhanced dedicated channel,E-DCH)。
对于HSUPA双载波(包括主载波和辅载波)技术(下文中称为双载波技术)来说,目前只支持2ms+2ms的TTI组合,即两个载波的TTI均是2ms。第三代合作伙伴计划(3rd generation partnership project,3GPP)R14提出了“多载波增强”的研究,在该研究中,双载波技术还可以支持以下两种TTI组合:2ms+10msTTI组合,10ms+10ms的TTI组合。这就需要引入新的方法来实现双载波技术所支持的TTI组合的切换。
为了解决上述技术问题,3GPP中提出了一种实现方案:对于双载波技术来说,为主载波和辅载波分别配置一个HS-SCCH order,其中,为主载波配置的HS-SCCH order用于控制主载波的TTI的切换,为辅载波配置的HS-SCCH order用于控制辅载波的TTI的切换。另外,3GPP协议中规定:UE在接收到一个HS-SCCH order之后,需要向基站发送一个混合自 动重传请求(hybrid automatic repeat request,HARQ)消息,以告知基站UE是否成功接收该HS-SCCH order。
这样,若基站需要同时对主载波的TTI和辅载波的TTI进行切换时,则需要向UE发送2个HS-SCCH order,从而造成信令开销较大的问题;或者,若基站需要同时对主载波的TTI和辅载波的TTI进行切换时,则需要向UE发送2个HS-SCCH order,且UE需要向基站回复2个HARQ消息,从而造成信令开销大的问题。
发明内容
本发明的实施例提供一种TTI切换方法和装置,用以节省信令开销。
第一方面,提供一种TTI切换方法,应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,该方法可以包括:UE接收基站发送的切换指令;其中,该切换指令用于指示TTI切换,且该切换指令与多载波技术所支持的目标TTI组合之间存在映射关系,目标TTI组合是该至少两种TTI组合中的一种TTI组合;然后,UE根据切换指令与目标TTI组合之间的映射关系,确定目标TTI组合。其中,多载波技术所支持的TTI组合可以理解为:多载波中的每个载波的TTI构成的集合;目标TTI组合可以理解为:多载波中的每个载波的目标TTI构成的集合。该切换指令可以是HS-SCCH order,也可以是HS-SCCH order中预留的编码组合。当然,具体实现时,该切换指令也可以是新定义的一种切换指令。可见,该方法中,通过一个切换指令指示一个TTI组合,从而实现对多载波技术所支持的TTI组合的切换,这样,在多个载波的TTI同时发生切换的情况下,基站只需要向UE发送一个切换指令,UE只需要向基站回复一条HARQ消息即可,因此,与现有技术中的在多个载波的TTI同时发生切换的情况下,基站需要向UE发送多个切换指令技术方案相比,能够节省信令开销。
在一种可能的设计中,上述切换指令还与单载波技术所支持的目标TTI之间存在映射关系;其中,该目标TTI可以是单载波技术所支持的任意一种TTI。该情况下,UE根据切换指令与目标TTI组合之间的映射关系,确定目标TTI组合,可以包括:若UE采用的是多载波技术,则UE根据切换指令与多载波技术所支持的目标TTI组合之间的映射关系,确定目标TTI组合。该可能的设计中,多载波技术中的切换TTI组合的切换指令,复用了单载波技术中切换TTI的切换指令,这样,能够减少基站与UE之间的切换指令的种类,从而提高UE的译码性能。其具体分析过程可参考下文。示例的,可以参考下文中的表2。
在一种可能的设计中,上述切换指令还与单载波技术所支持的目标TTI之间存在映射关系,该方法还可以包括:若UE采用的是单载波技术,则UE根据切换指令与单载波技术所支持的目标TTI之间的映射关系,确定目标TTI。对于只支持单载波技术的***来说,一个切换指令只与该单载波技术有关;然而,对于该可能的设计(即:既支持单载波技术又支持多载波技术的***)来说,一个切换指令既与单载波技术有关又与多载波技术有关,因此,对于该可能的设计来说,UE在接收到切换指令之后,需要首先判断自身当前所使用的是单载波技术还是多载波技术。
在一种可能的设计中,上述切换指令与一种预设当前TTI组合之间存在映射关系,该预设当前TTI组合与目标TTI组合之间存在映射关系,其中,该切换指令可以与一个或多个预设当前TTI组合之间存在映射关系,不同的预设当前TTI可以与同一目标TTI之间存在映射关系,也可以与不同的目标TTI组合之间存在映射关系。示例的,该切换指令与第一预设当前TTI组合(例如2ms+2msTTI组合)和第二预设当前TTI组合(例如2ms+10msTTI组合)之间存在映射关系,并且,第一预设当前TTI组合和第二预设当前TTI 组合均与同一目标TTI组合(例如10ms+10msTTI组合)之间存在对应关系。在该可能的设计中,UE根据切换指令与目标TTI组合之间的映射关系,确定目标TTI组合,可以包括:若UE采用的TTI组合是该预设当前TTI组合,则根据该预设当前TTI组合与目标TTI组合之间映射关系,确定目标TTI组合。需要说明的是,在该可能的设计中,若切换指令与多种预设当前TTI组合之间存在映射关系,则可以节省切换指令的种类,具体示例可以参考下文中的表5、表6和表7,当然具体实现时不限于此。
在一种可能的设计中,该方法还可以包括:UE在多载波上利用目标TTI组合向基站发送数据;具体的:UE在多载波中的处于激活状态的载波上,利用目标TTI组合中的处于激活状态的载波的TTI,向基站发送数据。实际实现时,UE采用多载波技术的过程中,该多载波中的部分载波可以处于激活状态,其他的载波处于激活状态;或者,该多载波中的每个载波均处于激活状态。该可能的设计提供了对于处于激活状态的载波的TTI切换的具体实现方式。对于处于去激活状态的载波来说,其TTI可以进行切换也可以不进行切换。
第二方面,提供了一种UE,应用于支持多载波技术的***中,多载波技术支持至少两种传输时间间隔TTI组合,该UE可以包括:接收器和处理器。其中:接收器,用于接收基站发送的切换指令,该切换指令用于指示TTI切换,且该切换指令与多载波技术所支持的目标TTI组合之间存在映射关系;目标TTI组合是至少两种TTI组合中的一种TTI组合。处理器,用于根据切换指令与目标TTI组合之间的映射关系,确定目标TTI组合。
在一种可能的设计中,上述切换指令还与单载波技术所支持的目标TTI之间存在映射关系,该情况下,处理器具体可以用于:若UE采用的是多载波技术,则UE根据切换指令与多载波技术所支 持的目标TTI组合之间的映射关系,确定目标TTI组合。
在一种可能的设计,上述切换指令还与单载波技术所支持的目标TTI之间存在映射关系,处理器还可以用于:若UE采用的是单载波技术,则UE根据该切换指令与单载波技术所支持的目标TTI之间的映射关系,确定目标TTI。
在一种可能的设计中,切换指令与预设当前TTI组合之间存在映射关系,预设当前TTI组合与目标TTI组合之间存在映射关系。该情况下,处理器具体可以用于:若UE采用的TTI组合是预设当前TTI组合,则根据预设当前TTI组合与目标TTI组合之间映射关系,确定目标TTI组合。
在一种可能的设计中,UE还可以包括:发送器,用于在多载波中的处于激活状态的载波上,利用目标TTI组合中的处于激活状态的载波的TTI,向基站发送数据。
由于第二方面或第二方面的任一种可能的设计提供的UE,用于执行第一方面或第一方面的对应的可能的设计中所提供的对应的TTI切换方法,因此,其所能达到的有益效果可参考第一方面或第一方面的对应的可能的设计的有益效果,此处不再赘述。
第三方面,提供一种TTI切换方法,应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,多载波包括主载波和至少一个辅载波;方法包括:用户设备UE接收基站发送的辅载波激活指令;其中,辅载波激活指令用于指示激活辅载波,且辅载波激活指令与辅载波的目标TTI之间存在映射关系;UE根据辅载波激活指令与该辅载波的目标TTI之间的映射关系,确定该辅载波的目标TTI。该方法中,UE在接收到辅载波激活之后,通过辅载波激活指令与辅载波的目标TTI之间的映射关系,确定辅载波的目标TTI,与现有技术中的为多个载波中的每个载波配置一个切换指令,且辅载波激活指令与辅载波的TTI切换指令分开发送的技术方案 相比,能够节省为辅载波的切换指令,从而节省为多载波配置的切换指令,进而节省UE向基站回复的HARQ消息的次数,以节省信令开销。
第四方面,提供一种UE,应用于支持多载波技术的***中,多载波技术支持至少两种传输时间间隔TTI组合,多载波包括主载波和至少一个辅载波;该UE可以包括:接收器和处理器;其中,接收器,用于接收基站发送的辅载波激活指令;其中,辅载波激活指令用于指示激活辅载波,且辅载波激活指令与辅载波的目标TTI之间存在映射关系。处理器,用于根据辅载波激活指令与辅载波的目标TTI之间的映射关系,确定辅载波的目标TTI。由于第四方面提供的UE用于执行上述第三方面提供的TTI切换方法,因此,其所能达到的有益效果可参考第三方面提供的TTI切换方法的有益效果,此处不再赘述。
第五方面,提供一种TTI切换方法,应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,该方法可以包括:UE在预设时间窗口内接收基站发送的切换指令,其中,切换指令与多载波中的目标载波之间存在映射关系;具体的:UE在预设时间窗口内接收基站发送的一个或多个切换指令,其中,每个切换指令与多载波中的一个目标载波之间存在映射关系,用于切换该目标载波的TTI。然后,UE向基站发送HARQ消息;其中,HARQ消息用于指示基站:UE是否成功接收预设接收窗内接收到的切换指令,也就是说,该HARQ消息可以用于指示基站:UE是否成功接收预设接收窗口内接收到的每个切换指令。接着,UE根据预设时间窗口内接收到的切换指令,确定目标TTI。可见,该方法中通过引入预设时间窗口的概念,从而使得UE在一个预设时间窗内接收到的一个或多个切换指令均可以通过一个HARQ消息发送给基站,以指示UE是否成功接收该多个切换指令。与现有技术中的UE在 接收到每个切换指令之后均向基站发送一个HARQ消息相比,能够节省信令开销。
在一种可能的设计中,UE向基站发送HARQ消息,可以包括:UE在从第一时刻开始的第一预设时间段到达时,向基站发送HARQ消息;其中,第一时刻是UE在预设时间窗口内接收到的最后一个切换指令所在子帧的结尾处。该可能的设计提供了一种HARQ消息的发送机制,其具体说明及与现有技术中提供的HARQ消息的发送机制的区别可以参考下文,例如可参考图6和图7。
在一种可能的设计中,该方法还可以包括:UE从第一时刻开始的第二预设时间段到达时,在目标载波上利用目标TTI向基站发送数据;其中,第一时刻是UE在预设时间窗口内接收到的最后一个切换指令的所在子帧的结尾处。该可能的设计提供了一种TTI切换生效时间的确定机制,其具体说明及与现有技术中提供的TTI切换生效时间的确定机制的区别可以参考下文。
在一种可能的设计中,UE在目标载波上利用目标TTI向基站发送数据,可以包括:UE在处于激活状态的目标载波上,利用目标载波向基站发送数据。该可能的设计提供了对于处于激活状态的载波的TTI切换的具体实现方式。对于处于去激活状态的载波来说,其TTI可以进行切换也可以不进行切换。
第六方面,提供一种UE,应用于支持多载波技术的***中,多载波技术支持至少两种传输时间间隔TTI组合,该UE可以包括:接收器、发送器和处理器。其中,接收器,用于在预设时间窗口内接收基站发送的切换指令;其中,切换指令与多载波中的目标载波之间存在映射关系。发送器,用于向基站发送HARQ消息;其中,HARQ消息用于指示基站:UE是否成功接收预设接收窗内接收到的切换指令。处理器,用于根据预设时间窗口内接收到的切换指令,确定目标TTI。
在一种可能的设计中,发送器具体可以用于:UE在从第一时刻开始的第一预设时间段到达时,向基站发送HARQ消息;其中,第一时刻是UE在预设时间窗口内接收到的最后一个切换指令所在子帧的结尾处。
在一种可能的设计中,发送器还可以用于:UE从第一时刻开始的第二预设时间段到达时,在目标载波上利用目标TTI向基站发送数据;其中,第一时刻是UE在预设时间窗口内接收到的最后一个切换指令的所在子帧的结尾处。
在一种可能的设计中,发送器具体可以用于:在处于激活状态的目标载波上,利用目标载波向基站发送数据。
由于第六方面或第六方面的任一种可能的设计提供的UE,用于执行第五方面或第五方面的对应的可能的设计中所提供的对应的TTI切换方法,因此,其所能达到的有益效果可参考第五方面或第五方面的对应的可能的设计的有益效果,此处不再赘述。
第七方面,提供一种TTI切换方法,应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,该方法可以包括:UE确定目标TTI组合;其中,目标TTI组合是至少两种TTI组合中的任意一种TTI组合;UE向基站发送TTI指令;其中,TTI指令中包含目标TTI组合的标识,用于指示基站在多载波上,利用目标TTI组合接收UE发送的数据。上述任一方面提供的TTI切换方法或现有技术中提供的TTI切换方法均是由基站确定目标TTI或目标TTI组合,然后下发给UE;该这一方面提供了一种由UE确定目标TTI组合,然后向基站发送TTI指令的方法。其能够实现对多载波技术中的TTI组合的灵活切换。
在一种可能的设计中,UE确定目标TTI组合,可以包括:UE根据多载波中的每个载波的UPH确定目标TTI组合;其中,UPH是UE的最大允许发送功率和专用物理控制信道DPCCH码功率的 比值。该可能实现方式提供了一种UE确定目标TTI组合的机制。
在一种可能的设计中,多载波可以包括主载波和至少一个辅载波;UE根据多载波中的每个载波的UPH确定目标TTI组合,可以包括:UE在接收到基站发送的辅载波激活指令之后,根据辅载波的UPH确定辅载波的目标TTI;其中,辅载波激活指令用于激活辅载波。该可能实现方式提供了一种UE确定辅载波的目标TTI的机制。
在一种可能的设计中,UE向基站发送TTI指令,可以包括:UE通过DPCCH向基站发送TTI指令。示例的,UE通过DPCCH向基站发送TTI指令,可以包括:UE通过DPCCH中传输的FBI或TFCI中的比特位指示目标TTI组合。该可能实现方式提供了一种UE发送TTI指令的机制。
第八方面,提供一种UE,应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,该UE可以包括:处理器和发送器。其中,处理器,用于确定目标TTI组合;其中,目标TTI组合是至少两种TTI组合中的任意一种TTI组合。发送器,用于向基站发送TTI指令;其中,TTI指令中包含目标TTI组合的标识,用于指示基站在多载波上,利用目标TTI组合接收UE发送的数据。
在一种可能的设计中,处理器具体可以用于,根据多载波中的每个载波的UPH确定目标TTI组合;其中,UPH是UE的最大允许发送功率和DPCCH码功率的比值。
在一种可能的设计中,多载波可以包括主载波和至少一个辅载波;UE还可以包括:接收器,用于接收基站发送的辅载波激活指令。该情况下,处理器具体可以用于,在接收器接收到该辅载波激活指令之后,根据辅载波的UPH确定辅载波的目标TTI;其中,辅载波激活指令用于激活辅载波。
在一种可能的设计中,发送器具体可以用于:通过DPCCH向 基站发送TTI指令。示例的,通过DPCCH中传输的FBI或TFCI中的比特位指示目标TTI组合。
第九方面,提供一种TTI切换方法,应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,该方法可以包括:基站接收UE发送的TTI指令;其中,TTI指令中包含多载波的目标TTI组合的标识,目标TTI是至少两种TTI组合中的任意一种TTI组合;基站在多载波上,利用目标TTI组合接收UE发送的数据。
第十方面,提供一种基站,应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,该基站可以包括:接收器和发送器,其中,接收器,用于接收UE发送的TTI指令,TTI指令中包含多载波的目标TTI组合的标识,目标TTI是至少两种TTI组合中的任意一种TTI组合;发送器,用于在多载波上,利用目标TTI组合接收UE发送的数据。可以理解地,第九方面或第十方面提供的技术方案能够达到的有益效果相同,此处不再赘述。
又一方面,提供一种UE,该UE可以实现上述第一方面或第一方面的任一种可能的设计提供的TTI切换方法中UE所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。在一种可能的设计中,该UE的结构中包括处理器存储器、***总线和通信接口;该处理器被配置为支持该UE执行上述方法中相应的功能。该通信接口用于支持该UE与其他网元(例如,基站)之间的通信。该UE还可以包括存储器,该存储器用于与处理器耦合,其保存该UE必要的程序指令和数据。该通信接口具体可以是收发器。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存上述第一方面或第一方面的任一种可能的设计提供的TTI切换方法所对应的计算机软件指令,其包含用于执行上述第一方面或第一方面的任一种可能设计中所对应的程序。
又一方面,提供一种UE,该UE可以实现上述第三方面提供的TTI切换方法中UE所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。在一种可能的设计中,该UE的结构中包括处理器、存储器、***总线和通信接口;该处理器被配置为支持该UE执行上述方法中相应的功能。该通信接口用于支持该UE与其他网元(例如,基站)之间的通信。该UE还可以包括存储器,该存储器用于与处理器耦合,其保存该UE必要的程序指令和数据。该通信接口具体可以是收发器。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存上述第三方面提供的TTI切换方法所对应的计算机软件指令,其包含用于执行上述第三方面或第三方面的任一种可能设计中所对应的程序。
又一方面,提供一种UE,该UE可以实现上述第五方面或第五方面的任一种可能的设计提供的TTI切换方法中UE所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。在一种可能的设计中,该UE的结构中包括处理器、存储器、***总线和通信接口;该处理器被配置为支持该UE执行上述方法中相应的功能。该通信接口用于支持该UE与其他网元(例如,基站)之间的通信。该UE还可以包括存储器,该存储器用于与处理器耦合,其保存该UE必要的程序指令和数据。该通信接口具体可以是收发器。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存上述第五方面或第五方面的任一种可能的设计提供的TTI切换方法所对应的计算机软件指令,其包含用于执行上述第五方面或第五方面的任一种可能设计中所对应的程序。
又一方面,提供一种UE,该UE可以实现上述第七方面或第七方面的任一种可能的设计提供的TTI切换方法中UE所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。在一种可能的设计中,该UE的结构中包括处理器、存储器、***总线和通信接口;该处理器被配置为支持该UE执行上述方法中相应的功能。该通信接口用于支持该UE与其他网元(例如,基站)之间的通信。该UE还可以包括存储器,该存储器用于与处理器耦合,其保存该UE必要的程序指令和数据。该通信接口具体可以是收发器。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存上述第七方面或第七方面的任一种可能的设计提供的TTI切换方法所对应的计算机软件指令,其包含用于执行上述第七方面或第七方面的任一种可能设计中所对应的程序。
又一方面,提供一种基站,该基站可以实现上述第九方面或第九方面的任一种可能的设计提供的TTI切换方法中基站所执行的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的模块。在一种可能的设计中,该基站的结构中包括处理器、存储器、***总线和通信接口;该处理器被配置为支持该基站执行上述方法中相应的功能。该通信接口用于支持该基站与其他网元(例如,基站)之间的通信。该基站还可以包括存储器,该存储器用于与处理器耦合,其保存该基站必要的程序指令和数据。该通信接口具体可以是收发器。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存上述第九方面或第九方面的任一种可能的设计提供的TTI切换方法所对应的计算机软件指令,其包含用于执行上述第九方面或第 九方面的任一种可能设计中所对应的程序。
可以理解地,上述提供的任一种UE或基站或计算机存储介质均用于执行上文所提供的TTI切换方法,因此,其所能达到的有益效果可参考上文所提供的相应的模型更新方法中的有益效果,此处不再赘述。
附图说明
图1为本发明实施例提供的技术方案所适用的一种***架构图;
图2为本发明实施例提供的一种TTI切换方法的交互示意图;
图3为本发明实施例提供的一种TTI切换方法的交互示意图;
图4为本发明实施例提供的一种TTI切换方法的交互示意图;
图5为本发明实施例提供的一种TTI切换方法的交互示意图;
图6为现有技术提供的一种HARQ消息的发送机制的示意图;
图7为本发明实施例提供的一种HARQ消息的发送机制的示意图;
图8为本发明实施例提供的一种TTI切换方法的交互示意图;
图9为本发明实施例提供的一种UE的结构示意图;
图10为本发明实施例提供的一种UE的结构示意图;
图11为本发明实施例提供的一种UE的结构示意图;
图12为本发明实施例提供的一种UE的结构示意图;
图13为本发明实施例提供的一种UE的结构示意图。
具体实施方式
本申请提供了一种TTI切换方法和装置,应用于支持多载波技术的***中,该多载波技术支持至少两种TTI组合;其一种实现方式的基本原理是:通过一个切换指令指示一个TTI组合,从而实现对多载波技术所支持的TTI组合的切换,这样,在多个载波的TTI 同时发生切换的情况下,基站只需要向UE发送一个切换指令,UE只需要向基站回复一条HARQ消息即可,因此,与现有技术中的在多个载波的TTI同时发生切换的情况下,基站需要向UE发送多个切换指令技术方案相比,能够节省信令开销。
本申请提供的技术方案所适用的***如图1所示,图1所示的***中包括一个或多个基站以及与每个基站连接的一个或多个UE,其中,图1中是以一个基站连接多个UE为例进行说明的。
其中,该***可以是各种通信***,例如当前的2G,3G,4G通信***和下一代通信***。例如,UMTS,GPRS(general packet radio service,通用分组无线业务),长期演进(long term evolution,LTE)***,以及其他此类通信***。
UE,是一种终端设备,可以是可移动的终端设备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。UE可分布于网络中,在不同的网络中UE有不同的名称,例如:终端、移动台、用户单元、站台、蜂窝电话、个人数字助理、无线调制解调器、无线通信设备、手持设备、膝上型电脑、无绳电话、无线本地环路台等。UE可以经无线接入网(radio access network,RAN)(即无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
基站,是一种部署在无线接入网用以提供无线通信功能的装置。例如,在2G网络中基站为基地无线收发站(base transceiver station,BTS),3G网络中基站称为节点B(NodeB),在4G网络中提供基站功能的设备包括演进的节点B(evolved NodeB,eNB),在WLAN中,提供基站功能的设备为接入点(access point,AP)。基站还可以称为接入点、节点、节点B、演进节点B或某种其它网络实体,且可以包括以上网络实体的功能中的一些或所有功能。基站可以通过空中接口与无线终端进行通信。该通信可以通过一个或多个扇区来 进行。
下文中均以本申请提供的技术方案应用于UMTS中为例进行说明。UMTS中的HSUPA技术可以支持UE和基站使用单载波技术或多载波技术进行上行通信。需要说明的是,本申请的具体示例均是以多载波是双载波为例进行说明的。
其中,HSUPA技术可以支持一种或多种TTI。示例的,单载波技术支持的TTI可以包括但不限于:2msTTI,10msTTI等;双载波技术支持的TTI组合可以包括但不限于:2ms+2msTTI组合,2ms+10msTTI组合,10ms+10msTTI组合等。其中,2ms+10msTTI组合可以有两种含义,一种表示主载波上的TTI是2ms,辅载波上的TTI是10ms;另一种表示主载波上的TTI是10ms,辅载波上的TTI是2ms;实际实现时,基站与某个UE之间会预先约定好2ms+10msTTI组合表示这两种含义中的一种或两种。另外,具体实现时,也可以将10ms+2msTTI组合认为是:主载波的TTI是10ms,辅载波的TTI是2ms;并将主载波的TTI是2ms,辅载波的TTI是10ms的TTI组合用2ms+10msTTI组合表示。
其中,主载波是指上行主载波,具体的:如果UE采用单载波技术,那么其采用的载波就是主载波;如果UE采用多载波技术,那么,上行主载波是指与服务HS-DSCH小区关联的服务E-DCH小区的E-DCH所采用的载波。辅载波是指上行辅载波,具体是指与辅服务HS-DSCH小区关联的服务E-DCH小区的E-DCH所采用的载波。如果UE采用的是多载波技术,那么,哪个载波作为主载波哪个载波作为辅载波是由高层指示的。
在不同场景中,多载波技术可以支持一种TTI组合或固定的几种TTI组合。例如,在某些场景下,双载波技术可以只支持2ms+2msTTI组合,也可以支持2ms+2msTTI组合和2ms+10msTTI组合。
同一基站下的UE可以采用单载波技术向该基站发送数据,也可以采用多载波技术向该基站发送数据;其中,采用单载波技术的不同UE可以使用不同的TTI向基站发送数据,采用多载波技术的不同UE可以在不同载波上使用不同的TTI向基站发送数据。
需要说明的是,本申请中的“多个”是指两个或两个以上。“第一”、“第二”等仅是为了更清楚的说明,并不做任何其他限定。“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。载波的TTI是指该载波上信道采用的TTI,对于UMTS来说,该信道是指E-DCH;如果不加说明,本申请中的“辅载波”是指上行方向上的辅载波。
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行示例性描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
如图2所示,是本发明实施例提供的一种TTI切换方法的交互示意图。图2所示的方法可以应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合。图2所示的方法可以包括:
S101:基站向UE发送切换指令;其中,该切换指令用于指示TTI切换,且该切换指令与多载波技术所支持的目标TTI组合之间存在映射关系,目标TTI组合是多载波技术所支持的一种TTI组合。
具体的:基站可以在HS-SCCH上向UE发送切换指令。可选的,该切换指令为下文中的HS-SCCH order,也可以是HS-SCCH order中预留的编码组合。当然,具体实现时,该切换指令也可以是新定义的一种切换指令。
其中,S101中的基站可以是***中的任意一基站;S101中的UE可以是该基站下的任意一UE。
具体实现时,本发明实施例对基站如何生成切换指令,以及在何种情况下触发向UE发送切换指令的具体实现方式不进行限定。例如,基站可以预先存储各切换指令与各TTI组合之间的映射关系构成的映射关系集合;然后,根据UE上报的UPH选择目标TTI组合以及上行载波技术和/或UE的能力,并基于该映射关系集合确定目标TTI组合对应的切换指令,并将该切换指令发送给UE。其中,UPH是UE transmission power headroom的英文缩写,具体是UE最大允许发射功率和专用物理控制信道(dedicated physical control channel,DPCCH)码功率的比值,即,其中,Pmax,tx=min{Maximum allowed UL TX Power,Pmax},Maximum allowed UL TX Power是由UTRAN规定的最大上行发射功率,Pmax是根据UE功率等级规定的UE最大输出功率。PDPCCH是UE发射DPCCH的功率。
S102:UE接收基站发送的切换指令。
具体的:UE在HS-SCCH上接收基站发送的切换指令。
S103:UE根据该切换指令与目标TTI组合之间的映射关系,确定目标TTI组合。
具体实现时,UE可以预先存储各切换指令与各TTI组合之间的映射关系构成的映射关系集合,这样,当UE接收到切换指令之后,可以在该映射关系集合中查询该切换指令对应的TTI组合(即目标TTI组合)。
可选的,在S103之后,该方法还可以包括:S104:UE在多载波上利用目标TTI组合向基站发送数据。具体的,UE在正确接收到切换指令(即对切换指令译码成功)之后,在多载波上利用目标TTI组合向基站发送数据。示例的,UE在多载波的E-DCH上利用目标TTI组合向基站发送数据。
本发明实施例提供的TTI切换方法,应用于支持多载波技术的***中,该多载波技术可以支持至少两种TTI组合,该方法通过一 个切换指令指示一个TTI组合,从而实现对多载波技术所支持的TTI组合的切换,这样,在多个载波的TTI同时发生切换的情况下,基站只需要向UE发送一个切换指令,UE只需要向基站回复一条HARQ消息即可,因此,与现有技术中的在多个载波的TTI同时发生切换的情况下,基站需要向UE发送多个切换指令技术方案相比,能够节省信令开销。
可选的,S104可以包括:UE在多载波中的处于激活状态的载波上,利用目标TTI组合中的处于激活状态的载波的TTI,向基站发送数据。
具体实现时,当UE使用多载波技术向基站发送数据时,该多载波中的部分载波可以处于激活状态,其他的载波处于激活状态;或者,该多载波中的每个载波均处于激活状态。在该可选的实现方式中,UE在确定目标TTI组合之后,可以只切换处于激活状态的载波的TTI;对于处于去激活状态的载波来说,UE可以不进行TTI切换,这样,当这些处于去激活状态的载波被激活后,UE在这些载波上仍然按照原先的TTI向基站发送数据;或者,对于处于去激活状态的载波来说,UE可以进行TTI切换,这样,当这些处于去激活状态的载波被激活后,UE在这些载波上使用切换后的TTI向基站发送数据。示例的,假设主载波处于激活状态,辅载波处于去激活状态,且当前时刻,主载波和辅载波的TTI均是2ms,目标TTI组合为10ms+10ms;该情况下,UE可以只将主载波的TTI由2ms切换为10ms,即UE在主载波上利用10msTTI向基站发送数据,这样,在辅载波被激活之后,UE在辅载波上仍然利用2msTTI向基站发送数据;或者,该情况下,UE可以将主载波和辅载波的TTI均由2ms切换为10ms,这样,UE在主载波上利用10msTTI向基站发送数据,并且在辅载波被激活之后,UE在辅载波10msTTI向基站发送数据。
可选的,S101中的切换指令还与单载波技术所支持的目标TTI 之间存在映射关系,其中,目标TTI可以是单载波技术所支持的任意一种TTI。该情况下,如图3(图3是基于图2进行绘制的)所示,S103可以包括:
S103':若该UE采用的是多载波技术,则该UE根据该切换指令与多载波技术所支持的目标TTI组合之间的映射关系,确定目标TTI组合。
具体实现时,基站与UE均可以预先存储各切换指令与单载波技术所支持的各TTI之间的映射关系构成的第一映射关系集合,以及各切换指令与多载波技术所支持的各TTI组合之间的映射关系构成的第二映射关系集合。另外,具体实现时,基站与UE均可以将第一映射关系集合和第二映射关系集合作为两个映射关系集合保存,也可以将第一映射关系集合和第二映射关系集合作为一个映射关系集合保存。
对于支持2msTTI和10msTTI两种TTI的单载波技术而言,基站通过HS-SCCH向UE发送HS-SCCH order;UE根据接收到的HS-SCCH order和表1对当前TTI进行切换。其中,HS-SCCH order可以包含以下字段:
Extended order type(2bits)(扩展命令类型):xeodt,1,xeodt,2;
Order type(3bits)(命令类型:xodt,1,xodt,2,xodt,3;
Order(3bits)(命令):xord,1,xord,2,xord,3;
UE identity(16bits)(UE标识):xue,1,xue,2,…,xue,16。
HS-SCCH order的具体实现方式及相关说明可以如表1所示:
表1
Figure PCTCN2016094251-appb-000001
在利用表1实现单载波技术中的TTI切换时,由于表1中的一种切换指令(即编码组合)只与一种载波技术(即单载波技术)之间存在映射关系,因此,UE在接收到HS-SCCH order之后,不需要判断该UE采用何种载波技术,就可直接确定切换后的TTI。然而,在该可选的实现方式中,由于一种切换指令可以与多种载波技术(例如,单载波技术和多载波技术)之间存在映射关系,因此,具体实现时,UE需要确定采用的是单载波技术还是多载波技术,从而确定切换指令表示的是哪种映射关系。
示例的,以该切换指令是HS-SCCH order为例,基于表1,该可选的实现方式中的HS-SCCH order的具体实现方式及相关说明可以如表2所示。其中,表2是以双载波技术支持2ms+2msTTI组合和2ms+10msTTI组合共两种TTI组合为例进行说明的。
表2
Figure PCTCN2016094251-appb-000002
在表2中,切换指令可以是11011000或11011001。在表2中,切换指令11011000与单载波技术中“从2msTTI切换至10msTTI”之间存在映射关系,且与双载波技术中的目标TTI,具体为2ms+10msTTI组合,之间存在映射关系。切换指令11011001与单载波技术中的“从10msTTI切换至2msTTI”之间存在映射关系,且与双载波技术中的目标TTI,具体为2ms+2msTTI组合,之间存在映射关系。
基于表2,若切换指令是11011000,且UE采用双载波技术,则UE所确定的目标TTI组合是2ms+10msTTI组合;若切换指令是11011001,且UE采用双载波技术,则UE所确定的目标TTI组合是2ms+2msTTI组合。
该可选的实现方式中,多载波技术中的切换TTI组合的切换指令,复用了单载波技术中切换TTI的切换指令,这样,能够减少基站与UE之间的切换指令的种类,从而提高UE的译码性能。具体原因如下:实际实现时,在S101中,基站在向UE发送切换指令之前,需要对切换指令进行编码;对应的,在S102中,UE接收到的切换指令实质上是编码后的切换指令,UE需要先对该编码后的切换指令进行译码,才能得到切换指令。然而,切换指令的种类越多,UE接收到编码后的切换指令之后,将该编码后的切换指令译码为其他切 换指令的概率就越高,译码成功率就越低,即译码性能就较差。因此,该可选的实现方式中,能够减少基站与UE之间的切换指令的种类,从而提高UE的译码性能。
可选的,上述切换指令还与单载波技术所支持的目标TTI之间存在映射关系,该情况下,如图3所示,该方法还可以包括:
S105:若该UE采用的是单载波,则该UE根据该切换指令与单载波技术所支持的目标TTI之间的映射关系,确定目标TTI。
在S105之后,该方法还可以包括:S106:UE在单载波上利用目标TTI向基站发送数据。示例的,UE在单载波的E-DCH上利用目标TTI向基站发送数据。
基于表2,若UE接收到的HS-SCCH order为11011000,则将2msTTI(即当前TTI)切换为10msTTI,即:后续UE利用10msTTI向基站发送数据;若UE接收到的HS-SCCH order为00011001,则将10msTTI(即当前TTI)切换为2msTTI,即:后续UE利用2msTTI向基站发送数据。
可选的,该切换指令与预设当前TTI组合之间存在映射关系,预设当前TTI组合与目标TTI组合之间存在映射关系。该情况下,S103可以包括:若UE当前采用的TTI组合是预设当前TTI组合,则根据预设当前TTI组合与目标TTI组合之间映射关系,确定目标TTI组合。
其中,该切换指令可以与一种或多种预设当前TTI组合之间存在映射关系,不同的预设当前TTI可以与同一目标TTI之间存在映射关系,也可以与不同的目标TTI组合之间存在映射关系。该可选的实现方式中的“预设当前TTI组合”可以是与该切换指令之间存在映射关系的任意一种预设当前TTI组合。
以该切换指令是HS-SCCH order为例,切换指令与一种预设当前TTI组合之前存在映射关系的一种示例如表3所示,其中,表3 中是以双载波技术支持2ms+2msTTI组合和2ms+10msTTI组合为例进行说明的。需要说明的是,下述表3~7均是以多载波技术中的切换指令复用(包括部分复用或全部复用)表1所示的单载波技术中的切换指令为例进行说明的。
表3
Figure PCTCN2016094251-appb-000003
在表3中,切换指令11011000与2ms+2msTTI组合(即预设当前TTI组合)之间存在映射关系,且2ms+2msTTI组合与2ms+10msTTI组合(即目标TTI组合)之间存在映射关系。切换指令11011001与2ms+10msTTI组合(即预设当前TTI组合)之间存在映射关系,且2ms+10msTTI组合与2ms+12msTTI组合(即目标TTI组合)之间存在映射关系。需要说明的是,表3中是以多载波技术中的切换指令复用单载波技术中的切换指令11011000和11011001为例进行说明的。
以该切换指令是HS-SCCH order为例,切换指令与一种预设当前TTI组合之前存在映射关系的一种示例如表4所示,其中,表4中是以双载波技术支持2ms+2msTTI组合、2ms+10msTTI组合和 10ms+10msTTI组合为例进行说明的。
表4
Figure PCTCN2016094251-appb-000004
在表4中,切换指令与预设当前TTI组合之间的映射关系,预设当前TTI组合与目标TTI组合之间的映射关系的具体示例的说明可以参考关于表3的具体示例的说明,此处不再赘述。需要说明的是,表4中是的多载波技术中的部分切换指令,例如,切换指令11011000和切换指令11011001,复用单载波技术中的切换指令;另外一部分切换指令使用了单载波技术中的预留编码组合。
以该切换指令是HS-SCCH order为例,切换指令与多种预设当前TTI组合之前存在映射关系的一种示例如表5所示,其中,表5中是以双载波技术支持2ms+2msTTI组合和2ms+10msTTI组合为例进行说明的。
表5
Figure PCTCN2016094251-appb-000005
在表5中,切换指令11011000与2个预设当前TTI组合,2ms+2msTTI组合和2ms+10msTTI组合,之间存在映射关系;且2ms+2msTTI组合(即预设当前TTI组合)与2ms+10msTTI组合(即目标TTI组合)之间存在映射关系,2ms+10msTTI组合(即预设当前TTI组合)与2ms+2msTTI组合(即目标TTI组合)之间存在映射关系。需要说明的是,表5中是以多载波技术中的切换指令复用单载波技术中的切换指令11011000为例进行说明的。
以该切换指令是HS-SCCH order为例,切换指令与多种预设当前TTI组合之前存在映射关系的一种示例如表6所示,其中,表6中是以双载波技术支持2ms+2msTTI组合、2ms+10msTTI组合和10ms+10msTTI组合为例进行说明的。
表6
Figure PCTCN2016094251-appb-000006
在表6中,切换指令11011000与3个预设当前TTI组合,2ms+2msTTI组合、2ms+10msTTI组合和10ms+10msTTI组合,之间存在映射关系;且2ms+2msTTI组合(即预设当前TTI组合)与2ms+10msTTI组合(即目标TTI组合)之间存在映射关系,2ms+10msTTI组合(即预设当前TTI组合)与2ms+2msTTI组合(即目标TTI组合)之间存在映射关系,10ms+10msTTI组合(即预设当前TTI组合)与2ms+10msTTI组合(即目标TTI组合)之间存在映射关系。
切换指令11011001与3个预设当前TTI组合,2ms+2msTTI组合、2ms+10msTTI组合和10ms+10msTTI组合,之间存在映射关系;且2ms+2msTTI组合(即预设当前TTI组合)与10ms+10msTTI组合(即目标TTI组合)之间存在映射关系,2ms+10msTTI组合(即 预设当前TTI组合)与10ms+10msTTI组合(即目标TTI组合)之间存在映射关系,10ms+10msTTI组合(即预设当前TTI组合)与2ms+2msTTI组合(即目标TTI组合)之间存在映射关系。
需要说明的是,表6中是以多载波技术中的切换指令复用单载波技术中的切换指令11011000和11011001为例进行说明的。
以该切换指令是HS-SCCH order为例,切换指令与多种预设当前TTI组合之前存在映射关系的一种示例如表7所示,其中,表7中是以双载波技术支持2ms+2msTTI组合、2ms+10msTTI组合、10ms+2msTTI组合和10ms+10msTTI组合为例进行说明的。
表7
Figure PCTCN2016094251-appb-000007
需要说明的是,对比表3和表5,或者,对比表4和表6可知,若切换指令与多种预设当前TTI组合之间存在映射关系,则可以节省切换指令的种类。
另外需要说明的是,上述具体示例中均是以多载波技术是双载波技术为例进行说明的,可以理解地,实际实现时,若多载波技术中包含3个载波或3个以上的载波,则该多载波技术中的切换指令也可以复用上述各表中的切换指令。在多载波技术中包含3个载波 或3个以上的载波的***中,若上述各表中的所有编码不足以表示每一种切换指令与TTI组合切换(例如从2ms+10msTTI组合切换至10ms+10msTTI组合)之间的映射关系,则可以通过增加编码组合的方式实现。
如图4所示,是本发明实施例提供的一种TTI切换方法的交互示意图。图4所示的方法应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,多载波包括主载波和至少一个辅载波;该方法可以包括以下步骤S201-S204:
S201:基站向UE发送辅载波激活指令;其中,辅载波激活指令用于指示激活辅载波,且辅载波激活指令与辅载波的TTI之间存在映射关系。
具体的:基站可以在HS-SCCH上向UE发送辅载波激活指令;该情况下,辅载波激活指令可以是上文中的HS-SCCH order。需要说明的是,HS-SCCH order可以具有很多功能,例如切换TTI的功能(参见上述各实施例);以及激活/去激活辅载波的功能。上文中通过HS-SCCH order指示切换TTI;本实施例中通过HS-SCCH order指示辅载波激活/去激活,具体是指对辅载波状态的切换功能。
其中,S201中的基站可以是***中的任意一基站;S201中的UE可以是该基站下的任意一UE。具体实现时,本发明实施例对基站如何生成辅载波激活指令,以及在何种情况下触发向UE发送辅载波激活指令的具体实现方式不进行限定。例如,基站可以根据UE上报的UPH消息选择辅载波的TTI,然后按照辅载波激活指令与辅载波的TTI之间的映射关系获取本次激活辅载波的过程中的辅载波激活指令,然后向UE发送该辅载波激活指令。需要说明的是,本实施例中的UPH与上文中的UPH的区别在于,本实施例中的UPH中所使用的PDPCCH是UE发射DPCCH初始功率。
以下行方向上采用4载波为例,用于激活/去激活辅载波的 HS-SCCH order的具体实现方式及说明可以如表8所示,其中,表8中包含辅载波激活指令与辅载波的TTI之间的映射关系。
表8
Figure PCTCN2016094251-appb-000008
在表8中,辅载波激活指令可以是以下任意一种编码组合:01 001 011,01 001 101,01 010 000,01 010 011,01 010 100,01 010 101,01 010 110,01 010 111。
由表8可知,辅载波激活指令与下行方向的3个辅载波的激活/去激活状态,以及上行方向上的辅载波的激活状态之间存在映射关系,且与辅载波上的TTI之间存在映射关系。示例的,在表8中,当辅载波激活指令是01 001 011时,表示下行方向上的3个辅载波依次处于“激活状态、去激活状态、去激活状态”,且上行方向上的 辅载波处于激活状态,且该情况下,上行辅载波上的TTI是2ms。其他于此类似的说明,此处不再赘述。
需要说明的是,现有技术中,辅载波激活指令与辅载波的TTI之间不不存在映射关系。
S202:UE接收基站发送的辅载波激活指令。
具体的,UE可以在HS-SCCH上接收基站发送的辅载波激活指令。
S203:UE根据辅载波激活指令与辅载波的目标TTI之间的映射关系,确定辅载波的目标TTI。
基于表8所示的示例,当辅载波激活指令是01001011,01001101,01010000,01010011任意一种时,UE所确定的辅载波的目标TTI是2msTTI;当辅载波激活指令是01010100,01010101,01010110,01010111任意一种时,UE所确定的辅载波的目标TTI是10msTTI。
可选的,该方法还可以包括:S204:UE根据辅载波激活指令激活辅载波,并在辅载波上利用所确定的TTI向基站发送数据。
基于S203中的示例,UE根据辅载波激活指令激活辅载波,并当所确定的TTI是2msTTI时,UE在辅载波上利用2msTTI向基站发送数据,基站在辅载波上利用2msTTI接收该UE发送的数据;当所确定的TTI是10msTTI时,UE在辅载波上利用10msTTI向基站发送数据,基站在辅载波上利用10msTTI接收该UE发送的数据。
需要说明的是,表8中是以下行方向上采用4载波,且上行方向上的辅载波支持2msTTI和10msTTI为例进行说明的,具体实现时,可能存在辅载波还支持其他TTI,或者下行方向上采用多于4载波(例如8载波)的场景,该情况下,可以通过扩展辅载波激活指令的比特位的方式实现。示例的,当HS-SCCH order采用type1(即类型1)时,可以使用New Data indicator(1bit)字段;当HS-SCCH  order采用type3或type4时,可以使用Transport-block size information(6bits)字段。
本发明实施例提供的TTI切换方法,UE在接收到辅载波激活之后,通过辅载波激活指令与辅载波的TTI之间的映射关系,辅载波的目标TTI,与现有技术中的为多个载波中的每个载波配置一个切换指令,且辅载波激活指令与辅载波的TTI切换指令分开发送的技术方案相比,能够节省为辅载波的切换指令,从而节省为多载波配置的切换指令,进而节省UE向基站回复的HARQ消息的次数,以节省信令开销。
另外,与下述提供的切换辅载波的TTI的方案相比,辅载波TTI切换方法的灵活性较高,且节省了TTI配置过程的生效时间。需要说明的是,现有技术中,可以采用以下方式切换辅载波的TTI:辅载波初始状态是去激活状态,从去激活状态切换到激活状态时TTI为2ms;如果辅载波处于非初始状态,UE会保存去激活之前的TTI配置,当切换到激活状态时保持前一次去激活之前的TTI配置,即若去激活之前的TTI为10ms,那么下一次辅载波激活时的TTI仍为10ms;若去激活之前的TTI为2ms,那么下一次辅载波激活时的TTI仍为2ms。该方法中本次激活状态的辅载波的TTI受上一次激活状态的辅载波的TTI的影响,因此该方法具有局限性,不能灵活配置;并且,该方法是在激活辅载波之后,需要再通过一个切换命令才能切换该辅载波的TTI,而UE在执行任意一操作(包括辅载波激活和TTI切换)时均存在一个生效时间,因此,该方法的TTI切换过程的生效时间较长。
并且,可选的,辅载波激活指令和切换指令均可以用HS-SCCH order表示,根据3GPP协议的规定,UE需要在接收到每个HS-SCCH order之后,向基站发送一个HARQ消息,以告知基站:UE是否成功接收该HS-SCCH order;也就是说,若UE接收到基站发送的辅载 波激活指令和用于对该辅载波的TTI进行切换的切换指令,则UE需要向基站回复两个HARQ消息。利用本实施例提供的方法,UE只需要向基站回复一个HARQ消息即可,从而节省了信令开销。
如图5所示,是本发明实施例提供的另一种TTI切换方法的交互示意图。图5所示的方法应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合。可选的,本实施例中的切换指令可以是上文中的HS-SCCH order,其相关描述均可参考上文。该方法可以包括:
S301:基站向UE发送切换指令。其中,切换指令与多载波中的目标载波之间存在映射关系。
具体的,基站向UE发送一个或多个切换指令,其中,每个切换指令与一个载波的目标TTI之间存在映射关系,或每个切换指令与一个载波的“从当前TTI切换至目标TTI”之间存在映射关系(如表1所示)。
在本实施例中,可以为多载波中的每个载波配置一个切换指令,例如,对于双载波技术来说,为主载波和辅载波分别配置一个HS-SCCH order,其中,为主载波配置的HS-SCCH order用于控制主载波的TTI的切换,为辅载波配置的HS-SCCH order用于控制辅载波的TTI的切换。
示例的,对于双载波技术来说,基站可以在t1时刻向UE发送切换指令1,在t2时刻向UE发送切换指令2;其中,切换指令1与主载波的“从2msTTI切换至10msTTI”之间存在映射关系,切换指令2与辅载波的“从10msTTI切换至2msTTI”之间存在映射关系。
S302:UE在预设时间窗口内接收基站发送的切换指令。
具体的,UE在预设时间窗口内接收到基站发送的一个或多个切换指令。其中,该预设时间窗口可以是UE接收到一个切换指令(示例的可以是HS-SCCH order)之后的某一段时间(例如,X个时隙或 子帧或毫秒等);或者,可以是UE从开始接收切换指令(示例的可以是HS-SCCH order)的时刻开始的某一段时间,该情况下,预设时间窗口包括了UE接收第1个切换指令的时间。本发明实施例对预设时间窗口的大小不进行限定。实际实现时,该预设时间窗口的大小可以根据UE允许的时延等因素确定。
S303:UE向基站发送HARQ消息,以指示基站:UE是否成功接收预设接收窗内接收到的切换指令。
其中,假设使用“1”表示接收成功,使用“0”表示没有接收成功;那么,基于S301中的示例,若UE成功接收切换指令1和切换指令2,则S303中的HARQ消息可以表示为:11;若UE成功接收切换指令1,没有成功接收切换指令2,则HARQ消息可以表示为:10。
需要说明的是,现有技术中使用一个HARQ消息来指示UE是否成功接收一个HS-SCCH order,其中,包括HARQ-ACK(acknowledgement,确认字符)消息和HARQ-NACK(Non-acknowledgement,非确认字符)消息;HARQ-ACK消息表示成功接收,HARQ-NACK消息表示没有成功接收。该实施例中是以一个HARQ消息来指示UE是否成功接收一个预设时间窗口内接收到的所有HS-SCCH order。
S304:UE根据预设时间窗口内接收到的切换指令,确定目标TTI。
具体的,若UE在预设时间窗口内接收到多个切换指令,则确定每个切换指令对应的目标TTI。基于S301中的示例,UE需要确定主载波的目标TTI(即10ms)和辅载波的目标TTI(即2ms)。
可选的,若UE在预设时间窗口内接收到多个切换指令,则在S304中,UE可以在成功接收预设时间窗口内接收到的所有切换指令之后,确定每个切换指令对应的目标TTI。另外,该方法还可以 包括:若UE没有成功接收预设时间窗口内接收到的多个切换指令中的任意一个或多个切换指令,则不执行S304,也就是说,该情况下,该预设时间窗口内接收到的所有切换指令均不生效。
可选的,若UE在预设时间窗口内接收到多个切换指令,则在S304中,UE可以在成功接收预设时间窗口内接收到的一个或多个切换指令之后,确定该一个或多个切换指令对应的目标TTI。另外,若UE没有成功接收预设时间窗口内接收到的一个或多个切换指令,则该一个或多个切换指令不生效。
可选的,该方法还可以包括:S305:UE在目标载波上利用目标TTI向基站发送数据。具体的:若在S302中,UE在预设时间窗口内接收到多个切换指令,且该多个切换指令用于对多个载波的TTI进行切换,则在S304中,UE所确定的目标TTI是该多个载波中的每个载波的目标TTI;该情况下,在S305中,UE在该多个载波中的每个载波上,利用该载波的目标TTI向基站发送数据。
本发明实施例提供的TTI切换方法中,通过引入预设时间窗口的概念,从而使得UE在一个预设时间窗内接收到的一个或多个切换指令均可以通过一个HARQ消息发送给基站,以指示UE是否成功接收该多个切换指令。与现有技术中的UE在接收到每个切换指令之后均向基站发送一个HARQ消息相比,能够节省信令开销。
可选的,S303可以包括:UE在从第一时刻开始的第一预设时间段到达时,向基站发送HARQ消息;其中,第一时刻是UE在预设时间窗口内接收到的至少两个切换指令中的最后一个切换指令所在子帧的结尾处。
需要说明的是,现有技术中,基站可能在不同时刻向UE发送针对主载波的HS-SCCH order或针对辅载波的HS-SCCH order,这样,基站需要在不同时刻接收UE发送的HARQ消息;为了使基站知道所接收的HARQ消息是针对哪个HS-SCCH order的响应,HS-SCCH  order和HARQ信息之间存在时序关系。在3GPP协议中,该时序关系是高速物理下行共享信道(high speed physical downlink shared channel,HS-PDSCH)的数据间接体现出来的。具体的:UE在接收到HS-SCCH order的子帧起始处之后的2个时隙开始尝试接收HS-PDSCH的数据(即HS-PDSCH的第0号子帧的起始处),在从HS-PDSCH的第0号子帧的结尾处之后的约7.5个时隙向基站发送HARQ消息;这间接表明HS-SCCH order与HARQ消息之间相差约12.5个时隙,具体为:2个时隙+1个HS-PDSCH子帧(具体为3个时隙)+约7.5个时隙=12.5个时隙。
如图6所示,是现有技术中提供的HARQ消息的发送机制的示意图。图6中是以HS-DSCH服务小区的HS-SCCH order控制上行主载波,HS-DSCH辅服务小区的HS-SCCH order控制上行辅载波为例进行说明,其中,HS-DSCH服务小区可以理解为下行主载波,HS-DSCH辅服务小区可以理解为下行辅载波。图6中,UE在主载波的HS-SCCH的第0号子帧的起始处开始接收针对主载波的HS-SCCH order,在辅载波的HS-SCCH的第1号子帧的起始处开始接收针对辅载波的HS-SCCH order。需要说明的是,图6中的HS-DPCCH是高速专用物理控制信道(High speed dedicated physical control channel)的英文缩写,用于表明UE在HS-DPCCH上向基站发送HARQ消息。
该可选的实现方式,提供了一种新的HARQ消息的发送机制。示例的,基于图6所示的示例,在该发送机制下,UE在预设时间窗口内接收到最后一个HS-SCCH order所在的子帧的起始处(即HS-SCCH子帧起始处)之后的约12.5个时隙时,向基站发送HARQ消息,如图7所示。
可选的,S305可以包括:UE从第一时刻开始的第二预设时间段到达时,在目标载波上利用目标TTI向基站发送数据TTI;其中, 第一时刻是UE在预设时间窗口内接收到的至少两个切换指令中的最后一个切换指令所在子帧的结尾处。
该可选的实现方式,提供了一种TTI切换生效时间的确定机制。其中,TTI切换生效时间包括两个部分:激活时间(由高层配置)和TTI重配置的时间。具体的,在该可选的实现方式中,将激活时间改为从预设接收窗内的最后一个切换指令(例如HS-SCCH order)之后的第1个E-DCH帧开头(即第一时刻)处开始计时的一段时间(即第二预设时间段);示例的,若该最后一个HS-SCCH order的子帧的结尾处在第0个E-DCH子帧内,则UE在第1个E-DCH子帧的起始处开始计时。
需要说明的是,在现有技术中,UE在接收到切换指令(例如HS-SCCH order)后经TTI切换生效时间之后,采用新的TTI发送数据。其中,TTI切换生效时间包括两个部分:激活时间(由高层配置)和TTI重配置的时间。其中,激活时间是从UE接收完HS-SCCH order(即接收HS-SCCH order的子帧的结尾处)开始计时的一段时间;TTI重配置时间是激活时间之后的另一段时间(一般为20ms)。
可选的,S305可以包括:UE在处于激活状态的目标载波上,利用目标载波向基站发送数据。
在该可选的实现方式中,UE可以根据在预设时间窗口内接收到的切换指令,确定该预设时间窗口内接收到的切换指令对应的载波的目标TTI,然后将这些载波中的处于激活状态的载波的当前TTI切换为目标TTI;另外,对于这些载波中的处于去激活状态的载波来说,UE可以不进行TTI切换,也可以进行TTI切换。具体示例可以参考上文,此处不再赘述。
如图8所示,是本发明实施例提供的另一种TTI切换方法的交互示意图。图8所示的方法应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,该方法可以包括以下步骤:
S401:UE确定目标TTI组合;其中,目标TTI组合是该至少两种TTI组合中的任意一种TTI组合。
其中,S401中的UE可以是***中的任意一个UE。
S402:UE向基站发送TTI指令;其中,TTI指令中包含目标TTI组合的标识,用于指示基站在多载波上,利用目标TTI组合接收UE发送的数据。
其中,S402中的基站是指S401中的UE所连接的基站。示例的,当目标TTI组合是2ms+2msTTI组合时,目标TTI组合的标识可以是“00”;当目标TTI组合是2ms+10msTTI组合时,目标TTI组合的标识可以是“01”;当目标TTI组合是10ms+10ms时,目标TTI组合的标识可以是“10”。具体实现时不限于此,目标TTI组合的标识所占的比特位可以根据该***所支持的TTI组合的总数目确定。
S403:UE在多载波上利用目标TTI组合向基站发送数据。
由于具体实现时,在S402中,UE通过控制信道向基站发送TTI指令;在S404中,UE通过数据信道向基站发送数据;并且,一般地,UE先发送指令再发送数据,因此,可以先执行S402再执行S403,也可以在执行S402的过程中执行S403。
S404:基站接收该UE发送的该TTI指令,并利用目标TTI组合接收UE发送的数据。
本实施例提供的TTI切换方法,由UE确定并向基站发送目标TTI组合,从而实现对多载波技术中的TTI组合的灵活配置。
可选的,S401可以包括:UE根据多载波中的每个载波的UPH确定目标TTI组合。其中,UPH是指UE的最大允许发送功率和专用物理控制信道DPCCH码功率的比值。
需要说明的是,本发明实施例对UE获取UPH的过程以及在何种触发条件下获取UPH的具体实现方式均不进行限定,例如,可以根据现有技术中提供的任意一种方法获取UPH。本实施例中相关内 容的解释可以参考上文。UE根据UPH确定目标TTI组合的具体实现方式可以类似于现有技术中的基站根据UPH确定目标TTI组合的具体实现方式,此处不再赘述。
基于该可选的实现方式,多载波包括主载波和至少一个辅载波;进一步可选的,UE根据多载波中的每个载波的UPH确定目标TTI组合,可以包括:UE在接收到基站发送的辅载波激活指令之后,根据辅载波的UPH确定辅载波的目标TTI;其中,辅载波激活指令用于激活辅载波。
其中,目标TTI组合是由多载波中的每个载波的TTI组成的;该进一步可选的实现方式给出了一种确定辅载波的目标TTI的触发机制。在该实现方式中,可选的,该方法还可以包括:UE根据辅载波激活指令激活辅载波。在S404中,在UE和基站在分别激活辅载波的基础上,UE在辅载波上利用目标辅载波向基站发送数据。
可选的,S402可以包括:UE通过DPCCH向基站发送TTI指令。进一步可选的,UE在DPCCH中传输的反馈消息(feedback information,FBI)或传输格式组合指示(transport format combination indicator,TFCI)中的比特位指示目标TTI组合。
上述主要从UE和服务器交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,为了实现上述各个功能,UE或基站中包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对UE或基站进行功能模 块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的模块的情况下,图9示出了一种UE9的结构示意图。该UE9可以是上述方法(例如图2~5、图8所示的方法)实施例中所涉及的UE。该UE9可以包括:处理模块901和通信模块902。其中,处理模块901用于对UE9的工作进行控制管理。通信模块902用于支持UE9与其他网络实体的通信,例如与基站的通信等。可选的,UE9还可以包括:存储模块903,用于存储UE9执行上文所提供的任一方法实施例所对应的程序和数据。
在一种可能的设计中,处理模块901用于支持UE9执行图2中的S93;通信模块902用于支持UE9执行图2中的S91、S92和S94;存储模块903用于存储UE9执行图2中的各步骤所对应的程序和数据。
在另一种可能的设计中,处理模块901用于支持UE9执行图3中的S93',可选的,还用于支持UE9执行图3中的S95;通信模块902用于支持UE9执行图3中的S91、S92和S94,可选的,还用于支持UE9执行图3中的S96;存储模块903用于存储UE9执行图3中的各步骤所对应的程序和数据。
在另一种可能的设计中,处理模块901用于支持UE9执行图4中的S203和S204;通信模块902用于支持UE9执行图4中的S201、S202和S204;存储模块903用于存储UE9执行图4中的各步骤所对应的程序和数据。
在另一种可能的设计中,处理模块901用于支持UE9执行图5中的S302和S304;通信模块902用于支持UE9执行图5中的S301、 S303和S305;存储模块903用于存储UE9执行图5中的各步骤所对应的程序和数据。
在另一种可能的设计中,处理模块901用于支持UE9执行图8中的S401;通信模块902用于支持UE9执行图8中的S401、S403和S404;存储模块903用于存储UE9执行图8中的各步骤所对应的程序和数据。
需要说明的是,上述各可能的设计均是示例性的,实际实现时,UE9中的各模块还可以用于支持执行本文所描述的技术的其它过程。
其中,处理模块901可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块902可以是收发器、收发电路或通信接口等。存储模块903可以是存储器。
当处理模块901为处理器,通信模块902为收发器,存储模块903为存储器时,本发明实施例所涉及的UE9可以为图10所示的UE10。
如图10所示,UE10可以包括:处理器1012、收发器1013、存储器1011以及总线1014。其中,收发器1013、处理器1012以及存储器1011通过总线1014相互连接;总线1014可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所 述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
如图11所示,为本发明实施例提供的一种UE11,该UE11用于执行图2或图3中UE所执行的各步骤,关于这些步骤的相关说明可以参考上文。该UE11应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,该UE11可以包括:接收模块1101和确定模块1102。其中:
接收模块1101,用于接收基站发送的切换指令;其中,切换指令用于指示TTI切换,且切换指令与多载波技术所支持的目标TTI组合之间存在映射关系;目标TTI组合是至少两种TTI组合中的一种TTI组合。
确定模块1102,用于根据切换指令与目标TTI组合之间的映射关系,确定目标TTI组合。
可选的,切换指令还与单载波技术所支持的目标TTI之间存在映射关系;该情况下,确定模块1101具体可以用于:若UE采用的是多载波技术,则UE根据切换指令与多载波技术所支持的目标TTI组合之间的映射关系,确定目标TTI组合。
可选的,切换指令还与单载波技术所支持的目标TTI之间存在映射关系;该情况下,确定模块1101还可以用于:若UE采用的是单载波技术,则根据切换指令与单载波技术所支持的目标TTI之间存在映射关系,确定目标TTI。
可选的,切换指令与预设当前TTI组合之间存在映射关系,预设当前TTI组合与目标TTI组合之间存在映射关系;该情况下,确定模块1101具体可以用于:若UE采用的TTI组合是预设当前TTI组合,则根据预设当前TTI组合与目标TTI组合之间映射关系,确定目标TTI组合。
可以理解地,本发明实施例提供的UE11中的各模块用于执行上文图2或图3所提供的TTI切换方法,因此其所能达到的有益效果可以参考上文,此处不再赘述。
如图12所示,为本发明实施例提供的一种UE12,该UE12用于执行图4中UE所执行的各步骤,关于这些步骤的相关说明可以参考上文。该UE12应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,该UE11可以包括:接收模块1201和确定模块1202。其中:
接收模块1201,用于接收基站发送的辅载波激活指令;其中,辅载波激活指令用于指示激活辅载波,且辅载波激活指令与辅载波的目标TTI之间存在映射关系。
确定模块1202,用于根据辅载波激活指令与辅载波的目标TTI之间的映射关系,确定辅载波的目标TTI。
可以理解地,本发明实施例提供的UE12中的各模块用于执行上 文图2或图4所提供的TTI切换方法,因此其所能达到的有益效果可以参考上文,此处不再赘述。
如图13所示,为本发明实施例提供的一种UE13,该UE13用于执行图5中UE所执行的各步骤,关于这些步骤的相关说明可以参考上文。该UE13应用于支持多载波技术的***中,多载波技术支持至少两种TTI组合,该UE13可以包括:接收模块1301、发送模块1302和确定模块1303。其中:
接收模块1301,用于在预设时间窗口内接收基站发送的切换指令;其中,切换指令与多载波中的目标载波之间存在映射关系。
发送模块1302,用于向基站发送混合自动重传请求HARQ消息;其中,HARQ消息用于指示基站:UE是否成功接收预设接收窗内接收到的切换指令。
确定模块1303,用于根据预设时间窗口内接收到的切换指令,确定目标TTI。
可选的,发送模块1302具体可以用于:在从第一时刻开始的第一预设时间段到达时,向基站发送HARQ消息;其中,第一时刻是UE在预设时间窗口内接收到的最后一个切换指令所在子帧的结尾处。
可选的,发送模块1302还可以用于:从第一时刻开始的第二预设时间段到达时,在目标载波上利用目标TTI向基站发送数据;其中,第一时刻是UE在预设时间窗口内接收到的最后一个切换指令的所在子帧的结尾处。
可以理解地,本发明实施例提供的UE13中的各模块用于执行上文图5或图5所提供的TTI切换方法,因此其所能达到的有益效果可以参考上文,此处不再赘述。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来 实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (16)

  1. 一种传输时间间隔TTI切换方法,其特征在于,应用于支持多载波技术的***中,所述多载波技术支持至少两种TTI组合,所述方法包括:
    用户设备UE接收基站发送的切换指令;其中,所述切换指令用于指示TTI切换,且所述切换指令与所述多载波技术所支持的目标TTI组合之间存在映射关系;所述目标TTI组合是所述至少两种TTI组合中的一种TTI组合;
    所述UE根据所述切换指令与所述目标TTI组合之间的映射关系,确定所述目标TTI组合。
  2. 根据权利要求1所述的方法,其特征在于,所述切换指令还与单载波技术所支持的目标TTI之间存在映射关系;
    所述UE根据所述切换指令与所述目标TTI组合之间的映射关系,确定所述目标TTI组合,包括:
    若所述UE采用的是所述多载波技术,则所述UE根据所述切换指令与所述多载波技术所支持的所述目标TTI组合之间的映射关系,确定所述目标TTI组合。
  3. 根据权利要求1所述的方法,其特征在于,所述切换指令还与单载波技术所支持的目标TTI之间存在映射关系,所述方法还包括:
    若所述UE采用的是所述单载波技术,所述UE根据所述切换指令与单载波技术所支持的目标TTI之间存在映射关系,确定目标TTI。
  4. 根据权利要求1至3任意一项所述的方法,其特征在于,所述切换指令与预设当前TTI组合之间存在映射关系,所述预设当前TTI组合与所述目标TTI组合之间存在映射关系;所述UE根据所述切换指令与所述目标TTI组合之间的映射关系,确定所述目标TTI组合,包括:
    若所述UE采用的TTI组合是所述预设当前TTI组合,则根据所述预设当前TTI组合与所述目标TTI组合之间映射关系,确定所述目标TTI组合。
  5. 一种传输时间间隔TTI切换方法,其特征在于,应用于支持多载波技术的***中,所述多载波技术支持至少两种TTI组合,所述多载波包括主载波和至少一个辅载波;所述方法包括:
    用户设备UE接收基站发送的辅载波激活指令;其中,所述辅载波激活指令用于指示激活辅载波,且所述辅载波激活指令与所述辅载波的目标TTI之间存在映射关系;
    所述UE根据所述辅载波激活指令与所述辅载波的目标TTI之间的映射关系,确定所述辅载波的目标TTI。
  6. 一种传输时间间隔TTI切换方法,其特征在于,应用于支持多载波技术的***中,所述多载波技术支持至少两种TTI组合,所述方法包括:
    用户设备UE在预设时间窗口内接收基站发送的切换指令;其中,所述切换指令与所述多载波中的目标载波之间存在映射关系;
    所述UE向所述基站发送混合自动重传请求HARQ消息;其中,所述HARQ消息用于指示所述基站:所述UE是否成功接收所述预设接收窗内接收到的切换指令;
    所述UE根据所述预设时间窗口内接收到的切换指令,确定所述目标TTI。
  7. 根据权利要求6所述的方法,其特征在于,所述UE向所述基站发送HARQ消息,包括:
    所述UE在从第一时刻开始的第一预设时间段到达时,向所述基站发送HARQ消息;其中,所述第一时刻是所述UE在所述预设时间窗口内接收到的最后一个切换指令所在子帧的结尾处。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还 包括:
    所述UE从第一时刻开始的第二预设时间段到达时,在所述目标载波上利用所述目标TTI向所述基站发送数据;其中,所述第一时刻是所述UE在所述预设时间窗口内接收到的最后一个切换指令的所在子帧的结尾处。
  9. 一种用户设备UE,其特征在于,应用于支持多载波技术的***中,所述多载波技术支持至少两种传输时间间隔TTI组合,所述UE包括:
    接收器,用于接收基站发送的切换指令;其中,所述切换指令用于指示TTI切换,且所述切换指令与所述多载波技术所支持的目标TTI组合之间存在映射关系;所述目标TTI组合是所述至少两种TTI组合中的一种TTI组合;
    处理器,用于根据所述切换指令与所述目标TTI组合之间的映射关系,确定所述目标TTI组合。
  10. 根据权利要求9所述的UE,其特征在于,所述切换指令还与单载波技术所支持的目标TTI之间存在映射关系;
    所述处理器具体用于:若所述UE采用的是所述多载波技术,则所述UE根据所述切换指令与所述多载波技术所支持的所述目标TTI组合之间的映射关系,确定所述目标TTI组合。
  11. 根据权利要求9所述的UE,其特征在于,所述切换指令还与单载波技术所支持的目标TTI之间存在映射关系;
    所述处理器还用于:若所述UE采用的是所述单载波技术,则根据所述切换指令与单载波技术所支持的目标TTI之间存在映射关系,确定目标TTI。
  12. 根据权利要求9至11任意一项所述的UE,其特征在于,所述切换指令与预设当前TTI组合之间存在映射关系,所述预设当前TTI组合与所述目标TTI组合之间存在映射关系;
    所述处理器具体用于:若所述UE采用的TTI组合是所述预设当前TTI组合,则根据所述预设当前TTI组合与所述目标TTI组合之间映射关系,确定所述目标TTI组合。
  13. 一种用户设备UE,其特征在于,应用于支持多载波技术的***中,所述多载波技术支持至少两种传输时间间隔TTI组合,所述多载波包括主载波和至少一个辅载波;所述UE包括:
    接收器,用于接收基站发送的辅载波激活指令;其中,所述辅载波激活指令用于指示激活辅载波,且所述辅载波激活指令与所述辅载波的目标TTI之间存在映射关系;
    处理器,用于根据所述辅载波激活指令与所述辅载波的目标TTI之间的映射关系,确定所述辅载波的目标TTI。
  14. 一种用户设备UE,其特征在于,应用于支持多载波技术的***中,所述多载波技术支持至少两种传输时间间隔TTI组合,所述UE包括:
    接收器,用于在预设时间窗口内接收基站发送的切换指令;其中,所述切换指令与所述多载波中的目标载波之间存在映射关系;
    发送器,用于向所述基站发送混合自动重传请求HARQ消息;其中,所述HARQ消息用于指示所述基站:所述UE是否成功接收所述预设接收窗内接收到的切换指令;
    处理器,用于根据所述预设时间窗口内接收到的切换指令,确定所述目标TTI。
  15. 根据权利要求14所述的UE,其特征在于,
    所述发送器具体用于:在从第一时刻开始的第一预设时间段到达时,向所述基站发送HARQ消息;其中,所述第一时刻是所述UE在所述预设时间窗口内接收到的最后一个切换指令所在子帧的结尾处。
  16. 根据权利要求14或15所述的UE,其特征在于,
    所述发送器还用于:从第一时刻开始的第二预设时间段到达时, 在所述目标载波上利用所述目标TTI向所述基站发送数据;其中,所述第一时刻是所述UE在所述预设时间窗口内接收到的最后一个切换指令的所在子帧的结尾处。
PCT/CN2016/094251 2016-08-09 2016-08-09 一种tti切换方法和装置 WO2018027600A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/094251 WO2018027600A1 (zh) 2016-08-09 2016-08-09 一种tti切换方法和装置
CN201680082810.3A CN108702652B (zh) 2016-08-09 2016-08-09 一种tti切换方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094251 WO2018027600A1 (zh) 2016-08-09 2016-08-09 一种tti切换方法和装置

Publications (1)

Publication Number Publication Date
WO2018027600A1 true WO2018027600A1 (zh) 2018-02-15

Family

ID=61161351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094251 WO2018027600A1 (zh) 2016-08-09 2016-08-09 一种tti切换方法和装置

Country Status (2)

Country Link
CN (1) CN108702652B (zh)
WO (1) WO2018027600A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761171C1 (ru) 2018-03-22 2021-12-06 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ переключения состояния вторичной несущей, терминал и сетевое устройство

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102106171A (zh) * 2009-04-27 2011-06-22 华为技术有限公司 切换方法和设备
CN104521281A (zh) * 2013-04-12 2015-04-15 华为技术有限公司 一种tti切换方法、基站及用户设备
CN104641576A (zh) * 2012-09-06 2015-05-20 三星电子株式会社 用于在非对称多载波通信网络环境中传送下行链路控制信息的方法和装置
CN104956724A (zh) * 2013-01-30 2015-09-30 瑞典爱立信有限公司 改变无线承载配置或状态

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100542341C (zh) * 2005-08-12 2009-09-16 深圳华为通信技术有限公司 实现移动终端间数据共享的方法和设备
WO2014189429A1 (en) * 2013-05-21 2014-11-27 Telefonaktiebolaget L M Ericsson (Publ) Improved tti switching
WO2015120600A1 (zh) * 2014-02-13 2015-08-20 华为技术有限公司 数据传输方法、装置及***
CN109156003B (zh) * 2016-05-13 2023-08-04 瑞典爱立信有限公司 用于多载波hsupa的tti切换

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102106171A (zh) * 2009-04-27 2011-06-22 华为技术有限公司 切换方法和设备
CN104641576A (zh) * 2012-09-06 2015-05-20 三星电子株式会社 用于在非对称多载波通信网络环境中传送下行链路控制信息的方法和装置
CN104956724A (zh) * 2013-01-30 2015-09-30 瑞典爱立信有限公司 改变无线承载配置或状态
CN104521281A (zh) * 2013-04-12 2015-04-15 华为技术有限公司 一种tti切换方法、基站及用户设备

Also Published As

Publication number Publication date
CN108702652A (zh) 2018-10-23
CN108702652B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2017133352A1 (zh) 业务传输的方法和装置
US10623981B2 (en) Information transmission method, apparatus, and system
EP3386258A1 (en) Data sending method and apparatus, and base station
CN117528805A (zh) 一种通信方法及设备
KR20130140913A (ko) Rach 상에서의 고속 전송을 위한 방법 및 장치
CN112243287B (zh) 一种唤醒信号wus检测方法及装置
JP2020502885A (ja) グラント・フリー伝送方法、端末、及びネットワーク・デバイス
US20210297188A1 (en) Data transmission method and communication apparatus
CN113711667B (zh) 参考信号的发送方法、装置和通信***
US10873430B2 (en) Signal sending method and apparatus
JP2022511306A (ja) サイドリンクの通信方法とデバイス
WO2021047478A1 (zh) 一种通信方法及装置
TWI746709B (zh) 非連續接收的方法和裝置
WO2017088123A1 (zh) 无线通信的方法、网络设备和终端设备
US11096105B2 (en) Communication method, base station, and terminal
US10455567B2 (en) Methods and nodes for controlling uplink transmissions
CN110140417B (zh) 通信方法、通信装置、通信设备及计算机可读介质
WO2018027600A1 (zh) 一种tti切换方法和装置
CN113645679B (zh) 数据传输时的波束确定方法及装置、存储介质、ue、基站
WO2020156394A1 (zh) 一种反馈方法及装置
US20240121805A1 (en) Communication method and device
CN116800388A (zh) 一种下行数据传输指示方法及装置、ue、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912055

Country of ref document: EP

Kind code of ref document: A1