WO2018025698A1 - Laminate film - Google Patents

Laminate film Download PDF

Info

Publication number
WO2018025698A1
WO2018025698A1 PCT/JP2017/026782 JP2017026782W WO2018025698A1 WO 2018025698 A1 WO2018025698 A1 WO 2018025698A1 JP 2017026782 W JP2017026782 W JP 2017026782W WO 2018025698 A1 WO2018025698 A1 WO 2018025698A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
layer
examples
polarizer layer
Prior art date
Application number
PCT/JP2017/026782
Other languages
French (fr)
Japanese (ja)
Inventor
将司 藤長
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2018025698A1 publication Critical patent/WO2018025698A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a laminated film.
  • a polarizing plate has been widely used as a polarized light supplying element and a polarized light detecting element in a display device such as a liquid crystal display device.
  • a polarizing plate having a configuration in which a protective film is bonded to one side or both sides of a polarizing film (polarizer layer) using an adhesive or the like is known.
  • a film made of a polyvinyl alcohol-based resin in which a dichroic dye such as iodine is oriented is known.
  • Iodine in the polarizing film exists as an iodine complex, and the iodine complex itself is oriented depending on the orientation of the polyvinyl alcohol resin. It is known that this iodine complex absorbs light in the visible region, so that the polarizing film exhibits polarization characteristics (polarization degree).
  • the stretched film constituting the retardation film may be required to have a slow axis in a direction oblique to the longitudinal direction of the polarizing film. In such a display device, it is necessary to dispose the retardation film so that the slow axis of the retardation film and the absorption axis of the polarizing film are at a desired angle.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a laminated film that can maintain a high degree of polarization even in a humid heat environment.
  • the inventors of the present invention have made the stretched film expand and contract in a direction oblique to the longitudinal direction of the film in a wet and heat environment, thereby polarizing the polarizing plate. It was estimated that the axis collapsed, resulting in a decrease in the degree of polarization.
  • the glass transition temperature of the adhesive layer interposed between the polarizing film and the optical layer is expected to be able to suppress expansion and contraction in the oblique direction of the stretched film when the glass transition temperature is 60 ° C. or higher. It came to be completed.
  • One embodiment of the present invention is a material for forming a polarizer film in which a dichroic dye is oriented in a polyvinyl alcohol resin, and a resin film having a slow axis in a direction oblique to the absorption axis of the polarizer layer And an adhesive layer that adheres the polarizer layer and the stretched film, and the adhesive layer provides a laminated film having a glass transition temperature of 60 ° C. or higher.
  • the polarizer layer and the stretched film may both be long.
  • a laminated film capable of maintaining a high degree of polarization even in a humid heat environment is provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of the layer configuration of the laminated film of the present embodiment.
  • the laminated film 1 of the present embodiment includes a polarizer layer 11, a stretched film 21, and an adhesive layer 31 that bonds the polarizer layer 11 and the stretched film 21.
  • a protective film may be further laminated on the side of the polarizer layer 11 opposite to the stretched film 21.
  • the laminated film of the present embodiment may be long or may be a single body obtained by cutting the long laminated film into a predetermined length.
  • the long laminated film includes a long polarizer layer and a long stretched film. The long polarizer layer and the long stretched film will be described later.
  • a polarizer layer refers to an optical film having the property of absorbing linearly polarized light having a vibration plane parallel to the optical axis and transmitting linearly polarized light having a vibration plane perpendicular to the optical axis.
  • the polarizer layer 11 of this embodiment is a film in which a dichroic dye is oriented in a polyvinyl alcohol-based resin (hereinafter sometimes referred to as “PVA-based resin”).
  • the thickness of the polarizer layer 11 is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, further preferably 15 ⁇ m or less, particularly preferably 10 ⁇ m or less, and particularly preferably 7 ⁇ m or less. preferable.
  • the polarizer layer 11 When the polarizer layer 11 is a film in which a dichroic dye is oriented in a PVA-based resin, the polarizer layer 11 may be obtained by stretching a film original containing the PVA-based resin. When the thickness of the polarizer layer 11 is 7 ⁇ m or less, the polarizer layer 11 may be obtained by stretching a coating film containing a PVA-based resin formed on the substrate together with the substrate, and then peeling the substrate.
  • Examples of the substrate that may be used in the present embodiment include a polypropylene film, a polyethylene terephthalate film, a polycarbonate film, a triacetyl cellulose film, a norbornene film, a polyester film, and a polystyrene film.
  • Examples of the PVA resin used in the present embodiment include a saponified polyvinyl acetate resin.
  • the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having ammonium groups.
  • the saponification degree of the PVA resin is preferably 80 mol% or more, more preferably 90 mol% or more and 99.5 mol% or less, and further preferably 94 mol% or more and 99 mol% or less. .
  • the degree of saponification is 80 mol% or more, the moisture and heat resistance of the resulting laminated film 1 is improved.
  • polarized-light performance as saponification degree is 99.5 mol% or less is obtained.
  • the PVA resin may be a modified polyvinyl alcohol partially modified.
  • olefin modification with ethylene, propylene, etc . unsaturated carboxylic acid modification with acrylic acid, methacrylic acid, crotonic acid, etc .
  • one modified with an alkyl ester of unsaturated carboxylic acid, acrylamide or the like may be used.
  • the rate of modification of the PVA resin is preferably less than 30 mol%, more preferably less than 10%.
  • the dichroic dye can be sufficiently adsorbed, and a polarizer having sufficient polarization performance can be obtained.
  • the average degree of polymerization of the PVA-based resin is preferably 100 or more and 10,000 or less, more preferably 1500 or more and 8000 or less, and further preferably 2000 or more and 5000 or less.
  • a polarizer having sufficient polarization performance can be obtained.
  • the average degree of polymerization is 10,000 or less, the solubility in a solvent becomes good, and the formation of a film containing a PVA resin is easy.
  • PVA-based resins can be easily obtained, and preferable examples of commercially available products are trade names, “PVA124” and “PVA117” (both saponification degrees) manufactured by Kuraray Co., Ltd. : 98 to 99 mol%), “PVA624" (degree of saponification: 95 to 96 mol%), “PVA617” (degree of saponification: 94.5 to 95.5 mol%); manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • JF-20 both saponification degrees: 98-99 %), “JM-26” (degree of saponification: 95.5 to 97.5 mol%), “JM-33” (degree of saponification: 93.5 to 95.5 mol%), “JP-45” (Saponification degree: 86.5 to 89.5 mol%).
  • dichroic dye used in the present embodiment examples include iodine or a dichroic organic dye.
  • Dichroic organic dyes include Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B , Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Sky Blue , Direct First Orange S, and First Black.
  • dichroic dye Only one type of dichroic dye may be used alone, or two or more types may be used in combination.
  • the stretched film 21 of the present embodiment uses a resin film having a slow axis in a direction oblique to the absorption axis of the polarizer layer 11 as a forming material.
  • a resin film can be manufactured through a stretching process, and the resin film is left with a tensile stress in a direction oblique to the absorption axis of the polarizer layer 11.
  • the stretched film 21 has a slow axis in a direction oblique to the absorption axis of the polarizer layer 11.
  • the angle of the slow axis is 45 ⁇ 10 ° or 135 with respect to the absorption axis of the polarizer layer 11. It is preferably ⁇ 10 °.
  • the difference between the light phase in the fast axis direction and the light phase in the slow axis direction is ⁇ / 2.
  • the phase difference between the fast axis and the slow axis is ⁇ / 2
  • the laminated film 1 of the present embodiment is applied to a display device, the light that has passed through the laminated film 1 can be made into circularly polarized light. . Therefore, even when viewed through polarized sunglasses, a configuration with excellent visibility can be obtained.
  • the stretched film 21 of the present embodiment is preferably a retardation layer having retardation characteristics and wavelength dispersion characteristics that satisfy the following formulas (1) to (4).
  • the stretched film 21 satisfies the formulas (1) to (4)
  • the laminated film 1 of this embodiment is incorporated into a display device, the screen is viewed from various directions (azimuth and polar angles) through polarized sunglasses. It is possible to effectively suppress the color change when viewing the screen. Thereby, the visibility of the image display device can be improved.
  • R e (590), R e (450), R e (550), and R e (630) represent in-plane retardation values at measurement wavelengths of 590 nm, 450 nm, 550 nm, and 630 nm, respectively, and R th ( 590) represents a thickness direction retardation value at a measurement wavelength of 590 nm.
  • These in-plane retardation value and thickness direction retardation value are values measured in an environment of a temperature of 23 ° C. and a relative humidity of 55%.
  • Plane retardation value R e, and the thickness direction retardation value R th refraction of the refractive index in the in-plane slow axis direction n x, plane fast axis direction (perpendicular to the plane slow axis direction)
  • the rate is ny
  • the refractive index in the thickness direction is nz
  • the thickness of the optical film is d, it is defined by the following formulas (S1) and (S2).
  • R e (590) in the formula (1) is preferably 105 to 170 nm.
  • R th (590) / R e (590) in the formula (2) is preferably 0.6 to 0.75.
  • R e (450) / R e (550) is preferably 0.86 to 0.98.
  • R e (630) / R e (550) is preferably 1.01 to 1.06.
  • the stretched film 21 can be produced by stretching a film containing a resin described later.
  • Examples of the stretching treatment include uniaxial stretching and biaxial stretching.
  • the stretching direction examples include a machine flow direction (MD) of an unstretched film, a direction perpendicular to the machine flow direction (TD), and a direction oblique to the machine flow direction (MD).
  • MD machine flow direction
  • TD machine flow direction
  • MD machine flow direction
  • MD direction perpendicular to the machine flow direction
  • MD direction oblique to the machine flow direction
  • the unstretched film refers to a film that is not stretched.
  • uniaxial stretching an unstretched film is stretched in any one of these directions.
  • the biaxial stretching may be simultaneous biaxial stretching that simultaneously stretches in two stretching directions, or may be sequential biaxial stretching that stretches in another direction after stretching in a predetermined direction.
  • the stretching process for example, two or more pairs of nip rolls with increased peripheral speed on the outlet side are used to stretch in the longitudinal direction (machine flow direction: MD), or the both ends of the unstretched film are gripped with a chuck and machine flow is performed. It can be performed by spreading in a direction (TD) orthogonal to the direction.
  • the retardation value and the wavelength dispersion can be controlled within the ranges of the above formulas (1) to (4) by adjusting the thickness of the film or adjusting the draw ratio.
  • the chromatic dispersion value can be controlled within the range of the above formulas (3) to (4) by adding a chromatic dispersion adjusting agent to the resin.
  • a long polarizing film (polarizer layer) has an absorption axis in the long side direction.
  • the long stretched film and the long polarizer layer can be bonded with a roll-to-roll, and the angle formed by the absorption axis and the slow axis of the stretched film is within the above range. It is preferable that the stretched film 21 is manufactured by being obliquely stretched by biaxial stretching.
  • Examples of the resin forming the resin film include cellulose acetate resin, cycloolefin resin, polyolefin resin, acrylic resin, polyimide resin, polycarbonate resin, and polyester resin.
  • the cellulose acetate resin is composed of a cellulose portion or a complete acetate ester.
  • Examples of the cellulose acetate resin include triacetyl cellulose and diacetyl cellulose.
  • a resin film made of a cellulose acetate resin can be easily obtained as a commercial product.
  • all of them are trade names of “Fujitac (registered)” sold by FUJIFILM Corporation. Trademarks) TD80 ",” Fujitac (registered trademark) TD80UF “and” Fujitac (registered trademark) TD80UZ ",” KC8UX2M “and” KC8UY "sold by Konica Minolta Opto Corporation.
  • the cycloolefin resin forming the resin film is, for example, a thermoplastic amorphous resin having a monomer unit composed of a cyclic olefin (cycloolefin) such as norbornene or a polycyclic norbornene monomer (non-crystalline polyolefin). Also called resin.)
  • the cycloolefin-based resin may be a hydrogenated product of the above-mentioned cycloolefin ring-opening polymer or a hydrogenated product of a ring-opening copolymer using two or more kinds of cycloolefins. It may be an addition copolymer with an olefin and / or an aromatic compound having a vinyl group. In addition, a polar group may be introduced.
  • a resin film is formed using a copolymer of a cycloolefin and a chain olefin and / or an aromatic compound having a vinyl group
  • chain olefin examples include ethylene and propylene.
  • aromatic compound having a vinyl group examples include styrene, ⁇ -methylstyrene, and nuclear alkyl-substituted styrene.
  • the unit of the monomer composed of cycloolefin may be 50 mol% or less, preferably 15 to 50 mol%.
  • the monomer unit composed of the cycloolefin can be used in a relatively small amount as described above.
  • the unit of monomer composed of a chain olefin is preferably 5 to 80 mol%.
  • the unit of the monomer composed of an aromatic compound having a vinyl group is preferably 5 to 80 mol%.
  • Cycloolefin-based resins can be easily obtained from commercial products, and preferable examples of commercially available products are all trade names, manufactured by TOPAS ADVANCED POLYMERS GmbH, sold in Japan by Polyplastics Co., Ltd. "TOPAS (registered trademark)”, “Arton (registered trademark)” sold by JSR Corporation, “ZEONOR (registered trademark)” and “ZEONEX” sold by ZEON Corporation ) (Registered trademark) ”,“ Apel (registered trademark) ”sold by Mitsui Chemicals, Inc., and the like.
  • the thickness of the retardation layer is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the stretched film 21 of the present embodiment may contain a plasticizer for the purpose of imparting flexibility to the resin film and facilitating stretching in addition to the resin forming the resin film.
  • a plasticizer for the purpose of imparting flexibility to the resin film and facilitating stretching in addition to the resin forming the resin film.
  • the plasticizer include polyhydric alcohols such as ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and trimethylolpropane.
  • the plasticizer may be used alone or in combination of two or more.
  • ethylene glycol and glycerin are preferably used.
  • the adhesive layer 31 of this embodiment has a glass transition temperature of 60 ° C. or higher.
  • the glass transition temperature is 60 ° C. or higher, the hardness of the adhesive layer 31 can be sufficiently increased. Thereby, the expansion-contraction to the direction which crosses the stretched film 21 diagonally can be suppressed in a humid heat environment (for example, the environment of 60 degreeC of room temperature, and 95% of humidity).
  • the upper limit is not particularly limited, but may be about 400 ° C.
  • the glass transition temperature of the adhesive layer 31 is a value measured as follows.
  • an active energy ray-curable adhesive composition (described later) two sheets of a stretched cycloolefin-based resin film (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) having a thickness of 50 ⁇ m are prepared. Then, using a bar coater on one film surface, each prepared curable resin composition is applied so that the film thickness after curing is 2 ⁇ m, and another film is overlaid on the coated surface.
  • an ultraviolet-ray is irradiated so that an integrated light quantity may be 250 mJ / cm ⁇ 2 > from one surface, and an adhesive composition is hardened.
  • a container containing the above-described measurement sample is set in a differential scanning calorimeter (DSC) “EXSTAR-6000 DSC 6220” sold by SII Nano Technology Co., Ltd. Then, while flowing in nitrogen gas, the temperature is lowered from 20 ° C. to ⁇ 60 ° C., held for 1 minute after reaching ⁇ 60 ° C., and then heated from ⁇ 60 ° C. to 200 ° C. at a rate of 10 ° C./min. When the temperature reaches 200 ° C., the temperature is immediately lowered to 20 ° C. Then, from the DSC curve when the temperature is raised from ⁇ 60 ° C. to 200 ° C., the midpoint glass transition temperature specified in JIS K 7121-1987 “Method for measuring plastic transition temperature” is determined. This was made into the glass transition temperature of the adhesive bond layer 31 (hardened
  • DSC differential scanning calorimeter
  • aqueous adhesive composition (described later), one triacetyl cellulose film [trade name “KC4UY” manufactured by Konica Minolta Opto Co., Ltd.] was prepared. A water-based adhesive composition was applied to one side and dried at 80 ° C. for 5 minutes. At this time, coating and drying were repeated so that the film thickness after drying was 2 ⁇ m. Then, the sample for a measurement was produced with the method similar to the above with respect to the hardened
  • the thickness of the adhesive layer 31 is preferably 0.01 ⁇ m or more and 5 ⁇ m or less, more preferably 0.01 ⁇ m or more and 2 ⁇ m or less, and further preferably 0.01 ⁇ m or more and 1 ⁇ m or less. Sufficient adhesiveness can be acquired as the thickness of the adhesive bond layer 31 is 0.01 micrometer or more. Moreover, when the thickness of the adhesive layer 31 is 5 ⁇ m or less, the laminated film 1 is unlikely to have a poor appearance.
  • the material for forming the adhesive layer 31 is not particularly limited as long as the glass transition temperature is 60 ° C. or higher, and a cured product of the curable resin composition can be used.
  • the curable resin composition include a water-based adhesive composition and an active energy ray-curable adhesive composition.
  • the “active energy ray-curable adhesive composition” refers to an adhesive composition that is cured by irradiation with active energy rays (for example, ultraviolet rays, visible light, electron beams, X-rays, etc.).
  • the aqueous adhesive composition examples include an aqueous polyvinyl alcohol resin solution and an aqueous two-component urethane emulsion adhesive composition, and an aqueous polyvinyl alcohol resin solution is preferable.
  • the polyvinyl alcohol resin used as the adhesive composition includes a vinyl alcohol homopolymer obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, and vinyl acetate.
  • vinyl alcohol copolymers obtained by saponifying a copolymer with other monomers copolymerizable therewith, and modified polyvinyl alcohol polymers obtained by partially modifying the hydroxyl groups thereof is there.
  • the modified polyvinyl alcohol polymer examples include carboxy group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol.
  • the adhesive layer 31 preferably contains a cured product of an acetoacetyl group-modified polyvinyl alcohol resin as a forming material.
  • a polyhydric aldehyde, a water-soluble epoxy compound, a melamine compound, a zirconia compound, a zinc compound, or the like may be added as an additive.
  • An adhesive composition containing a polyvinyl alcohol resin as an adhesive component may contain a curable component such as a metal salt of glyoxylic acid, glyoxal, and a water-soluble epoxy resin and / or a crosslinking agent in order to improve adhesion.
  • a curable component such as a metal salt of glyoxylic acid, glyoxal, and a water-soluble epoxy resin and / or a crosslinking agent in order to improve adhesion.
  • the metal salt of glyoxylic acid is preferably an alkali metal salt or an alkaline earth metal salt, and examples thereof include sodium glyoxylate, potassium glyoxylate, magnesium glyoxylate, and calcium glyoxylate.
  • water-soluble epoxy resins examples include polyamide polyamine epoxy resins obtained by reacting polychloropolyamines such as diethylenetriamine and triethylenetetramine with polycarboxylic acid polyamines such as adipic acid and epichlorohydrin. Can be suitably used.
  • Examples of such a commercially available metal salt of glyoxylic acid include “SPM-01” (manufactured by Nippon Synthetic Chemical Co., Ltd.).
  • Commercially available products of such polyamide polyamine epoxy resins include “Smiles Resin 650” (manufactured by Sumika Chemtex Co., Ltd.), “Smiles Resin 675” (manufactured by Sumika Chemtex Co., Ltd.), “WS-525” (Nippon PMC Co., Ltd.) Company-made).
  • the addition amount of these curable components and / or crosslinking agents (the total amount when added together) is, for example, 1 to 100 parts by mass, preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polyvinyl alcohol resin. It is. Adhesiveness improves that the addition amount of the said sclerosing
  • the water-based adhesive composition contains a urethane resin
  • a polyester ionomer type urethane resin is a urethane resin having a polyester skeleton, and a small amount of an ionic component (hydrophilic component) is introduced into the skeleton.
  • an ionomer type urethane resin is suitable as a water-based adhesive composition because it is emulsified directly into water without using an emulsifier to form an emulsion.
  • Polyester-based ionomer urethane resins are known per se.
  • JP-A-7-97504 describes an example of a polymer dispersant for dispersing a phenol-based resin in an aqueous medium.
  • JP-A-2005-70140 and JP-A-2005-208456 a mixture of a polyester ionomer type urethane resin and a compound having a glycidyloxy group is used as an adhesive, and a polarizer made of a polyvinyl alcohol resin is cyclic. The form which bonds an olefin resin film is shown.
  • the content of the polyvinyl alcohol-based resin is preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of water, and is 1 part by mass or more and 5 parts by mass or less. It is more preferable.
  • the active energy ray-curable compound contained in the active energy ray-curable adhesive composition is preferably a cationic polymerizable compound or a radical polymerizable compound, and includes a cationic polymerizable compound and a radical polymerizable compound. It is more preferable.
  • the cationic polymerizable compound and the radical polymerizable compound are included, an effect of increasing the hardness of the adhesive layer 31 can be expected, and furthermore, the adjustment of the viscosity and the curing rate of the active energy ray-curable adhesive composition is further facilitated. Will be able to do.
  • cationic polymerizable compound examples include an oxetane compound and an epoxy compound.
  • the content of the cationic polymerizable compound is preferably 10 parts by mass or more and 99 parts by mass or less, and 40 parts by mass or more and 99 parts by mass or less with respect to 100 parts by mass of the active energy ray-curable adhesive composition. It is more preferable.
  • oxetane compounds include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, 3-ethyl-3- (phenoxymethyl) oxetane, di [( 3-ethyl-3-oxetanyl) methyl] ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane and the like.
  • 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene and di [(3-ethyl-3-oxetanyl) methyl] ether are mentioned.
  • the content of the oxetane compound is preferably 1 part by mass or more and 50 parts by mass or less, and preferably 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the active energy ray-curable adhesive composition. More preferred.
  • the oxetane compound may be used alone or in combination of two or more.
  • the active energy ray-curable adhesive composition may contain an epoxy compound as necessary.
  • the epoxy compound is one of cationically polymerizable compounds like the oxetane compound, and can be cured by irradiation with active energy rays.
  • the active energy ray-curable adhesive composition contains an epoxy compound, the adhesion between the stretched film 21 and the polarizer layer 11 can be improved.
  • Examples of the epoxy compound include an aromatic epoxy compound, a glycidyl ether of a polyol having an alicyclic ring, an aliphatic epoxy compound, and an alicyclic epoxy compound.
  • Aromatic epoxy compounds include bisphenol type epoxy resins such as diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F and diglycidyl ether of bisphenol S; phenol novolac epoxy resins, cresol novolac epoxy resins and hydroxybenzaldehyde phenol novolacs Examples thereof include novolak-type epoxy resins such as epoxy resins; glycidyl ethers of tetrahydroxyphenylmethane, glycidyl ethers of tetrahydroxybenzophenone, and polyfunctional epoxy resins such as epoxidized polyvinylphenol.
  • glycidyl ether of a polyol having an alicyclic ring a nuclear hydrogenated polyhydroxy compound obtained by selectively hydrogenating an aromatic polyol under pressure in the presence of a catalyst under pressure is used as a glycidyl ether.
  • aromatic polyols include bisphenol type compounds such as bisphenol A, bisphenol F, and bisphenol S; novolac type resins such as phenol novolac resin, cresol novolac resin, hydroxybenzaldehyde phenol novolac resin; tetrahydroxydiphenylmethane, tetrahydroxybenzophenone, A polyfunctional compound such as polyvinylphenol is exemplified.
  • Glycidyl ether can be obtained by reacting an alicyclic polyol obtained by hydrogenating the aromatic ring of these aromatic polyols with epichlorohydrin.
  • glycidyl ethers of polyols having an alicyclic ring hydrogenated bisphenol A diglycidyl ether is preferable.
  • Examples of the “aliphatic epoxy compound” include an aliphatic polyhydric alcohol or a polyglycidyl ether of an alkylene oxide adduct thereof. Specifically, 1,4-butanediol diglycidyl ether; 1,6-hexanediol diglycidyl ether; glycerin triglycidyl ether; trimethylolpropane triglycidyl ether; polyethylene glycol diglycidyl ether; propylene glycol Diglycidyl ether of neopentyl glycol; by adding one or more alkylene oxides (ethylene oxide or propylene oxide) to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol or glycerin The polyglycidyl ether of the polyether polyol obtained is mentioned.
  • the monofunctional epoxy compound represented by following formula (I) is also mentioned as an aliphatic epoxy compound.
  • R 1 is an optionally branched alkyl group having 1 to 15 carbon atoms. The number of carbon atoms of the alkyl group is preferably 6 or more, more preferably 6 to 10. Of these, a branched alkyl group is preferred.
  • Examples of the monofunctional epoxy compound represented by the formula (I) include 2-ethylhexyl glycidyl ether.
  • Alicyclic epoxy compound refers to a compound having at least one structure in the molecule forming an oxirane ring together with the carbon atom of the alicyclic ring.
  • a structure in which an oxirane ring is formed together with a carbon atom of an alicyclic ring means a structure represented by the following formula (II).
  • N in the formula is an integer of 2 to 5.
  • a compound in which a group in a form in which one or a plurality of hydrogen atoms in (CH 2 ) n in formula (II) are removed is bonded to another chemical structure is an alicyclic epoxy compound.
  • One or more hydrogen atoms in (CH 2 ) n forming the alicyclic ring may be substituted with a linear alkyl group such as a methyl group or an ethyl group.
  • the content of the epoxy compound is preferably 1 part by mass or more and 90 parts by mass or less, and more preferably 20 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the active energy ray-curable adhesive composition. More preferred.
  • the epoxy compound may be used alone or in combination of two or more.
  • radical polymerizable compound in addition to the cationically polymerizable compound such as the oxetane compound or the epoxy compound, a radical polymerizable compound may be included.
  • radical polymerizable compound examples include a compound having at least one (meth) acryloyloxy group in the molecule (hereinafter sometimes referred to as “(meth) acrylic compound”), and at least one ( Examples thereof include compounds having a meth) acrylamide group (hereinafter sometimes referred to as “(meth) acrylamide compounds”).
  • the “(meth) acryloyloxy group” means a methacryloyloxy group or an acryloyloxy group
  • the (meth) acrylamide group means a methacryloylamide group or an acryloylamide group.
  • (Meth) acrylic compounds include (meth) acrylate monomers having at least one (meth) acryloyloxy group in the molecule and (meth) acrylates having at least two (meth) acryloyloxy groups in the molecule.
  • An oligomer etc. are mentioned. These may be used alone or in combination of two or more. When two or more types are used in combination, two or more (meth) acrylate monomers may be used, two or more (meth) acrylate oligomers may be used, and, of course, one or more (meth) acrylate monomers. One or more (meth) acrylate oligomers may be used in combination.
  • Examples of (meth) acrylamide compounds include N-substituted (meth) acrylamide compounds.
  • An N-substituted (meth) acrylamide compound is a (meth) acrylamide compound having a substituent at the N-position.
  • a typical example of the substituent is an alkyl group.
  • the N-position substituents may be bonded to each other to form a ring, and —CH 2 — constituting the ring may be substituted with an oxygen atom. Further, a substituent such as an alkyl group or an oxo group ( ⁇ O) may be bonded to the carbon atom constituting the ring.
  • N-substituted (meth) acrylamides can generally be prepared by reaction of (meth) acrylic acid or its chloride with a primary or secondary amine.
  • the content of the radical polymerizable compound is preferably 1 part by mass or more and 70 parts by mass or less, and preferably 10 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the active energy ray-curable adhesive composition. Is more preferable.
  • the radical polymerizable compound may be used alone or in combination of two or more.
  • the active energy ray-curable adhesive composition contains a cationic polymerizable compound such as the oxetane compound or the epoxy compound, it is preferable to further contain a cationic polymerization initiator.
  • the cationic polymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates a polymerization reaction of the cationic polymerizable compound.
  • the cationic polymerization initiator include aromatic diazonium salts, onium salts such as aromatic iodonium salts and aromatic sulfonium salts, and iron-arene complexes.
  • aromatic diazonium salt examples include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, and benzenediazonium hexafluoroborate.
  • aromatic iodonium salt examples include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, and the like.
  • aromatic sulfonium salt examples include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4′-bis [diphenylsulfonio] diphenyl sulfide bishexa Fluorophosphate, 4,4'-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenyl sulfide bishexafluoroantimonate, 4,4'-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenyl sulfide bis Hexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate
  • iron-arene complexes examples include xylene-cyclopentadienyl iron (II) hexafluoroantimonate, cumene-cyclopentadienyl iron (II) hexafluorophosphate, xylene-cyclopentadienyl iron (II) tris ( (Trifluoromethylsulfonyl) methanide and the like.
  • cationic polymerization initiators can be easily obtained as commercial products.
  • the aromatic sulfonium salt is capable of absorbing light having a wavelength of 300 nm or more, having excellent curability, and obtaining a cured product having good mechanical strength and adhesion. preferable.
  • the cationic polymerization initiator may be used alone or in combination of two or more.
  • radical polymerization initiator When the active energy ray-curable adhesive composition contains the above-mentioned radical polymerizable compound, it is preferable to further contain a radical polymerization initiator. Any radical polymerization initiator may be used as long as it can initiate polymerization of a radical polymerizable compound such as a (meth) acrylic compound by irradiation with active energy rays, and a known one can be used.
  • radical polymerization initiators examples include acetophenone, 3-methylacetophenone, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-methyl-1- [4- ( Acetophenone initiators such as methylthio) phenyl-2-morpholinopropan-1-one and 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzophenone, 4-chlorobenzophenone and 4,4′-diamino Benzophenone initiators such as benzophenone; benzoin ether initiators such as benzoin propyl ether and benzoin ethyl ether; thioxanthone initiators such as 4-isopropylthioxanthone; xanthone, fluorenone, camphorquinone Benzaldehyde, such as anthraquinone, and the like.
  • radical polymerization initiators can be easily obtained.
  • “Darocur (registered trademark)” manufactured by BASF are available.
  • Lucirin (registered trademark) TPO and the like.
  • the radical polymerization initiator may be used alone or in combination of two or more.
  • the active energy ray-curable adhesive composition is a photosensitizer, a solvent, a leveling agent, an antioxidant, a light stabilizer, an ultraviolet absorber, etc., as long as the effects of the present invention are not impaired, in addition to the above compounds. May be included.
  • photosensitizers examples include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo compounds, diazo compounds, halogen compounds, and photoreductive dyes.
  • Examples of the solvent that may be used in the present embodiment include aliphatic hydrocarbons such as n-hexane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; methanol, ethanol, propanol, isopropanol, and n- Alcohols such as butanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; esters such as methyl acetate, ethyl acetate and butyl acetate; cellosolves such as methyl cellosolve, ethyl cellosolve and butyl cellosolve; Halogenated hydrocarbons such as methylene and chloroform.
  • aliphatic hydrocarbons such as n-hexane and cyclohexane
  • aromatic hydrocarbons such as toluene and xylene
  • leveling agent that may be used in the present embodiment, various compounds such as silicone, fluorine, polyether, acrylic acid copolymer, and titanate can be used.
  • antioxidants examples include primary antioxidants such as phenols and amines, and sulfur-based secondary antioxidants.
  • Examples of the light stabilizer that may be used in the present embodiment include hindered amine light stabilizers (HALS).
  • HALS hindered amine light stabilizers
  • Examples of ultraviolet absorbers that may be used in this embodiment include benzophenone-based, benzotriazole-based, and benzoate-based compounds.
  • Adjustment of the glass transition temperature of the adhesive layer 31 can be performed, for example, according to the following guidelines. That is, the glass transition temperature of the adhesive layer depends on the structure of the compound contained as a main component in the curable resin composition and the combination of the compounds. For example, when an adhesive layer is formed from a curable resin composition, when the composition contains the above-described alicyclic epoxy compound, the glass transition temperature tends to be high, and the above-described aliphatic epoxy compound is contained. The glass transition temperature tends to be low. It is possible to adjust the glass transition temperature of the adhesive layer also by the degree of crosslinking of the compound. For example, increasing the amount of bifunctional or higher curable compound increases the degree of cross-linking and increases the glass transition temperature of the adhesive layer. Increasing the amount of monofunctional curable compound decreases the degree of cross-linking and the glass transition temperature. It tends to be lower.
  • FIG. 2 is a schematic cross-sectional view showing a modification of the layer configuration of the laminated film of the present embodiment.
  • a protective film 23 can be further laminated on the side of the polarizer layer 11 opposite to the side on which the stretched film 21 is laminated.
  • a material for forming the protective film 23 the same resin as the material for forming the stretched film 21 can be used.
  • the material forming the stretched film 21 and the material forming the protective film 23 may be the same or different.
  • the protective film 23 can be laminated on the polarizer layer 11 via the adhesive layer 33.
  • the adhesive layer 33 include a water-based adhesive and an active energy ray-curable adhesive.
  • the active energy ray-curable adhesive include a cationic polymerization-type active energy ray-curable adhesive and a radical polymerization-type active energy.
  • a line curable adhesive is mentioned.
  • An adhesive layer may be provided instead of the adhesive layer 33.
  • Examples of the pressure-sensitive adhesive layer include a pressure-sensitive adhesive containing an acrylic resin.
  • An adhesive layer may be provided on the side of the polarizer layer 11 opposite to the side on which the stretched film 21 is laminated, or on the side of the protective film opposite to the side on which the polarizer layer 11 is laminated.
  • the laminated film 2 can be bonded to the liquid crystal cell of the display device.
  • the pressure-sensitive adhesive layer include a pressure-sensitive adhesive containing an acrylic resin.
  • the laminated film of the present invention is preferably arranged on the viewing side of the liquid crystal cell.
  • the laminated film 1 of this embodiment is (I) forming a layer of a cured product resin composition (hereinafter sometimes referred to as a “cured product resin composition layer”) on one surface of the stretched film 21 having a slow axis; (Ii) The polarizer layer 11 and the cured resin composition layer formed on the stretched film 21 in (i) above have a slow axis of 45 ⁇ 10 with respect to the absorption axis of the polarizer layer 11.
  • the laminate obtained in (ii) above is irradiated with active energy rays (for example, ultraviolet rays, visible light, electron beams, X-rays, etc.) and / or heated to cure the cured resin composition layer. And obtaining the adhesive layer 31.
  • active energy rays for example, ultraviolet rays, visible light, electron beams, X-rays, etc.
  • a stretched film 21 having a slow axis is prepared.
  • the elongated polarizer layer may have an absorption axis in the flow direction.
  • a laminate (laminated film) can be produced by roll-to-roll, and both can be arranged so that the angle formed by the absorption axis and the slow axis of the stretched film 21 falls within the above range.
  • the stretched film 21 is preferably manufactured by being stretched obliquely.
  • Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine.
  • the tenter type stretching machine can apply a feeding force, a pulling force or a pulling force at different speeds in the left and right directions in the horizontal direction or the vertical direction or in both directions.
  • Examples of such a tenter-type stretching machine include a horizontal uniaxial stretching machine and a simultaneous biaxial stretching machine. Any suitable stretching machine can be used as long as the resin film can be continuously stretched obliquely. it can.
  • Examples of the method for forming the cured resin composition layer on one surface of the stretched film 21 include a method in which a curable resin composition is directly applied and dried as necessary. Further, as another method, there is a method in which a curable resin composition is applied to a base film and dried as necessary, and then the applied layer is transferred to the polarizer layer 11. In the latter case, the base film is removed before the step (ii). For the base film, the same resin as described above is used. Moreover, in the base film, the application surface of the curable resin composition may be subjected to a peeling treatment in advance.
  • a coating method of the curable resin composition a known coating method can be employed, and examples thereof include a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater.
  • the polarizer layer 11 and the cured resin composition layer formed on the stretched film 21 in (i) above are bonded together, and the polarizer layer 11, cured resin composition layer, stretched A laminated body in which the films 21 are laminated in this order is obtained.
  • the laminate obtained in (ii) above is irradiated with active energy rays such as visible light, ultraviolet rays, X-rays, or electron beams and / or obtained in (ii) above.
  • active energy rays such as visible light, ultraviolet rays, X-rays, or electron beams and / or obtained in (ii) above.
  • the cured resin composition layer is cured to form an adhesive layer 31 to obtain a laminated film 1.
  • the adhesive composition is cured by irradiating active energy rays.
  • the light source used for irradiation with active energy rays is not particularly limited, but a light source having a light emission distribution at a wavelength of 400 nm or less is used. Examples of such a light source include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, and a metal halide lamp.
  • the irradiation intensity of the active energy ray varies depending on the adhesive composition to be cured, but it is preferable that the irradiation intensity in the wavelength region effective for activating the cationic polymerization initiator is set in the range of 10 to 2500 mW / cm 2 .
  • the irradiation time of the active energy ray varies depending on the adhesive composition to be cured, but it is preferable to set the integrated light amount represented by the product of the irradiation intensity and the irradiation time in the range of 10 to 2500 mJ / cm 2 .
  • the adhesive composition is cured by heat treatment after bonding.
  • This drying process is performed, for example, by blowing hot air.
  • the temperature of the drying treatment is, for example, in the range of 30 to 200 ° C, preferably 35 to 150 ° C, more preferably 40 to 100 ° C, and still more preferably 60 to 100 ° C.
  • the drying time is, for example, 20 to 1200 seconds.
  • the curing temperature is preferably in the range of 30 to 50 ° C, more preferably in the range of 35 to 45 ° C. When the curing temperature is within the above range, so-called “tightening” in the roll winding state is difficult to occur.
  • the humidity during curing is not particularly limited, and the relative humidity may be in the range of 0 to 70% RH.
  • the curing time is, for example, 1 to 10 days, preferably 2 to 7 days.
  • the cured resin composition layer is formed on one surface of the stretched film 21, but may be formed on one surface of the polarizer layer 11 or on both surfaces.
  • a protective film 23 may be laminated on the side of the polarizer layer 11 opposite to the side on which the stretched film 21 is bonded, and a pressure-sensitive adhesive for bonding to a liquid crystal cell.
  • a layer (not shown) may be provided.
  • the laminated film original fabric (elongated laminated film) of the present embodiment includes a strip-shaped polarizing film original fabric (elongated polarizer layer), a belt-shaped resin film original fabric (long elongated stretched film), and And an adhesive layer that bonds the polarizing film original and the resin film original.
  • the original polarizing film is a strip-shaped film made of a PVA-based resin, and a dichroic dye is oriented in the longitudinal direction of the film.
  • the PVA resin and the dichroic dye are the same as described above.
  • the resin film original is formed by stretching a strip-shaped film made of a thermoplastic resin as a forming material in a direction oblique to the longitudinal direction of the film. Thereby, a roll, a toe, and a roll are attained at the time of lamination
  • the thermoplastic resin is the same as described above.
  • the resin film original is preferably a retardation film original.
  • a slow axis is given at an arbitrary angle with respect to the absorption axis of the polarizing film original fabric.
  • the arbitrary angle is preferably 45 ⁇ 10 ° or 135 ⁇ 10 ° with respect to the absorption axis of the polarizing film original.
  • the adhesive layer contains a cured product of the same curable resin composition as described above as a forming material.
  • the glass transition temperature of the adhesive layer is 60 ° C. or higher. When the glass transition temperature is 60 ° C. or higher, the hardness of the adhesive layer 31 can be sufficiently increased. Thereby, the expansion-contraction to the direction which crosses the stretched film 21 diagonally can be suppressed in a humid heat environment (for example, the environment of 60 degreeC of room temperature, and 95% of humidity).
  • the unstretched film used in this example refers to a film that has not been stretched.
  • both films sandwiching the cured product were peeled off. Furthermore, 5 mg of the cured product was collected, put into an aluminum press-lid container, pressed down and sealed to prepare a measurement sample.
  • a container containing the above-described measurement sample was set in a differential scanning calorimeter (DSC) “EXSTAR-6000 DSC6220” sold by SII Nanotechnology Inc. Then, while flowing in nitrogen gas, the temperature is lowered from 20 ° C. to ⁇ 60 ° C., held for 1 minute after reaching ⁇ 60 ° C., and then heated from ⁇ 60 ° C. to 200 ° C. at a rate of 10 ° C./min. When the temperature reached 200 ° C., the temperature was immediately decreased to 20 ° C. Then, from the DSC curve when the temperature was raised from ⁇ 60 ° C. to 200 ° C., the midpoint glass transition temperature defined in JIS K 7121-1987 “Method for measuring plastic transition temperature” was determined. This was taken as the glass transition temperature of the adhesive layer (cured product).
  • DSC differential scanning calorimeter
  • aqueous adhesive composition (described later), one triacetyl cellulose film [trade name “KC4UY” manufactured by Konica Minolta Opto Co., Ltd.] was prepared. A water-based adhesive composition was applied to one side and dried at 80 ° C. for 5 minutes. At this time, coating and drying were repeated so that the film thickness after drying was 2 ⁇ m. Then, the sample for a measurement was produced with the method similar to the above with respect to the hardened
  • MD transmittance and TD transmittance in a wavelength range of 380 nm to 780 nm were measured with a spectrophotometer with an integrating sphere (manufactured by JASCO Corporation, “V7100”).
  • the degree of polarization at each wavelength was calculated based on the formula (T1) using the MD transmittance and the TD transmittance.
  • MD transmittance indicates the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is parallel to the transmission axis of the laminated film sample.
  • TD transmittance refers to the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is orthogonal to the transmission axis of the laminated film sample.
  • Alignetane (registered trademark) OXT-101 3-ethyl-3-hydroxymethyloxetane, obtained from Toagosei Co., Ltd.
  • Aron oxetane (registered trademark) OXT-221 di [(3-ethyl-3-oxetanyl) methyl] ether, obtained from Toagosei Co., Ltd.
  • Table 1 shows the structure of the oxetane compound.
  • A-DCP tricyclodecane dimethanol diacrylate, obtained from Shin-Nakamura Chemical Co., Ltd.
  • aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds.
  • the film was washed with pure water at 26 ° C. for 20 seconds, and then dried at 65 ° C. to prepare a polarizer layer in which iodine was oriented on a uniaxially stretched polyvinyl alcohol film.
  • the thickness of the polarizer was 12 ⁇ m.
  • R e (590), R e (450), R e (550), R e (630) respectively, represent the measurement wavelength 590 nm, 450 nm, 550 nm, an in-plane retardation value at 630 nm
  • R th (590 ) Represents a thickness direction retardation value at a measurement wavelength of 590 nm.
  • the adhesive composition obtained in the production example was applied to the surface of the stretched film of (b) where the hard coat layer was not formed to form an adhesive composition layer.
  • the adhesive composition was applied using a bar coater (manufactured by Daiichi Rika Co., Ltd.) so that the film thickness after curing was about 2 ⁇ m.
  • a corona discharge treatment was performed on one side of an unstretched film (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) using a norbornene-based resin having a thickness of 23 ⁇ m as a forming material.
  • the adhesive composition was applied to the corona discharge treated surface in the same manner as the stretched film to form an adhesive composition layer.
  • the unstretched film is a raw material for the protective film in the laminated film.
  • the laminated adhesive composition layer was laminated to prepare a laminate.
  • a pasting apparatus manufactured by Fuji Pla Co., Ltd., “LPA3301”
  • the angle formed by the absorption axis of the polarizer layer and the slow axis of the stretched film was set to 45 °.
  • the accumulated light amount is 250 mJ / cm 2 from the unstretched film side of the obtained laminate.
  • the adhesive composition layer was cured by irradiating with UV rays.
  • the laminated film which consists of a protective film / polarizer layer / adhesive layer / stretched film / hard coat layer was produced.
  • Example 14 (C) A laminated film of Example 14 was produced in the same manner as in Example 1 except that the following operation was performed in the production of the laminated film.
  • the resin layer prepared in (b) above was bonded to one surface of the polarizer layer prepared in (a) via the aqueous adhesive composition obtained in the production example. Then, after drying at 80 degreeC for 5 minute (s), it cured at 40 degreeC and 23% RH for 72 hours, and produced the laminated
  • the present invention can be used as a polarization supply element or a polarization detection element in a display device such as a liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a laminate film which can maintain a high degree of polarization even in a hot and humid environment. [Solution] This laminate film comprises: a polarizer layer in which a dichroic dye is oriented in a polyvinyl alcohol resin; a stretched film in which the forming material is a resin film that has a slow axis in the direction oblique to the absorption axis of the polarizer layer; and an adhesive layer which bonds together the polarizer layer and the stretched film. The adhesive layer has a glass transition temperature of greater than or equal to 60°C.

Description

積層フィルムLaminated film
 本発明は、積層フィルムに関するものである。 The present invention relates to a laminated film.
 従来、液晶表示装置などの表示装置における偏光の供給素子として、また、偏光の検出素子として、偏光板が広く用いられている。偏光板は、偏光フィルム(偏光子層)の片面または両面に、接着剤などを用いて保護フィルムを貼合した構成のものが知られている。 Conventionally, a polarizing plate has been widely used as a polarized light supplying element and a polarized light detecting element in a display device such as a liquid crystal display device. A polarizing plate having a configuration in which a protective film is bonded to one side or both sides of a polarizing film (polarizer layer) using an adhesive or the like is known.
 偏光フィルムとしては、ポリビニルアルコール系樹脂からなるフィルムにヨウ素などの二色性色素が配向したものが知られている。偏光フィルム中のヨウ素は、ヨウ素錯体として存在し、ポリビニルアルコール系樹脂の配向に依存して、ヨウ素錯体自身も配向している。このヨウ素錯体が、可視領域の光を吸収することで、偏光フィルムは偏光特性(偏光度)を示すことが知られている。 As a polarizing film, a film made of a polyvinyl alcohol-based resin in which a dichroic dye such as iodine is oriented is known. Iodine in the polarizing film exists as an iodine complex, and the iodine complex itself is oriented depending on the orientation of the polyvinyl alcohol resin. It is known that this iodine complex absorbs light in the visible region, so that the polarizing film exhibits polarization characteristics (polarization degree).
 ところで、偏光板を表示装置に適用する際には、必要に応じて、保護フィルムが設けられた偏光フィルムに、光学特性を有する位相差フィルムや光学補償フィルムなどの種々の光学層が貼合される。偏光板の用途によっては、位相差フィルムを構成する延伸フィルムが偏光フィルムの長手方向に対して斜交する方向に遅相軸を有することが求められる場合がある。このような表示装置では、位相差フィルムの遅相軸と偏光フィルムの吸収軸とが所望の角度となるように配置させる必要がある。 By the way, when applying a polarizing plate to a display device, various optical layers such as a retardation film and an optical compensation film having optical properties are bonded to a polarizing film provided with a protective film, if necessary. The Depending on the use of the polarizing plate, the stretched film constituting the retardation film may be required to have a slow axis in a direction oblique to the longitudinal direction of the polarizing film. In such a display device, it is necessary to dispose the retardation film so that the slow axis of the retardation film and the absorption axis of the polarizing film are at a desired angle.
 従来の位相差フィルムは、縦延伸、または横延伸で製造されているため、原理的に遅相軸がフィルムの長手方向に対し0°または90°方向になる。そのため、上記所望の角度にするには長尺の延伸フィルムロールから特定の角度で切り出したフィルム片同士を1枚ずつ貼り合せるバッチ式で行われていた。しかし、この方法は、生産性が低いばかりか、切り屑などのロスが多いという問題があった。 Since a conventional retardation film is produced by longitudinal stretching or transverse stretching, the slow axis is in principle 0 ° or 90 ° with respect to the longitudinal direction of the film. Therefore, in order to obtain the desired angle, it has been carried out by a batch method in which film pieces cut out from a long stretched film roll at a specific angle are bonded one by one. However, this method has a problem that not only productivity is low, but there are many losses such as chips.
 これに対し、所望の角度で斜め方向に延伸し、遅相軸がフィルムの長手方向に対し、0°でも90°でもない方向に自在に制御可能な長尺の位相差フィルムの製造方法が種々提案されている(例えば、特許文献1参照。)。このような遅相軸が斜交した延伸フィルムを使用することにより、従来のバッチ式の貼り合せではなく、ロール・トゥ・ロールの貼合が可能になることから生産性は飛躍的に向上し、ロスも大幅に低下すると考えられる。 On the other hand, there are various methods for producing a long retardation film that can be stretched obliquely at a desired angle and the slow axis can be freely controlled in a direction that is neither 0 ° nor 90 ° with respect to the longitudinal direction of the film. It has been proposed (see, for example, Patent Document 1). By using a stretched film with such a slow axis crossed, it is possible to perform roll-to-roll bonding instead of the conventional batch-type bonding, thus dramatically improving productivity. Loss is also expected to drop significantly.
特開2008-80674号公報JP 2008-80674 A
 しかしながら、特許文献1に記載の方法で得られた延伸フィルムを用いた偏光板は、湿熱環境下(例えば、室温60℃、湿度95%の環境下)に放置した場合、偏光度が低下することがあった。 However, when the polarizing plate using the stretched film obtained by the method described in Patent Document 1 is left in a humid heat environment (for example, at room temperature of 60 ° C. and humidity of 95%), the degree of polarization decreases. was there.
 本発明はこのような事情に鑑みてなされたものであって、湿熱環境下においても高い偏光度を保つことができる積層フィルムを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a laminated film that can maintain a high degree of polarization even in a humid heat environment.
 本発明者らは、上述の課題を解決すべく鋭意検討を重ねた結果、湿熱環境下において、延伸フィルムが、フィルムの長手方向に対して斜交する方向に伸縮することで、偏光板の偏光軸が崩れ、結果的に偏光度が低下すると推定した。これに対し、偏光フィルムと光学層の間に介在する接着剤層のガラス転移温度が60℃以上であることにより、延伸フィルムの斜交する方向への伸縮を抑制できると予想し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have made the stretched film expand and contract in a direction oblique to the longitudinal direction of the film in a wet and heat environment, thereby polarizing the polarizing plate. It was estimated that the axis collapsed, resulting in a decrease in the degree of polarization. On the other hand, the glass transition temperature of the adhesive layer interposed between the polarizing film and the optical layer is expected to be able to suppress expansion and contraction in the oblique direction of the stretched film when the glass transition temperature is 60 ° C. or higher. It came to be completed.
 本発明の一態様は、ポリビニルアルコール系樹脂中に二色性色素が配向された偏光子層と、偏光子層の吸収軸に対して斜交する方向に遅相軸を有する樹脂フィルムを形成材料とする延伸フィルムと、偏光子層と延伸フィルムとを接着する接着剤層と、を有し、接着剤層は、ガラス転移温度が60℃以上である積層フィルムを提供する。 One embodiment of the present invention is a material for forming a polarizer film in which a dichroic dye is oriented in a polyvinyl alcohol resin, and a resin film having a slow axis in a direction oblique to the absorption axis of the polarizer layer And an adhesive layer that adheres the polarizer layer and the stretched film, and the adhesive layer provides a laminated film having a glass transition temperature of 60 ° C. or higher.
 本発明の一態様においては、偏光子層および延伸フィルムは、いずれも長尺状であってもよい。 In one embodiment of the present invention, the polarizer layer and the stretched film may both be long.
 本発明の一態様によれば、湿熱環境下においても高い偏光度を保つことができる積層フィルムが提供される。 According to one embodiment of the present invention, a laminated film capable of maintaining a high degree of polarization even in a humid heat environment is provided.
本実施形態の積層フィルムの層構成の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the laminated constitution of the laminated film of this embodiment. 本実施形態の積層フィルムの層構成の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the layer structure of the laminated | multilayer film of this embodiment.
<積層フィルム>
 図1は、本実施形態の積層フィルムの層構成の一例を示す断面模式図である。図1に示すように、本実施形態の積層フィルム1は、偏光子層11と、延伸フィルム21と、偏光子層11と延伸フィルム21とを接着する接着剤層31と、を有する。別の実施形態において、偏光子層11における延伸フィルム21とは反対側には、さらに保護フィルムを積層してもよい。
<Laminated film>
FIG. 1 is a schematic cross-sectional view showing an example of the layer configuration of the laminated film of the present embodiment. As shown in FIG. 1, the laminated film 1 of the present embodiment includes a polarizer layer 11, a stretched film 21, and an adhesive layer 31 that bonds the polarizer layer 11 and the stretched film 21. In another embodiment, a protective film may be further laminated on the side of the polarizer layer 11 opposite to the stretched film 21.
 本実施形態の積層フィルムは、長尺状であってもよいし、長尺状の積層フィルムを所定の長さに切断することにより得られる枚葉体であってもよい。長尺状の積層フィルムは、長尺状の偏光子層と長尺状の延伸フィルムを含んでいる。長尺状の偏光子層および長尺状の延伸フィルムについては後述する。 The laminated film of the present embodiment may be long or may be a single body obtained by cutting the long laminated film into a predetermined length. The long laminated film includes a long polarizer layer and a long stretched film. The long polarizer layer and the long stretched film will be described later.
[偏光子層]
 偏光子層とは、光学軸に平行な振動面をもつ直線偏光を吸収し、光学軸に直交する振動面をもつ直線偏光を透過する性質を有する光学フィルムを指す。具体的には、本実施形態の偏光子層11は、ポリビニルアルコール系樹脂(以下、「PVA系樹脂」と言うことがある。)中に二色性色素が配向されたフィルムである。
[Polarizer layer]
A polarizer layer refers to an optical film having the property of absorbing linearly polarized light having a vibration plane parallel to the optical axis and transmitting linearly polarized light having a vibration plane perpendicular to the optical axis. Specifically, the polarizer layer 11 of this embodiment is a film in which a dichroic dye is oriented in a polyvinyl alcohol-based resin (hereinafter sometimes referred to as “PVA-based resin”).
 偏光子層11の厚みは、30μm以下であることが好ましく、25μm以下であることがより好ましく、15μm以下であることがさらに好ましく、10μm以下であることがとりわけ好ましく、7μm以下であることが特に好ましい。 The thickness of the polarizer layer 11 is preferably 30 μm or less, more preferably 25 μm or less, further preferably 15 μm or less, particularly preferably 10 μm or less, and particularly preferably 7 μm or less. preferable.
 偏光子層11がPVA系樹脂中に二色性色素が配向されたフィルムである場合、PVA系樹脂を含むフィルム原反を延伸することにより偏光子層11を得てもよい。偏光子層11の厚みが7μm以下である場合、基材上に形成したPVA系樹脂を含む塗膜を基材と共に延伸し、その後基材を剥離して偏光子層11を得てもよい。 When the polarizer layer 11 is a film in which a dichroic dye is oriented in a PVA-based resin, the polarizer layer 11 may be obtained by stretching a film original containing the PVA-based resin. When the thickness of the polarizer layer 11 is 7 μm or less, the polarizer layer 11 may be obtained by stretching a coating film containing a PVA-based resin formed on the substrate together with the substrate, and then peeling the substrate.
 本実施形態で用いてもよい基材としては、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、トリアセチルセルロースフィルム、ノルボルネンフィルム、ポリエステルフィルム、ポリスチレンフィルムなどが挙げられる。 Examples of the substrate that may be used in the present embodiment include a polypropylene film, a polyethylene terephthalate film, a polycarbonate film, a triacetyl cellulose film, a norbornene film, a polyester film, and a polystyrene film.
 本実施形態で用いられるPVA系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものが挙げられる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体が挙げられる。酢酸ビニルに共重合可能な他の単量体としては、不飽和カルボン酸、オレフィン、ビニルエーテル、不飽和スルホン酸、アンモニウム基を有するアクリルアミドなどが挙げられる。 Examples of the PVA resin used in the present embodiment include a saponified polyvinyl acetate resin. Examples of the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having ammonium groups.
 PVA系樹脂のケン化度は、80モル%以上であることが好ましく、90モル%以上99.5モル%以下であることがより好ましく、94モル%以上99モル%以下であることがさらに好ましい。ケン化度が80モル%以上であると、得られる積層フィルム1の耐湿熱性が向上する。また、ケン化度が99.5モル%以下であると、十分な偏光性能を有する積層フィルム1が得られる。 The saponification degree of the PVA resin is preferably 80 mol% or more, more preferably 90 mol% or more and 99.5 mol% or less, and further preferably 94 mol% or more and 99 mol% or less. . When the degree of saponification is 80 mol% or more, the moisture and heat resistance of the resulting laminated film 1 is improved. Moreover, the laminated | multilayer film 1 which has sufficient polarization | polarized-light performance as saponification degree is 99.5 mol% or less is obtained.
 PVA系樹脂は、一部が変性されている変性ポリビニルアルコールであってもよい。例えば、エチレンおよびプロピレンなどによるオレフィン変性;アクリル酸、メタクリル酸およびクロトン酸等による不飽和カルボン酸変性;不飽和カルボン酸のアルキルエステル、アクリルアミドなどにより変性されたものを使用してもよい。 The PVA resin may be a modified polyvinyl alcohol partially modified. For example, olefin modification with ethylene, propylene, etc .; unsaturated carboxylic acid modification with acrylic acid, methacrylic acid, crotonic acid, etc .; one modified with an alkyl ester of unsaturated carboxylic acid, acrylamide or the like may be used.
 PVA系樹脂の変性の割合は、30モル%未満であることが好ましく、10%未満であることがより好ましい。変性の割合が30モル%未満のPVA系樹脂を用いると、二色性色素を十分に吸着させることができ、十分な偏光性能を有する偏光子が得られる。 The rate of modification of the PVA resin is preferably less than 30 mol%, more preferably less than 10%. When a PVA resin having a modification ratio of less than 30 mol% is used, the dichroic dye can be sufficiently adsorbed, and a polarizer having sufficient polarization performance can be obtained.
 PVA系樹脂の平均重合度は、100以上10000以下であることが好ましく、1500以上8000以下であることがより好ましく、2000以上5000以下であることがさらに好ましい。平均重合度が100以上であると、十分な偏光性能を有する偏光子が得られる。また、平均重合度が10000以下であると、溶媒への溶解性が良好となり、PVA系樹脂を含むフィルムの形成が容易である。 The average degree of polymerization of the PVA-based resin is preferably 100 or more and 10,000 or less, more preferably 1500 or more and 8000 or less, and further preferably 2000 or more and 5000 or less. When the average degree of polymerization is 100 or more, a polarizer having sufficient polarization performance can be obtained. Moreover, when the average degree of polymerization is 10,000 or less, the solubility in a solvent becomes good, and the formation of a film containing a PVA resin is easy.
 PVA系樹脂は、市販品を容易に入手することが可能であり、市販品の好ましい例としては、いずれも商品名で、株式会社クラレ製の“PVA124”および“PVA117”(いずれもケン化度:98~99モル%)、“PVA624”(ケン化度:95~96モル%)、“PVA617”(ケン化度:94.5~95.5モル%);日本合成化学工業株式会社製の“N-300”および“NH-18”(いずれもケン化度:98~99モル%)、“AH-22”(ケン化度:97.5~98.5モル%)、“AH-26”(ケン化度:97~98.8モル%);日本酢ビ・ポバール株式会社の“JC-33”(ケン化度:99モル%以上)、“JF-17”、“JF-17L”および“JF-20”(いずれもケン化度:98~99モル%)、“JM-26”(ケン化度:95.5~97.5モル%)、“JM-33”(ケン化度:93.5~95.5モル%)、“JP-45”(ケン化度:86.5~89.5モル%)などが挙げられる。 Commercially available PVA-based resins can be easily obtained, and preferable examples of commercially available products are trade names, “PVA124” and “PVA117” (both saponification degrees) manufactured by Kuraray Co., Ltd. : 98 to 99 mol%), "PVA624" (degree of saponification: 95 to 96 mol%), "PVA617" (degree of saponification: 94.5 to 95.5 mol%); manufactured by Nippon Synthetic Chemical Industry Co., Ltd. "N-300" and "NH-18" (both saponification degree: 98 to 99 mol%), "AH-22" (saponification degree: 97.5 to 98.5 mol%), "AH-26 "(Saponification degree: 97 to 98.8 mol%);" JC-33 "(saponification degree: 99 mol% or more)," JF-17 "," JF-17L "by Nippon Vinegar Poval Co., Ltd. And "JF-20" (both saponification degrees: 98-99 %), “JM-26” (degree of saponification: 95.5 to 97.5 mol%), “JM-33” (degree of saponification: 93.5 to 95.5 mol%), “JP-45” (Saponification degree: 86.5 to 89.5 mol%).
 本実施形態で用いられる二色性色素としては、ヨウ素または二色性有機染料などが挙げられる。二色性有機染料としては、レッドBR、レッドLR、レッドR、ピンクLB、ルビンBL、ボルドーGS、スカイブルーLG、レモンイエロー、ブルーBR、ブルー2R、ネイビーRY、グリーンLG、バイオレットLB、バイオレットB、ブラックH、ブラックB、ブラックGSP、イエロー3G、イエローR、オレンジLR、オレンジ3R、スカーレットGL、スカーレットKGL、コンゴーレッド、ブリリアントバイオレットBK、スプラブルーG、スプラブルーGL、スプラオレンジGL、ダイレクトスカイブルー、ダイレクトファーストオレンジS、ファーストブラックを挙げることができる。 Examples of the dichroic dye used in the present embodiment include iodine or a dichroic organic dye. Dichroic organic dyes include Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B , Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Sky Blue , Direct First Orange S, and First Black.
 二色性色素は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。 Only one type of dichroic dye may be used alone, or two or more types may be used in combination.
[延伸フィルム]
 本実施形態の延伸フィルム21は、偏光子層11の吸収軸に対して斜交する方向に遅相軸を有する樹脂フィルムを形成材料とする。このような樹脂フィルムは、延伸処理を経て製造することができ、上記樹脂フィルムは、偏光子層11の吸収軸に対して斜交する方向に引張応力が残されている。
[Stretched film]
The stretched film 21 of the present embodiment uses a resin film having a slow axis in a direction oblique to the absorption axis of the polarizer layer 11 as a forming material. Such a resin film can be manufactured through a stretching process, and the resin film is left with a tensile stress in a direction oblique to the absorption axis of the polarizer layer 11.
 延伸フィルム21は、偏光子層11の吸収軸に対して斜交する方向に遅相軸を有し、例えば遅相軸の角度は偏光子層11の吸収軸に対して45±10°または135±10°であることが好ましい。遅相軸の角度が上記範囲であることにより、進相軸方向における光の位相と遅相軸方向における光の位相との差がπ/2となる。進相軸と遅相軸との位相差がπ/2であることで、本実施形態の積層フィルム1を表示装置に適用したとき、積層フィルム1を通過した光を円偏光にすることができる。よって、偏光サングラス越しに見た場合でも、視認性に優れた構成とすることができる。 The stretched film 21 has a slow axis in a direction oblique to the absorption axis of the polarizer layer 11. For example, the angle of the slow axis is 45 ± 10 ° or 135 with respect to the absorption axis of the polarizer layer 11. It is preferably ± 10 °. When the angle of the slow axis is in the above range, the difference between the light phase in the fast axis direction and the light phase in the slow axis direction is π / 2. When the phase difference between the fast axis and the slow axis is π / 2, when the laminated film 1 of the present embodiment is applied to a display device, the light that has passed through the laminated film 1 can be made into circularly polarized light. . Therefore, even when viewed through polarized sunglasses, a configuration with excellent visibility can be obtained.
 本実施形態の延伸フィルム21は、下記式(1)~(4)を満足する位相差特性および波長分散特性を有する位相差層であることが好ましい。延伸フィルム21が式(1)~(4)を満足することにより、本実施形態の積層フィルム1を表示装置に組み込んだときに、偏光サングラス越しに様々な方向(方位角および極角)から画面を見たときの色味変化を有効に抑制することができる。これにより、画像表示装置の視認性を向上させることができる。 The stretched film 21 of the present embodiment is preferably a retardation layer having retardation characteristics and wavelength dispersion characteristics that satisfy the following formulas (1) to (4). When the stretched film 21 satisfies the formulas (1) to (4), when the laminated film 1 of this embodiment is incorporated into a display device, the screen is viewed from various directions (azimuth and polar angles) through polarized sunglasses. It is possible to effectively suppress the color change when viewing the screen. Thereby, the visibility of the image display device can be improved.
 (1) 100nm≦Re(590)≦180nm、
 (2) 0.5<Rth(590)/Re(590)≦0.8、
 (3) 0.85≦Re(450)/Re(550)<1.00、および
 (4) 1.00<Re(630)/Re(550)≦1.1
(1) 100 nm ≦ R e (590) ≦ 180 nm,
(2) 0.5 <R th (590) / R e (590) ≦ 0.8,
(3) 0.85 ≦ R e (450) / R e (550) <1.00, and (4) 1.00 <R e (630) / R e (550) ≦ 1.1
 式中、Re(590)、Re(450)、Re(550)、Re(630)はそれぞれ、測定波長590nm、450nm、550nm、630nmにおける面内位相差値を表し、Rth(590)は測定波長590nmにおける厚み方向位相差値を表す。これらの面内位相差値および厚み方向位相差値は、温度23℃、相対湿度55%の環境下にて測定された値のことをいう。 In the formula, R e (590), R e (450), R e (550), and R e (630) represent in-plane retardation values at measurement wavelengths of 590 nm, 450 nm, 550 nm, and 630 nm, respectively, and R th ( 590) represents a thickness direction retardation value at a measurement wavelength of 590 nm. These in-plane retardation value and thickness direction retardation value are values measured in an environment of a temperature of 23 ° C. and a relative humidity of 55%.
 面内位相差値Re、厚み方向位相差値Rthは、面内遅相軸方向の屈折率をnx、面内進相軸方向(面内遅相軸方向と直交する方向)の屈折率をny、厚み方向の屈折率をnz、光学フィルムの厚みをdとするとき、下記式(S1)、式(S2)で定義される。 Plane retardation value R e, and the thickness direction retardation value R th, refraction of the refractive index in the in-plane slow axis direction n x, plane fast axis direction (perpendicular to the plane slow axis direction) When the rate is ny , the refractive index in the thickness direction is nz , and the thickness of the optical film is d, it is defined by the following formulas (S1) and (S2).
 (S1) Re=(nx-ny)×d
 (S2) Rth=[{(nx+ny)/2}-nz]×d
(S1) R e = (n x -n y) × d
(S2) R th = [{ (n x + n y) / 2} -n z] × d
 積層フィルム1における色味変化をより効果的に抑制する観点から、式(1)におけるRe(590)は105~170nmであることが好ましい。式(2)におけるRth(590)/Re(590)は0.6~0.75であることが好ましい。式(3)におけるRe(450)/Re(550)は0.86~0.98であることが好ましい。式(4)におけるRe(630)/Re(550)は1.01~1.06であることが好ましい。 From the viewpoint of more effectively suppressing the color change in the laminated film 1, R e (590) in the formula (1) is preferably 105 to 170 nm. R th (590) / R e (590) in the formula (2) is preferably 0.6 to 0.75. In the formula (3), R e (450) / R e (550) is preferably 0.86 to 0.98. In formula (4), R e (630) / R e (550) is preferably 1.01 to 1.06.
 例えば後述する樹脂を含むフィルムを延伸することにより、延伸フィルム21を作製することができる。延伸処理としては、一軸延伸や二軸延伸などが挙げられる。 For example, the stretched film 21 can be produced by stretching a film containing a resin described later. Examples of the stretching treatment include uniaxial stretching and biaxial stretching.
 延伸方向としては、未延伸フィルムの機械流れ方向(MD)、これに直交する方向(TD)、機械流れ方向(MD)に斜交する方向などが挙げられる。ここで、未延伸フィルムとは、延伸されていない状態のフィルムを指す。一軸延伸では、これらの方向のうちいずれかの方向に未延伸フィルムを延伸する。一方、二軸延伸は、2つの延伸方向に同時に延伸する同時二軸延伸でもよく、所定の方向に延伸した後で他の方向に延伸する逐次二軸延伸であってもよい。 Examples of the stretching direction include a machine flow direction (MD) of an unstretched film, a direction perpendicular to the machine flow direction (TD), and a direction oblique to the machine flow direction (MD). Here, the unstretched film refers to a film that is not stretched. In uniaxial stretching, an unstretched film is stretched in any one of these directions. On the other hand, the biaxial stretching may be simultaneous biaxial stretching that simultaneously stretches in two stretching directions, or may be sequential biaxial stretching that stretches in another direction after stretching in a predetermined direction.
 延伸処理は、例えば出口側の周速を大きくした2対以上のニップロールを用いて、長手方向(機械流れ方向:MD)に延伸したり、未延伸フィルムの両側端をチャックで把持して機械流れ方向に直交する方向(TD)に広げたりすることで行うことができる。この際、フィルムの厚みを調整したり、延伸倍率を調整したりすることによって、位相差値および波長分散を上記式(1)~(4)の範囲内に制御することが可能である。 For the stretching process, for example, two or more pairs of nip rolls with increased peripheral speed on the outlet side are used to stretch in the longitudinal direction (machine flow direction: MD), or the both ends of the unstretched film are gripped with a chuck and machine flow is performed. It can be performed by spreading in a direction (TD) orthogonal to the direction. At this time, the retardation value and the wavelength dispersion can be controlled within the ranges of the above formulas (1) to (4) by adjusting the thickness of the film or adjusting the draw ratio.
 また、樹脂に波長分散調整剤を添加したりすることによって、波長分散値を上記式(3)~(4)の範囲内に制御することが可能である。 Further, the chromatic dispersion value can be controlled within the range of the above formulas (3) to (4) by adding a chromatic dispersion adjusting agent to the resin.
 一般に長尺状の偏光フィルム(偏光子層)は、長辺方向に吸収軸を持っている。ロール・トゥ・ロールで長尺状の延伸フィルムと長尺状の偏光子層とを貼合でき、かつ、この吸収軸と延伸フィルムの遅相軸とがなす角度が上記範囲になるように両者を配置できるという点で、延伸フィルム21は二軸延伸により斜めに延伸されて製造されたものであることが好ましい。 Generally, a long polarizing film (polarizer layer) has an absorption axis in the long side direction. The long stretched film and the long polarizer layer can be bonded with a roll-to-roll, and the angle formed by the absorption axis and the slow axis of the stretched film is within the above range. It is preferable that the stretched film 21 is manufactured by being obliquely stretched by biaxial stretching.
 樹脂フィルムを形成する樹脂としては、例えば酢酸セルロース系樹脂、シクロオレフィン系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂などが挙げられる。 Examples of the resin forming the resin film include cellulose acetate resin, cycloolefin resin, polyolefin resin, acrylic resin, polyimide resin, polycarbonate resin, and polyester resin.
 酢酸セルロース系樹脂は、セルロースの部分または完全酢酸エステル化物からなる。酢酸セルロース系樹脂としては、例えば、トリアセチルセルロース、ジアセチルセルロースなどが挙げられる。 The cellulose acetate resin is composed of a cellulose portion or a complete acetate ester. Examples of the cellulose acetate resin include triacetyl cellulose and diacetyl cellulose.
 酢酸セルロース系樹脂からなる樹脂フィルムは、市販品を容易に入手することが可能であり、市販品の好ましい例としては、いずれも商品名で、富士フイルム株式会社から販売されている“フジタック(登録商標) TD80”、“フジタック(登録商標)TD80UF”および“フジタック(登録商標) TD80UZ”、 コニカミノルタオプト株式会社から販売されている“KC8UX2M” および“KC8UY”などが挙げられる。 A resin film made of a cellulose acetate resin can be easily obtained as a commercial product. As a preferable example of the commercial product, all of them are trade names of “Fujitac (registered)” sold by FUJIFILM Corporation. Trademarks) TD80 "," Fujitac (registered trademark) TD80UF "and" Fujitac (registered trademark) TD80UZ "," KC8UX2M "and" KC8UY "sold by Konica Minolta Opto Corporation.
 樹脂フィルムを形成するシクロオレフィン系樹脂は、例えば、ノルボルネンや多環ノルボルネン系モノマーのような環状オレフィン(シクロオレフィン)からなるモノマーのユニットを有する熱可塑性の非晶性樹脂である(非晶性ポリオレフィン系樹脂とも呼ばれる。)。シクロオレフィン系樹脂は、上記シクロオレフィンの開環重合体の水素添加物や、2種以上のシクロオレフィンを用いた開環共重合体の水素添加物であってもよいし、シクロオレフィンと鎖状オレフィンおよび/またはビニル基を有する芳香族化合物などとの付加共重合体であってもよい。また、極性基が導入されていてもよい。 The cycloolefin resin forming the resin film is, for example, a thermoplastic amorphous resin having a monomer unit composed of a cyclic olefin (cycloolefin) such as norbornene or a polycyclic norbornene monomer (non-crystalline polyolefin). Also called resin.) The cycloolefin-based resin may be a hydrogenated product of the above-mentioned cycloolefin ring-opening polymer or a hydrogenated product of a ring-opening copolymer using two or more kinds of cycloolefins. It may be an addition copolymer with an olefin and / or an aromatic compound having a vinyl group. In addition, a polar group may be introduced.
 シクロオレフィンと鎖状オレフィンおよび/またはビニル基を有する芳香族化合物との共重合体を用いて樹脂フィルムを構成する場合、鎖状オレフィンとしては、エチレン、プロピレンなどが挙げられる。また、ビニル基を有する芳香族化合物としては、スチレン、α-メチルスチレン、核アルキル置換スチレンなどが挙げられる。このような共重合体において、シクロオレフィンからなるモノマーのユニットは50モル%以下であってもよく、15~50モル%であることが好ましい。 In the case where a resin film is formed using a copolymer of a cycloolefin and a chain olefin and / or an aromatic compound having a vinyl group, examples of the chain olefin include ethylene and propylene. Examples of the aromatic compound having a vinyl group include styrene, α-methylstyrene, and nuclear alkyl-substituted styrene. In such a copolymer, the unit of the monomer composed of cycloolefin may be 50 mol% or less, preferably 15 to 50 mol%.
 特に、シクロオレフィンと鎖状オレフィンとビニル基を有する芳香族化合物との三元共重合体を用いる場合、シクロオレフィンからなるモノマーのユニットは、上述のように比較的少ない量とすることができる。かかる三元共重合体において、鎖状オレフィンからなるモノマーのユニットは、5~80モル%であることが好まし。また、ビニル基を有する芳香族化合物からなるモノマーのユニットは、5~80モル%であることが好ましい。 In particular, when a terpolymer of a cycloolefin, a chain olefin, and an aromatic compound having a vinyl group is used, the monomer unit composed of the cycloolefin can be used in a relatively small amount as described above. In such a terpolymer, the unit of monomer composed of a chain olefin is preferably 5 to 80 mol%. The unit of the monomer composed of an aromatic compound having a vinyl group is preferably 5 to 80 mol%.
 シクロオレフィン系樹脂は、市販品を容易に入手することが可能であり、市販品の好ましい例としては、いずれも商品名で、TOPAS ADVANCED POLYMERS GmbH製で、日本ではポリプラスチックス株式会社から販売されている“TOPAS(登録商標) ”、JSR株式会社から販売されている“アートン(登録商標)”、日本ゼオン株式会社から販売されている“ゼオノア(ZEONOR)(登録商標)”および“ゼオネックス(ZEONEX)(登録商標)”、三井化学株式会社から販売されている“アペル(登録商標)”などが挙げられる。 Cycloolefin-based resins can be easily obtained from commercial products, and preferable examples of commercially available products are all trade names, manufactured by TOPAS ADVANCED POLYMERS GmbH, sold in Japan by Polyplastics Co., Ltd. "TOPAS (registered trademark)", "Arton (registered trademark)" sold by JSR Corporation, "ZEONOR (registered trademark)" and "ZEONEX" sold by ZEON Corporation ) (Registered trademark) ”,“ Apel (registered trademark) ”sold by Mitsui Chemicals, Inc., and the like.
 本実施形態の延伸フィルム21が位相差層である場合、位相差層の厚みは、10μm以上50μm以下であることが好ましい。 When the stretched film 21 of the present embodiment is a retardation layer, the thickness of the retardation layer is preferably 10 μm or more and 50 μm or less.
 本実施形態の延伸フィルム21は、樹脂フィルムを形成する樹脂に加え、樹脂フィルムに柔軟性を付与し延伸しやすくする目的で、可塑剤を含んでいてもよい。可塑剤としては、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパンなどの多価アルコールを挙げることができる。 The stretched film 21 of the present embodiment may contain a plasticizer for the purpose of imparting flexibility to the resin film and facilitating stretching in addition to the resin forming the resin film. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and trimethylolpropane.
 可塑剤は、1種のみ用いてもよく、2種以上を併用してもよい。特に、エチレングリコールやグリセリンは好適に用いられる。 The plasticizer may be used alone or in combination of two or more. In particular, ethylene glycol and glycerin are preferably used.
[接着剤層]
 本実施形態の接着剤層31は、ガラス転移温度が60℃以上である。ガラス転移温度が60℃以上であると、接着剤層31の硬度を十分に高くすることができる。これにより、湿熱環境下(例えば、室温60℃、湿度95%の環境下)において、延伸フィルム21の斜交する方向への伸縮を抑制することができる。上限値は特に制限されないが400℃程度であってもよい。
[Adhesive layer]
The adhesive layer 31 of this embodiment has a glass transition temperature of 60 ° C. or higher. When the glass transition temperature is 60 ° C. or higher, the hardness of the adhesive layer 31 can be sufficiently increased. Thereby, the expansion-contraction to the direction which crosses the stretched film 21 diagonally can be suppressed in a humid heat environment (for example, the environment of 60 degreeC of room temperature, and 95% of humidity). The upper limit is not particularly limited, but may be about 400 ° C.
 本明細書において、接着剤層31のガラス転移温度は、以下のようにして測定した値を採用した。活性エネルギー線硬化性の接着剤組成物(後述)の場合は、厚さ50μmの延伸シクロオレフィン系樹脂フィルム〔日本ゼオン株式会社製の商品名“ZEONOR(登録商標)”〕を2枚用意する。そして、一方のフィルム表面にバーコーターを用い、各々調製した硬化性樹脂組成物を、硬化後の膜厚がそれぞれ2μmとなるように塗工し、その塗工面にもう1枚のフィルムを重ねる。この積層物について、一方の面から積算光量が250mJ/cmとなるように紫外線を照射し、接着剤組成物を硬化させる。 In the present specification, the glass transition temperature of the adhesive layer 31 is a value measured as follows. In the case of an active energy ray-curable adhesive composition (described later), two sheets of a stretched cycloolefin-based resin film (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) having a thickness of 50 μm are prepared. Then, using a bar coater on one film surface, each prepared curable resin composition is applied so that the film thickness after curing is 2 μm, and another film is overlaid on the coated surface. About this laminated body, an ultraviolet-ray is irradiated so that an integrated light quantity may be 250 mJ / cm < 2 > from one surface, and an adhesive composition is hardened.
 次に、その硬化物を挟んでいる両方のフィルムを剥がす。さらに、その硬化物を5mgかき集めて、アルミニウム押え蓋型容器に入れ、押さえつけて密閉し、測定用試料を作製する。 Next, peel off both films sandwiching the cured product. Further, 5 mg of the cured product is collected, placed in an aluminum press-lid container, pressed down and sealed to prepare a measurement sample.
 次いで、エスアイアイ・ナノテクノロジー株式会社から販売されている示差走査熱量計(DSC)“EXSTAR-6000 DSC6220”に、上記の測定用試料が入った容器をセットする。そして、窒素ガスを流入しながら、20℃から-60℃まで降温し、-60℃に達してから1分間保持した後、-60℃から200℃まで10℃/分の昇温速度で昇温し、200℃に達したら直ちに20℃まで降温させる。そして、-60℃から200℃まで昇温するときのDSC曲線から、JIS K 7121-1987「プラスチックの転移温度測定方法」に規定される中間点ガラス転移温度を求める。これを接着剤層31(硬化物)のガラス転移温度とした。 Next, a container containing the above-described measurement sample is set in a differential scanning calorimeter (DSC) “EXSTAR-6000 DSC 6220” sold by SII Nano Technology Co., Ltd. Then, while flowing in nitrogen gas, the temperature is lowered from 20 ° C. to −60 ° C., held for 1 minute after reaching −60 ° C., and then heated from −60 ° C. to 200 ° C. at a rate of 10 ° C./min. When the temperature reaches 200 ° C., the temperature is immediately lowered to 20 ° C. Then, from the DSC curve when the temperature is raised from −60 ° C. to 200 ° C., the midpoint glass transition temperature specified in JIS K 7121-1987 “Method for measuring plastic transition temperature” is determined. This was made into the glass transition temperature of the adhesive bond layer 31 (hardened | cured material).
一方で、水系の接着剤組成物(後述)の場合は、トリアセチルセルロースフィルム〔コニカミノルタオプト株式会社製の商品名”KC4UY”〕を1枚用意した。その片面に水系の接着剤組成物を塗工、80℃で5分乾燥した。このとき、乾燥後の膜厚が2μmとなるように繰り返し塗工・乾燥させた。その後、フィルムを剥離して得られた硬化物に対して、上記と同様の方法で測定用試料を作製し、ガラス転移温度を測定した。 On the other hand, in the case of an aqueous adhesive composition (described later), one triacetyl cellulose film [trade name “KC4UY” manufactured by Konica Minolta Opto Co., Ltd.] was prepared. A water-based adhesive composition was applied to one side and dried at 80 ° C. for 5 minutes. At this time, coating and drying were repeated so that the film thickness after drying was 2 μm. Then, the sample for a measurement was produced with the method similar to the above with respect to the hardened | cured material obtained by peeling a film, and the glass transition temperature was measured.
 接着剤層31の厚みは、0.01μm以上5μm以下であることが好ましく、0.01μm以上2μm以下であることがより好ましく、0.01μm以上1μm以下であることがさらに好ましい。接着剤層31の厚みが0.01μm以上であると、十分な接着性を得ることができる。また、接着剤層31の厚みが5μm以下であると、積層フィルム1が外観不良となりにくい。 The thickness of the adhesive layer 31 is preferably 0.01 μm or more and 5 μm or less, more preferably 0.01 μm or more and 2 μm or less, and further preferably 0.01 μm or more and 1 μm or less. Sufficient adhesiveness can be acquired as the thickness of the adhesive bond layer 31 is 0.01 micrometer or more. Moreover, when the thickness of the adhesive layer 31 is 5 μm or less, the laminated film 1 is unlikely to have a poor appearance.
 接着剤層31の形成材料は、ガラス転移温度が60℃以上であれば特に限定されず、硬化性樹脂組成物の硬化物を用いることができる。硬化性樹脂組成物としては、例えば水系の接着剤組成物、活性エネルギー線硬化性の接着剤組成物などが挙げられる。
 ここで、「活性エネルギー線硬化性の接着剤組成物」とは、活性エネルギー線(例えば、紫外線、可視光、電子線、X線など)の照射により硬化する接着剤組成物を指す。
The material for forming the adhesive layer 31 is not particularly limited as long as the glass transition temperature is 60 ° C. or higher, and a cured product of the curable resin composition can be used. Examples of the curable resin composition include a water-based adhesive composition and an active energy ray-curable adhesive composition.
Here, the “active energy ray-curable adhesive composition” refers to an adhesive composition that is cured by irradiation with active energy rays (for example, ultraviolet rays, visible light, electron beams, X-rays, etc.).
[水系の接着剤組成物]
 水系の接着剤組成物としては、ポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルジョン接着剤組成物などが挙げられ、ポリビニルアルコール系樹脂水溶液であることが好ましい。ポリビニルアルコール系樹脂水溶液を用いる場合、接着剤組成物として用いるポリビニルアルコール系樹脂には、酢酸ビニルの単独重合体であるポリ酢酸ビニルをケン化処理して得られるビニルアルコールホモポリマーのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体をケン化処理して得られるビニルアルコール系共重合体、さらにそれらの水酸基を部分的に変性した変性ポリビニルアルコール系重合体などがある。変性ポリビニルアルコール系重合体としては、カルボキシ基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコール、アミノ基変性ポリビニルアルコールなどが挙げられる。本実施形態においては、接着剤層31は、アセトアセチル基変性ポリビニルアルコール系樹脂の硬化物を形成材料として含むことが好ましい。
[Water-based adhesive composition]
Examples of the aqueous adhesive composition include an aqueous polyvinyl alcohol resin solution and an aqueous two-component urethane emulsion adhesive composition, and an aqueous polyvinyl alcohol resin solution is preferable. When an aqueous polyvinyl alcohol resin solution is used, the polyvinyl alcohol resin used as the adhesive composition includes a vinyl alcohol homopolymer obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, and vinyl acetate. And vinyl alcohol copolymers obtained by saponifying a copolymer with other monomers copolymerizable therewith, and modified polyvinyl alcohol polymers obtained by partially modifying the hydroxyl groups thereof is there. Examples of the modified polyvinyl alcohol polymer include carboxy group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol. In the present embodiment, the adhesive layer 31 preferably contains a cured product of an acetoacetyl group-modified polyvinyl alcohol resin as a forming material.
 この接着剤組成物には、多価アルデヒド、水溶性エポキシ化合物、メラミン系化合物、ジルコニア化合物、亜鉛化合物などが添加剤として添加されていてもよい。 In this adhesive composition, a polyhydric aldehyde, a water-soluble epoxy compound, a melamine compound, a zirconia compound, a zinc compound, or the like may be added as an additive.
 ポリビニルアルコール系樹脂を接着剤成分とする接着剤組成物は、接着性を向上させるために、グリオキシル酸の金属塩、グリオキザール、水溶性エポキシ樹脂などの硬化性成分および/または架橋剤を含むことが好ましい。グリオキシル酸の金属塩としては、アルカリ金属塩又はアルカリ土類金属塩であることが好ましく、例えば、グリオキシル酸ナトリウム、グリオキシル酸カリウム、グリオキシル酸マグネシウム、グリオキシル酸カルシウムなどが挙げられる。水溶性エポキシ樹脂としては、例えばジエチレントリアミン、トリエチレンテトラミンなどのポリアルキレンポリアミンと、アジピン酸などのジカルボン酸との反応で得られるポリアミドアミンに、エピクロロヒドリンを反応させて得られるポリアミドポリアミンエポキシ樹脂を好適に用いることができる。 An adhesive composition containing a polyvinyl alcohol resin as an adhesive component may contain a curable component such as a metal salt of glyoxylic acid, glyoxal, and a water-soluble epoxy resin and / or a crosslinking agent in order to improve adhesion. preferable. The metal salt of glyoxylic acid is preferably an alkali metal salt or an alkaline earth metal salt, and examples thereof include sodium glyoxylate, potassium glyoxylate, magnesium glyoxylate, and calcium glyoxylate. Examples of water-soluble epoxy resins include polyamide polyamine epoxy resins obtained by reacting polychloropolyamines such as diethylenetriamine and triethylenetetramine with polycarboxylic acid polyamines such as adipic acid and epichlorohydrin. Can be suitably used.
 かかるグリオキシル酸の金属塩の市販品としては、「SPM-01」(日本合成化学株式会社製)などが挙げられる。かかるポリアミドポリアミンエポキシ樹脂の市販品としては、「スミレーズレジン650」(住化ケムテックス株式会社製)、「スミレーズレジン675」(住化ケムテックス株式会社製)、「WS-525」(日本PMC株式会社製)などが挙げられる。 Examples of such a commercially available metal salt of glyoxylic acid include “SPM-01” (manufactured by Nippon Synthetic Chemical Co., Ltd.). Commercially available products of such polyamide polyamine epoxy resins include “Smiles Resin 650” (manufactured by Sumika Chemtex Co., Ltd.), “Smiles Resin 675” (manufactured by Sumika Chemtex Co., Ltd.), “WS-525” (Nippon PMC Co., Ltd.) Company-made).
 これら硬化性成分および/または架橋剤の添加量(共に添加する場合にはその合計量)は、ポリビニルアルコール系樹脂100質量部に対して、例えば1~100質量部、好ましくは1~50質量部である。上記硬化性成分および/または架橋剤の添加量が前記範囲内であると、接着性が向上し、良好な接着性を示す接着剤層を形成することができる。 The addition amount of these curable components and / or crosslinking agents (the total amount when added together) is, for example, 1 to 100 parts by mass, preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polyvinyl alcohol resin. It is. Adhesiveness improves that the addition amount of the said sclerosing | hardenable component and / or a crosslinking agent exists in the said range, and the adhesive bond layer which shows favorable adhesiveness can be formed.
 また、水系の接着剤組成物がウレタン樹脂を含む場合、ポリエステル系アイオノマー型ウレタン樹脂とグリシジルオキシ基を有する化合物との混合物を用いることが好ましい。
ここで、ポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その骨格内に少量のイオン性成分(親水成分)が導入されたものである。かかるアイオノマー型ウレタン樹脂は、乳化剤を使用せずに直接、水中で乳化してエマルジョンとなるため、水系の接着剤組成物として好適である。
When the water-based adhesive composition contains a urethane resin, it is preferable to use a mixture of a polyester ionomer type urethane resin and a compound having a glycidyloxy group.
Here, the polyester ionomer type urethane resin is a urethane resin having a polyester skeleton, and a small amount of an ionic component (hydrophilic component) is introduced into the skeleton. Such an ionomer type urethane resin is suitable as a water-based adhesive composition because it is emulsified directly into water without using an emulsifier to form an emulsion.
 ポリエステル系アイオノマー型ウレタン樹脂それ自体は公知であり、例えば特開平7-97504号公報には、フェノール系樹脂を水性媒体中に分散させるための高分子分散剤の例として記載されている。また特開2005-70140号公報および特開2005-208456号公報には、ポリエステル系アイオノマー型ウレタン樹脂とグリシジルオキシ基を有する化合物との混合物を接着剤として、ポリビニルアルコール系樹脂からなる偏光子に環状オレフィン系樹脂フィルムを貼合する形態が示されている。 Polyester-based ionomer urethane resins are known per se. For example, JP-A-7-97504 describes an example of a polymer dispersant for dispersing a phenol-based resin in an aqueous medium. In JP-A-2005-70140 and JP-A-2005-208456, a mixture of a polyester ionomer type urethane resin and a compound having a glycidyloxy group is used as an adhesive, and a polarizer made of a polyvinyl alcohol resin is cyclic. The form which bonds an olefin resin film is shown.
 ポリビニルアルコール系樹脂水溶液を用いる場合、ポリビニルアルコール系樹脂の含有量は、水100質量部に対して、1質量部以上10質量部以下であることが好ましく、1質量部以上5質量部以下であることがより好ましい。 When using a polyvinyl alcohol-based resin aqueous solution, the content of the polyvinyl alcohol-based resin is preferably 1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of water, and is 1 part by mass or more and 5 parts by mass or less. It is more preferable.
[活性エネルギー線硬化性の接着剤組成物]
 活性エネルギー線硬化性の接着剤組成物に含まれる、活性エネルギー線硬化性の化合物としては、カチオン重合性化合物またはラジカル重合性化合物であることが好ましく、カチオン重合性化合物およびラジカル重合性化合物を含むことがより好ましい。カチオン重合性化合物およびラジカル重合性化合物を含む場合、接着剤層31の硬度を高める効果が期待でき、さらには活性エネルギー線硬化性の接着剤組成物の粘度や硬化速度などの調整がより一層容易に行えるようになる。
[Active energy ray-curable adhesive composition]
The active energy ray-curable compound contained in the active energy ray-curable adhesive composition is preferably a cationic polymerizable compound or a radical polymerizable compound, and includes a cationic polymerizable compound and a radical polymerizable compound. It is more preferable. When the cationic polymerizable compound and the radical polymerizable compound are included, an effect of increasing the hardness of the adhesive layer 31 can be expected, and furthermore, the adjustment of the viscosity and the curing rate of the active energy ray-curable adhesive composition is further facilitated. Will be able to do.
(カチオン重合性化合物)
 本実施形態で用いられるカチオン重合性化合物としては、例えばオキセタン化合物またはエポキシ化合物などが挙げられる。
(Cationically polymerizable compound)
Examples of the cationic polymerizable compound used in the present embodiment include an oxetane compound and an epoxy compound.
 カチオン重合性化合物の含有量は、活性エネルギー線硬化性の接着剤組成物100質量部に対して、10質量部以上99質量部以下であることが好ましく、40質量部以上99質量部以下であることがより好ましい。 The content of the cationic polymerizable compound is preferably 10 parts by mass or more and 99 parts by mass or less, and 40 parts by mass or more and 99 parts by mass or less with respect to 100 parts by mass of the active energy ray-curable adhesive composition. It is more preferable.
 オキセタン化合物としては、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス〔(3-エチル-3-オキセタニル)メトキシメチル〕ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ジ〔(3-エチル-3-オキセタニル)メチル〕エーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタンなどが挙げられる。これらの中で、1,4-ビス〔(3-エチル-3-オキセタニル)メトキシメチル〕ベンゼン、ジ〔(3-エチル-3-オキセタニル)メチル〕エーテルが挙げられる。 Examples of oxetane compounds include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, 3-ethyl-3- (phenoxymethyl) oxetane, di [( 3-ethyl-3-oxetanyl) methyl] ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane and the like. Among these, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene and di [(3-ethyl-3-oxetanyl) methyl] ether are mentioned.
 これらのオキセタン化合物は、市販品を容易に入手することが可能であり、市販品としては、いずれも東亞合成株式会社から販売されている商品名で、“アロンオキセタン(登録商標) OXT-101”、“アロンオキセタン(登録商標) OXT-121”、“アロンオキセタン(登録商標) OXT-211”、“アロンオキセタン(登録商標) OXT-221”、“アロンオキセタン(登録商標) OXT-212”などが挙げられる。 These oxetane compounds can be easily obtained as commercial products, and as the commercial products, all are trade names sold by Toagosei Co., Ltd., “Aron Oxetane (registered trademark) OXT-101”. "Aron Oxetane (registered trademark) OXT-121", "Aron Oxetane (registered trademark) OXT-221", "Aron Oxetane (registered trademark) OXT-221", "Aron Oxetane (registered trademark) OXT-212", etc. Can be mentioned.
 オキセタン化合物の含有量は、活性エネルギー線硬化性の接着剤組成物100質量部に対して、1質量部以上50質量部以下であることが好ましく、10質量部以上40質量部以下であることがより好ましい。 The content of the oxetane compound is preferably 1 part by mass or more and 50 parts by mass or less, and preferably 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the active energy ray-curable adhesive composition. More preferred.
 活性エネルギー線硬化性の接着剤組成物において、オキセタン化合物は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。 In the active energy ray-curable adhesive composition, the oxetane compound may be used alone or in combination of two or more.
 また、活性エネルギー線硬化性の接着剤組成物は上記のオキセタン化合物に加え、必要に応じてエポキシ化合物を含有してもよい。エポキシ化合物は、オキセタン化合物と同様にカチオン重合性化合物の一つであり、活性エネルギー線の照射により硬化することができる。活性エネルギー線硬化性の接着剤組成物がエポキシ化合物を含有することにより、延伸フィルム21と偏光子層11との接着性を向上させることができる。 In addition to the oxetane compound, the active energy ray-curable adhesive composition may contain an epoxy compound as necessary. The epoxy compound is one of cationically polymerizable compounds like the oxetane compound, and can be cured by irradiation with active energy rays. When the active energy ray-curable adhesive composition contains an epoxy compound, the adhesion between the stretched film 21 and the polarizer layer 11 can be improved.
 エポキシ化合物としては、芳香族エポキシ化合物、脂環式環を有するポリオールのグリシジルエーテル、脂肪族エポキシ化合物、脂環式エポキシ化合物などが挙げられる。 Examples of the epoxy compound include an aromatic epoxy compound, a glycidyl ether of a polyol having an alicyclic ring, an aliphatic epoxy compound, and an alicyclic epoxy compound.
 芳香族エポキシ化合物としては、ビスフェノールAのジグリシジルエーテル、ビスフェールFのジグリシジルエーテルおよびビスフェノールSのジグリシジルエーテルのようなビスフェノール型エポキシ樹脂;フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂およびヒドロキシベンズアルデヒドフェノールノボラックエポキシ樹脂のようなノボラック型のエポキシ樹脂;テトラヒドロキシフェニルメタンのグリシジルエーテル、テトラヒドロキシベンゾフェノンのグリシジルエーテルおよびエポキシ化ポリビニルフェノールのような多官能型のエポキシ樹脂などが挙げられる。 Aromatic epoxy compounds include bisphenol type epoxy resins such as diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F and diglycidyl ether of bisphenol S; phenol novolac epoxy resins, cresol novolac epoxy resins and hydroxybenzaldehyde phenol novolacs Examples thereof include novolak-type epoxy resins such as epoxy resins; glycidyl ethers of tetrahydroxyphenylmethane, glycidyl ethers of tetrahydroxybenzophenone, and polyfunctional epoxy resins such as epoxidized polyvinylphenol.
 脂環式環を有するポリオールのグリシジルエーテルとしては、芳香族ポリオールを触媒の存在下、加圧下で芳香環に選択的に水素化反応を行うことにより得られる核水添ポリヒドロキシ化合物を、グリシジルエーテル化したものが挙げられる。芳香族ポリオールとしては、ビスフェノールA、ビスフェールF、ビスフェノールSのようなビスフェノール型化合物;フェノールノボラック樹脂、クレゾールノボラック樹脂、ヒドロキシベンズアルデヒドフェノールノボラック樹脂のようなノボラック型樹脂;テトラヒドロキシジフェニルメタン、テトラヒドロキシベンゾフェノン、ポリビニルフェノールのような多官能型の化合物などが挙げられる。 As the glycidyl ether of a polyol having an alicyclic ring, a nuclear hydrogenated polyhydroxy compound obtained by selectively hydrogenating an aromatic polyol under pressure in the presence of a catalyst under pressure is used as a glycidyl ether. Can be listed. Examples of aromatic polyols include bisphenol type compounds such as bisphenol A, bisphenol F, and bisphenol S; novolac type resins such as phenol novolac resin, cresol novolac resin, hydroxybenzaldehyde phenol novolac resin; tetrahydroxydiphenylmethane, tetrahydroxybenzophenone, A polyfunctional compound such as polyvinylphenol is exemplified.
 これら芳香族ポリオールの芳香環に水素化反応を行って得られる脂環式ポリオールに、エピクロロヒドリンを反応させることにより、グリシジルエーテルとすることができる。
このような脂環式環を有するポリオールのグリシジルエーテルのなかでも好ましいものとして、水素化されたビスフェノールAのジグリシジルエーテルが挙げられる。
Glycidyl ether can be obtained by reacting an alicyclic polyol obtained by hydrogenating the aromatic ring of these aromatic polyols with epichlorohydrin.
Among these glycidyl ethers of polyols having an alicyclic ring, hydrogenated bisphenol A diglycidyl ether is preferable.
 「脂肪族エポキシ化合物」としては、脂肪族多価アルコールまたはそのアルキレンオキサイド付加物のポリグリシジルエーテルなどが挙げられる。具体的には、1,4-ブタンジオールのジグリシジルエーテル;1,6-ヘキサンジオールのジグリシジルエーテル;グリセリンのトリグリシジルエーテル;トリメチロールプロパンのトリグリシジルエーテル;ポリエチレングリコールのジグリシジルエーテル;プロピレングリコールのジグリシジルエーテル;ネオペンチルグリコールのジグリシジルエーテル;エチレングリコール、プロピレングリコールもしくはグリセリンのような脂肪族多価アルコールに1種または2種以上のアルキレンオキサイド(エチレンオキサイドやプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテルなどが挙げられる。 Examples of the “aliphatic epoxy compound” include an aliphatic polyhydric alcohol or a polyglycidyl ether of an alkylene oxide adduct thereof. Specifically, 1,4-butanediol diglycidyl ether; 1,6-hexanediol diglycidyl ether; glycerin triglycidyl ether; trimethylolpropane triglycidyl ether; polyethylene glycol diglycidyl ether; propylene glycol Diglycidyl ether of neopentyl glycol; by adding one or more alkylene oxides (ethylene oxide or propylene oxide) to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol or glycerin The polyglycidyl ether of the polyether polyol obtained is mentioned.
 また、下記式(I)で表される単官能エポキシ化合物も脂肪族エポキシ化合物として挙げられる。Rは、分岐していてもよい炭素数1~15のアルキル基である。アルキル基の炭素数は、6以上であることが好ましく、6~10であることがより好ましい。なかでも分岐したアルキル基であるのが好ましい。式(I)で表される単官能エポキシ化合物としては、2-エチルヘキシルグリシジルエーテルを挙げることができる。 Moreover, the monofunctional epoxy compound represented by following formula (I) is also mentioned as an aliphatic epoxy compound. R 1 is an optionally branched alkyl group having 1 to 15 carbon atoms. The number of carbon atoms of the alkyl group is preferably 6 or more, more preferably 6 to 10. Of these, a branched alkyl group is preferred. Examples of the monofunctional epoxy compound represented by the formula (I) include 2-ethylhexyl glycidyl ether.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 「脂環式エポキシ化合物」は、脂環式環の炭素原子とともにオキシラン環を形成している構造を分子内に少なくとも1個有する化合物のことを言う。ここで、「脂環式環の炭素原子とともにオキシラン環を形成している構造」とは、下記式(II)で示される構造を意味する。式中のnは2~5の整数である。 “Alicyclic epoxy compound” refers to a compound having at least one structure in the molecule forming an oxirane ring together with the carbon atom of the alicyclic ring. Here, “a structure in which an oxirane ring is formed together with a carbon atom of an alicyclic ring” means a structure represented by the following formula (II). N in the formula is an integer of 2 to 5.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 この式(II)における(CH中の1個または複数個の水素原子を取り除いた形の基が他の化学構造に結合している化合物が、脂環式エポキシ化合物となる。また、脂環式環を形成する(CH中の1個または複数個の水素原子は、メチル基やエチル基のような直鎖状アルキル基で置換されていてもよい。 A compound in which a group in a form in which one or a plurality of hydrogen atoms in (CH 2 ) n in formula (II) are removed is bonded to another chemical structure is an alicyclic epoxy compound. One or more hydrogen atoms in (CH 2 ) n forming the alicyclic ring may be substituted with a linear alkyl group such as a methyl group or an ethyl group.
 エポキシ化合物としては脂環式エポキシ化合物が好ましく、偏光子との密着性により優れる保護層が得られやすいという点で、エポキシシクロヘキサン(上記式(II)においてn=4のもの)、またはエポキシシクロヘプタン(上記式(II)においてn=5のもの)を有するエポキシ化合物がより好ましい。 As the epoxy compound, an alicyclic epoxy compound is preferable, and an epoxy cyclohexane (n = 4 in the above formula (II)) or epoxy cycloheptane is preferable in that an excellent protective layer can be easily obtained due to adhesion with a polarizer. Epoxy compounds having (with n = 5 in the above formula (II)) are more preferred.
 エポキシ化合物の含有量は、活性エネルギー線硬化性の接着剤組成物100質量部に対して、1質量部以上90質量部以下であることが好ましく、20質量部以上80質量部以下であることがより好ましい。 The content of the epoxy compound is preferably 1 part by mass or more and 90 parts by mass or less, and more preferably 20 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the active energy ray-curable adhesive composition. More preferred.
 活性エネルギー線硬化性の接着剤組成物において、エポキシ化合物は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。 In the active energy ray-curable adhesive composition, the epoxy compound may be used alone or in combination of two or more.
(ラジカル重合性化合物)
 さらに、上記オキセタン化合物や上記エポキシ化合物などのカチオン重合性化合物に加え、ラジカル重合性化合物を含んでもよい。
(Radically polymerizable compound)
Further, in addition to the cationically polymerizable compound such as the oxetane compound or the epoxy compound, a radical polymerizable compound may be included.
 ラジカル重合性化合物としては、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する化合物(以下、「(メタ)アクリル系化合物」と称することがある。)、分子内に少なくとも1個の(メタ)アクリルアミド基を有する化合物(以下、「(メタ)アクリルアミド系化合物」と称することがある。)などを挙げることができる。なお、「(メタ)アクリロイルオキシ基」とは、メタクリロイルオキシ基またはアクリロイルオキシ基を意味し、(メタ)アクリルアミド基とはメタクリロイルアミド基またはアクリロイルアミド基を意味する。 Examples of the radical polymerizable compound include a compound having at least one (meth) acryloyloxy group in the molecule (hereinafter sometimes referred to as “(meth) acrylic compound”), and at least one ( Examples thereof include compounds having a meth) acrylamide group (hereinafter sometimes referred to as “(meth) acrylamide compounds”). The “(meth) acryloyloxy group” means a methacryloyloxy group or an acryloyloxy group, and the (meth) acrylamide group means a methacryloylamide group or an acryloylamide group.
 (メタ)アクリル系化合物としては、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマーや、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートオリゴマーなどが挙げられる。これらはそれぞれ単独で使用してもよいし、2種以上を併用してもよい。2種以上併用する場合、(メタ)アクリレートモノマーが2種以上であってもよいし、(メタ)アクリレートオリゴマーが2種以上であってもよいし、もちろん(メタ)アクリレートモノマーの1種以上と(メタ)アクリレートオリゴマーの1種以上とを併用してもよい。 (Meth) acrylic compounds include (meth) acrylate monomers having at least one (meth) acryloyloxy group in the molecule and (meth) acrylates having at least two (meth) acryloyloxy groups in the molecule. An oligomer etc. are mentioned. These may be used alone or in combination of two or more. When two or more types are used in combination, two or more (meth) acrylate monomers may be used, two or more (meth) acrylate oligomers may be used, and, of course, one or more (meth) acrylate monomers. One or more (meth) acrylate oligomers may be used in combination.
 (メタ)アクリルアミド系化合物としては、N-置換(メタ)アクリルアミド化合物が挙げられる。N-置換(メタ)アクリルアミド化合物は、N-位に置換基を有する(メタ)アクリルアミド化合物である。その置換基の典型的な例は、アルキル基である。N-位の置換基は互いに結合して環を形成していてもよく、この環を構成する-CH-は、酸素原子に置換されていてもよい。さらに、その環を構成する炭素原子には、アルキル基やオキソ基(=O)のような置換基が結合していてもよい。N-置換(メタ)アクリルアミドは一般に、(メタ)アクリル酸またはその塩化物と1級または2級アミンとの反応によって製造できる。 Examples of (meth) acrylamide compounds include N-substituted (meth) acrylamide compounds. An N-substituted (meth) acrylamide compound is a (meth) acrylamide compound having a substituent at the N-position. A typical example of the substituent is an alkyl group. The N-position substituents may be bonded to each other to form a ring, and —CH 2 — constituting the ring may be substituted with an oxygen atom. Further, a substituent such as an alkyl group or an oxo group (═O) may be bonded to the carbon atom constituting the ring. N-substituted (meth) acrylamides can generally be prepared by reaction of (meth) acrylic acid or its chloride with a primary or secondary amine.
 ラジカル重合性化合物の含有量は、活性エネルギー線硬化性の接着剤組成物100質量部に対して1質量部以上70質量部以下であることが好ましく、10質量部以上60質量部以下であることがより好ましい。 The content of the radical polymerizable compound is preferably 1 part by mass or more and 70 parts by mass or less, and preferably 10 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the active energy ray-curable adhesive composition. Is more preferable.
 活性エネルギー線硬化性の接着剤組成物において、ラジカル重合性化合物は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。 In the active energy ray-curable adhesive composition, the radical polymerizable compound may be used alone or in combination of two or more.
(カチオン重合開始剤)
 活性エネルギー線硬化性の接着剤組成物が上記オキセタン化合物や上記エポキシ化合物などのカチオン重合性化合物を含む場合、さらにカチオン重合開始剤を含んでいることが好ましい。カチオン重合開始剤は、可視光線、紫外線、X線、電子線等の活性エネルギー線の照射によりカチオン種またはルイス酸を発生し、カチオン重合性化合物の重合反応を開始させる。カチオン重合開始剤としては、芳香族ジアゾニウム塩、芳香族ヨードニウム塩や芳香族スルホニウム塩などのオニウム塩、鉄-アレーン錯体などが挙げられる。
(Cationic polymerization initiator)
When the active energy ray-curable adhesive composition contains a cationic polymerizable compound such as the oxetane compound or the epoxy compound, it is preferable to further contain a cationic polymerization initiator. The cationic polymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, and initiates a polymerization reaction of the cationic polymerizable compound. Examples of the cationic polymerization initiator include aromatic diazonium salts, onium salts such as aromatic iodonium salts and aromatic sulfonium salts, and iron-arene complexes.
 芳香族ジアゾニウム塩としては、例えば、ベンゼンジアゾニウムヘキサフルオロアンチモネート、ベンゼンジアゾニウムヘキサフルオロホスフェート、ベンゼンジアゾニウムヘキサフルオロボレートなどが挙げられる。 Examples of the aromatic diazonium salt include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, and benzenediazonium hexafluoroborate.
 芳香族ヨードニウム塩としては、例えば、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウム ヘキサフルオロホスフェートなどが挙げられる。 Examples of the aromatic iodonium salt include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, and the like.
 芳香族スルホニウム塩としては、例えば、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、4,4′-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィドビスヘキサフルオロホスフェート、4,4′-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィドビスヘキサフルオロアンチモネート、4,4′-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィドビスヘキサフルオロホスフェート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンヘキサフルオロアンチモネート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントンテトラキス(ペンタフルオロフェニル)ボレート、4-フェニルカルボニル-4′-ジフェニルスルホニオ-ジフェニルスルフィドヘキサフルオロホスフェート、4-(p-tert-ブチルフェニルカルボニル)-4′-ジフェニルスルホニオ-ジフェニルスルフィドヘキサフルオロアンチモネート、4-(p-tert-ブチルフェニルカルボニル)-4′-ジ(p-トルイル)スルホニオ-ジフェニルスルフィドテトラキス(ペンタフルオロフェニル)ボレートなどが挙げられる。 Examples of the aromatic sulfonium salt include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4′-bis [diphenylsulfonio] diphenyl sulfide bishexa Fluorophosphate, 4,4'-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenyl sulfide bishexafluoroantimonate, 4,4'-bis [di (β-hydroxyethoxy) phenylsulfonio] diphenyl sulfide bis Hexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone hexafluoroantimonate, 7- [di (p-toluyl) sulfo Nio] -2-isopropylthioxanthone tetrakis (pentafluorophenyl) borate, 4-phenylcarbonyl-4'-diphenylsulfonio-diphenylsulfide hexafluorophosphate, 4- (p-tert-butylphenylcarbonyl) -4'-diphenylsulfo Nio-diphenyl sulfide hexafluoroantimonate, 4- (p-tert-butylphenylcarbonyl) -4'-di (p-toluyl) sulfonio-diphenyl sulfide tetrakis (pentafluorophenyl) borate and the like.
 鉄-アレーン錯体としては、例えば、キシレン-シクロペンタジエニル鉄(II)ヘキサフルオロアンチモネート、クメン-シクロペンタジエニル鉄(II)ヘキサフルオロホスフェート、キシレン-シクロペンタジエニル鉄(II)トリス(トリフルオロメチルスルホニル)メタナイドなどが挙げられる。 Examples of iron-arene complexes include xylene-cyclopentadienyl iron (II) hexafluoroantimonate, cumene-cyclopentadienyl iron (II) hexafluorophosphate, xylene-cyclopentadienyl iron (II) tris ( (Trifluoromethylsulfonyl) methanide and the like.
 これらのカチオン重合開始剤は、市販品を容易に入手することが可能であり、例えばそれぞれ商品名で、日本化薬株式会社から販売されている“カヤラッド(登録商標) PCI-220”および“カヤラッド(登録商標) PCI-620”、ダウ・ケミカル社から販売されている“UVI-6990”、ダイセル・サイテック株式会社から販売されている“UVACURE(登録商標) 1590”、株式会社ADEKAから販売されている“アデカオプトマー(登録商標) SP-150”および“アデカオプトマー(登録商標) SP-170”、日本曹達株式会社から販売されている“CI-5102”、“CIT-1370”、“CIT-1682”、“CIP-1866S”、“CIP-2048S”及び“CIP-2064S”、みどり化学株式会社から販売されている“DPI-101”、“DPI-102”、“DPI-103”、“DPI-105”、“MPI-103”、“MPI-105”、“BBI-101”、“BBI-102”、“BBI-103”、“BBI-105”、“TPS-101”、“TPS-102”、“TPS-103”、“TPS-105”、“MDS-103”、“MDS-105”、“DTS-102”および“DTS-103”、ローディア社から販売されている“PI-2074”などが挙げられる。 These cationic polymerization initiators can be easily obtained as commercial products. For example, “Kayarad (registered trademark) PCI-220” and “Kayarad” sold by Nippon Kayaku Co., Ltd. under the trade names, respectively. (Registered trademark) PCI-620 "," UVI-6990 "sold by Dow Chemical Company," UVACURE (registered trademark) 1590 "sold by Daicel-Cytec Corporation, sold by ADEKA Corporation "Adekaoptomer (registered trademark) SP-150" and "Adekaoptomer (registered trademark) SP-170", "CI-5102", "CIT-1370", "CIT" sold by Nippon Soda Co., Ltd. −1682 ”,“ CIP-1866S ”,“ CIP-2048S ”and“ CIP-206 ” "S", "DPI-101", "DPI-102", "DPI-103", "DPI-105", "MPI-103", "MPI-105", "BBI" sold by Midori Chemical Co., Ltd. -101 "," BBI-102 "," BBI-103 "," BBI-105 "," TPS-101 "," TPS-102 "," TPS-103 "," TPS-105 "," MDS-103 " "MDS-105", "DTS-102" and "DTS-103", "PI-2074" sold by Rhodia.
 これらのカチオン重合開始剤の中でも、300nm以上の波長の光を吸収でき、硬化性に優れ、かつ、良好な機械的強度や密着性を有する硬化物を得られるという点で、芳香族スルホニウム塩が好ましい。 Among these cationic polymerization initiators, the aromatic sulfonium salt is capable of absorbing light having a wavelength of 300 nm or more, having excellent curability, and obtaining a cured product having good mechanical strength and adhesion. preferable.
 活性エネルギー線硬化性の接着剤組成物において、カチオン重合開始剤は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。 In the active energy ray-curable adhesive composition, the cationic polymerization initiator may be used alone or in combination of two or more.
(ラジカル重合開始剤)
 活性エネルギー線硬化性の接着剤組成物が上記のラジカル重合性化合物を含む場合、さらにラジカル重合開始剤を含んでいることが好ましい。ラジカル重合開始剤は、活性エネルギー線の照射により、(メタ)アクリル系化合物などのラジカル重合性化合物の重合を開始できるものであればよく、公知のものを使用することができる。
(Radical polymerization initiator)
When the active energy ray-curable adhesive composition contains the above-mentioned radical polymerizable compound, it is preferable to further contain a radical polymerization initiator. Any radical polymerization initiator may be used as long as it can initiate polymerization of a radical polymerizable compound such as a (meth) acrylic compound by irradiation with active energy rays, and a known one can be used.
 ラジカル重合開始剤としては、アセトフェノン、3-メチルアセトフェノン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル-2-モルホリノプロパン-1-オンおよび2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンのようなアセトフェノン系開始剤;ベンゾフェノン、4-クロロベンゾフェノンおよび4,4’-ジアミノベンゾフェノンのようなベンゾフェノン系開始剤;ベンゾインプロピルエーテルおよびベンゾインエチルエーテルのようなベンゾインエーテル系開始剤;4-イソプロピルチオキサントンのようなチオキサントン系開始剤;その他、キサントン、フルオレノン、カンファーキノン、ベンズアルデヒド、アントラキノンなどが挙げられる。 Examples of radical polymerization initiators include acetophenone, 3-methylacetophenone, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-methyl-1- [4- ( Acetophenone initiators such as methylthio) phenyl-2-morpholinopropan-1-one and 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzophenone, 4-chlorobenzophenone and 4,4′-diamino Benzophenone initiators such as benzophenone; benzoin ether initiators such as benzoin propyl ether and benzoin ethyl ether; thioxanthone initiators such as 4-isopropylthioxanthone; xanthone, fluorenone, camphorquinone Benzaldehyde, such as anthraquinone, and the like.
 ラジカル重合開始剤は市販品を容易に入手することが可能であり、例えばそれぞれ商品名で、BASF社製の“イルガキュア(登録商標)184”、“イルガキュア(登録商標)907”、“ダロキュア(登録商標)1173”、“Lucirin(登録商標) TPO”などを挙げることができる。 Commercially available radical polymerization initiators can be easily obtained. For example, “Irgacure (registered trademark) 184”, “Irgacure (registered trademark) 907” and “Darocur (registered trademark)” manufactured by BASF are available. Trademark) 1173 "," Lucirin (registered trademark) TPO ", and the like.
 本組成物において、ラジカル重合開始剤は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。 In the present composition, the radical polymerization initiator may be used alone or in combination of two or more.
(その他の添加剤)
 活性エネルギー線硬化性の接着剤組成物は、上記の化合物以外に、本発明の効果を損なわない範囲において、光増感剤、溶剤、レベリング剤、酸化防止剤、光安定剤、紫外線吸収剤などを含んでもよい。
(Other additives)
The active energy ray-curable adhesive composition is a photosensitizer, a solvent, a leveling agent, an antioxidant, a light stabilizer, an ultraviolet absorber, etc., as long as the effects of the present invention are not impaired, in addition to the above compounds. May be included.
 本実施形態で用いてもよい光増感剤としては、例えば、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾ化合物、ジアゾ化合物、ハロゲン化合物、光還元性色素などが挙げられる。 Examples of photosensitizers that may be used in the present embodiment include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo compounds, diazo compounds, halogen compounds, and photoreductive dyes.
 本実施形態で用いてもよい溶剤としては、例えば、n-ヘキサンやシクロヘキサンのような脂肪族炭化水素類;トルエンやキシレンのような芳香族炭化水素類;メタノール、エタノール、プロパノール、イソプロパノール及びn-ブタノールのようなアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトンおよびシクロヘキサノンのようなケトン類;酢酸メチル、酢酸エチル及び酢酸ブチルのようなエステル類;メチルセロソルブ、エチルセロソルブおよびブチルセロソルブのようなセロソルブ類;塩化メチレンやクロロホルムのようなハロゲン化炭化水素類などがある。 Examples of the solvent that may be used in the present embodiment include aliphatic hydrocarbons such as n-hexane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; methanol, ethanol, propanol, isopropanol, and n- Alcohols such as butanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; esters such as methyl acetate, ethyl acetate and butyl acetate; cellosolves such as methyl cellosolve, ethyl cellosolve and butyl cellosolve; Halogenated hydrocarbons such as methylene and chloroform.
 本実施形態で用いてもよいレベリング剤としては、シリコーン系、フッ素系、ポリエーテル系、アクリル酸共重合物系、チタネート系などの種々の化合物を使用することができる。 As the leveling agent that may be used in the present embodiment, various compounds such as silicone, fluorine, polyether, acrylic acid copolymer, and titanate can be used.
 本実施形態で用いてもよい酸化防止剤としては、例えば、フェノール系やアミン系のような一次酸化防止剤、イオウ系の二次酸化防止剤などが挙げられる。 Examples of the antioxidant that may be used in the present embodiment include primary antioxidants such as phenols and amines, and sulfur-based secondary antioxidants.
 本実施形態で用いてもよい光安定剤としては、ヒンダードアミン系光安定剤(HALS)等が挙げられる。
 本実施形態で用いてもよい紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、ベンゾエート系などが挙げられる。
Examples of the light stabilizer that may be used in the present embodiment include hindered amine light stabilizers (HALS).
Examples of ultraviolet absorbers that may be used in this embodiment include benzophenone-based, benzotriazole-based, and benzoate-based compounds.
 接着剤層31のガラス転移温度の調整は、例えば次の指針に従って行うことができる。
すなわち、接着剤層のガラス転移温度は、硬化性樹脂組成物に主成分として含まれる化合物の構造や、化合物の組み合わせに依存する。例えば、硬化性樹脂組成物から接着剤層を形成する場合、当該組成物が前述の脂環式エポキシ化合物を含む場合、ガラス転移温度は高くなる傾向にあり、前述の脂肪族エポキシ化合物を含む場合、ガラス転移温度は低くなる傾向にある。
 化合物の架橋度によっても接着剤層のガラス転移温度を調整することが可能である。例えば2官能以上の硬化性化合物の使用量を増やすと架橋度が上がり、接着剤層のガラス転移温度は高くなり、単官能の硬化性化合物の使用量を増やすと架橋度が下がりガラス転移温度は低くなる傾向にある。
Adjustment of the glass transition temperature of the adhesive layer 31 can be performed, for example, according to the following guidelines.
That is, the glass transition temperature of the adhesive layer depends on the structure of the compound contained as a main component in the curable resin composition and the combination of the compounds. For example, when an adhesive layer is formed from a curable resin composition, when the composition contains the above-described alicyclic epoxy compound, the glass transition temperature tends to be high, and the above-described aliphatic epoxy compound is contained. The glass transition temperature tends to be low.
It is possible to adjust the glass transition temperature of the adhesive layer also by the degree of crosslinking of the compound. For example, increasing the amount of bifunctional or higher curable compound increases the degree of cross-linking and increases the glass transition temperature of the adhesive layer. Increasing the amount of monofunctional curable compound decreases the degree of cross-linking and the glass transition temperature. It tends to be lower.
 [保護フィルム]
 図2は、本実施形態の積層フィルムの層構成の変形例を示す断面模式図である。図2に示すように、積層フィルム2において、偏光子層11における延伸フィルム21が積層された側とは反対側には、さらに保護フィルム23を積層させることができる。保護フィルム23を形成する材料としては、上記延伸フィルム21を形成する材料と同様の樹脂を使用することができる。延伸フィルム21を形成する材料と保護フィルム23を形成する材料とは、それぞれ同一であってもよいし、異なっていてもよい。
[Protective film]
FIG. 2 is a schematic cross-sectional view showing a modification of the layer configuration of the laminated film of the present embodiment. As shown in FIG. 2, in the laminated film 2, a protective film 23 can be further laminated on the side of the polarizer layer 11 opposite to the side on which the stretched film 21 is laminated. As a material for forming the protective film 23, the same resin as the material for forming the stretched film 21 can be used. The material forming the stretched film 21 and the material forming the protective film 23 may be the same or different.
 保護フィルム23は、偏光子層11に接着剤層33を介して積層させることができる。
接着剤層33としては、水系接着剤、活性エネルギー線硬化型接着剤が挙げられ、活性エネルギー線硬化型接着剤としては、カチオン重合系の活性エネルギー線硬化型接着剤、ラジカル重合系の活性エネルギー線硬化型接着剤が挙げられる。また、接着剤層33の代わりに粘着剤層を設けてもよい。粘着剤層としては、アクリル系樹脂を含有する粘着剤が挙げられる。
The protective film 23 can be laminated on the polarizer layer 11 via the adhesive layer 33.
Examples of the adhesive layer 33 include a water-based adhesive and an active energy ray-curable adhesive. Examples of the active energy ray-curable adhesive include a cationic polymerization-type active energy ray-curable adhesive and a radical polymerization-type active energy. A line curable adhesive is mentioned. An adhesive layer may be provided instead of the adhesive layer 33. Examples of the pressure-sensitive adhesive layer include a pressure-sensitive adhesive containing an acrylic resin.
 偏光子層11における延伸フィルム21が積層された面とは反対側、または保護フィルムにおける偏光子層11が積層された面とは反対側には、粘着剤層(図示なし)を設けてもよい。粘着剤層を設けることにより、積層フィルム2を表示装置の液晶セルに貼合することができる。粘着剤層としては、アクリル系樹脂を含有する粘着剤が挙げられる。本発明の積層フィルムは、液晶セルの視認側に配置されることが好ましい。 An adhesive layer (not shown) may be provided on the side of the polarizer layer 11 opposite to the side on which the stretched film 21 is laminated, or on the side of the protective film opposite to the side on which the polarizer layer 11 is laminated. . By providing the pressure-sensitive adhesive layer, the laminated film 2 can be bonded to the liquid crystal cell of the display device. Examples of the pressure-sensitive adhesive layer include a pressure-sensitive adhesive containing an acrylic resin. The laminated film of the present invention is preferably arranged on the viewing side of the liquid crystal cell.
[積層フィルムの製造方法]
 本実施形態の積層フィルム1は、
 (i)遅相軸を有する延伸フィルム21の一面に、硬化物樹脂組成物の層(以下、「硬化物樹脂組成物層」と言うことがある。)を形成する工程と、
 (ii)偏光子層11と、上記(i)で延伸フィルム21に形成した硬化物樹脂組成物層とを、偏光子層11の吸収軸に対して延伸フィルム21の遅相軸が45±10°または135±10°となるように貼り合わせて、偏光子層11、硬化物樹脂組成物層、延伸フィルム21がこの順に積層された積層体を得る工程と、
 (iii)上記(ii)で得られた積層体に、活性エネルギー線(例えば、紫外線、可視光、電子線、X線など)を照射及び/又は加熱し、硬化物樹脂組成物層を硬化させて接着剤層31と得る工程と、を含む。以下、各工程について具体例を挙げて説明する。
[Production method of laminated film]
The laminated film 1 of this embodiment is
(I) forming a layer of a cured product resin composition (hereinafter sometimes referred to as a “cured product resin composition layer”) on one surface of the stretched film 21 having a slow axis;
(Ii) The polarizer layer 11 and the cured resin composition layer formed on the stretched film 21 in (i) above have a slow axis of 45 ± 10 with respect to the absorption axis of the polarizer layer 11. A step of obtaining a laminate in which the polarizer layer 11, the cured resin composition layer, and the stretched film 21 are laminated in this order by laminating at a temperature of 135 ° ± 10 °;
(Iii) The laminate obtained in (ii) above is irradiated with active energy rays (for example, ultraviolet rays, visible light, electron beams, X-rays, etc.) and / or heated to cure the cured resin composition layer. And obtaining the adhesive layer 31. Hereinafter, each process will be described with specific examples.
 上記(i)に示す工程において、まず、遅相軸を有する延伸フィルム21を用意する。
偏光子層11を連続的に製造する場合、長尺状の偏光子層は流れ方向に吸収軸を有していることがある。ロール・トゥ・ロールで積層体(積層フィルム)を製造することができ、かつ、この吸収軸と延伸フィルム21の遅相軸とがなす角度が上記範囲になるように両者を配置できるという点で、延伸フィルム21は斜めに延伸されて製造されたものであることが好ましい。
In the step (i), first, a stretched film 21 having a slow axis is prepared.
When the polarizer layer 11 is continuously manufactured, the elongated polarizer layer may have an absorption axis in the flow direction. A laminate (laminated film) can be produced by roll-to-roll, and both can be arranged so that the angle formed by the absorption axis and the slow axis of the stretched film 21 falls within the above range. The stretched film 21 is preferably manufactured by being stretched obliquely.
 斜め延伸に用いる延伸機としては、例えば、テンター式延伸機が挙げられる。テンター式延伸機は、横方向または縦方向もしくはその両方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加することができる。このようなテンター式延伸機としては、横一軸延伸機、同時二軸延伸機などが挙げられるが、樹脂フィルムを連続的に斜め延伸することができる限り、任意の適切な延伸機を用いることができる。 Examples of the stretching machine used for the oblique stretching include a tenter type stretching machine. The tenter type stretching machine can apply a feeding force, a pulling force or a pulling force at different speeds in the left and right directions in the horizontal direction or the vertical direction or in both directions. Examples of such a tenter-type stretching machine include a horizontal uniaxial stretching machine and a simultaneous biaxial stretching machine. Any suitable stretching machine can be used as long as the resin film can be continuously stretched obliquely. it can.
 延伸フィルム21の一面に硬化物樹脂組成物層を形成する方法としては、直接硬化性樹脂組成物を塗布し、必要に応じて乾燥する方法が挙げられる。また、別の方法としては、基材フィルムに、硬化性樹脂組成物を塗布し、必要に応じて乾燥した後、その塗布層を偏光子層11に転写する方法が挙げられる。後者の場合には、上記(ii)に示す工程前に基材フィルムを除去する。基材フィルムは、上記と同様の樹脂が用いられる。また、基材フィルムにおいて、硬化性樹脂組成物の塗布面は、予め剥離処理が施されていてもよい。 Examples of the method for forming the cured resin composition layer on one surface of the stretched film 21 include a method in which a curable resin composition is directly applied and dried as necessary. Further, as another method, there is a method in which a curable resin composition is applied to a base film and dried as necessary, and then the applied layer is transferred to the polarizer layer 11. In the latter case, the base film is removed before the step (ii). For the base film, the same resin as described above is used. Moreover, in the base film, the application surface of the curable resin composition may be subjected to a peeling treatment in advance.
 硬化性樹脂組成物の塗布方法としては、公知の塗布方法を採用することができ、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーターなどが挙げられる。 As a coating method of the curable resin composition, a known coating method can be employed, and examples thereof include a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater.
 上記(ii)に示す工程において、偏光子層11と、上記(i)で延伸フィルム21に形成した硬化物樹脂組成物層とを貼り合わせ、偏光子層11、硬化物樹脂組成物層、延伸フィルム21がこの順に積層された積層体を得る。 In the step shown in (ii) above, the polarizer layer 11 and the cured resin composition layer formed on the stretched film 21 in (i) above are bonded together, and the polarizer layer 11, cured resin composition layer, stretched A laminated body in which the films 21 are laminated in this order is obtained.
 上記(iii)に示す工程において、上記(ii)で得られた積層体に、可視光線、紫外線、X線、または電子線のような活性エネルギー線を照射及び/又は上記(ii)で得られた積層体を乾燥することにより、硬化物樹脂組成物層を硬化させて接着剤層31とし、積層フィルム1を得る。 In the step shown in (iii) above, the laminate obtained in (ii) above is irradiated with active energy rays such as visible light, ultraviolet rays, X-rays, or electron beams and / or obtained in (ii) above. By drying the laminated body, the cured resin composition layer is cured to form an adhesive layer 31 to obtain a laminated film 1.
 硬化性樹脂組成物として活性エネルギー線硬化性の接着剤組成物を使用する場合は、活性エネルギー線を照射することにより、接着剤組成物を硬化させる。活性エネルギー線の照射に用いる光源は、特に限定されないが、400nm以下の波長に発光分布を有する光源が利用される。このような光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが挙げられる。 When using an active energy ray-curable adhesive composition as the curable resin composition, the adhesive composition is cured by irradiating active energy rays. The light source used for irradiation with active energy rays is not particularly limited, but a light source having a light emission distribution at a wavelength of 400 nm or less is used. Examples of such a light source include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, and a metal halide lamp.
 活性エネルギー線の照射強度は、硬化させる接着剤組成物により異なるが、カチオン重合開始剤の活性化に有効な波長領域における照射強度が10~2500mW/cmの範囲に設定することが好ましい。 The irradiation intensity of the active energy ray varies depending on the adhesive composition to be cured, but it is preferable that the irradiation intensity in the wavelength region effective for activating the cationic polymerization initiator is set in the range of 10 to 2500 mW / cm 2 .
 活性エネルギー線の照射時間は、硬化させる接着剤組成物により異なるが、照射強度と照射時間の積で表される積算光量が10~2500mJ/cmの範囲に設定することが好ましい。 The irradiation time of the active energy ray varies depending on the adhesive composition to be cured, but it is preferable to set the integrated light amount represented by the product of the irradiation intensity and the irradiation time in the range of 10 to 2500 mJ / cm 2 .
 硬化性樹脂組成物として水系の接着剤組成物を使用する場合は、貼合後に加熱処理をすることにより、接着剤組成物を硬化させる。この乾燥処理は、例えば熱風を吹き付けることにより行なわれる。乾燥処理の温度は、例えば30~200℃、好ましくは35~150℃、より好ましくは40~100℃、さらに好ましくは60~100℃の範囲内である。また、乾燥時間は例えば、20~1200秒である。 When using a water-based adhesive composition as the curable resin composition, the adhesive composition is cured by heat treatment after bonding. This drying process is performed, for example, by blowing hot air. The temperature of the drying treatment is, for example, in the range of 30 to 200 ° C, preferably 35 to 150 ° C, more preferably 40 to 100 ° C, and still more preferably 60 to 100 ° C. The drying time is, for example, 20 to 1200 seconds.
 乾燥後、室温以上の温度で少なくとも半日、好ましくは数日間以上の養生を接着剤層に施して十分な接着強度を得てもよい。養生温度は好ましくは30~50℃の範囲であり、より好ましくは35~45℃の範囲である。養生温度が前記範囲内であると、ロール巻き状態における、いわゆる「巻き締まり」が生じ難くなる。なお、養生時の湿度は特に制限されず、相対湿度が0~70%RHの範囲にあればよい。養生時間は、例えば1~10日、好ましくは2~7日である。 After drying, sufficient adhesive strength may be obtained by applying curing to the adhesive layer at room temperature or higher for at least half a day, preferably several days or longer. The curing temperature is preferably in the range of 30 to 50 ° C, more preferably in the range of 35 to 45 ° C. When the curing temperature is within the above range, so-called “tightening” in the roll winding state is difficult to occur. The humidity during curing is not particularly limited, and the relative humidity may be in the range of 0 to 70% RH. The curing time is, for example, 1 to 10 days, preferably 2 to 7 days.
 なお、上記の製造例では、硬化物樹脂組成物層を延伸フィルム21の一面に形成したが、偏光子層11の一面に形成してもよいし、両方に形成してもよい。図2に示すように、偏光子層11における延伸フィルム21が貼合された側とは反対側には、保護フィルム23を積層させてもよいし、さらに液晶セルに貼合するための粘着剤層(図示なし)を設けてもよい。 In the above production example, the cured resin composition layer is formed on one surface of the stretched film 21, but may be formed on one surface of the polarizer layer 11 or on both surfaces. As shown in FIG. 2, a protective film 23 may be laminated on the side of the polarizer layer 11 opposite to the side on which the stretched film 21 is bonded, and a pressure-sensitive adhesive for bonding to a liquid crystal cell. A layer (not shown) may be provided.
 以上のような構成の積層フィルムによれば、湿熱環境下においても高い偏光度を保つことができる。 According to the laminated film having the above configuration, a high degree of polarization can be maintained even in a humid heat environment.
<積層フィルム原反>
 本実施形態において、偏光子層および延伸フィルムは、いずれも長尺状であってもよい。本実施形態の積層フィルム原反(長尺状の積層フィルム)は、帯状の偏光フィルム原反(長尺状の偏光子層)と、帯状の樹脂フィルム原反(長尺状の延伸フィルム)と、偏光フィルム原反と樹脂フィルム原反とを接着する接着剤層と、を有する。
<Laminated film stock>
In this embodiment, the polarizer layer and the stretched film may both be long. The laminated film original fabric (elongated laminated film) of the present embodiment includes a strip-shaped polarizing film original fabric (elongated polarizer layer), a belt-shaped resin film original fabric (long elongated stretched film), and And an adhesive layer that bonds the polarizing film original and the resin film original.
 偏光フィルム原反は、PVA系樹脂を形成材料とする帯状のフィルムにおいて、フィルムの長手方向に二色性色素が配向されてなる。PVA系樹脂および二色性色素は、上記と同様である。 The original polarizing film is a strip-shaped film made of a PVA-based resin, and a dichroic dye is oriented in the longitudinal direction of the film. The PVA resin and the dichroic dye are the same as described above.
 樹脂フィルム原反は、熱可塑性樹脂を形成材料とする帯状のフィルムが、当該フィルムの長手方向に対して斜交する方向に延伸されてなる。これにより、偏光フィルム原反との積層に際してロール・トウ・ロールが可能となり、製造工程を簡略化することができる。
熱可塑性樹脂は、上記と同様である。
The resin film original is formed by stretching a strip-shaped film made of a thermoplastic resin as a forming material in a direction oblique to the longitudinal direction of the film. Thereby, a roll, a toe, and a roll are attained at the time of lamination | stacking with a polarizing film original fabric, and a manufacturing process can be simplified.
The thermoplastic resin is the same as described above.
 樹脂フィルム原反は、位相差フィルム原反であることが好ましい。樹脂フィルム原反は、上記偏光フィルム原反の吸収軸に対して任意の角度に遅相軸が付与される。任意の角度は、例えば、上記偏光フィルム原反の吸収軸に対して45±10°または135±10°であることが好ましい。遅相軸の角度が上記範囲であることにより、本実施形態の積層フィルム原反を表示装置に適用したとき、偏光サングラス越しに見た場合でも、視認性に優れた構成とすることができる。 The resin film original is preferably a retardation film original. In the resin film original fabric, a slow axis is given at an arbitrary angle with respect to the absorption axis of the polarizing film original fabric. The arbitrary angle is preferably 45 ± 10 ° or 135 ± 10 ° with respect to the absorption axis of the polarizing film original. When the angle of the slow axis is in the above range, when the laminated film original fabric according to the present embodiment is applied to a display device, a configuration with excellent visibility can be obtained even when viewed through polarized sunglasses.
 接着剤層は、上記と同様の硬化性樹脂組成物の硬化物を形成材料として含む。接着剤層のガラス転移温度が60℃以上である。ガラス転移温度が60℃以上であると、接着剤層31の硬度を十分に高くすることができる。これにより、湿熱環境下(例えば、室温60℃、湿度95%の環境下)において、延伸フィルム21の斜交する方向への伸縮を抑制することができる。 The adhesive layer contains a cured product of the same curable resin composition as described above as a forming material. The glass transition temperature of the adhesive layer is 60 ° C. or higher. When the glass transition temperature is 60 ° C. or higher, the hardness of the adhesive layer 31 can be sufficiently increased. Thereby, the expansion-contraction to the direction which crosses the stretched film 21 diagonally can be suppressed in a humid heat environment (for example, the environment of 60 degreeC of room temperature, and 95% of humidity).
 以上のような構成の積層フィルム原反によれば、湿熱環境下においても高い偏光度を保つことができる。 According to the laminated film original fabric having the above-described configuration, a high degree of polarization can be maintained even in a humid heat environment.
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。本実施例で使用する未延伸フィルムとは、延伸されていない状態のフィルムを指す。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited to these examples. The unstretched film used in this example refers to a film that has not been stretched.
[接着剤層のガラス転移温度の測定]
 活性エネルギー線硬化性の接着剤組成物(後述)の場合は、厚さ50μmの延伸シクロオレフィン系樹脂フィルム〔日本ゼオン株式会社製の商品名“ZEONOR(登録商標)”〕を2枚用意した。そして、一方のフィルム表面にバーコーターを用い、各々調製した硬化性樹脂組成物を、硬化後の膜厚がそれぞれ2μmとなるように塗工し、その塗工面にもう1枚のフィルムを重ねた。この積層物について、一方の面から積算光量が250mJ/cmとなるように紫外線を照射し、接着剤組成物を硬化させた。
[Measurement of glass transition temperature of adhesive layer]
In the case of an active energy ray-curable adhesive composition (described later), two 50 μm-thick stretched cycloolefin-based resin films (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) were prepared. Then, using a bar coater on one film surface, each prepared curable resin composition was applied such that the film thickness after curing was 2 μm, and another film was overlaid on the coated surface. . About this laminated body, the ultraviolet-ray was irradiated so that an integrated light quantity might be set to 250 mJ / cm < 2 > from one surface, and the adhesive composition was hardened.
 次に、その硬化物を挟んでいる両方のフィルムを剥がした。さらに、その硬化物を5mgかき集めて、アルミニウム押え蓋型容器に入れ、押さえつけて密閉し、測定用試料を作製した。 Next, both films sandwiching the cured product were peeled off. Furthermore, 5 mg of the cured product was collected, put into an aluminum press-lid container, pressed down and sealed to prepare a measurement sample.
 次いで、エスアイアイ・ナノテクノロジー株式会社から販売されている示差走査熱量計(DSC)“EXSTAR-6000 DSC6220”に、上記の測定用試料が入った容器をセットした。そして、窒素ガスを流入しながら、20℃から-60℃まで降温し、-60℃に達してから1分間保持した後、-60℃から200℃まで10℃/分の昇温速度で昇温し、200℃に達したら直ちに20℃まで降温させた。そして、-60℃から200℃まで昇温するときのDSC曲線から、JIS K 7121-1987「プラスチックの転移温度測定方法」に規定される中間点ガラス転移温度を求めた。これを接着剤層(硬化物)のガラス転移温度とした。 Next, a container containing the above-described measurement sample was set in a differential scanning calorimeter (DSC) “EXSTAR-6000 DSC6220” sold by SII Nanotechnology Inc. Then, while flowing in nitrogen gas, the temperature is lowered from 20 ° C. to −60 ° C., held for 1 minute after reaching −60 ° C., and then heated from −60 ° C. to 200 ° C. at a rate of 10 ° C./min. When the temperature reached 200 ° C., the temperature was immediately decreased to 20 ° C. Then, from the DSC curve when the temperature was raised from −60 ° C. to 200 ° C., the midpoint glass transition temperature defined in JIS K 7121-1987 “Method for measuring plastic transition temperature” was determined. This was taken as the glass transition temperature of the adhesive layer (cured product).
 一方で、水系の接着剤組成物(後述)の場合は、トリアセチルセルロースフィルム〔コニカミノルタオプト株式会社製の商品名”KC4UY”〕を1枚用意した。その片面に水系の接着剤組成物を塗工、80℃で5分乾燥した。このとき、乾燥後の膜厚が2μmとなるように繰り返し塗工・乾燥させた。その後、フィルムを剥離して得られた硬化物に対して、上記と同様の方法で測定用試料を作製し、ガラス転移温度を測定した。 On the other hand, in the case of an aqueous adhesive composition (described later), one triacetyl cellulose film [trade name “KC4UY” manufactured by Konica Minolta Opto Co., Ltd.] was prepared. A water-based adhesive composition was applied to one side and dried at 80 ° C. for 5 minutes. At this time, coating and drying were repeated so that the film thickness after drying was 2 μm. Then, the sample for a measurement was produced with the method similar to the above with respect to the hardened | cured material obtained by peeling a film, and the glass transition temperature was measured.
[積層フィルムの耐湿熱性の評価]
 実施例および比較例の積層フィルムを、温度65℃、相対湿度90%の環境に250時間放置し、放置前後の視感度補正偏光度を比較した。その際、放置後の視感度補正偏光度から、放置前の視感度補正偏光度を減じたときの値の絶対値(ΔPy)が0.3以下であったものを○とし、ΔPyが0.3より大きかったものを×とした。なお、視感度補正偏光度は以下の方法により測定した。結果を表2~5に示す。
[Evaluation of heat and humidity resistance of laminated film]
The laminated films of Examples and Comparative Examples were allowed to stand for 250 hours in an environment having a temperature of 65 ° C. and a relative humidity of 90%, and the visibility correction polarization degrees before and after being left were compared. At that time, the absolute value (ΔPy) of the value obtained by subtracting the visibility-corrected polarization degree before leaving from the visibility-corrected polarization degree after being left is set to ○, and ΔPy is set to 0. What was larger than 3 was set as x. The visibility correction polarization degree was measured by the following method. The results are shown in Tables 2-5.
(視感度補正偏光度の測定)
 実施例および比較例の積層フィルムについて、積分球付き分光光度計(日本分光株式会社製、「V7100」)により波長380nm~780nmの範囲におけるMD透過率およびTD透過率を測定した。次に、MD透過率およびTD透過率を用いて、式(T1)に基づき、各波長における偏光度を算出した。
 ここで、「MD透過率」とは、グラントムソンプリズムから出る偏光の向きと積層フィルムサンプルの透過軸を平行にしたときの透過率を示す。また、「TD透過率」とは、グラントムソンプリズムから出る偏光の向きと積層フィルムサンプルの透過軸を直交にしたときの透過率を示す。
(Measurement of visibility correction polarization degree)
For the laminated films of Examples and Comparative Examples, MD transmittance and TD transmittance in a wavelength range of 380 nm to 780 nm were measured with a spectrophotometer with an integrating sphere (manufactured by JASCO Corporation, “V7100”). Next, the degree of polarization at each wavelength was calculated based on the formula (T1) using the MD transmittance and the TD transmittance.
Here, “MD transmittance” indicates the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is parallel to the transmission axis of the laminated film sample. The “TD transmittance” refers to the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is orthogonal to the transmission axis of the laminated film sample.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
[製造例(接着剤組成物の調製)]
 表2~5に示す配合量に従い、実施例および比較例の接着剤組成物をそれぞれ調製した。ただし、調製に用いた化合物の名称は、略号で示していることがある。
 また、カチオン重合開始剤“アデカオプトマー(登録商標) SP-150”は、プロピレンカーボネート溶液のものを使用しているが、表2~4ではその有効成分量で表示している。
[Production Example (Preparation of Adhesive Composition)]
According to the blending amounts shown in Tables 2 to 5, adhesive compositions of Examples and Comparative Examples were prepared. However, the names of the compounds used for the preparation may be indicated by abbreviations.
The cationic polymerization initiator “Adekaoptomer (registered trademark) SP-150” is a propylene carbonate solution, and Tables 2 to 4 show the amount of active ingredients.
 なお、接着剤組成物の各成分については、以下の化合物を使用した。 In addition, the following compounds were used for each component of the adhesive composition.
[活性エネルギー線硬化性の接着剤組成物]
(カチオン重合性化合物)
 “セロキサイド(登録商標) 2021P”:3,4-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、ダイセル化学株式会社から入手。
 “TECHMORE(登録商標) VG3101L”:2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-([2,3-エポキシプロポキシ]フェニル]エチル]フェニル]プロパン、株式会社プリンテックから入手。
 “アロンオキセタン(登録商標) OXT-101”:3-エチル-3-ヒドロキシメチルオキセタン、東亞合成株式会社から入手。
 “アロンオキセタン(登録商標) OXT-221”:ジ〔(3-エチル-3-オキセタニル)メチル〕エーテル、東亞合成株式会社から入手。
 “アロンオキセタン(登録商標) OXT-212”:3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、東亞合成株式会社から入手。
[Active energy ray-curable adhesive composition]
(Cationically polymerizable compound)
“Celoxide (registered trademark) 2021P”: 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, obtained from Daicel Chemical Industries, Ltd.
“TECHMORE® VG3101L”: 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4-([2,3-epoxypropoxy] phenyl] Ethyl] phenyl] propane, obtained from Printec.
“Aron Oxetane (registered trademark) OXT-101”: 3-ethyl-3-hydroxymethyloxetane, obtained from Toagosei Co., Ltd.
“Aron oxetane (registered trademark) OXT-221”: di [(3-ethyl-3-oxetanyl) methyl] ether, obtained from Toagosei Co., Ltd.
“Aron oxetane (registered trademark) OXT-212”: 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, obtained from Toagosei Co., Ltd.
 表1に上記オキセタン化合物の構造を示す。 Table 1 shows the structure of the oxetane compound.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(ラジカル重合性化合物)
 “A-DCP”:トリシクロデカンジメタノールジアクリレート、新中村化学工業株式会社から入手。
(Radically polymerizable compound)
“A-DCP”: tricyclodecane dimethanol diacrylate, obtained from Shin-Nakamura Chemical Co., Ltd.
(カチオン重合開始剤)
 “アデカオプトマー(登録商標) SP-150”:4,4′-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート系の光カチオン重合開始剤、プロピレンカーボネート溶液の形で株式会社ADEKAから入手。
(Cationic polymerization initiator)
"Adekaoptomer (registered trademark) SP-150": 4,4'-bis [diphenylsulfonio] diphenyl sulfide Bishexafluorophosphate-based photocationic polymerization initiator, obtained from ADEKA Corporation in the form of a propylene carbonate solution.
(ラジカル重合開始剤)
 “ダロキュア(登録商標) 1173”:2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、BASFジャパン株式会社から入手。
(Radical polymerization initiator)
“Darocur® 1173”: 2-hydroxy-2-methyl-1-phenyl-propan-1-one, obtained from BASF Japan Ltd.
[水系の接着剤組成物]
(ポリビニルアルコール)
 “Z-200”:アセトアセチル基変性ポリビニルアルコール、日本合成化学株式会社から入手。
[Water-based adhesive composition]
(Polyvinyl alcohol)
“Z-200”: polyvinyl alcohol modified with acetoacetyl group, obtained from Nippon Synthetic Chemical Co., Ltd.
(エポキシ系架橋剤)
 “SPM-01”:日本合成化学株式会社から入手。
(Epoxy-based crosslinking agent)
“SPM-01”: Obtained from Nippon Synthetic Chemical Co., Ltd.
[その他の成分]
 “SH710”:シリコーン系レベリング剤、東レ・ダウコーニング株式会社から入手。
[Other ingredients]
“SH710”: Silicone leveling agent, obtained from Toray Dow Corning Co., Ltd.
[実施例1~13、比較例1]
(a)偏光子層の作製
 平均重合度約2400、ケン化度99.9モル%以上で厚さ30μmのポリビニルアルコールフィルムを、乾式で約5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が 0.05/5/100の水溶液に28℃で60秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬した。引き続き、26℃の純水で20秒間洗浄した後、65℃で乾燥して、一軸延伸されたポリビニルアルコールフィルムにヨウ素が配向された偏光子層を作製した。偏光子の厚さは12μmであった。
[Examples 1 to 13, Comparative Example 1]
(A) Preparation of polarizer layer A polyvinyl alcohol film having an average polymerization degree of about 2400 and a saponification degree of 99.9 mol% or more and a thickness of 30 μm is uniaxially stretched about 5 times in a dry process, and further kept in a tension state After being immersed in pure water at 60 ° C. for 1 minute, it was immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds. Then, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds. Subsequently, the film was washed with pure water at 26 ° C. for 20 seconds, and then dried at 65 ° C. to prepare a polarizer layer in which iodine was oriented on a uniaxially stretched polyvinyl alcohol film. The thickness of the polarizer was 12 μm.
(b)延伸フィルムの準備
 延伸フィルムとして斜め延伸により製造されたトリアセチルセルロースフィルムを準備した。このトリアセチルセルロースフィルムの片面にはハードコート層が形成されていた。また、延伸フィルムの長手方向に対する遅相軸の角度は平均で約45°であった。
 斜め延伸により製造されたトリアセチルセルロースフィルムとして、以下の材料を用いた。
 斜め延伸により製造されたトリアセチルセルロースフィルム:コニカミノルタ株式会社製、KC4UGR-HC、厚み=44μm、R(590)=106nm、Rth(590)=75nm、Rth(590)/R(590)=0.71、R(450)/R(550)=0.96、R(630)/R(550)=1.02)
 なお、Re(590)、Re(450)、Re(550)、Re(630)はそれぞれ、測定波長590nm、450nm、550nm、630nmにおける面内位相差値を表し、Rth(590)は測定波長590nmにおける厚み方向位相差値を表す。
(B) Preparation of stretched film A triacetylcellulose film produced by oblique stretching was prepared as a stretched film. A hard coat layer was formed on one side of the triacetyl cellulose film. Moreover, the angle of the slow axis with respect to the longitudinal direction of the stretched film was about 45 ° on average.
The following materials were used as the triacetyl cellulose film produced by oblique stretching.
Triacetyl cellulose film produced by the oblique stretching: Konica Minolta Co., Ltd., KC4UGR-HC, thickness = 44μm, R e (590) = 106nm, R th (590) = 75nm, R th (590) / R e ( 590) = 0.71, R e (450) / R e (550) = 0.96, R e (630) / R e (550) = 1.02)
Incidentally, R e (590), R e (450), R e (550), R e (630) , respectively, represent the measurement wavelength 590 nm, 450 nm, 550 nm, an in-plane retardation value at 630 nm, R th (590 ) Represents a thickness direction retardation value at a measurement wavelength of 590 nm.
(c)積層フィルムの作製
 次に上記(b)の延伸フィルムにおけるハードコート層の形成されていない面に、製造例で得られた接着剤組成物を塗布し、接着剤組成物層を形成した。具体的には、バーコーター(第一理化株式会社製)を用いて、硬化後の膜厚が約2μmとなるように接着剤組成物を塗布した。これとは別に、厚さ23μmのノルボルネン系樹脂を形成材料とする未延伸フィルム〔日本ゼオン株式会社製の商品名“ZEONOR(登録商標)”〕の片面にコロナ放電処理を施した。そのコロナ放電処理面に、延伸フィルムと同様にして上記接着剤組成物を塗布し、接着剤組成物層を形成した。なお、未延伸フィルムは、積層フィルムにおける保護フィルムの原材料である。
(C) Production of laminated film Next, the adhesive composition obtained in the production example was applied to the surface of the stretched film of (b) where the hard coat layer was not formed to form an adhesive composition layer. . Specifically, the adhesive composition was applied using a bar coater (manufactured by Daiichi Rika Co., Ltd.) so that the film thickness after curing was about 2 μm. Separately, a corona discharge treatment was performed on one side of an unstretched film (trade name “ZEONOR (registered trademark)” manufactured by Nippon Zeon Co., Ltd.) using a norbornene-based resin having a thickness of 23 μm as a forming material. The adhesive composition was applied to the corona discharge treated surface in the same manner as the stretched film to form an adhesive composition layer. The unstretched film is a raw material for the protective film in the laminated film.
 上記(a)で作製した偏光子層の一方の面と上記(b)で延伸フィルムに形成した接着剤組成物層とを貼合するとともに、偏光子層の他方の面と未延伸フィルムに形成した接着剤組成物層とを貼合し、積層物を作製した。貼合には、貼付装置(フジプラ株式会社製、「LPA3301」)を使用した。貼合した際には、偏光子層の吸収軸と延伸フィルムの遅相軸とのなす角度が45°となるようにした。 While bonding one surface of the polarizer layer prepared in (a) above and the adhesive composition layer formed on the stretched film in (b) above, it is formed on the other surface of the polarizer layer and an unstretched film. The laminated adhesive composition layer was laminated to prepare a laminate. For pasting, a pasting apparatus (manufactured by Fuji Pla Co., Ltd., “LPA3301”) was used. When pasting, the angle formed by the absorption axis of the polarizer layer and the slow axis of the stretched film was set to 45 °.
 次に、ベルトコンベア付き紫外線照射装置〔ランプはフュージョンUVシステムズ社製の“Dバルブ”使用〕を用いて、得られた積層物の未延伸フィルム側から、積算光量が250mJ/cmとなるように紫外線を照射し、接着剤組成物層を硬化させた。このようにして、保護フィルム/偏光子層/接着剤層/延伸フィルム/ハードコート層からなる積層フィルムを作製した。 Next, using an ultraviolet irradiation device with a belt conveyor (the lamp uses a “D bulb” manufactured by Fusion UV Systems), the accumulated light amount is 250 mJ / cm 2 from the unstretched film side of the obtained laminate. The adhesive composition layer was cured by irradiating with UV rays. Thus, the laminated film which consists of a protective film / polarizer layer / adhesive layer / stretched film / hard coat layer was produced.
[実施例14]
 (c)積層フィルムの作製において以下の操作を行った以外は、実施例1と同様にして、実施例14の積層フィルムを作製した。
[Example 14]
(C) A laminated film of Example 14 was produced in the same manner as in Example 1 except that the following operation was performed in the production of the laminated film.
 上記(a)で作製した偏光子層の一方の面に、上記(b)で準備した樹脂層を製造例で得られた水系の接着剤組成物を介して、貼合した。その後、80℃で5分間の乾燥を行った後、40℃、23%RHで72時間養生して、積層フィルムを作製した。 The resin layer prepared in (b) above was bonded to one surface of the polarizer layer prepared in (a) via the aqueous adhesive composition obtained in the production example. Then, after drying at 80 degreeC for 5 minute (s), it cured at 40 degreeC and 23% RH for 72 hours, and produced the laminated | multilayer film.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表2~5の結果から、ガラス転移温度が60℃以上であった場合、ΔPyが0.3以下であり、湿熱環境下においても高い偏光度を保つことが示された。 From the results of Tables 2 to 5, when the glass transition temperature was 60 ° C. or higher, ΔPy was 0.3 or lower, and it was shown that a high degree of polarization was maintained even in a humid heat environment.
 以上のことから、本発明が有用であることが確かめられた。 From the above, it was confirmed that the present invention is useful.
 本発明は、液晶表示装置などの表示装置における偏光の供給素子または偏光の検出素子として利用可能である。 The present invention can be used as a polarization supply element or a polarization detection element in a display device such as a liquid crystal display device.
 1、2…積層フィルム、11…偏光子層、21…延伸フィルム、23…保護フィルム、31、33…接着剤層 1, 2 ... laminated film, 11 ... polarizer layer, 21 ... stretched film, 23 ... protective film, 31, 33 ... adhesive layer

Claims (2)

  1.  ポリビニルアルコール系樹脂中に二色性色素が配向された偏光子層と、
     前記偏光子層の吸収軸に対して斜交する方向に遅相軸を有する樹脂フィルムを形成材料とする延伸フィルムと、
     前記偏光子層と前記延伸フィルムとを接着する接着剤層と、を有し、
     前記接着剤層は、ガラス転移温度が60℃以上である積層フィルム。
    A polarizer layer in which a dichroic dye is oriented in a polyvinyl alcohol resin;
    A stretched film comprising a resin film having a slow axis in a direction oblique to the absorption axis of the polarizer layer; and
    An adhesive layer that bonds the polarizer layer and the stretched film;
    The adhesive layer is a laminated film having a glass transition temperature of 60 ° C. or higher.
  2.  前記偏光子層および前記延伸フィルムは、いずれも長尺状である請求項1に記載の積層フィルム。 The laminated film according to claim 1, wherein the polarizer layer and the stretched film are both long.
PCT/JP2017/026782 2016-08-03 2017-07-25 Laminate film WO2018025698A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016152717A JP2018022026A (en) 2016-08-03 2016-08-03 Laminate film
JP2016-152717 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018025698A1 true WO2018025698A1 (en) 2018-02-08

Family

ID=61073665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026782 WO2018025698A1 (en) 2016-08-03 2017-07-25 Laminate film

Country Status (3)

Country Link
JP (1) JP2018022026A (en)
TW (1) TW201809756A (en)
WO (1) WO2018025698A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011487A (en) * 2018-07-20 2020-01-23 ナガセケムテックス株式会社 Laminate
JP2020024368A (en) * 2018-07-26 2020-02-13 三菱ケミカル株式会社 Active energy-curable resin composition, polarizing film protection layer, and polarizing plate using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795784B (en) * 2019-05-17 2024-06-07 日本化药株式会社 Optical element and ophthalmic device using the same
JP7059409B1 (en) 2021-01-15 2022-04-25 住友化学株式会社 Light absorption anisotropic plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085802A (en) * 2008-10-01 2010-04-15 Sony Corp Retardation film polarizing plate laminate and liquid crystal display device
JP2012014148A (en) * 2010-06-04 2012-01-19 Fujifilm Corp Polarizing plate and liquid crystal display device
JP2013177547A (en) * 2012-02-06 2013-09-09 Kohjin Holdings Co Ltd Active energy ray-curable adhesive
JP2013178466A (en) * 2012-02-06 2013-09-09 Kohjin Holdings Co Ltd Active energy ray-curable adhesive for polarizing plate
JP2013536456A (en) * 2010-11-10 2013-09-19 エルジー・ケム・リミテッド Optical element
JP2014513325A (en) * 2011-04-13 2014-05-29 エルジー・ケム・リミテッド Optical film
JP2014215560A (en) * 2013-04-26 2014-11-17 日東電工株式会社 Polarization film and manufacturing method thereof, optical film and image display unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013137521A (en) * 2011-11-30 2013-07-11 Sumitomo Chemical Co Ltd Composite retardation plate and composite polarizing plate using the same
JP6356408B2 (en) * 2013-11-05 2018-07-11 住友化学株式会社 Method for producing laminated optical film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085802A (en) * 2008-10-01 2010-04-15 Sony Corp Retardation film polarizing plate laminate and liquid crystal display device
JP2012014148A (en) * 2010-06-04 2012-01-19 Fujifilm Corp Polarizing plate and liquid crystal display device
JP2013536456A (en) * 2010-11-10 2013-09-19 エルジー・ケム・リミテッド Optical element
JP2014513325A (en) * 2011-04-13 2014-05-29 エルジー・ケム・リミテッド Optical film
JP2013177547A (en) * 2012-02-06 2013-09-09 Kohjin Holdings Co Ltd Active energy ray-curable adhesive
JP2013178466A (en) * 2012-02-06 2013-09-09 Kohjin Holdings Co Ltd Active energy ray-curable adhesive for polarizing plate
JP2014215560A (en) * 2013-04-26 2014-11-17 日東電工株式会社 Polarization film and manufacturing method thereof, optical film and image display unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011487A (en) * 2018-07-20 2020-01-23 ナガセケムテックス株式会社 Laminate
JP2020024368A (en) * 2018-07-26 2020-02-13 三菱ケミカル株式会社 Active energy-curable resin composition, polarizing film protection layer, and polarizing plate using the same

Also Published As

Publication number Publication date
JP2018022026A (en) 2018-02-08
TW201809756A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
JP6439794B2 (en) Polarizing plate with adhesive and liquid crystal display device
JP6699642B2 (en) Composite retardation plate and composite polarizing plate using the same
TWI689755B (en) Polarizing plate and liquid crystal display device
JP5586174B2 (en) Optical laminate and method for producing the same
WO2018025698A1 (en) Laminate film
WO2018025717A1 (en) Laminate film
WO2018025716A1 (en) Laminate film
JP6377322B2 (en) Optical film laminate and composite polarizing plate using the same
WO2018025714A1 (en) Laminate film
TWI591389B (en) Method for manufacturing polarizing plate
JP6707807B2 (en) Polarizing plate and liquid crystal display device
JP6221713B2 (en) Method for producing surface-modified cycloolefin resin film and method for producing polarizing plate
JP2015114456A (en) Method for manufacturing surface-modified cycloolefin resin film and polarizing plate
WO2018025715A1 (en) Laminate film
WO2009125717A1 (en) Composite polarizing plate and liquid crystal display device using the same
JP5750857B2 (en) Optical laminate and method for producing the same
JP2015206967A (en) Method for manufacturing composite polarizing plate
TW202421420A (en) Optical laminate
JP6476544B2 (en) Method for producing surface-modified cycloolefin resin film and method for producing polarizing plate
JP2015113398A (en) Method for manufacturing surface-modified cycloolefin resin film and method for manufacturing polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836804

Country of ref document: EP

Kind code of ref document: A1