WO2018025638A1 - Vacuum deposition device - Google Patents

Vacuum deposition device Download PDF

Info

Publication number
WO2018025638A1
WO2018025638A1 PCT/JP2017/026066 JP2017026066W WO2018025638A1 WO 2018025638 A1 WO2018025638 A1 WO 2018025638A1 JP 2017026066 W JP2017026066 W JP 2017026066W WO 2018025638 A1 WO2018025638 A1 WO 2018025638A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
vacuum
substrate
storage box
deposition material
Prior art date
Application number
PCT/JP2017/026066
Other languages
French (fr)
Japanese (ja)
Inventor
僚也 北沢
寿充 中村
伸一 朝比奈
一也 斎藤
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2018531822A priority Critical patent/JP6554612B2/en
Priority to CN201780039108.3A priority patent/CN109415800B/en
Priority to KR1020187033457A priority patent/KR102170484B1/en
Publication of WO2018025638A1 publication Critical patent/WO2018025638A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Definitions

  • the present invention relates to a vacuum vapor deposition apparatus, and more particularly to a so-called deposition down type in which a sublimation or vaporized vapor deposition portion provided in a storage box is positioned vertically above a film-forming object in a vacuum chamber.
  • Patent Document 1 This type of vacuum deposition apparatus is known from Patent Document 1, for example.
  • substrate transport means for transporting a substrate in one direction of the vacuum chamber is provided below the vacuum chamber in the vertical direction, and a vapor deposition source is disposed on the upper portion thereof.
  • the vapor deposition source has a cylindrical storage box that is provided so as to straddle the substrate, and stores the vapor deposition substance at a predetermined interval along its longitudinal direction at the lower part of the storage box. It is installed. Then, the vapor deposition material is heated with a heater to be sublimated or vaporized in the storage box, and the sublimated or vaporized material is ejected from the ejection port toward the substrate to form a film on the substrate.
  • the vapor deposition material sublimated or vaporized in the container box is not only ejected from the ejection port toward the substrate, but also adheres to and accumulates on the outer surface portion of the container box located around the ejection port, for example.
  • the deposited and deposited vapor deposition material can be a source of particles.
  • an object of the present invention is to provide a so-called deposition down type vacuum deposition apparatus that can reduce the influence of particles as much as possible.
  • the vacuum of the present invention includes a vapor deposition source disposed in a vacuum chamber, and the vapor deposition source includes a storage box that stores the vapor deposition material and a heating unit that heats the vapor deposition material to sublimate or vaporize it.
  • the vapor deposition apparatus is provided with an ejection portion for ejecting vapor of vaporized vapor deposition material, which is sublimated or vaporized, in the storage box, the ejection portion being located vertically above the film formation in the vacuum chamber, and the ejection portion being in the vertical direction
  • the vapor deposition material vapor is ejected from the ejection port toward the film formation object, and the storage box is offset at a position away from the end of the film formation object. It is characterized by that.
  • the vapor deposition material sublimated or vaporized in the storage box when the vapor deposition material sublimated or vaporized in the storage box is ejected from the ejection port toward the substrate, the vapor deposition material adheres to and accumulates on the outer surface of the storage box, and this is a source of particles. Even if the container falls downward, the container box is offset so that it is difficult to adhere to the deposition target. As a result, the influence of particles can be reduced as much as possible.
  • the heating means preferably heats the storage box and heats the vapor deposition material by radiant heat from the storage box. According to this, even if the vapor deposition material adheres to the outer surface of the storage box, the vapor deposition material is sublimated or vaporized again because the storage box itself is heated. For this reason, it is difficult to produce a particle generation source, which is advantageous.
  • a shutter plate that is disposed in the vicinity of the jet outlet and prevents the vapor of the vapor deposition material from the jet outlet from being jetted toward the film-forming object is capable of reciprocating in the vertical direction. It is preferable that the film is offset from the end of the film formation object in the separation direction. According to this, even if the vapor deposition material adhering to the shutter plate becomes particles and falls downward, it can be made difficult to adhere to the film formation object.
  • the horizontal does not mean a strict horizontal, but a substantial horizontal.
  • the deposition target is a substrate that is long in one direction and the substrate is moved relative to the vapor deposition source in one direction in the vacuum chamber by the moving means, the substrate relative to the vapor deposition source.
  • ejection portions are arranged in the Y-axis direction at predetermined intervals in the storage box, with the moving direction as the X-axis direction and the width direction of the substrate orthogonal to the X-axis direction as the Y-axis direction.
  • vapor deposition sources can be arranged on both sides in the Y-axis direction in order to improve the uniformity of the film thickness distribution.
  • substrate S a glass substrate having a rectangular outline with a predetermined thickness
  • substrate S a predetermined thickness
  • Embodiments of the vacuum deposition apparatus of the present invention will be described below.
  • the vacuum deposition apparatus DM includes a vacuum chamber 1. Although not shown and described in particular, the vacuum chamber 1 is connected to a vacuum pump through an exhaust pipe so that it can be evacuated and held at a predetermined pressure (degree of vacuum).
  • a substrate transfer device 2 is provided at the lower part of the vacuum chamber 1 in the vertical direction.
  • the substrate transfer device 2 includes a carrier 21 that holds the substrate S in a state where an upper surface as a film formation surface is opened, and the carrier 21 and, consequently, the substrate S are predetermined in one direction in the vacuum chamber 1 by a driving device (not shown). It moves at speed.
  • the substrate transfer device 2 is arranged in one direction in the vacuum chamber 1 with respect to a vapor deposition source described later.
  • a moving means for relatively moving S is configured.
  • the relative movement direction of the substrate S with respect to the vapor deposition source is defined as the X-axis direction
  • the width direction of the substrate S orthogonal to the X-axis direction is defined as the Y-axis direction.
  • the vacuum chamber 1 is provided with a vapor deposition source 3 positioned vertically above the substrate S.
  • the vapor deposition source 3 includes a storage box 31 that stores a vapor deposition material Vm that is appropriately selected according to a thin film to be deposited on the substrate S.
  • the storage box 31 has a rectangular parallelepiped shape that is long in the Y-axis direction, and a plurality of ejection nozzles 32 serving as ejection portions formed of cylinders are formed at corners in the Y-axis direction on the lower surface. Projections are provided at predetermined intervals in the Y-axis direction.
  • the ejection nozzle 32 is configured such that the hole axis 32a of the nozzle hole is inclined at a predetermined angle with respect to the vertical direction, and the ejection port 32b at the tip thereof is inclined obliquely downward in the vertical direction.
  • the inclination angle of the hole axis 32a determines the width of the substrate S, the ejection distribution of the vapor deposition material Vm from the ejection nozzle 32 caused by the vapor deposition material Vm, the uniformity of the thickness of the thin film to be formed on the substrate S, and the like. It is set as appropriate in consideration.
  • a heating wire 33 as a heating means is wound around the housing box 31 including the ejection nozzle 32, and the housing box 31 can be heated substantially uniformly over the whole by energizing from a power source not shown. I am doing so. And by heating the storage box 31, the vapor deposition material Vm in the container 31a can be heated by the radiant heat from the storage box 31, and the vapor deposition material Vm can be sublimated or vaporized.
  • a dispersion plate is provided in the storage box 31, and the storage box 31 is heated to sublimate or vaporize the vapor deposition material Vm therein.
  • the ejection nozzles 32 can be ejected substantially uniformly.
  • the method of heating the storage box 31 substantially uniformly is not limited to the above.
  • another heating means for directly heating the vapor deposition material Vm in the container 31a may be provided.
  • a heating wire as another heating means is wound around the container 31a and energized to transfer the vapor deposition material Vm. You may heat by.
  • the container box 31 configured as described above is offset at a position where the ejection port 32b of the ejection nozzle 32 is separated from one end of the substrate S in the Y-axis direction.
  • the distance DS between the jet port 32b and one end in the Y-axis direction of the substrate S is appropriately set in consideration of the uniformity of the thickness of the thin film to be formed on the substrate S.
  • the vacuum chamber 1 is reciprocated in the vertical direction, which is disposed in the vicinity of the ejection port 32b of the ejection nozzle 32 and prevents vapor of the vapor deposition material from the ejection port 32b from being ejected toward the substrate S.
  • a free shutter plate 4 is provided.
  • the shutter plate 4 moves to the shielding position indicated by the phantom line in the figure until the ejection of the vapor deposition material Vm from the ejection nozzle 32 is stabilized, and moves to the ejection position indicated by the solid line in the figure when the ejection is stabilized.
  • the driving means for reciprocating the shutter plate 4 between these two positions a well-known structure can be used, and thus the description thereof is omitted here.
  • the shutter plate 4 is also offset from the one end in the Y-axis direction of the substrate S in the separation direction. The lower end of the shutter plate 4 is bent in an L shape toward the storage box 31.
  • the vapor deposition material Vm sublimated or vaporized in the storage box 31 when the vapor deposition material Vm sublimated or vaporized in the storage box 31 is ejected from the ejection port 32b toward the substrate S, the vapor deposition material Vm adheres to the outer surface of the storage box 31. Even if the particles are deposited and fall downward as a generation source of particles, the container 31 is difficult to adhere to the substrate S because it is offset. As a result, the influence of particles can be reduced as much as possible.
  • the heating means 33 employs a configuration in which the container 31 is heated and the vapor deposition material Vm is heated by radiant heat from the container 31, the vapor deposition material Vm adheres to the inner surface and the outer surface of the container 31 including the jet port 32 b.
  • the vapor deposition material Vm is sublimated or vaporized again by heating the storage box 31 itself. For this reason, it is difficult to produce a particle generation source, which is advantageous.
  • the shutter plate 4 is offset from the end portion of the substrate S in the separating direction, and the lower end of the shutter plate 4 is bent in an L shape toward the storage box 31. According to this, similarly to the above, even if the vapor deposition material adhering to the shutter plate 4 becomes particles and falls down, it can be made difficult to adhere to the substrate.
  • the film thickness distribution may not be substantially uniform.
  • the storage boxes 31 can be arranged in the vacuum chamber 1 on both sides in the width direction of the substrate S, respectively.
  • the hole shaft 32a of each ejection nozzle 32 can be appropriately changed and arranged.
  • the substrate S can be set on the rotary stage 5 and film formation can be performed while rotating at a predetermined rotational speed.
  • the rotary stage 5 includes a plate-like holding unit 51 that holds the substrate S horizontally.
  • a rotary shaft 53 of a driving unit 52 such as a motor is connected to the holding unit 51, and the holding unit 51 is moved by the driving unit 52.
  • a known device that rotates around the rotation shaft 53 can be used. By adopting such a configuration, the film thickness distribution can be improved.
  • the deposition source 3 or the substrate S may be moved in order to improve the film thickness distribution.
  • at least one of the deposition source 3 and the substrate S is changed so that the distance DS between the deposition source 3 and the substrate S is changed while maintaining the state in which the storage box 3 is offset from the substrate S. May be moved horizontally.
  • the vapor deposition source 3 may be moved up and down, and the vapor deposition source 3 may be swung at a predetermined angle around an axis extending in the direction in which the ejection nozzles 32 are arranged side by side (X-axis direction).
  • the film-forming object was used as the glass substrate and it demonstrated as an example what forms a film while conveying a glass substrate by the board
  • the structure of a vacuum evaporation system is the above-mentioned. It is not limited to those.
  • the present invention is also applicable to an apparatus that forms a film on one side of a base material while the film formation target is a sheet-like base material and the base material is moved between a driving roller and a take-up roller at a constant speed. Applicable.
  • the deposition target is set in the vacuum chamber 1 and a driving means having a known structure is attached to the deposition source, so that the deposition source 3 is moved relative to the deposition target to form a film.
  • a driving means having a known structure is attached to the deposition source, so that the deposition source 3 is moved relative to the deposition target to form a film.
  • the present invention is applicable.
  • the ejection nozzles 32 are provided in one row in the storage box 31 has been described as an example, it may be provided in a plurality of rows.
  • DM Vacuum deposition apparatus
  • S Substrate (film formation), Vm ... Deposition material, 1 ... Vacuum chamber, 2 ... Substrate transport device (holding unit, moving means), 3 ... Deposition source, 31 ... Storage box, 32 DESCRIPTION OF SYMBOLS ... Jet nozzle (spout part), 32b ... Spout, 33 ... Heating wire (heating means), 4 ... Shutter plate, 51 ... Holding part, 52 ... Driving means, 53 ... Rotating shaft (axis).

Abstract

A so-called "down-deposition"-type vacuum deposition device which can minimize the effects of particles is provided. This vacuum deposition device DM is provided with a deposition source 3 which is arranged in a vacuum chamber 1. The deposition source comprises a housing box 31 which houses a deposition material Vm, and a heating means 33 which sublimates or vaporizes the deposition material by heating. An ejection unit 32 of a sublimated or vaporized deposition material is provided in the housing box; in the vertical direction, the ejection unit is positioned above a deposition target S inside of the vacuum chamber, and the ejection unit has an ejection port 32b that faces downwards obliquely with respect to the vertical direction, the deposition material is ejected from said ejection port towards the deposition target, and the housing box is arranged offset in a position away from the edge of the deposition target.

Description

真空蒸着装置Vacuum deposition equipment
 本発明は、真空蒸着装置に関し、より詳しくは、収容箱に設けられる昇華または気化した蒸着物質の噴出部が真空チャンバ内の被成膜物より鉛直方向上方に位置する所謂デポダウン方式のものに関する。 The present invention relates to a vacuum vapor deposition apparatus, and more particularly to a so-called deposition down type in which a sublimation or vaporized vapor deposition portion provided in a storage box is positioned vertically above a film-forming object in a vacuum chamber.
 この種の真空蒸着装置は例えば特許文献1で知られている。このものでは、真空チャンバの鉛直方向下方に、当該真空チャンバの一方向に基板を搬送する基板搬送手段が設けられ、その上部に蒸着源が対向配置されている。蒸着源は、基板を跨ぐように設けられる、蒸着物質を収容する筒状の収容箱を有し、収容箱の下部には、蒸着物質の噴出口がその長手方向に沿って所定の間隔で列設されている。そして、ヒータで蒸着物質を加熱して収容箱内で昇華または気化させ、この昇華または気化したものを噴出口から基板に向けて噴出させることで、基板に対して成膜される。 This type of vacuum deposition apparatus is known from Patent Document 1, for example. In this apparatus, substrate transport means for transporting a substrate in one direction of the vacuum chamber is provided below the vacuum chamber in the vertical direction, and a vapor deposition source is disposed on the upper portion thereof. The vapor deposition source has a cylindrical storage box that is provided so as to straddle the substrate, and stores the vapor deposition substance at a predetermined interval along its longitudinal direction at the lower part of the storage box. It is installed. Then, the vapor deposition material is heated with a heater to be sublimated or vaporized in the storage box, and the sublimated or vaporized material is ejected from the ejection port toward the substrate to form a film on the substrate.
 ここで、収容箱内で昇華または気化した蒸着物質は、噴出口から基板に向けて噴出するだけでなく、例えば、噴出口の周辺に位置する収容箱の外表面部分に付着、堆積する。この場合、付着、堆積した蒸着物質はパーティクルの発生源となり得る。このため、上記従来例のように、基板を跨ぐように収容箱が設けられていると、収容箱に付着した蒸着物質がパーティクルとなって下方に落下し、基板に付着するといった不具合が生じ、これでは、製品歩留まりが低下する等の問題を招来する。 Here, the vapor deposition material sublimated or vaporized in the container box is not only ejected from the ejection port toward the substrate, but also adheres to and accumulates on the outer surface portion of the container box located around the ejection port, for example. In this case, the deposited and deposited vapor deposition material can be a source of particles. For this reason, as in the above conventional example, when the storage box is provided so as to straddle the substrate, the vapor deposition material attached to the storage box becomes particles and falls downward, causing a problem that it adheres to the substrate, This leads to problems such as a decrease in product yield.
特許第4216522号公報Japanese Patent No. 4216522
 本発明は、以上の点に鑑み、パーティクルの影響を可及的に少なくできる所謂デポダウン方式の真空蒸着装置を提供することをその課題とするものである。 In view of the above points, an object of the present invention is to provide a so-called deposition down type vacuum deposition apparatus that can reduce the influence of particles as much as possible.
 上記課題を解決するために、真空チャンバ内に配置される蒸着源を備え、蒸着源が蒸着物質を収容する収容箱と蒸着物質を加熱して昇華または気化させる加熱手段とを有する本発明の真空蒸着装置は、収容箱に、昇華または気化した蒸着物質の蒸気を噴出する噴出部が設けられ、噴出部が真空チャンバ内の被成膜物より鉛直方向上方に位置し、噴出部が、鉛直方向に対して斜め下向きの噴出口を有して当該噴出口から被成膜物に向けて蒸着物質の蒸気が噴出され、収容箱が被成膜物の端部から離間する位置にオフセット配置されることを特徴とする。 In order to solve the above-mentioned problems, the vacuum of the present invention includes a vapor deposition source disposed in a vacuum chamber, and the vapor deposition source includes a storage box that stores the vapor deposition material and a heating unit that heats the vapor deposition material to sublimate or vaporize it. The vapor deposition apparatus is provided with an ejection portion for ejecting vapor of vaporized vapor deposition material, which is sublimated or vaporized, in the storage box, the ejection portion being located vertically above the film formation in the vacuum chamber, and the ejection portion being in the vertical direction The vapor deposition material vapor is ejected from the ejection port toward the film formation object, and the storage box is offset at a position away from the end of the film formation object. It is characterized by that.
 本発明によれば、収容箱内で昇華または気化した蒸着物質を噴出口から基板に向けて噴出させたときに、収容箱の外表面にも蒸着物質が付着、堆積し、これがパーティクルの発生源となって下方に落下しても、収容箱がオフセット配置されているため、被成膜物に付着し難くなる。結果として、パーティクルの影響を可及的に少なくできる。 According to the present invention, when the vapor deposition material sublimated or vaporized in the storage box is ejected from the ejection port toward the substrate, the vapor deposition material adheres to and accumulates on the outer surface of the storage box, and this is a source of particles. Even if the container falls downward, the container box is offset so that it is difficult to adhere to the deposition target. As a result, the influence of particles can be reduced as much as possible.
 本発明においては、前記加熱手段は、前記収容箱を加熱し、当該収容箱からの輻射熱により前記蒸着物質を加熱するものであることが好ましい。これによれば、収容箱の外表面に蒸着物質が付着しても、収容箱自体が加熱されていることで、蒸着物質が再度昇華または気化される。このため、パーティクルの発生源がつくられ難くなり、有利である。 In the present invention, the heating means preferably heats the storage box and heats the vapor deposition material by radiant heat from the storage box. According to this, even if the vapor deposition material adheres to the outer surface of the storage box, the vapor deposition material is sublimated or vaporized again because the storage box itself is heated. For this reason, it is difficult to produce a particle generation source, which is advantageous.
 また、前記噴出口に近接配置されて当該噴出口からの蒸着物質の蒸気が被成膜物に向けて噴出されることを防止する、鉛直方向に往復動自在なシャッター板を備え、シャッター板が被成膜物の端部から離間方向にオフセットされていることが好ましい。これによれば、シャッター板に付着した蒸着物質がパーティクルとなって、下方に落下しても、被成膜物に付着し難くすることができる。 In addition, a shutter plate that is disposed in the vicinity of the jet outlet and prevents the vapor of the vapor deposition material from the jet outlet from being jetted toward the film-forming object is capable of reciprocating in the vertical direction. It is preferable that the film is offset from the end of the film formation object in the separation direction. According to this, even if the vapor deposition material adhering to the shutter plate becomes particles and falls downward, it can be made difficult to adhere to the film formation object.
 また、被成膜物が水平に配置される保持部を有することが好ましい。ここで、水平とは、厳密な水平を意味するのではなく、実質的な水平を意味するものとする。更に、前記保持部を鉛直方向の軸線を中心に回転駆動する駆動手段を更に有することが好ましい。これによれば、膜厚分布を改善することができる。 In addition, it is preferable to have a holding portion in which the film formation object is arranged horizontally. Here, the horizontal does not mean a strict horizontal, but a substantial horizontal. Furthermore, it is preferable to further have a drive means for rotating the holding portion around the vertical axis. According to this, the film thickness distribution can be improved.
 なお、被成膜物が一方向に長手の基板であり、前記移動手段により基板を前記蒸着源に対して真空チャンバ内の一方向に相対移動させながら成膜する場合、蒸着源に対する基板の相対移動方向をX軸方向、X軸方向に直交する基板の幅方向をY軸方向として、前記収容箱に、噴出部がY軸方向に所定の間隔で列設されていることが好ましい。この場合、基板の幅によっては、膜厚分布の均一性を高めるために、蒸着源をY軸方向両側に夫々配置することもできる。 Note that when the deposition target is a substrate that is long in one direction and the substrate is moved relative to the vapor deposition source in one direction in the vacuum chamber by the moving means, the substrate relative to the vapor deposition source. It is preferable that ejection portions are arranged in the Y-axis direction at predetermined intervals in the storage box, with the moving direction as the X-axis direction and the width direction of the substrate orthogonal to the X-axis direction as the Y-axis direction. In this case, depending on the width of the substrate, vapor deposition sources can be arranged on both sides in the Y-axis direction in order to improve the uniformity of the film thickness distribution.
本発明の真空蒸着装置の実施形態を説明する、一部を断面視とした部分斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The fragmentary perspective view which made one part sectional view explaining embodiment of the vacuum evaporation system of this invention. 基板と蒸着源との配置関係を説明する図。The figure explaining the arrangement | positioning relationship between a board | substrate and a vapor deposition source. 蒸着源の変形例を説明する図。The figure explaining the modification of a vapor deposition source. 真空蒸着装置の変形例を説明する図。The figure explaining the modification of a vacuum evaporation system.
 以下、図面を参照して、被成膜物を矩形の輪郭を持つ所定厚さのガラス基板(以下、「基板S」という)とし、基板Sの片面に所定の薄膜を成膜する場合を例に本発明の真空蒸着装置の実施形態を説明する。 Hereinafter, with reference to the drawings, an example of a case where an object to be deposited is a glass substrate having a rectangular outline with a predetermined thickness (hereinafter referred to as “substrate S”) and a predetermined thin film is formed on one surface of the substrate S will be described. Embodiments of the vacuum deposition apparatus of the present invention will be described below.
 図1及び図2を参照して、真空蒸着装置DMは真空チャンバ1を備える。真空チャンバ1には、特に図示して説明しないが、排気管を介して真空ポンプが接続され、所定圧力(真空度)に真空引きして保持できるようになっている。また、真空チャンバ1の鉛直方向下部には基板搬送装置2が設けられている。基板搬送装置2は、成膜面としての上面を開放した状態で基板Sを保持するキャリア21を有し、図外の駆動装置によってキャリア21、ひいては基板Sを真空チャンバ1内の一方向に所定速度で移動するようになっている。基板搬送装置2としては公知のものが利用できるため、これ以上の説明は省略するが、本実施形態では、基板搬送装置2が、後述の蒸着源に対して真空チャンバ1内の一方向に基板Sを相対移動させる移動手段を構成する。以下においては、蒸着源に対する基板Sの相対移動方向をX軸方向、X軸方向に直交する基板Sの幅方向をY軸方向とする。 Referring to FIGS. 1 and 2, the vacuum deposition apparatus DM includes a vacuum chamber 1. Although not shown and described in particular, the vacuum chamber 1 is connected to a vacuum pump through an exhaust pipe so that it can be evacuated and held at a predetermined pressure (degree of vacuum). A substrate transfer device 2 is provided at the lower part of the vacuum chamber 1 in the vertical direction. The substrate transfer device 2 includes a carrier 21 that holds the substrate S in a state where an upper surface as a film formation surface is opened, and the carrier 21 and, consequently, the substrate S are predetermined in one direction in the vacuum chamber 1 by a driving device (not shown). It moves at speed. Since a known device can be used as the substrate transfer device 2, further explanation is omitted, but in this embodiment, the substrate transfer device 2 is arranged in one direction in the vacuum chamber 1 with respect to a vapor deposition source described later. A moving means for relatively moving S is configured. In the following, the relative movement direction of the substrate S with respect to the vapor deposition source is defined as the X-axis direction, and the width direction of the substrate S orthogonal to the X-axis direction is defined as the Y-axis direction.
 真空チャンバ1には、基板Sより鉛直方向上方に位置させて蒸着源3が設けられている。蒸着源3は、基板Sに成膜しようとする薄膜に応じて適宜選択される蒸着物質Vmを収容する収容箱31を有する。この場合、収容箱31は、Y軸方向に長手の直方体形状のものであり、その下面のY軸方向の角部には、筒体で構成される噴出部としての噴出ノズル32の複数本がY軸方向に所定間隔をおいて突設されている。この場合、噴出ノズル32はそのノズル孔の孔軸32aが鉛直方向に対して所定の角度で傾斜され、その先端の噴出口32bが鉛直方向斜め下向きとなるようにしている。この場合、孔軸32aの傾斜角は、基板Sの幅、蒸着物質Vmに起因する噴出ノズル32からの蒸着物質Vmの噴出分布や基板Sに形成しようとする薄膜の膜厚の均一性等を考慮して適宜設定される。 The vacuum chamber 1 is provided with a vapor deposition source 3 positioned vertically above the substrate S. The vapor deposition source 3 includes a storage box 31 that stores a vapor deposition material Vm that is appropriately selected according to a thin film to be deposited on the substrate S. In this case, the storage box 31 has a rectangular parallelepiped shape that is long in the Y-axis direction, and a plurality of ejection nozzles 32 serving as ejection portions formed of cylinders are formed at corners in the Y-axis direction on the lower surface. Projections are provided at predetermined intervals in the Y-axis direction. In this case, the ejection nozzle 32 is configured such that the hole axis 32a of the nozzle hole is inclined at a predetermined angle with respect to the vertical direction, and the ejection port 32b at the tip thereof is inclined obliquely downward in the vertical direction. In this case, the inclination angle of the hole axis 32a determines the width of the substrate S, the ejection distribution of the vapor deposition material Vm from the ejection nozzle 32 caused by the vapor deposition material Vm, the uniformity of the thickness of the thin film to be formed on the substrate S, and the like. It is set as appropriate in consideration.
 また、噴出ノズル32を含む収容箱31の周囲には加熱手段としての電熱線33が巻回され、図外の電源より通電することで、収容箱31をその全体に亘って略均等に加熱できるようにしている。そして、収容箱31を加熱することで当該収容箱31からの輻射熱により容器31a内の蒸着物質Vmを加熱して当該蒸着物質Vmを昇華または気化させることができるようになっている。なお、特に図示して説明しないが、収容箱31内には分散板が設けられ、収容箱31を加熱してその内部の蒸着物質Vmを昇華または気化させ、この昇華または気化した蒸着物質Vmを各噴出ノズル32から略均等に噴出できるようにしている。また、収容箱31を略均等に加熱する方式は上記のものに限られるものではない。さらに、容器31a内の蒸着物質Vmを直接加熱する加熱手段を別に設けてもよく、例えば、別の加熱手段としての電熱線を容器31aの周囲に巻回し、通電して蒸着物質Vmを伝熱により加熱してもよい。 Further, a heating wire 33 as a heating means is wound around the housing box 31 including the ejection nozzle 32, and the housing box 31 can be heated substantially uniformly over the whole by energizing from a power source not shown. I am doing so. And by heating the storage box 31, the vapor deposition material Vm in the container 31a can be heated by the radiant heat from the storage box 31, and the vapor deposition material Vm can be sublimated or vaporized. Although not specifically illustrated and described, a dispersion plate is provided in the storage box 31, and the storage box 31 is heated to sublimate or vaporize the vapor deposition material Vm therein. The ejection nozzles 32 can be ejected substantially uniformly. Further, the method of heating the storage box 31 substantially uniformly is not limited to the above. Furthermore, another heating means for directly heating the vapor deposition material Vm in the container 31a may be provided. For example, a heating wire as another heating means is wound around the container 31a and energized to transfer the vapor deposition material Vm. You may heat by.
 上記のように構成された収容箱31は、噴出ノズル32の噴出口32bが基板SのY軸方向一端から離間する位置にオフセット配置されている。この場合、噴出口32bと基板SのY軸方向一端との間の間隔DSは、基板Sに形成しようとする薄膜の膜厚の均一性等を考慮して適宜設定される。また、真空チャンバ1内には、噴出ノズル32の噴出口32bに近接配置されて当該噴出口32bからの蒸着物質の蒸気が基板Sに向けて噴出されることを防止する、鉛直方向に往復動自在なシャッター板4を備える。シャッター板4は、噴出ノズル32からの蒸着物質Vmの噴出が安定するまでの間、図中仮想線で示す遮蔽位置に移動し、噴出が安定すると、図中実線で示す噴出位置に移動する。これらの両位置の間でシャッター板4を往復動させる駆動手段としては、公知の構造のものを用いることができるため、ここでは説明を省略する。シャッター板4もまた、基板SのY軸方向一端から離間方向にオフセットされている。シャッター板4の下端は、収容箱31に向けてL字状に屈曲させている。 The container box 31 configured as described above is offset at a position where the ejection port 32b of the ejection nozzle 32 is separated from one end of the substrate S in the Y-axis direction. In this case, the distance DS between the jet port 32b and one end in the Y-axis direction of the substrate S is appropriately set in consideration of the uniformity of the thickness of the thin film to be formed on the substrate S. Further, the vacuum chamber 1 is reciprocated in the vertical direction, which is disposed in the vicinity of the ejection port 32b of the ejection nozzle 32 and prevents vapor of the vapor deposition material from the ejection port 32b from being ejected toward the substrate S. A free shutter plate 4 is provided. The shutter plate 4 moves to the shielding position indicated by the phantom line in the figure until the ejection of the vapor deposition material Vm from the ejection nozzle 32 is stabilized, and moves to the ejection position indicated by the solid line in the figure when the ejection is stabilized. As the driving means for reciprocating the shutter plate 4 between these two positions, a well-known structure can be used, and thus the description thereof is omitted here. The shutter plate 4 is also offset from the one end in the Y-axis direction of the substrate S in the separation direction. The lower end of the shutter plate 4 is bent in an L shape toward the storage box 31.
 以上の実施形態によれば、収容箱31内で昇華または気化した蒸着物質Vmを噴出口32bから基板Sに向けて噴出させたときに、収容箱31の外表面にも蒸着物質Vmが付着、堆積し、これがパーティクルの発生源となって下方に落下しても、収容箱31がオフセット配置されているため、基板Sに付着し難くなる。結果として、パーティクルの影響を可及的に少なくできる。また、加熱手段33は、収容箱31を加熱し、収容箱31からの輻射熱により蒸着物質Vmを加熱する構成を採用したため、噴出口32bを含む収容箱31の内面や外面に蒸着物質Vmが付着しても、収容箱31自体が加熱されていることで、蒸着物質Vmが再度昇華または気化される。このため、パーティクルの発生源がつくられ難くなり、有利である。しかも、シャッター板4が基板Sの端部から離間方向にオフセットされ、シャッター板4の下端が収容箱31に向けてL字状に屈曲されていることが好ましい。これによれば、上記同様、シャッター板4に付着した蒸着物質がパーティクルとなって、下方に落下しても、基板に付着し難くすることができる。 According to the above embodiment, when the vapor deposition material Vm sublimated or vaporized in the storage box 31 is ejected from the ejection port 32b toward the substrate S, the vapor deposition material Vm adheres to the outer surface of the storage box 31. Even if the particles are deposited and fall downward as a generation source of particles, the container 31 is difficult to adhere to the substrate S because it is offset. As a result, the influence of particles can be reduced as much as possible. In addition, since the heating means 33 employs a configuration in which the container 31 is heated and the vapor deposition material Vm is heated by radiant heat from the container 31, the vapor deposition material Vm adheres to the inner surface and the outer surface of the container 31 including the jet port 32 b. Even so, the vapor deposition material Vm is sublimated or vaporized again by heating the storage box 31 itself. For this reason, it is difficult to produce a particle generation source, which is advantageous. Moreover, it is preferable that the shutter plate 4 is offset from the end portion of the substrate S in the separating direction, and the lower end of the shutter plate 4 is bent in an L shape toward the storage box 31. According to this, similarly to the above, even if the vapor deposition material adhering to the shutter plate 4 becomes particles and falls down, it can be made difficult to adhere to the substrate.
 以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではない。上記実施形態では、収容箱31に複数本の噴出ノズル32を設けたものを例に説明したが、一本の噴出ノズル32だけを設けることもでき、また、収容箱の角部に円形やスリット状の孔を開設して、これを噴出部としてもよい。 The embodiments of the present invention have been described above, but the present invention is not limited to the above. In the above-described embodiment, a case where a plurality of jet nozzles 32 are provided in the storage box 31 has been described as an example. However, only one jet nozzle 32 can be provided, and a circular or slit is provided at the corner of the storage box. It is good also as opening a shape hole and making this into an ejection part.
 ところで、収容箱31をオフセット配置した場合、基板Sの幅によっては、膜厚分布が略均一にできない場合がある。このような場合、図3に示すように、真空チャンバ1内に、基板Sの幅方向両側に夫々収容箱31を配置することができる。この場合、各噴出ノズル32の孔軸32aを適宜変えて配置することもできる。また、図4に示すように、基板Sを回転ステージ5上に設置し、所定の回転数で回転しながら成膜することができる。回転ステージ5としては、基板Sを水平に保持する板状の保持部51を有し、この保持部51にモータ等の駆動手段52の回転軸53が連結され、駆動手段52により保持部51を回転軸53を中心に回転駆動する公知のものを用いることができる。このような構成を採用すれば、膜厚分布を改善することができる。 By the way, when the storage box 31 is offset, depending on the width of the substrate S, the film thickness distribution may not be substantially uniform. In such a case, as shown in FIG. 3, the storage boxes 31 can be arranged in the vacuum chamber 1 on both sides in the width direction of the substrate S, respectively. In this case, the hole shaft 32a of each ejection nozzle 32 can be appropriately changed and arranged. Further, as shown in FIG. 4, the substrate S can be set on the rotary stage 5 and film formation can be performed while rotating at a predetermined rotational speed. The rotary stage 5 includes a plate-like holding unit 51 that holds the substrate S horizontally. A rotary shaft 53 of a driving unit 52 such as a motor is connected to the holding unit 51, and the holding unit 51 is moved by the driving unit 52. A known device that rotates around the rotation shaft 53 can be used. By adopting such a configuration, the film thickness distribution can be improved.
 また、膜厚分布を改善するために、蒸着源3もしくは基板Sを移動させてもよい。例えば、収容箱3が基板Sに対してオフセット配置される状態は維持したまま、蒸着源3と基板Sとの間の距離DSを変更するように、蒸着源3と基板Sの少なくともいずれか一方を水平移動させてもよい。もしくは、蒸着源3を上下に移動させてもよく、蒸着源3を噴出ノズル32の並設方向(X軸方向)にのびる軸を中心に所定の角度でスイングさせてもよい。 Also, the deposition source 3 or the substrate S may be moved in order to improve the film thickness distribution. For example, at least one of the deposition source 3 and the substrate S is changed so that the distance DS between the deposition source 3 and the substrate S is changed while maintaining the state in which the storage box 3 is offset from the substrate S. May be moved horizontally. Alternatively, the vapor deposition source 3 may be moved up and down, and the vapor deposition source 3 may be swung at a predetermined angle around an axis extending in the direction in which the ejection nozzles 32 are arranged side by side (X-axis direction).
 更に、上記実施形態では、被成膜物をガラス基板とし、基板搬送装置2によりガラス基板を一定の速度で搬送しながら成膜するものを例に説明したが、真空蒸着装置の構成は、上記のものに限定されるものではない。例えば、被成膜物をシート状の基材とし、駆動ローラと巻取りローラとの間で一定の速度で基材を移動させながら基材の片面に成膜するような装置にも本発明は適用できる。また、被成膜物を真空チャンバ1にセットし、蒸着源に公知の構造を持つ駆動手段を付設して、被成膜物に対して蒸着源3を相対移動させながら成膜することにも本発明は適用できる。更に、収容箱31に噴出ノズル32を一列で設けたものを例に説明したが、複数列で設けることもできる。 Furthermore, in the said embodiment, although the film-forming object was used as the glass substrate and it demonstrated as an example what forms a film while conveying a glass substrate by the board | substrate conveyance apparatus 2 at a fixed speed, the structure of a vacuum evaporation system is the above-mentioned. It is not limited to those. For example, the present invention is also applicable to an apparatus that forms a film on one side of a base material while the film formation target is a sheet-like base material and the base material is moved between a driving roller and a take-up roller at a constant speed. Applicable. In addition, the deposition target is set in the vacuum chamber 1 and a driving means having a known structure is attached to the deposition source, so that the deposition source 3 is moved relative to the deposition target to form a film. The present invention is applicable. Furthermore, although the case where the ejection nozzles 32 are provided in one row in the storage box 31 has been described as an example, it may be provided in a plurality of rows.
 DM…真空蒸着装置、S…基板(被成膜物)、Vm…蒸着物質、1…真空チャンバ、2…基板搬送装置(保持部、移動手段)、3…蒸着源、31…収容箱、32…噴出ノズル(噴出部)、32b…噴出口、33…電熱線(加熱手段)、4…シャッター板、51…保持部、52…駆動手段、53…回転軸(軸)。 DM: Vacuum deposition apparatus, S: Substrate (film formation), Vm ... Deposition material, 1 ... Vacuum chamber, 2 ... Substrate transport device (holding unit, moving means), 3 ... Deposition source, 31 ... Storage box, 32 DESCRIPTION OF SYMBOLS ... Jet nozzle (spout part), 32b ... Spout, 33 ... Heating wire (heating means), 4 ... Shutter plate, 51 ... Holding part, 52 ... Driving means, 53 ... Rotating shaft (axis).

Claims (6)

  1.  真空チャンバ内に配置される蒸着源を備え、蒸着源が蒸着物質を収容する収容箱と蒸着物質を加熱して昇華または気化させる加熱手段とを有する真空蒸着装置であって、
     収容箱に、昇華または気化した蒸着物質の蒸気を噴出する噴出部が設けられ、噴出部が真空チャンバ内の被成膜物より鉛直方向上方に位置するものにおいて、
     噴出部が、鉛直方向に対して斜め下向きの噴出口を有して当該噴出口から被成膜物に向けて蒸着物質の蒸気が噴出され、収容箱が被成膜物の端部から離間する位置にオフセット配置されることを特徴とする真空蒸着装置。
    A vacuum evaporation apparatus comprising a vapor deposition source disposed in a vacuum chamber, the vapor deposition source having a storage box for accommodating the vapor deposition material and a heating means for heating the vapor deposition material to sublimate or vaporize it,
    In the container box, a jetting part for jetting vapor of the vapor deposition material that has been sublimated or vaporized is provided, and the jetting part is located vertically above the film formation object in the vacuum chamber.
    The ejection part has an ejection port that is obliquely downward with respect to the vertical direction, and vapor of the vapor deposition material is ejected from the ejection port toward the film formation object, and the storage box is separated from the end of the film formation object. A vacuum deposition apparatus characterized by being offset at a position.
  2.  前記加熱手段は、前記収容箱を加熱し、当該収容箱からの輻射熱により蒸着物質を加熱するものであることを特徴とする請求項1記載の真空蒸着装置。 The vacuum vapor deposition apparatus according to claim 1, wherein the heating means heats the storage box and heats the vapor deposition material by radiant heat from the storage box.
  3.  前記噴出口に近接配置されて当該噴出口からの蒸着物質の蒸気が被成膜物に向けて噴出されることを防止する、鉛直方向に往復動自在なシャッター板を備え、シャッター板が被成膜物の端部から離間方向にオフセット配置されることを特徴とする請求項1または請求項2記載の真空蒸着装置。 A shutter plate that is disposed in the vicinity of the jet outlet and prevents the vapor of the vapor deposition material from the jet outlet from being jetted toward the film-forming object, is capable of reciprocating in the vertical direction. The vacuum deposition apparatus according to claim 1, wherein the vacuum deposition apparatus is offset from the end of the film object in a separation direction.
  4.  被成膜物を水平に保持する保持部を有することを特徴とする請求項1~請求項3のいずれか1項に記載の真空蒸着装置。 The vacuum evaporation apparatus according to any one of claims 1 to 3, further comprising a holding unit that horizontally holds the film formation target.
  5.  前記保持部を鉛直方向の軸を中心に回転駆動する駆動手段を更に有することを特徴とする請求項4に記載の真空蒸着装置。 The vacuum vapor deposition apparatus according to claim 4, further comprising a driving unit that rotationally drives the holding unit about a vertical axis.
  6.  請求項1~請求項5のいずれか1項に記載の真空蒸着装置であって、
     被成膜物が一方向に長手の基板であり、移動手段により基板を前記蒸着源に対して真空チャンバ内の一方向に相対移動させながら成膜するものにおいて、
     蒸着源に対する基板の相対移動方向をX軸方向、X軸方向に直交する基板の幅方向をY軸方向として、前記収容箱に、噴出部がY軸方向に所定の間隔で列設されていることを特徴とする真空蒸着装置。
    The vacuum evaporation apparatus according to any one of claims 1 to 5,
    In the film forming object is a substrate that is long in one direction, and the film is formed while moving the substrate relative to the vapor deposition source in one direction in a vacuum chamber by a moving means.
    With the relative movement direction of the substrate with respect to the vapor deposition source as the X-axis direction and the width direction of the substrate orthogonal to the X-axis direction as the Y-axis direction, the ejection portions are arranged at predetermined intervals in the Y-axis direction in the storage box. A vacuum evaporation apparatus characterized by that.
PCT/JP2017/026066 2016-08-02 2017-07-19 Vacuum deposition device WO2018025638A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018531822A JP6554612B2 (en) 2016-08-02 2017-07-19 Vacuum evaporation system
CN201780039108.3A CN109415800B (en) 2016-08-02 2017-07-19 Vacuum evaporation device
KR1020187033457A KR102170484B1 (en) 2016-08-02 2017-07-19 Vacuum evaporation equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-152343 2016-08-02
JP2016152343 2016-08-02

Publications (1)

Publication Number Publication Date
WO2018025638A1 true WO2018025638A1 (en) 2018-02-08

Family

ID=61073370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026066 WO2018025638A1 (en) 2016-08-02 2017-07-19 Vacuum deposition device

Country Status (5)

Country Link
JP (1) JP6554612B2 (en)
KR (1) KR102170484B1 (en)
CN (1) CN109415800B (en)
TW (1) TWI658162B (en)
WO (1) WO2018025638A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317948A (en) * 2002-04-23 2003-11-07 Ulvac Japan Ltd Evaporation source and thin film formation device using the same
JP2004100002A (en) * 2002-09-11 2004-04-02 Ulvac Japan Ltd Evaporation source and thin-film deposition system using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4216522A (en) 1977-06-06 1980-08-05 Texas Instruments Incorporated Interchangeable module for integrated circuits
JPH04272169A (en) * 1991-02-25 1992-09-28 Shimadzu Corp Impregnating type vacuum deposition device
KR20060030426A (en) * 2004-10-05 2006-04-10 삼성에스디아이 주식회사 Vacuum evaporating apparatus and vacuum evaporating method
JP2008031501A (en) * 2006-07-26 2008-02-14 Canon Inc Film deposition apparatus, and method of manufacturing vapor-deposited thin film
KR101063192B1 (en) * 2008-11-12 2011-09-07 주식회사 야스 Deposition source capable of downward deposition
KR20140120556A (en) * 2013-04-03 2014-10-14 삼성디스플레이 주식회사 Deposition apparatus
CN103233201B (en) * 2013-05-03 2016-03-30 中国科学院光电技术研究所 A kind of preparation method of downward thermal evaporation media protection rete
KR20140145842A (en) * 2013-06-14 2014-12-24 엘아이지에이디피 주식회사 Apparatus for supplying deposition source and method for operating that
KR20150057272A (en) * 2013-11-19 2015-05-28 주식회사 포리스 Downward Type Deposition Source, Deposition Apparatus and Method Having the Same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003317948A (en) * 2002-04-23 2003-11-07 Ulvac Japan Ltd Evaporation source and thin film formation device using the same
JP2004100002A (en) * 2002-09-11 2004-04-02 Ulvac Japan Ltd Evaporation source and thin-film deposition system using the same

Also Published As

Publication number Publication date
JP6554612B2 (en) 2019-07-31
KR102170484B1 (en) 2020-10-28
KR20180137525A (en) 2018-12-27
JPWO2018025638A1 (en) 2018-10-18
CN109415800A (en) 2019-03-01
CN109415800B (en) 2021-01-08
TWI658162B (en) 2019-05-01
TW201816151A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
JP6194396B2 (en) Downward printing apparatus and method
JP6431006B2 (en) Apparatus and method for separating carrier liquid vapor from ink
US8802200B2 (en) Method and apparatus for cleaning organic deposition materials
JP6620244B2 (en) Vacuum deposition equipment
US9174250B2 (en) Method and apparatus for cleaning organic deposition materials
JP6554612B2 (en) Vacuum evaporation system
US20120237679A1 (en) Apparatus and methods for depositing one or more organic materials on a substrate
JP7092543B2 (en) Vacuum deposition equipment
KR20060018746A (en) Apparatus for depositing organic material
JP7011521B2 (en) Thin-film deposition source for vacuum-film deposition equipment
KR20130007343A (en) Linear nozzle for depositing a thin film and apparatus thereof
JP2020190013A (en) Vacuum deposition method
TWI555863B (en) Deposition method and deposition apparatus
JP6983096B2 (en) Thin-film deposition source for vacuum-film deposition equipment
JP7036676B2 (en) Thin-film deposition source for vacuum-film deposition equipment
KR20220067866A (en) Raw material feeder and apparatus for processing substrate having the same
JP2019167593A (en) Vapor deposition source for vacuum deposition apparatus and vacuum deposition method
WO2006134908A1 (en) Organic evaporation system and method
JP2018154904A (en) Film deposition method, production method of organic electronic device, and film deposition apparatus
TW201304236A (en) Apparatus and method to separate carrier liquid vapor from ink

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018531822

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187033457

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836744

Country of ref document: EP

Kind code of ref document: A1