WO2018025778A1 - 継目無鋼管およびその製造方法 - Google Patents

継目無鋼管およびその製造方法 Download PDF

Info

Publication number
WO2018025778A1
WO2018025778A1 PCT/JP2017/027529 JP2017027529W WO2018025778A1 WO 2018025778 A1 WO2018025778 A1 WO 2018025778A1 JP 2017027529 W JP2017027529 W JP 2017027529W WO 2018025778 A1 WO2018025778 A1 WO 2018025778A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
seamless steel
steel pipe
content
pcm
Prior art date
Application number
PCT/JP2017/027529
Other languages
English (en)
French (fr)
Inventor
健史 三木
勇次 荒井
佑介 三原
陽介 内田
山崎 正弘
山本 将之
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to MYPI2019000084A priority Critical patent/MY191470A/en
Priority to SG11201900897RA priority patent/SG11201900897RA/en
Priority to US16/321,854 priority patent/US11453925B2/en
Priority to CN201780047884.8A priority patent/CN109563587B/zh
Priority to JP2017559728A priority patent/JP6292366B1/ja
Priority to CA3032083A priority patent/CA3032083C/en
Priority to KR1020197005732A priority patent/KR102225267B1/ko
Publication of WO2018025778A1 publication Critical patent/WO2018025778A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a seamless steel pipe and a manufacturing method thereof.
  • Patent Document 1 discloses a method capable of producing a high-strength seamless steel pipe having excellent toughness by online processing heat treatment without adding expensive alloy steel.
  • Patent Document 2 discloses a seamless steel pipe having a tensile strength of 950 MPa or more, a yield strength of 850 MPa or more, and a Charpy absorbed energy at ⁇ 40 ° C. of 60 J or more, and a manufacturing method thereof.
  • Patent Document 3 discloses a seamless steel pipe having a tensile strength of 950 MPa or more, a yield strength of 850 MPa or more, a Charpy absorbed energy at ⁇ 40 ° C. of 60 J or more, and a thickness of more than 30 mm, and a manufacturing method thereof. ing.
  • the high-strength seamless steel pipe disclosed in Patent Document 1 has a maximum tensile strength of 899 MPa, which is not sufficient for a crane boom.
  • the seamless steel pipe disclosed in Patent Document 2 has a high strength such as a tensile strength of 950 MPa or more and a yield strength of 850 MPa or more, is excellent in toughness at low temperature, and is satisfactory in terms of properties after welding. It is a level that can be done.
  • the seamless steel pipe disclosed in Patent Document 3 has a high strength of a tensile strength of 950 MPa or more and a yield strength of 850 MPa or more, even in the case of a thickness exceeding 30 mm, and also toughness at a low temperature. Excellent.
  • Pcm welding cracking susceptibility composition (%)
  • Pcm C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B ...
  • the element symbol in the formula [A] means the content (mass%) of each element in steel, and is zero when not contained.
  • Pcm is often used as an index for managing the preheating temperature in actual welding.
  • Pcm is not a mere measure of weldability, but the value is not more than a predetermined value (specifically, for example, Pcm ⁇ 0.30) as a specification. It has also occurred. In this case, a product with Pcm> 0.30 has a Pcm value before proceeding to such actual evaluation even if there is no practical problem if the weldability of the product is actually evaluated. Will be rejected.
  • the seamless steel pipe disclosed in Patent Document 2 contains Cr and Mo at high values. For this reason, it is assumed that Pcm cannot satisfy the strict requirement of 0.30 or less.
  • the present invention has a tensile strength of 980 MPa or more and an impact value at ⁇ 40 ° C. using a 2 mmV notch Charpy test piece (hereinafter simply referred to as “ ⁇ 40 ° C. Charpy impact value”) of 75 J / cm 2 or more. Further, an object is to provide a seamless steel pipe having a Pcm of 0.30 or less and a method for manufacturing the seamless steel pipe.
  • the present invention has been made to solve the above-described problems, and the gist of the present invention is a seamless steel pipe and a manufacturing method thereof shown below.
  • the chemical composition is mass%, C: 0.10 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.05 to 1.2%, P: 0.025% or less, S: 0.005% or less, Cu: 0.20% or less, N: 0.007% or less, Ni: 0.20 to 0.50%, Cr: 0.30% or more and less than 0.50%, Mo: 0.30 to 0.50%, Nb: 0.01 to 0.05%, Al: 0.001 to 0.10%, B: 0.0005 to 0.0020%, Ti: 0.003 to 0.050%, V: 0.01-0.20%, Total of one or more of Ca, Mg and REM: 0 to 0.025%, Balance: Fe and impurities,
  • Pcm represented by the following formula [A] is 0.30 or less
  • Metal structure is area%
  • Tempered martensite 90% or more
  • Tensile strength is 980 MPa or more
  • a method for producing the seamless steel pipe according to (1) above Using the steel slab having the chemical composition described in (1) above, the following steps [i] to [iv] are sequentially performed.
  • a method for producing seamless steel pipes [i]: Hot pipe making process in which the steel slab is heated to 1200 to 1300 ° C. and then processed with a cross-sectional reduction rate of 40 to 99% to produce a raw pipe. [ii]: The raw pipe is Ac 1 Cooling step to cool to a temperature below the point [iii]: The cooled raw tube is heated to Ac 3 point to 950 ° C. and then rapidly cooled, quenching step [iv]: The quenched raw tube is heated to 500 to 600 ° C. Tempering process after cooling to room temperature
  • tissue photograph of the test number 1 whose area ratio of tempered martensite was 90% or more and less than 95%. It is a structure
  • the inventors of the present invention are based on low-alloy steel having a low chemical composition, and after a pipe is formed hot, a predetermined strength and Charpy impact value can be obtained by performing quenching and tempering only once.
  • earnest research was conducted on a method for obtaining a seamless steel pipe having a Pcm of 0.30 or less. As a result, the following important findings were obtained.
  • B If the B content is 0.0020% or less in terms of mass%, the upper limit of Cr and Mo content is both limited to 0.50% due to Pcm reduction, and these are combined and included. Even in the case of steel, coarse borocarbides are not formed during tempering, and good low temperature toughness can be ensured. That is, by containing an appropriate amount of B, there is a low alloy steel component system that can improve the hardenability at a relatively low cost and achieve both strength and toughness.
  • C 0.10 to 0.20% C is an essential element for increasing the strength. If the C content is less than 0.10%, it may be difficult to obtain a high strength of 980 MPa or more in relation to other elements. On the other hand, when the C content exceeds 0.20%, the weldability is significantly lowered. Therefore, the C content is 0.10 to 0.20%.
  • the C content is preferably 0.12% or more, and preferably 0.18% or less.
  • Si 0.05 to 1.0%
  • Si has a deoxidizing action and also has an effect of improving strength and hardenability.
  • the Si content needs to be 0.05% or more.
  • the Si content is set to 0.05 to 1.0%.
  • the Si content is preferably 0.1% or more, and preferably 0.6% or less.
  • Mn 0.05 to 1.2% Mn has a deoxidizing effect and also has an effect of improving strength and hardenability. In order to obtain these effects, it is necessary to contain 0.05% or more of Mn. However, if the Mn content exceeds 1.2%, the toughness decreases. Therefore, the Mn content is set to 0.05 to 1.2%.
  • the Mn content is preferably 0.30% or more, and preferably 1.10% or less.
  • P 0.025% or less
  • the toughness is significantly lowered, and it becomes difficult to secure a predetermined Charpy impact value.
  • P content as an impurity shall be 0.025% or less.
  • the P content is preferably 0.020% or less.
  • S 0.005% or less
  • S content as an impurity shall be 0.005% or less.
  • the S content is preferably 0.003% or less.
  • Cu 0.20% or less
  • the hot workability may be deteriorated.
  • Cu content as an impurity shall be 0.20% or less.
  • the Cu content is preferably 0.05% or less.
  • N 0.007% or less
  • the N content is preferably 0.006% or less.
  • Ni 0.20 to 0.50%
  • Ni has the effect of improving hardenability, strength and toughness. In order to obtain these effects, it is necessary to contain 0.20% or more of Ni. On the other hand, when Ni is contained exceeding 0.50%, the alloy cost increases. Therefore, the Ni content is 0.20 to 0.50%.
  • the Ni content is preferably 0.30% or more, and preferably 0.40% or less.
  • Cr 0.30% or more and less than 0.50% Cr has an effect of improving hardenability and strength. In order to obtain these effects, it is necessary to contain 0.30% or more of Cr. On the other hand, in order to ensure good hardenability, in the case of a low alloy steel containing a combination of Cr and Mo together with 0.0005 to 0.0020% B described later, the Cr content is 0.50% or more. If so, coarse borocarbides may be formed during tempering, leading to a reduction in toughness. Moreover, Pcm (weld cracking susceptibility composition) becomes high and weld cracking is likely to occur. Therefore, the Cr content is 0.30% or more and less than 0.50%. The Cr content is preferably 0.40% or more. Moreover, it is preferable that Cr content is 0.47% or less, and it is preferable that it is 0.45% or less.
  • Mo 0.30 to 0.50% Mo has the effect
  • Nb 0.01 to 0.05% Nb combines with C or / and N to form fine precipitates, suppresses the coarsening of austenite grains, and has the effect of improving toughness.
  • Nb 0.01 to 0.05%
  • Nb combines with C or / and N to form fine precipitates, suppresses the coarsening of austenite grains, and has the effect of improving toughness.
  • it is necessary to contain Nb by 0.01% or more.
  • the Nb content is 0.01 to 0.05%.
  • the Nb content is preferably 0.02% or more, and preferably 0.04% or less.
  • Al 0.001 to 0.10%
  • Al is an element having a deoxidizing action. In order to ensure this effect, it is necessary to contain 0.001% or more of Al. On the other hand, even if Al is contained in an amount exceeding 0.10%, the above effect is saturated and generation of ground is also increased. Therefore, the Al content is 0.001 to 0.10%.
  • the Al content is preferably 0.025% or more, and preferably 0.055% or less.
  • Al content of this invention points out content in acid-soluble Al (what is called "sol.Al").
  • B 0.0005 to 0.0020%
  • B is an extremely important element for providing a sufficiently hardened structure to a thick-walled seamless steel pipe whose Pcm is suppressed to a low value of 0.30 or less from the viewpoint of weldability, and is 0.0005% or more. It is necessary to contain. However, if the B content exceeds 0.0020%, even if the upper limit of Cr and Mo content is both 0.50%, when they are combined and contained, coarse borocarbides are not obtained during tempering. In some cases, the toughness is reduced. Therefore, the B content is set to 0.0005 to 0.0020%. The B content is preferably 0.0008% or more, and preferably 0.0015% or less.
  • Ti precipitates as Ti carbide during tempering and has the effect of improving strength. Ti also has an effect of securing solid solution B effective for fixing N and exhibiting the effect of improving the hardenability of B. These effects are obtained when the Ti content is 0.003% or more. However, if the Ti content exceeds 0.050%, coarse Ti carbonitrides are formed in a high temperature range such as during solidification, and the amount of Ti carbides precipitated during tempering becomes excessive, resulting in a decrease in toughness. . Therefore, the Ti content is set to 0.003 to 0.050%. The Ti content is preferably 0.005% or more, and preferably 0.015% or less.
  • V 0.01-0.20%
  • the V content exceeds 0.20%, the amount of precipitation of V carbide during tempering becomes excessive, so that toughness decreases.
  • Pcm becomes high and it becomes easy to generate
  • Total of at least one of Ca, Mg and REM 0 to 0.025%
  • Ca, Mg, and REM all have the action of improving the toughness by improving the form of inclusions by reacting with S to form sulfides. For this reason, you may contain any 1 or more types of Ca, Mg, and REM as needed.
  • the total content of these components is preferably 0.0005% or more.
  • the upper limit of the total content of these elements is 0.025%.
  • the total content is preferably 0.01% or less, and more preferably 0.005% or less.
  • REM refers to a total of 17 elements of Sc, Y, and lanthanoid
  • REM content refers to the content when REM is 1 type, and the content thereof when 2 or more types are included. Refers to the total content.
  • REM is also supplied as misch metal, which is generally an alloy of a plurality of types of REM. For this reason, one or more individual elements may be added and contained, or may be added, for example, in the form of misch metal.
  • the seamless steel pipe and slab according to the present invention are composed of the above-described elements, and the balance is Fe and impurities.
  • impurities are components mixed in due to various factors of raw materials such as ores and scraps and manufacturing processes when industrially producing steel materials, and are permitted within a range that does not adversely affect the present invention. Means what will be done.
  • Pcm 0.30 or less
  • Pcm represented by the following formula [A] is 0.30 or less.
  • Pcm C + (Si / 30) + (Mn / 20) + (Cu / 20) + (Ni / 60) + (Cr / 20) + (Mo / 15) + (V / 10) + 5B ...
  • the element symbol in the formula [A] means the content (mass%) of each element in steel, and is zero when not contained.
  • the seamless steel pipe according to the present invention has a metal structure mainly composed of tempered martensite in order to achieve both high strength and high toughness. Specifically, the area ratio of tempered martensite is 90% or more.
  • the remaining structure is not particularly limited, but one or more selected from bainite, ferrite, and pearlite may be included.
  • the metal structure is measured by the following method. First, an observation specimen is collected from a seamless steel pipe so that a cross section perpendicular to the rolling direction becomes an observation surface. Then, after the observation surface is polished, nital etching is performed. Thereafter, the area ratio of tempered martensite is obtained from a structure photograph taken with an optical microscope having a magnification of 500 times.
  • the tensile strength (hereinafter referred to as “TS”) of the seamless steel pipe according to the present invention is 980 MPa or more. If TS is 980 MPa or more, the weight can be stably reduced, so that it can be used sufficiently stably as an application to a crane boom that can cope with an increase in the size of a crane.
  • the preferable lower limit of TS of the seamless steel pipe is 1000 MPa.
  • the preferable upper limit of TS of this seamless steel pipe is 1100 MPa.
  • the yield stress (hereinafter referred to as “YS”) of the seamless steel pipe according to the present invention is preferably 890 MPa or more, and more preferably 900 MPa or more.
  • the Charpy impact value at ⁇ 40 ° C. of the seamless steel pipe according to the present invention is 75 J / cm 2 or more. If the Charpy impact value at ⁇ 40 ° C. is 75 J / cm 2 or more, it can be used sufficiently stably for use in crane booms where work is performed in cold regions.
  • the preferable lower limit of the Charpy impact value at ⁇ 40 ° C. of the seamless steel pipe is 125 J / cm 2 , and the higher the better.
  • the wall thickness is preferably 10 to 45 mm.
  • the wall thickness is preferably 20 mm or more, and preferably 40 mm or less.
  • the steel having the chemical composition described in the above section (A) is melted by the same method as general low alloy steel, and then ingot or slab is formed by casting. Note that a slab having a circular billet shape for pipe making may be formed by a so-called “round CC” method.
  • the cast ingot or slab is subjected to partial rolling or hot forging.
  • This step is a step of obtaining a material used for final hot pipe making (for example, pipe making by hot piercing, rolling and stretching processes, or pipe making by a hot extrusion press).
  • a material used for final hot pipe making for example, pipe making by hot piercing, rolling and stretching processes, or pipe making by a hot extrusion press.
  • the slab made into the circular billet shape can be finished directly into a seamless steel pipe by using the “round CC” method, it is not always necessary to carry out ingot rolling or hot forging.
  • the raw material used for the final hot pipe production and the slab made into a round billet shape (hereinafter referred to as “steel slab”) manufactured by the above-mentioned partial rolling or hot forging
  • the seamless steel pipe of the present invention is manufactured by sequentially performing the steps up to [vi].
  • Hot slab manufacturing process in which the steel slab is heated to 1200 to 1300 ° C., and then the raw steel pipe is manufactured by processing 40 to 99% of the cross-sectional reduction rate.
  • the above steel slab is heated to 1200 to 1300 ° C.
  • processing is performed at a rate of reduction of the cross section of 40 to 99% to manufacture a raw tube having a predetermined shape. If the heating temperature of the steel slab is below 1200 ° C, the deformation resistance during processing will increase at the next cross-section reduction rate of 40 to 99%, increasing the load on the pipe making equipment, and processing such as cracks or cracks It may cause defects.
  • the heating temperature of the steel slab is set to 1200 to 1300 ° C.
  • the cross-sectional reduction rate in the hot pipe making after heating is less than 40%, the quenching process of [iii] is performed even after the cooling process of [ii] described later.
  • the steel structure does not have a fine hardened structure, and the seamless steel pipe cannot be provided with desired mechanical characteristics.
  • the cross-section reduction rate is 40 to 99%.
  • the heating temperature in step [i] refers to the temperature at the surface of the steel slab.
  • the holding time in the above temperature range is preferably 60 to 300 minutes although it depends on the size and shape of the steel slab.
  • the raw tube finishing temperature in the hot pipe manufacturing is 850 to 950 ° C.
  • the above-mentioned tube finishing temperature refers to the temperature at the outer surface of the tube.
  • the preferable lower limit of the heating temperature is 1230 ° C.
  • the preferable upper limit is 1280 ° C.
  • the preferable lower limit of the cross-sectional reduction rate is 50%
  • the preferable upper limit is 90%.
  • the raw tube finished in a predetermined shape is less than Ac 1 point in order to obtain a fine quenched structure in the quenching step of [iii] It is cooled to the temperature of There is no particular limitation on the cooling rate at this time.
  • the raw pipe after hot pipe making may be once cooled to room temperature and then re-heated to be subjected to the next step [iii]. After hot pipe making, less than one Ac point After cooling to an appropriate temperature, the following step [iii] may be performed by heating directly from the temperature.
  • the cooling temperature in the step [ii] refers to the temperature on the outer surface of the raw tube.
  • [iii] A quenching step in which the cooled raw tube is heated to Ac 3 points to 950 ° C. and then rapidly cooled. Next, the raw tube cooled in the step [ii] is subjected to a temperature of Ac 3 points to 950 ° C. A quenching treatment is performed in which the sample is rapidly cooled after being heated. When the heating temperature is less than Ac 3 points, austenitization is not completed, so that there are cases where the seamless steel pipe cannot be provided with predetermined mechanical characteristics. On the other hand, if the heating temperature exceeds 950 ° C., fine austenite grains may not be obtained by one quenching process, and the seamless steel pipe may not be provided with predetermined mechanical characteristics. Therefore, the heating temperature in the quenching process is set to Ac 3 points to 950 ° C.
  • the holding time at the above heating temperature is preferably 5 to 30 minutes depending on the size of the raw tube. As long as substantially uniform heating is possible, it may be rapid heat treatment using induction heating.
  • the heating temperature in the step [iii] refers to the temperature on the outer surface of the raw tube.
  • an appropriate method such as water cooling or oil cooling may be used as long as a sufficiently quenched structure can be obtained.
  • the preferable lower limit of the heating temperature is 880 ° C.
  • the preferable upper limit is 920 ° C.
  • a tempering process in which the quenched raw pipe is heated to 500 to 600 ° C. and then cooled to room temperature.
  • the raw pipe quenched in the step [iii] has predetermined mechanical characteristics as a seamless steel pipe.
  • a tempering treatment is performed in which the sample is heated to 500 to 600 ° C. and then cooled to room temperature.
  • the heating temperature for tempering is less than 500 ° C.
  • the low temperature toughness decreases even if the predetermined strength (TS) can be secured, and Charpy at ⁇ 40 ° C.
  • the impact value may be less than 75 J / cm 2 .
  • the heating temperature for tempering exceeds 600 ° C.
  • the strength decreases even if a predetermined low-temperature toughness (Charpy impact value at ⁇ 40 ° C.) is obtained, and TS cannot secure a high strength of 980 MPa or more. is there. Therefore, the heating temperature during the tempering process is set to 500 to 600 ° C.
  • the holding time at the above heating temperature is preferably 30 to 60 minutes depending on the size of the raw tube.
  • the heating temperature in the step [iv] refers to the temperature on the outer surface of the raw tube. There is no restriction
  • the preferable lower limit of the heating temperature is 525 ° C.
  • the preferable upper limit is 575 ° C.
  • Example 1 Steels A to K having the chemical composition shown in Table 1 were melted using a 100 kg vacuum melting furnace, cast into a mold to obtain ingots, and then each ingot was hot forged to have a thickness of 50 mm and a width. It was processed into a block shape having a length of 120 mm and a length of 190 mm, and cooled to room temperature. Each block obtained in this way was heated at 1250 ° C. for 30 minutes, and then simulated to produce a seamless steel pipe. As shown in Table 2, the width was reduced so that the cross-section reduction rate was 40% or 60%. The plate was hot-rolled to a finishing temperature in the range of 850 to 950 ° C. and then cooled to room temperature to obtain a plate material having a thickness of 20 mm or 30 mm.
  • Steels A to D in Table 1 are steels whose chemical compositions are within the range defined by the present invention, while Steels E to K are steels whose chemical compositions deviate from the conditions defined by the present invention.
  • Table 1 also shows Ac 1 point and Ac 3 point obtained from the following formulas (1) and (2).
  • Ac 1 point (° C.) 723 + 29.1 ⁇ Si ⁇ 10.7 ⁇ Mn ⁇ 16.9 ⁇ Ni + 16.9 ⁇ Cr
  • Ac 3 points (° C.) 910 ⁇ 203 ⁇ C 0.5 + 44.7 ⁇ Si ⁇ 15.2 ⁇ Ni + 31.5 ⁇ Mo + 104 ⁇ V ⁇ (30 ⁇ Mn + 11 ⁇ Cr + 20 ⁇ Cu ⁇ 700 ⁇ P ⁇ 400 ⁇ Al ⁇ 400 ⁇ Ti) (2)
  • FIG. 1 is a structural photograph of test number 1 in which the area ratio of tempered martensite was 90% or more and less than 95%
  • FIG. 2 is a photograph of test number 3 in which the area ratio of tempered martensite was less than 90%. It is an organization photograph.
  • a No. 10 tensile test piece described in Annex D of JIS Z 2241-2011 was cut out from the center of the plate thickness of each plate in parallel with the rolling longitudinal direction, and a tensile test was performed in room temperature atmosphere. , YS and TS were determined. Further, a 2 mm V notch full-size test piece with a width of 10 mm was cut out from the center of the thickness of the quenched and tempered sheet material in parallel with the rolling width direction, and a Charpy impact test was conducted at ⁇ 40 ° C. The value was determined.
  • Table 2 shows the results of each of the above surveys.
  • test numbers 1, 4, 5, 7 to 9 of Examples of the present invention produced by the method defined by the present invention using the steels A to D having the chemical composition defined by the present invention.
  • Nos. 11 and 14 to 16 have a high strength of TS of 980 MPa or more and YS of 890 MPa or more and are excellent in low-temperature toughness.
  • Pcm is as low as 0.30 or less, excellent weldability It can also be easily assumed to be provided.
  • Example 2 Steel L having the chemical composition shown in Table 3 was melted and rectangular billets were cast by a converter-continuous casting process.
  • the rectangular billet was further formed into a circular billet having an outer diameter of 191 mm, a circular billet having an outer diameter of 225 mm, and a circular billet having an outer diameter of 310 mm by hot forging and cooled to room temperature.
  • Each circular billet was heated at 1240 ° C. and various wall thickness seamless steel pipes shown in Table 4 were prepared by Mannesmann-Mandrel method so that the finishing temperature was in the range of 850 to 950 ° C. Until cooled.
  • Each seamless steel pipe thus obtained was quenched and tempered under the conditions shown in Table 4 to produce a product steel pipe. All quenching was performed by water quenching. Cooling during tempering was all carried out in the air.
  • FIG. 3 is a structural photograph of test number 31 in which the area ratio of tempered martensite was 95% or more.
  • Table 4 shows the results of the above surveys.
  • the steel pipes of the test numbers 27 to 38 of the present invention examples manufactured by the method defined by the present invention using the steel L having the chemical composition defined by the present invention have a TS of 980 MPa in any dimension. From the above, it is clear that YS has a high strength of 890 MPa or more and is excellent in low-temperature toughness, and since Pcm is 0.30 or less, it can be easily assumed that excellent weldability is provided.
  • the seamless steel pipe of the present invention has a high tensile strength of 980 MPa or more and excellent low-temperature toughness, and Pcm is as small as 0.30 or less, so it is suitable for machine structural members, particularly crane booms. .
  • the seamless steel pipe can be obtained at a low cost by the production method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

化学組成が、質量%で、C:0.10~0.20%、Si:0.05~1.0%、Mn:0.05~1.2%、P≦0.025%、S≦0.005%、Cu≦0.20%、N≦0.007%、Ni:0.20~0.50%、Cr:0.30%以上0.50%未満、Mo:0.30~0.50%、Nb:0.01~0.05%、Al:0.001~0.10%、B:0.0005~0.0020%、Ti:0.003~0.050%、V:0.01~0.20%、Ca、MgおよびREMのいずれか1種以上の合計:0~0.025%、残部:Feおよび不純物であり、Pcm(=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B)≦0.30であり、金属組織が、面積%で、焼戻しマルテンサイト≧90%であり、引張強度≧980MPa、2mmVノッチ試験片を用いた-40℃でのシャルピー衝撃値≧75J/cm2である、継目無鋼管。

Description

継目無鋼管およびその製造方法
 本発明は、継目無鋼管およびその製造方法に関する。
 機械構造部材のうちで円筒形のものには、従来、棒鋼に鍛造または延伸圧延を施して、あるいはさらに切削加工を施して所望の形状とした後に、熱処理が施され、機械構造部材に必要な機械的性質が付与されることが多かった。
 しかしながら、近年、機械構造物の大型化および高耐力化の傾向を受けて、円筒形の機械構造部材を中空の継目無鋼管に置き換えることで軽量化が図られている。特に、クレーンのブームに用いられる鋼管には、高層建築のためのクレーンの大型化に加えて、寒冷地で作業する必要性等があるため、高強度化とともに高靱性化が求められる。具体的には、最近、クレーンブームへの用途として、980MPa以上の引張強度を有し、かつ-40℃という低温で優れた靱性を有する継目無鋼管も要求されるようになってきた。
 高強度かつ高靱性の継目無鋼管およびその製造方法に関して、様々な技術が開示されている。
 例えば、特許文献1には、高価な合金鋼を添加することなしに、オンライン加工熱処理によって、靱性に優れた高強度継目無鋼管を製造することが可能な方法が開示されている。
 特許文献2には、引張強度が950MPa以上、降伏強度が850MPa以上、かつ-40℃でのシャルピー吸収エネルギーが60J以上である継目無鋼管とその製造方法が開示されている。
 特許文献3には、引張強度が950MPa以上、降伏強度が850MPa以上、かつ-40℃でのシャルピー吸収エネルギーが60J以上であり、肉厚が30mm超である継目無鋼管とその製造方法が開示されている。
特開2001-240913号公報 国際公開第2010/061882号 特開2012-193404号公報
 特許文献1で開示される高強度継目無鋼管は、引張強さが最大でも899MPaであり、クレーンブーム用として強度が十分とはいえない。
 一方、特許文献2で開示される継目無鋼管は、引張強度950MPa以上および降伏強度850MPa以上の高強度を有し、かつ低温での靱性にも優れ、しかも、溶接施工後の特性に関しても満足のできる水準である。また、特許文献3で開示される継目無鋼管は、肉厚が30mmを超える厚肉の場合にも、引張強度950MPa以上および降伏強度850MPa以上の高強度を有し、かつ低温での靱性にも優れる。
 ここで、クレーンブーム用途では、鋼管には、高強度および高靱性に加えて、高い溶接性も要求される。溶接性の評価の目安としては、下記[A]式で表されるPcm(溶接割れ感受性組成(%))がよく知られている。
 Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B  ・・・[A]
 但し、[A]式中の元素記号は、各元素の鋼中含有量(質量%)を意味し、含有されない場合はゼロとする。
 一般に、Pcmが大きいと溶接部の低温割れが発生しやすい。そのため、Pcmは、実際の溶接において、予熱温度の管理の指標として使用されることが多い。
 さらに、最近は、溶接施工の煩雑さを避けるため、予熱の省略または、できるだけ低温の予熱を指向する傾向にある。そのため、クレーンブーム用継目無鋼管製品において、Pcmが溶接性の単なる目安としてではなく、その値が所定値以下であること(具体的には、例えばPcm≦0.30)が、スペックとして要求される場合も生じてきた。この場合、Pcm>0.30である製品は、仮にその製品の溶接性を実際に評価すれば実用上全く問題ないものであったとしても、そのような実際の評価に進む以前にPcmの値をもって不採用とされてしまう。
 特許文献2で開示される継目無鋼管は、CrおよびMoを高い値で含むことになる。そのため、Pcmで0.30以下という厳しい要求に対して満足できないことも想定される。
 また、特許文献3で開示される継目無鋼管も、CrおよびMoを高い値で含むので、Pcmで0.30以下という厳しい要求に対して満足できないことも想定される。さらに、該継目無鋼管の製造方法は、低合金鋼を熱間で製管した後、焼入れと焼戻しとを2回以上行うものである。このため、生産性の点で不利になり、エネルギーコストが嵩むことが想定される。
 本発明は、引張強度が980MPa以上で、2mmVノッチシャルピー試験片を用いた-40℃での衝撃値(以下、単に「-40℃でのシャルピー衝撃値」という。)が75J/cm以上であり、しかもPcmが0.30以下である、継目無鋼管およびその製造方法を提供することを目的とする。
 本発明は、上記の課題を解決するためになされたものであり、その要旨は、下記に示す継目無鋼管およびその製造方法にある。
 (1)化学組成が、質量%で、
 C:0.10~0.20%、
 Si:0.05~1.0%、
 Mn:0.05~1.2%、
 P:0.025%以下、
 S:0.005%以下、
 Cu:0.20%以下、
 N:0.007%以下、
 Ni:0.20~0.50%、
 Cr:0.30%以上0.50%未満、
 Mo:0.30~0.50%、
 Nb:0.01~0.05%、
 Al:0.001~0.10%、
 B:0.0005~0.0020%、
 Ti:0.003~0.050%、
 V:0.01~0.20%、
 Ca、MgおよびREMのいずれか1種以上の合計:0~0.025%、
 残部:Feおよび不純物であり、
 下記[A]式で表わされるPcmの値が0.30以下であり、
 金属組織が、面積%で、
 焼戻しマルテンサイト:90%以上であり、
 引張強さが980MPa以上、
 2mmVノッチ試験片を用いた-40℃でのシャルピー衝撃値が75J/cm以上である、
 継目無鋼管。
 Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B  ・・・[A]
 但し、[A]式中の元素記号は、各元素の鋼中含有量(質量%)を意味し、含有されない場合はゼロとする。
 (2)上記(1)に記載の継目無鋼管を製造する方法であって、
 上記(1)に記載の化学組成を有する鋼片を用いて、下記の[i]から[iv]までの工程を順に施す、
 継目無鋼管の製造方法。
 [i]:鋼片を1200~1300℃に加熱した後、断面減少率で40~99%の加工を行って素管を製造する、熱間製管工程
 [ii]:前記素管をAc点未満の温度まで冷却する、冷却工程
 [iii]:冷却した素管をAc点~950℃に加熱した後、急冷する、焼入れ工程
 [iv]:焼入れした素管を500~600℃に加熱した後、室温まで冷却する、焼戻し工程
 本発明によれば、引張強さが980MPa以上の高強度を有するとともに低温靱性にも優れ、かつPcmが0.30以下と小さく溶接性に優れる継目無鋼管を得ることが可能である。
焼戻しマルテンサイトの面積率が90%以上95%未満であった試験番号1の組織写真である。 焼戻しマルテンサイトの面積率が90%未満であった試験番号3の組織写真である。 焼戻しマルテンサイトの面積率が95%以上であった試験番号31の組織写真である。
 本発明者らは、化学組成が廉価な低合金鋼をベースとするものであって、熱間で製管した後、焼入れおよび焼戻しを1回行うだけで、所定の強度とシャルピー衝撃値とを確保でき、しかも、Pcmが0.30以下である継目無鋼管を得る手法について鋭意研究を重ねた。その結果、下記の重要な知見を得た。
 (a)溶接性の点からPcmを0.30以下の低い値に制御するためには、上述の[A]式に含まれる合金元素の含有量を低くすればよい。しかし、単に該合金元素量を低減するだけでは、焼入れ性の低減を招いて十分な焼入れ組織が得られない。このため、良好な溶接性の確保が可能であっても、所定の強度と靱性を両立させることができない。
 (b)質量%で、Bの含有量が0.0020%以下であれば、Pcm低下のためにCrおよびMoの含有量上限をいずれも0.50%に制限すると、それらを複合して含む鋼の場合にも、焼戻し時に粗大な硼炭化物が形成されることがなく、良好な低温靱性を確保できる。すなわち、Bを適正量含有させることで、比較的廉価に焼入れ性を高めて、強度と靱性とを両立させることができる低合金鋼の成分系が存在する。
 (c)一方、焼入れおよび焼戻しを1回行うだけで、高強度と高い靱性とを両立させるには、該焼入れ時のオーステナイト粒を微細にすればよい。
 本発明は上記の知見に基づいてなされたものである。以下、本発明の各要件について詳しく説明する。
 (A)化学組成
 本発明に係る継目無鋼管および鋼片の化学組成の限定理由は次のとおりである。以下の説明において各元素の含有量についての「%」は、「質量%」を意味する。
 C:0.10~0.20%
 Cは、強度を高めるために不可欠な元素である。C含有量が0.10%未満の場合、他の元素との関連で引張強度が980MPa以上という高強度を得難い場合がある。一方、C含有量が0.20%を超えると、溶接性が著しく低下する。したがって、C含有量は0.10~0.20%とする。C含有量は0.12%以上であるのが好ましく、0.18%以下であるのが好ましい。
 Si:0.05~1.0%
 Siは、脱酸作用を有し、強度および焼入れ性の向上作用もある。これらの効果を得るには、Si含有量は0.05%以上とする必要がある。しかし、Si含有量が1.0%を超えると、靱性および溶接性が低下する。したがって、Si含有量は0.05~1.0%とする。Si含有量は0.1%以上であるのが好ましく、0.6%以下であるのが好ましい。
 Mn:0.05~1.2%
 Mnは、脱酸作用を有し、強度および焼入れ性の向上作用もある。これらの効果を得るためには、Mnを0.05%以上含有させる必要がある。しかし、Mn含有量が1.2%を超えると、靱性が低下する。したがって、Mn含有量は0.05~1.2%とする。Mn含有量は0.30%以上であるのが好ましく、1.10%以下であるのが好ましい。
 P:0.025%以下
 P含有量が0.025%を超えると、靱性の低下が著しくなって所定のシャルピー衝撃値を確保することが難しくなる。このため、不純物としてのP含有量を0.025%以下とする。P含有量は0.020%以下であることが好ましい。
 S:0.005%以下
 S含有量が0.005%を超えると、靱性の低下が著しくなって所定のシャルピー衝撃値を確保することが難しくなる。このため、不純物としてのS含有量を0.005%以下とする。S含有量は0.003%以下であることが好ましい。
 Cu:0.20%以下
 Cu含有量が0.20%を超えると、熱間加工性の低下を招くことがある。このため、不純物としてのCu含有量を0.20%以下とする。Cu含有量は0.05%以下であることが好ましい。
 N:0.007%以下
 N含有量が0.007%を超えると、粗大な窒化物が形成されたり、固溶Bの確保が困難になり、特に、厚肉の継目無鋼管において、Bの焼入れ性向上効果が不十分となって十分な焼入れ組織が得られなかったりして、靱性の低下が著しくなるので、所定のシャルピー衝撃値を確保することが難しくなる。このため、不純物としてのN含有量を0.007%以下とする。N含有量は0.006%以下であることが好ましい。
 Ni:0.20~0.50%
 Niは、焼入れ性、強度および靱性を向上させる作用がある。これらの効果を得るためには、Niを0.20%以上含有させる必要がある。一方、Niを0.50%を超えて含有させると、合金コストが嵩む。したがって、Ni含有量は0.20~0.50%とする。Ni含有量は0.30%以上であるのが好ましく、0.40%以下であるのが好ましい。
 Cr:0.30%以上0.50%未満
 Crは、焼入れ性および強度を向上させる作用がある。これらの効果を得るためには、Crを0.30%以上含有させる必要がある。一方、良好な焼入れ性を確保するために、後述する0.0005~0.0020%のBとともに、CrおよびMoを複合して含有する低合金鋼の場合、Cr含有量が0.50%以上となると、焼戻し時に粗大な硼炭化物が形成されて靱性の低下を招くことがある。また、Pcm(溶接割れ感受性組成)が高くなり溶接割れが発生しやすくなる。したがって、Cr含有量は0.30%以上0.50%未満とする。Cr含有量は0.40%以上であるのが好ましい。また、Cr含有量は0.47%以下であるのが好ましく、0.45%以下であるのが好ましい。
 Mo:0.30~0.50%
 Moは、焼入れ性および強度を向上させる作用がある。これらの効果を得るためには、Moを0.30%以上含有させる必要がある。一方、良好な焼入れ性を確保するために、後述する0.0005~0.0020%のBとともに、MoおよびCrを複合して含有する低合金鋼の場合、Mo含有量が0.50%を超えると、焼戻し時に粗大な硼炭化物が形成されて靱性の低下を招くことがある。また、Pcm(溶接割れ感受性組成)が高くなり溶接割れが発生しやすくなる。したがって、Mo含有量は0.30~0.50%とする。Mo含有量は0.40%以上であるのが好ましく、0.45%以下であるのが好ましい。
 Nb:0.01~0.05%
 Nbは、Cまたは/およびNと結合して微細な析出物を形成し、オーステナイト粒の粗大化を抑制して、靱性を向上させる作用を有する。上記の効果を安定して確保するためには、Nbを0.01%以上含有させる必要がある。しかしながら、0.05%を超える量のNbを含有させると、析出物の量が増大し、却って靱性を劣化させる場合がある。したがって、Nb含有量は0.01~0.05%とする。Nb含有量は0.02%以上であるのが好ましく、0.04%以下であるのが好ましい。
 Al:0.001~0.10%
 Alは、脱酸作用を有する元素である。この効果を確保するためには、Alを0.001%以上含有させる必要がある。一方、Alを0.10%を超えて含有させても上記の効果が飽和するうえに、地疵の発生も多くなる。したがって、Al含有量は0.001~0.10%とする。Al含有量は0.025%以上であるのが好ましく、0.055%以下であるのが好ましい。なお、本発明のAl含有量とは酸可溶Al(いわゆる「sol.Al」)での含有量を指す。
 B:0.0005~0.0020%
 Bは、溶接性の点からPcmを0.30以下の低い値に抑制した厚肉の継目無鋼管に、十分な焼入れ組織を具備させるのに極めて重要な元素であって、0.0005%以上含有させる必要がある。しかしながら、B含有量が0.0020%を超えると、CrおよびMoの含有量上限がいずれも0.50%であっても、それらを複合して含む場合には、焼戻し時に粗大な硼炭化物が形成されて、靱性の低下を招く場合がある。したがって、B含有量は0.0005~0.0020%とする。B含有量は0.0008%以上であるのが好ましく、0.0015%以下であるのが好ましい。
 Ti:0.003~0.050%
 Tiは、焼戻しの際にTi炭化物として析出し、強度を向上させる作用を有する。Tiには、Nを固定して、Bの焼入れ性向上効果を発揮させるのに有効な固溶Bを確保する作用もある。これらの効果は、Ti含有量が0.003%以上で得られる。しかし、Tiの含有量が0.050%を超えると、凝固中など高温域で粗大なTi炭窒化物が形成し、また焼戻し時のTi炭化物の析出量が過剰となるため、靱性が低下する。したがって、Ti含有量は0.003~0.050%とする。Ti含有量は0.005%以上であるのが好ましく、0.015%以下であるのが好ましい。
 また、上記のように、Nを固定するためには、Ti/N≧48/14を満足することが好ましい。
 V:0.01~0.20%
 Vは、焼戻しの際にV炭化物として析出し、強度を向上させる作用を有する。この効果は、V含有量が0.01%以上で得られる。しかし、V含有量が0.20%を超えると、焼戻し時のV炭化物の析出量が過剰となるため、靱性が低下する。また、Pcmが高くなり、溶接割れが発生しやすくなる。したがって、V含有量は0.01~0.20%とする。なお、V含有量は0.04%以上であるのが好ましく、0.15%以下であるのが好ましい。
 Ca、MgおよびREMのいずれか1種以上の合計:0~0.025%
 Ca、MgおよびREMは、いずれもSと反応して硫化物を形成することにより介在物の形態を改善し、靱性を向上させる作用を有する。このため、必要に応じてCa、MgおよびREMのいずれか1種以上を含有させてもよい。この効果を安定して得るためには、これら成分の含有量は、合計で0.0005%以上であることが好ましい。一方、これら成分の合計の含有量が0.025%を超えると、介在物量が増大して鋼の清浄性が低下するので、却って靱性が低下する。したがって、これらの元素の合計含有量の上限を0.025%とする。合計含有量は0.01%以下であることが好ましく、0.005%以下であることがより好ましい。
 本発明において「REM」とは、Sc、Y、およびランタノイドの合計17元素を指し、「REMの含有量」とは、REMが1種の場合はその含有量、2種以上の場合はそれらの合計含有量を指す。また、REMは一般的には複数種のREMの合金であるミッシュメタルとしても供給されている。このため、個別の元素を1種または2種以上添加して含有させてもよいし、例えば、ミッシュメタルの形で添加してもよい。
 本発明に係る継目無鋼管および鋼片は、上述の各元素と、残部がFeおよび不純物とからなる。ここで「不純物」とは、鉄鋼材料を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 Pcm:0.30以下
 本発明に係る継目無鋼管および鋼片は、下記[A]式で表されるPcmが0.30以下である。
 Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B  ・・・[A]
 但し、[A]式中の元素記号は、各元素の鋼中含有量(質量%)を意味し、含有されない場合はゼロとする。
 なお、Pcmの右辺の各元素は、それぞれ鋼管の強度を向上させる効果があるので、Pcmがあまりに小さい場合には、必要な強度が得られない可能性がある。引張強度で980MPa以上という高強度を安定して得るための実際的なPcmの下限は、0.22程度になると考えられる。
 (B)金属組織
 本発明に係る継目無鋼管は、高強度と高い靱性とを両立するため、焼戻しマルテンサイトを主体とする金属組織を有する。具体的には、焼戻しマルテンサイトの面積率が90%以上とする。残部の組織については特に制限はないが、ベイナイト、フェライトおよびパーライトから選択される1種以上が含まれていてもよい。
 なお、本発明においては、金属組織は以下の方法により測定する。まず、継目無鋼管から、圧延方向に垂直な断面が観察面となるよう、観察用試験片を採取する。そして、観察面を研磨した後、ナイタールエッチングを行う。その後、倍率500倍の光学顕微鏡にて撮影した組織写真から焼戻しマルテンサイトの面積率を求める。
 (C)特性
 本発明に係る継目無鋼管の引張強さ(以下、「TS」という。)は980MPa以上である。TSが980MPa以上であれば、安定的に軽量化が行えるので、クレーンの大型化に対応可能なクレーンブームへの用途として、十分安定して用いることができる。該継目無鋼管のTSの好ましい下限は1000MPaである。また、該継目無鋼管のTSの好ましい上限は1100MPaである。なお、本発明に係る継目無鋼管の降伏応力(以下、「YS」という。)は890MPa以上であることが好ましく、900MPa以上であることがより好ましい。
 また、本発明に係る継目無鋼管の-40℃でのシャルピー衝撃値は75J/cm以上である。-40℃でのシャルピー衝撃値が75J/cm以上であれば、寒冷地での作業が行われるクレーンブームへの用途としても、十分安定して用いることができる。該継目無鋼管の-40℃でのシャルピー衝撃値の好ましい下限は125J/cmであり、高ければ高いほど好ましい。
 (D)肉厚
 本発明に係る継目無鋼管の肉厚について、特に制限は設けない。しかし、肉厚が10mm未満では、機械構造部材として用いる場合に必要な強度を確保できないおそれがある。一方、肉厚が45mmを超えると、ベイナイトが生じやすくなり、焼戻しマルテンサイト主体の組織とすることが難しくなる。したがって、肉厚は10~45mmであることが好ましい。肉厚は20mm以上であるのが好ましく、40mm以下であるのが好ましい。
 (E)製造方法
 本発明に係る継目無鋼管は、以下の方法によって製造することができる。
 前記(A)項で述べた化学組成を有する鋼を、一般的な低合金鋼と同様の方法で溶製した後、鋳造によりインゴットまたは鋳片とする。なお、いわゆる「ラウンドCC」法によって、製管用の円形ビレット形状を有する鋳片にしてもよい。
 次の工程として、鋳造されたインゴットまたは鋳片に、分塊圧延または熱間鍛造を施す。該工程は、最終的な熱間製管(例えば、熱間での穿孔、圧延および延伸工程による製管、または熱間押し出しプレスによる製管)に用いる素材を得る工程である。なお、上記「ラウンドCC」法によって、円形ビレット形状とした鋳片は、直接それを用いて継目無鋼管に仕上げることができるので、必ずしも分塊圧延または熱間鍛造を施す必要はない。
 上記の分塊圧延または熱間鍛造で製造した、最終的な熱間製管に用いる素材および円形ビレット形状とした鋳片(以下、「鋼片」という。)に、以下に示す[i]から[vi]までの工程を順に施して、本発明の継目無鋼管が製造される。
 [i]:鋼片を1200~1300℃に加熱した後、断面減少率で40~99%の加工を行って素管を製造する、熱間製管工程
 上述した鋼片を1200~1300℃に加熱した後、断面減少率で40~99%の加工を行って所定の形状を有する素管を製造する。鋼片の加熱温度が1200℃を下回ると、次の断面減少率が40~99%で加工する際の変形抵抗が大きくなって製管設備が受ける負荷が大きくなるし、疵または割れ等の加工不良を生じることがある。一方、鋼片の加熱温度が1300℃を上回ると、高温粒界割れまたは延性低下をきたすことがある。したがって、熱間製管工程は、先ず、鋼片の加熱温度を1200~1300℃とする。
 鋼片の加熱温度が上記の範囲であっても、加熱後の熱間製管における断面減少率が40%を下回ると、後述する[ii]の冷却工程を経ても、[iii]の焼入れ工程で微細な焼入れ組織にならず、継目無鋼管に所望の機械的特性を具備させることができない場合がある。一方、断面減少率で99%を上回る製管工程には、製管設備の増設等が必要になる場合がある。したがって、熱間製管工程は、断面減少率で40~99%の加工を行うこととする。
 この[i]の工程での加熱温度は、鋼片の表面における温度を指す。上記温度域での保持時間は、鋼片のサイズおよび形状にもよるが60~300分とすることが好ましい。また、熱間製管での素管仕上げ温度は850~950℃とすることが好ましい。上述の素管仕上げ温度は、素管の外表面における温度を指す。[i]の工程において、加熱温度の好ましい下限は1230℃、また、好ましい上限は1280℃である。さらに、断面減少率の好ましい下限は50%、また、好ましい上限は90%である。
 [ii]:前記素管をAc点未満の温度まで冷却する、冷却工程
 所定の形状に仕上げられた素管は、[iii]の焼入れ工程で微細な焼入れ組織を得るためにAc点未満の温度まで冷却される。この際の冷却速度については、特に制限がない。なお、熱間製管後の素管には、一旦室温まで冷却した後で、再加熱して次の[iii]の工程を施してもよいし、熱間製管後に、Ac点未満の適宜の温度まで冷却した後、該温度から直接に加熱して次の[iii]の工程を施してもよい。この[ii]の工程での冷却温度は、素管の外表面における温度を指す。
 [iii]:冷却した素管をAc点~950℃に加熱した後、急冷する、焼入れ工程
 前記[ii]の工程で冷却した素管には、次に、Ac点~950℃の温度に加熱した後で急冷する焼入れ処理が施される。加熱温度がAc点未満であると、オーステナイト化が完了しないので、継目無鋼管に所定の機械的特性を具備させることができない場合がある。一方、加熱温度が950℃を超えると、1回の焼入れ処理では、微細なオーステナイト粒が得られず、継目無鋼管に所定の機械的特性を具備させることができない場合がある。したがって、焼入れ処理の際の加熱温度はAc点~950℃とする。
 上記加熱温度での保持時間は、素管のサイズにもよるが5~30分とすることが好ましい。ほぼ均一な加熱が可能であれば、誘導加熱を用いた短時間の急速加熱処理であっても構わない。この[iii]の工程での加熱温度は、素管の外表面における温度を指す。急冷には、十分な焼入れ組織が得られるのであれば、水冷または油冷など適宜の方法を用いればよい。[iii]の工程において、加熱温度の好ましい下限は880℃、また、好ましい上限は920℃である。
 [iv]:焼入れした素管を500~600℃に加熱した後、室温まで冷却する、焼戻し工程
 前記[iii]の工程で焼入れした素管には、継目無鋼管としての所定の機械的特性を具備させるために、500~600℃に加熱した後、室温まで冷却する、焼戻し処理が施される。前記(A)項で述べた化学組成の場合には、焼戻しの加熱温度が500℃を下回ると、所定の強度(TS)は確保できても低温靱性が低下して、-40℃でのシャルピー衝撃値が75J/cm2を下回ることがある。一方、焼戻しの加熱温度が600℃を上回ると、所定の低温靱性(-40℃でのシャルピー衝撃値)は得られても強度が低下して、TSが980MPa以上という高強度を確保できないことがある。したがって、焼戻し処理の際の加熱温度は500~600℃とする。
 上記加熱温度での保持時間は、素管のサイズにもよるが30~60分とすることが好ましい。この[iv]の工程での加熱温度は、素管の外表面における温度を指す。焼戻しの際の冷却速度については、特に制限がない。このため、大気中での放冷、矯正風冷、ミスト冷却、油冷、水冷等、設備に応じた冷却を行えばよい。[iv]の工程において、加熱温度の好ましい下限は525℃、また、好ましい上限は575℃である。
 以下、実施例によって、本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 (実施例1)
 表1に示す化学組成を有する鋼A~Kを100kg真空溶解炉を用いて溶製し、鋳型に鋳込んでインゴットを得、次に、各インゴットを熱間鍛造して、厚さ50mm、幅120mm、長さ190mmのブロック形状に加工し、室温まで冷却した。このようにして得た各ブロックを、1250℃で30分加熱した後、継目無鋼管の製造を模擬して、表2に示すように、断面減少率が40%または60%となるように幅を拘束して仕上げ温度が850~950℃の範囲になるように熱間圧延した後室温まで冷却して、厚さ20mmまたは30mmの板材を得た。
 表1中の鋼A~Dは、化学組成が本発明で規定する範囲内にある鋼であり、一方、鋼E~Kは、化学組成が本発明で規定する条件から外れた鋼である。なお、表1には、下記の式(1)および式(2)から求めたAc点およびAc点を併せて示した。
 Ac点(℃)=723+29.1×Si-10.7×Mn-16.9×Ni+16.9×Cr・・・(1)
 Ac点(℃)=910-203×C0.5+44.7×Si-15.2×Ni+31.5×Mo+104×V-(30×Mn+11×Cr+20×Cu-700×P-400×Al-400×Ti)・・・(2)
Figure JPOXMLDOC01-appb-T000001
 上記のようにして得た厚さ20mmまたは30mmの板材に表2に示す条件で焼入れおよび焼戻しを施した後、下記の調査を実施した。なお、焼入れは全て攪拌水槽中に浸漬して実施した。焼戻しの際の冷却は全て大気中での放冷とした。
 まず、各板材(試験番号1~26)から、圧延方向に垂直な断面が観察面となるよう、観察用試験片を採取し、観察面を研磨した後、ナイタールエッチングを行った。その後、倍率500倍の光学顕微鏡にて撮影した組織写真から焼戻しマルテンサイトの面積率を求めた。
 図1および2に組織写真の例を示す。図1は、焼戻しマルテンサイトの面積率が90%以上95%未満であった試験番号1の組織写真であり、図2は、焼戻しマルテンサイトの面積率が90%未満であった試験番号3の組織写真である。
 次に、各板材の板厚中央部から圧延長手方向に平行に、JIS Z 2241-2011の附属書Dに記載の10号引張試験片を切り出して、室温大気中で引張試験を実施して、YSおよびTSを求めた。さらに、焼入れ-焼戻しした板材の板厚中央部から圧延幅方向に平行に、幅10mmの2mmVノッチフルサイズ試験片を切り出し、-40℃にてシャルピー衝撃試験を行い、吸収エネルギーを調査して衝撃値を求めた。
 表2に、上記の各調査結果を併せて示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、本発明で規定する化学組成を有する鋼A~Dを用いて、本発明で規定する方法で製造した本発明例の試験番号1、4、5、7~9、11および14~16は、TSが980MPa以上で、YSも890MPa以上という高強度を有するとともに低温靱性にも優れることが明らかであり、また、Pcmが0.30以下と低いため、優れた溶接性を備えることも容易に想定できる。
 これに対して、比較例の試験番号の場合は、少なくとも所定の機械的特性が得られないか、溶接性の点で劣る。
 すなわち、試験番号2、3、6、10、12、13および17に示されるように、本発明で規定する化学組成を有する鋼A~Dを用いても、その製造条件が本発明で規定する条件から外れる場合には、TSが低く980MPaに達していない。
 一方、用いた鋼の化学組成が本発明で規定する条件から外れる場合には、試験番号18~26に示されるように、製造条件が本発明の規定を満たす、満たさないに関係なく、少なくとも所定の機械的特性が得られないか、Pcmが高くなるため溶接性の点で劣る。
 (実施例2)
 表3に示す化学組成を有する鋼Lを溶製し、転炉-連続鋳造プロセスにより、矩形ビレットを鋳造した。矩形ビレットは、さらに熱間鍛造により外径191mmの円形ビレット、外径225mmの円形ビレットおよび外径310mmの円形ビレットに成形し、室温まで冷却した。
Figure JPOXMLDOC01-appb-T000003
 上記の各円形ビレットを、1240℃で加熱し、マンネスマン-マンドレル方式によって、仕上げ温度が850~950℃の範囲になるように、表4に示す種々の肉厚の継目無鋼管を作製し、室温まで冷却した。このようにして得た各継目無鋼管を、表4に示す条件で、焼入れと焼戻しを施して、製品鋼管を製造した。なお、焼入れは全て水焼入れによって実施した。焼戻しの際の冷却は全て大気中での放冷とした。
 その後、各製品鋼管(試験番号27~38)について、実施例1と同様にして焼戻しマルテンサイトの面積率を求めた。図3は、焼戻しマルテンサイトの面積率が95%以上であった試験番号31の組織写真である。
 次に、各製品鋼管について、長手方向の片端位置または両端位置(圧延方向で先端側をT端、末端側をB端とする)から、JIS Z 2241-2011の附属書Eに記載の12号試験片を切り出して、室温大気中で引張試験を実施して、YSおよびTSを求めた。さらに、上記各製品鋼管について、長手方向の片端位置または両端位置から圧延長手方向に平行に、幅10mmの2mmVノッチフルサイズ試験片(製品肉厚が20mmまたは38mmの場合)または幅が3.3mmの2mmVノッチ試験片(製品肉厚が5.74mmの場合)を各3本ずつ切り出して、-40℃にてシャルピー衝撃試験を実施し、各3本の平均吸収エネルギーを調査し、これを用いて衝撃値を求めた。
 表4に、上記の各調査結果を併せて示す。
Figure JPOXMLDOC01-appb-T000004
 表4から、本発明で規定する化学組成を有する鋼Lを用いて、本発明で規定する方法で製造した本発明例の試験番号27~38の鋼管は、いずれの寸法においても、TSが980MPa以上で、YSも890MPa以上という高強度を有するとともに低温靱性にも優れることが明らかであり、また、Pcmが0.30以下であるため、優れた溶接性を備えることも容易に想定できる。
 本発明の継目無鋼管は、引張強度が980MPa以上の高強度を有するとともに低温靱性にも優れ、かつPcmが0.30以下と小さいので、機械構造部材用、なかでもクレーンブーム用として好適である。また、本発明の製造方法によって、上記の継目無鋼管を低コストで得ることができる。

 

Claims (2)

  1.  化学組成が、質量%で、
     C:0.10~0.20%、
     Si:0.05~1.0%、
     Mn:0.05~1.2%、
     P:0.025%以下、
     S:0.005%以下、
     Cu:0.20%以下、
     N:0.007%以下、
     Ni:0.20~0.50%、
     Cr:0.30%以上0.50%未満、
     Mo:0.30~0.50%、
     Nb:0.01~0.05%、
     Al:0.001~0.10%、
     B:0.0005~0.0020%、
     Ti:0.003~0.050%、
     V:0.01~0.20%、
     Ca、MgおよびREMのいずれか1種以上の合計:0~0.025%、
     残部:Feおよび不純物であり、
     下記[A]式で表わされるPcmの値が0.30以下であり、
     金属組織が、面積%で、
     焼戻しマルテンサイト:90%以上であり、
     引張強さが980MPa以上、
     2mmVノッチ試験片を用いた-40℃でのシャルピー衝撃値が75J/cm以上である、
     継目無鋼管。
     Pcm=C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B  ・・・[A]
     但し、[A]式中の元素記号は、各元素の鋼中含有量(質量%)を意味し、含有されない場合はゼロとする。
  2.  請求項1に記載の継目無鋼管を製造する方法であって、
     請求項1に記載の化学組成を有する鋼片を用いて、下記の[i]から[iv]までの工程を順に施す、
     継目無鋼管の製造方法。
     [i]:鋼片を1200~1300℃に加熱した後、断面減少率で40~99%の加工を行って素管を製造する、熱間製管工程
     [ii]:前記素管をAc点未満の温度まで冷却する、冷却工程
     [iii]:冷却した素管をAc点~950℃に加熱した後、急冷する、焼入れ工程
     [iv]:焼入れした素管を500~600℃に加熱した後、室温まで冷却する、焼戻し工程

     
PCT/JP2017/027529 2016-08-01 2017-07-28 継目無鋼管およびその製造方法 WO2018025778A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MYPI2019000084A MY191470A (en) 2016-08-01 2017-07-28 Seamless steel pipe and method for producing same
SG11201900897RA SG11201900897RA (en) 2016-08-01 2017-07-28 Seamless steel pipe and method for producing same
US16/321,854 US11453925B2 (en) 2016-08-01 2017-07-28 Seamless steel pipe and method for producing same
CN201780047884.8A CN109563587B (zh) 2016-08-01 2017-07-28 无缝钢管及其制造方法
JP2017559728A JP6292366B1 (ja) 2016-08-01 2017-07-28 継目無鋼管およびその製造方法
CA3032083A CA3032083C (en) 2016-08-01 2017-07-28 Seamless steel pipe and method for producing same
KR1020197005732A KR102225267B1 (ko) 2016-08-01 2017-07-28 이음매 없는 강관 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-150947 2016-08-01
JP2016150947 2016-08-01

Publications (1)

Publication Number Publication Date
WO2018025778A1 true WO2018025778A1 (ja) 2018-02-08

Family

ID=61074151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027529 WO2018025778A1 (ja) 2016-08-01 2017-07-28 継目無鋼管およびその製造方法

Country Status (8)

Country Link
US (1) US11453925B2 (ja)
JP (1) JP6292366B1 (ja)
KR (1) KR102225267B1 (ja)
CN (1) CN109563587B (ja)
CA (1) CA3032083C (ja)
MY (1) MY191470A (ja)
SG (1) SG11201900897RA (ja)
WO (1) WO2018025778A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129670A (zh) * 2019-04-25 2019-08-16 首钢集团有限公司 一种1300MPa级高强高塑性热冲压用钢及其制备方法
WO2023074658A1 (ja) 2021-10-26 2023-05-04 日本製鉄株式会社 鋼管溶接継手

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737096B (zh) * 2021-08-31 2022-09-09 东风商用车有限公司 一种免退火无缝钢管及其制备方法、变速箱齿轮

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283117A (ja) * 2005-03-31 2006-10-19 Sumitomo Metal Ind Ltd 冷間加工後の塑性変形能に優れた高張力鋼およびその製造方法
WO2008050628A1 (fr) * 2006-10-27 2008-05-02 Sumitomo Metal Industries, Ltd. Tube en acier sans soudure pour accumulateurs pour air-bag et procédé de fabrication de ceux-ci
WO2010061882A1 (ja) * 2008-11-26 2010-06-03 住友金属工業株式会社 継目無鋼管およびその製造方法
JP2012107333A (ja) * 2010-10-28 2012-06-07 Jfe Steel Corp 高圧水素貯蔵容器用高強度鋼材
JP2012193404A (ja) * 2011-03-16 2012-10-11 Sumitomo Metal Ind Ltd 継目無鋼管およびその製造方法
JP2013139610A (ja) * 2012-01-05 2013-07-18 Jfe Steel Corp 引張強さ780MPa以上の高張力厚鋼板およびその製造方法
JP2016094649A (ja) * 2014-11-14 2016-05-26 Jfeスチール株式会社 継目無鋼管およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69617002T4 (de) 1995-05-15 2003-03-20 Sumitomo Metal Industries, Ltd. Verfahren zur herstellung von hochfesten nahtlosen stahlrohren mit hervorragender schwefel induzierter spannungsrisskorossionsbeständigkeit
JP3755163B2 (ja) * 1995-05-15 2006-03-15 住友金属工業株式会社 耐硫化物応力割れ性に優れた高強度継目無鋼管の製造方法
JP4123672B2 (ja) 2000-03-01 2008-07-23 住友金属工業株式会社 靱性に優れた高強度継目無鋼管の製造方法
BR112012016517B1 (pt) * 2010-01-27 2020-02-11 Nippon Steel Corporation Método para fabricar um tubo de aço sem costura para tubos de condução e tubo de aço sem costura para tubos de condução
IN2012DN03019A (ja) 2010-06-03 2015-07-31 Sumitomo Metal Ind
JP5845674B2 (ja) 2010-07-16 2016-01-20 Jfeスチール株式会社 曲げ加工性および低温靱性に優れる高張力鋼板およびその製造方法
US9340847B2 (en) * 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283117A (ja) * 2005-03-31 2006-10-19 Sumitomo Metal Ind Ltd 冷間加工後の塑性変形能に優れた高張力鋼およびその製造方法
WO2008050628A1 (fr) * 2006-10-27 2008-05-02 Sumitomo Metal Industries, Ltd. Tube en acier sans soudure pour accumulateurs pour air-bag et procédé de fabrication de ceux-ci
WO2010061882A1 (ja) * 2008-11-26 2010-06-03 住友金属工業株式会社 継目無鋼管およびその製造方法
JP2012107333A (ja) * 2010-10-28 2012-06-07 Jfe Steel Corp 高圧水素貯蔵容器用高強度鋼材
JP2012193404A (ja) * 2011-03-16 2012-10-11 Sumitomo Metal Ind Ltd 継目無鋼管およびその製造方法
JP2013139610A (ja) * 2012-01-05 2013-07-18 Jfe Steel Corp 引張強さ780MPa以上の高張力厚鋼板およびその製造方法
JP2016094649A (ja) * 2014-11-14 2016-05-26 Jfeスチール株式会社 継目無鋼管およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129670A (zh) * 2019-04-25 2019-08-16 首钢集团有限公司 一种1300MPa级高强高塑性热冲压用钢及其制备方法
WO2023074658A1 (ja) 2021-10-26 2023-05-04 日本製鉄株式会社 鋼管溶接継手
JP7280545B1 (ja) * 2021-10-26 2023-05-24 日本製鉄株式会社 鋼管溶接継手
KR20240089514A (ko) 2021-10-26 2024-06-20 닛폰세이테츠 가부시키가이샤 강관 용접 이음

Also Published As

Publication number Publication date
CA3032083A1 (en) 2018-02-08
US11453925B2 (en) 2022-09-27
KR102225267B1 (ko) 2021-03-09
JP6292366B1 (ja) 2018-03-14
US20190177813A1 (en) 2019-06-13
CA3032083C (en) 2020-09-22
CN109563587B (zh) 2021-03-12
MY191470A (en) 2022-06-28
SG11201900897RA (en) 2019-02-27
CN109563587A (zh) 2019-04-02
KR20190034285A (ko) 2019-04-01
JPWO2018025778A1 (ja) 2018-08-02

Similar Documents

Publication Publication Date Title
JP4475440B1 (ja) 継目無鋼管およびその製造方法
JP6107437B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法
JP5029748B2 (ja) 靭性に優れた高強度熱延鋼板およびその製造方法
US10358688B2 (en) Steel plate and method of producing same
JP6226086B2 (ja) 冷間鍛造部品用圧延棒鋼または圧延線材
JP7218533B2 (ja) 鋼材およびその製造方法
JP2011001620A (ja) 優れた生産性と溶接性を兼ね備えた、pwht後の落重特性に優れた高強度厚鋼板およびその製造方法
US20190040480A1 (en) Seamless steel pipe and method for producing same
JP5786720B2 (ja) 引張強さ780MPa以上の高張力厚鋼板およびその製造方法
JP6131890B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法ならびにその選定方法
JP6292366B1 (ja) 継目無鋼管およびその製造方法
JP5668547B2 (ja) 継目無鋼管の製造方法
JP5842473B2 (ja) 高一様伸び特性を備えかつ溶接部靱性に優れた高強度溶接鋼管、およびその製造方法
JP2020012172A (ja) 鋼材およびその製造方法
JPWO2019050010A1 (ja) 鋼板およびその製造方法
WO2018008703A1 (ja) 圧延線材
JP4967356B2 (ja) 高強度継目無鋼管およびその製造方法
JP6673320B2 (ja) 厚鋼板および厚鋼板の製造方法
WO2018139672A1 (ja) 自動車足回り部品用鋼管および自動車足回り部品
WO2018139671A1 (ja) 自動車足回り部品用鋼管および自動車足回り部品
JP7472826B2 (ja) 電縫溶接鋼管およびその製造方法
JP7388371B2 (ja) 電縫鋼管および電縫鋼管の製造方法
JP2020020031A (ja) 鋼材およびその製造方法
JP2017137538A (ja) 高強度低合金鋼材およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017559728

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3032083

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197005732

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17836883

Country of ref document: EP

Kind code of ref document: A1