WO2018025939A1 - Electrochromic element and electrochromic material - Google Patents

Electrochromic element and electrochromic material Download PDF

Info

Publication number
WO2018025939A1
WO2018025939A1 PCT/JP2017/028142 JP2017028142W WO2018025939A1 WO 2018025939 A1 WO2018025939 A1 WO 2018025939A1 JP 2017028142 W JP2017028142 W JP 2017028142W WO 2018025939 A1 WO2018025939 A1 WO 2018025939A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochromic
cyano complex
iron
transparent
cobalt
Prior art date
Application number
PCT/JP2017/028142
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 田嶌
徹 川本
渡邊 浩
泰 杉山
瑞香 西野
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016152327A external-priority patent/JP6968394B2/en
Priority claimed from JP2017087247A external-priority patent/JP7089724B2/en
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2018025939A1 publication Critical patent/WO2018025939A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material

Definitions

  • the present invention relates to an electrochromic element and an electrochromic material that change color by an electrochemical reaction.
  • the electrochromic element is a color variable element using an electrochromic material (EC material) whose color is changed by electrochemical redox.
  • EC material electrochromic material
  • dimming glass it has been proposed to be applied to in-vehicle mirrors that control reflectivity by changing color, automobile windows or buildings that can improve air conditioning efficiency by controlling light transmittance, and more Applications to displays and sunglasses are also being considered.
  • a flexible light control film using a flexible material such as a resin instead of glass as a transparent base material has been developed (Patent Document 1). ).
  • the color due to the EC material has a very important meaning.
  • EC materials that can provide highly light-shielding colors such as black, gray, and brown (brown).
  • highly light-shielding colors such as black, gray, and brown (brown).
  • Currently, many commercially available EC materials have a blue-transparent color change. Give. For dimming applications, it is important not only to change the color at the time of coloring, but also to become colorless and transparent at the time of decoloring, so that a high-contrast color change can be obtained at high speed between coloring and colorless and transparent.
  • EC material is desired.
  • inorganic materials have certain advantages from the viewpoint of light resistance and the like.
  • metal oxides and metal cyano complexes have already been commercialized.
  • the metal cyano complex can realize various colors by metal substitution, and is considered to be an effective material for multicolorization (Patent Document 2).
  • EC materials are required to have color selectivity (multicolor) and durability (number of times, usage environment) corresponding to many needs. Ease of introduction of EC material into the element is required.
  • cobalt-iron cyano complex is an EC material that gives a brown-transparent color change. That is, it shows brown in the oxidized state, and in the reduced state, the color changes depending on the type and composition of the alkali ions to be included.
  • the general formula for the composition of such a cobalt-iron cyano complex is as follows.
  • A is an alkali ion element such as sodium or potassium.
  • the alkali ion such as sodium or potassium.
  • the film thickness is as thick as 50 ⁇ m and a smooth thin film is formed. Difficult to get.
  • the present invention has been made in view of the present situation, and an object thereof is an EC material capable of obtaining a color having a high light-shielding property, which is easy to be applied to an element and has a high contrast.
  • An object is to provide an electrochromic material capable of obtaining a color change and an electrochromic device using the same.
  • a technique for coloring tungsten oxide a method using an electrolyte containing (trifluoromethanesulfonyl) imide salt instead of an existing solid electrolyte was devised, thereby not only using conventional proton-based and lithium-based electrolytes.
  • sweeping into the thin film was possible even for ionic species with relatively large ionic radii such as potassium and sodium, so that it was possible to develop various applications by combining various electrochromic materials according to needs.
  • the Prussian blue-type metal complex nanoparticles can be multi-colored by substitution of metal atoms, and can provide near-infrared / far-infrared shielding performance (controllability), which is a thermal component of solar energy by tungsten oxide. (High light resistance) was also consulted, and it was possible to apply to energy-saving dimming members that control thermal energy, which was not possible with conventional electrochromic devices using only Prussian blue-type metal complex nanoparticles. .
  • the inventors made use of a cobalt-iron cyano complex as one of the inorganic EC materials, synthesized microcrystals thereof, and then added hexacyanoiron ions to bring the composition formula y close to 1. It has been found that a smooth thin film can be formed on an electrode by a technique such as coating a dispersion liquid in which the material is dispersed in water while realizing a brown-colorless and transparent color change. Furthermore, it is possible to form a brown-transparent electrochromic device by combining an electrode coated with this cobalt-iron cyano complex with a known inorganic material electrochromic electrode having no color change, and further, this cobalt-iron cyano complex. It was found that an electrochromic device showing a black-colorless and transparent color change can be produced by combining an electrochromic electrode with an inorganic material showing a blue-transparent color change.
  • FIG. 1 It is sectional drawing which shows an example of the electrochromic element by this invention. It is a figure which shows the crystal structure of a typical metal cyano complex. It is a cyclic voltammogram of a tungsten oxide thin film using an HTFSI-propylene carbonate solution as an electrolyte layer.
  • 2 is an external appearance photograph of an ECD according to Example 1. It is the (a) visible light transmission spectrum of the ECD by Example 1, and (b) the light transmission spectrum of a long wavelength region. 6 is a graph showing a change with time in light control performance by light irradiation of ECD according to Example 1; 3 is a cyclic voltammogram of ECD according to Example 2. 2 is a visible light transmission spectrum of an ECD according to Example 2.
  • FIG. 3 is a graph showing cycle resistance of ECD according to Example 2.
  • 6 is an external appearance photograph of an ECD according to Example 3.
  • 4 is a cyclic voltammogram of ECD according to Example 3.
  • FIG. 6 is a visible light transmission spectrum of ECD according to Example 3.
  • 6 is a graph showing cycle resistance of ECD according to Example 3. It is a visible light transmission spectrum of ECD by Example 4.
  • It is sectional drawing which shows the structure of EC electrode which comprised the cobalt iron cyano complex.
  • It is sectional drawing which shows the structure of EC electrode which laminated
  • FIG. 3 is a graph showing color change characteristics of a cobalt-iron cyano complex / zinc-iron cyano complex electrochromic device. It is a graph which shows the visible light transmittance
  • 3 is a graph of cyclic voltammograms of (cobalt-iron cyano complex, Prussian blue) / zinc-iron cyano complex electrochromic device.
  • 6 is a graph of a visible light transmission spectrum at the time of chronocoulometric evaluation of an electrochromic device (cobalt-iron cyano complex, Prussian blue) / zinc-iron cyano complex.
  • 6 is a table showing a composition example of a cobalt-iron cyano complex dispersion using potassium ferricyanide as a raw material.
  • 3 is a table showing examples of cobalt-iron cyano complex dispersion sets using potassium ferrocyanide as a raw material.
  • ECD electrochromic device
  • the ECD 10 has a multilayer structure using a metal cyano complex as an electrochromic material (EC material). That is, an electrochromic layer 1 containing a transition metal oxide, an electrochromic layer 2 containing a metal cyano complex, an electrolyte layer 7 sandwiched between them, and transparent electrodes connected to the electrochromic layers 1 and 2 from the outside, respectively. Layers 3 and 4 are included. Furthermore, it is preferable to provide the base materials 5 and 6 which consist of transparent materials, such as resin and glass, on the outer side.
  • the transition metal oxide of the electrochromic layer 1 is a material that can be changed in color by an electrolyte layer 7 to be described later.
  • the electrochromic layer 2 to be described later is colored or decolored in an oxidized state and a reduced state.
  • a material that reverses the reaction For example, tungsten oxide, molybdenum oxide, niobium oxide, vanadium oxide, titanium oxide, or the like can be used, and it is preferable to include at least one of them.
  • a Prussian blue-type metal complex can be used as the metal cyano complex of the electrochromic layer 2, but other materials may be used as long as they cause reversible electrochemical oxidation and reduction as described above.
  • 1 is a material that reverses the coloring and decoloring reactions in the oxidized and reduced states.
  • the manufacturing method is not limited as long as the target color change can be realized electrochemically.
  • the electrochromic layer may be formed by dispersing a metal cyano complex in an electrolyte in contact with a transparent electrode.
  • the Prussian blue-type metal complex mentioned above refers to a compound whose composition is represented by a general formula of A x M [M ′ (CN) 6 ] y ⁇ zH 2 O.
  • M and M ′ are identified, they are called MM ′ cyano complexes.
  • the composition of the metal cyano complex can be selected according to the required color change behavior, and as the metal atom M, vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, silver,
  • a metal atom selected from the group consisting of zinc, lanthanum, europium, gadolinium, lutetium, barium, strontium, and calcium is preferred, selected from the group consisting of vanadium, chromium, manganese, iron, ruthenium, cobalt, nickel, copper, and zinc.
  • a metal atom is more preferable, and a metal atom selected from the group consisting of manganese, iron, cobalt, nickel, copper, and zinc is particularly preferable.
  • the metal atom M ′ is preferably a metal atom selected from the group consisting of vanadium, chromium, molybdenum, tungsten, manganese, iron, ruthenium, cobalt, nickel, platinum, and copper, and includes manganese, iron, ruthenium, cobalt, A metal atom selected from the group consisting of platinum is more preferable, and a metal atom selected from the group consisting of iron and cobalt is more preferable.
  • A is an atom selected from the group consisting of hydrogen, lithium, sodium, potassium, rubidium, cesium, and ammonium that ionizes from the metal cyano complex to be used to become a cation.
  • the Prussian blue-type metal cyano complex those having one or two or more compositions selected from the above general formulas based on the combination of A, M, and M ′ described above can be mixed and used. Moreover, the material which does not appear in a composition, such as another atom, may be included as an impurity.
  • the crystal structure of the metal cyano complex is generally a face-centered cubic structure, but is not necessarily limited thereto.
  • K 0.67 Zn [Fe (CN) 6 ] 0.67 ⁇ zH 2 O is a hexagonal crystal.
  • six cyano groups coordinated to Mb are partly substituted with a nitro group or the like, or in the range of 4 to 8 other numbers. Also good.
  • the desirable particle size of the metal cyano complex is preferably small in general. That is, from the viewpoint of electrochemical response speed, the specific surface area can be increased by reducing the particle size. Further, from the viewpoint of forming a smooth thin film, the metal cyano complex preferably has a small particle size, and is preferably a nanoparticle.
  • the primary average particle size is preferably 500 nm or less, more preferably 300 nm or less, and particularly preferably 100 nm or less. Although there is no restriction
  • the primary particle diameter refers to the diameter of the primary particles.
  • the equivalent circle diameter can be derived from the half width of the peak of the powder X-ray structure analysis.
  • the primary particle diameter is derived as the primary particle excluding the ligand.
  • the transparent electrode layers 3 and 4 are electrically conductive materials, and are not particularly limited as long as they are used as electrochemical elements, and deterioration such as corrosion does not occur to some extent in practical use.
  • indium tin oxide or Conductive oxides such as zinc oxide and those doped with metals such as aluminum, noble metals such as gold and platinum, alloys and metals having corrosion resistance due to passive films such as stainless steel and aluminum, and the like can be used.
  • it is transparent for the purpose of the device, such as being used for light control glass.
  • the transparent electrode layers 3 and 4 are generally smooth plate-like bodies, but are not limited thereto.
  • increasing the contact area with the electrochromic layers 1 and 2 contributes to an improvement in response speed, and therefore the smoothness may be intentionally lowered.
  • a conductive material may be attached to the surfaces of the smooth transparent electrode layers 3 and 4 to give unevenness.
  • other materials may be added for the purpose of improving the adhesion with the electrochromic layers 1 and 2 and for the purpose of avoiding corrosion. Further, it is only necessary to obtain conduction between the electrochromic layers 1 and 2 and the transparent electrode layers 3 and 4, and the surfaces of the transparent electrode layers 3 and 4 are opposite to the electrochromic layers 1 and 2, respectively.
  • Other materials such as an insulating material may be provided on the surface.
  • the electrolyte layer 7 includes at least a (trifluoromethanesulfonyl) imide salt.
  • a (trifluoromethanesulfonyl) imide salt any one or more of bis (trifluoromethanesulfonyl) imide, lithium bis (trifluoromethanesulfonyl) imide, potassium bis (trifluoromethanesulfonyl) imide, sodium bis (trifluoromethanesulfonyl) imide Can be selected.
  • the electrolyte layer 7 preferably contains an organic solvent, and for example, propylene carbonate can be used as the organic solvent. Further, a transparent material such as methyl methacrylate polymer may be added to increase the viscosity.
  • the ECD 10 is driven by applying a voltage between the electrodes composed of the two transparent electrode layers 3 and 4. That is, the color change between the state 1 in which the electrochromic layer 1 and the electrochromic layer 2 are in the oxidized state and the reduced state, respectively, and the state 2 in the reduced state and the oxidized state can be manipulated by applying a voltage.
  • Tungsten oxide is almost colorless and transparent in the oxidized state and the iron-iron cyano complex in the reduced state. Therefore, the ECD 10 is colorless and transparent when in the state 1.
  • Tungsten oxide is colored blue in the reduced state and the iron-iron cyano complex is colored in the oxidized state. Therefore, the ECD 10 exhibits a dark blue color in the state 2.
  • Electrode 2 First, preparation of the electrochromic layer 2 will be described. Here, a dispersion liquid of the metal cyano complex was prepared, and a thin film of the metal cyano complex was formed as the electrochromic layer 2 on the ITO-coated glass substrate that was a laminate of the transparent electrode 4 and the substrate 6.
  • the prepared precipitate of iron-iron cyano complex was analyzed with a powder X-ray diffractometer, it was consistent with the diffraction information of Fe 4 [Fe (CN) 6 ] 3 , which is Prussian blue retrieved from the standard sample database.
  • the sample AFe1 was an aggregate of nanoparticles having a diameter of 5 to 20 nm.
  • the slurry sample S1 was suspended in 30 mL of water.
  • 0.51 g of potassium ferricyanide trihydrate dissolved in 10 mL of water was added and stirred for one day.
  • the zinc-iron cyano complex was washed twice by high-speed centrifugation and suspended in 40 mL of water to obtain a zinc-iron cyano complex dispersion (DZn2).
  • a zinc-iron cyano complex thin film was formed on an ITO-coated glass substrate by spin coating. More specifically, a 25 mm square ITO-coated glass substrate is set on a spin coater, 60 ⁇ L of a dispersion DZn1 adjusted to 15 wt% is dropped, rotated at 1000 rpm for 10 seconds, and rotated at 1500 rpm for 10 seconds to obtain an ITO-coated glass substrate. A zinc-iron cyano complex thin film TZn1 was prepared thereon.
  • a similar method was used for the dispersion DZn2 to produce a zinc-iron cyano complex thin film TZn2.
  • a zinc-iron cyano complex thin film TZn2 was used in Examples described later.
  • Electrochromic layer 1 Next, production of the electrochromic layer 1 will be described.
  • a thin film of transition metal oxide was formed as an electrochromic layer 1 on an ITO-coated glass substrate that is a laminate of the transparent electrode 3 and the substrate 5.
  • tungsten oxide thin film A thin film was formed using tungsten oxide as the transition metal oxide as follows. First, WO3 / ITO / glass (manufactured by Geomat Co., Ltd.) in which a tungsten oxide thin film TW1 was formed on an ITO-coated glass substrate by vapor deposition was used. Further, from the viewpoint of making the production highly efficient, a tungsten oxide thin film TW2 was produced by a coating method of tungsten oxide slurry (manufactured by Toshiba Materials), which is a commercial visible light responsive photocatalytic material.
  • tungsten oxide thin film TW3 was also obtained in which the same manufacturing method was performed except that the heat treatment was not performed and only room temperature drying was performed.
  • the tungsten oxide thin film can also be produced by a sol-gel method using tungsten chloride, metallic tungsten, or the like as a raw material, or a magnetron sputtering method which is a simple physical process.
  • FIG. 3 shows a graph showing the electrochemical characteristics of a tungsten oxide thin film TW1 formed on an ITO-coated glass substrate.
  • a platinum wire is used as the counter electrode, a saturated calomel electrode as the reference electrode, and a bis (trifluoromethanesulfonyl) imide (HTFSI) -propylene carbonate solution with a concentration of 0.0075 mol / L as the electrolyte, and cyclic at a scan rate of 5 millivolts / second. Voltammograms were acquired. From this, it was found that the tungsten oxide thin film TW1 has good electrochemical characteristics even in a system using a (trifluoromethanesulfonyl) imide salt as an electrolyte.
  • HTFSI bis (trifluoromethanesulfonyl) imide
  • ECD10 is produced by combining the tungsten oxide thin film and the metal cyano complex thin film produced as described above, and the results of investigations such as measurement of the visible light transmission spectrum are described.
  • Example 1 A tungsten blue / zinc-iron cyano complex electrochromic device (ECD), which is a dark blue-colorless and transparent electrochromic device, was prepared. Specifically, the glass substrate is placed between the ITO coated glass substrate on which the tungsten oxide thin film TW1 is formed on the electrode and the ITO coated glass substrate on which the zinc-iron cyano complex thin film TZn2 is formed on the electrode. An ECD was produced by sandwiching the electrolyte.
  • ECD tungsten blue / zinc-iron cyano complex electrochromic device
  • HTFSI bis (trifluoromethanesulfonyl) imide
  • KTSFSI concentration-potassium bis (trifluoromethanesulfonyl) imide
  • Fig. 4 shows a photograph of the appearance of a voltage applied to the fabricated ECD.
  • the potential is defined with the working electrode as the tungsten oxide thin film TW1 side.
  • the ECD exhibited a transparent state (decolored) when a voltage of 0 V was applied, and a deeply colored state when a voltage of -1.7 V was applied.
  • FIG. 5 (b) shows a light transmission spectrum that is extended to a longer wavelength region.
  • the ECD was able to express the ability to control long wavelength components.
  • FIG. 6 shows the results of the light resistance test.
  • the light resistance test light having a light amount equivalent to 1000 W / m 2 was continuously applied, and the transmittance of light having a wavelength of 700 nm was measured in each of a transparent state and a colored state. As a result, it was confirmed that the operation was performed without greatly changing the transmittance even after holding for 1000 hours or more.
  • Example 2 A tungsten oxide / iron-iron cyano complex electrochromic device was produced as a dark blue-colorless and transparent electrochromic device. Specifically, the glass substrate is placed between the ITO coated glass substrate on which the tungsten oxide thin film TW1 is formed on the electrode and the ITO coated glass substrate on which the iron-iron cyano complex thin film TFe1 is formed on the electrode. An ECD was produced by sandwiching the electrolyte.
  • KTFSI potassium bis (trifluoromethanesulfonyl) imide
  • a potassium bis (trifluoromethanesulfonyl) imide (KTFSI) -propylene carbonate solution having a concentration of 0.1 mol / L was added with 30 parts by weight of a methyl methacrylate polymer with respect to 100 parts by weight of propylene carbonate, and 60 ° C. To 80 ° C. for about 24 hours to increase the viscosity. The charge amount was adjusted to 70 millicoulomb.
  • the ECD defined the potential with the working electrode as the tungsten oxide thin film side.
  • FIG. 7 shows the results of measuring the cyclic voltammogram of the ECD at a scan rate of 5 millivolts / second. From this, it can be seen that the produced ECD exhibits a good electrochemical reaction.
  • FIG. 8 shows the result of obtaining the visible light transmission spectrum of the ECD.
  • the ECD exhibited a deep colored state when a voltage of -0.8 V was applied. Furthermore, it returned to the colorless and transparent state when a voltage of +1.2 V was applied.
  • Fig. 9 shows the results of examining the cycle resistance.
  • ⁇ 0.8 V and +1.2 V were continuously applied for 30 seconds each with 60 seconds as one cycle, and the change in transmittance was measured. As shown in the figure, it can be seen that the ECD hardly deteriorates after about 100 cycles.
  • Example 3 A tungsten oxide / iron-iron cyano complex electrochromic device (ECD), which is a dark blue-colorless and transparent electrochromic device, was prepared. Specifically, the glass substrate is placed between the ITO coated glass substrate on which the tungsten oxide thin film TW2 is formed on the electrode and the ITO coated glass substrate on which the iron-iron cyano complex thin film TFe1 is formed on the electrode. An ECD was produced by sandwiching the electrolyte. As the electrolyte, a potassium bis (trifluoromethanesulfonyl) imide (KTFSI) -propylene carbonate solution having a concentration of 2.5 mol / L was used. The charge amount was adjusted to 220 millicoulomb. The ECD defined the potential with the working electrode as the tungsten oxide thin film side.
  • KTFSI potassium bis (trifluoromethanesulfonyl) imide
  • FIG. 10 shows a photograph of the appearance of a voltage applied to the fabricated ECD.
  • the ECD exhibited a transparent state (discolored, off) when a +1.0 V voltage was applied, and a dark colored state (on) when a -1.2 V voltage was applied.
  • FIG. 11 shows the results of measuring the ECD cyclic voltammogram at a scan rate of 5 millivolts / second. From this, it can be seen that the produced ECD exhibits a good electrochemical reaction.
  • FIG. 12 shows the result of obtaining the visible light transmission spectrum of the ECD.
  • the ECD exhibited a deep colored state when a voltage of -1.2 V was applied. Furthermore, it returned to a colorless and transparent state when a voltage of +1.0 V was applied.
  • FIG. 13 shows the results of examining the cycle resistance. As a cycle test, 60 seconds was taken as one cycle, and -1.2 V and +1.0 V were continuously applied for 30 seconds each, and the change in transmittance was measured. As shown in the figure, it can be seen that the ECD does not deteriorate at all in a cycle of about 100 times.
  • Table 1 shows the result of comparing the response speed between the ECD (this technology) and the existing device (iron-iron cyano complex / zinc-iron cyano complex electrochromic device: existing technology). The time required to show 80% of the maximum transmittance was defined as the response speed. It can be seen that the ECD is only one, shows a dark blue color more than when two existing elements are stacked, and can be switched at high speed.
  • Example 4 A tungsten oxide / iron-iron cyano complex electrochromic device (ECD), which is a dark blue-colorless and transparent electrochromic device, was prepared. Specifically, the glass substrate is placed between the ITO coated glass substrate on which the tungsten oxide thin film TW3 is formed on the electrode and the ITO coated glass substrate on which the iron-iron cyano complex thin film TFe1 is formed on the electrode. An ECD was produced by sandwiching the electrolyte. As the electrolyte, a potassium bis (trifluoromethanesulfonyl) imide (KTFSI) -propylene carbonate solution having a concentration of 2.5 mol / L was used. The charge amount was adjusted to 220 millicoulomb. The ECD defined the potential with the working electrode as the tungsten oxide thin film side.
  • KTFSI potassium bis (trifluoromethanesulfonyl) imide
  • FIG. 14 shows the result of obtaining the visible light transmission spectrum of the ECD.
  • the ECD exhibited a deep colored state when a voltage of -1.2 V was applied. Furthermore, it returned to a colorless and transparent state when a voltage of +2.4 V was applied.
  • the tungsten oxide thin film used for the ECD is formed by a room temperature process, and application of a resin base material that is relatively weak to heating can be expected.
  • an electrochromic element that performs high-contrast coloring and decoloring with a large transmittance variation without using an organic electrochromic material.
  • This element is supposed to be used for dimming glass, displays, indicators, dimming mirrors, etc., and has the ability to control long wavelength components in particular. It is also expected to be used as an energy-saving dimming member that can optimize the inflow of certain infrared rays.
  • the metal cyano complex refers to a compound whose composition is represented by A x M [M ′ (CN) 6 ] y ⁇ zH 2 O.
  • M and M ′ are identified, they are called MM ′ cyano complexes.
  • M cobalt
  • M ′ iron
  • the EC material that changes its color from brown to transparent is a cobalt-iron cyano complex, but a metal cyano complex may also be used as a counter material for forming a complex with the cobalt-iron cyano complex or as a counter electrode for producing an ECD.
  • the composition of the metal cyano complex can be selected according to the required color change behavior
  • the metal atom M is vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper
  • One or more metal atoms selected from the group consisting of silver, zinc, lanthanum, europium, gadolinium, lutetium, barium, strontium, and calcium are preferred, vanadium, chromium, manganese, iron, ruthenium, cobalt, nickel,
  • One or more metal atoms selected from the group consisting of copper and zinc are more preferable, and one or more metal atoms selected from the group consisting of manganese, iron, cobalt, nickel, copper, and zinc are particularly preferable.
  • the metal atom M ′ is preferably one or more metal atoms selected from the group consisting of vanadium, chromium, molybdenum, tungsten, manganese, iron, ruthenium, cobalt, nickel, platinum, and copper, and includes manganese, iron, One or more metal atoms selected from the group consisting of ruthenium, cobalt and platinum are more preferable, and one or more metal atoms selected from the group consisting of iron and cobalt are more preferable.
  • A is a cobalt-iron cyano complex, or a counter material or / and a metal cyano complex used for the counter electrode, and one or more positive ions selected from the group consisting of hydrogen, lithium, sodium, potassium, rubidium, cesium, and ammonium. It is an ionic element.
  • materials other than water, and other materials such as other ions as impurities may be included.
  • the crystal structure of the metal cyano complex is generally a face-centered cubic structure (see FIG. 1), but is not necessarily limited thereto.
  • K 0.67 Zn [Fe (CN) 6 ] 0.67 ⁇ zH 2 O can take a hexagonal crystal.
  • six cyano groups coordinated to M ′ are generally used, but some of them may be substituted with a nitro group or the like, and there is no problem as long as it is within 4 to 8 groups.
  • the color of the reduced state of the cobalt iron cyano complex varies depending on the composition ratio of cobalt and iron, that is, the value of y.
  • y takes a value smaller than 1
  • the purpose of this method is to disperse nanoparticles of a metal cyano complex in a polar solvent such as water.
  • a polar solvent such as water.
  • “Colorless and transparent” here does not necessarily mean that the extinction coefficient in the visible light region is zero. What is important is that there is a sufficient difference between the absorbance at the time of coloring and the absorbance at the time of colorless and transparent, and the ratio of the absorbance at the time of coloring and the absorbance at the time of colorless and transparent is a wavelength of 450 nm to 550 nm where human visibility is high. It is preferably 3 or more, more preferably 4 or more, and particularly preferably 5 or more.
  • the values of x, y, and z in the composition are determined not by values in the middle of the process, but by values in the finally obtained product.
  • the value of y is preferably from 0.75 to less than 2, preferably from 0.8 to less than 1.5, and more preferably from 0.9 to less than 1.3.
  • x and z only have to be colorless and transparent when the cobalt cyano complex is reduced, and x is preferably 0 to 3, more preferably 0 to 2.5, and particularly preferably 0 to 2. z is preferably 0 to 6, more preferably 0.5 to 5.5, and particularly preferably 1 to 5.
  • x, y, and z contain a salt as an impurity, when the material has moisture that is not taken into the internal structure of the Prussian blue type complex, and other materials such as a binder for film formation When it is used as a complex, it must be evaluated with its effects removed.
  • the desirable particle size of the metal cyano complex is, as a general rule, preferably such that the electrochemical response speed increases the specific surface area by reducing the particle size, and also for forming a smooth thin film.
  • the diameter is preferably small, and in that respect, the primary average particle diameter is preferably 500 nm or less, more preferably 300 nm or less, and particularly preferably 100 nm or less.
  • the primary particle diameter means the diameter of the primary particles, and the equivalent circle diameter may be derived from the half width of the peak of the powder X-ray structure analysis.
  • the ligand etc. may adsorb
  • cobalt iron cyano complex When cobalt iron cyano complex is used as an EC material, it is common to form a thin film on an electrode, and the method will be described below. However, the structure is not limited as long as the target color change can be realized electrochemically. For example, a cobalt iron cyano complex may be dispersed in an electrolyte brought into contact with the electrode.
  • FIG. 15 shows a structural schematic diagram of an electrode provided with a cobalt iron cyano complex.
  • the electrode is composed of a multilayer film of a conductive material and an EC material.
  • the conductive material is not particularly limited as long as it is conductive and can be used as an electrochemical element so that deterioration such as corrosion does not occur to some extent in practical use.
  • conductive oxides such as indium tin oxide, zinc oxide and those doped with metals such as aluminum, precious metals such as gold and platinum, metals with corrosion countermeasures such as stainless steel, and passive states such as aluminum are generated.
  • a material that does not cause corrosion can be used.
  • the electrode structure is generally a smooth plate, but is not limited thereto.
  • increasing the contact area between the EC material and the conductive material may contribute to an improvement in speed, which may intentionally reduce the smoothness of the electrode.
  • a smooth conductive material may be used with a conductive material.
  • other materials may be passed on.
  • the EC material and the conductive material have electrical continuity.
  • another material such as an insulating material may be provided on the surface of the conductive material opposite to the EC material.
  • EC material 1 may be a mixture of a cobalt-iron cyano complex and another EC material.
  • a color change that combines the colors of two EC materials can be realized as an electrode.
  • a mixture of a cobalt-iron cyano complex and Prussian blue can be mentioned.
  • the oxidation-reduction potential of the cobalt-iron cyano complex is +0.4 V with respect to the saturated calomel electrode, and an oxidation state of brown is realized above it, and a reduction state of colorless and transparent is realized below it.
  • Prussian blue has an oxidation-reduction potential of +0.2 V with respect to the saturated calomel electrode. Therefore, the composite electrode of these two types of EC materials is black, which is a composite color of brown and blue at +0.4 V or higher, blue at +0.2 V or higher and +0.4 V or lower, and colorless and transparent at +0.2 V or lower. It becomes.
  • Examples of the material mixed with the cobalt-iron cyano complex include metal cyano complexes such as nickel-iron cyano complex and copper-iron cyano complex, and metal oxides such as nickel oxide and copper oxide. In addition, two or more kinds of materials to be mixed may be used.
  • ⁇ As a method for mixing EC materials, a method of completely mixing them can be mentioned.
  • a film in which two types of EC materials are mixed at the nanoparticle level can be obtained by mixing a cobalt-iron cyano complex and Prussian blue nanoparticle dispersion, followed by coating and film formation.
  • a plurality of EC materials may be formed into a multilayer film.
  • FIG. 17 shows an ECD structure using the most common multilayer metal cyano complex as an EC material. That is, the EC electrode 1 is prepared by using the EC electrode 1 separately, and an EC electrode 2 is separately prepared, and an electrolyte is sandwiched between the two EC electrodes to produce an ECD. Similarly to the EC electrode 1, the EC electrode 2 is made of an EC material and a conductive material, and may have the same degree of structural freedom as the EC electrode 1. For example, the EC material 2 may be a mixture of a plurality of EC materials. The EC electrode 1 may be any material that causes electrochemical redox reversibly, and the colors of the oxidized state and the reduced state are not necessarily different.
  • ECD is driven by applying a voltage between two electrodes. That is, the color change between the state 1 in which the EC material 1 and the EC material 2 are in the oxidized state and the reduced state, respectively, and the state 2 in the reduced state and the oxidized state can be realized by voltage application.
  • a transparent material is used for the conductive material 1, the conductive material 2, and the electrolyte.
  • transmission type ECD a transparent material is used for the conductive material 1, the conductive material 2, and the electrolyte.
  • the color of the ECD exhibits a mixed color of the EC material 1 and the EC material 2.
  • the conductive material is transparent and the electrolyte is white, the color of the EC material 1 becomes the ECD color as it is. This is called reflective ECD.
  • the colors of the EC material 2 and the conductive material 2 are not limited.
  • the EC material 2 needs to be a material having stable electrochemical characteristics and exhibiting a necessary color change.
  • the reflection type ECD only needs to have stable electrochemical characteristics.
  • the transmission type ECD when a zinc-iron cyano complex is used as the EC material 2 and a transparent material is used for both the conductive material and the electrolyte, the color changes from brown to colorless and transparent as the ECD. This material is almost colorless and transparent in both reduced state and oxidized state. Therefore, the ECD state 1 is brown, which is the oxidation state of the EC material 1, and the state 2 is colorless and transparent, which is the reduction state of the EC material 1.
  • the EC material 1 by using a material that is a transparent ECD EC material 2, a blue that is a brown complementary color that is an oxidation state of a cobalt-iron cyano complex, and a colorless and transparent material that is an oxidation state, An ECD in which state 1 is black and state 2 is colorless and transparent can be produced.
  • tungsten oxide meets this requirement.
  • the sample S1 produced in the first step was suspended in 30 mL of water. To this suspension was added 0.49 g of potassium ferricyanide dissolved in 10 mL of water, and when stirred, the solution turned into a brown transparent solution. Thus, a cobalt-iron cyano complex dispersion (DCo1) was obtained.
  • DCo1 cobalt-iron cyano complex dispersion
  • Preparation Example 2 Preparation of cobalt-iron cyano complex dispersion with different composition> Similar to Preparation Example 1, by changing the mixing ratio of cobalt chloride hexahydrate and potassium ferricyanide, dispersions of cobalt-iron cyano complexes having different charged composition ratios were prepared, which were designated as DCo2, DCo3 and DCo4, respectively. .
  • FIG. 27 shows the adjustment conditions for DCo1 to DCo4 and the composition ratio y expected from the conditions.
  • Preparation Example 3 Preparation of cobalt-iron cyano complex dispersion>
  • cobalt-iron cyano complex dispersions having different initial redox states were prepared by changing the mixing ratio of cobalt chloride hexahydrate and potassium ferrocyanide trihydrate. , DCo2r, DCo3r, DCo4r.
  • FIG. 28 shows the adjustment conditions for DCo1r to DCo4r and the composition ratio y expected from the conditions.
  • the sample S1 produced in the first step was suspended in 30 mL of water.
  • 0.51 g of potassium ferricyanide trihydrate dissolved in 10 mL of water was added and stirred for one day.
  • the zinc-iron cyano complex was washed twice by high-speed centrifugation and suspended in 40 mL of water, and thus a zinc-iron cyano complex dispersion (DZn2) was obtained.
  • ⁇ Preparation Example 6 Preparation of cobalt-iron cyano complex thin film electrode> Using a cobalt-iron cyano complex dispersion, a thin film electrode was prepared as follows. Using the cobalt-iron cyano complex dispersion DCo1 prepared in Preparation Example 1, a nanoparticle thin film was placed on an ITO-coated glass substrate by spin coating to produce an electrode of the present invention. The solid content of DCol was adjusted to 5 wt%.
  • a 25 mm square ITO substrate was placed on the spin coater, 60 ⁇ L of the dispersion liquid DCo1 was dropped, and the rotation at 1000 rpm was performed for 10 seconds and the rotation at 1200 rpm for 60 seconds, thereby producing a cobalt iron cyano complex thin film electrode TCo1.
  • thin film electrodes TCo2 to TCo4 and TCo1r to TCo4r were prepared using dispersions DCo2 to DCo4.
  • ⁇ Preparation Example 7 Preparation of mixed thin-film electrode of cobalt-iron cyano complex and Prussian blue> Using a cobalt-iron cyano complex dispersion and Prussian blue dispersion, a thin film electrode was prepared as follows. The cobalt-iron cyano complex dispersion DCo2 prepared in Preparation Example 1 and the Prussian blue dispersion prepared in Preparation Example 3 are mixed so that the respective solid concentration is 82 wt%: 18 wt%, and the dispersion DCo2Fe1 is prepared. Prepared.
  • a 25 mm square ITO substrate was placed on a spin coater, and dispersion liquid DCoFe1 was dropped, and rotation at 1000 rpm was performed for 10 seconds and rotation at 1200 rpm for 60 seconds to produce a cobalt iron cyano complex-Prussian blue mixed thin film electrode TCoFe1.
  • the mixed thin film electrode TCoFe2 was manufactured by separately performing rotation at 300 rpm in 600 seconds.
  • ⁇ Preparation Example 8 Preparation of zinc-iron cyano complex thin film electrode> Using a zinc-iron cyano complex dispersion, a thin film electrode was prepared as follows. Using the zinc-iron cyano complex dispersions DZn1 and DZn2 prepared in Preparation Example 1, nanoparticle thin films were respectively placed on an ITO-coated glass substrate by spin coating to produce an electrode of the present invention. Specifically, DZn1 and DZn2 were adjusted to 15 wt% each.
  • a 25 mm square ITO substrate was placed on the spin coater, 60 ⁇ L each of the dispersion liquid DZn1 was dropped, and rotation at 1000 rpm was performed for 10 seconds and rotation at 1500 rpm for 10 seconds to produce a zinc-iron cyano complex thin film electrode TZn1. did.
  • a similar method was used for the dispersion DZn2 to produce a zinc-iron cyano complex thin film electrode TZn2.
  • ⁇ Preparation Example 9 Preparation of cobalt-iron cyano complex / zinc-iron cyano complex electrochromic device>
  • an electrochromic device comprising a cobalt-iron cyano complex thin film electrode and a zinc-iron cyano complex thin film electrode TZn2 was fabricated as follows.
  • the electrolyte used was a potassium-bis (trifluoromethanesulfonyl) imide (KTFSI) -propylene carbonate solution having a concentration of 0.1 mol / L.
  • KTFSI potassium-bis (trifluoromethanesulfonyl) imide
  • This electrolyte was formed by depositing TCo2 so that the transmittance at a wavelength of 500 nanometers was 50 percent in an oxidized state by DCO2 spin coating, and TZn2 formed so that the amount of charge required for redox was 26 millicoulombs.
  • the electrochromic element ECD (Co, Zn) was produced.
  • FIG. 18 shows the results of evaluating the visible light transmittance in a state where the cobalt-iron cyano complex thin film electrode prepared in Preparation Example 5 is immersed in an electrolyte using an Ocean Photonics spectrometer USB4000.
  • an electrolyte a KTFSI-propylene carbonate solution having a concentration of 0.1 mol / L was used.
  • TCo1 to TCo4 in FIG. 18 (a) were brown, and TCo1r to TCo4r in FIG. 18 (b) appeared colorless and transparent.
  • FIG. 21 shows the results of measuring the cyclic voltammogram of ECD (Co, Zn) produced in Adjustment Example 8 at a scan rate of 5 millivolts / second. This shows that the produced ECD exhibits a good electrochemical reaction.
  • the transmittance when the end potential is set to +0.4 V and ⁇ 1.2 V in the chronocoulometry evaluation is shown in FIG. From this, it can be seen that + 0.4V is brown, and -1.2V is colorless and transparent.
  • FIG. 24 shows visible light transmission spectra when the end electrode is ⁇ 0.3 V and +0.92 V, respectively. At any potential, it has a transmission spectrum having almost no wavelength dependence between wavelengths of 450 nm to 650 nm with high visibility, and it can be seen that a color change from transparent to gray (black) occurs. .
  • a black-colorless transparent, brown-colorless, transparent electrochromic device can be realized without using an organic electrochromic material.
  • This element is expected to be used in dimming glass, displays, indicators, dimming mirrors, and the like.
  • Electrolyte layer 1 1 Electrochromic layer 3, 4 Transparent electrode layer 5, 6 Base material 7 Electrolyte layer

Abstract

[Problem] To provide an electrochromic element and an electrochromic material, which achieve color change with high contrast without sacrificing the response speed. Especially, to provide an electrochromic material which exhibits color change between bark and colorless/transparent. [Solution] An electrochromic element in which a multilayer film is formed within a transparent base. A transparent electrode layer containing a transition metal oxide, a first electrochromic layer, an electrolyte layer, an electrochromic layer containing a metal cyano complex and a second transparent electrode layer are sequentially formed on at least a transparent base; and the electrolyte layer contains a (trifluoromethanesulfonyl)imide salt. An electrochromic material which exhibits color change between bark and colorless/transparent by means of an electrochemical oxidation-reduction reaction, and which is characterized by being composed of a simple substance or mixture of a crystal that is obtained by surface-modifying a cobalt-iron cyano complex with hexacyano iron ions.

Description

エレクトロクロミック素子及びエレクトロクロミック材料Electrochromic device and electrochromic material
 本発明は、電気化学反応によって色変化するエレクトロクロミック素子及びエレクトロクロミック材料に関する。 The present invention relates to an electrochromic element and an electrochromic material that change color by an electrochemical reaction.
 エレクトロクロミック素子(ECD)は、電気化学的な酸化還元によって色の変化するエレクトロクロミック材料(EC材料)を用いた色可変素子である。調光ガラスとして、色の変化によって反射率を制御する車載用ミラーや、光の透過率を制御して空調効率を高め得る自動車用又は建築物用の窓などへの適用が提案され、更には、ディスプレイやサングラスなどへの応用も検討されている。また、利便性、可搬性、可撓性、コスト等の兼ね合いから、透明な基材としてガラスではなく樹脂等のフレキシブルな材料を用いたフレキシブル調光フィルムの開発も行われている(特許文献1)。 The electrochromic element (ECD) is a color variable element using an electrochromic material (EC material) whose color is changed by electrochemical redox. As dimming glass, it has been proposed to be applied to in-vehicle mirrors that control reflectivity by changing color, automobile windows or buildings that can improve air conditioning efficiency by controlling light transmittance, and more Applications to displays and sunglasses are also being considered. In addition, in consideration of convenience, portability, flexibility, cost, and the like, a flexible light control film using a flexible material such as a resin instead of glass as a transparent base material has been developed (Patent Document 1). ).
ここで、ECDの多くの用途では、EC材料による色が極めて重要な意味を有する。特に、黒、グレー、ブラウン(茶色)などの遮光性の高い色の得られるEC材料が要望されているが、現在のところ、市販化されている多くのEC材料は青-透明の色変化を与えるものである。なお、調光用途の場合、着色時の色だけでなく、消色時に無色透明になることも重要であって、着色時と無色透明時との間で高コントラストとなる色変化を高速に得られるEC材料が望まれる。 Here, in many applications of ECD, the color due to the EC material has a very important meaning. In particular, there is a demand for EC materials that can provide highly light-shielding colors such as black, gray, and brown (brown). Currently, many commercially available EC materials have a blue-transparent color change. Give. For dimming applications, it is important not only to change the color at the time of coloring, but also to become colorless and transparent at the time of decoloring, so that a high-contrast color change can be obtained at high speed between coloring and colorless and transparent. EC material is desired.
 このようなEC材料において、有機高分子材料や銀ナノ粒子を利用することが提案されているが、耐光性などの観点からは無機材料に一定の優位性がある。無機材料のなかでは、金属酸化物と金属シアノ錯体がすでに商用化されている。特に、金属シアノ錯体は金属置換により多彩な色の実現が可能であり、多色化への有力な材料と考えられている(特許文献2)。 In such EC materials, it has been proposed to use organic polymer materials and silver nanoparticles, but inorganic materials have certain advantages from the viewpoint of light resistance and the like. Among inorganic materials, metal oxides and metal cyano complexes have already been commercialized. In particular, the metal cyano complex can realize various colors by metal substitution, and is considered to be an effective material for multicolorization (Patent Document 2).
特開2011-180469号公報JP 2011-180469 A 特開2016-74569号公報JP 2016-74569 A
上記したように、ECDの多種多様なアプリケーションの普及のためには、多くのニーズに対応した色の選択性(多色性)、耐久性(回数、使用環境)がEC材料に求められるとともに、EC材料の素子への導入の容易さが必要となる。 As mentioned above, in order to spread a wide variety of applications of ECD, EC materials are required to have color selectivity (multicolor) and durability (number of times, usage environment) corresponding to many needs. Ease of introduction of EC material into the element is required.
 例えば、コバルト-鉄シアノ錯体は、茶色―透明の色変化を与えるEC材料である。つまり、酸化状態で褐色を示し、還元状態では、内包するアルカリイオンの種類、組成によって色が変化する。かかるコバルト-鉄シアノ錯体の組成における一般式は下記のとおりである。
        ACo[Fe(CN)・zH
但し、Aはナトリウム、カリウムなどのアルカリイオン元素である。特に、アルカリイオンとしてカリウムを使用し、組成としてx=2、y=1の場合に、450ナノメートル以上の光吸収がほぼ0となり、透明に近い色となる。
For example, cobalt-iron cyano complex is an EC material that gives a brown-transparent color change. That is, it shows brown in the oxidized state, and in the reduced state, the color changes depending on the type and composition of the alkali ions to be included. The general formula for the composition of such a cobalt-iron cyano complex is as follows.
A x Co [Fe (CN) 6] y · zH 2 O
However, A is an alkali ion element such as sodium or potassium. In particular, when potassium is used as the alkali ion and the composition is x = 2 and y = 1, the light absorption at 450 nanometers or more is almost 0, and the color is almost transparent.
ここで、塩化コバルト水溶液にフェロシアン化カリウム水溶液を滴下して作製したコバルト-鉄プルシアンブルー型錯体をゲル状にした後にスライドガラスに塗布する成膜方法では、膜厚も50μmと厚く、平滑な薄膜を得ることが難しい。また、金属シアノ錯体の組成はいつも簡便に制御できるわけではなく所望の光特性を安定的に得ることは難しい。つまり、金属イオン水溶液とヘキサシアノ鉄イオン水溶液を所望の比率で混合させても、その通りの比率の金属シアノ錯体を調製できるわけではない。特に、y=1に近づくほど、その調整は困難である。 Here, in a film forming method in which a cobalt-iron Prussian blue complex prepared by dropping a potassium ferrocyanide aqueous solution into a cobalt chloride aqueous solution is gelled and then applied to a slide glass, the film thickness is as thick as 50 μm and a smooth thin film is formed. Difficult to get. Further, the composition of the metal cyano complex cannot always be easily controlled, and it is difficult to stably obtain desired optical characteristics. That is, even if a metal ion aqueous solution and a hexacyanoiron ion aqueous solution are mixed at a desired ratio, a metal cyano complex having the same ratio cannot be prepared. In particular, the closer to y = 1, the more difficult the adjustment.
 更に、いくつかの問題も提起されている。例えば、主要なEC材料である遷移金属酸化物の酸化タングステンなどを用いたアプリケーションでは、固体電解質を含む種々の材料がマグネトロンスパッタ法等による物理プロセスで製造されるため、基材としてガラスを用いたバッチプロセスとなってその大量生産性に課題がある。また、固体電解質の成膜時の投入熱量等による基材のダメージを抑制するためには冷却装置が必要となるなど、プロセス上の設備に依存したコスト高といった問題もある。 Furthermore, several problems have been raised. For example, in applications using transition metal oxides such as tungsten oxide, which is the main EC material, glass is used as the base material because various materials including solid electrolytes are manufactured by physical processes such as magnetron sputtering. There is a problem in the mass productivity of the batch process. In addition, there is a problem that the cost depends on the equipment in the process, for example, a cooling device is required to suppress damage to the base material due to the amount of heat input during the film formation of the solid electrolyte.
 本発明はこうした現状を鑑みてなされたものであって、その目的とするところは、遮光性の高い色の得られるEC材料であって、素子への施工性が容易であり、高コントラストとなる色変化を得られるエレクトロクロミック材料及びこれを用いたエレクトロクロミック素子を提供することにある。 The present invention has been made in view of the present situation, and an object thereof is an EC material capable of obtaining a color having a high light-shielding property, which is easy to be applied to an element and has a high contrast. An object is to provide an electrochromic material capable of obtaining a color change and an electrochromic device using the same.
 発明者らは、鋭意検討を重ねた結果、無機EC材料として、プルシアンブルー型金属錯体ナノ粒子を水に分散させた分散液を塗布などの手法により形成した電極と、遷移金属酸化物の1つである酸化タングステン等による電極とを組み合わせ、着色-透明のエレクトロクロミック素子を成型可能であることを見出した。特に、酸化タングステンを着色させる手法として既存の固体電解質ではなく、(トリフルオロメタンスルホニル)イミド塩を含む電解質を用いる方法を考案し、これにより従来のプロトン系、リチウム系のみを用いた電解質のみならず、カリウムやナトリウムなど比較的イオン半径の大きいイオン種においても薄膜中への掃引ができることを確認したため、ニーズに応じた種々のエレクトロクロミック材料の組み合わせによる多用途展開が可能となった。 As a result of intensive studies, the inventors of the present invention have developed an electrode formed by a technique such as application of a dispersion in which Prussian blue-type metal complex nanoparticles are dispersed in water as an inorganic EC material, and one of transition metal oxides. It was found that a colored-transparent electrochromic device can be formed by combining with an electrode made of tungsten oxide or the like. In particular, as a technique for coloring tungsten oxide, a method using an electrolyte containing (trifluoromethanesulfonyl) imide salt instead of an existing solid electrolyte was devised, thereby not only using conventional proton-based and lithium-based electrolytes. In addition, it was confirmed that sweeping into the thin film was possible even for ionic species with relatively large ionic radii such as potassium and sodium, so that it was possible to develop various applications by combining various electrochromic materials according to needs.
 また、従来のプルシアンブルー型金属錯体ナノ粒子を用いたエレクトロクロミック素子では、高コントラスト化のためには薄膜の重ね塗りなど厚膜化を必要としたが、その厚膜化に応じて応答速度をトレードオフされる傾向があった。それに対して、プルシアンブルー型金属錯体ナノ粒子と酸化タングステンの着色と消色との挙動が酸化還元反応において逆反応であるため、電解質を挟んで組み合わせることで、着色度合いが向上し(高コントラスト化)、かつ、応答速度も担保された。 In addition, in conventional electrochromic devices using Prussian blue-type metal complex nanoparticles, it was necessary to increase the thickness of the thin film, such as overcoating, in order to achieve high contrast. There was a tendency to trade off. On the other hand, the coloring and decoloring behavior of Prussian blue-type metal complex nanoparticles and tungsten oxide are opposite reactions in the redox reaction, so combining them with an electrolyte increases the degree of coloring (higher contrast) ) And the response speed was secured.
 また、プルシアンブルー型金属錯体ナノ粒子の金属原子置換による多色化を可能とし、酸化タングステンによる太陽エネルギーの熱成分である近赤外線/遠赤外線の遮蔽性能(制御能)を付与でき、高耐久性(高耐光性)化も諮れ、従来のプルシアンブルー型金属錯体ナノ粒子のみを用いたエレクトロクロミック素子では適用できなかった、熱エネルギーを制御する省エネルギー用調光部材への適用が可能となった。 The Prussian blue-type metal complex nanoparticles can be multi-colored by substitution of metal atoms, and can provide near-infrared / far-infrared shielding performance (controllability), which is a thermal component of solar energy by tungsten oxide. (High light resistance) was also consulted, and it was possible to apply to energy-saving dimming members that control thermal energy, which was not possible with conventional electrochromic devices using only Prussian blue-type metal complex nanoparticles. .
 また、発明者らは、上記無機EC材料の1つとして、コバルト-鉄シアノ錯体を利用し、その微結晶を合成したのち、ヘキサシアノ鉄イオンを添加することにより、組成式yを1に近づけて褐色-無色透明の色変化を実現するとともに、当該材料を水に分散させた分散液を塗布などの手法により平滑な薄膜を電極上に形成できることを見出した。さらに、このコバルト-鉄シアノ錯体を塗布した電極と、既知の色変化のない無機材料エレクトロクロミック電極を組み合わせ、褐色-透明のエレクトロクロミック素子を形成可能であること、さらに、このコバルト-鉄シアノ錯体と青-透明の色変化を示す無機材料エレクトロクロミック電極を組み合わせることで、黒色-無色透明の色変化を示すエレクトロクロミック素子を作製できることを見出した。 In addition, the inventors made use of a cobalt-iron cyano complex as one of the inorganic EC materials, synthesized microcrystals thereof, and then added hexacyanoiron ions to bring the composition formula y close to 1. It has been found that a smooth thin film can be formed on an electrode by a technique such as coating a dispersion liquid in which the material is dispersed in water while realizing a brown-colorless and transparent color change. Furthermore, it is possible to form a brown-transparent electrochromic device by combining an electrode coated with this cobalt-iron cyano complex with a known inorganic material electrochromic electrode having no color change, and further, this cobalt-iron cyano complex. It was found that an electrochromic device showing a black-colorless and transparent color change can be produced by combining an electrochromic electrode with an inorganic material showing a blue-transparent color change.
本発明によるエレクトロクロミック素子の一例を示す断面図である。It is sectional drawing which shows an example of the electrochromic element by this invention. 代表的な金属シアノ錯体の結晶構造を示す図である。It is a figure which shows the crystal structure of a typical metal cyano complex. 電解質層にHTFSI―炭酸プロピレン溶液を用いた酸化タングステン薄膜のサイクリックボルタモグラムである。It is a cyclic voltammogram of a tungsten oxide thin film using an HTFSI-propylene carbonate solution as an electrolyte layer. 実施例1によるECDの外観写真である。2 is an external appearance photograph of an ECD according to Example 1. 実施例1によるECDの(a)可視光透過スペクトル及び(b)長波長領域の光透過スペクトルである。It is the (a) visible light transmission spectrum of the ECD by Example 1, and (b) the light transmission spectrum of a long wavelength region. 実施例1によるECDの光照射による調光性能の経時変化を示すグラフである。6 is a graph showing a change with time in light control performance by light irradiation of ECD according to Example 1; 実施例2によるECDのサイクリックボルタモグラムである。3 is a cyclic voltammogram of ECD according to Example 2. 実施例2によるECDの可視光透過スペクトルである。2 is a visible light transmission spectrum of an ECD according to Example 2. 実施例2によるECDのサイクル耐性を示すグラフである。3 is a graph showing cycle resistance of ECD according to Example 2. 実施例3によるECDの外観写真である。6 is an external appearance photograph of an ECD according to Example 3. 実施例3によるECDのサイクリックボルタモグラムである。4 is a cyclic voltammogram of ECD according to Example 3. FIG. 実施例3によるECDの可視光透過スペクトルである。6 is a visible light transmission spectrum of ECD according to Example 3. 実施例3によるECDのサイクル耐性を示すグラフである。6 is a graph showing cycle resistance of ECD according to Example 3. 実施例4によるECDの可視光透過スペクトルである。It is a visible light transmission spectrum of ECD by Example 4. コバルト鉄シアノ錯体を具備したEC電極の構造を示す断面図である。It is sectional drawing which shows the structure of EC electrode which comprised the cobalt iron cyano complex. EC材料を2層積層したEC電極の構造を示す断面図である。It is sectional drawing which shows the structure of EC electrode which laminated | stacked two layers of EC material. 多層膜化したEC電極の構造を示す断面図である。It is sectional drawing which shows the structure of EC electrode made into the multilayer film. コバルト-鉄シアノ錯体の可視光吸収スペクトルの組成依存性を示すグラフである。It is a graph which shows the composition dependence of the visible light absorption spectrum of a cobalt-iron cyano complex. コバルト-鉄シアノ錯体薄膜電極のサイクリックボルタモグラムのグラフである。It is a graph of the cyclic voltammogram of a cobalt-iron cyano complex thin film electrode. コバルト-鉄シアノ錯体薄膜電極のクロノクーロメトリー測定時の可視光透過スペクトルのグラフである。実線は終了電位が-0.4V、点線は+0.7Vの場合を示す。It is a graph of the visible light transmission spectrum at the time of the chronocoulometry measurement of a cobalt-iron cyano complex thin film electrode. A solid line indicates a case where the end potential is −0.4V, and a dotted line indicates + 0.7V. コバルト-鉄シアノ錯体/亜鉛-鉄シアノ錯体エレクトロクロミック素子のサイクリックボルタモグラムのグラフである。It is a graph of the cyclic voltammogram of a cobalt-iron cyano complex / zinc-iron cyano complex electrochromic device. コバルト-鉄シアノ錯体/亜鉛-鉄シアノ錯体エレクトロクロミック素子の色変化特性を示すグラフである。3 is a graph showing color change characteristics of a cobalt-iron cyano complex / zinc-iron cyano complex electrochromic device. コバルト-鉄シアノ錯体・プルシアンブルー混合薄膜電極の可視光透過率を示すグラフである。It is a graph which shows the visible light transmittance | permeability of a cobalt-iron cyano complex and Prussian blue mixed thin film electrode. コバルト-鉄シアノ錯体・プルシアンブルー混合薄膜電極のクロノクーロメトリー測定時の可視光透過率を示すグラフである。実線は終了電位が-0.3V、点線は+0.92Vの場合を示す。It is a graph which shows the visible light transmittance | permeability at the time of the chronocoulometry measurement of a cobalt-iron cyano complex and Prussian blue mixed thin film electrode. A solid line indicates a case where the end potential is −0.3V, and a dotted line indicates + 0.92V. (コバルト-鉄シアノ錯体、プルシアンブルー)/亜鉛-鉄シアノ錯体エレクトロクロミック素子のサイクリックボルタモグラムのグラフである。3 is a graph of cyclic voltammograms of (cobalt-iron cyano complex, Prussian blue) / zinc-iron cyano complex electrochromic device. (コバルト-鉄シアノ錯体、プルシアンブルー)/亜鉛-鉄シアノ錯体エレクトロクロミック素子のクロノクーロメトリー評価時の可視光透過スペクトルのグラフである。6 is a graph of a visible light transmission spectrum at the time of chronocoulometric evaluation of an electrochromic device (cobalt-iron cyano complex, Prussian blue) / zinc-iron cyano complex. 原料にフェリシアン化カリウムを用いたコバルト-鉄シアノ錯体分散液の  組成例を示す表である。6 is a table showing a composition example of a cobalt-iron cyano complex dispersion using potassium ferricyanide as a raw material. 原料にフェロシアン化カリウムを用いたコバルト-鉄シアノ錯体分散液組  成例を示す表である。3 is a table showing examples of cobalt-iron cyano complex dispersion sets using potassium ferrocyanide as a raw material.
 以下、本発明による1つの実施例であるエレクトロクロミック素子(ECD)について詳細に説明する。 Hereinafter, an electrochromic device (ECD) according to one embodiment of the present invention will be described in detail.
 図1に示すように、ECD10は金属シアノ錯体をエレクトロクロミック材料(EC材料)として利用した多層構造を有する。すなわち、遷移金属酸化物を含むエレクトロクロミック層1と、金属シアノ錯体を含むエレクトロクロミック層2と、これらによって挟み込まれた電解質層7と、さらにエレクトロクロミック層1及び2にそれぞれ外側から接続する透明電極層3及び4を含む。さらにその外側に樹脂やガラスなどの透明な材料からなる基材5や6を備えることが好ましい。 As shown in FIG. 1, the ECD 10 has a multilayer structure using a metal cyano complex as an electrochromic material (EC material). That is, an electrochromic layer 1 containing a transition metal oxide, an electrochromic layer 2 containing a metal cyano complex, an electrolyte layer 7 sandwiched between them, and transparent electrodes connected to the electrochromic layers 1 and 2 from the outside, respectively. Layers 3 and 4 are included. Furthermore, it is preferable to provide the base materials 5 and 6 which consist of transparent materials, such as resin and glass, on the outer side.
 エレクトロクロミック層1の遷移金属酸化物としては、後述する電解質層7によって色変化を可能とする材料であり、特に、後述するエレクトロクロミック層2とは酸化状態及び還元状態での着色又は消色の反応を逆にする材料である。例えば、酸化タングステン、酸化モリブデン、酸化ニオブ、酸化バナジウム、酸化チタンなどを使用でき、このうちの少なくとも1種を含むことが好ましい。 The transition metal oxide of the electrochromic layer 1 is a material that can be changed in color by an electrolyte layer 7 to be described later. In particular, the electrochromic layer 2 to be described later is colored or decolored in an oxidized state and a reduced state. A material that reverses the reaction. For example, tungsten oxide, molybdenum oxide, niobium oxide, vanadium oxide, titanium oxide, or the like can be used, and it is preferable to include at least one of them.
 エレクトロクロミック層2の金属シアノ錯体としてはプルシアンブルー型金属錯体を用い得るが、電気化学的酸化還元を可逆的に起こすものであれば他の材料であってもよく、上記したようにエレクトロクロミック層1とは、酸化状態及び還元状態での着色及び消色の反応を逆にする材料である。 A Prussian blue-type metal complex can be used as the metal cyano complex of the electrochromic layer 2, but other materials may be used as long as they cause reversible electrochemical oxidation and reduction as described above. 1 is a material that reverses the coloring and decoloring reactions in the oxidized and reduced states.
 金属シアノ錯体をEC材料として利用する場合、透明電極上にEC材料による薄膜を形成してこれをエレクトロクロミック層とする製造方法が一般的である。ただし、目的とする色変化を電気化学的に実現できる限りにおいてその製造方法に限定されない。例えば、透明電極に接触させた電解質中に金属シアノ錯体を分散させてエレクトロクロミック層を形成してもよい。 When a metal cyano complex is used as an EC material, a manufacturing method in which a thin film made of an EC material is formed on a transparent electrode to form an electrochromic layer is generally used. However, the manufacturing method is not limited as long as the target color change can be realized electrochemically. For example, the electrochromic layer may be formed by dispersing a metal cyano complex in an electrolyte in contact with a transparent electrode.
 上記したプルシアンブルー型金属錯体とは、その組成がAM[M’(CN)・zHOの一般式で表されるものを言う。また、M、M’が同定されている場合、M-M’シアノ錯体と呼ぶ。例えばM=亜鉛、M’=鉄の場合、亜鉛-鉄シアノ錯体という。 The Prussian blue-type metal complex mentioned above refers to a compound whose composition is represented by a general formula of A x M [M ′ (CN) 6 ] y · zH 2 O. When M and M ′ are identified, they are called MM ′ cyano complexes. For example, when M = zinc and M ′ = iron, it is called a zinc-iron cyano complex.
 金属シアノ錯体の組成は必要とする色変化挙動に合わせて選ぶことができ、金属原子Mとしては、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、銀、亜鉛、ランタン、ユーロピウム、ガドリニウム、ルテチウム、バリウム、ストロンチウム、及びカルシウムからなる群より選ばれる金属原子が好ましく、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ニッケル、銅、亜鉛からなる群から選ばれる金属原子がより好ましく、マンガン、鉄、コバルト、ニッケル、銅、亜鉛からなる群から選ばれる金属原子が特に好ましい。また、金属原子M’としては、バナジウム、クロム、モリブデン、タングステン、マンガン、鉄、ルテニウム、コバルト、ニッケル、白金、及び銅からなる群より選ばれる金属原子が好ましく、マンガン、鉄、ルテニウム、コバルト、白金からなる群から選ばれる金属原子がより好ましく、鉄、コバルトからなる群から選ばれる金属原子がより好ましい。 The composition of the metal cyano complex can be selected according to the required color change behavior, and as the metal atom M, vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, silver, A metal atom selected from the group consisting of zinc, lanthanum, europium, gadolinium, lutetium, barium, strontium, and calcium is preferred, selected from the group consisting of vanadium, chromium, manganese, iron, ruthenium, cobalt, nickel, copper, and zinc. A metal atom is more preferable, and a metal atom selected from the group consisting of manganese, iron, cobalt, nickel, copper, and zinc is particularly preferable. The metal atom M ′ is preferably a metal atom selected from the group consisting of vanadium, chromium, molybdenum, tungsten, manganese, iron, ruthenium, cobalt, nickel, platinum, and copper, and includes manganese, iron, ruthenium, cobalt, A metal atom selected from the group consisting of platinum is more preferable, and a metal atom selected from the group consisting of iron and cobalt is more preferable.
 Aは使用する金属シアノ錯体から電離して陽イオンとなる、水素、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、アンモニウムからなる群より選ばれる原子である。 A is an atom selected from the group consisting of hydrogen, lithium, sodium, potassium, rubidium, cesium, and ammonium that ionizes from the metal cyano complex to be used to become a cation.
 プルシアンブルー型金属シアノ錯体としては、上記したA、M、M’の組み合わせによる上記した一般式から選ばれる1種又は2種以上の組成のものを混合して用いることもできる。また、不純物として他の原子等、組成に現れていない材料を含んでいてもよい。 As the Prussian blue-type metal cyano complex, those having one or two or more compositions selected from the above general formulas based on the combination of A, M, and M ′ described above can be mixed and used. Moreover, the material which does not appear in a composition, such as another atom, may be included as an impurity.
 図2に示すように、金属シアノ錯体の結晶構造は、面心立方構造が一般的であるが、必ずしもそれに制限されない。例えば、K0.67Zn[Fe(CN)0.67・zHOは六方晶となる。また、Mbに配位するシアノ基は6個が一般的であるが、その一部がニトロ基などに置換されていてもよいし、4から8個の範囲内で、他の個数であってもよい。 As shown in FIG. 2, the crystal structure of the metal cyano complex is generally a face-centered cubic structure, but is not necessarily limited thereto. For example, K 0.67 Zn [Fe (CN) 6 ] 0.67 · zH 2 O is a hexagonal crystal. In general, six cyano groups coordinated to Mb are partly substituted with a nitro group or the like, or in the range of 4 to 8 other numbers. Also good.
 金属シアノ錯体の望ましい粒径としては、一般論として、小さいことが好ましい。すなわち、電気化学応答速度の観点からは、粒径を小さくすることで比表面積を高めることができる。また平滑な薄膜を形成する観点からも金属シアノ錯体はその粒径を小さくすることが好ましく、ナノ粒子であることが好ましい。例えば、一次平均粒径は500nm以下が好ましく、300nm以下がより好ましく、100nm以下が特に好ましい。粒径の下限に特に制限はないが、4nm以上であることが実際的である。ここで、一次粒径とは、一次粒子の直径をいい、例えば、その円相当直径を粉末X線構造解析のピークの半値幅より導出したものとし得る。また、配位子などが粒子表面に吸着している場合には、一次粒径は、配位子を除いたものを一次粒子として導出するものとする。 The desirable particle size of the metal cyano complex is preferably small in general. That is, from the viewpoint of electrochemical response speed, the specific surface area can be increased by reducing the particle size. Further, from the viewpoint of forming a smooth thin film, the metal cyano complex preferably has a small particle size, and is preferably a nanoparticle. For example, the primary average particle size is preferably 500 nm or less, more preferably 300 nm or less, and particularly preferably 100 nm or less. Although there is no restriction | limiting in particular in the minimum of a particle size, it is practical that it is 4 nm or more. Here, the primary particle diameter refers to the diameter of the primary particles. For example, the equivalent circle diameter can be derived from the half width of the peak of the powder X-ray structure analysis. In addition, when a ligand or the like is adsorbed on the particle surface, the primary particle diameter is derived as the primary particle excluding the ligand.
 透明電極層3及び4は導電性材料であるとともに、電気化学素子として使用して腐食などの劣化が実用上問題のある程度に発生しないものであれば特に制限はなく、例えば、インジウム錫酸化物や酸化亜鉛およびそれにアルミニウムなどの金属をドープしたものなどの導電性酸化物、金や白金などの貴金属、ステンレスやアルミニウムなどの不働態被膜による耐腐食性を有する合金や金属などが利用できる。ただし、調光ガラスに用いるなど、素子の目的上、透明である。 The transparent electrode layers 3 and 4 are electrically conductive materials, and are not particularly limited as long as they are used as electrochemical elements, and deterioration such as corrosion does not occur to some extent in practical use. For example, indium tin oxide or Conductive oxides such as zinc oxide and those doped with metals such as aluminum, noble metals such as gold and platinum, alloys and metals having corrosion resistance due to passive films such as stainless steel and aluminum, and the like can be used. However, it is transparent for the purpose of the device, such as being used for light control glass.
 また、透明電極層3及び4は平滑な板状体であることが一般的であるが、それに限定されない。特に、エレクトロクロミック層1、2との接触面積を増加させることは、応答速度の向上に資するので、平滑性を意図的に下げてもよい。例えば、平滑な透明電極層3、4の表面に導電性材料を付着させて凹凸を与えてもよい。さらには、エレクトロクロミック層1、2との密着性を向上させる目的や、腐食回避の目的のため、ほかの材料を添加してもよい。また、エレクトロクロミック層1、2と透明電極層3,4との間に導通を得られていればよく、透明電極層3,4の表面のうち、それぞれエレクトロクロミック層1、2とは反対側の表面に、絶縁材料などの他の材料を備えていてもよい。 The transparent electrode layers 3 and 4 are generally smooth plate-like bodies, but are not limited thereto. In particular, increasing the contact area with the electrochromic layers 1 and 2 contributes to an improvement in response speed, and therefore the smoothness may be intentionally lowered. For example, a conductive material may be attached to the surfaces of the smooth transparent electrode layers 3 and 4 to give unevenness. Furthermore, other materials may be added for the purpose of improving the adhesion with the electrochromic layers 1 and 2 and for the purpose of avoiding corrosion. Further, it is only necessary to obtain conduction between the electrochromic layers 1 and 2 and the transparent electrode layers 3 and 4, and the surfaces of the transparent electrode layers 3 and 4 are opposite to the electrochromic layers 1 and 2, respectively. Other materials such as an insulating material may be provided on the surface.
 電解質層7は、少なくとも(トリフルオロメタンスルホニル)イミド塩を含んで構成される。(トリフルオロメタンスルホニル)イミド塩としては、ビス(トリフルオロメタンスルホニル)イミド、リチウム ビス(トリフルオロメタンスルホニル)イミド、カリウム ビス(トリフルオロメタンスルホニル)イミド、ナトリウム ビス(トリフルオロメタンスルホニル)イミドのいずれか1種類以上を選択し得る。また、電解質層7は、有機溶媒を含むことが好ましく、有機溶媒としては例えば、炭酸プロピレンを用い得る。さらにメタクリル酸メチルポリマーなどの透明材料を添加して粘度を高めてもよい。 The electrolyte layer 7 includes at least a (trifluoromethanesulfonyl) imide salt. As the (trifluoromethanesulfonyl) imide salt, any one or more of bis (trifluoromethanesulfonyl) imide, lithium bis (trifluoromethanesulfonyl) imide, potassium bis (trifluoromethanesulfonyl) imide, sodium bis (trifluoromethanesulfonyl) imide Can be selected. The electrolyte layer 7 preferably contains an organic solvent, and for example, propylene carbonate can be used as the organic solvent. Further, a transparent material such as methyl methacrylate polymer may be added to increase the viscosity.
 ECD10は2つの透明電極層3及び4からなる電極間に電圧を印加されることによって駆動する。すなわち、エレクトロクロミック層1及びエレクトロクロミック層2がそれぞれ酸化状態及び還元状態である状態1と、それぞれ還元状態及び酸化状態である状態2との間での色変化を電圧印加により操作できる。 The ECD 10 is driven by applying a voltage between the electrodes composed of the two transparent electrode layers 3 and 4. That is, the color change between the state 1 in which the electrochromic layer 1 and the electrochromic layer 2 are in the oxidized state and the reduced state, respectively, and the state 2 in the reduced state and the oxidized state can be manipulated by applying a voltage.
 例えば、エレクトロクロミック層1に酸化タングステン、エレクトロクロミック層2に鉄-鉄シアノ錯体を使用し、電解質層7に透明材料を使用した場合は、ECD10として、濃紺色-無色透明の色変化を呈する。酸化タングステンは酸化状態、鉄-鉄シアノ錯体は還元状態において、ともにほぼ無色透明である。よって、ECD10は状態1のときに無色透明となる。また、酸化タングステンは還元状態、鉄-鉄シアノ錯体は酸化状態において、ともに青く着色する。よって、ECD10は状態2のときに濃紺色を呈する。 For example, when tungsten oxide is used for the electrochromic layer 1, iron-iron cyano complex is used for the electrochromic layer 2, and a transparent material is used for the electrolyte layer 7, the color changes from dark blue to colorless and transparent as ECD 10. Tungsten oxide is almost colorless and transparent in the oxidized state and the iron-iron cyano complex in the reduced state. Therefore, the ECD 10 is colorless and transparent when in the state 1. Tungsten oxide is colored blue in the reduced state and the iron-iron cyano complex is colored in the oxidized state. Therefore, the ECD 10 exhibits a dark blue color in the state 2.
 以下に、ECD10を作製した実施例について詳細に説明する。 Hereinafter, an example in which the ECD 10 is manufactured will be described in detail.
[エレクトロクロミック層2]
 まず、エレクトロクロミック層2の作製について説明する。ここでは、金属シアノ錯体の分散液を調整し、透明電極4及び基材6の積層体となるITO被膜ガラス基板上に、エレクトロクロミック層2として金属シアノ錯体の薄膜を形成させた。
[Electrochromic layer 2]
First, preparation of the electrochromic layer 2 will be described. Here, a dispersion liquid of the metal cyano complex was prepared, and a thin film of the metal cyano complex was formed as the electrochromic layer 2 on the ITO-coated glass substrate that was a laminate of the transparent electrode 4 and the substrate 6.
 まず、金属シアノ錯体の分散液の調整例について説明する。 First, an example of preparing a dispersion of a metal cyano complex will be described.
<調整例1:鉄-鉄シアノ錯体(プルシアンブルー)分散液>
 鉄-鉄シアノ錯体の分散液を以下の様に調製した。
<Example of adjustment 1: Iron-iron cyano complex (Prussian blue) dispersion>
A dispersion of iron-iron cyano complex was prepared as follows.
 フェロシアン化ナトリウム・10水和物14.5gを水60mLに溶解した水溶液に、硝酸鉄・9水和物16.2gを水に溶解した水溶液30mLを混合し、5分間攪拌した。析出した青色の鉄-鉄シアノ錯体であるプルシアンブルーの沈殿物を遠心分離し、これを水で3回、続いてメタノールで1回洗浄し、減圧下で乾燥し、試料AFe1を得た。このときの収量は11.0gであり、収率はFe[Fe(CN)0.75・3.75HOとして97.4%であった。作製した鉄-鉄シアノ錯体の沈殿物を粉末X線回折装置で解析したところ、標準試料データベースから検索されるプルシアンブルーであるFe[Fe(CN)の回折情報と一致した。透過型電子顕微鏡で測定したところ、試料AFe1は直径を5~20nmとするナノ粒子の凝集体であった。 To an aqueous solution in which 14.5 g of sodium ferrocyanide decahydrate was dissolved in 60 mL of water, 30 mL of an aqueous solution in which 16.2 g of iron nitrate nonahydrate was dissolved in water was mixed and stirred for 5 minutes. The deposited precipitate of Prussian blue, which is a blue iron-iron cyano complex, was centrifuged, washed three times with water, then once with methanol, and dried under reduced pressure to obtain sample AFe1. The yield at this time was 11.0 g, and the yield was 97.4% as Fe [Fe (CN) 6 ] 0.75 · 3.75H 2 O. When the prepared precipitate of iron-iron cyano complex was analyzed with a powder X-ray diffractometer, it was consistent with the diffraction information of Fe 4 [Fe (CN) 6 ] 3 , which is Prussian blue retrieved from the standard sample database. When measured with a transmission electron microscope, the sample AFe1 was an aggregate of nanoparticles having a diameter of 5 to 20 nm.
 次いで、上記で得た試料AFe1の0.40gを水8mLに懸濁させた。この懸濁液に、フェロシアン化ナトリウム・10水和物を80mg加え、攪拌したところ青色透明溶液へと変化した。このようにして鉄-鉄シアノ錯体の分散液(DFe1)を得た。なお、関連技術の技術移転先である関東化学株式会社の製品(Lot.No.2381401など)を用いることも可能である。 Next, 0.40 g of the sample AFe1 obtained above was suspended in 8 mL of water. When 80 mg of sodium ferrocyanide decahydrate was added to this suspension and stirred, it turned into a blue transparent solution. Thus, an iron-iron cyano complex dispersion (DFe1) was obtained. It is also possible to use products (Lot. No. 2381401 etc.) of Kanto Chemical Co., Ltd., the technology transfer destination for related technologies.
<調整例2:亜鉛-鉄シアノ錯体分散液> 
 亜鉛-鉄シアノ錯体(M=Zn、M’=Fe)の分散液DZn1及びDZn2を以下の作製方法1及び作成方法2のそれぞれにより調製した。なお、下記の作製方法3とすることもできる。
<Adjustment Example 2: Zinc-iron cyano complex dispersion>
Dispersions DZn1 and DZn2 of zinc-iron cyano complex (M = Zn, M ′ = Fe) were prepared by the following production methods 1 and 2, respectively. In addition, it can also be set as the following preparation methods 3.
(作製方法1)
 フェロシアン化カリウム・3水和物1.69gを水1000mLに溶解した水溶液と塩化亜鉛0.82gを水1000mLに溶解した水溶液を準備した。液温を10度以下にコントロール可能なマイクロミキサー合成機を使用して140mL/分の速度で合成した。なお、合成部の断面積を直径150μmとするものを使用した。析出した白色の亜鉛-鉄シアノ錯体の沈殿物について、遠心分離を繰り返しながら濃縮し、減圧下で乾燥して粉末試料PZn1を得た。
(Production Method 1)
An aqueous solution in which 1.69 g of potassium ferrocyanide trihydrate was dissolved in 1000 mL of water and an aqueous solution in which 0.82 g of zinc chloride was dissolved in 1000 mL of water were prepared. The liquid temperature was synthesized at a rate of 140 mL / min using a micromixer synthesizer capable of controlling the liquid temperature to 10 degrees or less. In addition, what used the cross-sectional area of a synthetic | combination part as a diameter of 150 micrometers was used. The precipitated white zinc-iron cyano complex precipitate was concentrated while repeating centrifugation, and dried under reduced pressure to obtain a powder sample PZn1.
 得られた粉末試料PZn1を粉末X線回折装置で解析したところ、標準試料データベースから検索される亜鉛-鉄シアノ錯体、K0.66Zn[Fe(CN)0.66の回折情報と一致した。透過型電子顕微鏡で測定したところ、この亜鉛-鉄シアノ錯体は直径を50~200nmとするナノ粒子の凝集体であった。 When the obtained powder sample PZn1 was analyzed with a powder X-ray diffractometer, it was consistent with the diffraction information of a zinc-iron cyano complex, K 0.66 Zn [Fe (CN) 6 ] 0.66 , retrieved from the standard sample database. did. When measured with a transmission electron microscope, this zinc-iron cyano complex was an aggregate of nanoparticles having a diameter of 50 to 200 nm.
 次いで、粉末試料PZn1の1.5gを水8.5mLに懸濁させ、亜鉛-鉄シアノ錯体の分散液(DZn1)を得た。 Next, 1.5 g of the powder sample PZn1 was suspended in 8.5 mL of water to obtain a dispersion of zinc-iron cyano complex (DZn1).
(作製方法2)
 フェリシアン化カリウム3水和物1.69gを水15mLに溶解した水溶液を用意する。また塩化亜鉛1.09gを水に溶解した水溶液15mLに濃塩酸を10倍希釈した水溶液を200μL添加し、3分間攪拌した。析出した亜鉛-鉄シアノ錯体の沈殿物を、遠心分離法を用いて水で5回洗浄し、スラリー状試料S1を得た。
(Production method 2)
An aqueous solution in which 1.69 g of potassium ferricyanide trihydrate is dissolved in 15 mL of water is prepared. Further, 200 μL of an aqueous solution in which concentrated hydrochloric acid was diluted 10-fold was added to 15 mL of an aqueous solution in which 1.09 g of zinc chloride was dissolved in water, and the mixture was stirred for 3 minutes. The deposited precipitate of zinc-iron cyano complex was washed five times with water using a centrifugal separation method to obtain a slurry sample S1.
 次いで、スラリー状試料S1を水30mLに懸濁させた。この懸濁液に、フェリシアン化カリウム3水和物0.51gを水10mLに溶解させて加え、一日攪拌した。その後、高速遠心法によって亜鉛-鉄シアノ錯体を二回洗浄し、水40mLに懸濁させ、亜鉛-鉄シアノ錯体の分散液(DZn2)を得た。  Next, the slurry sample S1 was suspended in 30 mL of water. To this suspension, 0.51 g of potassium ferricyanide trihydrate dissolved in 10 mL of water was added and stirred for one day. Thereafter, the zinc-iron cyano complex was washed twice by high-speed centrifugation and suspended in 40 mL of water to obtain a zinc-iron cyano complex dispersion (DZn2). *
(作製方法3)
 フェロシアン化カリウム・3水和物1.69gを水1000mLに溶解した水溶液と塩化亜鉛0.82gを水1000mLに溶解した水溶液を冷蔵庫にて液温を10度以下とするまで冷却した。10度以下の冷却を確認後に2つの水溶液を混合し、5分間攪拌した。析出した白色の亜鉛-鉄シアノ錯体の沈殿物を、遠心分離を繰り返しながら濃縮し、減圧下で乾燥して粉末試料PZn3を得た。
(Production Method 3)
An aqueous solution in which 1.69 g of potassium ferrocyanide trihydrate was dissolved in 1000 mL of water and an aqueous solution in which 0.82 g of zinc chloride was dissolved in 1000 mL of water were cooled in a refrigerator until the liquid temperature became 10 ° C. or less. After confirming cooling of 10 degrees or less, the two aqueous solutions were mixed and stirred for 5 minutes. The precipitated white zinc-iron cyano complex precipitate was concentrated while repeating centrifugation, and dried under reduced pressure to obtain a powder sample PZn3.
 得られた粉末試料PZn3を粉末X線回折装置で解析したところ、標準試料データベースから検索される亜鉛-鉄シアノ錯体、K0.66Zn[Fe(CN)0.66の回折情報と一致した。透過型電子顕微鏡で測定したところ、この亜鉛-鉄シアノ錯体は直径を50~200nmとするナノ粒子の凝集体であった。 When the obtained powder sample PZn3 was analyzed by a powder X-ray diffractometer, the diffraction information of the zinc-iron cyano complex, K 0.6 6Zn [Fe (CN) 6 ] 0.66 , retrieved from the standard sample database was in agreement. did. When measured with a transmission electron microscope, this zinc-iron cyano complex was an aggregate of nanoparticles having a diameter of 50 to 200 nm.
 次いで、粉末試料PZn3の1.5gを水8.5mLに懸濁させ、亜鉛-鉄シアノ錯体分散液(DZn3)を得た。 Next, 1.5 g of the powder sample PZn3 was suspended in 8.5 mL of water to obtain a zinc-iron cyano complex dispersion (DZn3).
 さらに、金属シアノ錯体の薄膜の作製について説明する。 Furthermore, preparation of a metal cyano complex thin film will be described.
<鉄-鉄シアノ錯体薄膜の作製>
 調整例1で調製した鉄-鉄シアノ錯体の分散液DFe1を用い、ITO被膜ガラス基板上にスピンコート法により鉄-鉄シアノ錯体薄膜を作製した。より詳細には、スピンコーターに25mm角ITO被膜ガラス基板を設置し、9wt%に調整した分散液DFe1を60μL滴下し、1000rpmで10秒回転させ、次いで1500rpmで10秒回転させて、ITO被膜ガラス基板上に鉄-鉄シアノ錯体薄膜TFe1を作製した。
<Preparation of iron-iron cyano complex thin film>
Using the iron-iron cyano complex dispersion DFe1 prepared in Preparation Example 1, an iron-iron cyano complex thin film was formed on an ITO-coated glass substrate by spin coating. More specifically, a 25 mm square ITO-coated glass substrate is set on a spin coater, 60 μL of a dispersion liquid DFe1 adjusted to 9 wt% is dropped, rotated at 1000 rpm for 10 seconds, and then rotated at 1500 rpm for 10 seconds. An iron-iron cyano complex thin film TFe1 was produced on the substrate.
<亜鉛-鉄シアノ錯体薄膜の作製>
 調整例2で調製した亜鉛-鉄シアノ錯体分散液DZn1およびDZn2を用い、各々について、ITO被膜ガラス基板上にスピンコート法により亜鉛-鉄シアノ錯体薄膜を作製した。より詳細には、スピンコーターに25mm角ITO被膜ガラス基板を設置し、15wt%に調整した分散液DZn1を60μL滴下し、1000rpmで10秒回転させ、1500rpmで10秒回転させて、ITO被膜ガラス基板上に亜鉛-鉄シアノ錯体薄膜TZn1を作製した。分散液DZn2においても同様の方法を用い、亜鉛-鉄シアノ錯体薄膜TZn2を作製した。これらの亜鉛-鉄シアノ錯体薄膜のうち後述する実施例において、亜鉛-鉄シアノ錯体薄膜TZn2を使用した。
<Preparation of zinc-iron cyano complex thin film>
Using each of the zinc-iron cyano complex dispersions DZn1 and DZn2 prepared in Preparation Example 2, a zinc-iron cyano complex thin film was formed on an ITO-coated glass substrate by spin coating. More specifically, a 25 mm square ITO-coated glass substrate is set on a spin coater, 60 μL of a dispersion DZn1 adjusted to 15 wt% is dropped, rotated at 1000 rpm for 10 seconds, and rotated at 1500 rpm for 10 seconds to obtain an ITO-coated glass substrate. A zinc-iron cyano complex thin film TZn1 was prepared thereon. A similar method was used for the dispersion DZn2 to produce a zinc-iron cyano complex thin film TZn2. Among these zinc-iron cyano complex thin films, a zinc-iron cyano complex thin film TZn2 was used in Examples described later.
[エレクトロクロミック層1]
 次に、エレクトロクロミック層1の作製について説明する。ここでは、透明電極3及び基材5の積層体となるITO被膜ガラス基板上に、エレクトロクロミック層1として遷移金属酸化物の薄膜を形成させた。
[Electrochromic layer 1]
Next, production of the electrochromic layer 1 will be described. Here, a thin film of transition metal oxide was formed as an electrochromic layer 1 on an ITO-coated glass substrate that is a laminate of the transparent electrode 3 and the substrate 5.
<酸化タングステン薄膜の作製>
 遷移金属酸化物として酸化タングステンを用いた薄膜の形成を以下のように行った。まず、蒸着法を用いてITO被膜ガラス基板上に酸化タングステン薄膜TW1を形成されたWO3/ITO/ガラス(ジオマテック社製)を用いた。また、作製の高効率プロセス化の観点で、商業用可視光応答型光触媒材料である酸化タングステンスラリー(東芝マテリアル製)の塗布法によって酸化タングステン薄膜TW2を作製した。詳細には当該スラリー90μlをマイクロピペットで量り取り、スピンコーターに設置した25mm角ITO被膜ガラス基板上に滴下し、100rpmで300秒回転させ、次いで1000rpmで10秒回転させて薄膜を形成した。作製した当該薄膜を500℃で1時間保持する熱処理を行うことで安定化させた。比較のために、熱処理を行わずに室温乾燥のみとしてその他を同様の作製方法とした酸化タングステン薄膜TW3も得た。
<Preparation of tungsten oxide thin film>
A thin film was formed using tungsten oxide as the transition metal oxide as follows. First, WO3 / ITO / glass (manufactured by Geomat Co., Ltd.) in which a tungsten oxide thin film TW1 was formed on an ITO-coated glass substrate by vapor deposition was used. Further, from the viewpoint of making the production highly efficient, a tungsten oxide thin film TW2 was produced by a coating method of tungsten oxide slurry (manufactured by Toshiba Materials), which is a commercial visible light responsive photocatalytic material. Specifically, 90 μl of the slurry was weighed with a micropipette, dropped onto a 25 mm square ITO-coated glass substrate placed on a spin coater, rotated at 100 rpm for 300 seconds, and then rotated at 1000 rpm for 10 seconds to form a thin film. The produced thin film was stabilized by performing a heat treatment for holding at 500 ° C. for 1 hour. For comparison, a tungsten oxide thin film TW3 was also obtained in which the same manufacturing method was performed except that the heat treatment was not performed and only room temperature drying was performed.
 なお、酸化タングステン薄膜は、原料として塩化タングステン、金属タングステン、などを用いたゾルゲル法、簡便な物理プロセスであるマグネトロンスパッタ法などによっても作製可能である。 The tungsten oxide thin film can also be produced by a sol-gel method using tungsten chloride, metallic tungsten, or the like as a raw material, or a magnetron sputtering method which is a simple physical process.
 一例として、図3にITO被膜ガラス基板上に形成させた酸化タングステン薄膜TW1の電気化学特性を示すグラフを示す。ここでは、対極に白金線、参照極に飽和カロメル電極、電解質に濃度0.00775mol/Lのビス(トリフルオロメタンスルホニル)イミド(HTFSI)-炭酸プロピレン溶液を用い、スキャンレート5ミリボルト/秒でサイクリックボルタモグラムを取得した。このことから、酸化タングステン薄膜TW1は(トリフルオロメタンスルホニル)イミド塩を電解質として用いた系においても良好な電気化学特性を有することが分かった。 As an example, FIG. 3 shows a graph showing the electrochemical characteristics of a tungsten oxide thin film TW1 formed on an ITO-coated glass substrate. Here, a platinum wire is used as the counter electrode, a saturated calomel electrode as the reference electrode, and a bis (trifluoromethanesulfonyl) imide (HTFSI) -propylene carbonate solution with a concentration of 0.0075 mol / L as the electrolyte, and cyclic at a scan rate of 5 millivolts / second. Voltammograms were acquired. From this, it was found that the tungsten oxide thin film TW1 has good electrochemical characteristics even in a system using a (trifluoromethanesulfonyl) imide salt as an electrolyte.
 次いで、エレクトロクロミック層1及び2として、上記で作製した酸化タングステン薄膜及び金属シアノ錯体薄膜を組み合わせてECD10を作製し、それぞれについて可視光透過スペクトルの測定などの調査を行った結果について説明する。 Next, as the electrochromic layers 1 and 2, ECD10 is produced by combining the tungsten oxide thin film and the metal cyano complex thin film produced as described above, and the results of investigations such as measurement of the visible light transmission spectrum are described.
[実施例1]
 濃紺色-無色透明のエレクトロクロミック素子である酸化タングステン/亜鉛-鉄シアノ錯体エレクトロクロミック素子(ECD)を作製した。詳細には、電極上に酸化タングステン薄膜TW1の形成されたITO被膜ガラス基板と、電極上に亜鉛-鉄シアノ錯体薄膜TZn2の形成されたITO被膜ガラス基板との間に、ガラス基板を外側にして電解質を挟み込んで、ECDを作製した。電解質としては、濃度0.005mol/Lのビス(トリフルオロメタンスルホニル)イミド(HTFSI)―濃度0.2mol/Lのカリウム ビス(トリフルオロメタンスルホニル)イミド(KTFSI)―炭酸プロピレン溶液を用いた。また、電荷量を63ミリクーロンとするように調整した。
[Example 1]
A tungsten blue / zinc-iron cyano complex electrochromic device (ECD), which is a dark blue-colorless and transparent electrochromic device, was prepared. Specifically, the glass substrate is placed between the ITO coated glass substrate on which the tungsten oxide thin film TW1 is formed on the electrode and the ITO coated glass substrate on which the zinc-iron cyano complex thin film TZn2 is formed on the electrode. An ECD was produced by sandwiching the electrolyte. As the electrolyte, a bis (trifluoromethanesulfonyl) imide (HTFSI) -0.005 mol / L concentration-potassium bis (trifluoromethanesulfonyl) imide (KTSFSI) -propylene carbonate solution having a concentration of 0.2 mol / L was used. The charge amount was adjusted to 63 mC.
 図4に作製したECDに電圧を印加した状態の外観写真を示す。なお、作用極を酸化タングステン薄膜TW1側として電位を規定している。同ECDは、0V電圧印加において透明状態(消色)を呈し、-1.7V電圧印加において濃い着色状態を呈した。 Fig. 4 shows a photograph of the appearance of a voltage applied to the fabricated ECD. The potential is defined with the working electrode as the tungsten oxide thin film TW1 side. The ECD exhibited a transparent state (decolored) when a voltage of 0 V was applied, and a deeply colored state when a voltage of -1.7 V was applied.
図5(a)には、同ECDの上記した透明状態及び着色状態の可視光透過スペクトルを示した。このことより、同ECDは-1.7Vでは濃紺色に着色され、0Vでは無色透明に消色されることが判る。可視光透過率を算出すると、透明状態で79.9%、着色状態で10.4%(ΔT=69.5%)となった。 FIG. 5A shows the visible light transmission spectrum of the ECD in the above-described transparent state and colored state. From this, it can be seen that the ECD is colored dark blue at -1.7V and colorless and transparent at 0V. When the visible light transmittance was calculated, it was 79.9% in the transparent state and 10.4% (ΔT = 69.5%) in the colored state.
 また、図5(b)には、より長波長領域まで拡げた光透過スペクトルを示した。同図から判るように、金属シアノ錯体に酸化タングステン薄膜を組み合わせることで、同ECDは長波長成分の制御能を発現することができた。 FIG. 5 (b) shows a light transmission spectrum that is extended to a longer wavelength region. As can be seen from the figure, by combining a tungsten oxide thin film with a metal cyano complex, the ECD was able to express the ability to control long wavelength components.
 図6に耐光性試験の結果を示す。耐光性試験においては、光量を1000W/m相当とする光を当て続けて、波長700nmの光の透過率を透明状態及び着色状態のそれぞれにおいて測定した。その結果、1000時間以上の保持後においても透過率を大きく変化させることなく動作することが確認された。 FIG. 6 shows the results of the light resistance test. In the light resistance test, light having a light amount equivalent to 1000 W / m 2 was continuously applied, and the transmittance of light having a wavelength of 700 nm was measured in each of a transparent state and a colored state. As a result, it was confirmed that the operation was performed without greatly changing the transmittance even after holding for 1000 hours or more.
[実施例2]
 濃紺色-無色透明のエレクトロクロミック素子として、酸化タングステン/鉄-鉄シアノ錯体エレクトロクロミック素子を作製した。詳細には、電極上に酸化タングステン薄膜TW1の形成されたITO被膜ガラス基板と、電極上に鉄-鉄シアノ錯体薄膜TFe1の形成されたITO被膜ガラス基板との間に、ガラス基板を外側にして電解質を挟み込んで、ECDを作製した。電解質としては、濃度0.1mol/Lのカリウム ビス(トリフルオロメタンスルホニル)イミド(KTFSI)―炭酸プロピレン溶液に、メタクリル酸メチルポリマーを炭酸プロピレン100重量部に対して30重量部添加して、60℃から80℃の加熱を24時間程度行って粘度を高めたものを用いた。また、電荷量を70ミリクーロンとするように調整した。同ECDは作用極を酸化タングステン薄膜側として電位を規定した。
[Example 2]
A tungsten oxide / iron-iron cyano complex electrochromic device was produced as a dark blue-colorless and transparent electrochromic device. Specifically, the glass substrate is placed between the ITO coated glass substrate on which the tungsten oxide thin film TW1 is formed on the electrode and the ITO coated glass substrate on which the iron-iron cyano complex thin film TFe1 is formed on the electrode. An ECD was produced by sandwiching the electrolyte. As an electrolyte, a potassium bis (trifluoromethanesulfonyl) imide (KTFSI) -propylene carbonate solution having a concentration of 0.1 mol / L was added with 30 parts by weight of a methyl methacrylate polymer with respect to 100 parts by weight of propylene carbonate, and 60 ° C. To 80 ° C. for about 24 hours to increase the viscosity. The charge amount was adjusted to 70 millicoulomb. The ECD defined the potential with the working electrode as the tungsten oxide thin film side.
 図7に、同ECDのサイクリックボルタモグラムをスキャンレート5ミリボルト/秒で測定した結果を示した。これより、作製したECDは良好な電気化学反応を示すことが判る。 FIG. 7 shows the results of measuring the cyclic voltammogram of the ECD at a scan rate of 5 millivolts / second. From this, it can be seen that the produced ECD exhibits a good electrochemical reaction.
 図8には、同ECDの可視光透過スペクトルを取得した結果を示した。同図に示すように、同ECDは-0.8V電圧印加において濃い着色状態を呈した。さらに、+1.2Vの電圧印加において、無色透明状態に戻った。 FIG. 8 shows the result of obtaining the visible light transmission spectrum of the ECD. As shown in the figure, the ECD exhibited a deep colored state when a voltage of -0.8 V was applied. Furthermore, it returned to the colorless and transparent state when a voltage of +1.2 V was applied.
 図9にサイクル耐性を調べた結果を示す。サイクル試験としては、60秒を1サイクルとして-0.8V及び+1.2Vをそれぞれ30秒間ずつ連続的に印加し続け、透過率変化を測定した。図のように、同ECDは100回程度のサイクルではほとんど劣化を生じないことが判る。 Fig. 9 shows the results of examining the cycle resistance. In the cycle test, −0.8 V and +1.2 V were continuously applied for 30 seconds each with 60 seconds as one cycle, and the change in transmittance was measured. As shown in the figure, it can be seen that the ECD hardly deteriorates after about 100 cycles.
[実施例3]
 濃紺色-無色透明のエレクトロクロミック素子である酸化タングステン/鉄-鉄シアノ錯体エレクトロクロミック素子(ECD)を作製した。詳細には、電極上に酸化タングステン薄膜TW2の形成されたITO被膜ガラス基板と、電極上に鉄-鉄シアノ錯体薄膜TFe1の形成されたITO被膜ガラス基板との間に、ガラス基板を外側にして電解質を挟み込んで、ECDを作製した。電解質としては、濃度2.5mol/Lのカリウム ビス(トリフルオロメタンスルホニル)イミド(KTFSI)―炭酸プロピレン溶液を用いた。また、電荷量を220ミリクーロンとするように調整した。同ECDは作用極を酸化タングステン薄膜側として電位を規定した。
[Example 3]
A tungsten oxide / iron-iron cyano complex electrochromic device (ECD), which is a dark blue-colorless and transparent electrochromic device, was prepared. Specifically, the glass substrate is placed between the ITO coated glass substrate on which the tungsten oxide thin film TW2 is formed on the electrode and the ITO coated glass substrate on which the iron-iron cyano complex thin film TFe1 is formed on the electrode. An ECD was produced by sandwiching the electrolyte. As the electrolyte, a potassium bis (trifluoromethanesulfonyl) imide (KTFSI) -propylene carbonate solution having a concentration of 2.5 mol / L was used. The charge amount was adjusted to 220 millicoulomb. The ECD defined the potential with the working electrode as the tungsten oxide thin film side.
 図10に作製したECDに電圧を印加した状態の外観写真を示す。同ECDは、+1.0V電圧印加において透明状態(消色、off)を呈し、-1.2V電圧印加において濃い着色状態(on)を呈した。 FIG. 10 shows a photograph of the appearance of a voltage applied to the fabricated ECD. The ECD exhibited a transparent state (discolored, off) when a +1.0 V voltage was applied, and a dark colored state (on) when a -1.2 V voltage was applied.
 図11に、同ECDのサイクリックボルタモグラムをスキャンレート5ミリボルト/秒で測定した結果を示す。これより、作製したECDは良好な電気化学反応を示すことが判る。 FIG. 11 shows the results of measuring the ECD cyclic voltammogram at a scan rate of 5 millivolts / second. From this, it can be seen that the produced ECD exhibits a good electrochemical reaction.
 図12には、同ECDの可視光透過スペクトルを取得した結果を示した。同ECDは、-1.2V電圧印加において濃い着色状態を呈した。さらに、+1.0Vの電圧印加において無色透明状態に戻った。 FIG. 12 shows the result of obtaining the visible light transmission spectrum of the ECD. The ECD exhibited a deep colored state when a voltage of -1.2 V was applied. Furthermore, it returned to a colorless and transparent state when a voltage of +1.0 V was applied.
 図13にサイクル耐性を調べた結果を示す。サイクル試験としては、60秒を1サイクルとして-1.2V及び+1.0Vをそれぞれ30秒間ずつ連続的に印加し続け、透過率変化を測定した。図のように、同ECDは100回程度のサイクルでは全く劣化を生じないことが判る。 FIG. 13 shows the results of examining the cycle resistance. As a cycle test, 60 seconds was taken as one cycle, and -1.2 V and +1.0 V were continuously applied for 30 seconds each, and the change in transmittance was measured. As shown in the figure, it can be seen that the ECD does not deteriorate at all in a cycle of about 100 times.
表1には、応答速度を同ECD(本技術)と、既存素子(鉄-鉄シアノ錯体/亜鉛―鉄シアノ錯体エレクトロクロミック素子:既存技術)とで比較した結果を示した。最大透過率の80%を示すまでの時間を応答速度と規定した。同ECDは1枚のみで、既存素子を2枚重ねしたとき以上の濃紺色を示し、かつ、高速に切り替えることが可能であることが判る。 Table 1 shows the result of comparing the response speed between the ECD (this technology) and the existing device (iron-iron cyano complex / zinc-iron cyano complex electrochromic device: existing technology). The time required to show 80% of the maximum transmittance was defined as the response speed. It can be seen that the ECD is only one, shows a dark blue color more than when two existing elements are stacked, and can be switched at high speed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例4]
 濃紺色-無色透明のエレクトロクロミック素子である酸化タングステン/鉄-鉄シアノ錯体エレクトロクロミック素子(ECD)を作製した。詳細には、電極上に酸化タングステン薄膜TW3の形成されたITO被膜ガラス基板と、電極上に鉄-鉄シアノ錯体薄膜TFe1の形成されたITO被膜ガラス基板との間に、ガラス基板を外側にして電解質を挟み込んで、ECDを作製した。電解質としては、濃度2.5mol/Lのカリウム ビス(トリフルオロメタンスルホニル)イミド(KTFSI)―炭酸プロピレン溶液を用いた。また、電荷量を220ミリクーロンとするように調整した。同ECDは作用極を酸化タングステン薄膜側として電位を規定した。
[Example 4]
A tungsten oxide / iron-iron cyano complex electrochromic device (ECD), which is a dark blue-colorless and transparent electrochromic device, was prepared. Specifically, the glass substrate is placed between the ITO coated glass substrate on which the tungsten oxide thin film TW3 is formed on the electrode and the ITO coated glass substrate on which the iron-iron cyano complex thin film TFe1 is formed on the electrode. An ECD was produced by sandwiching the electrolyte. As the electrolyte, a potassium bis (trifluoromethanesulfonyl) imide (KTFSI) -propylene carbonate solution having a concentration of 2.5 mol / L was used. The charge amount was adjusted to 220 millicoulomb. The ECD defined the potential with the working electrode as the tungsten oxide thin film side.
 図14に、同ECDの可視光透過スペクトルを取得した結果を示す。同ECDは、-1.2V電圧印加において濃い着色状態を呈した。さらに、+2.4Vの電圧印加において無色透明状態に戻った。同ECDに用いた酸化タングステン薄膜は室温プロセスで形成しており、比較的加熱に弱い樹脂基材などの適用も期待できる。 FIG. 14 shows the result of obtaining the visible light transmission spectrum of the ECD. The ECD exhibited a deep colored state when a voltage of -1.2 V was applied. Furthermore, it returned to a colorless and transparent state when a voltage of +2.4 V was applied. The tungsten oxide thin film used for the ECD is formed by a room temperature process, and application of a resin base material that is relatively weak to heating can be expected.
 本発明により、有機エレクトロクロミック材料を使用することなく、透過率の変化幅の大きい高コントラストの着色-消色を行うエレクトロクロミック素子を実現することができる。この素子は、調光ガラス、ディスプレイ、インジケータ、調光ミラーなどへの使用を想定され、特に長波長成分の制御能も有するため、自動車用窓ガラスや建材用窓ガラスなど太陽エネルギーの熱成分である赤外線などの流入量を最適化できる省エネルギー用調光部材としての使用も期待される。 According to the present invention, it is possible to realize an electrochromic element that performs high-contrast coloring and decoloring with a large transmittance variation without using an organic electrochromic material. This element is supposed to be used for dimming glass, displays, indicators, dimming mirrors, etc., and has the ability to control long wavelength components in particular. It is also expected to be used as an energy-saving dimming member that can optimize the inflow of certain infrared rays.
 次に、褐色又は黒色-無色透明の間で色変化するエレクトロクロミック素子の平滑な薄膜を作製する方法について述べる。 Next, a method for producing a smooth thin film of an electrochromic element whose color changes between brown or black and colorless and transparent will be described.
 ここにおける金属シアノ錯体とは、その組成がAM[M’(CN)・zHOで表されるものを言う。また、M、M’が同定されている場合、M-M’シアノ錯体と呼ぶ。例えば、M=コバルト、M’=鉄の場合、コバルト-鉄シアノ錯体という。 Here, the metal cyano complex refers to a compound whose composition is represented by A x M [M ′ (CN) 6 ] y · zH 2 O. When M and M ′ are identified, they are called MM ′ cyano complexes. For example, when M = cobalt and M ′ = iron, it is called a cobalt-iron cyano complex.
 褐色-透明に色変化するEC材料としては、コバルト-鉄シアノ錯体であるが、それと複合体を形成する対材料、またはECDを作製する際の対極にも金属シアノ錯体を利用する場合がある。その場合、金属シアノ錯体の組成は必要とする色変化挙動に合わせて選ぶことができ、金属原子Mは、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、銀、亜鉛、ランタン、ユーロピウム、ガドリニウム、ルテチウム、バリウム、ストロンチウム、及びカルシウムからなる群より選ばれる1種または2種以上の金属原子が好ましく、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ニッケル、銅、亜鉛からなる群から選ばれる1種または2種以上の金属原子がより好ましく、マンガン、鉄、コバルト、ニッケル、銅、亜鉛からなる群から選ばれる1種または2種以上の金属原子が特に好ましい。金属原子M’は、バナジウム、クロム、モリブデン、タングステン、マンガン、鉄、ルテニウム、コバルト、ニッケル、白金、及び銅からなる群より選ばれる1種または2種以上の金属原子が好ましく、マンガン、鉄、ルテニウム、コバルト、白金からなる群から選ばれる1種または2種以上の金属原子がより好ましく、鉄、コバルトからなる群から選ばれる1種または2種以上の金属原子がより好ましい。 The EC material that changes its color from brown to transparent is a cobalt-iron cyano complex, but a metal cyano complex may also be used as a counter material for forming a complex with the cobalt-iron cyano complex or as a counter electrode for producing an ECD. In that case, the composition of the metal cyano complex can be selected according to the required color change behavior, and the metal atom M is vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, One or more metal atoms selected from the group consisting of silver, zinc, lanthanum, europium, gadolinium, lutetium, barium, strontium, and calcium are preferred, vanadium, chromium, manganese, iron, ruthenium, cobalt, nickel, One or more metal atoms selected from the group consisting of copper and zinc are more preferable, and one or more metal atoms selected from the group consisting of manganese, iron, cobalt, nickel, copper, and zinc are particularly preferable. preferable. The metal atom M ′ is preferably one or more metal atoms selected from the group consisting of vanadium, chromium, molybdenum, tungsten, manganese, iron, ruthenium, cobalt, nickel, platinum, and copper, and includes manganese, iron, One or more metal atoms selected from the group consisting of ruthenium, cobalt and platinum are more preferable, and one or more metal atoms selected from the group consisting of iron and cobalt are more preferable.
 Aはコバルト-鉄シアノ錯体、または対材料または/および対極に使用する金属シアノ錯体ともに、水素、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、アンモニウムからなる群より選ばれる1種または2種以上の陽イオン元素である。 A is a cobalt-iron cyano complex, or a counter material or / and a metal cyano complex used for the counter electrode, and one or more positive ions selected from the group consisting of hydrogen, lithium, sodium, potassium, rubidium, cesium, and ammonium. It is an ionic element.
 また、水以外の溶媒や、不純物として他のイオン等、明記しない材料が含まれていてもよい。 In addition, materials other than water, and other materials such as other ions as impurities may be included.
 金属シアノ錯体の結晶構造は、面心立方構造(図1参照)が一般的であるが、必ずしもそれに制限されない。例えば、K0.67Zn[Fe(CN)0.67・zHOは六方晶を採り得る。また、M’に配位するシアノ基は6個が一般的であるが、その一部がニトロ基などに置換されていてもよいし、4から8個以内であれば問題はない。 The crystal structure of the metal cyano complex is generally a face-centered cubic structure (see FIG. 1), but is not necessarily limited thereto. For example, K 0.67 Zn [Fe (CN) 6 ] 0.67 · zH 2 O can take a hexagonal crystal. Further, six cyano groups coordinated to M ′ are generally used, but some of them may be substituted with a nitro group or the like, and there is no problem as long as it is within 4 to 8 groups.
 公知のように、コバルト鉄シアノ錯体は特にコバルトと鉄の組成比、つまりyの値によって還元状態の色が変化する。一般的には、yが1より小さな値をとる場合、面心立方構造(図1参照)から、一部のヘキサシアノ鉄イオンが抜け、欠陥となると考えられている。ここで重要な点は、いったんyが1より小さなコバルト-鉄シアノ錯体の微結晶を合成したのちに、ヘキサシアノ鉄イオンを添加することにより、従来方法で合成したy=1と同様の可視光吸収スペクトルを生じ得るという点である。 As is well known, the color of the reduced state of the cobalt iron cyano complex varies depending on the composition ratio of cobalt and iron, that is, the value of y. In general, when y takes a value smaller than 1, it is considered that some hexacyanoiron ions are eliminated from the face-centered cubic structure (see FIG. 1), resulting in a defect. The important point here is that, after synthesizing a microcrystal of cobalt-iron cyano complex whose y is smaller than 1 and then adding hexacyanoiron ion, visible light absorption similar to y = 1 synthesized by the conventional method is used. It can produce a spectrum.
 このコバルト-鉄シアノ錯体の合成法は、米国特許US 8,349,221 B2に記載の公知の方法が使用できる。ここでは、第一工程として、金属MAイオンの水溶液と金属としてMBを有するヘキサシアノ金属イオン水溶液を混合することで、MA、MBがシアノ基で架橋されたシアノ錯体、すなわちMA-MBシアノ錯体を合成し、そのうえで第二工程として、金属としてMCを有するヘキサシアノ金属錯体の水溶液を添加する方法が記載されている。この方法を使用することで、金属シアノ錯体のナノ粒子を水などの極性溶媒に分散させることが目的と述べている。金属MBとMCが同種の金属を使用する場合、第二工程によって金属比yが変化することは明らかである一方、その方法により光学特性が変化することは明記されていない。実際に、MA=MB=MC=Feのプルシアンブルーの場合、この第二工程による光学特性の変化は見られない。 As a method for synthesizing this cobalt-iron cyano complex, a known method described in US Pat. No. 8,349,221 B2 can be used. Here, as a first step, an aqueous solution of metal MA ions and an aqueous solution of hexacyano metal ions having MB as a metal are mixed to synthesize a cyano complex in which MA and MB are cross-linked by a cyano group, that is, an MA-MB cyano complex. In addition, as a second step, a method of adding an aqueous solution of a hexacyano metal complex having MC as a metal is described. It is stated that the purpose of this method is to disperse nanoparticles of a metal cyano complex in a polar solvent such as water. When the metals MB and MC use the same kind of metal, it is clear that the metal ratio y is changed by the second step, but it is not specified that the optical property is changed by the method. Actually, in the case of Prussian blue with MA = MB = MC = Fe, no change in optical characteristics due to this second step is observed.
 しかしながら、MA=Co、MB=Feとしたコバルト-鉄シアノ錯体においては、第二工程で添加するヘキサシアノ鉄錯体を組成比に組み込んだ形を用いて議論できることが判明した。その理由は必ずしも定かではないが、以下の可能性が考えられる。 However, it was found that the cobalt-iron cyano complex with MA = Co and MB = Fe can be discussed using a form in which the hexacyanoiron complex added in the second step is incorporated in the composition ratio. The reason is not necessarily clear, but the following possibilities are conceivable.
 還元状態で緑色を発色するyが1より十分小さなコバルト-鉄シアノ錯体における緑色の起源である600ナノメートルから700ナノメートルに生じる吸収が、もともと結晶表面に露出しているコバルトイオン起源であり、表面にヘキサシアノ鉄イオンが配位することで、その吸収が消失すること、または、水中で微結晶とイオンを混合させて攪拌する間にコバルト-鉄シアノ錯体の中に添加したヘキサシアノ鉄イオンが取り込まれるなど、内部構造までふくめた再構成が起こっていることなどが考えられる。 Absorption that occurs from 600 nanometers to 700 nanometers, which is the origin of the green color in cobalt-iron cyano complexes where y is sufficiently smaller than 1 that develops green color in the reduced state, is originally derived from cobalt ions exposed on the crystal surface, Coordination of hexacyanoiron ions on the surface causes disappearance of the absorption, or incorporation of hexacyanoiron ions added into the cobalt-iron cyano complex while mixing and stirring the microcrystals and ions in water It is possible that the reconstruction including the internal structure has occurred.
 第二工程で添加するヘキサシアノ鉄錯体の量としては、添加前に含まれる金属モル数に対し、6~20%が好ましく、8~18%がより好ましく、8~15%が特に好ましい。つまり、添加前の組成をACo[Fe(CN)y0・zHOとした場合、100a%の添加量の場合、最終的な組成は以下の通りとなる。
           ACo[Fe(CN)(y0+(1+y0)a)・zHO 
つまり、最終的な組成式におけるyと添加前の組成式中y0、添加率aの関係はy=y0+(1+y0)aで示される。
The amount of the hexacyanoiron complex added in the second step is preferably 6 to 20%, more preferably 8 to 18%, and particularly preferably 8 to 15% based on the number of moles of metal contained before the addition. That is, when the composition before the addition is A x Co [Fe (CN) 6 ] y0 · zH 2 O, the final composition is as follows when the addition amount is 100 a%.
A x Co [Fe (CN) 6] (y0 + (1 + y0) a) · zH 2 O
That is, the relationship between y in the final composition formula, y0 in the composition formula before addition, and the addition rate a is represented by y = y0 + (1 + y0) a.
 ここでいう無色透明とは、必ずしも可視光領域の吸光係数が0である必要はない。重要なことは、着色時の吸光度と無色透明時の吸光度に十分な違いがあることであり、着色時の吸光度と、無色透明時の吸光度の比が人の視感度の高い波長450nm~550nmの間で3以上であることが好ましく、4以上であることがより好ましく、5以上であることが特に好ましい。 “Colorless and transparent” here does not necessarily mean that the extinction coefficient in the visible light region is zero. What is important is that there is a sufficient difference between the absorbance at the time of coloring and the absorbance at the time of colorless and transparent, and the ratio of the absorbance at the time of coloring and the absorbance at the time of colorless and transparent is a wavelength of 450 nm to 550 nm where human visibility is high. It is preferably 3 or more, more preferably 4 or more, and particularly preferably 5 or more.
 組成におけるx、y、zの値としては、工程の途中の値ではなく、最終的に得られた製造物における値によって決定される。yの値としては、0.75以上2未満が好ましく、0.8以上1.5未満が好ましく、0.9以上1.3未満がより好ましい。 The values of x, y, and z in the composition are determined not by values in the middle of the process, but by values in the finally obtained product. The value of y is preferably from 0.75 to less than 2, preferably from 0.8 to less than 1.5, and more preferably from 0.9 to less than 1.3.
 x、zの値はコバルトシアノ錯体の還元時の色が無色透明であればよく、xは0~3が望ましく、0~2.5がより好ましく、0~2が特に好ましい。zは0~6が好ましく、0.5~5.5がより好ましく、1~5が特に好ましい。ただし、x、y、zは不純物として塩が含まれている場合、プルシアンブルー型錯体の内部構造に取り込まれていない水分を材料が有する場合、さらには例えば製膜するためのバインダなど、ほか材料との複合体として利用する場合などは、その効果を除去して評価されなければならない。 The values of x and z only have to be colorless and transparent when the cobalt cyano complex is reduced, and x is preferably 0 to 3, more preferably 0 to 2.5, and particularly preferably 0 to 2. z is preferably 0 to 6, more preferably 0.5 to 5.5, and particularly preferably 1 to 5. However, when x, y, and z contain a salt as an impurity, when the material has moisture that is not taken into the internal structure of the Prussian blue type complex, and other materials such as a binder for film formation When it is used as a complex, it must be evaluated with its effects removed.
 金属シアノ錯体の望ましい粒径としては、一般論として、電気化学応答速度が粒径を小さくすることで比表面積を高めるようなものであることが好ましく、また平滑な薄膜を形成するためにも粒径が小さいことが好ましく、その観点から言うと、一次平均粒径は500nm以下が好ましく、300nm以下がより好ましく、100nm以下が特に好ましい。粒径の下限に特に制限はないが、4nm以上であることが実際的である。本発明において、一次粒径とは、一次粒子の直径をいい、その円相当直径を粉末X線構造解析のピークの半値幅より導出したものでもよい。また、配位子などが粒子表面に吸着している場合もあるが、その場合も一次粒径としては、配位子を除いた粒径を指すものとする。 The desirable particle size of the metal cyano complex is, as a general rule, preferably such that the electrochemical response speed increases the specific surface area by reducing the particle size, and also for forming a smooth thin film. The diameter is preferably small, and in that respect, the primary average particle diameter is preferably 500 nm or less, more preferably 300 nm or less, and particularly preferably 100 nm or less. Although there is no restriction | limiting in particular in the minimum of a particle size, it is practical that it is 4 nm or more. In the present invention, the primary particle diameter means the diameter of the primary particles, and the equivalent circle diameter may be derived from the half width of the peak of the powder X-ray structure analysis. Moreover, although the ligand etc. may adsorb | suck to the particle | grain surface, in that case, as a primary particle size, the particle size except a ligand shall be pointed out.
 コバルト鉄シアノ錯体をEC材料として利用する場合、電極上に薄膜を形成するのが一般的であり、以下、その方法について示す。ただし、目的とする色変化が電気化学的に実現できればその構造に限定されない。例えば、電極に接触させた電解質中にコバルト鉄シアノ錯体を分散させてもよい。 When cobalt iron cyano complex is used as an EC material, it is common to form a thin film on an electrode, and the method will be described below. However, the structure is not limited as long as the target color change can be realized electrochemically. For example, a cobalt iron cyano complex may be dispersed in an electrolyte brought into contact with the electrode.
 図15にコバルト鉄シアノ錯体を具備した電極の構造模式図を示す。電極は導電材料とEC材料の多層膜からなる。導電性材料は導電性であるとともに、電気化学素子として使用して腐食などの劣化が実用上問題のある程度に発生しないものであれば特に限定はない。例えば、インジウム錫酸化物、酸化亜鉛およびそれにアルミニウムなどの金属をドープしたものなどの導電性酸化物、金、白金などの貴金属、ステンレスなどの腐食対策を施した金属、アルミニウムなどの不働態が発生し、腐食が生じないものなどを利用できる。 FIG. 15 shows a structural schematic diagram of an electrode provided with a cobalt iron cyano complex. The electrode is composed of a multilayer film of a conductive material and an EC material. The conductive material is not particularly limited as long as it is conductive and can be used as an electrochemical element so that deterioration such as corrosion does not occur to some extent in practical use. For example, conductive oxides such as indium tin oxide, zinc oxide and those doped with metals such as aluminum, precious metals such as gold and platinum, metals with corrosion countermeasures such as stainless steel, and passive states such as aluminum are generated. However, a material that does not cause corrosion can be used.
 ただし、調光ガラスの場合など、装置の目的上透明である必要がある。電極の構造は平滑な板状であることが一般的であるが、それに限定されない。特に、EC材料と導電性材料の接触面積を増加させることは速度向上に資することがあり、そのために電極の平滑性を意図的に下げる場合がある。例えば、平滑な導電性材料に導電性材料を具備させて使用してもよい。さらには、導電性材料とEC材料の密着性を向上させる目的や、腐食回避の目的のため、ほかの材料を転嫁してもよい。また、EC材料と導電材料の間に導通が取れていればよく、使用の都合上、EC材料と反対側の導電材料の表面に絶縁材料など、ほかの材料が具備されていてもよい。 However, in the case of light control glass, it needs to be transparent for the purpose of the device. The electrode structure is generally a smooth plate, but is not limited thereto. In particular, increasing the contact area between the EC material and the conductive material may contribute to an improvement in speed, which may intentionally reduce the smoothness of the electrode. For example, a smooth conductive material may be used with a conductive material. Furthermore, for the purpose of improving the adhesion between the conductive material and the EC material and for the purpose of avoiding corrosion, other materials may be passed on. Further, it is only necessary that the EC material and the conductive material have electrical continuity. For convenience of use, another material such as an insulating material may be provided on the surface of the conductive material opposite to the EC material.
 EC材料1はコバルト-鉄シアノ錯体とほかのEC材料との混合物であってもよい。この場合、電極として、二つのEC材料の色を複合した色変化が実現できる。例えば、コバルト-鉄シアノ錯体とプルシアンブルーとの混合物が挙げられる。この場合、コバルト-鉄シアノ錯体の酸化還元電位は飽和カロメル電極基準で+0.4Vであり、それ以上で酸化状態の褐色、それ以下で還元状態の無色透明が実現する。プルシアンブルーの酸化還元電位は飽和カロメル電極基準で+0.2Vであり、これ以上で青、それ以下で無色透明となる。よって、この2種類のEC材料を複合化させた電極としては、+0.4V以上で褐色と青の複合色である黒、+0.2V以上+0.4V以下で青、+0.2V以下で無色透明となる。 EC material 1 may be a mixture of a cobalt-iron cyano complex and another EC material. In this case, a color change that combines the colors of two EC materials can be realized as an electrode. For example, a mixture of a cobalt-iron cyano complex and Prussian blue can be mentioned. In this case, the oxidation-reduction potential of the cobalt-iron cyano complex is +0.4 V with respect to the saturated calomel electrode, and an oxidation state of brown is realized above it, and a reduction state of colorless and transparent is realized below it. Prussian blue has an oxidation-reduction potential of +0.2 V with respect to the saturated calomel electrode. Therefore, the composite electrode of these two types of EC materials is black, which is a composite color of brown and blue at +0.4 V or higher, blue at +0.2 V or higher and +0.4 V or lower, and colorless and transparent at +0.2 V or lower. It becomes.
 コバルト-鉄シアノ錯体と混合する材料としては、その他、ニッケル-鉄シアノ錯体、銅-鉄シアノ錯体などの金属シアノ錯体、ニッケル酸化物、銅酸化物、などの金属酸化物が挙げられる。また、混合する材料は2種類でもよいし、三種類以上でもよい。 Examples of the material mixed with the cobalt-iron cyano complex include metal cyano complexes such as nickel-iron cyano complex and copper-iron cyano complex, and metal oxides such as nickel oxide and copper oxide. In addition, two or more kinds of materials to be mixed may be used.
 EC材料の混合法としては、完全に混合させる方法が挙げられる。例えば、コバルト-鉄シアノ錯体とプルシアンブルーのナノ粒子分散液を混合後塗布、製膜することにより、ナノ粒子レベルで2種類のEC材料が混合した膜が得られる。また、図16に示す通り、複数のEC材料を多層膜化してもよい。 ¡As a method for mixing EC materials, a method of completely mixing them can be mentioned. For example, a film in which two types of EC materials are mixed at the nanoparticle level can be obtained by mixing a cobalt-iron cyano complex and Prussian blue nanoparticle dispersion, followed by coating and film formation. Further, as shown in FIG. 16, a plurality of EC materials may be formed into a multilayer film.
 図17には、最も一般的な多層構造の金属シアノ錯体をEC材料として利用したECDの構造を示した。すなわち、EC電極1に前述のものを利用し、別途EC電極2を準備し、電解質を二つのEC電極で挟みこむことでECDを作製する。EC電極2はEC電極1と同様に、EC材料および導電材料からなり、EC電極1と同様の構造自由度があってもよい。例えば、EC材料2も複数のEC材料の混合物であってもよい。また、EC電極1は電気化学的酸化還元を可逆的に起こす材料であればよく、必ずしも酸化状態と還元状態の色が異なる必要はない。 FIG. 17 shows an ECD structure using the most common multilayer metal cyano complex as an EC material. That is, the EC electrode 1 is prepared by using the EC electrode 1 separately, and an EC electrode 2 is separately prepared, and an electrolyte is sandwiched between the two EC electrodes to produce an ECD. Similarly to the EC electrode 1, the EC electrode 2 is made of an EC material and a conductive material, and may have the same degree of structural freedom as the EC electrode 1. For example, the EC material 2 may be a mixture of a plurality of EC materials. The EC electrode 1 may be any material that causes electrochemical redox reversibly, and the colors of the oxidized state and the reduced state are not necessarily different.
 ECDは二つの電極間に電圧を印加することによって駆動する。すなわち、EC材料1とEC材料2がそれぞれ酸化状態、還元状態である状態1と、それぞれ還元状態、酸化状態である状態2の間での色変化を電圧印加により実現できる。例えば調光ガラスとして使用する場合は、導電材料1、導電材料2、電解質に透明材料を使用する。これを透過型ECDという。透過型ECDの場合、ECDの色としては、EC材料1とEC材料2の混合色を呈する。一方、導電材料を透明、電解質を白色のものを使えば、EC材料1の色がそのままECDの色となる。これを反射型ECDという。この場合、EC材料2、導電材料2の色は問わない。 ECD is driven by applying a voltage between two electrodes. That is, the color change between the state 1 in which the EC material 1 and the EC material 2 are in the oxidized state and the reduced state, respectively, and the state 2 in the reduced state and the oxidized state can be realized by voltage application. For example, when using as light control glass, a transparent material is used for the conductive material 1, the conductive material 2, and the electrolyte. This is called transmission type ECD. In the case of the transmission type ECD, the color of the ECD exhibits a mixed color of the EC material 1 and the EC material 2. On the other hand, if the conductive material is transparent and the electrolyte is white, the color of the EC material 1 becomes the ECD color as it is. This is called reflective ECD. In this case, the colors of the EC material 2 and the conductive material 2 are not limited.
 透過型ECDの場合、EC材料2は安定な電気化学特性を有しているとともに、必要となる色変化を示す材料である必要がある。一方、反射型ECDの場合、安定な電気化学特性を有しているだけでよい。 In the case of a transmission type ECD, the EC material 2 needs to be a material having stable electrochemical characteristics and exhibiting a necessary color change. On the other hand, the reflection type ECD only needs to have stable electrochemical characteristics.
 透過型ECDにおいて、EC材料2として、亜鉛-鉄シアノ錯体を使用し、両導電材料、電解質に透明材料を使用した場合は、ECDとして、褐色-無色透明の色変化を呈する。この材料は還元状態、酸化状態ともにほぼ無色透明である。よって、ECDの状態1はEC材料1の酸化状態である褐色となり、状態2はEC材料1の還元状態である無色透明となる。さらに、EC材料1として、透過型ECDのEC材料2として、還元状態がコバルト-鉄シアノ錯体の酸化状態である茶色の補色である青色、酸化状態が無色透明である材料を利用することで、状態1が黒色、状態2が無色透明となるECDを作製することができる。例えば、酸化タングステンはこの要求を満たしている。 In the transmission type ECD, when a zinc-iron cyano complex is used as the EC material 2 and a transparent material is used for both the conductive material and the electrolyte, the color changes from brown to colorless and transparent as the ECD. This material is almost colorless and transparent in both reduced state and oxidized state. Therefore, the ECD state 1 is brown, which is the oxidation state of the EC material 1, and the state 2 is colorless and transparent, which is the reduction state of the EC material 1. Further, as the EC material 1, by using a material that is a transparent ECD EC material 2, a blue that is a brown complementary color that is an oxidation state of a cobalt-iron cyano complex, and a colorless and transparent material that is an oxidation state, An ECD in which state 1 is black and state 2 is colorless and transparent can be produced. For example, tungsten oxide meets this requirement.
 以下に、実施例に基づいてさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited thereto.
<調製例1:コバルト-鉄シアノ錯体分散液の調製>
 コバルト-鉄シアノ錯体(M=Co、M’=Fe)分散液を以下の様に調製した。
<Preparation Example 1: Preparation of cobalt-iron cyano complex dispersion>
A cobalt-iron cyano complex (M = Co, M ′ = Fe) dispersion was prepared as follows.
 第一工程として、フェリシアン化カリウム1.65gを水15mLに溶解した水溶液に塩化コバルト・6水和物1.19gを水に溶解した水溶液15mLを混合し、3分間攪拌した。析出したコバルト-鉄シアノ錯体の沈殿物を、遠心分離法を用いて水で5回洗浄し、スラリー状試料S1を得た。 As a first step, 15 mL of an aqueous solution in which 1.19 g of cobalt chloride hexahydrate was dissolved in water was mixed with an aqueous solution in which 1.65 g of potassium ferricyanide was dissolved in 15 mL of water, and the mixture was stirred for 3 minutes. The deposited cobalt-iron cyano complex precipitate was washed five times with water using a centrifugal separation method to obtain a slurry sample S1.
 次に、第二工程として、上記第一工程で製造した試料S1を水30mLに懸濁させた。この懸濁液に、フェリシアン化カリウム0.49gを水10mLに溶解させて加え、攪拌したところ褐色透明溶液へと変化した。このようにしてコバルト-鉄シアノ錯体の分散液(DCo1)を得た。 Next, as a second step, the sample S1 produced in the first step was suspended in 30 mL of water. To this suspension was added 0.49 g of potassium ferricyanide dissolved in 10 mL of water, and when stirred, the solution turned into a brown transparent solution. Thus, a cobalt-iron cyano complex dispersion (DCo1) was obtained.
<調製例2:組成を変えたコバルト-鉄シアノ錯体分散液の調製>
 調整例1と同様に、塩化コバルト6水和物と、フェリシアン化カリウムの混合比を変えることで、仕込み組成比の異なるコバルト-鉄シアノ錯体の分散液を調製し、それぞれDCo2,DCo3,DCo4とした。DCo1からDCo4の調整条件およびその条件から期待される組成比yを図27に示す。
<Preparation Example 2: Preparation of cobalt-iron cyano complex dispersion with different composition>
Similar to Preparation Example 1, by changing the mixing ratio of cobalt chloride hexahydrate and potassium ferricyanide, dispersions of cobalt-iron cyano complexes having different charged composition ratios were prepared, which were designated as DCo2, DCo3 and DCo4, respectively. . FIG. 27 shows the adjustment conditions for DCo1 to DCo4 and the composition ratio y expected from the conditions.
<調製例3:コバルト-鉄シアノ錯体分散液の調製>
 調整例2と同様に、塩化コバルト6水和物と、フェロシアン化カリウム・3水和物の混合比を変えることで、初期酸化還元状態の異なるコバルト-鉄シアノ錯体の分散液を調製し、それぞれDCo1r、DCo2r,DCo3r,DCo4rとした。DCo1rからDCo4rの調整条件およびその条件から期待される組成比yを図28に示す。
<Preparation Example 3: Preparation of cobalt-iron cyano complex dispersion>
As in Preparation Example 2, cobalt-iron cyano complex dispersions having different initial redox states were prepared by changing the mixing ratio of cobalt chloride hexahydrate and potassium ferrocyanide trihydrate. , DCo2r, DCo3r, DCo4r. FIG. 28 shows the adjustment conditions for DCo1r to DCo4r and the composition ratio y expected from the conditions.
<調整例4:プルシアンブルー(鉄-鉄シアノ錯体)分散液の調製>
 プルシアンブルーナノ粒子(M=Fe、M’=Fe)を以下の様に調製した。
<Preparation Example 4: Preparation of Prussian blue (iron-iron cyano complex) dispersion>
Prussian blue nanoparticles (M = Fe, M ′ = Fe) were prepared as follows.
 第一工程として、フェロシアン化ナトリウム・10水和物14.5gを水60mLに溶解した水溶液に硝酸鉄・9水和物16.2gを水に溶解した水溶液30mLを混合し、5分間攪拌した。析出した青色のプルシアンブルー沈殿物を遠心分離し、これを水で3回、続いてメタノールで1回洗浄し、減圧下で乾燥し、試料1を得た。このときの収量は11.0gであり、収率はFe[Fe(CN)0.75・3.75Oとして97.4%であった。 As the first step, 30 mL of an aqueous solution in which 16.2 g of iron nitrate nonahydrate was dissolved in water was mixed with an aqueous solution in which 14.5 g of sodium ferrocyanide decahydrate was dissolved in 60 mL of water, and the mixture was stirred for 5 minutes. . The precipitated blue Prussian blue precipitate was centrifuged, washed 3 times with water, then once with methanol, and dried under reduced pressure to obtain Sample 1. The yield at this time was 11.0 g, and the yield was 97.4% as Fe [Fe (CN) 6 ] 0.75 · 3.75 H 2 O.
 作製したプルシアンブルー錯体(沈殿物)を粉末X線回折装置で解析したところ、標準試料データベースから検索されるプルシアンブルー、Fe[Fe(CN)のものと一致した。透過型電子顕微鏡で測定したところ、このプルシアンブルーは5~20nmのナノ粒子の凝集体であった。 When the produced Prussian blue complex (precipitate) was analyzed by a powder X-ray diffractometer, it was consistent with that of Prussian blue, Fe 4 [Fe (CN) 6 ] 3 retrieved from the standard sample database. When measured with a transmission electron microscope, this Prussian blue was an aggregate of nanoparticles of 5 to 20 nm.
 第二工程として、上記第一工程で製造した試料1の0.40gを水8mLに懸濁させた。この懸濁液に、フェロシアン化ナトリウム・10水和物を80mg加え、攪拌したところ青色透明溶液へと変化した。このようにしてプルシアンブルーのナノ粒子分散液(DFe1)を得た。 As a second step, 0.40 g of the sample 1 produced in the first step was suspended in 8 mL of water. When 80 mg of sodium ferrocyanide decahydrate was added to this suspension and stirred, it turned into a blue transparent solution. In this way, a Prussian blue nanoparticle dispersion (DFe1) was obtained.
<調製例5:亜鉛-鉄シアノ錯体分散液の調製>
 亜鉛-鉄シアノ錯体(M=Zn、M’=Fe)を以下のいずれかの方法により調製できる。
<Preparation Example 5: Preparation of zinc-iron cyano complex dispersion>
A zinc-iron cyano complex (M = Zn, M ′ = Fe) can be prepared by any of the following methods.
 [作製方法1]
 第一工程として、フェロシアン化カリウム・3水和物1.69gを水1000mLに溶解した水溶液と塩化亜鉛0.82gを水1000mLに溶解した水溶液を準備した。液温が10度以下にコントロール可能なマイクロミキサー合成機を使用して140mL/分の速度で合成した。なお、合成部の断面積は直径150μmのものを使用した。析出した白色の亜鉛-鉄シアノ錯体沈殿物は遠心分離を繰り返しながら濃縮し、減圧下で乾燥して粉末試料PZn1を得た。
[Production Method 1]
As a first step, an aqueous solution in which 1.69 g of potassium ferrocyanide trihydrate was dissolved in 1000 mL of water and an aqueous solution in which 0.82 g of zinc chloride was dissolved in 1000 mL of water were prepared. Synthesis was performed at a rate of 140 mL / min using a micromixer synthesizer capable of controlling the liquid temperature to 10 degrees or less. In addition, the cross-sectional area of the synthesized part was 150 μm in diameter. The precipitated white zinc-iron cyano complex precipitate was concentrated while repeating the centrifugal separation and dried under reduced pressure to obtain a powder sample PZn1.
 作製した亜鉛-鉄シアノ錯体(沈殿物)を粉末X線回折装置で解析したところ、標準試料データベースから検索される亜鉛-鉄シアノ錯体、K0.66Zn[Fe(CN)0.66のものと一致した。透過型電子顕微鏡で測定したところ、この亜鉛-鉄シアノ錯体は50~200nmのナノ粒子の凝集体であった。 When the prepared zinc-iron cyano complex (precipitate) was analyzed with a powder X-ray diffractometer, the zinc-iron cyano complex K 0.66 Zn [Fe (CN) 6 ] 0.66 retrieved from the standard sample database was obtained. Was consistent with When measured with a transmission electron microscope, this zinc-iron cyano complex was an aggregate of nanoparticles of 50 to 200 nm.
 第二工程として、上記第一工程で製造した試料1の1.5gを水8.5mLに懸濁させ、亜鉛-鉄シアノ錯体分散液(DZn1)を得た。 As the second step, 1.5 g of Sample 1 produced in the first step was suspended in 8.5 mL of water to obtain a zinc-iron cyano complex dispersion (DZn1).
 [作製方法2]
 第一工程として、フェリシアン化カリウム3水和物1.69gを水15mLに溶解した水溶液を用意する。また塩化亜鉛1.09gを水に溶解した水溶液15mLを混合したものに濃塩酸を10倍希釈したものを200μL添加する。これら二水溶液を混合し、3分間攪拌した。析出した亜鉛-鉄シアノ錯体の沈殿物を、遠心分離法を用いて水で5回洗浄し、スラリー状試料S1を得た。
[Production Method 2]
As a first step, an aqueous solution in which 1.69 g of potassium ferricyanide trihydrate is dissolved in 15 mL of water is prepared. Further, 200 μL of 10-fold diluted concentrated hydrochloric acid is added to a mixture of 15 mL of an aqueous solution prepared by dissolving 1.09 g of zinc chloride in water. These two aqueous solutions were mixed and stirred for 3 minutes. The deposited precipitate of zinc-iron cyano complex was washed five times with water using a centrifugal separation method to obtain a slurry sample S1.
 第二工程として、上記第一工程で製造した試料S1を水30mLに懸濁させた。この懸濁液に、フェリシアン化カリウム3水和物0.51gを水10mLに溶解させて加え、一日攪拌した。その後高速遠心法によって亜鉛-鉄シアノ錯体を二回洗浄し、水40mLに懸濁させ、このようにして亜鉛-鉄シアノ錯体の分散液(DZn2)を得た。 As a second step, the sample S1 produced in the first step was suspended in 30 mL of water. To this suspension, 0.51 g of potassium ferricyanide trihydrate dissolved in 10 mL of water was added and stirred for one day. Thereafter, the zinc-iron cyano complex was washed twice by high-speed centrifugation and suspended in 40 mL of water, and thus a zinc-iron cyano complex dispersion (DZn2) was obtained.
 [作製方法3]
第一工程として、フェロシアン化カリウム・3水和物1.69gを水1000mLに溶解した水溶液と塩化亜鉛0.82gを水1000mLに溶解した水溶液を冷蔵庫にて液温が10度以下になるまで冷却した。10度以下の冷却を確認後に混合し、5分間攪拌した。析出した白色の亜鉛-鉄シアノ錯体沈殿物を、遠心分離を繰り返しながら濃縮し、減圧下で乾燥して粉末試料PZn1を得た。
[Production Method 3]
As a first step, an aqueous solution in which 1.69 g of potassium ferrocyanide trihydrate was dissolved in 1000 mL of water and an aqueous solution in which 0.82 g of zinc chloride was dissolved in 1000 mL of water were cooled in a refrigerator until the liquid temperature became 10 degrees or less. . After confirming cooling of 10 degrees or less, the mixture was mixed and stirred for 5 minutes. The precipitated white zinc-iron cyano complex precipitate was concentrated while repeating centrifugation, and dried under reduced pressure to obtain a powder sample PZn1.
 作製した亜鉛-鉄シアノ錯体(沈殿物)を粉末X線回折装置で解析したところ、標準試料データベースから検索される亜鉛-鉄シアノ錯体、K0.66Zn[Fe(CN)0.66のものと一致した。透過型電子顕微鏡で測定したところ、この亜鉛-鉄シアノ錯体は50~200nmのナノ粒子の凝集体であった。 When the prepared zinc-iron cyano complex (precipitate) was analyzed with a powder X-ray diffractometer, the zinc-iron cyano complex K 0.66 Zn [Fe (CN) 6 ] 0.66 retrieved from the standard sample database was obtained. Was consistent with When measured with a transmission electron microscope, this zinc-iron cyano complex was an aggregate of nanoparticles of 50 to 200 nm.
 第二工程として、上記第一工程で製造した試料1の1.5gを水8.5mLに懸濁させ、亜鉛-鉄シアノ錯体分散液(DZn3)を得た。 As a second step, 1.5 g of the sample 1 produced in the first step was suspended in 8.5 mL of water to obtain a zinc-iron cyano complex dispersion (DZn3).
<調製例6:コバルト-鉄シアノ錯体薄膜電極の作製>
 コバルト-鉄シアノ錯体分散液を使用し、下記のとおり薄膜電極を作製した。調整例1で調製したコバルト-鉄シアノ錯体分散液DCo1を用い、ITO被膜ガラス基板上にスピンコート法によりナノ粒子薄膜を設置して、本発明の電極を作製した。DCo1の固形量を5wt%に調整した。次いで、スピンコーターに25mm角ITO基板を設置し、分散液DCo1を60μL滴下し、1000rpmでの回転を10秒、1200rpmでの回転を60秒で行い、コバルト鉄シアノ錯体薄膜電極TCo1を作製した。同様に分散液DCo2~DCo4を使用し、薄膜電極TCo2~TCo4、TCo1r~TCo4rを作製した。
<Preparation Example 6: Preparation of cobalt-iron cyano complex thin film electrode>
Using a cobalt-iron cyano complex dispersion, a thin film electrode was prepared as follows. Using the cobalt-iron cyano complex dispersion DCo1 prepared in Preparation Example 1, a nanoparticle thin film was placed on an ITO-coated glass substrate by spin coating to produce an electrode of the present invention. The solid content of DCol was adjusted to 5 wt%. Next, a 25 mm square ITO substrate was placed on the spin coater, 60 μL of the dispersion liquid DCo1 was dropped, and the rotation at 1000 rpm was performed for 10 seconds and the rotation at 1200 rpm for 60 seconds, thereby producing a cobalt iron cyano complex thin film electrode TCo1. Similarly, thin film electrodes TCo2 to TCo4 and TCo1r to TCo4r were prepared using dispersions DCo2 to DCo4.
<調製例7:コバルト-鉄シアノ錯体とプルシアンブルーの混合薄膜電極の作製>
 コバルト-鉄シアノ錯体分散液とプルシアンブルー分散液を使用し、下記のとおり薄膜電極を作製した。調整例1で調製したコバルト-鉄シアノ錯体分散液DCo2と、調整例3で調製したプルシアンブルー分散液を、それぞれの固形量濃度が82wt%:18wt%となるように混合し、分散液DCo2Fe1を調製した。スピンコーターに25mm角ITO基板を設置し、分散液DCoFe1を滴下し、1000rpmでの回転を10秒、1200rpmでの回転を60秒で行い、コバルト鉄シアノ錯体-プルシアンブルー混合薄膜電極TCoFe1を作製した。また、別途300rpmでの回転を600秒での作製も行い、混合薄膜電極TCoFe2を作製した。
<Preparation Example 7: Preparation of mixed thin-film electrode of cobalt-iron cyano complex and Prussian blue>
Using a cobalt-iron cyano complex dispersion and Prussian blue dispersion, a thin film electrode was prepared as follows. The cobalt-iron cyano complex dispersion DCo2 prepared in Preparation Example 1 and the Prussian blue dispersion prepared in Preparation Example 3 are mixed so that the respective solid concentration is 82 wt%: 18 wt%, and the dispersion DCo2Fe1 is prepared. Prepared. A 25 mm square ITO substrate was placed on a spin coater, and dispersion liquid DCoFe1 was dropped, and rotation at 1000 rpm was performed for 10 seconds and rotation at 1200 rpm for 60 seconds to produce a cobalt iron cyano complex-Prussian blue mixed thin film electrode TCoFe1. . In addition, the mixed thin film electrode TCoFe2 was manufactured by separately performing rotation at 300 rpm in 600 seconds.
<調製例8:亜鉛-鉄シアノ錯体薄膜電極の作製>
 亜鉛-鉄シアノ錯体分散液を使用し、下記のとおり薄膜電極を作製した。調整例1で調製した亜鉛-鉄シアノ錯体分散液DZn1およびDZn2を用い、ITO被膜ガラス基板上に各々スピンコート法によりナノ粒子薄膜を設置して、本発明の電極を作製した。具体的にはDZn1およびDZn2を各15wt%に調整した。次いで、スピンコーターに25mm角ITO基板を設置し、分散液DZn1を各60μL滴下し、1000rpmでの回転を10秒、1500rpmでの回転を10秒で行い、亜鉛-鉄シアノ錯体薄膜電極TZn1を作製した。分散液DZn2においても同様の方法を用い、亜鉛-鉄シアノ錯体薄膜電極TZn2を作製した。
<Preparation Example 8: Preparation of zinc-iron cyano complex thin film electrode>
Using a zinc-iron cyano complex dispersion, a thin film electrode was prepared as follows. Using the zinc-iron cyano complex dispersions DZn1 and DZn2 prepared in Preparation Example 1, nanoparticle thin films were respectively placed on an ITO-coated glass substrate by spin coating to produce an electrode of the present invention. Specifically, DZn1 and DZn2 were adjusted to 15 wt% each. Next, a 25 mm square ITO substrate was placed on the spin coater, 60 μL each of the dispersion liquid DZn1 was dropped, and rotation at 1000 rpm was performed for 10 seconds and rotation at 1500 rpm for 10 seconds to produce a zinc-iron cyano complex thin film electrode TZn1. did. A similar method was used for the dispersion DZn2 to produce a zinc-iron cyano complex thin film electrode TZn2.
<調製例9:コバルト-鉄シアノ錯体/亜鉛-鉄シアノ錯体エレクトロクロミック素子の作製>
 褐色-無色透明のエレクトロクロミック素子を作製するため、コバルト-鉄シアノ錯体薄膜電極と、亜鉛-鉄シアノ錯体薄膜電極TZn2からなるエレクトロクロミック素子を以下のとおり作製した。電解質は濃度0.1mol/Lのカリウム-ビス(トリフルオロメタンスルホニル)イミド(KTFSI)―炭酸プロピレン溶液を用いた。この電解質を、DCo2をスピンコート法で酸化状態において波長500ナノメートルの透過率が50パーセントとなるように製膜したTCo2と酸化還元に要する電荷量が26ミリクーロンとなるように製膜したTZn2で挟み込み、エレクトロクロミック素子ECD(Co,Zn)を作製した。
<Preparation Example 9: Preparation of cobalt-iron cyano complex / zinc-iron cyano complex electrochromic device>
In order to produce a brown-colorless and transparent electrochromic device, an electrochromic device comprising a cobalt-iron cyano complex thin film electrode and a zinc-iron cyano complex thin film electrode TZn2 was fabricated as follows. The electrolyte used was a potassium-bis (trifluoromethanesulfonyl) imide (KTFSI) -propylene carbonate solution having a concentration of 0.1 mol / L. This electrolyte was formed by depositing TCo2 so that the transmittance at a wavelength of 500 nanometers was 50 percent in an oxidized state by DCO2 spin coating, and TZn2 formed so that the amount of charge required for redox was 26 millicoulombs. The electrochromic element ECD (Co, Zn) was produced.
<調製例10:(コバルト-鉄シアノ錯体、プルシアンブルー)/亜鉛-鉄シアノ錯体エレクトロクロミック素子の作製>
 黒色-無色透明のエレクトロクロミック素子を作製するため、コバルト-鉄シアノ錯体とプルシアンブルーの混合薄膜電極と、亜鉛-鉄シアノ錯体薄膜電極TZn1からなるエレクトロクロミック素子を以下のとおり作製した。濃度0.1mol/LのKTFSIとポリメタクリル酸メチルを炭酸プロピレン溶液に溶解させ、それぞれの濃度が2.7重量部、30.0重量部となる電解質を調製した。この電解質を薄膜電極TCoFe1、TZn1で挟み込み、エレクトロクロミック素子ECD(CoFe,Zn)を作製した。
<Preparation Example 10: (Cobalt-iron cyano complex, Prussian blue) / Production of zinc-iron cyano complex electrochromic device>
In order to produce a black-colorless transparent electrochromic device, an electrochromic device comprising a mixed thin film electrode of cobalt-iron cyano complex and Prussian blue and a zinc-iron cyano complex thin film electrode TZn1 was produced as follows. KTFSI having a concentration of 0.1 mol / L and polymethyl methacrylate were dissolved in a propylene carbonate solution to prepare an electrolyte having a concentration of 2.7 parts by weight and 30.0 parts by weight, respectively. This electrolyte was sandwiched between thin film electrodes TCoFe1 and TZn1 to produce an electrochromic element ECD (CoFe, Zn).
<コバルト-鉄シアノ錯体薄膜電極の可視光光学特性の組成依存性>
 図18には、調整例5で作製したコバルト-鉄シアノ錯体薄膜電極を電解質に浸した状態の可視光透過率をオーシャンフォトニクス製分光器USB4000を用いて評価した結果を示した。電解質は濃度0.1mol/LのKTFSI―炭酸プロピレン溶液を用いた。図18(a)のTCo1からTCo4は褐色で、図18(b)のTCo1rからTCo4rは無色透明に見えた。特に、TCo1rからTCo4rでは、公知のy=0.5のような1から離れた場合に現れる波長600ナノメートルから700ナノメートルの吸収は見られなかった。これは薄膜が緑色ではなく無色透明であることを示している。
<Composition dependence of visible light optical properties of cobalt-iron cyano complex thin film electrode>
FIG. 18 shows the results of evaluating the visible light transmittance in a state where the cobalt-iron cyano complex thin film electrode prepared in Preparation Example 5 is immersed in an electrolyte using an Ocean Photonics spectrometer USB4000. As the electrolyte, a KTFSI-propylene carbonate solution having a concentration of 0.1 mol / L was used. TCo1 to TCo4 in FIG. 18 (a) were brown, and TCo1r to TCo4r in FIG. 18 (b) appeared colorless and transparent. In particular, in TCo1r to TCo4r, absorption at a wavelength of 600 nm to 700 nm that appears when the distance is away from 1 such as the known y = 0.5 was not observed. This indicates that the thin film is not green but transparent and colorless.
<コバルト-鉄シアノ錯体薄膜電極のエレクトロクロミック特性>
 コバルト-鉄シアノ錯体薄膜電極のエレクトロクロミック特性を調べたところ、褐色-無色透明の色変化を確認できた。具体的には以下の評価を行った。薄膜電極TCo2を用い、対極に白金線、参照極に飽和カロメル電極、電解質に濃度0.1mol/LのKTFSI―炭酸プロピレン溶液を用い、スキャンレート5ミリボルト/秒でサイクリックボルタモグラムを取得したところ、図19のとおりとなった。このことから、本電極は良好な電気化学特性を有することが分かった。さらに、クロノクーロメトリー測定で終了電位を-0.4V、+0.7Vとして測定し終了時の可視光透過スペクトルを取得した結果を図20に示した。このことより、+0.7Vの酸化状態では褐色、-0.4Vの還元状態では無色透明を示すことがわかる。
<Electrochromic properties of cobalt-iron cyano complex thin film electrode>
When electrochromic characteristics of the cobalt-iron cyano complex thin film electrode were examined, a brown-colorless and transparent color change was confirmed. Specifically, the following evaluation was performed. Using thin film electrode TCo2, using a platinum wire as a counter electrode, a saturated calomel electrode as a reference electrode, a KTFSI-propylene carbonate solution with a concentration of 0.1 mol / L as an electrolyte, and obtaining a cyclic voltammogram at a scan rate of 5 millivolts / second, As shown in FIG. From this, it was found that this electrode has good electrochemical characteristics. Further, FIG. 20 shows the result of obtaining the visible light transmission spectrum at the end by measuring the end potential by −0.4 V and +0.7 V in chronocoulometry measurement. From this, it can be seen that the oxidation state of +0.7 V is brown and the reduction state of −0.4 V is colorless and transparent.
<コバルト-鉄シアノ錯体/亜鉛-鉄シアノ錯体エレクトロクロミック素子の特性>
 コバルト-鉄シアノ錯体薄膜電極と、酸化還元でいずれもほとんど色を持たない亜鉛-鉄シアノ錯体薄膜電極TZn2を対向させ、エレクトロクロミック素子を作製することで、コバルト-鉄シアノ錯体薄膜電極とほぼ同じ色変化を示す。調整例8で作製したECD(Co,Zn)のサイクリックボルタモグラムをスキャンレート5ミリボルト/秒で測定した結果を図21に示す。これより、作製したECDは良好な電気化学反応を示すことがわかる。次に、クロノクーロメトリー評価において、終了電位を+0.4V、-1.2Vにした際の透過率を図22に示す。これより+0.4Vの時は褐色、-1.2Vの時は無色透明を示すことがわかる。
<Characteristics of cobalt-iron cyano complex / zinc-iron cyano complex electrochromic device>
By making the cobalt-iron cyano complex thin film electrode and the zinc-iron cyano complex thin film electrode TZn2 that are hardly oxidized by redox facing each other to produce an electrochromic device, almost the same as the cobalt-iron cyano complex thin film electrode Indicates a color change. FIG. 21 shows the results of measuring the cyclic voltammogram of ECD (Co, Zn) produced in Adjustment Example 8 at a scan rate of 5 millivolts / second. This shows that the produced ECD exhibits a good electrochemical reaction. Next, the transmittance when the end potential is set to +0.4 V and −1.2 V in the chronocoulometry evaluation is shown in FIG. From this, it can be seen that + 0.4V is brown, and -1.2V is colorless and transparent.
<コバルト-鉄シアノ錯体・プルシアンブルー混合薄膜電極の評価>
 調整例6で作製した混合薄膜電極の評価として、透過率を測定した結果を図23に示す。いずれの膜も、可視光領域でほぼ平坦な透過率を有しており、グレーから黒色の色を有していることがわかる。また、薄膜電極TCoFe1を用い、対極に白金線、参照極に飽和カロメル電極、電解質に濃度0.1mol/LのKTFSI―炭酸プロピレン溶液を用いクロノクーロメトリー評価を行った。図24に、終了電極をそれぞれ-0.3V、+0.92Vの際の可視光透過スペクトルを示す。いずれの電位においても視感度の高い波長450ナノメートルから650ナノメートルの間ではほぼ波長依存性のない透過スペクトルを有しており、透明から灰色(黒)の色変化が生じていることがわかる。
<Evaluation of cobalt-iron cyano complex and Prussian blue mixed thin film electrode>
As an evaluation of the mixed thin film electrode produced in Adjustment Example 6, the result of measuring the transmittance is shown in FIG. It can be seen that all the films have a substantially flat transmittance in the visible light region and have a gray to black color. Further, chronocoulometric evaluation was performed using a thin film electrode TCoFe1, a platinum wire as a counter electrode, a saturated calomel electrode as a reference electrode, and a KTFSI-propylene carbonate solution having a concentration of 0.1 mol / L as an electrolyte. FIG. 24 shows visible light transmission spectra when the end electrode is −0.3 V and +0.92 V, respectively. At any potential, it has a transmission spectrum having almost no wavelength dependence between wavelengths of 450 nm to 650 nm with high visibility, and it can be seen that a color change from transparent to gray (black) occurs. .
<(コバルト-鉄シアノ錯体、プルシアンブルー)/亜鉛-鉄シアノ錯体エレクトロクロミック素子の評価>  
 混合薄膜電極においても、対極として色変化のほとんどない亜鉛-鉄シアノ錯体薄膜電極TZn1を用い、エレクトロクロミック素子を作製すると、おおむね混合薄膜電極と同様の色変化特性をエレクトロクロミック素子として実現することができる。調整例10で作製したエレクトロクロミック素子ECD(CoFe,Zn)のサイクリックボルタモグラムを評価した結果を図25に示す。これより、ECD(CoFe,Zn)は良好な電気化学反応を示すことがわかる。また、クロノクーロメトリー評価の終了電圧を-1.2V,0Vとして評価した際の可視光透過スペクトルを図26に示す。これより、視感度の高い450ナノメートルから650ナノメートルの範囲内でいずれの電圧においても波長依存性の少ないスペクトルを得るとともに、絶対値を大きく変化させることができた。これは、黒または灰色から透明への色変化ができることを示している。また、対極に用いる亜鉛-鉄シアノ錯体薄膜電極はマイクロミキサー合成でもバッチ合成でも同様の効果が得られたが、マイクロミキサー合成の方が応答速度に関しては速かった。
<(Cobalt-iron cyano complex, Prussian blue) / Zinc-iron cyano complex electrochromic device evaluation>
Even in the mixed thin film electrode, when the electrochromic device is manufactured using the zinc-iron cyano complex thin film electrode TZn1 having almost no color change as the counter electrode, the color change characteristic similar to that of the mixed thin film electrode can be realized as the electrochromic device. it can. The result of evaluating the cyclic voltammogram of the electrochromic device ECD (CoFe, Zn) produced in Adjustment Example 10 is shown in FIG. This shows that ECD (CoFe, Zn) shows a favorable electrochemical reaction. Further, FIG. 26 shows the visible light transmission spectrum when the end voltage of the chronocoulometry evaluation is evaluated as −1.2V and 0V. As a result, it was possible to obtain a spectrum with little wavelength dependency at any voltage within the range of 450 nm to 650 nm with high visibility, and to greatly change the absolute value. This indicates that the color can be changed from black or gray to transparent. In addition, the same effect was obtained with the zinc-iron cyano complex thin film electrode used for the counter electrode both in the micromixer synthesis and in the batch synthesis, but the response speed was faster in the micromixer synthesis.
 上記した発明によれば、有機エレクトロクロミック材料を使用することなく、黒色-無色透明、褐色-無色透明のエレクトロクロミック素子を実現することができる。この素子は、調光ガラス、ディスプレイ、インジケータ、調光ミラーなどにおける使用が期待される。 According to the above-described invention, a black-colorless transparent, brown-colorless, transparent electrochromic device can be realized without using an organic electrochromic material. This element is expected to be used in dimming glass, displays, indicators, dimming mirrors, and the like.
 以上、本発明による実施例及びこれに基づく改変例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 As mentioned above, although the Example by this invention and the modification based on this were demonstrated, this invention is not necessarily limited to these, Those skilled in the art will deviate from the main point of this invention, or the attached claim. Various alternative embodiments and modifications could be found without doing so.
 1、2 エレクトロクロミック層
 3、4 透明電極層
 5、6 基材
 7   電解質層
1, 2 Electrochromic layer 3, 4 Transparent electrode layer 5, 6 Base material 7 Electrolyte layer

Claims (8)

  1.  透明基材の上に多層膜を形成したエレクトロクロミック素子であって、
     少なくとも前記透明基材の上に、第1の透明電極層、第1のエレクトロクロミック層、電解質層、第2のエレクトロクロミック層、第2の透明電極層を順に形成し、
     前記電解質層は、(トリフルオロメタンスルホニル)イミド塩を含み、
     前記第1のエレクトロクロミック層は遷移金属酸化物を含み、
     前記第2のエレクトロクロミック層は金属シアノ錯体を含むことを特徴とするエレクトロクロミック素子。
    An electrochromic element in which a multilayer film is formed on a transparent substrate,
    On at least the transparent substrate, a first transparent electrode layer, a first electrochromic layer, an electrolyte layer, a second electrochromic layer, and a second transparent electrode layer are formed in this order.
    The electrolyte layer includes a (trifluoromethanesulfonyl) imide salt,
    The first electrochromic layer comprises a transition metal oxide;
    The electrochromic device, wherein the second electrochromic layer contains a metal cyano complex.
  2.  前記電解質層は、少なくとも、ビス(トリフルオロメタンスルホニル)イミド、リチウムビス(トリフルオロメタンスルホニル)イミド、カリウムビス(トリフルオロメタンスルホニル)イミド、ナトリウムビス(トリフルオロメタンスルホニル)イミドのいずれか1種類以上の(トリフルオロメタンスルホニル)イミド塩、および、有機溶媒を含むことを特徴とする請求項1記載のエレクトロクロミック素子。 The electrolyte layer includes at least one of bis (trifluoromethanesulfonyl) imide, lithium bis (trifluoromethanesulfonyl) imide, potassium bis (trifluoromethanesulfonyl) imide, and sodium bis (trifluoromethanesulfonyl) imide (trifluoromethane). The electrochromic device according to claim 1, comprising a (romethanesulfonyl) imide salt and an organic solvent.
  3.  前記遷移金属酸化物は、酸化タングステン、酸化モリブデン、酸化ニオブ、酸化バナジウム、酸化チタンのうちの少なくとも1種を含み、前記電解質層によって色変化を可能とするものであることを特徴する請求項2記載のエレクトロクロミック素子。 3. The transition metal oxide includes at least one of tungsten oxide, molybdenum oxide, niobium oxide, vanadium oxide, and titanium oxide, and enables color change by the electrolyte layer. The electrochromic device described.
  4. 前記金属シアノ錯体は、
    Aを陽イオン、
    Mをバナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、銀、亜鉛、ランタン、ユーロピウム、ガドリニウム、ルテチウム、バリウム、ストロンチウム、及びカルシウムからなる群より選ばれる金属原子、
    M’を、バナジウム、クロム、モリブデン、タングステン、マンガン、鉄、ルテニウム、コバルト、ニッケル、白金、及び銅からなる群より選ばれる金属原子、
    xを0~3の有理数、yを0.3~1.5の有理数、zを0~30の有理数として、
         AM[M’(CN)・zH
    の一般式で表される群より選ばれる1種又は2種以上からなるプルシアンブルー型金属錯体であることを特徴とする請求項1記載のエレクトロクロミック素子。
    The metal cyano complex is
    A is a cation,
    M is a metal atom selected from the group consisting of vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, silver, zinc, lanthanum, europium, gadolinium, lutetium, barium, strontium, and calcium. ,
    M ′ is a metal atom selected from the group consisting of vanadium, chromium, molybdenum, tungsten, manganese, iron, ruthenium, cobalt, nickel, platinum, and copper;
    x is a rational number from 0 to 3, y is a rational number from 0.3 to 1.5, z is a rational number from 0 to 30,
    A x M [M '(CN ) 6] y · zH 2 O
    The electrochromic device according to claim 1, wherein the electrochromic device is a Prussian blue-type metal complex composed of one or more selected from the group represented by the general formula:
  5. 前記第2のエレクトロクロミック層は前記金属シアノ錯体としてM及びM‘をそれぞれコバルト及び鉄として電気化学的酸化還元反応により褐色-無色透明に色変化を有するとともに、前記第1のエレクトロクロミック層は前記色変化と異なる色変化を与えることを特徴とする請求項4記載のエレクトロクロミック素子。 The second electrochromic layer has a color change from brown to colorless and transparent by an electrochemical redox reaction using M and M ′ as the metal cyano complex and cobalt and iron, respectively, and the first electrochromic layer The electrochromic device according to claim 4, wherein a color change different from the color change is given.
  6. 前記第2の透明電極層は酸化状態で無色透明になるエレクトロクロミック材料からなることを特徴とする請求項5記載のエレクトロクロミック素子。 6. The electrochromic device according to claim 5, wherein the second transparent electrode layer is made of an electrochromic material that becomes colorless and transparent in an oxidized state.
  7. 電気化学的酸化還元反応により褐色-無色透明に色変化するエレクトロクロミック材料であって、有効成分が一般式
             ACo[Fe(CN)・zH
    で示されるコバルト-鉄シアノ錯体をヘキサシアノ鉄イオンで表面修飾した結晶の単体または混合物からなることを特徴とするエレクトロクロミック材料。
    [式中、Aは、水素、リチウム、ナトリウム、カリウム、ルビジウム、セシウムからなる群より選択される陽イオン元素を表し、x=0~2.5、y=0.8~1.2、z=0~6の数値を表す。]
    An electrochromic material that changes its color from brown to colorless and transparent by an electrochemical oxidation-reduction reaction, in which an active ingredient has a general formula A x Co [Fe (CN) 6 ] y · zH 2 O
    An electrochromic material comprising a single crystal or a mixture of crystals obtained by surface-modifying a cobalt-iron cyano complex represented by formula (6) with hexacyanoiron ions.
    [In the formula, A represents a cation element selected from the group consisting of hydrogen, lithium, sodium, potassium, rubidium and cesium, x = 0 to 2.5, y = 0.8 to 1.2, z = Represents a numerical value of 0-6. ]
  8. 前記一般式の全金属原子数に対するヘキサシアノ鉄イオンの比率である表面修飾率が6~20パーセントであることを特徴とする請求項7記載のエレクトロクロミック材料。
     
     
     
     
     
     
    8. The electrochromic material according to claim 7, wherein the surface modification rate, which is the ratio of hexacyanoiron ions to the total number of metal atoms in the general formula, is 6 to 20 percent.





PCT/JP2017/028142 2016-08-02 2017-08-02 Electrochromic element and electrochromic material WO2018025939A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-152327 2016-08-02
JP2016152327A JP6968394B2 (en) 2016-08-02 2016-08-02 Electrochromic material, color variable electrode and element using this, manufacturing method of color variable electrode
JP2017-087247 2017-04-26
JP2017087247A JP7089724B2 (en) 2017-04-26 2017-04-26 Electrochromic element and dimming member using it

Publications (1)

Publication Number Publication Date
WO2018025939A1 true WO2018025939A1 (en) 2018-02-08

Family

ID=61073881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028142 WO2018025939A1 (en) 2016-08-02 2017-08-02 Electrochromic element and electrochromic material

Country Status (1)

Country Link
WO (1) WO2018025939A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020174842A1 (en) 2019-02-27 2020-09-03 国立研究開発法人産業技術総合研究所 Brain function measurement device, brain function measurement method, and probe
CN112534344A (en) * 2018-03-16 2021-03-19 国立研究开发法人物质·材料研究机构 Metal complex system electrochromic device
CN114859614A (en) * 2022-06-23 2022-08-05 广西大学 Prussian blue dual-waveband electrochromic device with photo-thermal regulation function
TWI808542B (en) * 2021-11-22 2023-07-11 明新學校財團法人明新科技大學 Electrochromic device with adjustable reflectivity and its forming method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184327A (en) * 1983-04-05 1984-10-19 Nissan Motor Co Ltd Electrochromic display element
JPS61219030A (en) * 1985-03-25 1986-09-29 Nippon Sheet Glass Co Ltd Electrochromic element
JPS6454422A (en) * 1987-08-25 1989-03-01 Tokai Rika Co Ltd Production of electrochromic display element
WO2008081923A1 (en) * 2006-12-28 2008-07-10 National Institute Of Advanced Industrial Science And Technology Process for producing nanoparticle of prussian blue type metal complex, prussian blue type metal complex nanoparticle obtained by the same, dispersion of the nanoparticles, method of regulating coloration of the nanoparticles, and electrode and transmitted-light regulator both employing the nanoparticles
JP2011180469A (en) * 2010-03-03 2011-09-15 National Institute Of Advanced Industrial Science & Technology Electrochemical element having prussian blue type metal complex nanoparticle, electrochromic element and secondary battery using the same
JP2013246374A (en) * 2012-05-28 2013-12-09 Sekisui Chem Co Ltd Light control body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184327A (en) * 1983-04-05 1984-10-19 Nissan Motor Co Ltd Electrochromic display element
JPS61219030A (en) * 1985-03-25 1986-09-29 Nippon Sheet Glass Co Ltd Electrochromic element
JPS6454422A (en) * 1987-08-25 1989-03-01 Tokai Rika Co Ltd Production of electrochromic display element
WO2008081923A1 (en) * 2006-12-28 2008-07-10 National Institute Of Advanced Industrial Science And Technology Process for producing nanoparticle of prussian blue type metal complex, prussian blue type metal complex nanoparticle obtained by the same, dispersion of the nanoparticles, method of regulating coloration of the nanoparticles, and electrode and transmitted-light regulator both employing the nanoparticles
JP2011180469A (en) * 2010-03-03 2011-09-15 National Institute Of Advanced Industrial Science & Technology Electrochemical element having prussian blue type metal complex nanoparticle, electrochromic element and secondary battery using the same
JP2013246374A (en) * 2012-05-28 2013-12-09 Sekisui Chem Co Ltd Light control body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534344A (en) * 2018-03-16 2021-03-19 国立研究开发法人物质·材料研究机构 Metal complex system electrochromic device
WO2020174842A1 (en) 2019-02-27 2020-09-03 国立研究開発法人産業技術総合研究所 Brain function measurement device, brain function measurement method, and probe
TWI808542B (en) * 2021-11-22 2023-07-11 明新學校財團法人明新科技大學 Electrochromic device with adjustable reflectivity and its forming method thereof
CN114859614A (en) * 2022-06-23 2022-08-05 广西大学 Prussian blue dual-waveband electrochromic device with photo-thermal regulation function
CN114859614B (en) * 2022-06-23 2023-12-05 广西大学 Prussian blue dual-band electrochromic device with photo-thermal regulation function

Similar Documents

Publication Publication Date Title
Chen et al. High performance and enhanced durability of thermochromic films using VO2@ ZnO core–shell nanoparticles
WO2018025939A1 (en) Electrochromic element and electrochromic material
Wei et al. Electrospun photochromic hybrid membranes for flexible rewritable media
EP2098582B1 (en) Functional electrode and functional electrochromic device
KR101158425B1 (en) Electrochromic films using sol-gel coating solutions dispersed of tungsten oxide nano particle and process thereof
EP2737530B1 (en) Electrochromic nanocomposite films
JP7352987B2 (en) electrochromic element
JP4873146B2 (en) Electrochromic device
JP4929995B2 (en) Electrochromic device
JP2011180469A (en) Electrochemical element having prussian blue type metal complex nanoparticle, electrochromic element and secondary battery using the same
Rong et al. New effective process to fabricate fast switching and high contrast electrochromic device based on viologen and Prussian blue/antimony tin oxide nano-composites with dark colored state
JP2007171781A (en) Electrochromic device
US20140146381A1 (en) Optically variable thin film with electrochemical capacitance property and use thereof
JP2004151265A (en) Electrochromic device and electrochromic display
JP5648805B2 (en) Electrochromic display element
US20080266643A1 (en) Electrode for Reversible Color Change Display Device and Method of Producing the Same, and Reversible Color Change Display Device and Reversible Color Change Lighting Control Device
US20120077037A1 (en) Metal complex nanoparticles and method for producing the same
JP2009048142A (en) Electrochromic compound, intermediate compound, method for manufacturing these compounds, and optical device using the electrochromic compound
JP2008122578A (en) Reversible recording material and displaying element
Tsuboi et al. Chromatic characterization of novel multicolor reflective display with electrochemically size‐controlled silver nanoparticles
Dong et al. Colorimetric properties and structural evolution of cathodic electrochromic WO3 thin films
JP6968394B2 (en) Electrochromic material, color variable electrode and element using this, manufacturing method of color variable electrode
JP2003248242A (en) Electrochromic device
JP2003315840A (en) Electrochromic display
JP4726553B2 (en) Electrochromic display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837041

Country of ref document: EP

Kind code of ref document: A1