WO2018025858A1 - Electrode for power storage device, power storage device, air cell, and all solid state cell - Google Patents

Electrode for power storage device, power storage device, air cell, and all solid state cell Download PDF

Info

Publication number
WO2018025858A1
WO2018025858A1 PCT/JP2017/027895 JP2017027895W WO2018025858A1 WO 2018025858 A1 WO2018025858 A1 WO 2018025858A1 JP 2017027895 W JP2017027895 W JP 2017027895W WO 2018025858 A1 WO2018025858 A1 WO 2018025858A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
storage device
electricity storage
main surface
current collector
Prior art date
Application number
PCT/JP2017/027895
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 井戸
茂樹 守屋
伸也 前田
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to CN201780047741.7A priority Critical patent/CN109565055B/en
Priority to CN201911308671.3A priority patent/CN111146444B/en
Publication of WO2018025858A1 publication Critical patent/WO2018025858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode for an electricity storage device, an electricity storage device using the same, an air battery, and an all solid state battery.
  • Patent Document 1 includes a carbonaceous material formed on a positive electrode current collector having a through hole and having a layered structure capable of inserting and releasing anions as a positive electrode active material.
  • a cell manufacturing process for injecting electricity, a charge / discharge process for charging / discharging between the positive electrode and the lithium ion supply source, and an electrochemical contact between the negative electrode and the lithium ion supply source is disclosed.
  • metallic lithium is used as a lithium ion supply source.
  • charge and discharge are performed between the positive electrode and the lithium ion supply source, and further, electrochemical contact is made between the negative electrode and the lithium ion supply source to occlude lithium ions in the negative electrode. I am letting.
  • metallic lithium as a lithium ion supply source remains in the electricity storage device.
  • Metallic lithium contained in the lithium ion source is a dangerous material that easily ignites. Therefore, it is preferable that metallic lithium does not remain in the electricity storage device.
  • Patent Document 2 describes the use of a carbonaceous material pre-doped with lithium ions as such a lithium ion supply source. That is, it is described that a carbonaceous material is fixed to a current collector, lithium ions are occluded between layers of the carbonaceous material by intercalation, and this is used as a lithium-containing electrode. By using such a lithium ion-containing electrode, charging / discharging can be performed between the positive electrode and the lithium ion supply source without using lithium metal, and further, electrochemical can be performed between the negative electrode and the lithium ion supply source. Contact can be made to occlude lithium ions in the negative electrode.
  • the occlusion amount of lithium ions has a theoretical upper limit of 372 mAh / g, which cannot be exceeded. For this reason, examination of the material which can occlude more lithium ions than a carbonaceous material was performed.
  • Silicon is known as a substance that can chemically bond with lithium ions to form an alloy and occlude lithium ions.
  • lithium ions In the case of storing lithium ions using silicon, it is theoretically said that lithium ions of 4000 mAh / g or more can be stored. That is, when lithium ions are occluded using silicon, the amount of occluded / released lithium ions per unit volume is large and the capacity can be increased.
  • lithium ions are occluded and released, there is a problem that the expansion and contraction of the active material itself is increased.
  • lithium ions are occluded into silicon to form a lithium-containing electrode, and when this lithium-containing electrode is used as a lithium ion supply source when manufacturing an electricity storage device, There was a problem that large distortion occurred and the current collector was warped and wrinkled.
  • the present invention has been made in view of the above problems, and an object of the present invention is to use an electrode for an electricity storage device having a structure in which warpage and wrinkle are unlikely to occur even when a large amount of metal ions is occluded and released. An object is to provide an electricity storage device.
  • An electrode for an electricity storage device of the present invention for solving the above-mentioned problems is a current collector plate having a first main surface and a second main surface opposite to the first main surface, the first main surface and the second main surface.
  • An electrode for an electricity storage device comprising an electrode layer containing an active material provided on a main surface, wherein the current collector plate is made of austenitic stainless steel, has a plurality of through holes, and the first main surface The electrode layer provided on the second main surface is connected through the plurality of through holes.
  • the current collector plate is made of austenitic stainless steel.
  • Austenitic stainless steel has high corrosion resistance and a high elastic modulus. Therefore, a current collector plate made of austenitic stainless steel is resistant to corrosion and is less likely to warp or wrinkle.
  • the current collector plate has a plurality of through holes, and an electrode layer containing an active material is formed on the first main surface and the second main surface of the current collector plate. ing. Therefore, the electrode layer formed on the first main surface side and the electrode layer formed on the second main surface side are connected through the through holes of the current collector plate. Therefore, the electrode layer formed on the first main surface side and the electrode layer formed on the second main surface side are difficult to peel off, and the electrode layers on both surfaces exert the same force on each other, Less likely to warp.
  • the electrode for an electricity storage device of the present invention is preferably in the following mode.
  • the active material preferably contains a metal ion storage material that chemically bonds with metal ions and stores the metal ions.
  • a metal ion storage material can store more metal ions than an intercalating active material. Therefore, the battery capacity can be increased.
  • the volume change of the metal ion storage material becomes large. Therefore, the current collector plate is likely to be warped and wrinkled.
  • the current collector plate is made of austenitic stainless steel and has a high elastic modulus. Therefore, even if a volume change occurs in the metal ion storage material, the current collector plate is less likely to be warped or wrinkled.
  • the metal ion storage material is preferably silicon. Silicon can occlude more metal ions than an active material using intercalation such as graphite, and is suitable as a metal ion occlusion material.
  • the current collector plate preferably contains martensitic stainless steel. Martensitic stainless steel has the highest hardness among stainless steels. Therefore, when the current collector plate contains martensitic stainless steel, the current collector plate can be made hard and high in strength. Therefore, it becomes easy to prevent the current collector plate from being warped or wrinkled.
  • the martensitic stainless steel is preferably scattered in islands in the austenitic stainless steel in a cross section in which the current collector plate is cut along the thickness direction.
  • Martensitic stainless steel has high hardness but low toughness. Therefore, in the current collector plate, when the martensitic stainless steel is unevenly distributed in a part of the austenitic stainless steel, the location where the martensitic stainless steel is unevenly distributed is easily broken. However, if the martensitic stainless steel is scattered in islands in the austenitic stainless steel in the current collector plate, the current collector plate is difficult to break. In addition, it shows that it is divided finely that it is scattered in island shape, and it is not connected to one.
  • the area occupied by the martensitic stainless steel is preferably 5 to 20% of the entire cross section when the current collector plate is cut along the thickness direction.
  • the current collector plate is hardly corroded and has high strength. If the area occupied by the martensitic stainless steel is less than 5%, it becomes difficult to obtain the effect of improving the strength of the current collector plate by containing the martensitic stainless steel. If the area occupied by martensitic stainless steel exceeds 20%, the martensitic stainless steel that is vulnerable to corrosion will be easily exposed to the surface, and the martensitic stainless steel existing inside will be continuously connected to collect current. Corrosion easily occurs on the entire plate. Moreover, since the ratio of a comparatively brittle martensitic stainless steel becomes large, a current collecting plate becomes easy to bend.
  • the through hole is composed of a first tapered hole that spreads toward the first main surface side and a second tapered hole that spreads toward the second main surface side.
  • the shape of the through hole is a taper shape spreading only in one direction of the first main surface or the second main surface.
  • the force accompanying the volume change is increased, the current collector plate is easily distorted, and the current collector plate is likely to warp.
  • the through hole is composed of a first taper hole widened to the first main surface side and a second taper hole widened to the second main surface side, the volume change as the active material occludes and releases metal ions. Even so, the force accompanying the volume change is dispersed. As a result, the current collector plate can be prevented from being distorted, and the current collector plate is hardly warped.
  • the first tapered hole and the second tapered hole are arranged on the first main surface so as to form a regular arrangement such that the number thereof is the same. It is preferable.
  • the electrode for an electricity storage device of the present invention when the first taper holes and the second taper holes are arranged in a regular arrangement such that these numbers are the same ratio, The unbalanced current collector plate is less likely to be distorted due to the excessive number of either one of the first taper hole and the second taper hole.
  • the first taper holes and the second taper holes are regularly arranged, the first taper holes or the second taper holes are unlikely to be unevenly distributed in a part of the current collector plate. Therefore, it is difficult for the current collector plate to be locally warped.
  • the first tapered holes and the second tapered holes are regularly arranged on the first main surface so as to be alternately repeated.
  • the first taper holes and the second taper holes can be preferably dispersed. For this reason, it is possible to make the current collector plate less likely to warp.
  • the electrode for an electricity storage device of the present invention is preferably used for doping metal ions into the positive electrode and / or the negative electrode.
  • the current collector plate of the electrode for an electricity storage device of the present invention is made of austenitic stainless steel. Austenitic stainless steel has a higher electrical resistivity than copper normally used as a current collector. Therefore, the electrical resistivity of the current collector plate is also increased.
  • the positive electrode and / or the negative electrode are doped with metal ions after the metal storage electrode of the present invention is doped, it is not necessary to pass a large current through the current collector plate. Therefore, even if the electrical resistivity of the current collector plate is a little high, it can be sufficiently doped. That is, the current collector plate of the electrode for an electricity storage device of the present invention can be preferably doped with metal ions in the positive electrode and / or the negative electrode, although the electrical resistivity is high.
  • the power storage device of the present invention includes a positive electrode, a negative electrode, a separator that separates the positive electrode and the negative electrode, a power storage package that houses the positive electrode, the negative electrode, and the separator, and an electrolyte solution enclosed in the power storage package
  • the power storage device further includes a power storage device electrode for doping the positive electrode and / or the negative electrode with metal ions, and the power storage device electrode is doped with metal ions. It is an electrode for an electricity storage device according to the present invention.
  • the electrode for an electricity storage device of the present invention is less likely to be warped or wrinkled even when a large amount of metal ions is occluded and released. Therefore, when the electrode for an electricity storage device of the present invention is used as an electrode for an electricity storage device for doping a metal ion to the positive electrode and / or the negative electrode, the electricity storage of the present invention can be achieved even if the positive electrode and / or the negative electrode are doped with a metal ion. Device electrodes are less likely to warp or wrinkle. In a general electricity storage device, a space is provided in the electricity storage device in consideration of deformation of the electrode for the electricity storage device used for doping. However, in the electricity storage device of the present invention, it is not necessary to provide such a space. Therefore, the size of the electricity storage device can be reduced.
  • An air battery according to the present invention includes a positive electrode, a negative electrode, a solid electrolyte disposed between the positive electrode and the negative electrode, a power storage package containing the positive electrode, the negative electrode, and the solid electrolyte, and An air battery comprising an aqueous electrolyte sealed on the positive electrode side and an organic electrolyte sealed on the negative electrode side of the power storage package, wherein the negative electrode is a power storage device of the present invention doped with metal ions Electrode.
  • the size of the entire air battery can be reduced.
  • the air battery can perform mechanical charging in which the negative electrode from which metal ions are released after discharge and the aqueous electrolyte in which the concentration of metal hydroxide on the positive electrode side is increased are exchanged.
  • an air battery using the electrode for an electricity storage device of the present invention as a negative electrode can be easily replaced and mechanically charged easily because the negative electrode itself is compact.
  • the all solid state battery of the present invention comprises a positive electrode, a negative electrode, a solid electrolyte in contact with the positive electrode and the negative electrode, and a power storage package containing the positive electrode, the negative electrode, and the solid electrolyte.
  • the negative electrode is the electrode for an electricity storage device of the present invention doped with metal ions.
  • the positive electrode and the negative electrode are in direct contact with the solid electrolyte without using an electrolytic solution. Moreover, in the all solid state battery, metal ions are transferred between the electrode and the solid electrolyte without using an electrolytic solution. Therefore, the contact surface between the electrode and the solid electrolyte requires extremely high flatness. As described above, the electrode for the electricity storage device of the present invention is less likely to be warped or wrinkled. Therefore, even if the electrode for an electricity storage device of the present invention is used for the negative electrode, the distortion of the shape hardly occurs. Therefore, the flatness of the contact surface between the electrode and the solid electrolyte can be increased.
  • the movement of metal ions inside the electricity storage device can be made smooth, the resistance can be reduced, and the entire surface of the electrode The reaction can be caused evenly and the performance of the all-solid-state battery can be fully exhibited. Furthermore, the size of the all solid state battery of the present invention can be reduced.
  • the current collector plate is made of austenitic stainless steel.
  • Austenitic stainless steel has high corrosion resistance and a high elastic modulus. Therefore, a current collector plate made of austenitic stainless steel is resistant to corrosion and is less likely to warp or wrinkle.
  • FIG. 1 is a perspective view schematically showing an example of an electrode for an electricity storage device of the present invention.
  • FIG. 2 is a partially enlarged view showing a broken line portion of FIG. 1 and an electrode layer made transparent.
  • 3 is a cross-sectional view taken along line AA in FIG.
  • FIGS. 4A to 4C are schematic views schematically showing an example of a regular arrangement pattern in which the first tapered holes and the second tapered holes of the electricity storage device electrode of the present invention are alternately repeated.
  • FIG. 5 is a cross-sectional view schematically showing an example of a cross section of the current collector plate of the electrode for the electricity storage device cut along the thickness direction.
  • FIGS. 1 is a perspective view schematically showing an example of an electrode for an electricity storage device of the present invention.
  • FIG. 2 is a partially enlarged view showing a broken line portion of FIG. 1 and an electrode layer made transparent.
  • 3 is a cross-sectional view taken along line AA in FIG.
  • FIGS. 6A to 6E are process diagrams schematically showing, in order, an example of a process for producing an electricity storage device using the electrode for an electricity storage device of the present invention containing metal ions.
  • FIGS. 7A to 7C are process diagrams schematically showing, in order, one example of a process for producing an electricity storage device using the electrode for an electricity storage device of the present invention containing metal ions as a negative electrode.
  • FIG. 8 shows the analysis of the stainless steel plate used in manufacturing the electrode for the electricity storage device according to Example 1 of the present invention by the EBSD method. Based on the analysis result, the austenite phase and the martensite phase in the stainless steel plate are analyzed. It is the figure which mapped.
  • FIG. 9 is a photograph of a cross section obtained by cutting the current collector plate in the electrode for an electricity storage device according to Example 1 in a direction parallel to the thickness direction and passing through the center of the first taper hole and expanding 200 times. is there.
  • FIG. 1 is a perspective view schematically showing an example of an electrode for an electricity storage device of the present invention.
  • the electrode 10 for electrical storage devices includes a current collector plate 20 having a first main surface 21 and a second main surface 22 opposite to the first main surface 21, and a first main surface 21 and a second main surface 21.
  • This is an electrode for an electricity storage device comprising an electrode layer 30 containing an active material provided on the main surface 22.
  • the current collector plate 20 is made of austenitic stainless steel.
  • FIG. 2 is a partially enlarged view showing a broken line portion of FIG. 1 and an electrode layer made transparent.
  • the current collector plate 20 has a plurality of through holes 40, and the first main surface 21 and the second main surface 22 of the current collector plate 20 have an active material.
  • the electrode layer 30 containing is formed. Therefore, the electrode layer 30 a provided on the first main surface 21 and the electrode layer 30 b provided on the second main surface 22 side are connected through the plurality of through holes 40 of the current collector plate 20. Therefore, the electrode layer 30a formed on the first main surface 21 and the electrode layer 30b formed on the second main surface 22 side are difficult to peel off, and the electrode layers 30a and 30b on both surfaces exert the same force as each other. Therefore, the current collector plate 20 is unlikely to be warped or wrinkled.
  • the through-hole 40 includes a first tapered hole 41 that expands toward the first main surface 21 and a second tapered hole 42 that expands toward the second main surface 22.
  • the first taper hole 41 and the second taper hole 42 are filled with the electrode layer 30.
  • the through hole may not be completely filled with the electrode layer, and the electrode layer may be formed so as not to completely block the through hole of the current collector plate.
  • the through-hole 40 includes a first tapered hole 41 that expands toward the first main surface 21 and a second tapered hole 42 that expands toward the second main surface 22. Therefore, even if the volume changes as the active material absorbs and releases metal ions, the force accompanying the volume change is dispersed. As a result, the current collector plate 20 can be prevented from being distorted, and the current collector plate 20 is less likely to warp.
  • the aperture ratio of the through holes 40 is not particularly limited, but is preferably 1 to 20%.
  • the aperture ratio of the through-hole 40 defines the area of the smaller one of both the first taper hole and the second taper hole as the area ratio of the openings.
  • the diameter of the first tapered hole 41 on the first main surface 21 side is preferably 20 to 200 ⁇ m.
  • the diameter of the first tapered hole 41 on the second main surface 22 side is preferably 10 to 100 ⁇ m.
  • the diameter of the second tapered hole 42 on the first main surface 21 side is preferably 10 to 100 ⁇ m.
  • the diameter of the second tapered hole 42 on the second main surface 22 side is preferably 20 to 200 ⁇ m.
  • the first taper holes 41 and the second taper holes 42 are regularly arranged on the first main surface 21 of the current collector plate 20 so that the numbers thereof are the same ratio. It is preferable to arrange so as to be.
  • the first taper holes 41 and the second taper holes 42 are arranged in a regular arrangement such that the number of the first taper holes 41 and the second taper holes 42 are the same, the first taper holes 41 in the current collector plate 20 as a whole. And the distortion of the unbalanced current collector plate 20 due to the excessive number of the tapered holes in either one of the second tapered holes 42 is less likely to occur.
  • the first tapered holes 41 and the second tapered holes 42 are regularly arranged, the first tapered holes 41 or the second tapered holes 42 are unlikely to be unevenly distributed in a part of the current collector plate 20. Therefore, the current collector plate 20 is less likely to be locally warped.
  • the first taper holes 41 and the second taper holes 42 are regularly arranged so that the numbers thereof are the same ratio. Will be placed.
  • the first tapered holes 41 and the second tapered holes 42 are preferably regularly arranged on the first main surface 21 so as to be alternately repeated.
  • the first taper holes 41 and the second taper holes 42 can be suitably dispersed. For this reason, it is possible to make it difficult for the current collector plate 20 to warp.
  • the distance from the center of the adjacent first tapered hole 41 to the center of the second tapered hole 42 is preferably 100 to 600 ⁇ m.
  • the regular arrangement pattern in which the first taper holes 41 and the second taper holes 42 are alternately repeated is not particularly limited, and examples thereof include the following arrangement patterns.
  • FIGS. 4A to 4C are schematic views schematically showing an example of a regular arrangement pattern in which the first tapered holes and the second tapered holes of the electricity storage device electrode of the present invention are alternately repeated.
  • the first tapered holes 41 are arranged on a straight line
  • the second tapered holes 42 are arranged on a straight line
  • these straight lines are alternately arranged in parallel.
  • the arrangement pattern may be such that the center of each tapered hole is located at the apex of the equilateral triangle on a plane in which equilateral triangles are spread.
  • the arrangement pattern is such that four first taper holes 41 are adjacent to four second taper holes 42, and one first taper hole 42 is four first tapers.
  • the arrangement pattern may be such that the center of each tapered hole is located at the apex of the square in the plane where the holes 41 are adjacent and the square is spread.
  • the arrangement pattern is such that three first tapered holes 41 are adjacent to one first tapered hole 41, and three first tapered holes are associated with one second tapered hole 42.
  • the arrangement pattern may be such that the center of each tapered hole is located at the apex of the regular hexagon in the plane where the holes 41 are adjacent and are spread with regular hexagons.
  • the current collector plate 20 is made of austenitic stainless steel.
  • Austenitic stainless steel has high corrosion resistance and a high elastic modulus. Therefore, a current collector plate made of austenitic stainless steel is resistant to corrosion and is less likely to warp or wrinkle.
  • the electrode layer 30 preferably contains a polyimide resin as a binder.
  • a polyimide resin as a binder.
  • the electrode 10 for electrical storage devices, it is necessary to heat at 250 ° C. or higher in order to advance imidization after applying the polyimide resin precursor to the current collector plate 20. Copper is used for a general current collector plate, but copper is oxidized when heated at 250 ° C. or higher. Therefore, it is necessary to process by reducing the amount of oxygen in the atmosphere.
  • the current collector plate 20 is made of austenitic stainless steel, the oxidation temperature of the austenitic stainless steel is about 850 ° C. Therefore, even if it heats to the temperature required for imidation, the current collecting plate 20 is hard to be oxidized.
  • the current collecting plate 20 contains martensitic stainless steel.
  • martensitic stainless steel can be precipitated inside by strongly plastically deforming austenitic stainless steel. Martensitic stainless steel has the highest hardness among stainless steels. Therefore, when the current collecting plate 20 contains martensitic stainless steel, the current collecting plate 20 can be made hard and high in strength. Therefore, it becomes easy to prevent the current collecting plate 20 from being warped or wrinkled.
  • FIG. 5 is a cross-sectional view schematically showing an example of a cross section of the current collector plate of the electrode for the electricity storage device cut along the thickness direction.
  • the martensitic stainless steel 51 is dotted like islands in the austenitic stainless steel 52 in a cross section in which the current collector plate 20 is cut along the thickness direction.
  • Martensitic stainless steel has high hardness but low toughness. Therefore, in the current collector plate, when the martensitic stainless steel is unevenly distributed in a part of the austenitic stainless steel, the location where the martensitic stainless steel is unevenly distributed is easily broken. However, if the martensitic stainless steel 51 is scattered in islands in the austenitic stainless steel 52 in the current collecting plate 20, the current collecting plate 20 is difficult to break.
  • EBSD method electron backscatter diffraction diagram measurement method
  • the area occupied by the martensitic stainless steel 51 in the cross section obtained by cutting the current collector plate 20 along the thickness direction is preferably 5 to 20% of the entire cross section.
  • the current collector plate 20 is hardly corroded and has high strength. If the area occupied by the martensitic stainless steel is less than 5%, it becomes difficult to obtain the effect of improving the strength of the current collector plate by containing the martensitic stainless steel. If the area occupied by martensitic stainless steel exceeds 20%, the martensitic stainless steel that is vulnerable to corrosion will be easily exposed to the surface, and the martensitic stainless steel existing inside will be continuously connected to collect current. Corrosion easily occurs on the entire plate. Since the ratio of the relatively brittle martensitic stainless steel is increased, the current collector plate is easily broken.
  • the current collector plate 20 may include ferritic stainless steel in addition to the martensitic stainless steel 51 and the austenitic stainless steel 52.
  • the thickness of the current collector plate 20 is not particularly limited, but is preferably 5 to 30 ⁇ m. If the thickness of the current collector plate is less than 5 ⁇ m, the current collector plate is easily broken because it is too thin. If the thickness of the current collector plate exceeds 30 ⁇ m, it is too thick, and the size of the power storage device using the power storage device electrode including the current collector plate having such a thickness is likely to increase.
  • the tensile strength of the current collector plate 20 is not particularly limited, but is preferably 600 to 1500 MPa.
  • the Young's modulus of the current collector plate 20 is not particularly limited, but is preferably 100 to 300 GPa.
  • the active material preferably includes a metal ion storage material that is chemically bonded to metal ions and stores metal ions.
  • a metal ion storage material can store more metal ions than an intercalating active material. Therefore, the battery capacity can be increased.
  • the volume change of the metal ion storage material becomes large. Therefore, the current collector plate is likely to be warped and wrinkled.
  • the current collector plate 20 is made of austenitic stainless steel and has a high elastic modulus. Therefore, even if a volume change occurs in the metal ion storage material, the current collector plate 20 is less likely to be warped or wrinkled.
  • Such a metal ion storage material is not particularly limited, and examples thereof include silicon, silicon oxide, and tin. Of these, silicon is preferable. Silicon can occlude more metal ions than an active material using intercalation such as graphite, and is suitable as a metal ion occlusion material.
  • the electrode layer 30 preferably includes a binder that binds the active material.
  • a binder that binds the active material.
  • a polyimide resin, a polyamideimide resin, etc. are mention
  • the thickness of the electrode layer 30 is not particularly limited, but is preferably 5 to 50 ⁇ m.
  • the thickness of the electrode layer is less than 5 ⁇ m, the amount of the active material is smaller than that of the current collector plate, so that the electric capacity is likely to decrease.
  • the thickness of the electrode layer exceeds 50 ⁇ m, the distance that the metal ions move through the electrode layer becomes long, and it takes time to charge and discharge.
  • the surface density of the electrode layer 30 is not particularly limited, but is preferably 1.4 to 2.0 g / cm 2 .
  • the electrode layer 30 contains a conductive support agent, and it is preferable that a conductive support agent is carbon black.
  • the electrode 10 for electrical storage devices is used in order to dope a metal ion to a positive electrode and / or a negative electrode.
  • a metal ion is previously doped into the electrode for the electricity storage device.
  • the current collector plate 20 of the electricity storage device electrode 10 is made of austenitic stainless steel. Austenitic stainless steel has a higher electrical resistivity than copper. Therefore, the electrical resistivity of the current collector plate 20 is also increased. When doping metal ions into the positive electrode and / or the negative electrode, it is not necessary to flow a large current through the current collector plate 20.
  • the electrical resistivity of the current collector plate 20 is a little high, it can be sufficiently doped. That is, although the current collector plate 20 of the electrode 10 for the electricity storage device has a high electrical resistivity, it is difficult to be deformed even when a material capable of occluding many metals is applied as an active material, and the positive electrode and / or the negative electrode are preferably doped with metal ions can do.
  • a through hole is formed in the austenitic stainless steel sheet.
  • the method for forming the through hole is not particularly limited, and the through hole may be formed by any of an etching method, a punching method, and a laser processing method. Of these, the etching method is preferable.
  • the through hole By forming the through hole by an etching method, a tapered through hole can be formed.
  • the through-hole formed by the etching method is less likely to generate burrs, and the current collector plate that is a conductor is less likely to be exposed on the surface of the electrode for the electricity storage device, and can be suitably used.
  • the taper hole which spreads in one main surface of an austenitic stainless steel plate, and the taper hole which spreads in the other main surface can be formed.
  • the etching conditions are not particularly limited.
  • a method of treating with a 30 to 40% aqueous ferric chloride solution at 25 to 40 ° C. for 10 to 60 minutes can be mentioned.
  • the active material is not particularly limited, and examples thereof include a metal ion storage material that stores metal ions by intercalation, and a metal ion storage material that stores metal ions by being chemically bonded to metal ions.
  • the metal ion occlusion substance which occludes a metal ion by chemically bonding with a metal ion is preferable, and silicon is more preferable.
  • the binder is not particularly limited, and examples thereof include a polyimide resin precursor and a polyamideimide resin. In these, a polyimide resin precursor is preferable.
  • the viscosity of the active material slurry is preferably 1 to 10 Pa ⁇ s.
  • the viscosity of the slurry is measured using a B-type viscometer under conditions of 1 to 10 rpm.
  • the viscosity of the active material slurry can be adjusted by adjusting the ratio of the active material and the binder. Moreover, you may adjust a viscosity with a thickener etc. as needed.
  • the active material slurry is applied to both main surfaces of the current collector plate.
  • the amount of the active material slurry to be applied is not particularly limited, but it is preferable to apply the slurry so as to be 0.1 to 10 mg / cm 2 after heat drying.
  • the current collector plate coated with the active material slurry is pressed.
  • the pressure of the press working is not particularly limited, but it is sufficient if the active material slurry is pressed so as to be flat.
  • Heating step the current collector plate coated with the active material slurry is heated to cure the binder made of the thermosetting resin contained in the active material slurry.
  • the heating conditions are preferably determined according to the type of binder used.
  • the heating temperature is preferably 250 to 350 ° C.
  • the atmosphere during heating is preferably an inert atmosphere such as a nitrogen gas atmosphere.
  • the electrode for an electricity storage device of the present invention can be manufactured.
  • the doping method is not particularly limited. It may be electrically doped, or the metal ion source may be in direct contact with the electrode for the electricity storage device.
  • the dope method for direct contact will be described below.
  • Organic electrolyte application process First, an organic electrolyte is applied to the electrode layer on one main surface side of the current collector plate of the electrode for an electricity storage device of the present invention.
  • the organic electrolytic solution is not particularly limited, but a solution in which a metal salt is dissolved as an electrolyte in an organic solvent can be used.
  • organic solvents examples include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), cyclic carbonates such as vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( EMC), chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2-diethoxy Chain ethers such as ethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylphenol Rumamide, acetonitrile, propylnitrile, nitromethane, eth
  • the electrode layer coated with the organic electrolyte and the metal ion source are brought into contact with each other to dope metal ions.
  • a metal ion source Lithium, sodium, calcium, magnesium etc. are mention
  • the dope conditions are not particularly limited, but may be either no heating or heating. When heating, it is preferable to heat to room temperature to 80 ° C.
  • the dope time is preferably 5 to 120 minutes.
  • the dope method is not limited to such a method of contacting the metal ion source, and other methods can be used.
  • the metal ion source and the electrode for the electricity storage device can be connected to an external circuit and electrically doped.
  • FIGS. 6A to 6E are process diagrams schematically showing, in order, an example of a process for producing an electricity storage device using the electrode for an electricity storage device of the present invention containing metal ions.
  • the storage device electrode 10 which is a metal ion supply electrode, the positive electrode 161, the negative electrode 162, and the separator 163 are accommodated in the storage package 164.
  • the electrode for an electricity storage device of the present invention containing metal ions is not used as a positive electrode or a negative electrode, but is used as a metal ion supply electrode for supplying metal ions to the positive electrode or the negative electrode.
  • the separator 163 is disposed so that the electricity storage device electrode 10, the positive electrode 161, and the negative electrode 162 are separated from each other.
  • the positive electrode 161 is composed of a positive electrode current collector and a positive electrode active material provided in the positive electrode current collector.
  • the positive electrode current collector is not particularly limited, but is preferably made of aluminum, nickel, copper, silver and alloys thereof.
  • the positive electrode active material is not particularly limited, LiMnO 2, Li x Mn 2 O 4 (0 ⁇ x ⁇ 2), Li 2 MnO 3, Li x Mn 1.5 Ni 0.5 O 4 (0 ⁇ x ⁇ 2 Lithium manganate having a layered structure such as) or lithium manganate having a spinel structure; LiCoO 2 , LiNiO 2 or a part of these transition metals replaced with another metal; LiNi 1/3 Co 1/3 Mn Lithium transition metal oxides in which more than half of specific transition metals such as 1/3 O 2 are present; Li in excess of the stoichiometric composition in these lithium transition metal oxides; Olivine structures such as LiFePO 4 And the like.
  • metal oxides include aluminum, iron, phosphorus, titanium, silicon, lead, tin, indium, bismuth, silver, barium, calcium, mercury, palladium, platinum, tellurium, zirconium, zinc, lanthanum, etc.
  • Substituted materials can also be used.
  • a positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the electrolyte forms an electric double layer on the surface of the carbon porous body and acts as a capacitor.
  • the electrolyte is a lithium salt, a lithium ion capacitor is obtained.
  • the negative electrode 162 is composed of a negative electrode current collector and a negative electrode active material provided in the negative electrode current collector.
  • the negative electrode current collector is not particularly limited, but is preferably made of aluminum, nickel, copper, silver, and alloys thereof.
  • the negative electrode active material is not particularly limited, but is preferably made of silicon, silicon monoxide, silicon dioxide, carbon or the like.
  • the separator 163 is not particularly limited, and a porous film such as polypropylene or polyethylene or a nonwoven fabric can be used. Moreover, what laminated
  • the electrolytic solution 165 is not particularly limited, but a solution in which a metal salt is dissolved as an electrolyte in a solvent can be used.
  • Solvents include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC).
  • Chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2-diethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylform Amide, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, Examples include
  • Lithium salt Lithium salt, sodium salt, calcium salt, magnesium salt, etc.
  • examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2) 2, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, LiI, LiSCN , LiCl, imides and the like. These may be used alone or in combination of two or more.
  • the electrolyte concentration of the electrolytic solution 165 is not particularly limited, but is preferably 0.5 to 1.5 mol / L. If the electrolyte concentration is less than 0.5 mol / L, it will be difficult to make the electric conductivity of the electrolyte sufficiently. When the electrolyte concentration exceeds 1.5 mol / L, the density and viscosity of the electrolytic solution tend to increase.
  • the negative electrode 162 and the electrode for power storage device 10 which is a metal ion supply electrode are electrochemically connected to store power.
  • the metal ions occluded in the device electrode 10 are transferred to the negative electrode 162.
  • the negative electrode 162 functions as a positive electrode
  • the electricity storage device electrode 10 functions as a negative electrode.
  • the negative electrode active material of the negative electrode 162 is doped with metal ions. Note that when the electricity storage device originally contains metal ions in the positive electrode or the negative electrode, the doping step is not essential, but the doping step may be performed so as to compensate for the shortage of metal ions as the electrolyte.
  • the doping may be performed not only before the electricity storage device is completed but also when metal ions are insufficient.
  • the electricity storage device is a lithium ion capacitor
  • the metal ions are supplied to the inside of the electricity storage device so that the electricity storage device can be operated by doping the positive electrode or the negative electrode because the positive electrode and the negative electrode do not contain metal ions. Is done.
  • the electrochemical connection between the negative electrode 162 and the electrode for power storage device 10 is cut off, whereby the power storage device 100. Can be manufactured.
  • the power storage device 100 manufactured in this way is also an example of the power storage device of the present invention.
  • a current can be passed by connecting the positive electrode 161 and the negative electrode 162 of the electricity storage device 100.
  • the electricity storage device electrode 10 containing metal ions remains inside the electricity storage device 100, but is much safer than when an active metal such as lithium remains inside the electricity storage device.
  • the current collecting plate 20 of the electricity storage device electrode 10 is less likely to be warped or wrinkled. In general power storage devices, it is necessary to increase the power storage package in consideration of such warpage and wrinkle of the current collector plate. However, when the power storage device electrode 10 is used, the power storage package is increased in this way. It does not have to be.
  • the electrode 10 for the electricity storage device when silicon is used as the active material of the electrode 10 for the electricity storage device, many metal ions can be occluded. Therefore, the electrode 10 for electrical storage devices can be made small. By using such a small electricity storage device electrode 10, the electricity storage device 100 can also be made small.
  • FIGS. 7A to 7C are process diagrams schematically showing, in order, one example of a process for producing an electricity storage device using the electrode for an electricity storage device of the present invention containing metal ions as a negative electrode.
  • the positive electrode 261, the negative electrode 262, and the solid electrolyte 263 are accommodated in the power storage package 264.
  • the solid electrolyte 263 is disposed so that the positive electrode 261 and the negative electrode 262 are separated from each other. Further, a part of the positive electrode 261 is exposed from the power storage package 264. Further, the solid electrolyte has ionic conductivity with respect to metal ions contained in an organic electrolyte and an aqueous electrolyte described later.
  • the positive electrode 261 includes a catalyst and a porous material that supports the catalyst.
  • the catalyst is not particularly limited, but is preferably made of manganese oxide, cobalt oxide, nickel oxide, iron oxide, copper oxide or the like.
  • the porous material is not particularly limited, but is preferably made of carbon.
  • the negative electrode 262 is the above electrode for an electricity storage device containing metal ions.
  • the solid electrolyte 263 is not particularly limited as long as it has metal ion conductivity.
  • Li 3 N Garnet-Type lithium ion conductor, NASICON lithium ion conductor, ⁇ -Fe 2 (SO 4 ) lithium ion A conductor, a perovskite type lithium ion conductor, a thio LISICON type lithium ion conductor, a polymer type lithium ion conductor, or the like can be used.
  • an aqueous electrolyte 265a is injected into the positive electrode side of the electricity storage package 264, and an organic electrolyte 265b is injected into the negative electrode side.
  • the organic electrolyte solution 265b and the aqueous electrolyte solution 265a deliver metal ions through the solid electrolyte. Since the negative electrode on the organic electrolyte 265b side and the aqueous electrolyte 265a are not in contact with each other, the aqueous electrolyte 265a is not decomposed by the metal.
  • the aqueous electrolyte 265a is not particularly limited, but is preferably an aqueous alkaline electrolyte, more preferably lithium hydroxide dissolved in water or an aqueous solvent, and even more preferably an aqueous lithium hydroxide solution.
  • the aqueous alkaline electrolyte may contain lithium halide.
  • lithium halide examples include lithium fluoride (LiF), lithium chloride (LiCl), lithium bromide (LiBr), and iodide. Examples thereof include lithium (LiI).
  • the organic electrolytic solution 265b may be the same as the electrolytic solution 165.
  • the positive electrode 261 is an air electrode.
  • the air battery 200 manufactured in this way is also an example of the air battery of the present invention.
  • an electric current can be sent by connecting the positive electrode 261 and the negative electrode 262 of the air battery 200.
  • the positive electrode and the negative electrode may be brought into direct contact with the solid electrolyte without using an electrolytic solution.
  • an all-solid battery can be manufactured.
  • the solid electrolyte is not specifically limited, 8Li 2 O ⁇ 67Li 2 S ⁇ 25P 2 S 5, Li 2 S, P 2 S 5, Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI- Sulfide-based amorphous solid electrolytes such as Li 2 S—P 2 S 5 and LiI—Li 2 S—B 2 S 3 , Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 iso-oxide based amorphous solid electrolyte, Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 , Li 1 + x + y A x Ti 2-x Si y P 3-y O 12 (A is A crystalline oxide such as Al or Ga, 0 ⁇ x ⁇ 0.4,
  • Example 1 Current collector plate manufacturing process (1-1) Preparation of stainless steel plate A stainless steel plate having a thickness of 20 ⁇ m was prepared. The stainless steel plate is SUS304 austenitic stainless steel. Next, the stainless steel plate was cold plastically deformed to precipitate a martensite phase inside. The ratio of austenite and martensite in the obtained stainless steel was analyzed by the EBSD method. The results are shown in FIG. FIG. 8 shows the analysis of the stainless steel plate used in manufacturing the electrode for the electricity storage device according to Example 1 of the present invention by the EBSD method. Based on the analysis result, the austenite phase and the martensite phase in the stainless steel plate are analyzed. It is the figure which mapped. In FIG. 8, the part shown by the code
  • the conditions for the EBSD method are as follows.
  • the area occupied by the martensite phase in the stainless steel plate was 15%.
  • the tensile strength of the stainless steel plate was 1300 MPa.
  • FIG. 9 is a photograph of a cross section obtained by cutting the current collector plate in the electrode for an electricity storage device according to Example 1 in a direction parallel to the thickness direction and passing through the center of the first taper hole and expanding 200 times. is there.
  • symbol 20 shows a current collecting plate
  • symbol 21 shows a 1st main surface
  • symbol 22 shows a 2nd main surface
  • symbol 41 shows a 1st taper hole.
  • the through hole had a tapered shape.
  • the diameter of the 1st taper hole and the 2nd taper hole was as follows.
  • the diameter of the first taper hole on the first main surface side was 60 ⁇ m.
  • the diameter on the first main surface side of the second tapered hole was 120 ⁇ m.
  • the distance from the center of the first taper hole to the center of the second taper hole was 200 ⁇ m.
  • the total density of the first tapered holes and the second tapered holes was 2500 / cm 2 .
  • the electrical storage device electrode according to Example 1 was manufactured through the above steps.
  • the current collector plate is a simple flat plate having no through hole.
  • the electrical storage device electrode according to Comparative Example 1 was manufactured through the above steps.
  • Comparative Example 2 In Comparative Example 1, the same steps as in Comparative Example 1 were performed except that a copper-nickel-copper clad metal plate having a thickness of 20 ⁇ m was prepared instead of the copper plate in the manufacturing process of the current collector plate. Such an electrode for an electricity storage device was manufactured. The tensile strength of the copper-nickel-copper clad metal plate was 920 MPa.
  • the current collecting plate was taken out from each electrode for an electricity storage device after drying and observed visually. No warpage or wrinkle was observed on the current collector plate of the electrode for an electricity storage device according to Example 1. Large warpage and wrinkles were observed on the current collector plate of the electrode for an electricity storage device according to Comparative Example 1. Small warpage and wrinkles were observed on the current collector plate of the electrode for an electricity storage device according to Comparative Example 2. From this result, it was found that the current collector plate of the electrode for an electricity storage device according to Example 1 is less likely to be wrinkled or warped by the dope even if the through hole is formed.
  • an electricity storage device can be produced as follows.
  • a positive electrode is prepared in which the positive electrode current collector is aluminum and the positive electrode active material is LiMnO 2 .
  • a negative electrode in which the negative electrode current collector is aluminum and the negative electrode active material is carbon is prepared.
  • a separator made of polypropylene is prepared.
  • the power storage device electrode according to the first embodiment, the positive electrode, the negative electrode, and the separator are accommodated in a power storage package.
  • the separator is disposed so that the electricity storage device electrode, the positive electrode, and the negative electrode according to Example 1 are separated from each other.
  • the electrical storage device according to Example 2 can be manufactured by disconnecting the electrochemical connection between the negative electrode and the electrical storage device electrode according to Example 1.
  • the electrode for an electricity storage device according to Example 1 can supply lithium ions to the negative electrode active material again when the lithium ions in the electricity storage device are consumed and the lithium ion concentration decreases. Thereby, electrolyte solution concentration can be adjusted and the lithium ion concentration in an electrical storage device can be decompress
  • An air battery can be manufactured as follows using the electrode for an electricity storage device according to Example 1 after doping.
  • a positive electrode made of porous carbon carrying manganese oxide as a catalyst is prepared.
  • a solid electrolyte made of Li 3 N is prepared.
  • the positive electrode, the electrode for the electric storage device according to Example 1, and the solid electrolyte are accommodated in the electric storage package so that a part of the positive electrode is exposed from the electric storage package.
  • Electrolyte injection process A lithium hydroxide aqueous solution is prepared as an aqueous electrolyte.
  • an electrolyte in which the solvent is propylene carbonate (PC) and LiPF 6 is dissolved is prepared as the organic electrolyte.
  • PC propylene carbonate
  • LiPF 6 LiPF 6
  • the air battery according to Example 3 can be manufactured.
  • an all-solid battery can be manufactured as follows.
  • a positive electrode in which the positive electrode current collector is aluminum and the positive electrode active material is LiMnO 2 is prepared.
  • a solid electrolyte composed of 8Li 2 O ⁇ 67Li 2 S ⁇ 25P 2 S 5 is prepared.
  • the solid electrolyte is accommodated in the electricity storage package so as to separate the positive electrode and the electrode for the electricity storage device according to Example 1, and the all solid state battery according to Example 4 is manufactured.
  • the electrode for an electricity storage device of the present invention can be used to dope metal ions into the positive electrode and / or the negative electrode when producing an electricity storage device, an air battery, or an all-solid battery.
  • Electrode 20 for electrical storage devices Current collector plate 21 1st main surface 22 2nd main surface 30, 30a, 30b Electrode layer 40 Through-hole 41 1st taper hole 42 2nd taper hole 51 Martensitic stainless steel 52 Austenitic stainless steel DESCRIPTION OF SYMBOLS 100 Electric storage device 161,261 Positive electrode 162,262 Negative electrode 163 Separator 164,264 Electric storage package 165 Electrolyte 200 Air battery 263 Solid electrolyte 265a Water-based electrolyte 265b Organic electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

This electrode for power storage devices comprises a collector plate having a first main surface and a second main surface on the opposite side from the first main surface, and electrode layers that contain an active material and that are provided on the first main surface and the second main surface, wherein the electrode for power storage devices is characterized in that the collector plate comprises an austenite-based stainless steel and has a plurality of through holes, and the electrode layers provided on the first main surface and the second main surface are connected through the plurality of through holes.

Description

蓄電デバイス用電極、蓄電デバイス、空気電池及び全固体電池Electrode for power storage device, power storage device, air battery and all solid state battery
本発明は、蓄電デバイス用電極、並びに、これを用いた蓄電デバイス、空気電池及び全固体電池に関する。 The present invention relates to an electrode for an electricity storage device, an electricity storage device using the same, an air battery, and an all solid state battery.
リチウムなどイオン化傾向の大きな金属を用いた蓄電デバイスは、大容量のエネルギーを蓄えられるため、多くの分野で利用されている。
このような蓄電デバイスの製造方法として、特許文献1には、貫通孔を有する正極集電体上に形成された、アニオンを挿入、脱離し得る層状構造を有する炭素質材料を正極活物質として含む正極と、貫通孔を有する負極集電体上に形成された、リチウムイオンを挿入、脱離し得る層状構造を有する炭素質材料を負極活物質として含む負極と、リチウム塩を含む非水電解液と、を有する蓄電デバイスの製造方法であって、蓄電デバイス用セル内に、セパレータを介して上記正極および負極を積層してなる積層体とリチウムイオン供給源とを配置すると共に、上記非水電解液を注入する蓄電デバイス用セル作製工程と、正極とリチウムイオン供給源との間で充放電を行う充放電工程と、負極とリチウムイオン供給源との間で電気化学的接触を行い、負極にリチウムイオンを吸蔵させる吸蔵工程と、を含むことを特徴とする蓄電デバイスの製造方法が開示されている。
An electricity storage device using a metal having a large ionization tendency such as lithium is used in many fields because it can store a large amount of energy.
As a method for manufacturing such an electricity storage device, Patent Document 1 includes a carbonaceous material formed on a positive electrode current collector having a through hole and having a layered structure capable of inserting and releasing anions as a positive electrode active material. A positive electrode, a negative electrode formed on a negative electrode current collector having a through-hole and having a layered structure capable of inserting and releasing lithium ions as a negative electrode active material, and a non-aqueous electrolyte solution containing a lithium salt And a non-aqueous electrolyte solution in which a laminate formed by laminating the positive electrode and the negative electrode through a separator and a lithium ion supply source are disposed in a cell for an electricity storage device. A cell manufacturing process for injecting electricity, a charge / discharge process for charging / discharging between the positive electrode and the lithium ion supply source, and an electrochemical contact between the negative electrode and the lithium ion supply source Method for manufacturing a power storage device, characterized in that it comprises a and a storage step of occluding lithium ions in the negative electrode is disclosed.
特許文献1に記載の蓄電デバイスの製造方法では、リチウムイオン供給源として、金属リチウムが用いられている。このようなリチウムイオン供給源を用いて、正極とリチウムイオン供給源との間で充放電を行い、さらに、負極とリチウムイオン供給源との間で電気化学的接触を行い負極にリチウムイオンを吸蔵させている。 In the method for manufacturing an electricity storage device described in Patent Literature 1, metallic lithium is used as a lithium ion supply source. Using such a lithium ion supply source, charge and discharge are performed between the positive electrode and the lithium ion supply source, and further, electrochemical contact is made between the negative electrode and the lithium ion supply source to occlude lithium ions in the negative electrode. I am letting.
このような特許文献1に記載された方法で蓄電デバイスを製造すると、蓄電デバイス内にリチウムイオン供給源である金属リチウムが残ることになる。
リチウムイオン供給源に含まれる金属リチウムは、発火しやすく危険な素材である。そのため、金属リチウムは、蓄電デバイス内に残らないことが好ましい。
When an electricity storage device is manufactured by such a method described in Patent Document 1, metallic lithium as a lithium ion supply source remains in the electricity storage device.
Metallic lithium contained in the lithium ion source is a dangerous material that easily ignites. Therefore, it is preferable that metallic lithium does not remain in the electricity storage device.
特許文献2には、このようなリチウムイオン供給源として、リチウムイオンのプレドープが施された炭素質材料を用いることが記載されている。
すなわち、集電体に炭素質材料を固定し、インターカレーションにより炭素質材料の層間にリチウムイオンを吸蔵し、これをリチウム含有極として用いることが記載されている。
このようなリチウムイオン含有極を用いることにより、リチウム金属を用いることなく正極とリチウムイオン供給源との間で充放電を行うことができ、さらに、負極とリチウムイオン供給源との間で電気化学的接触を行い負極にリチウムイオンを吸蔵させることができる。
Patent Document 2 describes the use of a carbonaceous material pre-doped with lithium ions as such a lithium ion supply source.
That is, it is described that a carbonaceous material is fixed to a current collector, lithium ions are occluded between layers of the carbonaceous material by intercalation, and this is used as a lithium-containing electrode.
By using such a lithium ion-containing electrode, charging / discharging can be performed between the positive electrode and the lithium ion supply source without using lithium metal, and further, electrochemical can be performed between the negative electrode and the lithium ion supply source. Contact can be made to occlude lithium ions in the negative electrode.
インターカレーションによりリチウムイオンを炭素質材料に吸蔵する場合、リチウムイオンの吸蔵量には372mAh/gという理論的な上限値があり、これを超えることができない。このため、炭素質材料よりも多くのリチウムイオンを吸蔵できる材料の検討が行われていた。 When lithium ions are occluded in the carbonaceous material by intercalation, the occlusion amount of lithium ions has a theoretical upper limit of 372 mAh / g, which cannot be exceeded. For this reason, examination of the material which can occlude more lithium ions than a carbonaceous material was performed.
特開2014-211950号公報JP 2014-221950 A 特開2016-103609号公報JP 2016-103609 A
ケイ素は、リチウムイオンと化学結合して合金化し、リチウムイオンを吸蔵することができる物質として知られている。ケイ素を用いてリチウムイオンを吸蔵する場合、理論的に4000mAh/g以上のリチウムイオンを吸蔵できるといわれている。
つまり、ケイ素を用いてリチウムイオンを吸蔵する場合、単位体積あたりのリチウムイオンの吸蔵放出量が多く高容量にすることができる。
しかし、リチウムイオンが吸蔵放出される際に活物質自体の膨張収縮が大きくなるという問題があった。
そのため、ケイ素を集電体に固定し、ケイ素にリチウムイオンを吸蔵させてリチウム含有極とし、このリチウム含有極を、蓄電デバイスを製造する際のリチウムイオン供給源として用いた場合、集電体に大きな歪が発生し、集電体に反りやシワが発生するという問題があった。
Silicon is known as a substance that can chemically bond with lithium ions to form an alloy and occlude lithium ions. In the case of storing lithium ions using silicon, it is theoretically said that lithium ions of 4000 mAh / g or more can be stored.
That is, when lithium ions are occluded using silicon, the amount of occluded / released lithium ions per unit volume is large and the capacity can be increased.
However, when lithium ions are occluded and released, there is a problem that the expansion and contraction of the active material itself is increased.
Therefore, when silicon is fixed to a current collector, lithium ions are occluded into silicon to form a lithium-containing electrode, and when this lithium-containing electrode is used as a lithium ion supply source when manufacturing an electricity storage device, There was a problem that large distortion occurred and the current collector was warped and wrinkled.
本発明では、上記課題を鑑みてなされた発明であり、本発明の目的は、大量の金属イオンを吸蔵放出しても、反りやシワが発生しにくい構造の蓄電デバイス用電極及びこれを用いた蓄電デバイスを提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to use an electrode for an electricity storage device having a structure in which warpage and wrinkle are unlikely to occur even when a large amount of metal ions is occluded and released. An object is to provide an electricity storage device.
上記課題を解決するための本発明の蓄電デバイス用電極は、第1主面と上記第1主面と反対側の第2主面を有する集電板と、上記第1主面及び上記第2主面に備えられた活物質を含有する電極層とからなる蓄電デバイス用電極であって、上記集電板は、オーステナイト系ステンレス鋼からなり、複数の貫通孔を有し、上記第1主面及び上記第2主面に備えられた上記電極層は、上記複数の貫通孔を通してつながっていることを特徴とする。 An electrode for an electricity storage device of the present invention for solving the above-mentioned problems is a current collector plate having a first main surface and a second main surface opposite to the first main surface, the first main surface and the second main surface. An electrode for an electricity storage device comprising an electrode layer containing an active material provided on a main surface, wherein the current collector plate is made of austenitic stainless steel, has a plurality of through holes, and the first main surface The electrode layer provided on the second main surface is connected through the plurality of through holes.
本発明の蓄電デバイス用電極では、集電板はオーステナイト系ステンレス鋼からなる。オーステナイト系ステンレス鋼は、腐食耐性が高く、高い弾性率を有する。
そのため、オーステナイト系ステンレス鋼からなる集電板は、腐食に強く、反りやシワが発生しにくい。
In the electrode for an electricity storage device of the present invention, the current collector plate is made of austenitic stainless steel. Austenitic stainless steel has high corrosion resistance and a high elastic modulus.
Therefore, a current collector plate made of austenitic stainless steel is resistant to corrosion and is less likely to warp or wrinkle.
さらに、本発明の蓄電デバイス用電極では、集電板は複数の貫通孔を有しており、集電板の第1主面及び第2主面には活物質を含有する電極層が形成されている。そのため、第1主面側に形成された電極層と、第2主面側に形成された電極層とは、集電板の貫通孔を通じて繋がることになる。
そのため、第1主面側に形成された電極層と、第2主面側に形成された電極層とは剥がれにくく、両面の電極層が互いに同じように力を及ぼしあうので、集電板に反りが発生しにくい。
Furthermore, in the electrode for an electricity storage device of the present invention, the current collector plate has a plurality of through holes, and an electrode layer containing an active material is formed on the first main surface and the second main surface of the current collector plate. ing. Therefore, the electrode layer formed on the first main surface side and the electrode layer formed on the second main surface side are connected through the through holes of the current collector plate.
Therefore, the electrode layer formed on the first main surface side and the electrode layer formed on the second main surface side are difficult to peel off, and the electrode layers on both surfaces exert the same force on each other, Less likely to warp.
さらに本発明の蓄電デバイス用電極は次の態様であることが好ましい。 Furthermore, the electrode for an electricity storage device of the present invention is preferably in the following mode.
本発明の蓄電デバイス用電極では、上記活物質は、金属イオンと化学結合して上記金属イオンを吸蔵する金属イオン吸蔵物質を含むことが好ましい。
このような金属イオン吸蔵物質は、インターカレート型の活物質よりも、多くの金属イオンを吸蔵することができる。そのため、電池容量を大きくすることができる。
また、金属イオン吸蔵物質に、金属イオンが吸蔵放出される場合、金属イオン吸蔵物質の体積変化が大きくなる。そのため、集電板に反りやシワが発生しやすくなる。しかし、本発明の蓄電デバイス用電極では、上記の通り、集電板がオーステナイト系ステンレス鋼からなり、高い弾性率を有する。そのため、金属イオン吸蔵物質に体積変化が生じたとしても、集電板に反りやシワが発生しにくくなる。
In the electrode for an electricity storage device of the present invention, the active material preferably contains a metal ion storage material that chemically bonds with metal ions and stores the metal ions.
Such a metal ion storage material can store more metal ions than an intercalating active material. Therefore, the battery capacity can be increased.
Further, when metal ions are occluded and released from the metal ion storage material, the volume change of the metal ion storage material becomes large. Therefore, the current collector plate is likely to be warped and wrinkled. However, in the electrode for an electricity storage device of the present invention, as described above, the current collector plate is made of austenitic stainless steel and has a high elastic modulus. Therefore, even if a volume change occurs in the metal ion storage material, the current collector plate is less likely to be warped or wrinkled.
本発明の蓄電デバイス用電極では、金属イオン吸蔵物質は、ケイ素であることが好ましい。
ケイ素は、黒鉛などのインターカレートを利用した活物質より多くの金属イオンを吸蔵することができ、金属イオン吸蔵物質として適している。
In the electrode for an electricity storage device of the present invention, the metal ion storage material is preferably silicon.
Silicon can occlude more metal ions than an active material using intercalation such as graphite, and is suitable as a metal ion occlusion material.
本発明の蓄電デバイス用電極では、上記集電板は、マルテンサイト系ステンレス鋼を含有することが好ましい。
マルテンサイト系ステンレス鋼はステンレス鋼の中でも硬度が高い。そのため、集電板が、マルテンサイト系ステンレス鋼を含有していると、集電板を固く高強度にすることができる。
そのため、集電板に、反りやシワが発生することを防止しやすくなる。
In the electrode for an electricity storage device of the present invention, the current collector plate preferably contains martensitic stainless steel.
Martensitic stainless steel has the highest hardness among stainless steels. Therefore, when the current collector plate contains martensitic stainless steel, the current collector plate can be made hard and high in strength.
Therefore, it becomes easy to prevent the current collector plate from being warped or wrinkled.
本発明の蓄電デバイス用電極では、上記集電板を厚さ方向に沿って切断する断面において、上記マルテンサイト系ステンレス鋼は、上記オーステナイト系ステンレス鋼の中に島状に点在することが好ましい。
マルテンサイト系ステンレス鋼は硬度が高い反面、靱性が低い。そのため、集電板において、マルテンサイト系ステンレス鋼がオーステナイト系ステンレス鋼の中の一部に偏在している場合、マルテンサイト系ステンレス鋼が偏在している場所が折れやすくなる。
しかし、集電板において、マルテンサイト系ステンレス鋼が、オーステナイト系ステンレス鋼の中に島状に点在していると集電板が折れにくくなる。
なお、島状に点在するとは細かく分かれて存在し、1つにつながっていないことを示す。
In the electrode for an electricity storage device of the present invention, the martensitic stainless steel is preferably scattered in islands in the austenitic stainless steel in a cross section in which the current collector plate is cut along the thickness direction. .
Martensitic stainless steel has high hardness but low toughness. Therefore, in the current collector plate, when the martensitic stainless steel is unevenly distributed in a part of the austenitic stainless steel, the location where the martensitic stainless steel is unevenly distributed is easily broken.
However, if the martensitic stainless steel is scattered in islands in the austenitic stainless steel in the current collector plate, the current collector plate is difficult to break.
In addition, it shows that it is divided finely that it is scattered in island shape, and it is not connected to one.
本発明の蓄電デバイス用電極では、上記集電板を厚さ方向に沿って切断する断面において、上記マルテンサイト系ステンレス鋼が占める面積は、断面全体の5~20%であることが好ましい。
マルテンサイト系ステンレス鋼が占める面積が上記範囲内であると、集電板が腐食しにくく、高強度になる。
マルテンサイト系ステンレス鋼が占める面積が5%未満であると、マルテンサイト系ステンレス鋼を含有することによる集電板の強度向上効果が得られにくくなる。
マルテンサイト系ステンレス鋼が占める面積が20%を超えると、腐食に弱いマルテンサイト系ステンレス鋼が表面に露出しやすくなる上に、内部に存在するマルテンサイト系ステンレス鋼まで連続的につながり、集電板全体に腐食が及びやすくなる。また比較的脆いマルテンサイト系ステンレス鋼の割合が大きくなるので、集電板が折れやすくなる。
In the electrode for an electricity storage device of the present invention, the area occupied by the martensitic stainless steel is preferably 5 to 20% of the entire cross section when the current collector plate is cut along the thickness direction.
When the area occupied by the martensitic stainless steel is within the above range, the current collector plate is hardly corroded and has high strength.
If the area occupied by the martensitic stainless steel is less than 5%, it becomes difficult to obtain the effect of improving the strength of the current collector plate by containing the martensitic stainless steel.
If the area occupied by martensitic stainless steel exceeds 20%, the martensitic stainless steel that is vulnerable to corrosion will be easily exposed to the surface, and the martensitic stainless steel existing inside will be continuously connected to collect current. Corrosion easily occurs on the entire plate. Moreover, since the ratio of a comparatively brittle martensitic stainless steel becomes large, a current collecting plate becomes easy to bend.
本発明の蓄電デバイス用電極では、上記貫通孔は、上記第1主面側に広がった第1テーパ孔と、上記第2主面側に広がった第2テーパ孔とからなることが好ましい。
貫通孔の形状が第1主面又は第2主面の1方向にのみ広がるテーパ形状であると、活物質が金属イオンを吸蔵放出するのに伴い体積変化する場合、一方の主面側に、体積変化に伴う力が強くなり、集電板に歪みが生じやすくなり、集電板が反りやすくなる。
しかし、貫通孔が、第1主面側に広がった第1テーパ孔と、第2主面側が広がった第2テーパ孔とからなると、活物質が、金属イオンを吸蔵放出するのに伴い体積変化したとしても、体積変化に伴う力が分散される。その結果、集電板に歪みが生じることを防ぐことができ、さらに集電板が反りにくくなる。
In the electrode for an electricity storage device of the present invention, it is preferable that the through hole is composed of a first tapered hole that spreads toward the first main surface side and a second tapered hole that spreads toward the second main surface side.
When the volume of the through hole changes as the active material absorbs and releases metal ions, the shape of the through hole is a taper shape spreading only in one direction of the first main surface or the second main surface. The force accompanying the volume change is increased, the current collector plate is easily distorted, and the current collector plate is likely to warp.
However, when the through hole is composed of a first taper hole widened to the first main surface side and a second taper hole widened to the second main surface side, the volume change as the active material occludes and releases metal ions. Even so, the force accompanying the volume change is dispersed. As a result, the current collector plate can be prevented from being distorted, and the current collector plate is hardly warped.
本発明の蓄電デバイス用電極では、上記第1主面において、上記第1テーパ孔と、上記第2テーパ孔とは、これらの数が同じ割合になるような規則的配列となるように配置されていることが好ましい。
本発明の蓄電デバイス用電極では、第1テーパ孔と、第2テーパ孔とが、これらの数が同じ割合になるような規則的配列となるように配置されていると、集電板全体では、第1テーパ孔及び第2テーパ孔のいずれか一方のテーパ孔が多すぎることによるアンバランスな集電板の歪みが生じにくい。
また、第1テーパ孔と、第2テーパ孔とが規則的に配列されていると、第1テーパ孔又は第2テーパ孔が集電板の一部に偏在しにくい。従って、集電板に局部的な反りが発生しにくくなる。
In the electrode for an electricity storage device of the present invention, the first tapered hole and the second tapered hole are arranged on the first main surface so as to form a regular arrangement such that the number thereof is the same. It is preferable.
In the electrode for an electricity storage device of the present invention, when the first taper holes and the second taper holes are arranged in a regular arrangement such that these numbers are the same ratio, The unbalanced current collector plate is less likely to be distorted due to the excessive number of either one of the first taper hole and the second taper hole.
In addition, when the first taper holes and the second taper holes are regularly arranged, the first taper holes or the second taper holes are unlikely to be unevenly distributed in a part of the current collector plate. Therefore, it is difficult for the current collector plate to be locally warped.
本発明の蓄電デバイス用電極では、上記第1主面において、上記第1テーパ孔と上記第2テーパ孔とは、交互に繰り返すように規則的に配列されていることが好ましい。
第1テーパ孔と第2テーパ孔が交互に配列していると、第1テーパ孔と第2テーパ孔とを好適に分散させることができる。このため、集電板の反りを発生しにくくすることができる。
In the electrode for an electricity storage device of the present invention, it is preferable that the first tapered holes and the second tapered holes are regularly arranged on the first main surface so as to be alternately repeated.
When the first taper holes and the second taper holes are alternately arranged, the first taper holes and the second taper holes can be preferably dispersed. For this reason, it is possible to make the current collector plate less likely to warp.
本発明の蓄電デバイス用電極は、正極及び/又は負極に金属イオンをドープするために用いられることが好ましい。
本発明の蓄電デバイス用電極の集電板は、オーステナイト系ステンレス鋼からなる。オーステナイト系ステンレス鋼は、集電板として通常用いられる銅に比べ電気抵抗率が高い。そのため、集電板の電気抵抗率も高くなる。
本発明の蓄電デバイス用電極に金属イオンをドープした後、正極及び/又は負極に金属イオンをドープする場合、集電板に大電流を流す必要はない。そのため、集電板の電気抵抗率が少し高くても、充分にドープすることができる。
つまり、本発明の蓄電デバイス用電極の集電板は、電気抵抗率が高いものの正極及び/又は負極に金属イオンを好適にドープすることができる。
The electrode for an electricity storage device of the present invention is preferably used for doping metal ions into the positive electrode and / or the negative electrode.
The current collector plate of the electrode for an electricity storage device of the present invention is made of austenitic stainless steel. Austenitic stainless steel has a higher electrical resistivity than copper normally used as a current collector. Therefore, the electrical resistivity of the current collector plate is also increased.
When the positive electrode and / or the negative electrode are doped with metal ions after the metal storage electrode of the present invention is doped, it is not necessary to pass a large current through the current collector plate. Therefore, even if the electrical resistivity of the current collector plate is a little high, it can be sufficiently doped.
That is, the current collector plate of the electrode for an electricity storage device of the present invention can be preferably doped with metal ions in the positive electrode and / or the negative electrode, although the electrical resistivity is high.
本発明の蓄電デバイスは、正極と、負極と、上記正極と上記負極とを分離するセパレータと、上記正極と上記負極と上記セパレータとを収容する蓄電パッケージと、上記蓄電パッケージに封入された電解液とからなる蓄電デバイスであって、上記蓄電デバイスはさらに、上記正極及び/又は上記負極に金属イオンをドープするための蓄電デバイス用電極を含み、上記蓄電デバイス用電極は、金属イオンがドープされた上記本発明の蓄電デバイス用電極であることを特徴とする。 The power storage device of the present invention includes a positive electrode, a negative electrode, a separator that separates the positive electrode and the negative electrode, a power storage package that houses the positive electrode, the negative electrode, and the separator, and an electrolyte solution enclosed in the power storage package The power storage device further includes a power storage device electrode for doping the positive electrode and / or the negative electrode with metal ions, and the power storage device electrode is doped with metal ions. It is an electrode for an electricity storage device according to the present invention.
上記の通り本発明の蓄電デバイス用電極は、大量の金属イオンを吸蔵放出しても反りやシワが生じにくい。そのため、本発明の蓄電デバイス用電極を、正極及び/又は負極に金属イオンをドープするための蓄電デバイス用電極として用いると、正極及び/又は負極に金属イオンをドープしたとしても、本発明の蓄電デバイス用電極には反りやシワが生じにくい。
一般的な蓄電デバイスでは、ドープするために用いられる蓄電デバイス用電極の変形を考慮して蓄電デバイス内に空間を設けるが、本発明の蓄電デバイスでは、このような空間を設ける必要がない。そのため、蓄電デバイスのサイズを小さくすることができる。
As described above, the electrode for an electricity storage device of the present invention is less likely to be warped or wrinkled even when a large amount of metal ions is occluded and released. Therefore, when the electrode for an electricity storage device of the present invention is used as an electrode for an electricity storage device for doping a metal ion to the positive electrode and / or the negative electrode, the electricity storage of the present invention can be achieved even if the positive electrode and / or the negative electrode are doped with a metal ion. Device electrodes are less likely to warp or wrinkle.
In a general electricity storage device, a space is provided in the electricity storage device in consideration of deformation of the electrode for the electricity storage device used for doping. However, in the electricity storage device of the present invention, it is not necessary to provide such a space. Therefore, the size of the electricity storage device can be reduced.
本発明の空気電池は、正極と、負極と、上記正極と上記負極との間に配置される固体電解質と、上記正極と上記負極と上記固体電解質とを収容する蓄電パッケージと、上記蓄電パッケージの正極側に封入された水系電解液と、上記蓄電パッケージの負極側に封入された有機電解液と、からなる空気電池であって、上記負極は、金属イオンがドープされた上記本発明の蓄電デバイス用電極であることを特徴とする。 An air battery according to the present invention includes a positive electrode, a negative electrode, a solid electrolyte disposed between the positive electrode and the negative electrode, a power storage package containing the positive electrode, the negative electrode, and the solid electrolyte, and An air battery comprising an aqueous electrolyte sealed on the positive electrode side and an organic electrolyte sealed on the negative electrode side of the power storage package, wherein the negative electrode is a power storage device of the present invention doped with metal ions Electrode.
本発明の容量の大きい蓄電デバイス用電極を空気電池の負極に用い、正極側では空気を活物質として使用することにより空気電池全体のサイズを小さくすることができる。また、空気電池は放電後に金属イオンを放出した負極と、正極側の水酸化金属の濃度の高まった水系電解液を交換する機械的充電を行うことができる。特に、本発明の蓄電デバイス用電極を負極に用いた空気電池は、負極自体がコンパクトであるので容易に交換でき、容易に機械的充電を行うことができる。 By using the electrode for an electricity storage device having a large capacity of the present invention for the negative electrode of the air battery and using air as the active material on the positive electrode side, the size of the entire air battery can be reduced. In addition, the air battery can perform mechanical charging in which the negative electrode from which metal ions are released after discharge and the aqueous electrolyte in which the concentration of metal hydroxide on the positive electrode side is increased are exchanged. In particular, an air battery using the electrode for an electricity storage device of the present invention as a negative electrode can be easily replaced and mechanically charged easily because the negative electrode itself is compact.
本発明の全固体電池は、正極と、負極と、上記正極と上記負極とを分離し、かつ、これらと接する固体電解質と、上記正極と上記負極と上記固体電解質を収容する蓄電パッケージとからなる全固体電池であって、上記負極は、金属イオンがドープされた上記本発明の蓄電デバイス用電極であることを特徴とする。 The all solid state battery of the present invention comprises a positive electrode, a negative electrode, a solid electrolyte in contact with the positive electrode and the negative electrode, and a power storage package containing the positive electrode, the negative electrode, and the solid electrolyte. In the all-solid-state battery, the negative electrode is the electrode for an electricity storage device of the present invention doped with metal ions.
全固体電池では、電解液を用いることなく、正極と負極とが固体電解質に直接接している。また、全固体電池では、電解液を介することなく金属イオンの受け渡しを電極と固体電解質の間で行っている。そのため、電極と、固体電解質との接触面は、極めて高い平坦度が必要となる。上記の通り、本発明の蓄電デバイス用電極には反りやシワが生じにくい。そのため、本発明の蓄電デバイス用電極を負極に用いたとしても形状の歪みが生じにくい。
そのため、電極と、固体電解質との接触面の平坦度を高くすることができる。
その結果、本発明の蓄電デバイス用電極が用いられた本発明の全固体電池では、蓄電デバイス内部の金属イオンの移動をスムーズにすることができ、抵抗を小さくすることができると共に、電極の全面で均等に反応を起こすことができ、全固体電池の性能を充分に発揮することができる。さらに、本発明の全固体電池のサイズを小さくすることができる。
In the all solid state battery, the positive electrode and the negative electrode are in direct contact with the solid electrolyte without using an electrolytic solution. Moreover, in the all solid state battery, metal ions are transferred between the electrode and the solid electrolyte without using an electrolytic solution. Therefore, the contact surface between the electrode and the solid electrolyte requires extremely high flatness. As described above, the electrode for the electricity storage device of the present invention is less likely to be warped or wrinkled. Therefore, even if the electrode for an electricity storage device of the present invention is used for the negative electrode, the distortion of the shape hardly occurs.
Therefore, the flatness of the contact surface between the electrode and the solid electrolyte can be increased.
As a result, in the all-solid-state battery of the present invention in which the electrode for an electricity storage device of the present invention is used, the movement of metal ions inside the electricity storage device can be made smooth, the resistance can be reduced, and the entire surface of the electrode The reaction can be caused evenly and the performance of the all-solid-state battery can be fully exhibited. Furthermore, the size of the all solid state battery of the present invention can be reduced.
本発明の蓄電デバイス用電極では、集電板はオーステナイト系ステンレス鋼からなる。オーステナイト系ステンレス鋼は、腐食耐性が高く、高い弾性率を有する。
そのため、オーステナイト系ステンレス鋼からなる集電板は、腐食に強く、反りやシワが発生しにくい。
In the electrode for an electricity storage device of the present invention, the current collector plate is made of austenitic stainless steel. Austenitic stainless steel has high corrosion resistance and a high elastic modulus.
Therefore, a current collector plate made of austenitic stainless steel is resistant to corrosion and is less likely to warp or wrinkle.
図1は、本発明の蓄電デバイス用電極の一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of an electrode for an electricity storage device of the present invention. 図2は、図1の破線部を拡大し、電極層を透明にして示す一部拡大図である。FIG. 2 is a partially enlarged view showing a broken line portion of FIG. 1 and an electrode layer made transparent. 図3は、図2のA-A線断面図である。3 is a cross-sectional view taken along line AA in FIG. 図4(a)~(c)は、本発明の蓄電デバイス用電極の第1テーパ孔と第2テーパ孔とが交互に繰り返す規則的な配列パターンの一例を模式的に示す模式図である。FIGS. 4A to 4C are schematic views schematically showing an example of a regular arrangement pattern in which the first tapered holes and the second tapered holes of the electricity storage device electrode of the present invention are alternately repeated. 図5は、蓄電デバイス用電極の集電板を厚さ方向に沿って切断する断面の一例を模式的に示す切断図である。FIG. 5 is a cross-sectional view schematically showing an example of a cross section of the current collector plate of the electrode for the electricity storage device cut along the thickness direction. 図6(a)~(e)は、金属イオンを含有する本発明の蓄電デバイス用電極を用いて蓄電デバイスを製造する工程の一例を順に模式的に示す工程図である。FIGS. 6A to 6E are process diagrams schematically showing, in order, an example of a process for producing an electricity storage device using the electrode for an electricity storage device of the present invention containing metal ions. 図7(a)~(c)は、金属イオンを含有する本発明の蓄電デバイス用電極を負極として用いて蓄電デバイスを製造する工程の一例を順に模式的に示す工程図である。FIGS. 7A to 7C are process diagrams schematically showing, in order, one example of a process for producing an electricity storage device using the electrode for an electricity storage device of the present invention containing metal ions as a negative electrode. 図8は、本発明の実施例1に係る蓄電デバイス用電極を製造する際に用いたステンレス鋼板を、EBSD法により分析し、その分析結果に基づき、ステンレス鋼板中のオーステナイト相及びマルテンサイト相をマッピングした図である。FIG. 8 shows the analysis of the stainless steel plate used in manufacturing the electrode for the electricity storage device according to Example 1 of the present invention by the EBSD method. Based on the analysis result, the austenite phase and the martensite phase in the stainless steel plate are analyzed. It is the figure which mapped. 図9は実施例1に係る蓄電デバイス用電極における集電板を、厚さ方向に平行な方向に、かつ、第1テーパ孔の中心を通るように切断し200倍に拡大した断面の写真である。FIG. 9 is a photograph of a cross section obtained by cutting the current collector plate in the electrode for an electricity storage device according to Example 1 in a direction parallel to the thickness direction and passing through the center of the first taper hole and expanding 200 times. is there.
(発明の詳細な説明)
以下、本発明の蓄電デバイス用電極について図面を用いながら説明するが、本発明の蓄電デバイス用電極は以下の記載に限定されない。
(Detailed description of the invention)
Hereinafter, although the electrode for electrical storage devices of this invention is demonstrated using drawing, the electrode for electrical storage devices of this invention is not limited to the following description.
図1は、本発明の蓄電デバイス用電極の一例を模式的に示す斜視図である。
図1に示すように、蓄電デバイス用電極10は、第1主面21と第1主面21と反対側の第2主面22を有する集電板20と、第1主面21及び第2主面22に備えられた活物質を含有する電極層30とからなる蓄電デバイス用電極である。
また、集電板20は、オーステナイト系ステンレス鋼からなっている。
FIG. 1 is a perspective view schematically showing an example of an electrode for an electricity storage device of the present invention.
As shown in FIG. 1, the electrode 10 for electrical storage devices includes a current collector plate 20 having a first main surface 21 and a second main surface 22 opposite to the first main surface 21, and a first main surface 21 and a second main surface 21. This is an electrode for an electricity storage device comprising an electrode layer 30 containing an active material provided on the main surface 22.
The current collector plate 20 is made of austenitic stainless steel.
図2は、図1の破線部を拡大し、電極層を透明にして示す一部拡大図である。
図2に示すように、蓄電デバイス用電極10では、集電板20は複数の貫通孔40を有しており、集電板20の第1主面21及び第2主面22には活物質を含有する電極層30が形成されている。そのため、第1主面21に備えられた電極層30aと、第2主面22側に備えられた電極層30bとは、集電板20の複数の貫通孔40を通じてつながっている。
そのため、第1主面21に形成された電極層30aと、第2主面22側に形成された電極層30bとは剥がれにくく、両面の電極層30a及び30bが互いに同じように力を及ぼしあうので、集電板20に反りやシワが発生しにくい。
FIG. 2 is a partially enlarged view showing a broken line portion of FIG. 1 and an electrode layer made transparent.
As shown in FIG. 2, in the electricity storage device electrode 10, the current collector plate 20 has a plurality of through holes 40, and the first main surface 21 and the second main surface 22 of the current collector plate 20 have an active material. The electrode layer 30 containing is formed. Therefore, the electrode layer 30 a provided on the first main surface 21 and the electrode layer 30 b provided on the second main surface 22 side are connected through the plurality of through holes 40 of the current collector plate 20.
Therefore, the electrode layer 30a formed on the first main surface 21 and the electrode layer 30b formed on the second main surface 22 side are difficult to peel off, and the electrode layers 30a and 30b on both surfaces exert the same force as each other. Therefore, the current collector plate 20 is unlikely to be warped or wrinkled.
図3は、図2のA-A線断面図である。
図3に示すように、貫通孔40は、第1主面21側に広がった第1テーパ孔41と、第2主面22側に広がった第2テーパ孔42とからなる。また、第1テーパ孔41及び第2テーパ孔42には電極層30が充填されている。なお、貫通孔には電極層が完全に充填されていなくてもよく、集電板の貫通孔を完全に塞がないように電極層が形成されていてもよい。
貫通孔の形状が第1主面又は第2主面の1方向にのみ広がるテーパ形状であると、活物質が、金属イオンを吸蔵放出するのに伴い体積変化する場合、一方の主面側の体積変化に伴う力が強くなり、集電板に歪みが生じやすくなり、集電板が反りやすくなる。
しかし、図3に示すように、貫通孔40は、第1主面21側に広がった第1テーパ孔41と、第2主面22側が広がった第2テーパ孔42とからなる。そのため、活物質が金属イオンを吸蔵放出するのに伴い体積変化したとしても、体積変化に伴う力が分散される。その結果、集電板20に歪みが生じることを防ぐことができ、さらに集電板20が反りにくくなる。
3 is a cross-sectional view taken along line AA in FIG.
As shown in FIG. 3, the through-hole 40 includes a first tapered hole 41 that expands toward the first main surface 21 and a second tapered hole 42 that expands toward the second main surface 22. The first taper hole 41 and the second taper hole 42 are filled with the electrode layer 30. The through hole may not be completely filled with the electrode layer, and the electrode layer may be formed so as not to completely block the through hole of the current collector plate.
When the shape of the through hole is a taper shape spreading only in one direction of the first main surface or the second main surface, when the volume of the active material changes as the metal ions are occluded and released, The force accompanying the volume change is increased, the current collector plate is easily distorted, and the current collector plate is likely to warp.
However, as shown in FIG. 3, the through-hole 40 includes a first tapered hole 41 that expands toward the first main surface 21 and a second tapered hole 42 that expands toward the second main surface 22. Therefore, even if the volume changes as the active material absorbs and releases metal ions, the force accompanying the volume change is dispersed. As a result, the current collector plate 20 can be prevented from being distorted, and the current collector plate 20 is less likely to warp.
蓄電デバイス用電極10では、貫通孔40の開口率は、特に限定されないが、1~20%であることが好ましい。なお、貫通孔40の開口率は第1テーパ孔、第2テーパ孔とも小さい方の孔の面積を開口の面積比として定義する。
貫通孔の密度が1%未満であると、表裏の電極層の接合力が弱くなり剥がれ易くなる。
貫通孔の密度が20%を超えると、集電板の抵抗が高くなり金属イオンの放出に偏りが生じやすくなる。
In the electricity storage device electrode 10, the aperture ratio of the through holes 40 is not particularly limited, but is preferably 1 to 20%. In addition, the aperture ratio of the through-hole 40 defines the area of the smaller one of both the first taper hole and the second taper hole as the area ratio of the openings.
When the density of the through holes is less than 1%, the bonding force between the electrode layers on the front and back sides is weakened and easily peeled off.
When the density of the through holes exceeds 20%, the resistance of the current collector plate is increased, and the emission of metal ions tends to be biased.
第1テーパ孔41の第1主面21側の直径は、20~200μmであること好ましい。
第1テーパ孔41の第2主面22側の直径は、10~100μmであること好ましい。
第2テーパ孔42の第1主面21側の直径は、10~100μmであること好ましい。
第2テーパ孔42の第2主面22側の直径は、20~200μmであること好ましい。
The diameter of the first tapered hole 41 on the first main surface 21 side is preferably 20 to 200 μm.
The diameter of the first tapered hole 41 on the second main surface 22 side is preferably 10 to 100 μm.
The diameter of the second tapered hole 42 on the first main surface 21 side is preferably 10 to 100 μm.
The diameter of the second tapered hole 42 on the second main surface 22 side is preferably 20 to 200 μm.
また、蓄電デバイス用電極10では、集電板20の第1主面21において、第1テーパ孔41と、第2テーパ孔42とは、これらの数が同じ割合になるような規則的配列となるように配置されていることが好ましい。
第1テーパ孔41と、第2テーパ孔42とが、これらの数が同じ割合になるような規則的配列となるように配置されていると、集電板20全体では、第1テーパ孔41及び第2テーパ孔42のいずれか一方のテーパ孔が多すぎることによるアンバランスな集電板20の歪みが生じにくい。
また、第1テーパ孔41と、第2テーパ孔42とは規則的に配列されているので、第1テーパ孔41又は第2テーパ孔42が集電板20の一部に偏在しにくい。従って、集電板20に局部的な反りが発生しにくくなる。
なお、この場合、集電板20の第2主面22においても、第1テーパ孔41と、第2テーパ孔42とは、これらの数が同じ割合になるような規則的配列となるように配置されることになる。
Moreover, in the electrode 10 for electrical storage devices, the first taper holes 41 and the second taper holes 42 are regularly arranged on the first main surface 21 of the current collector plate 20 so that the numbers thereof are the same ratio. It is preferable to arrange so as to be.
When the first taper holes 41 and the second taper holes 42 are arranged in a regular arrangement such that the number of the first taper holes 41 and the second taper holes 42 are the same, the first taper holes 41 in the current collector plate 20 as a whole. And the distortion of the unbalanced current collector plate 20 due to the excessive number of the tapered holes in either one of the second tapered holes 42 is less likely to occur.
In addition, since the first tapered holes 41 and the second tapered holes 42 are regularly arranged, the first tapered holes 41 or the second tapered holes 42 are unlikely to be unevenly distributed in a part of the current collector plate 20. Therefore, the current collector plate 20 is less likely to be locally warped.
In this case, also on the second main surface 22 of the current collector plate 20, the first taper holes 41 and the second taper holes 42 are regularly arranged so that the numbers thereof are the same ratio. Will be placed.
蓄電デバイス用電極10では、第1主面21において、第1テーパ孔41と第2テーパ孔42とは、交互に繰り返すように規則的に配列されていることが好ましい。
第1テーパ孔41と第2テーパ孔42が交互に配列していると、第1テーパ孔41と第2テーパ孔42とを好適に分散させることができる。このため、集電板20の反りを発生しにくくすることができる。
また、この場合、隣り合う第1テーパ孔41の中心から第2テーパ孔42の中心までの距離は、100~600μmであることが好ましい。
In the electricity storage device electrode 10, the first tapered holes 41 and the second tapered holes 42 are preferably regularly arranged on the first main surface 21 so as to be alternately repeated.
When the first taper holes 41 and the second taper holes 42 are alternately arranged, the first taper holes 41 and the second taper holes 42 can be suitably dispersed. For this reason, it is possible to make it difficult for the current collector plate 20 to warp.
In this case, the distance from the center of the adjacent first tapered hole 41 to the center of the second tapered hole 42 is preferably 100 to 600 μm.
第1テーパ孔41と第2テーパ孔42とが交互に繰り返す規則的な配列パターンは、特に限定されないが、例えば、以下の配列パターンがあげられる。 The regular arrangement pattern in which the first taper holes 41 and the second taper holes 42 are alternately repeated is not particularly limited, and examples thereof include the following arrangement patterns.
図4(a)~(c)は、本発明の蓄電デバイス用電極の第1テーパ孔と第2テーパ孔とが交互に繰り返す規則的な配列パターンの一例を模式的に示す模式図である。 FIGS. 4A to 4C are schematic views schematically showing an example of a regular arrangement pattern in which the first tapered holes and the second tapered holes of the electricity storage device electrode of the present invention are alternately repeated.
図4(a)に示すように、配列パターンは、第1テーパ孔41同士が直線上に配列され、第2テーパ孔42同士が直線上に配列され、これらの直線は交互に平行に位置しており、かつ、正三角形を敷き詰めた平面において、各テーパ孔の中心が正三角形の頂点に位置するような配列パターンであってもよい。 As shown in FIG. 4A, in the arrangement pattern, the first tapered holes 41 are arranged on a straight line, the second tapered holes 42 are arranged on a straight line, and these straight lines are alternately arranged in parallel. In addition, the arrangement pattern may be such that the center of each tapered hole is located at the apex of the equilateral triangle on a plane in which equilateral triangles are spread.
また、図4(b)に示すように、配列パターンは、1つの第1テーパ孔41に対し4つの第2テーパ孔42が隣り合い、1つの第2テーパ孔42に対し4つの第1テーパ孔41が隣り合い、かつ、正方形が敷き詰められた平面において、各テーパ孔の中心が正方形の頂点に位置するような配列パターンであってもよい。 In addition, as shown in FIG. 4B, the arrangement pattern is such that four first taper holes 41 are adjacent to four second taper holes 42, and one first taper hole 42 is four first tapers. The arrangement pattern may be such that the center of each tapered hole is located at the apex of the square in the plane where the holes 41 are adjacent and the square is spread.
また、図4(c)に示すように、配列パターンは、1つの第1テーパ孔41に対し3つの第2テーパ孔42が隣り合い、1つの第2テーパ孔42に対し3つの第1テーパ孔41が隣り合い、かつ、正六角形を敷き詰めた平面において、各テーパ孔の中心が正六角形の頂点に位置するような配列パターンであってもよい。 In addition, as shown in FIG. 4C, the arrangement pattern is such that three first tapered holes 41 are adjacent to one first tapered hole 41, and three first tapered holes are associated with one second tapered hole 42. The arrangement pattern may be such that the center of each tapered hole is located at the apex of the regular hexagon in the plane where the holes 41 are adjacent and are spread with regular hexagons.
蓄電デバイス用電極10では、集電板20はオーステナイト系ステンレス鋼からなる。オーステナイト系ステンレス鋼は、腐食耐性が高く、高い弾性率を有する。
そのため、オーステナイト系ステンレス鋼からなる集電板は、腐食に強く、反りやシワが発生しにくい。
In the electricity storage device electrode 10, the current collector plate 20 is made of austenitic stainless steel. Austenitic stainless steel has high corrosion resistance and a high elastic modulus.
Therefore, a current collector plate made of austenitic stainless steel is resistant to corrosion and is less likely to warp or wrinkle.
また、後述するように、電極層30には、ポリイミド樹脂がバインダとして含まれることが好ましい。蓄電デバイス用電極10を製造する際には、ポリイミド樹脂前駆体を集電板20に塗布後イミド化を進行させるため250℃以上で加熱する必要がある。一般的な集電板には銅が用いられているが、銅は250℃以上で加熱すると酸化してしまう。そのため、雰囲気中の酸素量を落として処理する必要がある。
一方、集電板20が、オーステナイト系ステンレス鋼からなると、オーステナイト系ステンレス鋼の酸化温度は約850℃である。
そのため、イミド化に必要な温度に加熱したとしても集電板20は酸化されにくい。
As will be described later, the electrode layer 30 preferably contains a polyimide resin as a binder. When manufacturing the electrode 10 for electrical storage devices, it is necessary to heat at 250 ° C. or higher in order to advance imidization after applying the polyimide resin precursor to the current collector plate 20. Copper is used for a general current collector plate, but copper is oxidized when heated at 250 ° C. or higher. Therefore, it is necessary to process by reducing the amount of oxygen in the atmosphere.
On the other hand, when the current collector plate 20 is made of austenitic stainless steel, the oxidation temperature of the austenitic stainless steel is about 850 ° C.
Therefore, even if it heats to the temperature required for imidation, the current collecting plate 20 is hard to be oxidized.
また、蓄電デバイス用電極10では、集電板20は、マルテンサイト系ステンレス鋼を含有することが好ましい。マルテンサイト系ステンレス鋼は、例えば、オーステナイト系ステンレス鋼を強く塑性変形させることによって内部に析出させることができる。
マルテンサイト系ステンレス鋼はステンレス鋼の中でも硬度が高い。そのため、集電板20が、マルテンサイト系ステンレス鋼を含有していると、集電板20を固く高強度にすることができる。
そのため、集電板20に、反りやシワが発生することを防止しやすくなる。
Moreover, in the electrode 10 for electrical storage devices, it is preferable that the current collecting plate 20 contains martensitic stainless steel. For example, martensitic stainless steel can be precipitated inside by strongly plastically deforming austenitic stainless steel.
Martensitic stainless steel has the highest hardness among stainless steels. Therefore, when the current collecting plate 20 contains martensitic stainless steel, the current collecting plate 20 can be made hard and high in strength.
Therefore, it becomes easy to prevent the current collecting plate 20 from being warped or wrinkled.
図5は、蓄電デバイス用電極の集電板を厚さ方向に沿って切断する断面の一例を模式的に示す切断図である。 FIG. 5 is a cross-sectional view schematically showing an example of a cross section of the current collector plate of the electrode for the electricity storage device cut along the thickness direction.
図5に示すように、蓄電デバイス用電極10では、集電板20を厚さ方向に沿って切断する断面において、マルテンサイト系ステンレス鋼51は、オーステナイト系ステンレス鋼52の中に島状に点在することが好ましい。
マルテンサイト系ステンレス鋼は硬度が高い反面、靱性が低い。そのため、集電板において、マルテンサイト系ステンレス鋼がオーステナイト系ステンレス鋼の中の一部に偏在している場合、マルテンサイト系ステンレス鋼が偏在している場所が折れやすくなる。
しかし、集電板20において、マルテンサイト系ステンレス鋼51が、オーステナイト系ステンレス鋼52の中に島状に点在していると集電板20が折れにくくなる。
As shown in FIG. 5, in the electricity storage device electrode 10, the martensitic stainless steel 51 is dotted like islands in the austenitic stainless steel 52 in a cross section in which the current collector plate 20 is cut along the thickness direction. Preferably present.
Martensitic stainless steel has high hardness but low toughness. Therefore, in the current collector plate, when the martensitic stainless steel is unevenly distributed in a part of the austenitic stainless steel, the location where the martensitic stainless steel is unevenly distributed is easily broken.
However, if the martensitic stainless steel 51 is scattered in islands in the austenitic stainless steel 52 in the current collecting plate 20, the current collecting plate 20 is difficult to break.
なお、マルテンサイト系ステンレス鋼及びオーステナイト系ステンレス鋼の存在は、以下の条件の電子後方散乱回折図測定法(EBSD法)により分析することができる。 The presence of martensitic stainless steel and austenitic stainless steel can be analyzed by an electron backscatter diffraction diagram measurement method (EBSD method) under the following conditions.
(EBSD法の条件)
<分析装置>
EF-SEM:日本電子株式会社製JSM-7000F/EBSDD:TSL Solution
<分析条件>
範囲     :14×36μm
ステップ   :0.05μm/step
測定ポイント :233376
倍率     :5000倍
phase  :γ-鉄、α-鉄
(Conditions for EBSD method)
<Analyzer>
EF-SEM: JSM-7000F / EBSDD manufactured by JEOL Ltd .: TSL Solution
<Analysis conditions>
Range: 14 × 36 μm
Step: 0.05 μm / step
Measurement point: 233376
Magnification: 5000 times phase: γ-iron, α-iron
また、集電板20を厚さ方向に沿って切断する断面において、マルテンサイト系ステンレス鋼51が占める面積は、断面全体の5~20%であることが好ましい。
マルテンサイト系ステンレス鋼51が占める面積が上記範囲内であると、集電板20が腐食しにくく、高強度になる。
マルテンサイト系ステンレス鋼が占める面積が5%未満であると、マルテンサイト系ステンレス鋼を含有することによる集電板の強度向上効果が得られにくくなる。
マルテンサイト系ステンレス鋼が占める面積が20%を超えると、腐食に弱いマルテンサイト系ステンレス鋼が表面に露出しやすくなる上に、内部に存在するマルテンサイト系ステンレス鋼まで連続的につながり、集電板全体に腐食が及びやすくなる。比較的脆いマルテンサイト系ステンレス鋼の割合が大きくなるので、集電板が折れやすくなる。
Further, the area occupied by the martensitic stainless steel 51 in the cross section obtained by cutting the current collector plate 20 along the thickness direction is preferably 5 to 20% of the entire cross section.
When the area occupied by the martensitic stainless steel 51 is within the above range, the current collector plate 20 is hardly corroded and has high strength.
If the area occupied by the martensitic stainless steel is less than 5%, it becomes difficult to obtain the effect of improving the strength of the current collector plate by containing the martensitic stainless steel.
If the area occupied by martensitic stainless steel exceeds 20%, the martensitic stainless steel that is vulnerable to corrosion will be easily exposed to the surface, and the martensitic stainless steel existing inside will be continuously connected to collect current. Corrosion easily occurs on the entire plate. Since the ratio of the relatively brittle martensitic stainless steel is increased, the current collector plate is easily broken.
また、集電板20は、マルテンサイト系ステンレス鋼51及びオーステナイト系ステンレス鋼52以外にフェライト系ステンレス等を含んでいてもよい。 Further, the current collector plate 20 may include ferritic stainless steel in addition to the martensitic stainless steel 51 and the austenitic stainless steel 52.
集電板20の厚さは、特に限定されないが、5~30μmであることが好ましい。
集電板の厚さが5μm未満であると、薄すぎるので集電板が破れやすくなる。
集電板の厚さが30μmを超えると、厚すぎるので、このような厚さの集電板を含む蓄電デバイス用電極が用いられた蓄電デバイスのサイズが大きくなりやすくなる。
The thickness of the current collector plate 20 is not particularly limited, but is preferably 5 to 30 μm.
If the thickness of the current collector plate is less than 5 μm, the current collector plate is easily broken because it is too thin.
If the thickness of the current collector plate exceeds 30 μm, it is too thick, and the size of the power storage device using the power storage device electrode including the current collector plate having such a thickness is likely to increase.
集電板20の引張強度は特に限定されないが、600~1500MPaであることが好ましい。集電板20のヤング率は特に限定されないが、100~300GPaであることが好ましい。 The tensile strength of the current collector plate 20 is not particularly limited, but is preferably 600 to 1500 MPa. The Young's modulus of the current collector plate 20 is not particularly limited, but is preferably 100 to 300 GPa.
蓄電デバイス用電極10では、活物質は、金属イオンと化学結合して金属イオンを吸蔵する金属イオン吸蔵物質を含むことが好ましい。
このような金属イオン吸蔵物質は、インターカレート型の活物質よりも、多くの金属イオンを吸蔵することができる。そのため、電池容量を大きくすることができる。
また、金属イオン吸蔵物質に、金属イオンが吸蔵放出される場合、金属イオン吸蔵物質の体積変化が大きくなる。そのため、集電板に反りやシワが発生しやすくなる。
しかし、蓄電デバイス用電極10では、上記の通り、集電板20がオーステナイト系ステンレス鋼からなり、高い弾性率を有する。そのため、金属イオン吸蔵物質に体積変化が生じたとしても、集電板20に反りやシワが発生しにくくなる。
In the electricity storage device electrode 10, the active material preferably includes a metal ion storage material that is chemically bonded to metal ions and stores metal ions.
Such a metal ion storage material can store more metal ions than an intercalating active material. Therefore, the battery capacity can be increased.
Further, when metal ions are occluded and released from the metal ion storage material, the volume change of the metal ion storage material becomes large. Therefore, the current collector plate is likely to be warped and wrinkled.
However, in the electricity storage device electrode 10, as described above, the current collector plate 20 is made of austenitic stainless steel and has a high elastic modulus. Therefore, even if a volume change occurs in the metal ion storage material, the current collector plate 20 is less likely to be warped or wrinkled.
このような、金属イオン吸蔵物質は、特に限定されないが、ケイ素、ケイ素酸化物、錫等があげられる。これらの中ではケイ素であることが好ましい。
ケイ素は、黒鉛などのインターカレートを利用した活物質より多くの金属イオンを吸蔵することができ、金属イオン吸蔵物質として適している。
Such a metal ion storage material is not particularly limited, and examples thereof include silicon, silicon oxide, and tin. Of these, silicon is preferable.
Silicon can occlude more metal ions than an active material using intercalation such as graphite, and is suitable as a metal ion occlusion material.
蓄電デバイス用電極10では、電極層30は、活物質を結合するバインダを含むことが好ましい。
バインダの種類としては、特に限定されないが、ポリイミド樹脂、ポリアミドイミド樹脂等があげられる。
これらの中では、ポリイミド樹脂であることが好ましい。
ポリイミド樹脂は高強度なので、金属イオン吸蔵物質の体積が膨張することを抑えることができる。
In the electricity storage device electrode 10, the electrode layer 30 preferably includes a binder that binds the active material.
Although it does not specifically limit as a kind of binder, A polyimide resin, a polyamideimide resin, etc. are mention | raise | lifted.
In these, it is preferable that it is a polyimide resin.
Since the polyimide resin has high strength, it is possible to prevent the volume of the metal ion storage material from expanding.
電極層30の厚さは、特に限定されないが、5~50μmであることが好ましい。
電極層の厚さが5μm未満であると、集電板に比べて活物質の量が少なくなるので電気容量が低下しやすくなる。
電極層の厚さが50μmを超えると、金属イオンが電極層を移動する距離が長くなり充放電に時間がかかるようになる。
The thickness of the electrode layer 30 is not particularly limited, but is preferably 5 to 50 μm.
When the thickness of the electrode layer is less than 5 μm, the amount of the active material is smaller than that of the current collector plate, so that the electric capacity is likely to decrease.
When the thickness of the electrode layer exceeds 50 μm, the distance that the metal ions move through the electrode layer becomes long, and it takes time to charge and discharge.
電極層30の面密度は、特に限定されないが、1.4~2.0g/cmであることが好ましい。 The surface density of the electrode layer 30 is not particularly limited, but is preferably 1.4 to 2.0 g / cm 2 .
また、電極層30は、導電助剤を含むことが好ましく、導電助剤はカーボンブラックであることが好ましい。 Moreover, it is preferable that the electrode layer 30 contains a conductive support agent, and it is preferable that a conductive support agent is carbon black.
蓄電デバイス用電極10は、正極及び/又は負極に金属イオンをドープするために用いられることが好ましい。なお、正極及び/又は負極にドープするためには、あらかじめ蓄電デバイス用電極に金属イオンをドープしておく。
蓄電デバイス用電極10の集電板20は、オーステナイト系ステンレス鋼からなる。オーステナイト系ステンレス鋼は、銅に比べ電気抵抗率が高い。そのため、集電板20の電気抵抗率も高くなる。
正極及び/又は負極に金属イオンをドープする場合、集電板20に大電流を流す必要はない。そのため、集電板20の電気抵抗率が少し高くても、充分にドープすることができる。
つまり、蓄電デバイス用電極10の集電板20は電気抵抗率が高いものの、多くの金属を吸蔵できる物質を活物質として塗布しても変形しにくく正極及び/又は負極に金属イオンを好適にドープすることができる。
It is preferable that the electrode 10 for electrical storage devices is used in order to dope a metal ion to a positive electrode and / or a negative electrode. In addition, in order to dope the positive electrode and / or the negative electrode, a metal ion is previously doped into the electrode for the electricity storage device.
The current collector plate 20 of the electricity storage device electrode 10 is made of austenitic stainless steel. Austenitic stainless steel has a higher electrical resistivity than copper. Therefore, the electrical resistivity of the current collector plate 20 is also increased.
When doping metal ions into the positive electrode and / or the negative electrode, it is not necessary to flow a large current through the current collector plate 20. Therefore, even if the electrical resistivity of the current collector plate 20 is a little high, it can be sufficiently doped.
That is, although the current collector plate 20 of the electrode 10 for the electricity storage device has a high electrical resistivity, it is difficult to be deformed even when a material capable of occluding many metals is applied as an active material, and the positive electrode and / or the negative electrode are preferably doped with metal ions can do.
次に、本発明の蓄電デバイス用電極の製造方法の一例について説明する。 Next, an example of the manufacturing method of the electrode for electrical storage devices of this invention is demonstrated.
(1)集電板の作製工程
(1-1)ステンレス鋼板の準備
まず、厚さが5~30μmのオーステナイト系ステンレス鋼板を準備する。オーステナイト系ステンレス鋼にはあらかじめ冷間で塑性変形が施され、内部にマルテンサイト相が形成されている。
(1) Current collector plate manufacturing process (1-1) Preparation of stainless steel plate First, an austenitic stainless steel plate having a thickness of 5 to 30 μm is prepared. The austenitic stainless steel is preliminarily plastically deformed and a martensite phase is formed inside.
(1-2)貫通孔の形成
次に、オーステナイト系ステンレス鋼板に貫通孔を形成する。
貫通孔を形成する方法は、特に限定されず、エッチング法、パンチング法、レーザー加工法のいずれにより貫通孔を形成してもよい。
これらの中では、エッチング法であることが好ましい。エッチング法で貫通孔を形成することにより、テーパ形状の貫通孔を形成することができる。また、エッチング法で形成された貫通孔はバリが発生しにくく、蓄電デバイス用電極の表面に導体である集電板が露出しにくく、好適に利用することができる。
また、エッチング法で貫通孔を形成する場合、オーステナイト系ステンレス鋼板の両面からエッチングを行うことが好ましい。これにより、オーステナイト系ステンレス鋼板の一方の主面に広がるテーパ孔と、もう一方の主面に広がるテーパ孔とを形成することができる。
(1-2) Formation of Through Hole Next, a through hole is formed in the austenitic stainless steel sheet.
The method for forming the through hole is not particularly limited, and the through hole may be formed by any of an etching method, a punching method, and a laser processing method.
Of these, the etching method is preferable. By forming the through hole by an etching method, a tapered through hole can be formed. Moreover, the through-hole formed by the etching method is less likely to generate burrs, and the current collector plate that is a conductor is less likely to be exposed on the surface of the electrode for the electricity storage device, and can be suitably used.
Moreover, when forming a through-hole by the etching method, it is preferable to etch from both surfaces of an austenitic stainless steel plate. Thereby, the taper hole which spreads in one main surface of an austenitic stainless steel plate, and the taper hole which spreads in the other main surface can be formed.
エッチング条件は、特に限定されないが、例えば、30~40%の塩化第2鉄水溶液により25~40℃で10~60分処理する方法があげられる。 The etching conditions are not particularly limited. For example, a method of treating with a 30 to 40% aqueous ferric chloride solution at 25 to 40 ° C. for 10 to 60 minutes can be mentioned.
なお、貫通孔の形状、大きさ、密度、配列パターン等は、上記の通りであるので、ここでの説明は省略する。 Since the shape, size, density, arrangement pattern, and the like of the through holes are as described above, description thereof is omitted here.
(2)活物質スラリーの作製工程
活物質と熱硬化樹脂からなるバインダとを混合し、活物質スラリーを作製する。
活物質としては、特に限定されず、インターカレーションにより金属イオンを吸蔵する金属イオン吸蔵物質や金属イオンと化学結合して金属イオンを吸蔵する金属イオン吸蔵物質などがあげられる。これらの中では、金属イオンと化学結合して金属イオンを吸蔵する金属イオン吸蔵物質が好ましく、ケイ素であることがより好ましい。
(2) Active Material Slurry Production Process An active material and a binder made of a thermosetting resin are mixed to produce an active material slurry.
The active material is not particularly limited, and examples thereof include a metal ion storage material that stores metal ions by intercalation, and a metal ion storage material that stores metal ions by being chemically bonded to metal ions. In these, the metal ion occlusion substance which occludes a metal ion by chemically bonding with a metal ion is preferable, and silicon is more preferable.
活物質とバインダとの重量割合は、特に限定されないが、活物質:バインダ=70:30~90:10となるように調製することが好ましい。 The weight ratio of the active material and the binder is not particularly limited, but it is preferable to prepare the active material: binder = 70: 30 to 90:10.
バインダとしては、特に限定されず、ポリイミド樹脂前駆体、ポリアミドイミド樹脂等があげられる。これらの中では、ポリイミド樹脂前駆体が好ましい。 The binder is not particularly limited, and examples thereof include a polyimide resin precursor and a polyamideimide resin. In these, a polyimide resin precursor is preferable.
塗工性の観点から、活物質スラリーの粘度は、1~10Pa・sであることが好ましい。なお、スラリーの粘度はB型粘度計を用い、1~10rpmとなる条件で測定する。
活物質とバインダの割合を調整することにより活物質スラリーの粘度を調整することができる。また、必要に応じて増粘剤等により粘度を調整してもよい。
From the viewpoint of coatability, the viscosity of the active material slurry is preferably 1 to 10 Pa · s. The viscosity of the slurry is measured using a B-type viscometer under conditions of 1 to 10 rpm.
The viscosity of the active material slurry can be adjusted by adjusting the ratio of the active material and the binder. Moreover, you may adjust a viscosity with a thickener etc. as needed.
(3)活物質スラリーの塗工工程
集電板の両主面に活物質スラリーを塗工する。
塗工する活物質スラリーの量は、特に限定されないが、加熱乾燥後に0.1~10mg/cmとなるように塗工することが好ましい。
(3) Application process of active material slurry The active material slurry is applied to both main surfaces of the current collector plate.
The amount of the active material slurry to be applied is not particularly limited, but it is preferable to apply the slurry so as to be 0.1 to 10 mg / cm 2 after heat drying.
(4)プレス加工工程
次に、活物質スラリーが塗工された集電板をプレス加工する。
プレス加工の圧力は、特に限定されないが、活物質スラリーが平坦になるように押さえつければ充分である。
(4) Pressing process Next, the current collector plate coated with the active material slurry is pressed.
The pressure of the press working is not particularly limited, but it is sufficient if the active material slurry is pressed so as to be flat.
(5)加熱工程
次に、活物質スラリーが塗工された集電板を加熱し、活物質スラリーに含まれる熱硬化樹脂からなるバインダを硬化させる。
加熱条件は、使用するバインダの種類に応じて決定することが好ましい。
バインダがポリイミド樹脂前駆体を含む場合、加熱温度は、250~350℃であることが好ましい。また、加熱時の雰囲気は、窒素ガス雰囲気等の不活性雰囲気であることが好ましい。
(5) Heating step Next, the current collector plate coated with the active material slurry is heated to cure the binder made of the thermosetting resin contained in the active material slurry.
The heating conditions are preferably determined according to the type of binder used.
When the binder contains a polyimide resin precursor, the heating temperature is preferably 250 to 350 ° C. The atmosphere during heating is preferably an inert atmosphere such as a nitrogen gas atmosphere.
以上の工程を経て、本発明の蓄電デバイス用電極を製造することができる。 Through the above steps, the electrode for an electricity storage device of the present invention can be manufactured.
なお、このようにして製造された蓄電デバイス用電極を使用して蓄電デバイスを作製する場合には、蓄電デバイス用電極に金属イオンをドープする必要がある。ドープの方法は特に限定されない。電気的にドープしてもよく、金属イオン源を蓄電デバイス用電極に直接接触させてもよい。
以下に、直接接触させるドープの方法を説明する。
In addition, when producing an electrical storage device using the electrical storage device electrode manufactured in this way, it is necessary to dope metal ions to the electrical storage device electrode. The doping method is not particularly limited. It may be electrically doped, or the metal ion source may be in direct contact with the electrode for the electricity storage device.
The dope method for direct contact will be described below.
(1)有機電解液塗布工程
まず、本発明の蓄電デバイス用電極の集電板の一方の主面側の電極層に有機電解液を塗布する。
有機電解液は、特に限定されないが、有機溶媒に電解質として金属塩を溶解させた溶液を用いることができる。
有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
なお、後述するように金属イオン源としてリチウムを用いる場合、有機電解液は、リチウムイオン導電性を有することが好ましい。
(1) Organic electrolyte application process First, an organic electrolyte is applied to the electrode layer on one main surface side of the current collector plate of the electrode for an electricity storage device of the present invention.
The organic electrolytic solution is not particularly limited, but a solution in which a metal salt is dissolved as an electrolyte in an organic solvent can be used.
Examples of organic solvents include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), cyclic carbonates such as vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( EMC), chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2-diethoxy Chain ethers such as ethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylphenol Rumamide, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, Examples include aprotic organic solvents such as propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, and fluorinated carboxylic acid esters.
These may be used alone or in combination of two or more.
In addition, when using lithium as a metal ion source so that it may mention later, it is preferable that organic electrolyte solution has lithium ion electroconductivity.
(2)ドープ工程
次に、有機電解液が塗布された、電極層と金属イオン源とを接触させて、金属イオンをドープする。
金属イオン源としては、特に限定されないが、リチウム、ナトリウム、カルシウム、マグネシウム等があげられる。これらの中では、リチウムであることが好ましい。
ドープの条件は、特に限定されないが、加熱なしでもよく加熱してもよい。加熱する場合には、室温~80℃に加熱することが好ましい。またドープの時間は5~120分であることが好ましい。
(2) Doping step Next, the electrode layer coated with the organic electrolyte and the metal ion source are brought into contact with each other to dope metal ions.
Although it does not specifically limit as a metal ion source, Lithium, sodium, calcium, magnesium etc. are mention | raise | lifted. Of these, lithium is preferable.
The dope conditions are not particularly limited, but may be either no heating or heating. When heating, it is preferable to heat to room temperature to 80 ° C. The dope time is preferably 5 to 120 minutes.
(3)乾燥工程
ドープ後の蓄電デバイス用電極をジメチルカーボネート(DMC)で洗浄し、自然乾燥させる。
(3) Drying step The electrode for an electricity storage device after doping is washed with dimethyl carbonate (DMC) and naturally dried.
なお、ドープの方法はこのような金属イオン源に接触させる方法に限定されず、他の方法も利用できる。例えば、金属イオン源と蓄電デバイス用電極とをそれぞれ外部回路につなぎ、電気的にドープすることもできる。 The dope method is not limited to such a method of contacting the metal ion source, and other methods can be used. For example, the metal ion source and the electrode for the electricity storage device can be connected to an external circuit and electrically doped.
次に、このようにして得られた金属イオンを含有する本発明の蓄電デバイス用電極を用いて蓄電デバイスを製造する方法を説明する。
図6(a)~(e)は、金属イオンを含有する本発明の蓄電デバイス用電極を用いて蓄電デバイスを製造する工程の一例を順に模式的に示す工程図である。
Next, a method for manufacturing an electricity storage device using the electrode for an electricity storage device of the present invention containing the metal ions obtained in this manner will be described.
FIGS. 6A to 6E are process diagrams schematically showing, in order, an example of a process for producing an electricity storage device using the electrode for an electricity storage device of the present invention containing metal ions.
(1)蓄電デバイスの組立工程
まず、図6(a)に示すように、金属イオン供給極である蓄電デバイス用電極10と、正極161と、負極162と、セパレータ163とを蓄電パッケージ164に収容する。ここでは、金属イオンを含有する本発明の蓄電デバイス用電極を、正極あるいは負極に用いるのではなく、正極あるいは負極に金属イオンを供給する金属イオン供給極として使用する。
この際、蓄電デバイス用電極10と、正極161と、負極162とがそれぞれ分離されるようにセパレータ163を配置する。
(1) Storage Device Assembly Step First, as shown in FIG. 6A, the storage device electrode 10, which is a metal ion supply electrode, the positive electrode 161, the negative electrode 162, and the separator 163 are accommodated in the storage package 164. To do. Here, the electrode for an electricity storage device of the present invention containing metal ions is not used as a positive electrode or a negative electrode, but is used as a metal ion supply electrode for supplying metal ions to the positive electrode or the negative electrode.
At this time, the separator 163 is disposed so that the electricity storage device electrode 10, the positive electrode 161, and the negative electrode 162 are separated from each other.
正極161は、正極集電体と、正極集電体に備えられた正極活物質とから構成されている。
正極集電体は、特に限定されないが、アルミニウム、ニッケル、銅、銀及びこれらの合金からなることが好ましい。
正極活物質は、特に限定されないが、LiMnO、LiMn(0<x<2)、LiMnO、LiMn1.5Ni0.5(0<x<2)等の層状構造を持つマンガン酸リチウム又はスピネル構造を有するマンガン酸リチウム;LiCoO、LiNiO又はこれらの遷移金属の一部を他の金属で置き換えたもの;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が半数を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰にしたもの;LiFePO等のオリビン構造を有するもの等があげられる。
また、これらの金属酸化物に、アルミニウム、鉄、リン、チタン、ケイ素、鉛、錫、インジウム、ビスマス、銀、バリウム、カルシウム、水銀、パラジウム、白金、テルル、ジルコニウム、亜鉛、ランタン等により一部置換した材料も使用することができる。特に、LiαNiβCoγAlδ(1≦α≦2、β+γ+δ=1、β≧0.7、γ≦0.2)又はLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。
正極活物質は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The positive electrode 161 is composed of a positive electrode current collector and a positive electrode active material provided in the positive electrode current collector.
The positive electrode current collector is not particularly limited, but is preferably made of aluminum, nickel, copper, silver and alloys thereof.
The positive electrode active material is not particularly limited, LiMnO 2, Li x Mn 2 O 4 (0 <x <2), Li 2 MnO 3, Li x Mn 1.5 Ni 0.5 O 4 (0 <x <2 Lithium manganate having a layered structure such as) or lithium manganate having a spinel structure; LiCoO 2 , LiNiO 2 or a part of these transition metals replaced with another metal; LiNi 1/3 Co 1/3 Mn Lithium transition metal oxides in which more than half of specific transition metals such as 1/3 O 2 are present; Li in excess of the stoichiometric composition in these lithium transition metal oxides; Olivine structures such as LiFePO 4 And the like.
Some of these metal oxides include aluminum, iron, phosphorus, titanium, silicon, lead, tin, indium, bismuth, silver, barium, calcium, mercury, palladium, platinum, tellurium, zirconium, zinc, lanthanum, etc. Substituted materials can also be used. In particular, Li α Ni β Co γ Al δ O 2 (1 ≦ α ≦ 2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0.2) or Li α Ni β Co γ Mn δ O 2 (1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, γ ≦ 0.2).
A positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
また、上記の正極活物質に代えて炭素の多孔体を使用することもできる。炭素の多孔体を使用した場合には、炭素の多孔体の表面に電解質が電気二重層を形成し、キャパシタとして作用する。電解質がリチウム塩の場合には、リチウムイオンキャパシタとなる。 Moreover, it can replace with said positive electrode active material, and can also use the porous body of carbon. When a carbon porous body is used, the electrolyte forms an electric double layer on the surface of the carbon porous body and acts as a capacitor. When the electrolyte is a lithium salt, a lithium ion capacitor is obtained.
負極162は、負極集電体と、負極集電体に備えられた負極活物質とから構成されている。
負極集電体は、特に限定されないが、アルミニウム、ニッケル、銅、銀及びこれらの合金等からなることが好ましい。
負極活物質は、特に限定されないが、ケイ素、一酸化ケイ素、二酸化ケイ素、炭素等からなることが好ましい。
The negative electrode 162 is composed of a negative electrode current collector and a negative electrode active material provided in the negative electrode current collector.
The negative electrode current collector is not particularly limited, but is preferably made of aluminum, nickel, copper, silver, and alloys thereof.
The negative electrode active material is not particularly limited, but is preferably made of silicon, silicon monoxide, silicon dioxide, carbon or the like.
セパレータ163は、特に限定されないが、ポリプロピレン、ポリエチレン等の多孔質フィルムや不織布を用いることができる。また、セパレータとしては、それらを積層したものを用いることもできる。また、耐熱性の高い、ポリイミド、ポリアミドイミド、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、セルロース、ガラス繊維を用いることもできる。また、それらの繊維を束ねて糸状にし、織物とした織物セパレータを用いることもできる。 The separator 163 is not particularly limited, and a porous film such as polypropylene or polyethylene or a nonwoven fabric can be used. Moreover, what laminated | stacked them can also be used as a separator. Alternatively, polyimide, polyamideimide, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), cellulose, or glass fiber having high heat resistance can be used. Moreover, the textile separator which bundled those fibers and made it into a thread form and made it into a textile fabric can also be used.
(2)電解液注入工程
次に、図6(b)に示すように、蓄電パッケージ164に電解液165を注入する。
電解液165は、特に限定されないが、溶媒に電解質として金属塩を溶解させた溶液を用いることができる。
溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
(2) Electrolyte Solution Injection Step Next, as shown in FIG. 6B, the electrolyte solution 165 is injected into the power storage package 164.
The electrolytic solution 165 is not particularly limited, but a solution in which a metal salt is dissolved as an electrolyte in a solvent can be used.
Solvents include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). ), Chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2-diethoxyethane (DEE), chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylform Amide, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, Examples include aprotic organic solvents such as propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, and fluorinated carboxylic acid esters.
These may be used alone or in combination of two or more.
金属塩としては、特に限定されないが、リチウム塩、ナトリウム塩、カルシウム塩、マグネシウム塩等を用いることができる。
金属塩として、リチウム塩を用いる場合、リチウム塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCCO、LiC(CFSO、LiN(CFSO、LiN(CSO、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類等があげられる。
これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
Although it does not specifically limit as a metal salt, Lithium salt, sodium salt, calcium salt, magnesium salt, etc. can be used.
When a lithium salt is used as the metal salt, examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 CO 3 , LiC (CF 3 SO 2) 2, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiB 10 Cl 10, lower aliphatic lithium carboxylate, chloroborane lithium, lithium tetraphenylborate, LiBr, LiI, LiSCN , LiCl, imides and the like.
These may be used alone or in combination of two or more.
電解液165の電解質濃度は、特に限定されないが、0.5~1.5mol/Lであることが好ましい。
電解質濃度が0.5mol/L未満であれば、電解液の電気電導率を充分にしにくくなる。
電解質濃度が1.5mol/Lを超えると、電解液の密度及び粘度が増加しやすくなる。
The electrolyte concentration of the electrolytic solution 165 is not particularly limited, but is preferably 0.5 to 1.5 mol / L.
If the electrolyte concentration is less than 0.5 mol / L, it will be difficult to make the electric conductivity of the electrolyte sufficiently.
When the electrolyte concentration exceeds 1.5 mol / L, the density and viscosity of the electrolytic solution tend to increase.
(3)負極活物質への金属イオンのドープ工程
次に、図6(c)に示すように、負極162と金属イオン供給極である蓄電デバイス用電極10とを電気化学的に接続し、蓄電デバイス用電極10に吸蔵された金属イオンを負極162に移す。
本工程では、負極162が正極として機能し、蓄電デバイス用電極10が負極として機能する。
本工程を行うことにより負極162の負極活物質に金属イオンがドープされる。
なお、蓄電デバイスが、正極または負極にもともと金属イオンを含有している場合には、ドープ工程は必須ではないが、電解質としての金属イオンの不足分を補うようにドープ工程を行ってもよい。また、蓄電デバイスが完成する前だけでなく、金属イオンが不足した段階でドープしてもよい。
蓄電デバイスがリチウムイオンキャパシタの場合、正極及び負極の中に金属イオンを含有していないので、正極または負極にドープを行うことで蓄電デバイスが動作可能となるよう金属イオンが蓄電デバイスの内部に供給される。
(3) Step of doping metal ion into negative electrode active material Next, as shown in FIG. 6C, the negative electrode 162 and the electrode for power storage device 10 which is a metal ion supply electrode are electrochemically connected to store power. The metal ions occluded in the device electrode 10 are transferred to the negative electrode 162.
In this step, the negative electrode 162 functions as a positive electrode, and the electricity storage device electrode 10 functions as a negative electrode.
By performing this step, the negative electrode active material of the negative electrode 162 is doped with metal ions.
Note that when the electricity storage device originally contains metal ions in the positive electrode or the negative electrode, the doping step is not essential, but the doping step may be performed so as to compensate for the shortage of metal ions as the electrolyte. Further, the doping may be performed not only before the electricity storage device is completed but also when metal ions are insufficient.
When the electricity storage device is a lithium ion capacitor, the metal ions are supplied to the inside of the electricity storage device so that the electricity storage device can be operated by doping the positive electrode or the negative electrode because the positive electrode and the negative electrode do not contain metal ions. Is done.
上記負極活物質への金属イオンのドープ工程を行った後、図6(d)に示すように、負極162と蓄電デバイス用電極10との電気化学的な接続を切断することにより、蓄電デバイス100を製造することができる。
このように製造された蓄電デバイス100は本発明の蓄電デバイスの一例でもある。
After performing the metal ion doping step on the negative electrode active material, as shown in FIG. 6D, the electrochemical connection between the negative electrode 162 and the electrode for power storage device 10 is cut off, whereby the power storage device 100. Can be manufactured.
The power storage device 100 manufactured in this way is also an example of the power storage device of the present invention.
また、図6(e)に示すように、蓄電デバイス100の正極161と負極162を接続することにより、電流を流すことができる。 In addition, as illustrated in FIG. 6E, a current can be passed by connecting the positive electrode 161 and the negative electrode 162 of the electricity storage device 100.
蓄電デバイス100の内部には、金属イオンを含有する蓄電デバイス用電極10が残ることになるが、リチウム等の活性な金属が蓄電デバイスの内部に残るよりもはるかに安全性が高い。 The electricity storage device electrode 10 containing metal ions remains inside the electricity storage device 100, but is much safer than when an active metal such as lithium remains inside the electricity storage device.
また、上記の通り、蓄電デバイス用電極10の集電板20には反りやシワが発生しにくい。一般的な蓄電デバイスでは、このような集電板の反りやシワの発生を考慮し、蓄電パッケージを大きくする必要があるが、蓄電デバイス用電極10を用いる場合、このように蓄電パッケージを大きくしなくてもよい。 Further, as described above, the current collecting plate 20 of the electricity storage device electrode 10 is less likely to be warped or wrinkled. In general power storage devices, it is necessary to increase the power storage package in consideration of such warpage and wrinkle of the current collector plate. However, when the power storage device electrode 10 is used, the power storage package is increased in this way. It does not have to be.
また、蓄電デバイス用電極10の活物質として、ケイ素を使用する場合、多くの金属イオンを吸蔵することができる。
そのため、蓄電デバイス用電極10を小さくすることができる。このような小さい蓄電デバイス用電極10を用いることにより、蓄電デバイス100も小さくすることができる。
In addition, when silicon is used as the active material of the electrode 10 for the electricity storage device, many metal ions can be occluded.
Therefore, the electrode 10 for electrical storage devices can be made small. By using such a small electricity storage device electrode 10, the electricity storage device 100 can also be made small.
次に、ドープされた本発明の蓄電デバイス用電極を用いて空気電池を製造する方法を説明する。
図7(a)~(c)は、金属イオンを含有する本発明の蓄電デバイス用電極を負極として用いて蓄電デバイスを製造する工程の一例を順に模式的に示す工程図である。
Next, a method for producing an air battery using the doped electrode for an electricity storage device of the present invention will be described.
FIGS. 7A to 7C are process diagrams schematically showing, in order, one example of a process for producing an electricity storage device using the electrode for an electricity storage device of the present invention containing metal ions as a negative electrode.
(1)空気電池の組立工程
まず、図7(a)に示すように、正極261と、負極262と、固体電解質263とを蓄電パッケージ264に収容する。
この際、正極261と、負極262とがそれぞれ分離されるように固体電解質263を配置する。また、正極261の一部が蓄電パッケージ264から露出するようにする。また、固体電解質は、後述する有機電解液と水系電解液に含まれる金属イオンに対してイオン伝導性がある。
(1) Air Battery Assembly Step First, as shown in FIG. 7A, the positive electrode 261, the negative electrode 262, and the solid electrolyte 263 are accommodated in the power storage package 264.
At this time, the solid electrolyte 263 is disposed so that the positive electrode 261 and the negative electrode 262 are separated from each other. Further, a part of the positive electrode 261 is exposed from the power storage package 264. Further, the solid electrolyte has ionic conductivity with respect to metal ions contained in an organic electrolyte and an aqueous electrolyte described later.
正極261は、触媒と、触媒を担持する多孔質素材から構成されている。
触媒は、特に限定されないが、マンガン酸化物、コバルト酸化物、酸化ニッケル、酸化鉄、酸化銅等からなることが好ましい。
多孔質素材は、特に限定されないが、炭素からなることが好ましい。
The positive electrode 261 includes a catalyst and a porous material that supports the catalyst.
The catalyst is not particularly limited, but is preferably made of manganese oxide, cobalt oxide, nickel oxide, iron oxide, copper oxide or the like.
The porous material is not particularly limited, but is preferably made of carbon.
負極262は、金属イオンを含有する上記蓄電デバイス用電極である。 The negative electrode 262 is the above electrode for an electricity storage device containing metal ions.
固体電解質263は、金属イオン伝導性があれば特に限定されないが、例えば、LiN、Garnet-Type型リチウムイオン伝導体、NASICON型リチウムイオン伝導体、β-Fe(SO)型リチウムイオン伝導体、ペロブスカイト型リチウムイオン伝導体、チオLISICON型リチウムイオン伝導体、高分子型リチウムイオン伝導体等を用いることができる。 The solid electrolyte 263 is not particularly limited as long as it has metal ion conductivity. For example, Li 3 N, Garnet-Type lithium ion conductor, NASICON lithium ion conductor, β-Fe 2 (SO 4 ) lithium ion A conductor, a perovskite type lithium ion conductor, a thio LISICON type lithium ion conductor, a polymer type lithium ion conductor, or the like can be used.
(2)電解液注入工程
次に、図7(b)に示すように、蓄電パッケージ264の正極側に水系電解液265a、負極側に有機電解液265bを注入する。有機電解液265bと水系電解液265aは、固体電解質を通して金属イオンを受け渡ししている。有機電解液265b側の負極と水系電解液265aとは接触していないので、金属によって水系電解液265aを分解させることが無い。また、正極側で生成する水酸化金属は、水系電解液265aに溶解し、正極表面に堆積することがない。このため、放電して、水酸化金属が生成しても空気電池の内部抵抗を低く抑えることができる。
水系電解液265aは、特に限定されないが、水系アルカリ電解液であることが好ましく、水酸化リチウムを水又は水系溶媒に溶解させたものがより好ましく、水酸化リチウム水溶液がさらに好ましい。また、水系アルカリ電解液はハロゲン化リチウムを含むものであってもよく、ハロゲン化リチウムの好ましい例としては、フッ化リチウム(LiF)、塩化リチウム(LiCl)、臭化リチウム(LiBr)、ヨウ化リチウム(LiI)等があげられる。
有機電解液265bは、上記電解液165と同じものであってもよい。
(2) Electrolyte Injection Step Next, as shown in FIG. 7B, an aqueous electrolyte 265a is injected into the positive electrode side of the electricity storage package 264, and an organic electrolyte 265b is injected into the negative electrode side. The organic electrolyte solution 265b and the aqueous electrolyte solution 265a deliver metal ions through the solid electrolyte. Since the negative electrode on the organic electrolyte 265b side and the aqueous electrolyte 265a are not in contact with each other, the aqueous electrolyte 265a is not decomposed by the metal. Moreover, the metal hydroxide produced | generated by the positive electrode side melt | dissolves in the aqueous electrolyte solution 265a, and does not accumulate on the positive electrode surface. For this reason, even if it discharges and a metal hydroxide produces | generates, the internal resistance of an air battery can be restrained low.
The aqueous electrolyte 265a is not particularly limited, but is preferably an aqueous alkaline electrolyte, more preferably lithium hydroxide dissolved in water or an aqueous solvent, and even more preferably an aqueous lithium hydroxide solution. The aqueous alkaline electrolyte may contain lithium halide. Preferred examples of the lithium halide include lithium fluoride (LiF), lithium chloride (LiCl), lithium bromide (LiBr), and iodide. Examples thereof include lithium (LiI).
The organic electrolytic solution 265b may be the same as the electrolytic solution 165.
空気電池200では、正極261が空気極となる。
このように製造された空気電池200は本発明の空気電池の一例でもある。
In the air battery 200, the positive electrode 261 is an air electrode.
The air battery 200 manufactured in this way is also an example of the air battery of the present invention.
また、図7(c)に示すように、空気電池200の正極261と負極262を接続することにより、電流を流すことができる。 Moreover, as shown in FIG.7 (c), an electric current can be sent by connecting the positive electrode 261 and the negative electrode 262 of the air battery 200. FIG.
また、上記蓄電デバイスを製造する方法において、電解液を用いることなく、固体電解質に正極、負極を直接接触させてもよい。この場合、全固体電池を製造することができる。
固体電解質としては、特に限定されないが、8LiO・67LiS・25P、LiS、P、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-B等の硫化物系非晶質固体電解質や、LiO-B-P、LiO-SiO等酸化物系非晶質固体電解質や、Li1.3Al0.3Ti0.7(PO、Li1+x+yTi2-xSi3-y12(Aは、Al又はGa、0≦x≦0.4、0<y≦0.6)等の結晶質酸化物を用いることができる。
このような全固体電池は、本発明の全固体電池の一例でもある。
In the method for manufacturing the electricity storage device, the positive electrode and the negative electrode may be brought into direct contact with the solid electrolyte without using an electrolytic solution. In this case, an all-solid battery can be manufactured.
The solid electrolyte is not specifically limited, 8Li 2 O · 67Li 2 S · 25P 2 S 5, Li 2 S, P 2 S 5, Li 2 S-SiS 2, LiI-Li 2 S-SiS 2, LiI- Sulfide-based amorphous solid electrolytes such as Li 2 S—P 2 S 5 and LiI—Li 2 S—B 2 S 3 , Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 iso-oxide based amorphous solid electrolyte, Li 1.3 Al 0.3 Ti 0.7 (PO 4 ) 3 , Li 1 + x + y A x Ti 2-x Si y P 3-y O 12 (A is A crystalline oxide such as Al or Ga, 0 ≦ x ≦ 0.4, 0 <y ≦ 0.6) can be used.
Such an all solid state battery is also an example of the all solid state battery of the present invention.
(実施例)
以下に本発明をより具体的に説明する実施例を示すが、本発明はこれらの実施例に限定されるものではない。
(Example)
Examples for more specifically explaining the present invention are shown below, but the present invention is not limited to these examples.
(実施例1)
(1)集電板の作製工程
(1-1)ステンレス鋼板の準備
厚さが20μmであるステンレス鋼板を準備した。ステンレス鋼板はSUS304のオーステナイト系ステンレス鋼である。次にステンレス鋼板を冷間で塑性変形させマルテンサイト相を内部に析出させた。
得られたステンレス鋼のオーステナイトとマルテンサイトとの割合をEBSD法により分析した。結果を図8に示す。
図8は、本発明の実施例1に係る蓄電デバイス用電極を製造する際に用いたステンレス鋼板を、EBSD法により分析し、その分析結果に基づき、ステンレス鋼板中のオーステナイト相及びマルテンサイト相をマッピングした図である。図8中、符号51で示す部分がマルテンサイト相であり、符号52で示す部分がオーステナイト相である。
なお、EBSD法の条件は以下の通りである。
Example 1
(1) Current collector plate manufacturing process (1-1) Preparation of stainless steel plate A stainless steel plate having a thickness of 20 μm was prepared. The stainless steel plate is SUS304 austenitic stainless steel. Next, the stainless steel plate was cold plastically deformed to precipitate a martensite phase inside.
The ratio of austenite and martensite in the obtained stainless steel was analyzed by the EBSD method. The results are shown in FIG.
FIG. 8 shows the analysis of the stainless steel plate used in manufacturing the electrode for the electricity storage device according to Example 1 of the present invention by the EBSD method. Based on the analysis result, the austenite phase and the martensite phase in the stainless steel plate are analyzed. It is the figure which mapped. In FIG. 8, the part shown by the code | symbol 51 is a martensite phase, and the part shown by the code | symbol 52 is an austenite phase.
The conditions for the EBSD method are as follows.
(EBSD法の条件)
<分析装置>
EF-SEM:日本電子株式会社製JSM-7000F/EBSDD:TSL Solution
<分析条件>
範囲     :14×36μm
ステップ   :0.05μm/step
測定ポイント :233376
倍率     :5000倍
phase  :γ-鉄、α-鉄
(Conditions for EBSD method)
<Analyzer>
EF-SEM: JSM-7000F / EBSDD manufactured by JEOL Ltd .: TSL Solution
<Analysis conditions>
Range: 14 × 36 μm
Step: 0.05 μm / step
Measurement point: 233376
Magnification: 5000 times phase: γ-iron, α-iron
EBSD法により分析した結果、ステンレス鋼板中のマルテンサイト相が占める面積は15%であった。 As a result of analysis by the EBSD method, the area occupied by the martensite phase in the stainless steel plate was 15%.
また、ステンレス鋼板の引張強度は1300MPaであった。 Moreover, the tensile strength of the stainless steel plate was 1300 MPa.
(1-2)貫通孔の形成
準備したステンレス鋼板の第1主面及び第2主面に、図4(a)に示す配列パターンのテーパ孔が形成されるようにマスクした。
その後、第1主面及び第2主面に、37%の塩化第2鉄水溶液により40℃で20分間エッチング処理を行い、第1テーパ孔及び第2テーパ孔を形成した。
(1-2) Formation of through holes Masking was performed so that tapered holes having an arrangement pattern shown in FIG. 4A were formed on the first main surface and the second main surface of the stainless steel plate prepared.
Thereafter, the first main surface and the second main surface were etched with a 37% ferric chloride aqueous solution at 40 ° C. for 20 minutes to form a first tapered hole and a second tapered hole.
形成された第1テーパ孔の形状を図9に示す。
図9は実施例1に係る蓄電デバイス用電極における集電板を、厚さ方向に平行な方向に、かつ、第1テーパ孔の中心を通るように切断し200倍に拡大した断面の写真である。
図9中、符号20は集電板を示し、符号21は第1主面を示し、符号22は第2主面を示し、符号41は第1テーパ孔を示す。
図9に示すように貫通孔はテーパ状の形状であった。
また、第1テーパ孔及び第2テーパ孔の直径は以下の通りであった。
第1テーパ孔の第1主面側の直径は、60μmであった。
第1テーパ孔の第2主面側の直径は、120μmであった。
第2テーパ孔の第1主面側の直径は、120μmであった。
第2テーパ孔の第2主面側の直径は、60μmであった。
The shape of the formed first tapered hole is shown in FIG.
FIG. 9 is a photograph of a cross section obtained by cutting the current collector plate in the electrode for an electricity storage device according to Example 1 in a direction parallel to the thickness direction and passing through the center of the first taper hole and expanding 200 times. is there.
In FIG. 9, the code | symbol 20 shows a current collecting plate, the code | symbol 21 shows a 1st main surface, the code | symbol 22 shows a 2nd main surface, and the code | symbol 41 shows a 1st taper hole.
As shown in FIG. 9, the through hole had a tapered shape.
Moreover, the diameter of the 1st taper hole and the 2nd taper hole was as follows.
The diameter of the first taper hole on the first main surface side was 60 μm.
The diameter of the first taper hole on the second main surface side was 120 μm.
The diameter on the first main surface side of the second tapered hole was 120 μm.
The diameter of the second main surface side of the second taper hole was 60 μm.
第1テーパ孔の中心から、第2テーパ孔の中心までの距離は、200μmであった。
第1テーパ孔及び第2テーパ孔の合計密度は2500個/cmであった。
The distance from the center of the first taper hole to the center of the second taper hole was 200 μm.
The total density of the first tapered holes and the second tapered holes was 2500 / cm 2 .
(2)活物質スラリーの作製工程
次に、ケイ素7gと、ポリイミド前駆体2.5gと、カーボンブラック0.5gとを混合し、活物質スラリーを作製した。
活物質スラリーの粘度は、10Pa・sであった。
(2) Active Material Slurry Production Step Next, 7 g of silicon, 2.5 g of polyimide precursor, and 0.5 g of carbon black were mixed to produce an active material slurry.
The viscosity of the active material slurry was 10 Pa · s.
(3)活物質スラリーの塗工工程
活物質スラリーの量が加熱乾燥後に3mg/cmとなるように、集電板の両主面に活物質スラリーを塗工した。
(3) Application process of active material slurry The active material slurry was applied to both main surfaces of the current collector so that the amount of the active material slurry was 3 mg / cm 2 after heat drying.
(4)プレス加工工程
活物質スラリーが塗工された集電板をプレスし、塗工面が平坦になるようにした。
(4) Pressing process The current collector plate coated with the active material slurry was pressed so that the coated surface became flat.
(5)加熱工程
プレス加工後の集電板を窒素雰囲気下、250℃、1時間加熱し、活物質スラリーに含まれるポリイミド前駆体を硬化させ電極層を形成した。
(5) Heating process The current collector plate after press working was heated at 250 ° C. for 1 hour in a nitrogen atmosphere to cure the polyimide precursor contained in the active material slurry to form an electrode layer.
以上の工程を経て実施例1に係る蓄電デバイス用電極を製造した。 The electrical storage device electrode according to Example 1 was manufactured through the above steps.
(比較例1)
(1)集電板の作製工程
(1-1)銅板の準備
厚さが18μmである銅板を準備した。銅板の引張強度は450MPaであった。
(Comparative Example 1)
(1) Current collector plate preparation step (1-1) Copper plate preparation A copper plate having a thickness of 18 μm was prepared. The tensile strength of the copper plate was 450 MPa.
なお、集電板は貫通孔の形成されていない単純な平板である。 The current collector plate is a simple flat plate having no through hole.
実施例1に係る蓄電デバイス用電極を製造した際の(2)活物質スラリーの作製工程~(4)プレス加工工程と同様の工程を行い、集電板に電極層を形成した。 The same steps as (2) active material slurry preparation step to (4) press working step at the time of manufacturing the electrode for the electricity storage device according to Example 1 were performed to form an electrode layer on the current collector plate.
(5)加熱工程
プレス加工後の集電板を窒素雰囲気下、250℃、1時間加熱し、活物質スラリーに含まれるポリイミド前駆体を硬化させ電極層を形成した。
(5) Heating process The current collector plate after press working was heated at 250 ° C. for 1 hour in a nitrogen atmosphere to cure the polyimide precursor contained in the active material slurry to form an electrode layer.
以上の工程を経て比較例1に係る蓄電デバイス用電極を製造した。 The electrical storage device electrode according to Comparative Example 1 was manufactured through the above steps.
(比較例2)
比較例1における(1)集電板の作製工程において、銅板の代わりに、厚さ20μmの銅-ニッケル-銅のクラッド金属板を準備した以外は、比較例1と同様に、比較例2に係る蓄電デバイス用電極を製造した。なお、銅-ニッケル-銅のクラッド金属板の引張強度は920MPaであった。
(Comparative Example 2)
In Comparative Example 1, the same steps as in Comparative Example 1 were performed except that a copper-nickel-copper clad metal plate having a thickness of 20 μm was prepared instead of the copper plate in the manufacturing process of the current collector plate. Such an electrode for an electricity storage device was manufactured. The tensile strength of the copper-nickel-copper clad metal plate was 920 MPa.
(リチウムイオンドープの影響の観察)
(1)有機電解液塗布工程
実施例1、比較例1及び比較例2に係る各蓄電デバイス用電極を縦×横=37.5×50mmに切断し、各蓄電デバイス用電極の集電板の第1主面側の電極層に1.0mol/LのLiPF/プロピレンカーボネート(PC)の有機電解液を塗り込んだ。
(Observation of lithium ion doping effect)
(1) Organic Electrolyte Solution Application Step Each power storage device electrode according to Example 1, Comparative Example 1 and Comparative Example 2 was cut into length × width = 37.5 × 50 mm, and the current collector plate of each power storage device electrode An organic electrolyte solution of 1.0 mol / L LiPF 6 / propylene carbonate (PC) was applied to the electrode layer on the first main surface side.
(2)ドープ工程
その後、各蓄電デバイス用電極の第1主面に縦52mm、横52mmのリチウム箔を貼り付け、ラミネートで封止し、Li極と蓄電デバイス用電極とを短絡させた状態で45℃の高温槽中に2時間放置し、リチウムイオンをドープした。
(2) Doping step After that, 52 mm long and 52 mm wide lithium foils are attached to the first main surface of each power storage device electrode, sealed with a laminate, and the Li electrode and the power storage device electrode are short-circuited. It was left in a high temperature bath at 45 ° C. for 2 hours to dope lithium ions.
(3)乾燥工程
ドープ後の蓄電デバイス用電極をジメチルカーボネートで洗浄し、自然乾燥させた。
(3) Drying process The electrode for an electricity storage device after doping was washed with dimethyl carbonate and allowed to dry naturally.
乾燥後の各蓄電デバイス用電極から集電板を取り出し目視により観察した。
実施例1に係る蓄電デバイス用電極の集電板には、反り及びシワが観察されなかった。
比較例1に係る蓄電デバイス用電極の集電板には、大きな反り及びシワが観察された。
比較例2に係る蓄電デバイス用電極の集電板には、小さな反り及びシワが観察された。
この結果より、実施例1に係る蓄電デバイス用電極の集電板は、貫通孔を形成してもドープによりシワや反りが発生しにくいことが判明した。
The current collecting plate was taken out from each electrode for an electricity storage device after drying and observed visually.
No warpage or wrinkle was observed on the current collector plate of the electrode for an electricity storage device according to Example 1.
Large warpage and wrinkles were observed on the current collector plate of the electrode for an electricity storage device according to Comparative Example 1.
Small warpage and wrinkles were observed on the current collector plate of the electrode for an electricity storage device according to Comparative Example 2.
From this result, it was found that the current collector plate of the electrode for an electricity storage device according to Example 1 is less likely to be wrinkled or warped by the dope even if the through hole is formed.
(実施例2)
ドープ後の実施例1に係る蓄電デバイス用電極を用いて、以下のように蓄電デバイスを製造することができる。
(Example 2)
Using the electrode for an electricity storage device according to Example 1 after doping, an electricity storage device can be produced as follows.
(1)蓄電デバイスの組立工程
正極集電体がアルミニウムであり、正極活物質がLiMnOである正極を準備する。
負極集電体がアルミニウムであり、負極活物質が炭素である負極を準備する。
ポリプロピレンからなるセパレータを準備する。
(1) Assembly process of power storage device A positive electrode is prepared in which the positive electrode current collector is aluminum and the positive electrode active material is LiMnO 2 .
A negative electrode in which the negative electrode current collector is aluminum and the negative electrode active material is carbon is prepared.
A separator made of polypropylene is prepared.
次に、図6(a)に示すように、実施例1に係る蓄電デバイス用電極と、正極と、負極と、セパレータとを蓄電パッケージに収容する。
この際、実施例1に係る蓄電デバイス用電極と、正極と、負極とがそれぞれ分離されるようにセパレータを配置する。
Next, as illustrated in FIG. 6A, the power storage device electrode according to the first embodiment, the positive electrode, the negative electrode, and the separator are accommodated in a power storage package.
At this time, the separator is disposed so that the electricity storage device electrode, the positive electrode, and the negative electrode according to Example 1 are separated from each other.
(2)電解液注入工程
次に、溶媒がプロピレンカーボネート(PC)であり、LiPFが溶解された電解液を準備する。
そして、蓄電パッケージに電解液を注入する。
(2) Electrolyte Injection Process Next, an electrolyte in which the solvent is propylene carbonate (PC) and LiPF 6 is dissolved is prepared.
And electrolyte solution is inject | poured into an electrical storage package.
(3)負極活物質への金属イオンのドープ工程
次に、負極と実施例1に係る蓄電デバイス用電極とを、電気化学的に接続し、実施例1に係る蓄電デバイス用電極に吸蔵されたリチウムイオンを移す。
(3) Doping process of metal ions into the negative electrode active material Next, the negative electrode and the electrode for the electricity storage device according to Example 1 were electrochemically connected and occluded by the electrode for the electricity storage device according to Example 1. Transfer lithium ions.
負極と実施例1に係る蓄電デバイス用電極との電気化学的な接続を切断することにより、実施例2に係る蓄電デバイスを製造することができる。
また、実施例1に係る蓄電デバイス用電極は、蓄電デバイス中のリチウムイオンが消耗されリチウムイオン濃度が低下したときに、再度負極活物質にリチウムイオンを供給することができる。
これにより、電解液濃度を調整し、蓄電デバイス中のリチウムイオン濃度を復元することができる。
The electrical storage device according to Example 2 can be manufactured by disconnecting the electrochemical connection between the negative electrode and the electrical storage device electrode according to Example 1.
The electrode for an electricity storage device according to Example 1 can supply lithium ions to the negative electrode active material again when the lithium ions in the electricity storage device are consumed and the lithium ion concentration decreases.
Thereby, electrolyte solution concentration can be adjusted and the lithium ion concentration in an electrical storage device can be decompress | restored.
(実施例3)
ドープ後の実施例1に係る蓄電デバイス用電極を用いて、以下のように空気電池を製造することができる。
(Example 3)
An air battery can be manufactured as follows using the electrode for an electricity storage device according to Example 1 after doping.
(1)組立工程
触媒としてマンガン酸化物を担持する多孔質炭素からなる正極を準備する。
LiNからなる固体電解質を準備する。
次に、図7(a)に示すように、正極の一部が蓄電パッケージから露出するように、正極、実施例1に係る蓄電デバイス用電極及び固体電解質を蓄電パッケージに収容する。
(1) Assembly process A positive electrode made of porous carbon carrying manganese oxide as a catalyst is prepared.
A solid electrolyte made of Li 3 N is prepared.
Next, as shown in FIG. 7A, the positive electrode, the electrode for the electric storage device according to Example 1, and the solid electrolyte are accommodated in the electric storage package so that a part of the positive electrode is exposed from the electric storage package.
(2)電解液注入工程
水系電解液として、水酸化リチウム水溶液を準備する。
有機電解液として、溶媒がプロピレンカーボネート(PC)であり、LiPFが溶解された電解液を準備する。
次に、正極側に水系電解液を注入し、負極側に有機電解液を注入する。
(2) Electrolyte injection process A lithium hydroxide aqueous solution is prepared as an aqueous electrolyte.
As the organic electrolyte, an electrolyte in which the solvent is propylene carbonate (PC) and LiPF 6 is dissolved is prepared.
Next, an aqueous electrolyte is injected on the positive electrode side, and an organic electrolyte is injected on the negative electrode side.
以上の工程を経て、実施例3に係る空気電池を製造することができる。 Through the above steps, the air battery according to Example 3 can be manufactured.
(実施例4)
ドープ後の実施例1に係る蓄電デバイス用電極を用いて、以下のように全固体電池を製造することができる。
(Example 4)
Using the electrode for an electricity storage device according to Example 1 after doping, an all-solid battery can be manufactured as follows.
正極集電体がアルミニウムであり、正極活物質がLiMnOである正極を準備する。
8LiO・67LiS・25Pからなる固体電解質を準備する。
次に、図9に示すように、正極と実施例1に係る蓄電デバイス用電極とを分離するように固体電解質を蓄電パッケージに収容し、実施例4に係る全固体電池を製造する。
A positive electrode in which the positive electrode current collector is aluminum and the positive electrode active material is LiMnO 2 is prepared.
A solid electrolyte composed of 8Li 2 O · 67Li 2 S · 25P 2 S 5 is prepared.
Next, as shown in FIG. 9, the solid electrolyte is accommodated in the electricity storage package so as to separate the positive electrode and the electrode for the electricity storage device according to Example 1, and the all solid state battery according to Example 4 is manufactured.
本発明の蓄電デバイス用電極は、蓄電デバイス、空気電池、全固体電池を製造する際に正極及び/又は負極に金属イオンをドープするために用いることができる。 The electrode for an electricity storage device of the present invention can be used to dope metal ions into the positive electrode and / or the negative electrode when producing an electricity storage device, an air battery, or an all-solid battery.
10 蓄電デバイス用電極
20 集電板
21 第1主面
22 第2主面
30、30a、30b 電極層
40 貫通孔
41 第1テーパ孔
42 第2テーパ孔
51 マルテンサイト系ステンレス鋼
52 オーステナイト系ステンレス鋼
100 蓄電デバイス
161、261 正極
162、262 負極
163 セパレータ
164、264 蓄電パッケージ
165 電解液
200 空気電池
263 固体電解質
265a 水系電解液
265b 有機電解液
DESCRIPTION OF SYMBOLS 10 Electrode 20 for electrical storage devices Current collector plate 21 1st main surface 22 2nd main surface 30, 30a, 30b Electrode layer 40 Through-hole 41 1st taper hole 42 2nd taper hole 51 Martensitic stainless steel 52 Austenitic stainless steel DESCRIPTION OF SYMBOLS 100 Electric storage device 161,261 Positive electrode 162,262 Negative electrode 163 Separator 164,264 Electric storage package 165 Electrolyte 200 Air battery 263 Solid electrolyte 265a Water-based electrolyte 265b Organic electrolyte

Claims (13)

  1. 第1主面と前記第1主面と反対側の第2主面を有する集電板と、
    前記第1主面及び前記第2主面に備えられた活物質を含有する電極層とからなる蓄電デバイス用電極であって、
    前記集電板は、オーステナイト系ステンレス鋼からなり、複数の貫通孔を有し、
    前記第1主面及び前記第2主面に備えられた前記電極層は、前記複数の貫通孔を通してつながっていることを特徴とする蓄電デバイス用電極。
    A current collector plate having a first main surface and a second main surface opposite to the first main surface;
    An electrode for an electricity storage device comprising an electrode layer containing an active material provided on the first main surface and the second main surface,
    The current collector plate is made of austenitic stainless steel and has a plurality of through holes,
    The electrode for an electricity storage device, wherein the electrode layers provided on the first main surface and the second main surface are connected through the plurality of through holes.
  2. 前記活物質は、金属イオンと化学結合して前記金属イオンを吸蔵する金属イオン吸蔵物質を含むことを特徴とする請求項1に記載の蓄電デバイス用電極。 The electrode for an electricity storage device according to claim 1, wherein the active material includes a metal ion storage material that is chemically bonded to metal ions and stores the metal ions.
  3. 前記金属イオン吸蔵物質は、ケイ素であることを特徴とする請求項1又は2に記載の蓄電デバイス用電極。 The electrode for an electricity storage device according to claim 1, wherein the metal ion storage material is silicon.
  4. 前記集電板は、マルテンサイト系ステンレス鋼を含有することを特徴とする請求項1~3のいずれか1項に記載の蓄電デバイス用電極。 The electrode for an electricity storage device according to any one of claims 1 to 3, wherein the current collector plate contains martensitic stainless steel.
  5. 前記集電板を厚さ方向に沿って切断する断面において、
    前記マルテンサイト系ステンレス鋼は、前記オーステナイト系ステンレス鋼の中に島状に点在することを特徴とする請求項4に記載の蓄電デバイス用電極。
    In the cross-section cut along the thickness direction of the current collector plate,
    5. The electrode for an electrical storage device according to claim 4, wherein the martensitic stainless steel is scattered in an island shape in the austenitic stainless steel.
  6. 前記集電板を厚さ方向に沿って切断する断面において、
    前記マルテンサイト系ステンレス鋼が占める面積は、断面全体の5~20%であることを特徴とする請求項4又は5に記載の蓄電デバイス用電極。
    In the cross-section cut along the thickness direction of the current collector plate,
    6. The electrode for an electricity storage device according to claim 4, wherein an area occupied by the martensitic stainless steel is 5 to 20% of the entire cross section.
  7. 前記貫通孔は、前記第1主面側に広がった第1テーパ孔と、前記第2主面側に広がった第2テーパ孔とからなることを特徴とする請求項1~6のいずれか1項に記載の蓄電デバイス用電極。 The first through hole according to any one of claims 1 to 6, wherein the through hole includes a first taper hole extending toward the first main surface and a second taper hole extending toward the second main surface. The electrode for an electricity storage device according to item.
  8. 前記第1主面において、前記第1テーパ孔と、前記第2テーパ孔とは、これらの数が同じ割合になるような規則的配列となるように配置されていることを特徴とする請求項7に記載の蓄電デバイス用電極。 The first main surface is characterized in that the first tapered holes and the second tapered holes are arranged in a regular arrangement such that the number thereof is the same ratio. 8. The electrode for an electricity storage device according to 7.
  9. 前記第1主面において、前記第1テーパ孔と前記第2テーパ孔とは、交互に繰り返すように規則的に配列されていることを特徴とする請求項7又は8に記載の蓄電デバイス用電極。 The electrode for an electricity storage device according to claim 7 or 8, wherein the first taper hole and the second taper hole are regularly arranged on the first main surface so as to be alternately repeated. .
  10. 正極及び/又は負極に金属イオンをドープするために用いられることを特徴とする請求項1~9のいずれか1項に記載の蓄電デバイス用電極。 The electrode for an electricity storage device according to any one of claims 1 to 9, wherein the electrode is used for doping a metal ion into a positive electrode and / or a negative electrode.
  11. 正極と、
    負極と、
    前記正極と前記負極とを分離するセパレータと、
    前記正極と前記負極と前記セパレータとを収容する蓄電パッケージと、
    前記蓄電パッケージに封入された電解液とからなる蓄電デバイスであって、
    前記蓄電デバイスはさらに、前記正極及び/又は前記負極に金属イオンをドープするための蓄電デバイス用電極を含み、
    前記蓄電デバイス用電極は、金属イオンがドープされた請求項1~10のいずれか1項に記載の蓄電デバイス用電極であることを特徴とする蓄電デバイス。
    A positive electrode;
    A negative electrode,
    A separator for separating the positive electrode and the negative electrode;
    A power storage package that houses the positive electrode, the negative electrode, and the separator;
    An electricity storage device comprising an electrolyte solution enclosed in the electricity storage package,
    The electricity storage device further includes an electrode for an electricity storage device for doping metal ions into the positive electrode and / or the negative electrode,
    11. The electricity storage device according to claim 1, wherein the electricity storage device electrode is doped with metal ions.
  12. 正極と、
    負極と、
    前記正極と前記負極との間に配置される固体電解質と、
    前記正極と前記負極と前記固体電解質とを収容する蓄電パッケージと、
    前記蓄電パッケージの正極側に封入された水系電解液と、
    前記蓄電パッケージの負極側に封入された有機電解液と、
    からなる空気電池であって、
    前記負極は、金属イオンがドープされた請求項1~9のいずれか1項に記載の蓄電デバイス用電極であることを特徴とする空気電池。
    A positive electrode;
    A negative electrode,
    A solid electrolyte disposed between the positive electrode and the negative electrode;
    A power storage package containing the positive electrode, the negative electrode, and the solid electrolyte;
    An aqueous electrolyte sealed on the positive electrode side of the electricity storage package;
    An organic electrolyte sealed on the negative electrode side of the electricity storage package;
    An air battery comprising:
    The air battery according to any one of Claims 1 to 9, wherein the negative electrode is doped with metal ions.
  13. 正極と、
    負極と、
    前記正極と前記負極とを分離し、かつ、これらと接する固体電解質と、
    前記正極と前記負極と前記固体電解質を収容する蓄電パッケージとからなる全固体電池であって、
    前記負極は、金属イオンがドープされた請求項1~9のいずれか1項に記載の蓄電デバイス用電極であることを特徴とする全固体電池。
    A positive electrode;
    A negative electrode,
    A solid electrolyte that separates the positive electrode and the negative electrode and is in contact with them;
    An all-solid battery comprising the positive electrode, the negative electrode, and a power storage package containing the solid electrolyte,
    10. The all-solid-state battery according to claim 1, wherein the negative electrode is an electrode for an electricity storage device according to any one of claims 1 to 9 doped with metal ions.
PCT/JP2017/027895 2016-08-03 2017-08-01 Electrode for power storage device, power storage device, air cell, and all solid state cell WO2018025858A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780047741.7A CN109565055B (en) 2016-08-03 2017-08-01 Electrode for electricity storage device, air cell, and all-solid-state cell
CN201911308671.3A CN111146444B (en) 2016-08-03 2017-08-01 Electrode for electricity storage device, air cell, and all-solid-state cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016152931A JP6959723B2 (en) 2016-08-03 2016-08-03 Electrodes for power storage devices, power storage devices, air batteries and all-solid-state batteries
JP2016-152931 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018025858A1 true WO2018025858A1 (en) 2018-02-08

Family

ID=61072764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027895 WO2018025858A1 (en) 2016-08-03 2017-08-01 Electrode for power storage device, power storage device, air cell, and all solid state cell

Country Status (3)

Country Link
JP (1) JP6959723B2 (en)
CN (2) CN109565055B (en)
WO (1) WO2018025858A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799443A (en) * 2023-02-06 2023-03-14 中自环保科技股份有限公司 Sodium ion battery microporous aluminum foil electrode and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106580A (en) * 1996-10-03 1998-04-24 Katayama Tokushu Kogyo Kk Substrate for battery electrode and manufacture thereof
JPH11185763A (en) * 1997-12-25 1999-07-09 Matsushita Electric Ind Co Ltd Electrode core plate for battery, manufacture thereof, and battery
JP2008108741A (en) * 2007-12-07 2008-05-08 Ube Ind Ltd Nonaqueous secondary battery
JP2010033769A (en) * 2008-07-25 2010-02-12 Nisshin Steel Co Ltd Bipolar lithium ion secondary battery
JP2014120281A (en) * 2012-12-14 2014-06-30 Kaido Seisakusho:Kk Wound element conveyance device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05255814A (en) * 1992-03-13 1993-10-05 Nippon Steel Corp Stainless steel thin sheet excellent in damping capacity and its manufacture
JP5091732B2 (en) * 2008-03-17 2012-12-05 日新製鋼株式会社 Stainless steel for low Ni springs with excellent sag resistance and bendability
JP2014212029A (en) * 2013-04-18 2014-11-13 Jsr株式会社 Electrode for electricity storage device and electricity storage device
JP2014212028A (en) * 2013-04-18 2014-11-13 Jsr株式会社 Electrode for electricity storage device and electricity storage device
JP6472317B2 (en) * 2014-04-28 2019-02-20 キヤノン株式会社 Metal base material, fixing member and thermal fixing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106580A (en) * 1996-10-03 1998-04-24 Katayama Tokushu Kogyo Kk Substrate for battery electrode and manufacture thereof
JPH11185763A (en) * 1997-12-25 1999-07-09 Matsushita Electric Ind Co Ltd Electrode core plate for battery, manufacture thereof, and battery
JP2008108741A (en) * 2007-12-07 2008-05-08 Ube Ind Ltd Nonaqueous secondary battery
JP2010033769A (en) * 2008-07-25 2010-02-12 Nisshin Steel Co Ltd Bipolar lithium ion secondary battery
JP2014120281A (en) * 2012-12-14 2014-06-30 Kaido Seisakusho:Kk Wound element conveyance device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115799443A (en) * 2023-02-06 2023-03-14 中自环保科技股份有限公司 Sodium ion battery microporous aluminum foil electrode and preparation method thereof
CN115799443B (en) * 2023-02-06 2023-05-12 中自环保科技股份有限公司 Microporous aluminum foil electrode of sodium ion battery and preparation method thereof

Also Published As

Publication number Publication date
CN109565055B (en) 2022-03-11
CN111146444B (en) 2023-04-07
JP2018022609A (en) 2018-02-08
CN111146444A (en) 2020-05-12
JP6959723B2 (en) 2021-11-05
CN109565055A (en) 2019-04-02

Similar Documents

Publication Publication Date Title
JP5954674B2 (en) Battery and battery manufacturing method
CN103250277B (en) The manufacture method of electrode and the manufacture method of battery
WO2010134258A1 (en) Electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5512057B2 (en) Cylindrical battery
CN111108634B (en) Electrode for electricity storage device and electricity storage device
CN113113566A (en) Current collector and application thereof
JP6768398B2 (en) Electrodes for power storage devices, power storage devices, air batteries and all-solid-state batteries
WO2018025858A1 (en) Electrode for power storage device, power storage device, air cell, and all solid state cell
JP2005071918A (en) Cathode for lithium ion secondary battery, and lithium ion secondary battery
JP6237777B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2007134149A (en) Nonaqueous electrolyte battery
JP6982447B2 (en) A method for manufacturing an electrode for a power storage device, a power storage device, and an electrode for a power storage device.
CN111133612B (en) Electrode for electric storage device, and method for manufacturing electrode for electric storage device
JP7332418B2 (en) Lithium ion secondary battery, method for manufacturing lithium ion secondary battery, and method for recovering capacity of lithium ion secondary battery
JP6961939B2 (en) Negative electrode agent for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6128228B2 (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2019169392A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2010009838A (en) Nonaqueous electrolyte secondary battery
CN116031572A (en) Separation membrane for lithium ion battery, preparation method of separation membrane and lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836961

Country of ref document: EP

Kind code of ref document: A1