WO2018025951A1 - 樹脂成形体 - Google Patents

樹脂成形体 Download PDF

Info

Publication number
WO2018025951A1
WO2018025951A1 PCT/JP2017/028183 JP2017028183W WO2018025951A1 WO 2018025951 A1 WO2018025951 A1 WO 2018025951A1 JP 2017028183 W JP2017028183 W JP 2017028183W WO 2018025951 A1 WO2018025951 A1 WO 2018025951A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
resin
inorganic particles
mass
resin molded
Prior art date
Application number
PCT/JP2017/028183
Other languages
English (en)
French (fr)
Inventor
重樹 黒木
剛紀 笹川
Original Assignee
株式会社Tbm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tbm filed Critical 株式会社Tbm
Priority to JP2018531971A priority Critical patent/JP6606676B2/ja
Publication of WO2018025951A1 publication Critical patent/WO2018025951A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials

Definitions

  • the present invention relates to a resin molded body.
  • thermoplastic resin Conventionally, molded articles of thermoplastic resin are used as members such as floors and pillars.
  • Patent Document 1 in a floor building material in which a thermoplastic resin molded body is laminated on a wood base material, 15 to 60% by weight of paper powder and 0 to 10% by weight of color pigment are added to the thermoplastic resin molded body.
  • blending is described.
  • Patent Document 1 describes that stable color quality can be ensured by blending paper powder such as pulp.
  • a member such as a floor needs to hit a nail when assembling, but the floor member described in Patent Document 1 has a problem that it is difficult for the nail to pass when hitting a nail.
  • thermoplastic resin molded body when a thermoplastic resin molded body is installed in an environment that tends to be higher or lower than room temperature, such as outdoors, using a thermoplastic resin molded body as in Patent Document 1, the nail that has been struck can be obtained. There was a problem that it was easy to come off.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a resin molded body in which a nail is easy to hit and does not easily come off even when installed in an environment where it is likely to be hot or cold.
  • the present inventors blended a large amount of inorganic particles into a thermoplastic resin and then molded a resin having a predetermined porosity, so that nails can be easily struck and installed in an environment that tends to be hot or cold. As a result, it was found that the nails were difficult to come off, and the present invention was completed. More specifically, the present invention aims to provide the following.
  • a resin molded body A thermoplastic resin and inorganic particles, The porosity is 5 to 80%, The resin molding which content of the said inorganic particle is 40 mass% or more with respect to the mass of the whole resin molding.
  • thermoplastic resin includes polypropylene
  • a method for producing a resin product which includes a step of nailing the resin molded body according to any one of (1) to (5).
  • the nail can be easily hit, and even if it is installed in an environment where the temperature is likely to be high or low, the nail can be made difficult to come off.
  • the resin molded body of the present invention includes a thermoplastic resin and inorganic particles, has a porosity of 5 to 80%, and the content of inorganic particles is 40% by mass or more with respect to the total mass of the resin molded body. .
  • the resin molded body of the present invention makes it easy to hit the nail and makes it difficult for the nail to come off even when installed in an environment that tends to be hot or cold, such as outdoors. The reason is presumed to be as follows.
  • the porosity of the resin is low, there will be no escape space for the volume of the nail when the nail is struck, it will be difficult for the nail to pass, so it will be difficult to hit the nail and will break if you try to force it There is a fear.
  • the inorganic particles themselves are hard, so that when the nail is driven, the nail hits the inorganic particle, and the nail becomes more difficult to hit.
  • the resin molded body of the present invention contains inorganic particles but has a certain porosity or more, and a moderate cavity is generated around the inorganic particles. At this time, since the inorganic particles are pushed into the hollow portion, the nail is easily driven.
  • thermoplastic resin when it is installed in an environment that tends to be hot or cold, such as outdoors, it is exposed to this environment for a long period of time, so that the thermoplastic resin is deformed by a heat change and the nail is easily pulled out.
  • the resin molded body of the present invention a large amount of inorganic particles are contained, and the inorganic particles are not deformed by heat, so that they are relatively deformed from those not containing inorganic particles or having a small content of inorganic particles. As a result, it is presumed that the nail will not easily come off even when exposed to an environment that tends to be hot or cold such as outdoors for a long period of time.
  • thermoplastic resin in the present invention is not particularly limited, and examples thereof include polyolefin resins such as polypropylene, high density polyethylene and low density polyethylene, vinyl resins such as polyvinyl chloride and polystyrene, and polyester resins such as polyethylene terephthalate.
  • a thermoplastic resin may be used individually by 1 type, and may use 2 or more types together. Of these, polyolefin resins are preferable, and among the polyolefin resins, polypropylene is preferable.
  • the thermoplastic resin a material that has already been subjected to a stretching process or the like, or an end material generated during extrusion of the resin (for example, a mimetic portion) may be used.
  • the content of the thermoplastic resin may be appropriately set according to the amount of the inorganic particles and other components, but it is necessary to be less than 60% by mass with respect to the mass of the entire resin molded product, and the nail is easy to pass. Therefore, it is preferably less than 50% by mass, more preferably 45% by mass or less, and further preferably 40% by mass or less. On the other hand, since it is necessary to maintain an appropriate strength, the content of the thermoplastic resin is preferably 20% by mass or more, more preferably 25% by mass or more, and more preferably 30% by mass or more. Further preferred.
  • melt flow rate (MFR) of the thermoplastic resin the easier it is to hit the nail, so 0.1 g / 10 min or more (0.2 g / 10 min or more, 0.3 g / 10 min or more, 0. 4 g / 10 min or more, 0.5 g / 10 min or more, 0.6 g / 10 min or more, 0.7 g / 10 min or more, 0.8 g / 10 min or more, 0.9 g / 10 min or more, 1.0 g / 10 minutes or more, 1.2 g / 10 minutes or more, 1.4 g / 10 minutes or more, 1.6 g / 10 minutes or more, 1.8 g / 10 minutes or more, 2.0 g / 10 minutes or more, 3.0 g / 10 minutes 4.0 g / 10 min or more, 5.0 g / 10 min or more, 6.0 g / 10 min or more, 7.0 g / 10 min or more, 8.0 g / 10 min or more, 9.0
  • melt flow rate (MFR) of the thermoplastic resin the smaller the nail can be made to come off even if it is installed in an environment where the temperature tends to be high or low, 10.0 g / 10 min or less (9.
  • g / 10 min or less 8.0 g / 10 min or less, 7.0 g / 10 min or less, 6.0 g / 10 min or less, 5.0 g / 10 min or less, 4.0 g / 10 min or less, 3.0 g / 10 minutes or less, 2.0 g / 10 minutes or less, 1.8 g / 10 minutes or less, 1.6 g / 10 minutes or less, 1.4 g / 10 minutes or less, 1.2 g / 10 minutes or less, 1.0 g / 10 minutes 0.9 g / 10 min or less, 0.8 g / 10 min or less, 0.7 g / 10 min or less, 0.6 g / 10 min or less, 0.5 g / 10 min or less, 0.4 g / 10 min or less, 0.3 g / 10 min or less, 0.2 g / 10 min or less, etc.).
  • the melt mass flow rate is an index indicating the fluidity at the time of melting, and means a value measured according to JIS K 7210.
  • the melt flow rate is specifically measured according to JIS K 7210 using a melt indexer under the conditions of a load of 21.18 N and a temperature of 230 ° C.
  • the molecular weight distribution (Mw / Mn) of the thermoplastic resin is smaller, it is possible to make the nail difficult to remove even if it is installed in an environment where the temperature tends to be high or low. 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, 5.0 or less, 4.0 or less, 3.0 or less, 2.0 or less, 1.8 or less 1.6, 1.4, 1.2, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4 , 0.3 or less, 0.2 or less, etc.).
  • the molecular weight distribution (Mw / Mn) of the thermoplastic resin is measured by a gel permeation (GPC) method.
  • the porosity of the resin molded product of the present invention is not particularly limited as long as the porosity is in the range of 5 to 80%. However, the higher the porosity, the easier it is to hit the nail, 5% or more (10% or more, 20 % Or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, etc.). On the other hand, since the porosity of the resin molded product of the present invention is smaller, it is possible to make it difficult for the nail to come out even when installed in an environment where the temperature tends to be high or low, so that it is 80% or less (70% or less, 60% or less 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, etc.).
  • the void ratio of the resin molded product of the present invention was measured based on “JIS K7222: 2005 foamed plastic and rubber—how to obtain the apparent density”, and the porosity was determined from the blending ratio of the thermoplastic resin and the inorganic particles. % Density is calculated, and the porosity is calculated from the ratio of the density with a porosity of 0% and the apparent density.
  • the amount of inorganic particles contained in the resin molded product in the present invention is not particularly limited as long as it is 40% by mass or more with respect to the mass of the entire resin molded product, but it is installed in an environment that tends to be higher or lower temperatures such as outdoors. However, since it is possible to make it difficult to remove the nail, it is preferably 50% by mass or more, more preferably 55% by mass or more, and more preferably 60% by mass or more. On the other hand, the amount of inorganic particles is preferably 80% by mass or less, more preferably 75% by mass or less, based on the total mass of the resin molded product, because the nail is easier when the amount of inorganic particles is not too large. It is more preferable that it is 70 mass% or less.
  • the content of the inorganic particles in the resin composition is measured by the amount of the chemical product reduced and the residue test method (JIS0067-1192). However, in the case of calcium carbonate, the generation of carbon dioxide is considered.
  • the average particle size of the inorganic particles is not particularly limited, and for example, 0.1 ⁇ m or more (0.2 ⁇ m or more, 0.3 ⁇ m or more, 0.4 ⁇ m or more, 0.5 ⁇ m or more, 0.6 ⁇ m or more, 0.7 ⁇ m or more, 0.8 ⁇ m or more, 0.9 ⁇ m or more, 1.0 ⁇ m or more, 1.2 ⁇ m or more, 1.4 ⁇ m or more, 1.6 ⁇ m or more, 1.8 ⁇ m or more, 2.0 ⁇ m or more, 3.0 ⁇ m or more, 4.0 ⁇ m or more, 5.0 ⁇ m or more, 6.0 ⁇ m or more, 7.0 ⁇ m or more, 8.0 ⁇ m or more, 9.0 ⁇ m or more, 10.0 ⁇ m or more, 15.0 ⁇ m or more, 20.0 ⁇ m or more, 30.0 ⁇ m or more, 40.0 ⁇ m or more, etc.
  • the type of inorganic particles contained in the resin composition is not particularly limited.
  • calcium carbonate is preferably used. These may be used alone or in combination of two or more.
  • the surface of the inorganic particles may be modified in advance according to a conventional method.
  • the average particle size of the inorganic particles is measured with a laser diffraction particle size distribution measuring device.
  • the volume (%) occupied by the inorganic particles in the resin molded body of the present invention is less than 60% (50% or less, 40% or less, 30% or less, 20% or less, etc.) because the lower one makes it easier to hit the nail. It is preferable that On the other hand, the volume percentage of the inorganic particles in the resin molded body of the present invention is 15% or more (20% or more) because the higher one makes it difficult to remove the nail even if it is installed in an environment that tends to be high or low. 30% or more, 40% or more, 50% or more, etc.).
  • the volume which the inorganic particle accounts in the resin molding of this invention means the volume of the solid content in a resin molding except the volume of the space
  • the volume (%) of the inorganic particles in the resin molded body of the present invention is measured by differential thermal analysis (DTA).
  • thermoplastic resin in addition to the above-described inorganic particles and thermoplastic resin, as an auxiliary agent, a foaming agent, a colorant, a lubricant, a coupling agent, a fluidity improver, a dispersant, an antioxidant, You may mix
  • foaming agent For example, aliphatic hydrocarbons (propane, normal butane, isobutane, normal pentane, isopentane, hexane etc.), alicyclic hydrocarbons (cyclohexane, cyclopentane, cyclobutane etc.), halogen Hydrocarbons (trifluoromonochloroethane, difluorodichloromethane, etc.) and the like. These foaming agents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • lubricants examples include stearic acid, hydroxystearic acid, complex stearic acid, oleic acid and other fatty acid lubricants, fatty alcohol lubricants, stearamide, oxystearamide, oleylamide, erucylamide, ricinolamide, behenamide, methylol Amide, Methylenebisstearoamide, Methylenebisstearobehenamide, Bisamidic acid of higher fatty acid, Aliphatic amide type lubricant such as composite amide, stearic acid-n-butyl, methyl hydroxystearate, polyhydric alcohol fatty acid ester, Examples thereof include aliphatic ester lubricants such as saturated fatty acid esters and ester waxes, and fatty acid metal soap group lubricants.
  • antioxidants phosphorus antioxidants, phenol antioxidants, pentaerythritol antioxidants can be used.
  • Phosphorus antioxidants such as phosphorous esters, more specifically phosphorous esters and phosphate esters, are preferably used.
  • Examples of phosphites include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-di-tert-butylphenyl) phosphite, etc. Triester, diester, monoester of phosphorous acid, etc. Is mentioned.
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyl diphenyl phosphate, and the like. These phosphorus antioxidants may be used alone or in combination of two or more.
  • phenolic antioxidants include ⁇ -tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2- tert-Butyl-6- (3′-tert-butyl-5′-methyl-2′-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethyl) Aminomethyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, and tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxymethyl] methane Etc., and these can be used alone or in combination of two or more. wear.
  • the resin molded body of the present invention in particular, a building material (floor, pillar, wood deck, bench, etc.) where nails are struck during assembly (in this specification, abbreviated as “for nailing”). May be suitable).
  • a building material floor, pillar, wood deck, bench, etc.
  • nails struck during assembly
  • the resin molded body of the present invention is suitable for being installed outdoors because it is difficult for the nail to come out even if it is installed in an environment where the temperature tends to be high or low.
  • the resin molded body of the present invention can be produced by a conventional molding method according to the purpose, for example, the above-described thermoplastic resin and inorganic particles.
  • extrusion molding including profile extrusion molding
  • injection molding vacuum molding. Etc.
  • Etc. can be manufactured.
  • a foaming agent may be added.
  • the amount of the foaming agent may be appropriately set according to the type of foaming agent and the desired porosity.
  • the raw material thermoplastic resin may be pelletized by using a material that has already been subjected to a stretching treatment or the like, or an end material (for example, a portion of a mim) generated during extrusion of the resin.
  • the moisture content contained in the pellet is 0.30% by mass or more based on the mass of the inorganic particles contained in the pellet, and the content of the inorganic particles contained in the resin composition is based on the total amount of the resin composition. It is preferable that it is 30 mass% or more.
  • the present invention includes a resin product obtained by nailing the above-described resin molded body.
  • the resin product is preferably one in which building materials (floor, pillar, wood deck, bench, etc.) are nailed and assembled, and the resin product of the present invention is suitable to be used outdoors.
  • This invention includes the manufacturing method of a resin product which has the process of hitting a nail to said resin molding. By the step of hitting the nail, the resin molded body can be assembled to produce a desired resin product.
  • the nail may be hit by a conventionally known method.
  • the nail may be hit mechanically by a nailing machine or the like, or the nail may be hit manually by a hammer or the like.
  • Example 1 Polypropylene (MFR: 0.5, Mw / Mn: 10.3, 40% by mass with respect to the total mass of polypropylene and calcium carbonate), calcium carbonate (average particle size 1.5 ⁇ m, total mass of polypropylene and calcium carbonate) 60 mass%) was melt-kneaded, pelletized, and then directly molded by profile extrusion without drying to obtain a resin molded product according to Example 1.
  • the porosity of the resin molded product was 7.85%.
  • the moisture content of the pellets was measured with an infrared moisture meter (FD-660 (manufactured by Kett Science Laboratory), in an atmosphere of 50% humidity and 23 ° C.).
  • the pellet was allowed to evaporate moisture at 105 ° C., and the moisture content was calculated from the change in mass before and after evaporation. The value when the pellet was in an equilibrium state was taken as the moisture content.
  • the sample amount of pellets used was 10 g.
  • the water content with respect to the total mass of polypropylene and calcium carbonate was 0.40%, and the water content with respect to the mass of the inorganic particles contained in the pellets was 0.67%.
  • thermoplastic resins polypropylene (40% by mass with respect to the total mass of polypropylene and calcium carbonate), calcium carbonate (60% by mass with respect to the total mass of polypropylene and calcium carbonate), foaming agent (Yewa Kasei Kogyo Co., Ltd.) )
  • Polyslene EE275F (decomposition temperature: 155 ° C., generated gas amount: 230 ml / 5 g) made by melt-kneading 1.0% by mass with respect to the resin, pelletized, and then directly molded by profile extrusion without drying. The resin molded product was obtained, and the porosity of the resin molded product was 12.74%.
  • Comparative Example 1 A resin molded product according to Comparative Example 1 was obtained by molding in the same manner as in Example 1 except that the pellet was dried after being melt-kneaded and then pelletized. The porosity of the resin molded product was 0.38%. Drying was performed at 110 ° C. for 12 hours using a blower dryer NDO-420 manufactured by Tokyo Science Instrument Co., Ltd. The water content with respect to the total mass of polypropylene and calcium carbonate was 0.22%, and the water content with respect to the mass of the inorganic particles contained in the pellets was 0.37%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Floor Finish (AREA)

Abstract

釘が打ちやすく、かつ、高温又は低温となりやすい環境下で設置されても釘が抜けにくい、樹脂成形体を提供する。 樹脂成形体は、熱可塑性樹脂と無機粒子とを含み、空隙率が5~80%であり、無機粒子の含有量が樹脂成形体の全体の質量に対して40質量%以上である。無機粒子は、炭酸カルシウム粒子を含むことが好ましい。熱可塑性樹脂は、ポリプロピレンを含むことが好ましい。また、樹脂成形体は、釘打ち用であることが好ましい。

Description

樹脂成形体
 本発明は、樹脂成形体に関する。
 従来より、床や柱等の部材として、熱可塑性樹脂の成形体が用いられている。
 特許文献1には、木質系基材上に熱可塑性樹脂成形体を積層してなる床用建材において、熱可塑性樹脂の樹脂成形体に紙粉15~60重量%と着色顔料0~10重量%を配合してなることを特徴とする床用建材が記載されている。該特許文献1には、パルプ等の紙粉を配合することで安定した色調品質を確保することができることが記載されている。
特開2015-203189号公報
 床等の部材は、組み立てる際に釘を打つ必要があるが、特許文献1に記載の床用部材は、釘を打つ際に釘が通りにくいという問題がある。
 一方、熱可塑性樹脂の樹脂成形体は、屋外等の室温より高温又は低温となりやすい環境下に設置された場合、特許文献1のような熱可塑性樹脂の樹脂成形体を用いると打たれた釘が抜けやすいという問題があった。
 本発明は以上の実情に鑑みてなされたものであり、釘が打ちやすく、かつ、高温又は低温となりやすい環境下で設置されても釘が抜けにくい樹脂成形体を提供することを目的とする。
 本発明者らは熱可塑性樹脂に多量の無機粒子を配合した上で空隙率が所定の値の樹脂を成形することで、釘が打ちやすくなり、さらに高温又は低温となりやすい環境下で設置されても釘が抜けにくいことを見出し本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供することを目的とする。
 (1) 樹脂成形体であって、
 熱可塑性樹脂と無機粒子とを含み、
 空隙率が5~80%であり、
 前記無機粒子の含有量が樹脂成形体の全体の質量に対して40質量%以上である樹脂成形体。
 (2) 前記無機粒子が炭酸カルシウム粒子を含む、(1)に記載の樹脂成形体。
 (3) 前記熱可塑性樹脂がポリプロピレンを含む、(1)又は(2)に記載の樹脂成形体。
 (4) 釘打ち用である、(1)から(3)のいずれかに記載の樹脂成形体。
 (5) 屋外に設置される、(1)から(4)のいずれかに記載の樹脂成形体。
 (6) (1)から(5)のいずれかに記載の樹脂成形体が釘打ちされた樹脂製品。
 (7) (1)から(5)のいずれかに記載の樹脂成形体に釘を打つ工程を有する、樹脂製品の製造方法。
 本発明によれば、釘が打ちやすくなり、さらに高温又は低温となりやすい環境下で設置されても釘が抜けにくくすることができる。
 以下、本発明の実施形態について説明するが、本発明は特にこれに限定されない。
 <樹脂成形体>
 本発明の樹脂成形体は、熱可塑性樹脂と無機粒子とを含み、空隙率が5~80%であり、無機粒子の含有量が樹脂成形体の全体の質量に対して40質量%以上である。
 本発明の樹脂成形体は、釘が打ちやすくなり、さらに屋外等の高温又は低温となりやすい環境下で設置されても釘が抜けにくくすることができる。その理由は、以下によるものと推測される。
 樹脂の空隙率が低いと、釘を打ちこんだ際に釘が侵入した分の体積の逃げ場がなくなり、釘が通りにくくなるために、釘が打ちにくくなり、無理に打ちこもうとすると割れてしまう恐れがある。特に無機粒子を多量に含んだ場合、無機粒子自身は硬いため、釘の打ち込みの際に釘が無機粒子にあたってしまい釘がより一層打ちにくくなる。これに対し、本発明の樹脂成形体は、無機粒子を含むが、一定の空隙率以上であり、無機粒子の周囲に適度に空洞部分が生じることになるため、釘を打った際に無機粒子にあたっても、無機粒子が空洞の部分押し込まれるため、釘が打ちこみやすくなる。一方、屋外等の高温又は低温となりやすい環境下で設置された場合、長期間この環境に曝されるため、熱可塑性樹脂が熱変化により変形して釘が抜けやすくなる。これに対し、本発明の樹脂成形体によると、多量の無機粒子が含まれ、無機粒子は熱により変形しないために、無機粒子を含まない又は無機粒子の含有量が少ないものより相対的に変形する部分が少なくなり、結果的に長期屋外等の高温又は低温となりやすい環境下に曝されても釘が抜けにくくなるものと推測される。また、天然木材及び樹脂は、長期間野外等で使用されると、温湿度・紫外線等で劣化するが、本発明は無機粒子が多量に配合されているため、樹脂の経時的な劣化が抑えられる。このように、樹脂単独と比較して、無機粒子による補強効果が期待される。
 (熱可塑性樹脂)
 本発明における熱可塑性樹脂は、特に限定されず、例えば、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン等のポリオレフィン樹脂、ポリ塩化ビニル、ポリスチレン等のビニル樹脂、ポリエチレンテレフタレート等のポリエステル樹脂が挙げられる。熱可塑性樹脂は、1種単独で使用してもよく、2種以上を併用してもよい。これらのうち、ポリオレフィン樹脂が好ましく、ポリオレフィン樹脂のうち、ポリプロピレンが好ましい。熱可塑性樹脂は、既に延伸処理等がされたものや、樹脂の押出時等に発生した端材(例えば、ミミの部分)を用いてもよい。
 熱可塑性樹脂の含有量は、無機粒子や他の成分の量に応じて適宜設定してもよいが、樹脂成形品全体の質量に対して60質量%未満である必要があり、釘がとおりやすくなることから、50質量%未満であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることがさらに好ましい。他方、適度な強度を保つ必要があることから、熱可塑性樹脂の含有量は、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。
 熱可塑性樹脂のメルトフローレイト(MFR)は、高い方が、釘が打ちやすくなることから、0.1g/10分以上(0.2g/10分以上、0.3g/10分以上、0.4g/10分以上、0.5g/10分以上、0.6g/10分以上、0.7g/10分以上、0.8g/10分以上、0.9g/10分以上、1.0g/10分以上、1.2g/10分以上、1.4g/10分以上、1.6g/10分以上、1.8g/10分以上、2.0g/10分以上、3.0g/10分以上、4.0g/10分以上、5.0g/10分以上、6.0g/10分以上、7.0g/10分以上、8.0g/10分以上、9.0g/10分以上、10.0g/10分以上等)であることが好ましい。他方、熱可塑性樹脂のメルトフローレイト(MFR)は、小さい方が、高温又は低温となりやすい環境下で設置されても釘が抜けにくくすることができることから、10.0g/10分以下(9.0g/10分以下、8.0g/10分以下、7.0g/10分以下、6.0g/10分以下、5.0g/10分以下、4.0g/10分以下、3.0g/10分以下、2.0g/10分以下、1.8g/10分以下、1.6g/10分以下、1.4g/10分以下、1.2g/10分以下、1.0g/10分以下、0.9g/10分以下、0.8g/10分以下、0.7g/10分以下、0.6g/10分以下、0.5g/10分以下、0.4g/10分以下、0.3g/10分以下、0.2g/10分以下等)であることが好ましい。
 なお、メルトマスフローレイトは、溶融時の流動性を示す指標であり、JIS K 7210に準じて測定される値を意味する。本発明において、メルトフローレイトは、具体的には、JIS K 7210に準じて、メルトインデクサーにより、荷重21.18N、温度230℃の条件でメルトフローレイトを測定する。
 本発明の熱可塑性樹脂の分子量分布(Mw/Mn)は、高い方が、釘が打ちやすくなることから、0.1以上(0.2以上、0.3以上、0.4以上、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、1.0以上、1.2以上、1.4以上、1.6以上、1.8以上、2.0以上、3.0以上、4.0以上、5.0以上、6.0以上、7.0以上、8.0以上、9.0以上、10.0以上、15.0以上等)であることが好ましい。他方、熱可塑性樹脂の分子量分布(Mw/Mn)は、小さい方が、高温又は低温となりやすい環境下で設置されても釘が抜けにくくすることができることから、20.0以下(15.0以下、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、4.0以下、3.0以下、2.0以下、1.8以下、1.6以下、1.4以下、1.2以下、1.0以下、0.9以下、0.8以下、0.7以下、0.6以下、0.5以下、0.4以下、0.3以下、0.2以下等)であることが好ましい。
 本発明において、熱可塑性樹脂の分子量分布(Mw/Mn)はゲルパーミエーション(GPC)法により測定する。
 (空隙率)
 本発明の樹脂成形品の空隙率は、空隙率が5~80%の範囲内であれば特に限定されないが、高い方が、釘が打ちやすくなることから、5%以上(10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上等)であることが好ましい。他方、本発明の樹脂成形品の空隙率は、小さい方が、高温又は低温となりやすい環境下で設置されても釘が抜けにくくすることができることから、80%以下(70%以下、60%以下、50%以下、40%以下、30%以下、20%以下、10%以下等)であることが好ましい。
 本発明の樹脂成形品の空隙率は、「JIS K7222:2005発泡プラスチック及びゴム―見掛け密度の求め方」に準拠して見掛け密度を測定し、熱可塑性樹脂と無機粒子の配合比から空隙率0%の密度を算出し、空隙率0%の密度と見掛け密度の比率から空隙率を算出する。
 (無機粒子)
 本発明における樹脂成形品に含まれる無機粒子の量は、樹脂成形品全体の質量に対して40質量%以上であれば特に限定されないが、より屋外等の高温又は低温となりやすい環境下で設置されても釘が抜けにくくすることができることから、50質量%以上であることが好ましく、55質量%以上であることが好ましく、60質量%以上であることがより好ましい。他方、無機粒子の量が多すぎない方が、釘がうちやすくなることから、無機粒子の量は、樹脂成形品全体の質量に対して80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
 樹脂組成物中の無機粒子の含有量は、化学製品の減量及び残分試験方法(JIS0067-1192)で残分測定する。但し、炭酸カルシウムの場合には炭酸ガスの発生を考慮する。
 無機粒子の平均粒径は、特に限定されず、例えば、0.1μm以上(0.2μm以上、0.3μm以上、0.4μm以上、0.5μm以上、0.6μm以上、0.7μm以上、0.8μm以上、0.9μm以上、1.0μm以上、1.2μm以上、1.4μm以上、1.6μm以上、1.8μm以上、2.0μm以上、3.0μm以上、4.0μm以上、5.0μm以上、6.0μm以上、7.0μm以上、8.0μm以上、9.0μm以上、10.0μm以上、15.0μm以上、20.0μm以上、30.0μm以上、40.0μm以上等)であることが好ましい。他方、無機粒子の平均粒径は、小さい方が、延伸・発泡時に亀裂が広がりにくく、また、樹脂の経時的な劣化を抑えやすくなることから、45μm以下(40.0μm以下、30.0μm以下、20.0μm以下、15.0μm以下、10.0μm以下、9.0μm以下、8.0μm以下、7.0μm以下、6.0μm以下、5.0μm以下、4.0μm以下、3.0μm以下、2.0μm以下、1.8μm以下、1.6μm以下、1.4μm以下、1.2μm以下、1.0μm以下、0.9μm以下、0.8μm以下、0.7μm以下、0.6μm以下、0.5μm以下、0.4μm以下、0.3μm以下、0.2μm以下等)であることが好ましい。
 樹脂組成物に含まれる無機粒子の種類は、特に限定されないが、例えば、炭酸カルシウム、酸化チタン、シリカ、クレー、タルク、カオリン、水酸化アルミニウム、硫酸カルシウム、硫酸バリウム、マイカ、酸化亜鉛、ドロマイト、ガラス繊維、中空ガラスミクロビーズ、ベントナイト、珪素土等が挙げられる。これらのうち、炭酸カルシウムを用いることが好ましい。これらは1種単独で用いてもよく、2種以上を併用してもよい。また、樹脂組成物中の無機粒子の分散性を高めるために、無機粒子の表面をあらかじめ常法に従い改質しておいてもよい。
 本発明において、無機粒子の平均粒径は、レーザー回折式粒度分布測定装置で測定する。
 本発明の樹脂成形体における無機粒子の占める体積(%)は、低い方が、釘が打ちやすくなることから、60%以下(50%以下、40%以下、30%以下、20%以下等)であることが好ましい。他方、本発明の樹脂成形体における無機粒子の占める体積%は、高い方が、高温又は低温となりやすい環境下で設置されても釘が抜けにくくすることができることから、15%以上(20%以上、30%以上、40%以上、50%以上等)であることが好ましい。なお、本発明の樹脂成形体における無機粒子の占める体積とは、樹脂成形体中の空隙の容積を除いた、樹脂成形体中の固形分の体積を意味する。
 本発明の樹脂成形体における無機粒子の占める体積(%)は、示差熱分析(DTA)により測定する。
 なお、上述した樹脂組成物においては、上述した無機粒子、熱可塑性樹脂以外にも、補助剤として、発泡剤、色剤、滑剤、カップリング剤、流動性改良材、分散剤、酸化防止剤、紫外線吸収剤、安定剤、帯電防止剤等を配合してもよい。
 発泡剤としては、特に限定されないが、例えば、脂肪族炭化水素類(プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン等)、脂環族炭化水素(シクロヘキサン、シクロペンタン、シクロブタン等)、ハロゲン化炭化水素(トリフロロモノクロロエタン、ジフロロジクロロメタン等)等が挙げられる。これら発泡剤は1種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 滑剤としては、例えば、ステアリン酸、ヒドロキシステアリン酸、複合型ステアリン酸、オレイン酸等の脂肪酸系滑剤、脂肪族アルコール系滑剤、ステアロアミド、オキシステアロアミド、オレイルアミド、エルシルアミド、リシノールアミド、ベヘンアミド、メチロールアミド、メチレンビスステアロアミド、メチレンビスステアロベヘンアミド、高級脂肪酸のビスアミド酸、複合型アミド等の脂肪族アマイド系滑剤、ステアリン酸-n-ブチル、ヒドロキシステアリン酸メチル、多価アルコール脂肪酸エステル、飽和脂肪酸エステル、エステル系ワックス等の脂肪族エステル系滑剤、脂肪酸金属石鹸系族滑剤等を挙げることができる。
 酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、ペンタエリスリトール系酸化防止剤が使用できる。リン系、より具体的には亜リン酸エステル、リン酸エステル等のリン系酸化防止安定剤が好ましく用いられる。亜リン酸エステルとしては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、等の亜リン酸のトリエステル、ジエステル、モノエステル等が挙げられる。
 リン酸エステルとしては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリス(ノニルフェニル)ホスフェート、2-エチルフェニルジフェニルホスフェート等が挙げられる。これらリン系酸化防止剤は単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 フェノール系の酸化防止剤としては、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネイト、2-tert-ブチル-6-(3’-tert-ブチル-5'-メチル-2'-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-tert-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネイトジエチルエステル、及びテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン等が例示され、これらは単独で又は2種以上を組み合せて使用することができる。
 (用途)
 本発明の樹脂成形体の用途としては、特に、建材(床、柱、ウッドデッキ、ベンチ等)等の、組み立てる際に釘が打たれる用途(本明細書において、「釘打ち用」と略称することがある。)に好適である。また、本発明の樹脂成形体は、上述のとおり、高温又は低温となりやすい環境下で設置されても釘が抜けにくいため、屋外に設置されて用いられるのに好適である。
 (樹脂成形体の製造方法)
 本発明の樹脂成形体は、上述の熱可塑性樹脂、無機粒子を目的に応じて常法の成形方法により製造することができ、例えば、押出し成形(異型押出し成形を含む)、射出成形、真空成形等により製造することができる。
 所望の空隙率にするには、例えば、熱可塑性樹脂と無機粒子とを混練する際に、発泡剤を投入することで調整してもよい。発泡剤の量は、発泡剤の種類、所望の空隙率に応じて適宜設定してもよい。
 あるいは、熱可塑性樹脂を一度ペレットにして水分を含んだ状態で、乾燥させずにそのまま成形しても、成形品に空隙ができる。空隙率は、例えば、ペレットに含まれる水分の量により調節することができる。かかる場合において、原料の熱可塑性樹脂は、既に延伸処理等がされたものや、樹脂の押出時等に発生した端材(例えば、ミミの部分)を用いてこれをペレットにしてもよい。
 ペレットに含まれる水分含有量が、該ペレットに含まれる無機粒子の質量に対して0.30質量%以上であり、樹脂組成物に含まれる無機粒子の含有量が、樹脂組成物の総量に対して30質量%以上であることが好ましい。
 <樹脂製品>
 本発明は、上記の樹脂成形体が釘打ちされた樹脂製品を包含する。
 該樹脂製品としては、建材(床、柱、ウッドデッキ、ベンチ等)等が釘打ちされて組み立てるものが好ましく、また、本発明の樹脂製品は屋外に設置されて用いられるのに好適である。
 <樹脂製品の製造方法>
 本発明は、上記の樹脂成形体に釘を打つ工程を有する、樹脂製品の製造方法を包含する。該釘を打つ工程により、樹脂成形体を組み立て、所望の樹脂製品を製造することができる。
 釘は、従来公知の方法により打てばよく、例えば、釘打機等により機械的に釘を打ってもよく、ハンマー等により手動で釘を打ってもよい。
 <樹脂成形品の調製>
 (実施例1)
 ポリプロピレン(MFR:0.5、Mw/Mn:10.3、ポリプロピレンと炭酸カルシウムとの合計質量に対して40質量%)、炭酸カルシウム(平均粒径1.5μm、ポリプロピレンと炭酸カルシウムとの合計質量に対して60質量%)を溶融混練り後ペレット化し、乾燥せずにそのまま異形押出により成形して、実施例1に係る樹脂成形品を得た。かかる樹脂成形品の空隙率は、7.85%であった。
 ペレットの水分量は、赤外線水分計(FD-660(株式会社ケット科学研究所製)、湿度50%温度23℃の雰囲気下)により測定した。ペレットを、105℃で水分を蒸発させ、蒸発前後の質量変化により水分量を算出し、平衡状態となったときの値を水分含有量とした。使用したペレットの試料量は10gとした。測定の結果、ポリプロピレンと炭酸カルシウムとの合計質量に対する水分含有量が0.40%であり、ペレットに含まれる無機粒子の質量に対する水分含有量は0.67%であった。
 (実施例2)
 熱可塑性樹脂として、ポリプロピレン(ポリプロピレンと炭酸カルシウムとの合計質量に対して40質量%)、炭酸カルシウム(ポリプロピレンと炭酸カルシウムとの合計質量に対して60質量%)、発泡剤(永和化成工業(株)製ポリスレンEE275F(分解温度155℃、発生ガス量230ml/5g)を樹脂に対して1.0質量%溶融混練り後ペレット化し、乾燥せずにそのまま異形押出により成形して、実施例2に係る樹脂成形品を得た。かかる樹脂成形品の空隙率は、12.74%であった。
 (比較例1)
 溶融混練り後ペレット化した後にペレットを乾燥させた点以外は、実施例1と同様に成形して、比較例1に係る樹脂成形品を得た。かかる樹脂成形品の空隙率は、0.38%であった。乾燥は、東京理科器械(株)製の送風乾燥機NDO-420を用いて、110℃で12時間の条件で行った。ポリプロピレンと炭酸カルシウムとの合計質量に対する水分含有量が0.22%であり、ペレットに含まれる無機粒子の質量に対する水分含有量は0.37%であった。
 <釘の打ちやすさの評価>
 実施例1、2に係る樹脂成形品、比較例1に係る樹脂成形品について、釘(50mm 太さ2.7mm)の打ちやすさを評価した。釘の打ちやすさは、同じ力により釘を打って両者を比較することで行った。
 その結果、実施例1、2については、釘が深部まで全て刺さった。これに対し、比較例1の樹脂成形品については、同じ力により釘を打ったにもかかわらず、釘が深部まで刺さらなかった。この結果より、無機粒子を多く含んでいても、空隙率が所定値あることで、釘が打ちやすくなることが示唆された。

Claims (7)

  1.  樹脂成形体であって、
     熱可塑性樹脂と無機粒子とを含み、
     空隙率が5~80%であり、
     前記無機粒子の含有量が樹脂成形体の全体の質量に対して40質量%以上である樹脂成形体。
  2.  前記無機粒子が炭酸カルシウム粒子を含む、請求項1に記載の樹脂成形体。
  3.  前記熱可塑性樹脂がポリプロピレンを含む、請求項1又は2に記載の樹脂成形体。
  4.  釘打ち用である、請求項1から3のいずれかに記載の樹脂成形体。
  5.  屋外に設置される、請求項1から4のいずれかに記載の樹脂成形体。
  6.  請求項1から5のいずれかに記載の樹脂成形体が釘打ちされた樹脂製品。
  7.  請求項1から5のいずれかに記載の樹脂成形体に釘を打つ工程を有する、樹脂製品の製造方法。
PCT/JP2017/028183 2016-08-04 2017-08-03 樹脂成形体 WO2018025951A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018531971A JP6606676B2 (ja) 2016-08-04 2017-08-03 樹脂成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-153788 2016-08-04
JP2016153788 2016-08-04

Publications (1)

Publication Number Publication Date
WO2018025951A1 true WO2018025951A1 (ja) 2018-02-08

Family

ID=61073026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028183 WO2018025951A1 (ja) 2016-08-04 2017-08-03 樹脂成形体

Country Status (2)

Country Link
JP (1) JP6606676B2 (ja)
WO (1) WO2018025951A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149038A1 (ja) * 2019-01-17 2020-07-23 株式会社Tbm 熱可塑性発泡樹脂組成物およびこれを用いてなる成形品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS484861B1 (ja) * 1969-09-24 1973-02-12
JPS4837523U (ja) * 1971-09-06 1973-05-08
JPS5398351A (en) * 1977-02-10 1978-08-28 Asahi Chem Ind Co Ltd Wood-like synthetic resin composition and its rpoduction
JPS5398350A (en) * 1977-02-10 1978-08-28 Asahi Chem Ind Co Ltd Wood-like resin composition and its production
JPH01192950A (ja) * 1988-01-29 1989-08-03 Nippon Oil & Fats Co Ltd 樹脂組成物と建築材料
JPH07247679A (ja) * 1994-03-14 1995-09-26 Idemitsu Petrochem Co Ltd コンクリート用型枠およびコンクリート用型枠の製造方法
JPH08207190A (ja) * 1995-02-06 1996-08-13 Mitsubishi Plastics Ind Ltd プラスチック複合パネル
WO2003035705A1 (fr) * 2001-10-23 2003-05-01 Asahi Kasei Kabushiki Kaisha Copolymere hydrogene
JP2011230481A (ja) * 2010-04-30 2011-11-17 Toto Sekisui Kk 樹脂成形体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS484861B1 (ja) * 1969-09-24 1973-02-12
JPS4837523U (ja) * 1971-09-06 1973-05-08
JPS5398351A (en) * 1977-02-10 1978-08-28 Asahi Chem Ind Co Ltd Wood-like synthetic resin composition and its rpoduction
JPS5398350A (en) * 1977-02-10 1978-08-28 Asahi Chem Ind Co Ltd Wood-like resin composition and its production
JPH01192950A (ja) * 1988-01-29 1989-08-03 Nippon Oil & Fats Co Ltd 樹脂組成物と建築材料
JPH07247679A (ja) * 1994-03-14 1995-09-26 Idemitsu Petrochem Co Ltd コンクリート用型枠およびコンクリート用型枠の製造方法
JPH08207190A (ja) * 1995-02-06 1996-08-13 Mitsubishi Plastics Ind Ltd プラスチック複合パネル
WO2003035705A1 (fr) * 2001-10-23 2003-05-01 Asahi Kasei Kabushiki Kaisha Copolymere hydrogene
JP2011230481A (ja) * 2010-04-30 2011-11-17 Toto Sekisui Kk 樹脂成形体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GIJUTSU SHIRYO, PE 002, ASAHI KASEI CHEMICALS CORP., 27 March 2005 (2005-03-27), Retrieved from the Internet <URL:https://web.archive.org/web/20050327094720/http://www/ak-sunfine.com/jpn/PEpdf/pe-002.pdf> *
PLASTICS PROCESSING DATABOOK (2ND EDITION, 28 January 2002 (2002-01-28), pages 2 - 3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149038A1 (ja) * 2019-01-17 2020-07-23 株式会社Tbm 熱可塑性発泡樹脂組成物およびこれを用いてなる成形品
JP2020114897A (ja) * 2019-01-17 2020-07-30 株式会社Tbm 熱可塑性発泡樹脂組成物およびこれを用いてなる成形品

Also Published As

Publication number Publication date
JP6606676B2 (ja) 2019-11-20
JPWO2018025951A1 (ja) 2018-12-20

Similar Documents

Publication Publication Date Title
US20080248272A1 (en) Expandable Granulates Based on Vinyl-Aromatic Polymers Having an Improved Expandability and Process For the Preparation Thereof
JP2018178124A (ja) 難燃性発泡スチレン系樹脂組成物
TWI698472B (zh) 阻燃性發泡苯乙烯系樹脂組成物及發泡成形體
JP6606676B2 (ja) 樹脂成形体
CN104804358A (zh) 一种轻量耐老化热塑性鞋底及其制备方法
JP6133150B2 (ja) 難燃剤溶融混練物を用いたポリスチレン系樹脂発泡体の製造方法
JP6099495B2 (ja) 難燃剤溶融混練物及びこれを用いたポリスチレン系樹脂押出発泡体の製造方法
JP6816288B2 (ja) ポリオレフィン系難燃性発泡体製造用樹脂組成物およびこれから形成された難燃性発泡体
JP6389591B2 (ja) ポリスチレン系樹脂発泡体の製造方法
RU2467041C2 (ru) Способ получения огнезащитной вспучивающейся композиции
JP6141099B2 (ja) ポリスチレン系樹脂押出発泡体の製造方法
JP6257023B2 (ja) ポリスチレン系樹脂押出発泡板の製造方法、及びポリスチレン系樹脂押出発泡板
JP2014208736A5 (ja)
JP6335367B2 (ja) ポリスチレン系樹脂押出発泡板の製造方法
WO2021144584A1 (en) Polylactic acid flame resistant blend
JP2014227463A (ja) ポリスチレン系樹脂押出発泡体の製造方法
JP6192106B2 (ja) ポリスチレン系樹脂押出発泡板の製造方法
JP6335368B2 (ja) ポリスチレン系樹脂押出発泡板の製造方法
JP6366149B2 (ja) ポリスチレン系樹脂押出発泡板
JP7194535B2 (ja) 発泡性ポリスチレン系樹脂粒子、ポリスチレン系樹脂予備発泡粒子、およびポリスチレン系樹脂発泡成形体
JP5384555B2 (ja) ポリオレフィン樹脂成形品の製造方法
JP6061780B2 (ja) ポリスチレン系樹脂押出発泡体の製造方法
JP6128940B2 (ja) ポリスチレン系樹脂押出発泡板の製造方法
JP6091305B2 (ja) 難燃剤溶融混練物及びこれを用いたポリスチレン系樹脂押出発泡体の製造方法
JP2011144392A5 (ja) ポリオレフィン樹脂成形品の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018531971

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837052

Country of ref document: EP

Kind code of ref document: A1