WO2018021762A1 - 신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물 - Google Patents

신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물 Download PDF

Info

Publication number
WO2018021762A1
WO2018021762A1 PCT/KR2017/007853 KR2017007853W WO2018021762A1 WO 2018021762 A1 WO2018021762 A1 WO 2018021762A1 KR 2017007853 W KR2017007853 W KR 2017007853W WO 2018021762 A1 WO2018021762 A1 WO 2018021762A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
indole
mmol
ethyl
added
Prior art date
Application number
PCT/KR2017/007853
Other languages
English (en)
French (fr)
Inventor
이인희
김세환
문순영
장정인
강승태
윤현호
이혁주
이재걸
Original Assignee
현대약품 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대약품 주식회사 filed Critical 현대약품 주식회사
Publication of WO2018021762A1 publication Critical patent/WO2018021762A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/22Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with an aralkyl radical attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Definitions

  • the present invention relates to a novel compound that binds to a peroxysome proliferator activated receptor (Gamma) but does not act as an agonist, a preparation method thereof, and a pharmaceutical composition comprising the same as an active ingredient.
  • a peroxysome proliferator activated receptor Gamma
  • Diabetes has been treated mainly with the introduction of insulin, but insulin has the trouble of using injections, and simply supplements the insulin that is lacking in the body, and does not solve the fundamental treatment of diabetes.
  • drugs that promote insulin secretion such as sulfonylurea
  • drugs that slowly release glucose stored in the liver such as metformin, which inhibits glycolysis, such as acarbose, which inhibit absorption.
  • Drugs or drugs that enhance the sensitivity of insulin receptors, such as rosiglitazone and pioglitazone, have been developed and sold.
  • Thiazolidinedione (TZD) drugs such as rosiglitazone and pioglitazone, act on the nuclear receptor peroxysome proliferator activated receptor-gamma (hereinafter referred to as 'PPAR ⁇ '). Anti-diabetic effect is shown by increasing the sensitivity of insulin by activating transcription.
  • the thiazolidinedione drug can obtain anti-diabetic effect by increasing the activity of 'PPAR ⁇ ', but also controls the expression of genes causing various side effects, showing side effects such as weight gain, swelling, and bone mineral density, cardiovascular There is a problem that can cause diseases, such as the situation is limited to use in the market. Therefore, two of the three subunits (PPAR- ⁇ / ⁇ or PPAR- ⁇ / ⁇ ) and three (PPAR-) of the PPAR ⁇ partial agonist and PPAR as a solution to address the side effects of the PPAR ⁇ agonist. Drugs that act on ⁇ / ⁇ / ⁇ ) are also being developed, but are not yet on the market due to side effects and safety issues.
  • the present inventors bind to PPAR ⁇ with high affinity, but do not induce gene transcription, thereby not acting as an agonist, blocking phosphorylation by CDK5, improving insulin resistance, and important pharmacology in developing new drugs.
  • PK physical properties
  • Another object of the present invention is to provide a method for preparing the compound.
  • It is another object of the present invention to provide a pharmaceutical composition comprising the compound, or a pharmaceutically acceptable salt thereof.
  • the present invention provides a compound represented by the following formula (1), or a pharmaceutically acceptable salt thereof.
  • R 1 to R 4 are the same as or different from each other, and each independently hydrogen, a halogen group, a C 1 to C 10 alkyl group, a C 1 to C 10 alkoxy group and a hetero atom selected from the group consisting of N, O and S Is selected from the group consisting of 5 to 10 heteroaryl group containing one or more ring atoms,
  • R 5 to R 9 are the same as or different from each other, and are each independently selected from the group consisting of hydrogen, a halogen group and a C 1 to C 10 alkoxy group,
  • R 10 is selected from the group consisting of a hydroxyl group, an amino group and a C 1 to C 10 alkoxy group,
  • R 11 is selected from the group consisting of hydrogen, a halogen group, a nitro group, a thiol group, a C 1 to C 10 alkyl group, a C 1 to C 10 alkoxy group, a C 6 to C 10 aryl group and N, O and S Is selected from the group consisting of 5 to 10 heteroaryl groups containing one or more hetero atoms,
  • L is selected from the group consisting of a single bond, an alkylene group of C 1 to C 10 and an arylene group of C 6 to C 10 ,
  • A is selected from the group consisting of O and NR 12 ,
  • R 12 is selected from the group consisting of a hydroxyl group and a C 1 to C 10 alkoxy group
  • the heteroaryl group of 5 to 10, the C 1 to C 10 alkylene group and C 6 to C 10 arylene group of L are each independently halogen, C 1 to C 10 alkyl group and C 1 to C 10 It may be substituted or unsubstituted with one or more substituents selected from the group consisting of alkoxy groups. When the substituents are plural, the plural substituents are the same as or different from each other.
  • the present invention a) synthesizing the compound represented by the formula (2) or 3; b) cyclization of the compound represented by Formula 2 synthesized in step a) in the presence of polyphosphoric acids, or by cyclization of the compound represented by Formula 3 in the presence of acetic acid Synthesizing the compound to be represented; c) synthesizing the compound represented by Chemical Formula 6 by reacting the compound represented by Chemical Formula 4 synthesized in step b) with the compound represented by Chemical Formula 5; d) synthesizing a compound represented by the following Chemical Formula 7 by substituting hydrogen bonded to a nitrogen atom of the compound represented by Chemical Formula 6 synthesized in step c); And e) reacting the compound represented by Formula 7 synthesized in step d) with a strong base to synthesize a compound represented by Formula 1 below.
  • R 1 to R 11 , L and A are the same as described above.
  • the present invention provides a pharmaceutical composition for treating metabolic disease comprising the compound represented by Formula 1, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the compound represented by Formula 1 according to the present invention binds to PPAR ⁇ with high affinity but does not act as an agent and thus does not induce gene transcription and blocks phosphorylation by CDK5, thereby preventing conventional diabetes mellitus.
  • the occurrence of side effects caused by the drug used for treatment can be minimized. Accordingly, the present invention can provide a pharmaceutical composition that can exhibit an excellent effect in the treatment of PPAR ⁇ related metabolic diseases.
  • 1 is a reference diagram for explaining an experimental example 3 of the present invention.
  • the present invention binds to PPAR ⁇ with high affinity but does not induce gene transcriptional activity and thus does not act as an agonist, and may block phosphorylation by CDK5 to improve insulin resistance, or a pharmaceutical thereof.
  • the compound is represented by the following Chemical Formula 1.
  • R 1 to R 4 are the same as or different from each other, and each independently hydrogen, a halogen group, a C 1 to C 10 alkyl group, a C 1 to C 10 alkoxy group and a hetero atom selected from the group consisting of N, O and S Is selected from the group consisting of 5 to 10 heteroaryl group containing one or more ring atoms,
  • R 5 to R 9 are the same as or different from each other, and are each independently selected from the group consisting of hydrogen, a halogen group and a C 1 to C 10 alkoxy group,
  • R 10 is selected from the group consisting of a hydroxyl group, an amino group and a C 1 to C 10 alkoxy group,
  • R 11 is selected from the group consisting of hydrogen, a halogen group, a nitro group, a thiol group, a C 1 to C 10 alkyl group, a C 1 to C 10 alkoxy group, a C 6 to C 10 aryl group and N, O and S Is selected from the group consisting of 5 to 10 heteroaryl groups containing one or more hetero atoms,
  • L is selected from a single bond, C 1 to C 10 arylene group consisting of an alkyl group and a C 6 to C 10 of,
  • A is selected from the group consisting of O and NR 12 ,
  • R 12 is selected from the group consisting of a hydroxyl group and a C 1 to C 10 alkoxy group
  • the heteroaryl group of 5 to 10, the C 1 to C 10 alkylene group and C 6 to C 10 arylene group of L are each independently halogen, C 1 to C 10 alkyl group and C 1 to C 10 It may be substituted or unsubstituted with one or more substituents selected from the group consisting of alkoxy groups. When the substituents are plural, the plural substituents are the same as or different from each other.
  • the compound represented by Formula 1 is characterized in that an aromatic ring group connected to an indole moiety by a specific substituent, that is, a ketone group or an imino group.
  • a specific substituent that is, a ketone group or an imino group.
  • R 1 to R 4 are each independently selected from the group consisting of hydrogen, a halogen group, a pyridine group, and a trifluoromethyl group (-CF 3 ).
  • R 5 to R 9 it may be selected from the group consisting of each independently hydrogen, a halogen group, a methoxy group (-OCH 3) and trifluoro methoxy group (-OCF 3).
  • R 10 is preferably a hydroxyl group (-OH).
  • the structure represented by * -LR 11 in the formula (1) is preferably selected from the group consisting of the structure represented by the following S1 to S30.
  • Such a compound represented by Formula 1 of the present invention, or a pharmaceutically acceptable salt thereof may be embodied as any one compound selected from the group consisting of Formulas C1 to C77, or a pharmaceutically acceptable salt thereof. It is not limited to these.
  • the compound represented by the formula (1) of the present invention is used in the form of a pharmaceutically acceptable salt, it is preferable that it is in the form of an acid addition salt formed by a pharmaceutically acceptable free acid.
  • the acid used in the preparation of the acid addition salt is not particularly limited, but hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, nitrous acid, phosphorous acid, dicarboxylate, phenyl-substituted alkanoate, hydroxy alkano Eate, alkanedioate, acetic acid, benzoic acid, citric acid, lactic acid, maleic acid, gluconic acid, methanesulfonic acid, 4-toluenesulfonic acid, tartaric acid, or fumaric acid.
  • the method for preparing the acid addition salt is not particularly limited, but the compound represented by Chemical Formula 1 is dissolved in an organic solvent (for example, methanol, ethanol, acetone, methylene chloride, acetonitrile, etc.), and the organic or inorganic acid is dissolved.
  • the precipitate formed by addition can be prepared by filtration and drying, or by drying the organic solvent and excess acid under reduced pressure and then drying.
  • the present invention provides a method for preparing a compound represented by Chemical Formula 1, which will be described in detail below.
  • a compound represented by the following Chemical Formula 2 or 3 is synthesized.
  • the method for synthesizing the compound represented by the following Chemical Formula 2 or 3 is not particularly limited as long as it is known in the art, and the raw material is added to an organic solvent (for example, acetate, alcohol, ether) and 5 at room temperature. After the reaction for 15 hours to dry and filtered it can be synthesized.
  • an organic solvent for example, acetate, alcohol, ether
  • the compound represented by Formula 2 synthesized above is cyclized in the presence of polyphosphoric acids, or the compound represented by Formula 3 synthesized above is cyclized in the presence of acetic acid
  • the compound represented by it is synthesize
  • the compound represented by the formula (6) is synthesized by reacting the compound represented by the formula (4) synthesized above with the compound represented by the formula (5).
  • Synthesis of the compound represented by Formula 6 is carried out by drying the compound and the compound represented by Formula 4 and Formula 5 into an organic solvent (for example, dichloromethane) and reacted for 10 to 15 hours, followed by drying and filtration Can be synthesized. Catalysts such as aluminum chloride may also be used to facilitate the synthesis process.
  • the compound represented by the following formula (7) is synthesized by substituting hydrogen bonded to the nitrogen atom of the compound represented by the formula (6). That is, hydrogen bonded to the nitrogen atom present in the indole moiety is substituted with a substituent represented by * -LR 11 .
  • the method for substituting the hydrogen with a substituent represented by * -LR 11 is not particularly limited as long as it is a method known in the art.
  • the compound represented by Chemical Formula 1 is synthesized by reacting the compound represented by Chemical Formula 7 synthesized above with a strong base. Specifically, the compound represented by Chemical Formula 7 is dissolved in an organic solvent (eg, tetrahydrofuran, methanol, etc.), reacted with a strong base (eg, sodium hydroxide, etc.) for 30 minutes to 2 hours, and then dried. And it can be synthesized through a process of filtration.
  • an organic solvent eg, tetrahydrofuran, methanol, etc.
  • a strong base eg, sodium hydroxide, etc.
  • the present invention provides a pharmaceutical composition for treating metabolic disease associated with PPAR ⁇ containing the compound represented by Formula 1, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the pharmaceutical composition of the present invention binds to PPAR ⁇ with high affinity, does not act as an agonist, and thus does not induce gene transcription, and can block phosphorylation of the amino acid at position 273 of serine of PPAR ⁇ by CDK5, It does not cause side effects and can be effective in treating metabolic diseases.
  • the side effects may include weight gain, edema, impairment of bone growth or formation, or cardiac hypertrophy.
  • metabolic diseases associated with phosphorylation of PPAR ⁇ by CDK5 include diabetes, insulin resistance, impaired glucose tolerance, pre-diabetes, hyperglycemia, and hyperinsulinemia ( hyperinsulinemia, obesity or inflammation.
  • compositions of the present invention may be formulated and used in oral or parenteral dosage forms.
  • Formulations for oral administration include tablets, pills, hard / soft capsules, solutions, suspensions, emulsifiers, syrups, granules, elixirs, troches, and the like. Lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and / or glycine), glidants (e.g., silica, talc, stearic acid and its magnesium or calcium salts and / or polyethylene glycols) It may contain.
  • Lactose dextrose, sucrose, mannitol, sorbitol, cellulose and / or glycine
  • glidants e.g., silica, talc, stearic acid and its magnesium or calcium salts and / or polyethylene glycols
  • the parenteral administration may be a method of injecting into the body by subcutaneous injection, intravenous injection, intramuscular injection or intrathoracic injection.
  • Such a pharmaceutical composition of the present invention is preferably used to adjust the dosage according to the age, weight, sex, dosage form, health condition and degree of disease of the patient.
  • a target compound was obtained in the same manner as in Example 1, except that (3-chlorophenyl) boronic acid was used instead of 4- (chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • Example 2 The same procedure as in Example 1 was performed except that (4- (tert-butyl) phenyl) boronic acid was used instead of 4- (chlorophenyl) boronic acid used in ⁇ Step 4>. The compound was obtained.
  • Example 2 The same procedure as in Example 1 was carried out except that (3,4-difluorophenyl) boronic acid was used instead of 4- (chloroophenyl) boronic acid used in ⁇ Step 4>. The compound was obtained.
  • Example 2 The same procedure as in Example 1 was carried out except that (3- (methylthio) phenyl) boronic acid was used instead of 4- (chloroophenyl) boronic acid used in ⁇ Step 4>. The compound was obtained.
  • Example 2 The same procedure as in Example 1 was performed except for using (3- (trifluoromethoxy) phenyl) boronic acid instead of 4- (chlorofluorophenyl) boronic acid used in ⁇ Step 4>. To obtain the target compound.
  • Example 2 The same procedure as in Example 1 was performed except for using (3- (trifluoromethyl) phenyl) boronic acid instead of 4- (chlorofluorophenyl) boronic acid used in ⁇ Step 4>. The desired compound was obtained.
  • the target compound was obtained in the same manner as in Example 1, except that (meth-toluyl) boronic acid was used instead of 4- (chloroophenyl) boronic acid used in ⁇ Step 4>.
  • a target compound was obtained in the same manner as in Example 9, except that (3-methoxyphenyl) boronic acid acid was used instead of 4- (chlorophenyl) boronic acid acid used in ⁇ Step 4>. .
  • Example 9 The same procedure as in Example 9 was carried out except that (4- (tert-butyl) phenyl) boronic acid was used instead of 4- (chloroophenyl) boronic acid used in ⁇ Step 4>. The compound was obtained.
  • Example 9 The same procedure as in Example 9 was carried out except that (3- (trifluoromethoxy) phenyl) boronic acid was used instead of 4- (chlorofluorophenyl) boronic acid used in ⁇ Step 4>. To obtain the target compound.
  • Example 9 The same procedure as in Example 9 was carried out except for using (4- (methylthio) phenyl) boronic acid instead of 4- (chloroophenyl) boronic acid used in ⁇ Step 4>. The compound was obtained.
  • Example 9 The same procedure as in Example 9 was performed except for using (4- (trifluoromethyl) phenyl) boronic acid instead of 4- (chlorofluorophenyl) boronic acid used in ⁇ Step 4>. The desired compound was obtained.
  • a target compound was obtained in the same manner as in Example 9, except that (4-bromophenyl) boronic acid was used instead of 4- (chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • a target compound was obtained in the same manner as in Example 9, except that (quinolin-3-yl) boronic acid was used instead of 4- (chloroophenyl) boronic acid used in ⁇ Step 4>. .
  • the target compound was obtained in the same manner as in Example 9, except that (para-toluyl) boronic acid was used instead of 4- (chloroophenyl) boronic acid used in ⁇ Step 4>.
  • Example 9 The same procedure as in Example 9 was carried out except that (3-fluoro-4-methoxyphenyl) boronic acid was used instead of 4- (chlorofluoro) boronic acid used in ⁇ Step 4>. To obtain the target compound.
  • a target compound was obtained by the same procedure as in Example 19, except that (3-chlorophenyl) boronic acid was used instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>.
  • (3-chlorophenyl) boronic acid was used instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>.
  • Example 19 The same procedure as in Example 19 was carried out except for using (4- (methylthio) phenyl) boronic acid instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. The compound was obtained.
  • Example 19 The same procedure as in Example 19 was carried out except that (4- (trifluoromethoxy) phenyl) boronic acid was used instead of the (4-chlorophenyl) boronic acid used in ⁇ Step 4>. To obtain the target compound.
  • Example 19 The same procedure as in Example 19 was carried out except for using (3- (methylthio) phenyl) boronic acid instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. The compound was obtained.
  • Example 19 The same procedure as in Example 19 was carried out except that (3-fluoro-4-methylphenyl) boronic acid was used instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. The compound was obtained.
  • Example 19 The same procedure as in Example 19 was carried out except that (3,4,5-trifluorophenyl) boronic acid was used instead of the (4-chlorophenyl) boronic acid used in ⁇ Step 4>. To obtain the target compound.
  • Example 19 The same procedure as in Example 19 was carried out except for using (3,5-difluorophenyl) boronic acid instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. The compound was obtained.
  • a target compound was obtained in the same manner as in Example 19, except that (4-bromophenyl) boronic acid was used instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • Example 19 The same procedure as in Example 19 was carried out except for using (4- (trifluoromethyl) phenyl) boronic acid instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. The desired compound was obtained.
  • the target compound was obtained in the same manner as in Example 19, except that (pyridin-4-yl) boronic acid was used instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • a target compound was obtained in the same manner as in Example 19, except that (3-fluorophenyl) boronic acid was used instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • a target compound was obtained in the same manner as in Example 19, except that (quinolin-3-yl) boronic acid was used instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • a target compound was obtained in the same manner as in Example 19, except that (3-methoxyphenyl) boronic acid was used instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • a target compound was obtained in the same manner as in Example 19, except that (4-methoxyphenyl) boronic acid was used instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • a target compound was obtained in the same manner as in Example 19, except for using (para-toluyl) boronic acid instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>.
  • Example 19 The same procedure as in Example 19 was carried out except for using (3- (trifluoromethyl) phenyl) boronic acid instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. The desired compound was obtained.
  • Example 19 The same procedure as in Example 19 was carried out except that (3-fluoro-4-methoxyphenyl) boronic acid was used instead of the (4-chlorophenyl) boronic acid used in ⁇ Step 4>. To obtain the target compound.
  • Example 19 The same procedure as in Example 19 was carried out except that (3- (trifluoromethoxy) phenyl) boronic acid was used in place of the (4-chlorophenyl) boronic acid used in ⁇ Step 4>. To obtain the target compound.
  • a target compound was obtained in the same manner as in Example 19, except that (4-nitrophenyl) boronic acid was used instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • a target compound was obtained in the same manner as in Example 19, except that (4-fluorophenyl) boronic acid was used instead of (4-chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • Example 40 The same procedure as in Example 40 was carried out except that (4- (tert-butyl) phenyl) boronic acid was used instead of 4- (chlorophenyl) boronic acid used in ⁇ Step 4>. The compound was obtained.
  • a target compound was obtained in the same manner as in Example 40, except that (3-fluorophenyl) boronic acid was used instead of 4- (chlorofluoro) boronic acid used in ⁇ Step 4>. .
  • a target compound was obtained in the same manner as in Example 40, except that (4-bromophenyl) boronic acid was used instead of 4- (chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • Example 40 The same procedure as in Example 40 was carried out except that (3- (methylthio) phenyl) boronic acid was used instead of 4- (chloroophenyl) boronic acid used in ⁇ Step 4>. The compound was obtained.
  • Example 40 The same procedure as in Example 40 was carried out except that (4- (methylthio) phenyl) boronic acid was used instead of 4- (chloroophenyl) boronic acid used in ⁇ Step 4>. The compound was obtained.
  • a target compound was obtained in the same manner as in Example 48, except that (4-chlorophenyl) boronic acid was used instead of 3- (chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • ethyl-3-benzoyl-1- (4- (chlorophenyl) -6- (trifluoromethyl) -1H-indole-2-carboxylate synthesized in step ⁇ 4> (92 mg, 0.46 mmol) was added and dissolved by addition of tetrahydrofuran (1 mL) and methanol (1 mL), then 1N sodium hydroxide (0.45 ml, 5 vol) was added and stirred for 1 hour. After completion of the reaction, the mixture was concentrated and adjusted to pH 5 using 2N-HCl, after which the organic layer was separated using ethyl acetate and water, and then water contained in the organic layer was removed with magnesium sulfate.
  • a target compound was obtained in the same manner as in Example 49, except for using (3-chlorophenyl) boronic acid instead of 4- (chlorophenyl) boronic acid used in ⁇ Step 4>. .
  • a target compound was obtained in the same manner as in Example 51, except for using (3-methoxyphenyl) boronic acid instead of (3-chlorophenyl) boronic acid used in ⁇ Step 2>. .
  • Example 53 The same procedure as in Example 53 was carried out except for using (4- (tert-butyl) phenyl) boronic acid instead of (3-chlorophenyl) boronic acid used in ⁇ Step 2>. The compound was obtained.
  • Example 55 The same procedure as in Example 55 was carried out except that (3-methylthiophenyl) boronic acid was used instead of (4-methylthiophenyl) boronic acid used in ⁇ Step 4>. Got.
  • a target compound was obtained in the same manner as in Example 55 except for using (4-fluorophenyl) boronic acid instead of (4-methylthiophenyl) boronic acid used in ⁇ Step 4>. .
  • Example 58 The same procedure as in Example 58 was performed except for using (4-trifluoromethoxyphenyl) boronic acid instead of (4-methylthiophenyl) boronic acid used in ⁇ Step 4>. The desired compound was obtained.
  • Example 58 The same procedure as in Example 58 was carried out except that (3-methylthiophenyl) boronic acid was used instead of (4-methylthiophenyl) boronic acid used in ⁇ Step 4>. Got.
  • a target compound was obtained in the same manner as in Example 61, except that (3-fluorophenyl) boronic acid was used instead of (4-fluorophenyl) boronic acid used in ⁇ Step 4>. .
  • a target compound was obtained by the same procedure as in Example 61, except that (3-chlorophenyl) boronic acid was used instead of (4-fluorophenyl) boronic acid used in ⁇ Step 4>. It was.
  • the target compound was obtained in the same manner as in Example 64, except that (meth-toluyl) boronic acid was used instead of (3-methylphenyl) boronic acid used in ⁇ Step 4>.
  • the target compound was obtained in the same manner as in Example 64, except that (4-methoxyphenyl) boronic acid was used instead of (3-methylphenyl) boronic acid used in ⁇ Step 4>.
  • 6-chloro-3- (4-chlorobenzoyl) -1- (4-chlorophenyl) -1H-indole-2-carboxylic acid (50 synthesized in step 5) was used. mg, 0.1124 mmol) and ethanol (1.0 ml) were added and reacted. Next, hydroxylamine hydrochloride (12 mg, 0.1686 mmol) and sodium acetate (18.4 mg, 0.2248 mmol) were added, the mixture was stirred under reflux for 5 hours, the temperature was lowered to room temperature, and the reaction solution was concentrated.
  • 6-chloro-3- (4-chlorobenzoyl) -1- (4-chlorophenyl) -1H-indole-2-carboxylic acid (30) synthesized in ⁇ Step 5> above (30) mg, 0.0675 mmol) and ethanol (0.5 ml) were added and dissolved.
  • methylhydroxylamine hydrochloride (8.5 mg, 0.1012 mmol) and sodium sulfate (19.2 mg, 0.1350 mmol) were added and stirred under reflux, and then the temperature was lowered to room temperature and the reaction solution was concentrated.
  • Example 70 The same procedure as in Example 70 was carried out except that 1- (bromomethyl) -3-methoxybenzene was used instead of 1- (bromomethyl) -4-chlorobenzene used in ⁇ Step 4>. To give the desired compound.
  • Example 70 The same procedure as in Example 70 was repeated except that 1- (bromomethyl) -2-chlorobenzene was used instead of 1- (bromomethyl) -4-chlorobenzene used in ⁇ Step 4>. To give the desired compound.
  • Example 70 The same procedure as in Example 70 was carried out except that 3- (bromomethyl) pyididine was used instead of 1- (bromomethyl) -4-chlorobenzene used in ⁇ Step 4>. Got.
  • Example 1 except that 1- (bromomethyl) -3- (trifluoromethoxy) benzene was used instead of 1- (bromomethyl) -4-chlorobenzene used in ⁇ Step 4>. The same procedure as in 70 was carried out to obtain the target compound.
  • Time-Resolved Fluorescence (RFU) mode in Flexstation 3 (Molecular Devices), excitation1 340 nm, emission1 518 nm, excitation2 340 nm, emission2 488 nm, integration delay 50 us
  • the fluorescence values were read under the integration 400 us condition.
  • Experimental results were calculated using the 518 nm RFUs / 488 nm RFUs ratio value. Specifically, the binding activity of each compound relative to the vehicle (binding activity) was calculated by the formula [100%-each compound ratio / vehicle ratio].
  • PPAR ⁇ Peroxisome proliferator activated receptor-Gamma
  • HEK293 cells were plated at 5 ⁇ 10 4 in 24-well plates (SPL, 30024). HEK293 cells were transfected with PPPAR (PPAR Response Element) as FuGENE HD (Promega, E2312). 24 hours after transduction, the compounds of Examples 1 to 77 and the compounds of Comparative Examples 1 to 3 were treated for 24 hours by concentration. After 24 hours of treatment, cells were collected to calculate the activity of the reporter gene assay and the Luciferase assay. In this case, the reporter gene analysis was performed using a Dual Reporter gene assay kit (Promega, E1980), and the activity of the luciferase assay was calculated by normalizing renilla activity.
  • PPPAR PPAR Response Element
  • FuGENE HD FuGENE HD
  • the compound of the present invention has excellent activity of binding to PPAR ⁇ .
  • the binding activity level indicates the presence or absence of binding, and is not directly related to pharmacological activity. Further, the compounds of the present invention do not induce the transcriptional activity of PPAR ⁇ , while the compounds of the comparative examples can be seen to induce the transcriptional activity of PPAR ⁇ .
  • PPAR ⁇ -Ligand binding domain human recombinant (Cayman, 10007941) 0.43 mg, CDK5 / p35 active (millipore, 14-477) 100 ng, 10-fold kinase buffer (CellSignaling, 9802S) and DW
  • the premix was prepared to have a final volume of 36 ⁇ l of data warehousing (premix was prepared on ice and stored in ice). 2 ⁇ l of each compound was mixed in 36 ⁇ l of the premix and reacted for 10 minutes on ice. Then, 2 ⁇ l of ATP 10 mM (2 ⁇ l of DW for negative control) was added and reacted for 15 minutes in a 37 ° C. water bath.
  • hypoglycemic effect of the pharmaceutical compositions containing the compounds of Examples 1, 2, 19, and 20 and the compound of Comparative Example 1 at 10 mg / kg concentration were evaluated by the following method, and the results are shown in Table 2 below. It was.
  • DIO mice with group separation completed were administered a pharmaceutical composition for each group for one week at each dose.
  • IPGTT Intraperitoneal Glucose Tolerance Test
  • DIO mice to which each pharmaceutical composition was administered for 1 week were orally administered 1 g / kg of glucose, and the blood glucose was measured by Accu-chek active strip (Roche diagnostic Co.) by puncture of the microvenous veins. At this time, the measurement time was -30 minutes, 0 minutes, 20 minutes, 40 minutes, 60 minutes and 120 minutes based on the glucose administration time, and the values measured in each group were averaged.
  • DIO mice that terminated the administration of each pharmaceutical composition were fasted over-night.
  • blood glucose of DIO mice was measured by Accu-chek active strip (Roche diagnostic Co.) and recorded as fasting blood glucose, and then the values measured in each group were averaged.
  • DIO mice that terminated the administration of each pharmaceutical composition were fasted over-night.
  • about 50 ⁇ l of blood was drawn through the capillary (KIMBLE CHASE, USA) of DIO mice by orbital blood collection, and blood was centrifuged at 3600 rpm for 10 minutes to separate plasma. Thereafter, insulin was measured using an insulin ELISA kit (Miobs, Japan), and then averaged values measured in each group.
  • the pharmaceutical compositions containing the compounds of Examples 1, 2, 19, and 20 exhibited equivalent or more blood glucose reductions compared to the pharmaceutical compositions containing the compounds of Comparative Example 1, confirming that the effect was excellent. Can be.

Abstract

본 발명은 CDK5에 의한 PPARγ 인산화를 억제하는 신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물에 관한 것으로, 본 발명의 신규 화합물은 PPARγ에 고친화도로 결합하지만 유전자 전사(transcriptional activity)를 유도하지 않아 작용제(agonist)로 작용하지 않고, CDK5의 인산화 작용을 차단하여 종래의 당뇨병 치료제의 부작용이 발생하지 않을 뿐만 아니라, 약리물성이 우수하다. 따라서 본 발명의 화합물을 유효성분으로 포함하는 약학 조성물은 PPARγ 관련 대사성 질환을 치료하는데 유용하게 사용될 수 있다.

Description

신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물
본 발명은 페록시솜 증식체 활성화 감마 수용체(Peroxisome proliferator activated receptor-Gamma)에 결합하되 작용제(agonist)로 작용하지 않는 신규 화합물, 이의 제조방법 및 이를 유효성분으로 포함하는 약학 조성물에 관한 것이다.
지난 십 수년간 당뇨병 환자의 수가 증가됨에 따라 당뇨병 치료제의 시장도 함께 성장해왔다. 당뇨병은 주로 인슐린의 투입으로 치료해왔지만, 인슐린은 주사를 사용하여 투입해야 하는 번거로움이 있고, 체내에 부족해진 인슐린을 단순히 보충하는 것일 뿐, 당뇨병의 근본적인 치료는 해결하지 못하고 있다.
이에 따라, 설포닐우레아(sulfonylurea)와 같은 인슐린 분비를 촉진시키는 약물, 메트폴민(metformin)과 같은 간에서 저장된 포도당을 서서히 유리시키게 하는 약물, 아카보스(acarbose)와 같이 당분해를 억제하여 흡수를 억제하는 약물, 또는 로시글리타존(rosiglitazone) 및 피오글리타존(pioglitazone)과 같은 인슐린 수용체의 감수성을 증강시키는 약물 등이 개발되어 판매되고 있다.
상기 로시글리타존 및 피오글리타존과 같은 티아졸리디네디온(thiazolidinedione:TZD) 약물은 핵 수용체인 페록시솜 증식체 활성화 감마 수용체(Peroxisome proliferator activated receptor-gamma(이하, 'PPARγ'라 함))에 작용하여 이들의 전사를 활성화시켜 인슐린의 민감도를 높임으로써 항당뇨 효과를 나타낸다.
그러나, 상기 티아졸리디네디온 약물은 'PPARγ'의 활성을 증가시켜 항당뇨 효과를 얻을 수 있지만, 여러 부작용을 일으키는 유전자의 발현도 함께 조절하여 체중증가, 부종, 골밀도 감소 등의 부작용을 보이고, 심혈관 질환을 유발할 수 있는 등의 문제점을 가지고 있어 시장에서의 사용이 제한되고 있는 실정이다. 따라서, 'PPARγ 작용제(agonist)'의 부작용을 해결하기 위한 방안으로 'PPARγ partial agonist'와 PPAR의 3개의 subunit 중 두 개(PPAR-α/γ 또는 PPAR-γ/δ) 및 세 개(PPAR-α/γ/δ)에 작용하는 약물들도 개발되고 있으나, 부작용과 안전성 문제로 아직 시장에 출시되지 못하고 있다.
한편, 최근 연구 결과에 따르면, 'SR-1664'라고 명명된 물질이 종래 티아졸리디네디온 약물에 의한 부작용이 없으면서도 충분한 항당뇨 및 인슐린 저항성 효과를 나타내고 있다고 보고된 바 있다(Nature. 2010, 466, 451-456; Nature, 2010. 477.477-481 참조). 이러한 연구 결과에 의해 당뇨병 환자들의 비만 유사 인슐린 저항성 발생은 여러 유전자의 돌연변이로 인한 CDK5(Cyclin-dependant kinase 5)의 PPARγ 세린 273번 아미노산의 인산화가 원인으로 확인되었고, CDK5에 의한 PPARγ의 인산화 작용을 차단하는 것이 당뇨병 치료제 개발을 위한 중요한 접근법임을 알게 되었다.
이에, 본 발명자들은 PPARγ에 고친화도로 결합하지만 유전자 전사(transcriptional activity)를 유도하지 않아 작용제(agonist)로 작용하지 않고, CDK5에 의한 인산화 작용을 차단하여 인슐린 저항성을 개선하며, 신약 개발시 중요한 약리물성(용해도, metabolis stability, PK)도 우수한 화합물을 제공하고자 한다.
본 발명은 PPARγ에 결합하되 작용제로 작용하지 않는 화합물, 또는 이의 약학적으로 허용가능한 염을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 화합물의 제조방법을 제공하는 것을 목적으로 한다.
또, 본 발명은 상기 화합물, 또는 이의 약학적으로 허용가능한 염을 포함하는 약학 조성물을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위해 본 발명은, 하기 화학식 1로 표시되는 화합물, 또는 이의 약학적으로 허용가능한 염을 제공한다.
[화학식 1]
Figure PCTKR2017007853-appb-I000001
상기 화학식 1에서,
R1 내지 R4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐기, C1 내지 C10의 알킬기, C1 내지 C10의 알콕시기 및 N, O 및 S로 이루어지는 군에서 선택되는 헤테로 원자를 하나 이상 포함하는 고리원자수 5 내지 10의 헤테로아릴기로 이루어진 군에서 선택되고,
R5 내지 R9는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐기 및 C1 내지 C10의 알콕시기로 이루어진 군에서 선택되고,
R10은 수산기, 아미노기 및 C1 내지 C10의 알콕시기로 이루어진 군에서 선택되고,
R11은 수소, 할로겐기, 니트로기, 티올기, C1 내지 C10의 알킬기, C1 내지 C10의 알콕시기, C6 내지 C10의 아릴기 및 N, O 및 S로 이루어지는 군에서 선택되는 헤테로 원자를 하나 이상 포함하는 고리원자수 5 내지 10의 헤테로아릴기로 이루어진 군에서 선택되고,
L은 단일결합, C1 내지 C10의 알킬렌기 및 C6 내지 C10의 아릴렌기로 이루어진 군에서 선택되고,
A는 O 및 NR12로 이루어진 군에서 선택되고,
R12는 수산기 및 C1 내지 C10의 알콕시기로 이루어진 군에서 선택되고,
상기 R1 내지 R4의 C1 내지 C10의 알킬기, C1 내지 C10의 알콕시기 및 고리원자수 5 내지 10의 헤테로아릴기와, 상기 R5 내지 R9의 C1 내지 C10의 알콕시기와, 상기 R10의 C1 내지 C10의 알콕시기와, 상기 R11의 티올기, C1 내지 C10의 알킬기, C1 내지 C10의 알콕시기, C6 내지 C10의 아릴기 및 고리원자수 5 내지 10의 헤테로아릴기와, 상기 L의 C1 내지 C10의 알킬렌기 및 C6 내지 C10의 아릴렌기는, 각각 독립적으로, 할로겐, C1 내지 C10의 알킬기 및 C1 내지 C10의 알콕시기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환될 수 있으며, 상기 치환기가 복수일 경우, 복수의 치환기는 서로 동일하거나 상이하다.
또한, 본 발명은, a) 하기 화학식 2 또는 3으로 표시되는 화합물을 합성하는 단계; b) 상기 a) 단계에서 합성된 화학식 2로 표시되는 화합물을 폴리포스포릭 산(Polyphosphoric acids) 존재 하에 고리화 반응시키거나, 화학식 3으로 표시되는 화합물을 아세트산 존재 하에 고리화 반응시켜 하기 화학식 4로 표시되는 화합물을 합성하는 단계; c) 상기 b) 단계에서 합성된 화학식 4로 표시되는 화합물을 하기 화학식 5로 표시되는 화합물과 반응시켜 하기 화학식 6으로 표시되는 화합물을 합성하는 단계; d) 상기 c) 단계에서 합성된 화학식 6으로 표시되는 화합물의 질소 원자에 결합된 수소를 치환시켜 하기 화학식 7로 표시되는 화합물을 합성하는 단계; 및 e) 상기 d) 단계에서 합성된 화학식 7로 표시되는 화합물을 강염기와 반응시켜 하기 화학식 1로 표시되는 화합물을 합성하는 단계를 포함하는 화합물의 제조방법을 제공한다.
[화학식 2]
Figure PCTKR2017007853-appb-I000002
[화학식 3]
Figure PCTKR2017007853-appb-I000003
[화학식 4]
Figure PCTKR2017007853-appb-I000004
[화학식 5]
Figure PCTKR2017007853-appb-I000005
[화학식 6]
Figure PCTKR2017007853-appb-I000006
[화학식 7]
Figure PCTKR2017007853-appb-I000007
[화학식 1]
Figure PCTKR2017007853-appb-I000008
상기 화학식 1 내지 7에서,
R1 내지 R11, L 및 A에 대한 정의는 상기에서 설명한 바와 동일하다.
또, 본 발명은, 상기 화학식 1로 표시되는 화합물, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 대사성 질환 치료용 약학 조성물을 제공한다.
본 발명에 따른 화학식 1로 표시되는 화합물, 또는 이의 약학적으로 허용가능한 염은 PPARγ에 고친화도로 결합하지만 작용제로 작용하지 않아 유전자 전사를 유도하지 않고, CDK5에 의한 인산화 작용을 차단하여 종래의 당뇨병 치료를 위해 사용되던 약물에 의한 부작용의 발생을 최소화시킬 수 있다. 따라서, 본 발명은 PPARγ 관련 대사성 질환의 치료에 탁월한 효과를 나타낼 수 있는 약학 조성물을 제공할 수 있다.
도 1은 본 발명의 실험예 3을 설명하기 위한 참고도이다.
이하 본 발명을 설명한다.
1. 신규 화합물, 또는 이의 약학적으로 허용가능한
본 발명은, PPARγ에 고친화도로 결합하지만 유전자 전사(transcriptional activity)를 유도하지 않아 작용제(agonist)로 작용하지 않고, CDK5에 의한 인산화 작용을 차단하여 인슐린 저항성을 개선할 수 있는 화합물, 또는 이의 약학적으로 허용가능한 염에 관한 것으로, 상기 화합물은 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2017007853-appb-I000009
상기 화학식 1에서,
R1 내지 R4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐기, C1 내지 C10의 알킬기, C1 내지 C10의 알콕시기 및 N, O 및 S로 이루어지는 군에서 선택되는 헤테로 원자를 하나 이상 포함하는 고리원자수 5 내지 10의 헤테로아릴기로 이루어진 군에서 선택되고,
R5 내지 R9는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐기 및 C1 내지 C10의 알콕시기로 이루어진 군에서 선택되고,
R10은 수산기, 아미노기 및 C1 내지 C10의 알콕시기로 이루어진 군에서 선택되고,
R11은 수소, 할로겐기, 니트로기, 티올기, C1 내지 C10의 알킬기, C1 내지 C10의 알콕시기, C6 내지 C10의 아릴기 및 N, O 및 S로 이루어지는 군에서 선택되는 헤테로 원자를 하나 이상 포함하는 고리원자수 5 내지 10의 헤테로아릴기로 이루어진 군에서 선택되고,
L은 단일결합, C1 내지 C10의 알킬렌기 및 C6 내지 C10의 아릴렌기로 이루어진 군에서 선택되고,
A는 O 및 NR12로 이루어진 군에서 선택되고,
R12는 수산기 및 C1 내지 C10의 알콕시기로 이루어진 군에서 선택되고,
상기 R1 내지 R4의 C1 내지 C10의 알킬기, C1 내지 C10의 알콕시기 및 고리원자수 5 내지 10의 헤테로아릴기와, 상기 R5 내지 R9의 C1 내지 C10의 알콕시기와, 상기 R10의 C1 내지 C10의 알콕시기와, 상기 R11의 티올기, C1 내지 C10의 알킬기, C1 내지 C10의 알콕시기, C6 내지 C10의 아릴기 및 고리원자수 5 내지 10의 헤테로아릴기와, 상기 L의 C1 내지 C10의 알킬렌기 및 C6 내지 C10의 아릴렌기는, 각각 독립적으로, 할로겐, C1 내지 C10의 알킬기 및 C1 내지 C10의 알콕시기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환될 수 있으며, 상기 치환기가 복수일 경우, 복수의 치환기는 서로 동일하거나 상이하다.
상기 화학식 1로 표시되는 화합물은 인돌 모이어티(indole moiety)에 특정 치환기, 즉, 케톤기(ketone group) 또는 이미노기(imino group)에 의해 연결되는 방향족 고리기가 결합되어 있는 것이 특징이다. 이러한 본 발명의 화학식 1로 표시되는 화합물을 PPARγ와 관련된 대사성 질환을 치료하기 위한 약학 조성물의 유효성분으로 사용할 경우, 상기 특정 치환기에 의해 유전자 전사(transcriptional activity)가 유도되지 않기 때문에 PPARγ와 관련된 대사성 질환을 치료하는데 탁월한 효과를 나타낼 수 있다.
여기서, 약학 조성물의 치료 효과를 고려할 때, 상기 화학식 1에서 R1 내지 R4는 각각 독립적으로 수소, 할로겐기, 피리딘기 및 트리플루오르메틸기(-CF3)로 이루어진 군에서 선택되는 것이 바람직하다.
또한, 상기 화학식 1에서 R5 내지 R9는 각각 독립적으로 수소, 할로겐기, 메톡실기(-OCH3) 및 트리플루오르메톡시기(-OCF3)로 이루어진 군에서 선택되는 것이 바람직하다.
또, R10은 수산기(-OH)인 것이 바람직하다.
또한, 약학 조성물의 치료 효과를 고려할 때, 상기 화학식 1에서 *-L-R11로 표시되는 구조는 하기 S1 내지 S30으로 표시되는 구조로 이루어진 군에서 선택되는 것이 바람직하다.
Figure PCTKR2017007853-appb-I000010
이러한 본 발명의 화학식 1로 표시되는 화합물, 또는 이의 약학적으로 허용가능한 염은 하기 화학식 C1 내지 C77로 이루어진 군에서 선택되는 어느 하나의 화합물, 또는 이의 약학적으로 허용가능한 염으로 구체화될 수 있으나, 이들로 한정되는 것은 아니다.
Figure PCTKR2017007853-appb-I000011
Figure PCTKR2017007853-appb-I000012
Figure PCTKR2017007853-appb-I000013
Figure PCTKR2017007853-appb-I000014
Figure PCTKR2017007853-appb-I000015
Figure PCTKR2017007853-appb-I000016
Figure PCTKR2017007853-appb-I000017
Figure PCTKR2017007853-appb-I000018
Figure PCTKR2017007853-appb-I000019
한편, 본 발명의 화학식 1로 표시되는 화합물이 약학적으로 허용가능한 염 형태로 사용될 경우에는 약학적으로 허용 가능한 유리산(free acid)에 의해 형성된 산 부가염 형태인 것이 바람직하다. 상기 산 부가염 제조 시 사용되는 산은 특별히 한정되지 않으나, 염산, 질산, 인산, 황산, 브롬화수소산, 요드화수소산, 아질산, 아인산, 디카르복실레이트, 페닐-치환된 알카노에이트, 하이드록시 알카노에이트, 알칸디오에이트, 아세트산, 안식향산, 구연산, 젖산, 말레인산, 글루콘산, 메탄설폰산, 4-톨루엔설폰산, 주석산, 또는 푸마르산 등을 들 수 있다.
상기 산 부가염을 제조하는 방법은 특별히 한정되지 않으나, 상기 화학식 1로 표시되는 화합물을 유기용매(예를 들어, 메탄올, 에탄올, 아세톤, 메틸렌클로라이드, 아세토니트릴 등)에 용해시키고, 유기산 또는 무기산을 가하여 생성된 침전물을 여과 및 건조시키거나, 유기용매와 과량의 산을 감압 증류한 후 건조시키는 방법으로 제조할 수 있다.
2. 제조방법
본 발명은 상기 화학식 1로 표시되는 화합물의 제조방법을 제공하는데, 이에 대해 구체적으로 설명하면 다음과 같다.
먼저, 하기 화학식 2 또는 3으로 표시되는 화합물을 합성한다. 하기 화학식 2 또는 3으로 표시되는 화합물을 합성하는 방법은 당 업계에 공지된 것이라면 특별히 한정되지 않으며, 원료 물질을 유기용매(예를 들어, 아세테이트계, 알코올계, 에테르계)에 투입하고 실온에서 5 내지 15 시간 동안 반응시킨 후 건조 및 여과하는 과정을 거쳐 합성할 수 있다.
[화학식 2]
Figure PCTKR2017007853-appb-I000020
[화학식 3]
Figure PCTKR2017007853-appb-I000021
다음, 상기에서 합성된 화학식 2로 표시되는 화합물을 폴리포스포릭 산(Polyphosphoric acids) 존재 하에 고리화 반응시키거나, 상기에서 합성된 화학식 3으로 표시되는 화합물을 아세트산 존재 하에 고리화 반응시켜 하기 화학식 4로 표시되는 화합물을 합성한다.
[화학식 4]
Figure PCTKR2017007853-appb-I000022
그 다음, 상기에서 합성된 화학식 4로 표시되는 화합물을 하기 화학식 5로 표시되는 화합물과 반응시켜 하기 화학식 6으로 표시되는 화합물을 합성한다. 이러한 화학식 6으로 표시되는 화합물의 합성은 화학식 4 및 화학식 5로 표시되는 화합물을 유기용매(예를 들어, 다이클로오로메탄)에 투입하고 10 내지 15 시간 동안 반응시킨 후 건조 및 여과하는 과정을 거쳐 합성할 수 있다. 또한 합성과정을 촉진시키기 위해 알루미늄클로라이드와 같은 촉매가 사용될 수 있다.
[화학식 5]
Figure PCTKR2017007853-appb-I000023
[화학식 6]
Figure PCTKR2017007853-appb-I000024
다음, 상기에서 합성된 화학식 6으로 표시되는 화합물의 질소 원자에 결합된 수소를 치환시켜 하기 화학식 7로 표시되는 화합물을 합성한다. 즉, 인돌 모이어티에 존재하는 질소 원자에 결합된 수소를 *-L-R11로 표시되는 치환체로 치환시킨다. 이때, 상기 수소를 *-L-R11로 표시되는 치환체로 치환시키는 방법은 당 업계에 공지된 방법이라면 특별히 한정되지 않는다.
[화학식 7]
Figure PCTKR2017007853-appb-I000025
이후, 상기에서 합성된 화학식 7로 표시되는 화합물을 강염기와 반응시켜 상기 화학식 1로 표시되는 화합물을 합성한다. 구체적으로, 상기 화학식 7로 표시되는 화합물을 유기용매(예를 들어, 테트라하이드로퓨란, 메탄올 등)에 용해시키고 강염기(예를 들어, 수산화나트늄 등)와 30 분 내지 2 시간 동안 반응시킨 후 건조 및 여과하는 과정을 거쳐 합성할 수 있다.
여기서, 화학식 1 내지 7에서, R1 내지 R11, L 및 A에 대한 정의는 상기에서 설명한 바와 동일하다.
3. 약학 조성물
본 발명은 상기 화학식 1로 표시되는 화합물, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 함유하는 PPARγ와 관련된 대사성 질환 치료용 약학 조성물을 제공한다. 구체적으로, 본 발명의 약학 조성물은 PPARγ에 고친화도로 결합하되, 증진제(agonist)로 작용하지 않아 유전자 전사를 유도하지 않고, CDK5에 의한 PPARγ의 세린 273번 위치의 아미노산의 인산화를 차단할 수 있어, 부작용을 유발하지 않으며 대사성 질환을 치료하는데 탁월한 효과를 나타낼 수 있다.
구체적으로, 상기 부작용은 체중증가(weight gain), 부종(edema), 골성장장애(impairment of bone growth or formation), 또는 심장비대증(cardiac hypertrophy) 등을 들 수 있다.
또한, 상기 CDK5에 의한 PPARγ의 인산화와 관련된 대사성 질환으로는, 당뇨병, 인슐린 내성(insulin resistance), 내당능손상(impaired glucose tolerance), 당뇨병전증(pre-diabetes), 과혈당(hyperglycemia), 과인슐린혈증(hyperinsulinemia), 비만 또는 염증(inflammation) 등을 들 수 있다.
이러한 본 발명의 약학 조성물은 경구 또는 비경구 투여 형태로 제제화되어 사용될 수 있다.
상기 경구 투여를 위한 제형으로는 정제, 환제, 경/연질 캅셀제, 액제, 현탁제, 유화제, 시럽제, 과립제, 엘릭시르제, 트로키제 등을 들 수 있으며, 이들 제형은 상기 유효성분 이외에 희석제(예를 들어, 락토즈, 덱스트로즈, 수크로즈, 만니톨, 솔비톨, 셀룰로오즈 및/또는 글리신), 활택제(예를 들어, 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및/또는 폴리에틸렌 글리콜) 등을 함유할 수 있다.
상기 비경구 투여는 피하주사, 정맥주사, 근육 내 주사 또는 흉부 내 주사로 체내에 주입하는 방법을 들 수 있다.
이와 같은 본 발명의 약학 조성물은 환자의 나이, 몸무게, 성별, 투여형태, 건강상태 및 질환 정도에 따라 투여량을 조절하여 사용하는 것이 바람직하다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
하기 실시예에서, 모든 시약은 시그마알드리치, 플루카(Fluka), TCI 사에서 제조된 시약을 구매 사용하였고, 1H NMR Spectra는 테트라메틸실란(tetra메틸 silane)을 내부 표준물질로 사용하여 Bruker Biospin AVANCE II 400 기기를 사용하여 기록하였다.
[ 실시예 1] 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실릭 엑시드 합성
<단계 1> (E)-에틸-2-(2-(3- 클로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000026
2 L의 플라스크에 정제된 증류수 (520 ml)를 넣는다. 상기 플라스크에 소듐아세테이트 (50 g, 0.6 mol)를 녹인 후 (3-클로오로페닐)하이드라진 하이드로클로라이드 (52 g, 0.3 mol)를 넣고 30 분 동안 실온에서 교반시킨 후, 에틸 2-옥소프로파노에이트 (35 ml, 0.3 mol)를 천천히 넣고, 6 시간 동안 교반을 실시하였다. 반응 종료 후 감압필터로 여과한 후 건조시켰다. 3 L의 플라스크에 건조한 고체와 노말헥산 2 L를 넣고 1시간 동안 교반시킨 후 여과하여 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (57 g, 0.24 mol, 81 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.24 (m, 1H), 7.04 (m, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.84 (m, 1H), 4.35 (q, 2H), 2.11 (s, 3H), 1.40 (t, J = 8.0 Hz, 3H).
<단계 2> 에틸-6-클로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000027
500 ml의 플라스크에 톨루엔 (110 ml)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸=2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (10.6 g, 0.044 mol)를 넣었다. 다음, 폴리포스포릭 산 (52 g)을 넣은 후, 6 시간 동안 환류반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각하고 톨루엔층만 분리한 후. 분리된 톨루엔층을 감압농축하였다. 다음, 형성된 고체에 톨루엔 (50 ml)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸 6-클로오로-1H-인돌-2-카르복실레이트 (3.4 g, 0.015 mol, 35 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 8.84 (br, NH, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.42 (s, 1H), 7.19 (s, 1H) 7.13 (d, J = 8.0 Hz, 1H), 4.44 (q, 2H), 1.43 (t, J = 8.0 Hz, 3H).
<단계 3> 에틸 6- 클로오로 -3-(4- 클로오로벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000028
100 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸 6-클로오로-1H-인돌-2-카르복실레이트 (1 g, 4.47 mmol)와 다이클로오로메탄 (10 mL)를 넣고 용해시켰다. 다음, 4-클로오로벤조일 클로라이드 (939 mg, 5.36 mmol), 알루미늄클로라이드 (714 mg, 5.36 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:6)로 정제하여 에틸-6-클로오로-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (843 mg, 2.32 mmol, 52%)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.17 (br, NH, 1H), 7.81 (d, J = 6.8 Hz, 2H), 7.60 (d, J = 8.4 Hz, 1H), 7.49-7.41 (m, 3H), 7.21 (dd, J = 1.6, 8.4 Hz, 1H), 4.13-4.08 (m, 2H), 0.97-0.94 (m, 3H).
<단계 4> 에틸-6- 클로오로 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000029
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-6-클로오로-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (40 mg, 0.122 mmol)와 다이클로오로메탄 (1 mL)를 넣고 용해시켰다. 다음, 4-(클로오로페닐)보로닉 엑시드 (39 mg, 0.246 mmol), 코퍼(II)아세테이트 (34 mg, 0.185 mmol), 트라이에틸아민 (25 mg, 0.246 mmol)을 넣고 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 물를 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (34 mg, 0.072 mmol, 60%)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.84 (d, J = 9.2 Hz, 2H), 7.67 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 9.6 Hz, 2H), 7.45 (d, J = 9.2 Hz, 2H), 7.34 (d, J = 9.6 Hz, 2H), 7.24 (dd, J = 2.0, 8.8 Hz, 1H), 7.11 (d, J = 2,0 Hz, 1H), 3.87-3.81 (m, 2H), 0.85-0.82 (m, 3H).
<단계 5> 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000030
25 mL 플라스크에 상기 <단계 4>에서 합성된 에틸-6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (34 mg, 0.072 mmol)을 넣고, 테트라하이드로퓨란 (0.5 mL) 및 메탄올 (0.5 mL)을 첨가하여 용해시켰다. 다음, 물 (0.5 mL)에 용해된 소듐 하이드록사이드 (15 mg, 0.36 mmol)을 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl를 이용하여 pH 5로 맞췄다. 다음, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실릭 엑시드 (20 mg, 0.045 mmol, 62.5 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.56 (br, OH, 1H), 7.85-7.83 (d, J = 8.0 Hz, 2H), 7.67-7.57 (m, 7H), 7.32-7.30 (d, J = 8.0 Hz, 2H), 7.17(s, 1H).
[ 실시예 2] 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(3- 클로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (3-클로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.53 (br, OH, 1H), 7.86-7.84 (d, J = 8.0 Hz, 2H), 7.50 (s, 1H), 7.65-7.58 (m, 5H), 7.55-7.52 (m, 1H), 7.32-7.30 (d, J = 8.0 Hz, 1H), 7.16 (s, 1H).
[ 실시예 3] 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(4- 터트 - 뷰틸페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (4-(터트-뷰틸)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.88 (d, J = 1.6 Hz, 1H), 7.76 (d, J = 3.6 Hz, 2H), 7.76-7.56 (m, 3H), 7.39 (d, J = 8.4 Hz, 2H), 7.25 (dd, J = 1.6, 8.4 Hz, 1H), 7.12 (d, J = 11.2 Hz, 2H), 1.36 (s, 9H).
[ 실시예 4] 6 - 클로오로 -3-(4- 클로오로벤조일 )-1-(3,4- 다이플로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (3,4-다이플로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.53 (br, OH, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.89 (t, J = 8.0 Hz, 1H), 7.70-7.60 (m, 2H), 7.54 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.0 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.18 (s, 1H).
[ 실시예 5] 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(3-( 메틸싸이오 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (3-(메틸싸이오)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.53 (br, OH, 1H), 7.81-7.76 (m, 3H), 7.49-7.45 (m, 3H), 7.37 (d, J = 8.0 Hz, 2H), 7.25 (t, J = 8.0 Hz, 2H), 7.06 (s, 1H), 2.35 (s, 3H).
[ 실시예 6] 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(3-( 트리플로오로메톡시 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (3-(트리플로오로메톡시)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.83 (d, J = 8.4 Hz, 2H), 7.72-7.54 (m,7H), 7.28 (dd, J = 1.6, 8.4 Hz, 1H), 7.13 (d, J = 1.6 Hz, 1H).
[ 실시예 7] 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(3-( 트리플로오로메틸 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (3-(트리플로오로메틸)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 8.01 (s, 1H), 7.93-7.80 (m, 5H), 7.64 (d, J = 8.8 Hz, 1H), 7.58 (d, J = 8.8 Hz, 2H), 7.30 (dd, J = 2.0, 8.8 Hz, 1H), 7.12 (d, J = 1.6 Hz, 1H).
[ 실시예 8] 6- 클로오로 -3-(4- 클로오로벤조일 )-1-( 메타 - 톨루일 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (메타-톨루일)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.79 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.4 Hz, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.44 (t, J = 7.6 Hz, 1H), 7.33-7.23 (m, 4H), 7.05 (s, 1H), 2.39 (s, 3H).
[ 실시예 9] 3- 벤조일 -6- 클로오로 -1-(4- 클로오로페닐 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 1> (E)-에틸-2-(2-(3- 클로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000031
2 L의 플라스크에 정제된 증류수 (520 ml)를 넣는다. 상기 플라스크에 소듐아세테이트 (50 g, 0.6 mol)를 녹인 후 (3-클로오로페닐)하이드라진 하이드로클로라이드 (52 g, 0.3 mol)를 넣고 30 분 동안 실온에서 교반시킨 후, 에틸 2-옥소프로파노에이트 (35 ml, 0.3 mol)를 천천히 넣고, 6 시간 동안 교반을 실시하였다. 반응 종료 후, 감압필터로 여과한 후 건조시켰다. 3 L의 플라스크에 건조한 고체와 노말헥산 2 L를 넣고 1 시간 동안 교반시킨 후 여과하여 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (57 g, 0.24 mol, 81 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.24 (m, 1H), 7.04 (m, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.84 (m, 1H), 4.35 (q, 2H), 2.11 (s, 3H), 1.40 (t, J = 8.0 Hz, 3H).
<단계 2> 에틸-6-클로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000032
500 ml의 플라스크에 톨루엔 (110 ml)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (10.6 g, 0.044 mol)를 넣었다. 다음 폴리포스포릭 엑시드 (52 g)을 넣은 후, 6 시간 동안 환류반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각하고 톨루엔층만 분리한 후. 분리된 톨루엔층을 감압농축하였다. 형성된 고체에 톨루엔 (50 ml)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (3.4 g, 0.015 mol, 35 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 8.84 (br, NH, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.42 (s, 1H), 7.19 (s, 1H) 7.13 (d, J = 8.0 Hz, 1H), 4.44 (q, 2H), 1.43 (t, J = 8.0 Hz, 3H).
<단계 3> 에틸-3-벤조일-6-클로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000033
100 ml의 플라스크에 상기 <단계 2>에서 합성된 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (3 g, 13.41 mmol)와 다이클로오로메탄 (30 mL)을 넣고 용해시켰다. 다음, 벤조일 클로오라이드 (2.07 g, 14.75 mmol), 알루미늄클로라이드 (3.57 g, 26.82 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:6)로 정제하여 에틸-3-벤조일-6-클로오로-1H-인돌-2-카르복실레이트 (2.5 g, 7.62 mmol, 57 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.48 (br, NH, 1H), 7.87 (d, J = 6.8 Hz, 2H), 7.66 (d, J = 8.8 Hz, 1H), 7.58 (d, J = 7.2 Hz, 1H), 7.49 (d, J = 1.6 Hz, 2H), 7.46 (s, 1H), 7.44 (d, J = 7.6 Hz, 2H), 7.2 (d, J = 8.8 Hz, 2H), 4.08-4.03 (q, J = 7.2 Hz, 2H), 0.89-0.86 (t, J = 7.2 Hz, 3H).
<단계 4> 에틸-3- 벤조일 -6- 클로오로 -1-(4- 클로오로페닐 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000034
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸 3-벤조일-6-클로오로-1H-인돌-2-카르복실레이트 (150 mg, 0.46 mmol)와 다이클로오로메탄 (1.5 mL)을 넣고 용해시켰다. 다음, (4-클로오로페닐)보로닉 엑시드 (71.6 mg, 0.46 mmol), 코퍼(II)아세테이트 (166 mg, 0.91 mmol), 트라이에틸아민 (93 mg, 0.91 mmol)을 넣고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-3-벤조일-6-클로오로-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (78 mg, 0.18 mmol, 39 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.89 (d, J = 7.2 Hz, 2H), 7.07 (d, J = 8.8 Hz, 1H), 7.59-7.44 (m, 5H), 7.35 (d, J = 9.6 Hz, 2H), 7.23 (dd, J = 1.6, 8.4 Hz, 1H), 7.11 (d, J = 1.6 Hz, 1H), 3.80-3.74 (m, 2H), 0.80-0.76 (m, 3H).
<단계 5> 3- 벤조일 -6- 클로오로 -1-(4- 클로오로페닐 )-1H-인돌-2- 카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000035
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-3-벤조일-6-클로오로-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (78 mg, 0.18 mmol)을 넣고, 테트라하이드로퓨란 (1 mL) 및 메탄올 (1 mL)을 첨가하여 용해시켰다. 다음, 물 (1 mL)에 용해된 소듐 하이드록사이드 (36 mg, 0.89 mmol)을 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl를 이용하여 pH 5로 맞췄다. 다음, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 3-벤조일-6-클로오로-1-(4-클로오로페닐)-1H-인돌-2-카르복실릭 엑시드 (48 mg, 0.12 mmol, 65 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.82 (d, J = 8.8 Hz, 2H), 7.61-7.51 (m, 6H), 7.42 (t, J = 8 Hz, 2H), 7.18 (dd, J = 2.0, 8.4 Hz, 1H), 7.07 (d, J = 1.6 Hz, 1H).
[ 실시예 10] 3- 벤조일 -6- 클로오로 -1-(3- 메톡시페닐 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (3-메톡시페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 9와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.84 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 7.2 Hz, 1H), 7.46 (t, 1H), 7.44 (t, 3H), 7.18 (d, J = 2.0 Hz, 1H), 7.07 (d, J = 7.6 Hz, 4H).
[ 실시예 11] 3- 벤조일 -6- 클로오로 -1-(4-( 터트 - 뷰틸 )페닐)-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (4-(터트-뷰틸)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 9와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.81 (dd, J = 7.2 Hz, 2H), 7.63-7.56 (m, 4H), 7.50 (t, J = 8.0 Hz, 2H), 7.42 (d, J = 6.8 Hz, 2H), 7.25 (dd, J = 1.6, 8.4 Hz, 1H), 7.08 (d, J = 2.0 Hz, 1H), 1.37 (s, 9H).
[ 실시예 12] 3- 벤조일 -6- 클로오로 -1-(3-( 트라이플로오로메톡시 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (3-(트라이플로오로메톡시)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 9와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.85 (d, J = 7.2 Hz, 2H), 7.72 (t, J = 8.0 Hz, 1H), 7.64-7.45 (m, 7H), 7.25 (dd, J = 1.6, 8.4 Hz, 4H), 7.12 (d,J = 1.6 Hz, 1H).
[ 실시예 13] 3- 벤조일 -6- 클로오로 -1-(4-( 메틸싸이오 )페닐)-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (4-(메틸싸이오)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 9와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.81 (d, J = 6.8 Hz, 2H), 7.66 (d, J = 8.0 Hz 1H), 7.54 (t, J = 6.8 Hz, 1H), 7.41 (m, 6H), 7.19 (dd, J = 8 Hz, 1H), 7.05 (s, 1H), 2.55 (s, 3H).
[ 실시예 14] 3- 벤조일 -6- 클로오로 -1-(4-( 트라이플로오로메틸 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (4-(트라이플로오로메틸)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 9와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.91 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 7.2 Hz 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.8 Hz, 6H), 7.55 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.20 (dd, J = 1.6, 8.4Hz, 3H), 7.14 (d, J = 1.2 Hz, 1H).
[ 실시예 15] 3- 벤조일 -1-(4- 브로모페닐 )-6- 클로오로 --1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (4-브로모페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 9와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.82 (d, J = 2.8 Hz, 2H), 7.74 (q, J = 3.2, 8.4 Hz, 1H), 7.54 (d, J = 6.4 Hz, 1H), 7.41 (t, J = 7.6 Hz, 3H), 7.32-7.25 (m, 2H), 7.17 (dd, J = 1.6, 8.4 Hz, 2H), 7.65-6.54 (m, 2H), 7.48-7.42 (m, 4H), 7.20 (dd. J = 1.6, 8.4Hz, 1H), 7.10 (d, J = 2.0 Hz, 1H).
[ 실시예 16] 3- 벤조일 -6- 클로오로 -1-(퀴놀린-3-일)-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (퀴놀린-3-일)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 9와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 9.03 (d, J = 2.4 Hz, 1H), 8.72 (d, J = 2.4 Hz, 1H), 8.18-8.11 (m, 2H), 7.93-7.30 (m, 10H).
[ 실시예 17] 3- 벤조일 -6- 클로오로 -1-(파라- 톨루일 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (파라-톨루일)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 9와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.81 (d, J = 7.2 Hz, 2H), 7.60-7.55 (m, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.38-7.33 (m, 4H), 7.20 (dd,J = 1.6, 8.4 Hz, 2H), 7.10 (d, J = 2.0 Hz, 1H).
[ 실시예 18] 3- 벤조일 -6- 클로오로 -1-(3- 플로오로 -4- 메톡시페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (3-플로오로-4-메톡시페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 9와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.82 (d, J = 7.2 Hz, 2H), 7.66 (d, J = 7.6 Hz, 1H), 7.54 (d, J = 6.4 Hz, 1H), 7.41 (t, J = 7.6 Hz, 3H), 7.32-7.25 (m, 2H), 7.17 (dd, J = 1.6, 8.4 Hz, 1H), 7.05 (s, 1H), 3.92 (s, 3H).
[ 실시예 19] 6- 클로오로 -1-(4- 클로오로페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2-카르복실릭 엑시드 합성
<단계 1> (E)-에틸-2-(2-(3- 클로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000036
2 L의 플라스크에 정제된 증류수 (520 ml)를 넣는다. 상기 플라스크에 소듐아세테이트 (50 g, 0.6 mol)를 녹인 후 (3-클로오로페닐)하이드라진 하이드로클로라이드 (52 g, 0.3 mol)를 넣고 30 분 동안 실온에서 교반시킨 후, 에틸 2-옥소프로파노에이트 (35 ml, 0.3 mol)를 천천히 넣고, 6 시간 동안 교반을 실시하였다. 반응 종료 후, 감압필터로 여과한 후 건조시켰다. 3 L의 플라스크에 건조한 고체와 노말헥산 2 L를 넣고 1 시간 동안 교반시킨 후 여과하여 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (57 g, 0.24 mol, 81%)을 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.24 (m, 1H), 7.04 (m, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.84 (m, 1H), 4.35 (q, 2H), 2.11 (s, 3H), 1.40 (t, J = 8.0 Hz, 3H).
<단계 2> 에틸-6-클로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000037
500 ml의 플라스크에 톨루엔 (110 ml)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (10.6 g, 0.044 mol)를 넣었다. 다음, 폴리포스포릭 산 (52 g)을 넣은 후, 6 시간 동안 환류반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각하고 톨루엔층만 분리한 후. 분리된 톨루엔층을 감압농축하였다. 형성된 고체에 톨루엔 (50 ml)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (3.4 g, 0.015 mol, 35 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 8.84 (br, NH, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.42 (s, 1H), 7.19 (s, 1H) 7.13 (d, J = 8.0 Hz, 1H), 4.44 (q, 2H), 1.43 (t, J = 8.0 Hz, 3H).
<단계 3> 에틸-6- 클로오로 -3-(4- 메톡시벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000038
25 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸 6-클로오로-1H-인돌-2-카르복실레이트 (7 g, 31.29 mmol)와 다이클로오로에탄 (70 mL)을 넣고 용해시켰다. 다음, 4-메톡시로벤조일 클로라이드 (6.04 g, 37.55 mmol), 알루미늄클로라이드 (5.07 g, 37.55 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로에탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:6)로 정제하여 에틸-6-클로오로-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (6.51 g, 18.19 mmol, 58.17 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.31 (s, 1H), 7.81 (d, J = 9.2 Hz, 2H), 7.66 (d, J = 1.2 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.43 (d, J = 9.2 Hz, 2H), 7.33 (dd, J = 8.8 Hz, 1H), 4.13-4.08 (q, J = 7.2 Hz, 2H), 0.97-0.94 (t, J = 7.2 Hz, 3H).
<단계 4> 에틸-6- 클로오로 -1-(4- 클로오로페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000039
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-6-클로오로-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (100 mg, 0.28 mmol)와 다이클로오로메탄 (1 mL)을 넣고 용해시켰다. 다음, (4-클로오로페닐)보로닉 엑시드 (66 mg, 0.42 mmol), 코퍼(II)아세테이트 (101 mg, 0.56 mmol), 트라이에틸아민 (57 mg, 0.56 mmol)을 넣고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-6-클로오로-1-(4-클로오로페닐)-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (98 mg, 0.21 mmol, 74 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.88 (d, J = 7.2 Hz, 2H), 7.62 (d, J = 8.4 Hz, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.8 Hz, 2H), 7.20 (dd, J = 2.0, 8.8 Hz, 1H), 7.10 (d, J = 1.6 Hz, 1H), 6.94 (d, J = 8.8 Hz, 2H), 3.90-3.84 (m, 5H), 0.88-0.81 (m, 3H).
<단계 5> 6- 클로오로 -1-(4- 클로오로페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2- 카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000040
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-6-클로오로-1-(4-클로오로페닐)-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (98 mg, 0.21 mmol)를 넣고, 테트라하이드로퓨란 (1 mL) 및 메탄올 (1 mL)을 첨가하여 용해시켰다. 다음, 물 (1 mL)에 용해된 소듐 하이드록사이드 (42 mg, 1.04 mmol)을 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후, 농축시키고, 2N-HCl를 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 6-클로오로-1-(4-클로오로페닐)-3-(4-메톡시벤조일)-1H-인돌-2-카르복실릭 엑시드 (56 mg, 0.13 mmol, 60 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.43 (br, OH, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.60-7.50 (m, 5H), 7.17 (d, J = 8.0 Hz, 1H), 7.07 (s, 1H), 6.96 (d, J = 8.0 Hz, 2H), 3.82 (s, 3H).
[ 실시예 20] 6- 클로오로 -1-(3- 클로오로페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (3-클로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻을 수 있었다.
1H NMR (400 MHz, DMSO-d6) 13.43 (br, OH, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.70 (s, 1H), 7.61-7.60 (m, 2H), 7.53-7.50 (m, 2H), 7.25 (d, J = 8.0 Hz, 1H), 7.12 (s, 1H), 7.04 (d, J = 8.0 Hz, 2H), 3.84 (s, 3H).
[ 실시예 21] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(4-( 메틸싸이오 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (4-(메틸싸이오)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.83 (d, J = 8.8 Hz, 2H), 7.56 (d, J = 8.4 Hz, 1H), 7.43-7.37 (m, 4H), 7.14 (dd, J = 2.0, 8.8 Hz, 1H), 7.01 (d, J = 1.6 Hz, 1H), 6.95 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H), 2.55 (s, 3H).
[ 실시예 22] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(4-( 트라이플로오로메톡시 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (4-(트라이플로오로메톡시)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.83 (d, J = 6.8 Hz, 2H), 7.64 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.4 Hz, 1H)7.54 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 10.0 Hz, 1H), 7.08 (s, 1H), 6.97 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H).
[ 실시예 23] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(3-( 메틸싸이오 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (3-(메틸싸이오)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.88 (d, J = 8.8 Hz, 2H), 7.55-7.36 (m, 4H), 7.26 (d, J = 8.8 Hz, 1H), 7.18-7.14 (m, 2H), 7.00 (d, J = 8.8 Hz, 2H), 3.88 (s, 3H), 2.52 (s, 3H).
[ 실시예 24] 6- 클로오로 -1-(3- 플로오로 -4- 메틸페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (3-플로오로-4-메틸페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.43 (br, OH, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 1H), 7.45 (t, J = 8.0Hz, 1H), 7.33 (d, J = 8.0 Hz,1H), 7.24 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.70 (s, 1H), 6.96 (d, J = 8.0 Hz, 2H), 3.82 (s, 3H), 2.32 (s, 3H).
[ 실시예 25] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(3,4,5- 트라이플로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (3,4,5-트라이플로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.43 (br, OH, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.60-7.51 (m, 3H), 7.24 (s, 1H), 7.18 (d, J = 8.0 Hz, 1H), 6.96 (d, J = 8.0 Hz, 2H), 3.82 (s, 3H).
[ 실시예 26] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(3,5- 다이플로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (3,5-다이플로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.43 (br, OH, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 1H), 7.42-7.10 (m, 3H), 7.20-7.15 (m, 2H), 6.96 (d, J = 8.0 Hz, 2H), 3.82 (s, 3H).
[ 실시예 27] 1-(4- 브로모페닐 )-6- 클로오로 -3-(4- 메톡시벤조일 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (4-브로모페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.43 (br, OH, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 1H), 7.07 (s, 1H), 6.96 (d, J = 8.0 Hz, 2H), 3.82 (s, 3H).
[ 실시예 28] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(4-( 트라이플로오로메틸 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (4-(트라이플로오로메틸)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.92 (d, J = 8.4 Hz, 2H), 7.84 (d, J = 6.8 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8 Hz, 1H), 7.20 (dd, J = 1.6, 8.4 Hz, 1H), 7.15 (d, J = 1.6 Hz, 1H), 6.98 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H).
[ 실시예 29] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(피리딘-4-일)-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (피리딘-4-일)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 8.72 (dd, J = 1.6, 6.4 Hz, 2H), 7.82 (d, J = 7.2 Hz,2H), 7.63 (d, J = 8.4 Hz, 1H), 7.55 (dd, J = 1.6, 4.8 Hz, 2H), 7.25 (s, 1H), 7.19 (d, J = 8.8 Hz, 1H), 6.95 (d, J = 6.8 Hz, 2H), 3.82 (s, 3H).
[ 실시예 30] 6- 클로오로 -1-(3- 플로오로페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (3-플로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.84 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 6.4 Hz, 2H), 7.44 (s, 1H), 7.36 (d, J = 7.2 Hz, 1H), 7.21 (d, J = 8.8 Hz, 1H), 7.12 (s, 1H), 6.99 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H).
[ 실시예 31] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(퀴놀린-3-일)-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (퀴놀린-3-일)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, MeOD) 8.96 (d, J = 2.4, 1H), 8.53 (d, J = 2.4 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.07 (d, J = 7.6 Hz, 1H), 7.93-7.87 (m, 3H), 7.38 (t, J = 7.2 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.23-7.20 (m ,2H), 7.02-6.99 (m, 2H), 3.88 (s, 3H).
[ 실시예 32] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(3- 메톡시페닐 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (3-메톡시페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.83 (d, J = 7.6 Hz, 2H), 7.59 (d, J = 8.4 Hz, 1H), 7.40 (d, J = 8.8 Hz, 2H), 7.15 (dd, J = 1.6, 8.4 Hz, 1H), 7.07 (d, J = 8.8 Hz, 2H), 6.98 (s, 1H), 6.96 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 3.82 (s, 3H).
[ 실시예 33] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(4- 메톡시페닐 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (4-메톡시페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.83 (d, J = 7.6 Hz, 2H), 7.60 (d, J = 8.4 Hz, 1H), 7.46 (t, 1H), 7.15 (dd, J = 1.6, 8.4 Hz, 1H), 7.06-7.03 (m, 4H), 6.96 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H), 3.80(s, 3H).
[ 실시예 34] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(파라- 톨루일 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (파라-톨루일)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.84 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.0 Hz, 1H), 7.35 (m, 4H), 7.69 (d, J = 8.8 Hz, 1H), 7.01 (s, 1H), 6.97 (d, J = 8.4 Hz, 2H), 3.82 (s, 3H), 2.40 (s, 3H).
[ 실시예 35] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(3-( 트라이플로오로메틸 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (3-(트라이플로오로메틸)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.88-7.78 (m, 6H), 7.58 (d, J = 8.4 Hz, 1H), 7.19 (dd, J = 1.6, 8.8 Hz, 1H), 7.04 (s, 1H), 6.98 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H).
[ 실시예 36] 6- 클로오로 -1-(3- 플로오로 -4- 메톡시페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (3-플로오로-4-메톡시페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.83 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.4 Hz, 1H), 7.42 (d, J = 9.2 Hz, 1H), 7.32-25 (m, 2H), 7.15 (dd, J = 2, 8.4 Hz, 1H), 7.04 (s, 1H), 6.96 (d, J = 8.4 Hz, 2H), 3.92 (s, 3H), 3.82 (s, 3H).
[ 실시예 37] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(3-( 트라이플로오로메톡시 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (3-(트라이플로오로메톡시)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.83 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.4 Hz, 1H), 7.28 (dd, J = 1.6, 8.4 Hz, 1H), 7.16 (d, J = 6.8 Hz, 1H), 7.06 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H).
[ 실시예 38] 6- 클로오로 -3-(4- 메톡시벤조일 )-1-(4- 나이트로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (4-나이트로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 8.40 (d, J = 9.2 Hz, 2H), 7.84 (d, J = 6.8 Hz, 2H), 7.81 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.8 Hz, 1H), 7.23 (d, J = 2 Hz, 2H), 7.21 (s, 1H), 7.00 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H).
[ 실시예 39] 6- 클로오로 -1-(4- 플로오로페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-클로오로페닐)보로닉 엑시드 대신에 (4-플로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 19와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.86 (d, J = 9.2 Hz, 2H), 7.59 (d, J = 8.4 Hz, 1H), 7.54 (dd, J = 5.2, 8.8 Hz, 2H), 7.37 (t, 1H), 7.18 (dd, J = 1.6, 6.8 Hz, 1H), 7.03 (s, 1H), 6.97 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H).
[ 실시예 40] 6- 클로오로 -3-(3- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 1> (E)-에틸-2-(2-(3- 클로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000041
2 L의 플라스크에 정제된 증류수 (520 ml)를 넣는다. 상기 플라스크에 소듐아세테이트 (50 g, 0.6 mol)를 녹인 후 (3-클로오로페닐)하이드라진 하이드로클로라이드 (52 g, 0.3 mol)를 넣고 30 분 동안 실온에서 교반시킨 후, 에틸 2-옥소프로파노에이트 (35 ml, 0.3 mol)를 천천히 넣고, 6 시간 동안 교반을 실시하였다. 반응 종료 후, 감압필터로 여과한 후 건조시켰다. 3 L의 플라스크에 건조한 고체와 노말헥산 2 L를 넣고 1 시간 동안 교반시킨 후 여과하여 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (57 g, 0.24 mol, 81 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.24 (m, 1H), 7.04 (m, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.84 (m, 1H), 4.35 (q, 2H), 2.11 (s, 3H), 1.40 (t, J = 8.0 Hz, 3H).
<단계 2> 에틸-6-클로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000042
500 ml의 플라스크에 톨루엔 (110 ml)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (10.6 g, 0.044 mol)를 넣었다. 다음, 폴리포스포릭 산 (52 g)을 넣은 후, 6 시간 동안 환류반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각하고, 톨루엔층만 분리한 후. 분리된 톨루엔층을 감압농축하였다. 형성된 고체에 톨루엔 (50 ml)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (3.4 g, 0.015 mol, 35 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 8.84 (br, NH, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.42 (s, 1H), 7.19 (s, 1H) 7.13 (d, J = 8.0 Hz, 1H), 4.44 (q, 2H), 1.43 (t, J = 8.0 Hz, 3H).
<단계 3> 에틸-6- 클로오로 -3-(3- 클로오로벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000043
100 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (1 g, 4.47 mmol)와 다이클로오에탄 (10 mL)을 넣고 용해시켰다. 다음, 3-클로오로벤조일 클로라이드 (939 mg, 5.36 mmol), 알루미늄클로라이드 (715 mg, 5.36 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피(EA/Hx = 1:6)로 정제하여 에틸-6-클로오로-3-(3-클로오로벤조일)-1H-인돌-2-카르복실레이트 (923 mg, 2.54 mmol, 57.6 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.19 (s, 1H), 7.84 (t, J = 1.6 Hz, 1H), 7.72-7.70 (m, 1H), 7.63 (d, J = 12.0 Hz, 1H), 7.58-7.50 (m, 2H), 7.38 (t, J = 8.0 Hz, 1H), 7.21 (dd, J = 2.0, 8.8 Hz, 1H), 4.20-4.07 (m, 2H), 1.05-0.93 (m, 3H).
<단계 4> 에틸-6- 클로오로 -3-(3- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000044
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-6-클로오로-3-(3-클로오로벤조일)-1H-인돌-2-카르복실레이트 (200 mg, 0.55 mmol)와 다이클로오로메탄 (2 mL)을 넣고 용해시켰다. 다음, (4-클로오로페닐)보로닉 엑시드 (172 mg, 1.10 mmol), 코퍼(II)아세테이트 (201 mg, 1.10 mmol), 트라이에틸아민 (112 mg, 1.10 mmol)을 넣고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-6-클로오로-3-(3-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (75 mg, 0.16 mmol, 29%)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.88 (t, J = 2 Hz, 1H), 7.75-7.70 (m, 2H), 7.56-7.52 (m, 3H), 7.42-7.34 (m, 3H), 7.26-7.23 (dd, J = 2.0, 6.0 Hz, 1H), 7.12 (d, J = 2.0 Hz, 1H), 3.85-3.80 (m, 2H), 0.89-0.82 (m, 3H).
<단계 5> 6- 클로오로 -3-(3- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000045
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-6-클로오로-3-(3-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (70 mg, 0.15 mmol)을 넣고, 테트라하이드로퓨란 (1 mL) 및 메탄올 (1 mL)을 첨가하여 용해시켰다. 다음, 물 (1 mL)에 용해된 소듐 하이드록사이드 (30 mg, 0.74 mmol)을 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후, 농축시키고, 2N-HCl를 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 6-클로오로-3-(3-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실릭 엑시드 (52 mg, 0.12 mmol, 80%)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.76-7.72 (m, 3H), 7.61-7.51 (m, 5H), 7.44 (t, J = 7.6 Hz, 1H), 7.21 (dd, J = 2.0, 8.4 Hz, 1H), 7.08 (d, J = 2 Hz, 1H).
[ 실시예 41] 1-(4-( 터트 - 뷰틸 )페닐)-6- 클로오로 -3-(3- 클로오로벤조일 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (4-(터트-뷰틸)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 40과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.79 (t, J = 2.0 Hz, 1H), 7.74-7.71 (m, 2H), 7.67 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 8.8 Hz, 2H), 7.55 (t, J = 8.0 Hz, 1H), 7.45 (d, J = 8.8 Hz, 2H), 7.32 (dd, J = 2.0, 8.8 Hz, 1H), 7.11 (d, J = 1.6 Hz, 1H), 1.36 (s, 9H).
[ 실시예 42] 6- 클로오로 -3-(3- 클로오로벤조일 )-1-(3- 플로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (3-플로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 40과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.77-7.71 (m, 3H), 7.61 (d, J = 8.0 Hz, 1H), 7.56-7.52 (m, 2H), 7.45 (t, J = 8.0 Hz, 1H), 7.37 (t, J = 8.8 Hz, 2H), 7.23 (dd, J = 1.6, 8.4 Hz, 1H), 7.04 (d, J = 1.6 Hz, 1H).
[ 실시예 43] 1-(4- 브로모페닐 )-6- 클로오로 -3-(3- 클로오로벤조일 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (4-브로모페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 40과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.83-7.71 (m ,5H), 7.65 (d, J = 8.8 Hz, 1H), 7.57-7.52 (m ,3H), 7.31 (dd, J = 2,0, 8.8 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H).
[ 실시예 44] 6- 클로오로 -3-(3- 클로오로벤조일 )-1-(3-( 메틸싸이오 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (3-(메틸싸이오)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 40과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.76-7.72 (m, 3H), 7.62 (d, J = 8.0 Hz, 1H), 7.47 (m, 2H), 7.37 (d, J = 2.0 Hz, 2H), 7.25 (t, J = 8.4 Hz, 2H), 7.07 (s, 1H), 2.50 (s, 3H).
[ 실시예 45] 6- 클로오로 -3-(3- 클로오로벤조일 )-1-(4-( 메틸싸이오 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (4-(메틸싸이오)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 40과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.76-7.71 (m, 3H), 7.63-7.61 (d, J = 8.0 Hz, 1H), 7.48-7.38 (m, 5H), 7.23 (dd, J = 1.6, 8.4 Hz, 1H), 7.07 (d, J = 1.6 Hz, 1H), 2.55 (s, 3H).
[ 실시예 46] 6- 클로오로 -3-(3- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 1> (E)-에틸-2-(2-(3- 클로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000046
2 L의 플라스크에 정제된 증류수 (520 ml)를 넣는다. 상기 플라스크에 소듐아세테이트 (50 g, 0.6 mol)를 녹인 후 (3-클로오로페닐)하이드라진 하이드로클로라이드 (52 g, 0.3 mol)를 넣고 30 분 동안 실온에서 교반시킨 후, 에틸 2-옥소프로파노에이트 (35 ml, 0.3 mol)를 천천히 넣고, 6 시간 동안 교반을 실시하였다. 반응 종료 후 감압필터로 여과한 후 건조시켰다. 3 L의 플라스크에 건조한 고체와 노말헥산 2 L를 넣고 1 시간 동안 교반시킨 후 여과하여 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (57 g, 0.24 mol, 81 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.24 (m, 1H), 7.04 (m, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.84 (m, 1H), 4.35 (q, 2H), 2.11 (s, 3H), 1.40 (t, J = 8.0 Hz, 3H).
<단계 2> 에틸-6-클로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000047
500 ml의 플라스크에 톨루엔 (110 ml)을 넣고 상기 <단계 1>에서 합성된 (E)-에--2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (10.6 g, 0.044 mol)를 넣었다. 다음, 폴리포스포릭 산 (52 g)을 넣은 후, 6 시간 동안 환류반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각하고, 톨루엔층만 분리한 후. 분리된 톨루엔층을 감압농축하였다. 형성된 고체에 톨루엔 (50 ml)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (3.4 g, 0.015 mol, 35 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 8.84 (br, NH, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.42 (s, 1H), 7.19 (s, 1H) 7.13 (d, J = 8.0 Hz, 1H), 4.44 (q, 2H), 1.43 (t, J = 8.0 Hz, 3H).
<단계 3> 에틸-6- 클로오로 -3-(2,4- 다이클로오로벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000048
500 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (10 g, 4.47 mmol)와 다이클로오로메탄 (150 mL)을 넣고 용해시켰다. 다음, 2,4-다이클로오로벤조일 클로라이드 (11.24 g, 53.6 mmol), 알루미늄클로라이드 (7.154 mg, 53.65 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:6)로 정제하여 에틸-6-클로오로-3-(2,4-다이클로오로벤조일)-1H-인돌-2-카르복실레이트 (10.17 g, 25.64 mmol, 57 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.38 (s, 1H), 7.91-7.89 (m, 1H), 7.50-7.44 (m, 3H), 7.30-7.25 (m, 2H), 4.13-4.06 (m, 2H), 1.10-1.06 (m, 3H).
<단계 4> 에틸-6- 클로오로 -1-(4- 클로오로페닐 )-3-(2,4- 다이클로오로벤조일 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000049
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-6-클로오로-3-(2,4-다이클로오로벤조일)-1H-인돌-2-카르복실레이트 (300 mg, 0.756 mmol)와 다이클로오로메탄 (3 mL)을 넣고 용해시켰다. 다음, 4-(클로오로페닐)보로닉 에시드 (237 mg, 1.51 mmol), 코퍼(II)아세테이트 (275 mg, 1.51 mmol), 트라이에틸아민 (153 mg, 1.51 mmol)을 넣고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 2N-HCl을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-6-클로오로-1-(4-클로오로페닐)-3-(2,4-다이클로오로벤조일)-1H-인돌-2-카르복실레이트를 얻었다.
<단계 5> 6- 클로오로 -1-(4- 클로오로페닐 )-3-(2,4- 다이클로오로벤조일 )-1H-인돌-2-카르복실릭 에시드의 합성
Figure PCTKR2017007853-appb-I000050
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-6-클로오로-1-(4-클로오로페닐)-3-(2,4-다이클로오로벤조일)-1H-인돌-2-카르복실레이트 (165 mg, 0.325 mmol)을 넣고, 테트라하이드로퓨란 (1 mL) 및 메탄올 (1 mL)첨가하여 용해시켰다. 다음, 물 (1 mL)에 용해된 소듐 하이드록사이드 (65 mg, 1.63 mmol)을 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후, 농축시키고, 2N-HCl를 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 6-클로오로-1-(4-클로오로페닐)-3-(2,4-다이클로오로벤조일)-1H-인돌-2-카르복실릭 엑시드 (120 mg, 0.250 mmol, 77 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.90 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 2.0 Hz, 1H), 7.67 (d, J = 9.6 Hz, 2H), 7.57-7.48 (m, 4H), 7.41 (dd, J = 2.0, 8.8 Hz, 1H), 7.22 (d, J = 2 Hz, 1H).
[ 실시예 47] 6- 클로오로 -3-(3- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 1> (E)-에틸-2-(2-(3- 클로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000051
2 L의 플라스크에 정제된 증류수 (520 ml)를 넣는다. 상기 플라스크에 소듐아세테이트 (50 g, 0.6 mol)를 녹인 후 (3-클로오로페닐)하이드라진 하이드로클로라이드 (52 g, 0.3 mol)를 넣고 30 분 동안 실온에서 교반시킨 후, 에틸 2-옥소프로파노에이트 (35 ml, 0.3 mol)를 천천히 넣고, 6 시간 동안 교반을 실시하였다. 반응 종료 후, 감압필터로 여과한 후 건조시켰다. 3 L의 플라스크에 건조한 고체와, 노말헥산 2 L를 넣고 1 시간 동안 교반시킨 후 여과하여 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (57 g, 0.24 mol, 81 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.24 (m, 1H), 7.04 (m, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.84 (m, 1H), 4.35 (q, 2H), 2.11 (s, 3H), 1.40 (t, J = 8.0 Hz, 3H).
<단계 2> 에틸-6-클로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000052
500 ml의 플라스크에 톨루엔 (110 ml)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (10.6 g, 0.044 mol)를 넣었다. 다음, 폴리포스포릭 산 (52 g)을 넣은 후, 6 시간 동안 환류반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각하고, 톨루엔층만 분리한 후. 분리된 톨루엔층을 감압농축하였다. 형성된 고체에 톨루엔 (50 ml)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-클로오로-1H-인돌-2-카르복실레이트(3.4 g, 0.015 mol, 35 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 8.84 (br, NH, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.42 (s, 1H), 7.19 (s, 1H) 7.13 (d, J = 8.0 Hz, 1H), 4.44 (q, 2H), 1.43 (t, J = 8.0 Hz, 3H).
<단계 3> 에틸-6- 클로오로 -3-(4-( 트라이플로오로메톡시 ) 벤조일 )-1H-인돌-2-카복실레이트의 합성
Figure PCTKR2017007853-appb-I000053
250 mL의 플라스크에 4-트라이플로오로메톡시벤조익 엑시드(1.32 g, 6.706 mmol)와 아세토나이트릴(5 ml)를 넣고 용해시킨 후, 85% 포스포릭 엑시드(0.43 ml, 0.75 mmol)와 트라이플로오로아세틱 언하이드라이드(941 mg, 6.706 mmol)를 첨가하여 10분 동안 교반시켰다. 다음, 상기 <단계 2>에서 합성된 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (500 mg, 2.23 mmol)을 넣고, 10 시간 동안 교반시켰다. 반응 종료 후, 에틸 아세테이트와 물을 사용하여 유기층을 분리하고, 유기층을 포화된 소듐하이드로젠카보네이트와 소듐클로라이드로 한번 더 처리한 후 마그네슘설페이트로 수분을 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-6-클로오로-3-(4-(트라이플로오로메톡시)벤조일)-1H-인돌-2-카복실레이트 (291 mg, 0.706 mmol, 31.61 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.21 (s, 1H), 7.93 (dd, J = 2.4, 8.8 Hz, 2H), 7.64 (d, J = 8.8 Hz, 1H), 7.50 (d, J = 1.6 Hz, 1H), 7.29 (d, J = 8.8 Hz, 2H), 7.20 (dd, J = 2,0, 12.8 Hz, 1H), 4.13 (q, J = 7.2 Hz, 2H), 0.91 (t, J = 7.2 Hz, 3H).
<단계 4> 에틸-6- 클로오로 -1-(3- 클로오로페닐 )-3-(4- (트리플로오로메톡시))벤조일 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000054
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-6-클로오로-3-(4-(트리플로오로메톡시)벤조일)-1H-인돌-2-카르복실레이트 (170 mg, 0.41 mmol)와 다이클로오로메탄 (1.7 mL)를 넣고 용해시켰다. 다음, 3-(클로오로페닐)보로닉 엑시드 (129 mg, 0.82 mmol), 코퍼(II)아세테이트 (149 mg, 0.82 mmol), 트라이에틸아민 (0.115 ml, 0.82 mmol)을 넣고 12시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 2N HCl을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 4:1)로 정제하여 에틸-6-클로오로-1-(3-클로오로페닐)-3-(4-(트리플로오로메톡시)벤조일)-1H-인돌-2-카르복실레이트 (71.9 mg, 0.137 mmol, 33.34 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.96 (dd, J = 2.8, 8.8 Hz, 2H), 7.72 (d, J = 8 Hz, 1H), 7.55-7.39 (m, 3H), 7.33-7.22 (m, 5H), 7.14 (d, J = 2 Hz, 1H), 3.85 (q, J = 7.2 Hz, 2H), 0.81 (t, J = 7.2 Hz, 3H).
<단계 5> 6- 클로오로 -1-(3- 클로오로페닐 )-3-(4- (트리플로오로메톡시))벤조일 )-1H-인돌-2-카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000055
100 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-6-클로오로-1-(3-클로오로페닐)-3-(4-(트리플로오로메톡시)벤조일)-1H-인돌-2-카르복실레이트 (71.9 mg, 0.137 mmol)를 넣고, 테트라하이드로퓨란 (1 mL) 및 메탄올 (1 mL)을 첨가하여 용해시켰다. 다음, 1N-소듐 하이드록사이드 (0.35 mL)을 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후, 농축시키고, 2N-HCl을 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과 후 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 6-클로오로-1-(3-클로오로페닐)-3-(4-(트리플로오로메톡시)벤조일)-1H-인돌-2-카르복실릭 엑시드 (31 mg, 0.06 mmol, 45.56 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.94 (dd, J = 8.8 Hz, 2H), 7.76 (d, J = 8.4 Hz, 1H), 7.59-7.37 (m, 6H), 7.23 (dd, J = 2,0, 8.8 Hz, 1H), 7.06 (d, J = 1.6 Hz, 1H).
[ 실시예 48] 6- 클로오로 -1-(4- 클로오로페닐 )-3-(4-( 트라이플로오로메톡시 ) 벤조일 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 3-(클로오로페닐)보로닉 엑시드 대신에 (4-클로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 48과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.94 (dd, J = 2.8, 8.8 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.60-7.50 (m, 4H), 7.38 (d, J = 8.0 Hz, 2H), 7.22 (dd, J = 1.6, 8.4 Hz, 1H), 7.08 (d, J = 1.6 Hz, 1H).
[ 실시예 49] 3- 벤조일 -1-(4- 클로오로페닐 )-6-( 트라이플로오로메틸 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 1> (E)-에틸-2-(2-(3- 플로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000056
100 mL의 플라스크에 (3-(트라이플로오로메틸)페닐)하이드라진 하이드로클로라이드 (25 g, 141.93 mmol)과 에탄올 (250 mL)을 넣고 용해시켰다. 다음, 에틸-2-옥소프로파노에이트 (24.7g, 212.89 mmol), 아세틱 엑시드 (5 mL)를 넣고, 5 시간 동안 환류 교반시켰다. 반응 종료 후 감압농축하고, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:5)로 정제하여 (E)-에틸-2-(2-(3-플로오로페닐)하이드라조노)프로파노에이트 (26 g, 94.8 mmol, 66 %)를 얻었다.
<단계 2> 에틸-6-(트라이플로오로메틸)-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000057
1000 mL의 플라스크에 톨루엔 (300 mL)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸-2-(2-(3-(트라이플로오로메틸)페닐)하이드라조노)프로파노에이트 (26 g, 94.8 mmol)를 넣었다. 다음, 폴리포스포릭 산 (150 g)을 넣은 후, 6 시간 동안 환류 반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각하고 톨루엔층만 분리한 후, 분리된 톨루엔층을 감압농축하였다. 형성된 고체에 톨루엔 (50 mL)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-(트라이플로오로메틸)-1H-인돌-2-카르복실레이트 (1.25 g, 4.86 mmol, 5 %)을 얻었다.
<단계 3> 에틸-3- 벤조일 -6-( 트라이플루오로메틸 )-1H-인돌-2- 카복실레이트의 합성
Figure PCTKR2017007853-appb-I000058
250 mL의 플라스크에 벤조익 엑시드(1.63 g, 13.39 mmol)와 아세토나이트릴(13 ml)를 넣고 용해시킨 후, 85% 포스포릭 엑시드(0.29 ml, 5.15 mmol)와 트라이플루오로아세틱언하이드라이드(7.27 ml, 51.51 mmol)를 첨가하여 10분 동안 교반시켰다. 다음, 상기 <단계 2>에서 합성된 에틸-6-(트라이플루오로메틸)-1H-인돌-2-카르복실레이트 (2.65 g, 10.30 mmol)을 넣고, 10 시간 동안 교반시켰다. 반응 종료 후, 에틸아세테이트와 물을 사용하여 유기층을 분리하고, 유기층을 포화된 소듐하이드로젠카보네이트와 소듐클로라이드로 한번 더 처리한 후, 마그네슘설페이트로 수분을 제거 하였다. 다음, 여과한 후 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-3-벤조일-6-(트라이플루오로메틸)-1H-인돌-2-카복실레이트 (311 mg, 0.86 mmol, 8.36 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.43 (s, 1H), 7.87-7.80 (m, 4H), 7.59 (t, J = 1.2, 7.6 Hz, 1H), 7.45 (t, J = 7.6 Hz, 3H), 4.09 (q, J = 7.2 Hz, 2H), 0.90 (t, J = 7.2 Hz, 3H).
<단계 4> 에틸-3- 벤조일 -1-(4-( 클로오로페닐 )-6-( 트라이플로오로메틸 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000059
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-3-벤조일-6-(트라이플로오로메틸)-1H-인돌-2-카복실레이트 (150 mg, 0.41 mmol)와 다이클로오로메탄 (2 mL)을 넣고 용해시켰다. 다음, 4-(클로오로페닐)보로닉 엑시드 (129.8 mg, 0.83 mmol), 코퍼(II)아세테이트 (150.8 mg, 0.83 mmol), 트라이에틸아민 (116 μl, 0.83 mmol)을 첨가하고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 2N HCl를 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-3-벤조일-1-(4-(클로오로페닐)-6-(트라이플로오로메틸)-1H-인돌-2-카르복실레이트 (31 mg, 0.06 mmol, 14.87 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.93-7.88 (m, 3H), 7.61-7.25 (m, 9H), 3.80 (q, J = 7.2 Hz, 2H), 0.81 (t, J = 7.2 Hz, 3H).
<단계 5> 3- 벤조일 -1-(4- 클로오로페닐 )-6-( 트라이플로오로메틸 )-1H-인돌-2-카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000060
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-3-벤조일-1-(4-(클로오로페닐)-6-(트라이플로오로메틸)-1H-인돌-2-카르복실레이트 (92 mg, 0.46 mmol)을 넣고, 테트라하이드로퓨란 (1 mL) 및 메탄올 (1 mL)을 첨가하여 용해시켰다. 다음, 1N 소듐 하이드록사이드 (0.45 ml, 5 vol)를 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후 농축하고, 2N-HCl를 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 3-벤조일-1-(4-클로오로페닐)-6-(트라이플로오로메틸)-1H-인돌-2-카르복실릭 엑시드 (31 mg, 0.069 mmol, 14.87 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.84-7.80 (m, 3H), 7.65-7.45 (m, 8H), 7.37 (s, 1H).
[ 실시예 50] 3- 벤조일 -1-(3- 클로오로페닐 )-6-( 트라이플로오로메틸 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 4-(클로오로페닐)보로닉 엑시드 대신에 (3-클로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 49와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.85 (m, 3H), 7.64-7.42 (m, 8H), 7.31 (s, 1H).
[ 실시예 51] 1-(3- 클로오로페닐 )-3-(4- 클로오로벤조일 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 1> 에틸-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000061
25 mL의 플라스크에 에틸-1H-인돌-2-카르복실레이트 (1.5 g, 7.93 mmol)와 다이클로오로메탄 (15 mL)을 넣고 용해시켰다. 다음, 4-클로오로벤조일 클로라이드 (1.39 g, 7.93 mmol), 알루미늄클로라이드 (2.11 g, 15.85 mmol)을 첨가하고, 12시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 6:1)로 정제하여 에틸-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (0.9 g, 3.80 mmol, 34.6 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 12.59 (s, 1H), 7.77 (d, J = 6 Hz, 2H), 7.63 (s, 2H), 7.58 (s, 2H), 7.38 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 9.2 Hz, 1H), 4.02-3.97 (q, J = 7.2 Hz, 2H), 0.89-0.85 (t, J = 7.2 Hz, 3H).
<단계 2> 에틸-1-(3- 클로오로페닐 )-3-(4- 클로오로벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000062
25 mL의 플라스크에 상기 <단계 1>에서 합성된 에틸-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (150 mg, 0.458 mmol)와 다이클로오로메탄 (1.5 mL)을 넣고 용해시켰다. 다음, (3-클로오로페닐)보로닉 엑시드 (71.6 mg, 0.458 mmol), 코퍼(II)아세테이트 (166.4 mg, 0.916 mmol), 트라이에틸아민 (92.7 mg, 0.916 mmol)을 첨가하고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 물를 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 4:1)로 정제하여 에틸-1-(3-클로오로페닐)-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (70 mg, 0.16 mmol, 35 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.88 (d, J = 8.8 Hz, 2H), 7.75 (d, J = 8Hz, 1H), 7.50 (d, J = 6 Hz, 2H), 7.46 (dd, J = 8.4 Hz, 3H), 7.37 (t, 1H), 7.27 (d, J = 8 Hz, 1H), 7.33(d, J = 8.4 Hz, 1H), 7.17 (d, J = 8.4 Hz, 1H), 3.89-3.83 (q, 2H), 0.86-0.83 (t, J = 7.2 Hz, 3H).
<단계 3> 1-(3- 클로오로페닐 )-3-(4- 클로오로벤조일 )-1H-인돌-2- 카르복실릭 엑시드
Figure PCTKR2017007853-appb-I000063
100 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-1-(3-클로오로페닐)-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (70 mg, 0.16 mmol)을 넣고, 테트라하이드로퓨란 (0.7 mL) 및 메탄올 (0.7 mL)을 첨가하여 용해시켰다. 다음, 4N-소듐 하이드록사이드 수용액(0.35 mL)을 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl을 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 1-(3-클로오로페닐)-3-(4-클로오로벤조일)-1H-인돌-2-카르복실릭 엑시드 (38 mg, 0.093 mmol, 58 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.81 (d, J = 8.8 Hz, 2H), 7.68 (d, J = 8Hz, 1H), 7.43 (d, J = 6 Hz, 2H), 7.38 (d, J = 8.4 Hz, 3H), 7.30 (t, 1H), 7.26(d, J = 8.4 Hz, 1H), 7.20 (d, J = 8 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H).
[ 실시예 52] 3-(4- 클로오로벤조일 )-1-(3- 메톡시페닐 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 2>에서 사용된 (3-클로오로페닐)보로닉 엑시드 대신에 (3-메톡시페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 51과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.83 (d, J = 9.2 Hz, 2H), 7.65 (d, J = 6.0 Hz,1H), 7.60 (d, J = 6.8 Hz, 2H), 7.51-7.74 (t, 1H), 7.38-7.36 (t, 1H), 7.28-7.25 (t, 1H), 7.21 (d, J = 8.4 Hz, 1H), 7.13 (dd, J = 1.6, 8.4 Hz, 1H), 7.08 (s, 1H), 7.06 (d, J = 8.4 Hz, 1H), 3.81 (s, 3H).
[ 실시예 53] 1-(3- 클로오로페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 1> 에틸-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000064
25 mL의 플라스크에 에틸-1H-인돌-2-카르복실레이트 (1 g, 5.29 mmol)와 다이클로오로에탄 (10 mL)를 넣고 용해시켰다. 다음, 4-메톡시벤조일 클로라이드 (0.9 g, 5.29 mmol), 알루미늄클로라이드 (2.82 g, 10.58 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 6:1)로 정제하여 에틸-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (0.9 g, 2.78 mmol, 52.9 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.16 (s, 1H), 7.89 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.38 (t, J = 7.4 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 6.93 (d, J = 9.2 Hz, 2H), 4.13-4.08 (q, J = 7.2 Hz, 2H), 3.87(s, 3H), 0.97-0.94 (t, J = 7.2 Hz, 3H).
<단계 2> 에틸-1-(3- 클로오로페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000065
25 mL의 플라스크에 상기 <단계 1>에서 합성된 에틸-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (150 mg, 0.464 mmol)와 다이클로오로메탄 (1.5 mL)를 넣고 용해시켰다. 다음, (3-클로오로페닐)보로닉 엑시드 (72.5 mg, 0.46 mmol), 코퍼(II)아세테이트 (168.6 mg, 0.93 mmol), 트라이에틸아민 (93.9 mg, 0.93 mmol)을 첨가하고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 물를 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 4:1)로 정제하여 에틸-1-(3-클로오로페닐)-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (86 mg, 0.198 mmol, 42.8 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.92 (d, J = 4.4 Hz, 2H), 7.72 (dd, J = 8.4 Hz, 1H), 7.52 (d, J = 6.4 Hz, 2H), 7.36 (d, J = 6.4 Hz, 2H), 7.32 (dd, J = 8.4 Hz, 1H), 7.24 (t, J = 8.0 Hz, 1H), 7.12 (d, 2H), 6.94 (d, J = 6.8 Hz, 2H), 3.88-3.85 (q, J = 7.2 Hz, 2H), 3.85(s, 3H), 0.85-0.82 (t, J = 7.2 Hz, 3H).
<단계 3> 1-(3- 클로오로페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2- 카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000066
100 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-1-(3-클로오로페닐)-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (86 mg, 0.19 mmol)을 넣고, 테트라하이드로퓨란 (0.86 mL) 및 메탄올 (0.86 mL)을 첨가하여 용해시켰다. 다음, 4N-소듐 하이드록사이드 수용액(0.43 mL)을 첨가하고, 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl을 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 1-(3-클로오로페닐)-3-(4-메톡시벤조일)-1H-인돌-2-카르복실릭 엑시드 (39 mg, 0.096 mmol, 52.2 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.2(s, 1H)7.83 (d, J = 4.4 Hz, 2H), 7.69 (dd, J = 8.4 Hz, 1H), 7.41 (d, J = 6.4 Hz, 2H), 7.27 (d, J = 6.4 Hz, 2H), 7.23 (dd, J = 8.4 Hz, 1H), 7.15 (t, J = 8 Hz, 1H), 7.03 (d, 2H), 6.85 (d, J = 6.8 Hz, 2H) 3.85(s, 3H).
[ 실시예 54] 1-(4-( 터트 - 뷰틸 )페닐)-3-(4- 메톡시벤조일 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 2>에서 사용된 (3-클로오로페닐)보로닉 엑시드 대신에 (4-(터트-뷰틸)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 53과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.22(s, 1H), 7.81 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.0 Hz, 2H), 7.33 (t, 1H), 7.23 (t, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.06 (d, J = 8.8 Hz, 2H), 3.84(s, 3H), 1.36 (s, 9H).
[ 실시예 55] 3- 벤조일 -6- 플로오로 -1-(4-( 메틸싸이오 )페닐)-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 1> (E)-에틸-2-(2-(3- 플로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000067
1000 mL의 플라스크에 (3-플로오로페닐)하이드라진 하이드로클로라이드 (25 g, 153.75 mmol)와 에탄올 (250 mL)을 넣고 용해시켰다. 다음, 에틸 2-옥소프로파노에이트 (26.8 g, 230.62 mmol), 아세틱 엑시드 (5 mL)를 넣고, 5 시간 동안 환류 교반시켰다. 반응 종료 후, 감압농축하고, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 (E)-에틸-2-(2-(3-플로오로페닐)하이드라조노)프로파노에이트 (22.5 g, 100.34 mmol, 65 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.26-7.20 (m, 1H), 7.02 (dt, J = 2.4, 10.8 Hz, 1H), 6.88 (dd, J = 1.6 Hz, 8.4 Hz, 1H), 6.84-6.63 (m, 1H), 4.35-4.29 (m, 2H), 2.11 (s, 3H), 1.55-1.36 (m, 3H).
<단계 2> 에틸-6-플로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000068
500 mL의 플라스크에 톨루엔 (200 mL)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸-2-(2-(3-플로오로페닐)하이드라조노)프로파노에이트 (22.5 g, 100.34 mmol)를 넣었다. 다음, 폴리포스포릭 산 (120 g)을 넣은 후, 6 시간 동안 환류 반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각한 후 톨루엔 층만 분리하고, 분리된 톨루엔 층을 감압농축하였다. 다음, 형성된 고체에 톨루엔 (50 mL)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-플로오로-1H-인돌-2-카르복실레이트 (7.2 g, 34.7 mmol, 34 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 9.00 (br, NH, 1H), 7.63-7.59 (m, 1H), 7.22-7.20 (m, 1H), 7.08 (dd, J = 2.0, 9.6 Hz, 1H), 6.95-6.90 (m, 1H), 4.45-4.38 (m, 2H), 1.44-1.40 (m, 3H).
<단계 3> 에틸-3-벤조일-6-플로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000069
500 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-6-플로오로-1H-인돌-2-카르복실레이트 (10 g, 48.26 mmol)와 다이클로오로에탄 (150 mL)을 넣고 용해시켰다. 다음, 벤조일 클로라이드 (8.14 g, 57.91 mmol), 알루미늄클로라이드 (7.72 g, 57.91 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피(EA/n-Hex = 1:6)로 정제하여 에틸-3-벤조일-6-플로오로-1H-인돌-2-카르복실레이트 (12 g, 38.54 mmol, 80%)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.26 (br, NH, 1H), 7.87 (d, J = 9.6 Hz, 2H), 7.69-7.64 (m, 1H), 7.59-7.55 (m, 1H), 7.43 (t, J = 8.0 Hz, 2H), 7.16 (dd, J = 2.4, 9.2 Hz, 1H), 7.02-6.95 (m, 1H), 4.07-4.02 (m, 2H), 0.90-0.85 (m, 3H).
<단계 4> 에틸-3- 벤조일 -6- 플로오로 -1-(4-( 메틸싸이오 )페닐-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000070
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-3-벤조일-6-플로오로-1H-인돌-2-카복실레이트 (150 mg, 0.48 mmol)와 다이클로오로메탄 (2 mL)을 넣고 용해시켰다. 다음, (4-메틸싸이오페닐)보로닉 엑시드 (162 mg, 0.96 mmol), 코퍼(II)아세테이트 (175 mg, 0.96 mmol), 트라이에틸아민 (134 μl, 0.96 mmol)을 첨가하고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 2N-HCl를 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-3-벤조일-6-플로오로-1-(4-(메틸싸이오)페닐-1H-인돌-2-카르복실레이트 (110 mg, 0.25 mmol, 52.66 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.91 (dd, J = 2.0, 8.0 Hz, 2H), 7.76 (q, J = 5.2, 8.8 Hz, 1H), 7.58-7.29 (m, 7H), 7.02 (dt, J = 2.0, 8.8 Hz, 1H), 6.75 (dd, J = 2.4, 6.8 Hz, 1H), 3.76 (q, J = 7.2 Hz, 2H), 2.54 (s, 3H), 0.773 (t, J = 7.2 Hz, 3H).
<단계 5> 3- 벤조일 -6- 플로오로 -1-(4-( 메틸싸이오 )페닐)-1H-인돌-2- 카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000071
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-3-벤조일-6-플로오로-1-(4-(메틸싸이오)페닐-1H-인돌-2-카르복실레이트 (110 mg, 0.25 mmol)을 넣고, 테트라하이드로퓨란 (1 mL) 및 메탄올 (1 mL)을 첨가하여 용해시켰다. 다음, 1N 소듐 하이드록사이드 (0.55 ml, 5 vol)를 첨가하고 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl을 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 3-벤조일-6-플로오로-1-(4-(메틸싸이오)페닐)-1H-인돌-2-카르복실릭 엑시드 (33 mg, 0.081 mmol, 32.07 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.80 (d, J = 7.2 Hz, 2H), 7.62-7.39 (m, 8H), 7.09 (dt, J = 2.0, 9.2 Hz, 1H), 6.88 (dd, J = 2.0, 9.5 Hz, 1H), 2.55 (s, 3H).
[ 실시예 56] 3- 벤조일 -1-(3-( 메틸싸이오 )페닐)-6-( 트라이플로오로메틸 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-메틸싸이오페닐)보로닉 엑시드 대신에 (3-메틸싸이오페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 55와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.81 (d, J = 6.8 Hz, 2H), 7.60 (t, 2H), 7.48 (dt, J = 2.8, 8.4 Hz, 3H), 7.37 (d, J = 7.6 Hz, 2H), 7.24 (d, J = 6.8 Hz, 3H), 7.08 (t, J = 7.6 Hz, 1H), 6.89 (dd, J = 2.0, 10.0 Hz, 1H), 2.51 (s, 3H).
[ 실시예 57] 3- 벤조일 -6- 플로오로 -1-(4- 플로오로페닐 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-메틸싸이오페닐)보로닉 엑시드 대신에 (4-플로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 실시예 55와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.3 (s,1H), 7.83 (dd, J = 5.2, 7.2 Hz, 2H), 7.67-7.39 (m, 8H), 7.14 (dt, J = 2.4, 9.2 Hz, 1H), 6.90 (dd, J = 2.4, 9.6 Hz, 1H).
[ 실시예 58] 3-(4- 클로오로벤조일 )-6- 플로오로 -1-(4-( 메틸싸이오 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 1> (E)-에틸-2-(2-(3- 플로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000072
1000 mL의 플라스크에 (3-플로오로페닐)하이드라진 하이드로클로라이드 (25 g, 153.75 mmol)와 에탄올 (250 mL)을 넣고 용해시켰다. 다음, 에틸 2-옥소프로파노에이트 (26.8 g, 230.62 mmol), 아세틱 엑시드 (5 mL)를 넣고, 5 시간 동안 환류 교반시켰다. 반응 종료 후, 감압농축하고, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 (E)-에틸-2-(2-(3-플로오로페닐)하이드라조노)프로파노에이트 (22.5 g, 100.34 mmol, 65 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.26-7.20 (m, 1H), 7.02 (dt, J = 2.4, 10.8 Hz, 1H), 6.88 (dd, J = 1.6 Hz, 8.4 Hz, 1H), 6.84-6.63 (m, 1H), 4.35-4.29 (m, 2H), 2.11 (s, 3H), 1.55-1.36 (m, 3H).
<단계 2> 에틸-6-플로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000073
500 mL의 플라스크에 톨루엔 (200 mL)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸-2-(2-(3-플로오로페닐)하이드라조노)프로파노에이트 (22.5 g, 100.34 mmol)를 넣었다. 다음, 폴리포스포릭 산 (120 g)을 넣고, 6 시간 동안 환류 반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각하고, 톨루엔층만 분리한 후, 분리된 톨루엔층을 감압농축하였다. 다음, 형성된 고체에 톨루엔 (50 mL)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-플로오로-1H-인돌-2-카르복실레이트 (7.2 g, 34.7 mmol, 34 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 9.00 (br, NH, 1H), 7.63-7.59 (m, 1H), 7.22-7.20 (m, 1H), 7.08 (dd, J = 2.0, 9.6 Hz, 1H), 6.95-6.90 (m, 1H), 4.45-4.38 (m, 2H), 1.44-1.40 (m, 3H).
<단계 3> 에틸-3-(4- 클로오로벤조일 )-6- 플로오로 -1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000074
250 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-6-플로오로-1H-인돌-2-카르복실레이트 (5 g, 22.3 mmol)와 다이클로오로에탄 (50 mL)을 넣고 용해시켰다. 다음, 4-클로오로벤조일 클로라이드 (4.7 g, 26.8 mmol), 알루미늄클로라이드 (3.6 g, 26.8 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:6)로 정제하여 에틸-3-(4-클로오로벤조일)-6-플로오로-1H-인돌-2-카르복실레이트 (4.5 g, 12.4 mmol, 55.6 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.27 (br, NH, 1H), 7.82 (d, J = 9.2 Hz, 2H), 7.65-7.62 (m, 1H), 7.42 (d, J = 9.2 Hz, 2H), 7.16 (dd, J = 2.0, 8.8 Hz, 1H), 7.02-6.97 (m, 1H), 4.12-4.07 (m, 2H), 0.97-0.93 (m, 3H).
<단계 4> 에틸-3-(4- 클로오로벤조일 )-6- 플로오로 -1-(4- 메틸싸이오 )페닐)-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000075
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-3-(4-클로오로벤조일)-6-플로오로-1H-인돌-2-카르복실레이트 (200 mg, 0.41 mmol)와 다이클로오로메탄 (2 mL)을 넣고 용해시켰다. 다음, (4-메틸싸이오페닐)보로닉 엑시드 (194 mg, 1.157 mmol), 코퍼(II)아세테이트 (210 mg, 1.157 mmol), 트라이에틸아민 (0.161 ml, 1.157 mmol)을 첨가하고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 2N-HCl을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-3-(4-클로오로벤조일)-6-플로오로-1-(4-메틸싸이오)페닐)-1H-인돌-2-카르복실레이트 (97 mg, 0.207 mmol, 20.72 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.86 (d, J = 8.8 Hz, 2H), 7.73-7.69 (m, 1H), 7.45-7.22 (m, 6H), 7.05 (dt, J = 2.0, 9.2 Hz, 1H), 6.83 (dd, J = 1.5, 9.2 Hz, 1H), 3.84 (q, J = 7.2 Hz, 2H), 0.84 (t, J = 7.2 Hz, 3H).
<단계 5> 3-(4- 클로오로벤조일 )-6- 플로오로 -1-(4-( 메틸싸이오 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000076
100 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-3-(4-클로오로벤조일)-6-플로오로-1-(4-메틸싸이오)페닐)-1H-인돌-2-카르복실레이트 (97 mg, 0.207 mmol)을 넣고, 테트라하이드로퓨란 (1 mL) 및 메탄올 (1 mL)을 첨가하여 용해시켰다. 다음, 1N-소듐 하이드록사이드 (0.045 mL)을 첨가하고, 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl을 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 3-(4-클로오로벤조일)-6-플로오로-1-(4-(메틸싸이오)페닐)-1H-인돌-2-카르복실릭 엑시드 (48 mg, 0.109 mmol, 52.64 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.4 (s, 1H), 7.82 (d, J = 8.8 Hz, 2H), 7.69-7.65 (m, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.44-7.39 (m, 1H), 7.18 (dt, J = 2.4, 9.2 Hz, 1H), 6.90 (dd, J = 2.0, 9.6 Hz, 1H), 2.58 (s, 3H).
[ 실시예 59] 3-(4- 클로오로벤조일 )-6- 플로오로 -1-(4-( 트라이플로오로메톡시 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-메틸싸이오페닐)보로닉 엑시드 대신에 (4-트라이플로오로메톡시페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 58과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.4 (s, 1H), 7.86 (dd, J = 2.4, 8.4 Hz, 2H), 7.70-7.53 (m, 7H), 7.18 (dt, J = 2.4, 9.2 Hz, 1H), 6.96 (dd, J = 2.4, 9.6 Hz 1H).
[ 실시예 60] 3-(4- 클로오로벤조일 )-6- 플로오로 -1-(3- 메틸싸이오 )페닐)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-메틸싸이오페닐)보로닉 엑시드 대신에 (3-메틸싸이오페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 58과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.82 (d, J = 2.0 Hz, 2H), 7.80-7.68 (m, 1H), 7.52-7.11 (m, 5H), 7.09 (d, J = 7.2 Hz, 1H), 7.06 (t, J = 2.0 Hz, 1H), 6.85 (d, J = 2.0 Hz, 1H), 2.51 (s, 3H).
[ 실시예 61] 6- 플로오로 -1-(4- 플로오로페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 1> (E)-에틸-2-(2-(3- 플로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000077
1000 mL의 플라스크에 (3-플로오로페닐)하이드라진 하이드로클로라이드 (25 g, 153.75 mmol)과 에탄올 (250 mL)을 넣고 용해시켰다. 다음, 에틸-2-옥소프로파노에이트 (26.8 g, 230.62 mmol), 아세틱 엑시드 (5 mL)를 넣고, 5 시간 동안 환류 교반시켰다. 반응 종료 후 감압농축하고, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 (E)-에틸-2-(2-(3-플로오로페닐)하이드라조노)프로파노에이트 (22.5 g, 100.34 mmol, 65 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.26-7.20 (m, 1H), 7.02 (dt, J = 2.4, 10.8 Hz, 1H), 6.88 (dd, J = 1.6 Hz, 8.4 Hz, 1H), 6.84-6.63 (m, 1H), 4.35-4.29 (m, 2H), 2.11 (s, 3H), 1.55-1.36 (m, 3H).
<단계 2> 에틸-6-플로오로-1H-인돌-2-카르복실레이트 화합물의 합성
Figure PCTKR2017007853-appb-I000078
500 mL의 플라스크에 톨루엔 (200 mL)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸-2-(2-(3-플로오로페닐)하이드라조노)프로파노에이트 (22.5 g, 100.34 mmol)를 넣었다. 다음, 폴리포스포릭 산 (120 g)을 넣고, 6 시간 동안 환류 반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각하고, 톨루엔층만 분리한 후, 분리된 톨루엔층을 감압농축하였다. 다음, 형성된 고체에 톨루엔 (50 mL)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-플로오로-1H-인돌-2-카르복실레이트 (7.2 g, 34.7 mmol, 34 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 9.00 (br, NH, 1H), 7.63-7.59 (m, 1H), 7.22-7.20 (m, 1H), 7.08 (dd, J = 2.0, 9.6 Hz, 1H), 6.95-6.90 (m, 1H), 4.45-4.38 (m, 2H), 1.44-1.40 (m, 3H).
<단계 3> 에틸-6- 플로오로 -3-(4- 메톡시벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000079
100 mL의 플라스크에 (4-메톡시벤조익) 엑시드 (976 mg, 6.41 mmol)와 아세토나이트릴 (11 mL)를 넣고 용해시킨 후, 85% 포스포릭 엑시드(0.125 mL, 6.41 mmol)와 트라이플루오로아세틱 언하이드라이드(3 mL, 21.39 mmol)를 첨가하여 10 분 동안 교반시켰다. 다음, 상기 <단계 2>에서 합성된 에틸-6-플로오로-1H-인돌-2-카르복실레이트 (1.1 g, 4.28 mmol)을 넣고, 10 시간 동안 교반시켰다. 반응 종료 후, 에틸아세테이트와 물을 사용하여 유기층을 분리하고, 유기층을 포화된 소듐하이드로젠카보네이트와 소듐클로라이드로 한번 더 처리한 후, 마그네슘설페이트로 수분을 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-6-플로오로-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (1.2 g, 3.06 mmol, 71.8 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.34 (br, NH, 1H), 7.86 (d, J = 9.6 Hz, 2H), 7.60-7.57 (m, 1H), 7.14 (dd, J = 2.0, 9.2 Hz, 1H), 6.98-6.90 (m, 3H), 4.15-4.09 (m, 2H), 3.87 (s, 3H), 0.98-0.94 (m, 3H).
<단계 4> 에틸-6- 플로오로 -1-(4- 플로오로페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000080
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-6-플로오로-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (150 mg, 0.44 mmol)와 다이클로오로메탄 (2 mL)을 넣고 용해시켰다. 다음, (4-플로오로페닐)보로닉 엑시드 (92 mg, 0.66 mmol), 코퍼(II)아세테이트 (160 mg, 0.88 mmol), 트라이에틸아민 (89 mg, 0.88 mmol)을 첨가하고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-6-플로오로-1-(4-플로오로페닐)-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (110 mg, 0.25 mmol, 57.6%)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.90 (d, J = 10 Hz, 2H), 7.68-7.64 (m, 1H), 7.40-7.35 (m, 2H), 7.27- 7.21 (m, 2H), 7.00 (dt, J = 2.4, 8.8 Hz, 1H), 6.94 (d, J = 10 Hz, 2H), 6.76 (dd, J = 2.4, 9.6 Hz, 1H), 3.88-3.83 (m, 5H), 0.88-0.80 (m, 3H).
<단계 5> 6- 플로오로 -1-(4- 플로오로페닐 )-3-(4- 메톡시벤조일 )-1H-인돌-2- 카르복실릭 엑시드의 합성
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-6-플로오로-1-(4-플로오로페닐)-3-(4-메톡시벤조일)-1H-인돌-2-카르복실레이트 (100 mg, 0.23 mmol)을 넣고, 테트라하이드로퓨란 (1 mL) 및 메탄올 (1 mL)을 첨가하여 용해시켰다. 다음, 물 (1 mL)에 용해된 소듐 하이드록사이드 (46 mg, 1.15 mmol)을 첨가하고, 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl을 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 6-플로오로-1-(4-플로오로페닐)-3-(4-메톡시벤조일)-1H-인돌-2-카르복실릭 엑시드 (81.5 mg, 0.20 mmol, 87%)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.83 (d, J = 9.6 Hz, 2H), 7.59-7.51 (m, 2H), 7.39-7.28 (m, 3H), 7.03-6.95 (m, 3H), 6.88 (dd, J = 2.4, 10 Hz, 1H), 3.82 (s, 3H).
[ 실시예 62] 1-(3- 플로오로페닐 )-6- 플로오로 -3-(4- 메톡시벤조일 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-플로오로페닐)보로닉 엑시드 대신에 (3-플로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 61과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.83 (d, J = 9.6 Hz, 2H), 7.57-7.49 (m, 3H), 7.35 (t, J = 8.8 Hz, 2H), 7.01-6.94 (m, 3H), 6.78 (dd, J = 2.4, 10.0 Hz, 1H), 3.82 (s, 3H).
[ 실시예 63] 1-(3- 클로오로페닐 )-6- 플로오로 -3-(4- 메톡시벤조일 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (4-플로오로페닐)보로닉 엑시드 대신에 (3-클로오로페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 61과 동일한 과정을 수행하여 목적 화합물을 얻을었다.
1H NMR (400 MHz, DMSO-d6) 7.84 (d, J = 6.8 Hz, 2H), 7.59 (d, J = 7.6 Hz, 2H), 7.55 (s, 2H), 7.04 (tz, 1H), 7.28 (s, 1H) 7.25(d, J = 6.8 Hz, 2H) 7.15 (d, J = 11.6 Hz, 1H)
[ 실시예 64] 3-(3- 클로오로벤조일 )-6- 플로오로 -1-(P- 톨루일 )-1H-인돌-2- 카르복실릭 엑시드의 합성
<단계 1> (E)-에틸-2-(2-(3- 플로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000082
1000 mL의 플라스크에 (3-플로오로페닐)하이드라진 하이드로클로라이드 (25 g, 153.75 mmol)와 에탄올 (250 mL)을 넣고 용해시켰다. 다음, 에틸 2-옥소프로파노에이트 (26.8 g, 230.62 mmol), 아세틱 엑시드 (5 mL)를 넣고, 5시간 동안 환류 교반시켰다. 반응 종료 후, 감압농축하고 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 (E)-에틸-2-(2-(3-플로오로페닐)하이드라조노)프로파노에이트 (22.5 g, 100.34 mmol, 65 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.26-7.20 (m, 1H), 7.02 (dt, J = 2.4, 10.8 Hz, 1H), 6.88 (dd, J = 1.6 Hz, 8.4 Hz, 1H), 6.84-6.63 (m, 1H), 4.35-4.29 (m, 2H), 2.11 (s, 3H), 1.55-1.36 (m, 3H).
<단계 2> 에틸-6-플로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000083
500 mL의 플라스크에 톨루엔 (200 mL)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸-2-(2-(3-플로오로페닐)하이드라조노)프로파노에이트 (22.5 g, 100.34 mmol)를 넣었다. 다음, 폴리포스포릭 산 (120 g)을 넣고, 6 시간 동안 환류 반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각하고, 톨루엔층만 분리한 후, 분리된 톨루엔층을 감압농축하였다. 다음, 형성된 고체에 톨루엔 (50 mL)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-플로오로-1H-인돌-2-카르복실레이트 (7.2 g, 34.7 mmol, 34 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 9.00 (br, NH, 1H), 7.63-7.59 (m, 1H), 7.22-7.20 (m, 1H), 7.08 (dd, J = 2.0, 9.6 Hz, 1H), 6.95-6.90 (m, 1H), 4.45-4.38 (m, 2H), 1.44-1.40 (m, 3H).
<단계 3> 에틸-3-(3- 클로오로벤조일 )-6- 플로오로 -1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000084
500 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-6-플로오로-1H-인돌-2-카르복실레이트 (10 g, 48.26 mmol)와 다이클로오로에탄 (150 mL)을 넣고 용해시켰다. 다음, 3-클로오로벤조일 클로라이드 (10.1 g, 57.91 mmol), 알루미늄클로라이드 (7.72 g, 57.91 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:6)로 정제하여 에틸-3-(3-클로오로벤조일)-6-플로오로-1H-인돌-2-카르복실레이트 (7 g, 20.24 mmol, 42 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.28 (br, NH, 1H), 7.85 (t, J = 2.0 Hz, 1H), 7.35 (dt, J = 1.2, 8.0 Hz, 1H), 7.67 (m, 1H), 7.56-7.53 (m, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.16 (dd, J = 2.4, 9.2 Hz, 1H), 7.04-6.99 (m, 1H), 4.12-4.06 (m, 2H), 0.95-0.92 (m, 3H).
<단계 4> 에틸-3-(3- 클로오로벤조일 )-6- 플로오로 -1-(P- 톨루일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000085
100 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-3-(3-클로오로벤조일)-6-플로오로-1H-인돌-2-카르복실레이트 (200 mg, 0.57 mmol)와 다이클로오로메탄 (2 mL)을 넣고 용해시켰다. 다음, (3-메틸페닐)보로닉 엑시드 (157 mg, 1.156 mmol), 코퍼(II)아세테이트 (210 mg, 1.156 mmol), 트라이에틸아민 (0.222 ml, 1.157 mmol)을 첨가하고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 2N-HCl을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-3-(3-클로오로벤조일)-6-플로오로-1-(P-톨루일)-1H-인돌-2-카르복실레이트 (112 mg, 0.256 mmol, 44.42 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.89 (s, 1H), 7.79-7.73 (m, 2H), 7.53 (d, J = 6.8 Hz, 1H), 7.41-6.81 (m, 6H), 6.68 (d, J = 8.4 Hz, 1H), 3.81 (q, J = 7.2 Hz, 2H), 0.83 (t, J = 7.2 Hz, 3H).
<단계 5> 3-(3- 클로오로벤조일 )-6- 플로오로 -1-(파라- 톨루일 )-1H-인돌-2- 카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000086
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-3-(3-클로오로벤조일)-6-플로오로-1-(P-톨루일)-1H-인돌-2-카르복실레이트 (98 mg, 0.224 mmol)을 넣고, 테트라하이드로퓨란 (1mL) 및 메탄올 (1mL)을 첨가하여 용해시켰다. 다음, 1N-소듐 하이드록사이드 (0.045mL)을 첨가하고, 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl을 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 3-(3-클로오로벤조일)-6-플로오로-1-(파라-톨루일)-1H-인돌-2-카르복실릭 엑시드 (38 mg, 0.093 mmol, 41.44 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.4 (s, 1H), 7.79 (t, J = 2.0 Hz, 1H), 7.74-7.68 (m, 3H), 7.55 (t, J = 8.0 Hz, 1H), 7.38 (s, 4H), 7.18 (dt, J = 2.4, 9.6 Hz, 1H), 6.88 (dd, J = 2.0, 9.6 Hz, 1H), 2.42 (s, 3H).
[ 실시예 65] 1-(4- 터트 - 뷰틸 )페닐-3-(3- 클로오로벤조일 )-6- 플로오로 -1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (3-메틸페닐)보로닉 엑시드 대신에 (4-(터트-뷰틸)페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 64와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.77 (t, J = 1.6 Hz, 1H), 7.73 (m, 3H), 7.56 (d, J = 8.4 Hz, 2H), 7.51 (t, J = 7.6 Hz, 1H), 7.14 (dt, J = 2, 9.2 Hz, 1H), 6.86 (dd, J = 2.0, 9.6 Hz, 1H), 1.34 (s, 9H).
[ 실시예 66] 3-(3- 클로오로벤조일 )-6- 플로오로 -1-( 메타 - 톨루일 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (3-메틸페닐)보로닉 엑시드 대신에 (메타-톨루일)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 64와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.5 (s, 1H), 7.78 (s, 1H), 7.73-7.67 (m, 3H), 7.54 (t, J = 8.0 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 1H), 7.16 (dt, J = 2.0, 9.2 Hz, 1H), 6.89 (dd, J = 2.0, 9.6 Hz, 1H), 2.39 (s, 3H).
[ 실시예 67] 3-(3- 클로오로벤조일 )-6- 플로오로 -1-(4- 메톡시페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 (3-메틸페닐)보로닉 엑시드 대신에 (4-메톡시페닐)보로닉 엑시드를 사용하는 것을 제외하고는 상기 실시예 64와 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.81 (t, J = 1.6 Hz, 1H), 7.75-7.67 (m, 3H), 7.57 (t, J = 8.0 Hz, 1H), 7.46 (d, J = 8.8 Hz, 2H), 7.18-7.09 (m, 3H), 6.87 (dd, J = 2.4, 9.6 Hz, 1H), 3.85 (s, 3H).
[ 실시예 68] 6 - 클로오로 -1-(4- 클로오로페닐 )-3-((4- 클로오로페닐 )( 하이드록시이미노 )메틸)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 1> (E)-에틸-2-(2-(3- 클로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000087
2 L의 플라스크에 정제된 증류수 (520 ml)를 넣는다. 상기 플라스크에 소듐아세테이트 (50 g, 0.6 mol)를 녹인 후, (3-클로오로페닐)하이드라진 하이드로클로라이드 (52 g, 0.3 mol)를 넣고 30 분간 실온에서 교반시킨 후, 에틸 2-옥소프로파노에이트 (35 ml, 0.3mol)를 천천히 넣고, 6 시간 동안 교반을 실시하였다. 반응 종료 후 감압필터로 여과한 후 건조시켰다. 3 L의 플라스크에 건조한 고체와 노말헥산 2 L를 넣고 1 시간 동안 교반시킨 후 여과하여 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (57 g, 0.24 mol, 81 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.24 (m, 1H), 7.04 (m, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.84 (m, 1H), 4.35 (q, 2H), 2.11 (s, 3H), 1.40 (t, J = 8.0 Hz, 3H).
<단계 2> 에틸-6-클로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000088
500 ml의 플라스크에 톨루엔 (110 ml)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (10.6 g, 0.044 mol)를 넣었다. 다음, 폴리포스포릭 산 (52 g)을 넣은 후, 6 시간 동안 환류반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각하고, 톨루엔층만 분리한 후. 분리된 톨루엔층을 감압농축하였다. 다음, 형성된 고체에 톨루엔 (50 ml)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (3.4 g, 0.015 mol, 35 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 8.84 (br, NH, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.42 (s, 1H), 7.19 (s, 1H) 7.13 (d, J = 8.0 Hz, 1H), 4.44 (q, 2H), 1.43 (t, J = 8.0 Hz, 3H).
<단계 3> 에틸-6- 클로오로 -3-(4- 클로오로벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000089
100 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (1 g, 4.47 mmol)와 다이클로오로메탄 (10 mL)을 넣고 용해시킨 후, 4-클로오로벤조일 클로라이드 (939 mg, 5.36 mmol)와 알루미늄클로라이드 (714 mg, 5.36 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:6)로 정제하여 에틸-6-클로오로-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (843 mg, 2.32 mmol, 52 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.17 (s, 1H), 7.81 (d, J = 6.8 Hz, 2H), 7.60 (d, J = 8.4 Hz, 1H), 7.49-7.41 (m, 3H), 7.21 (dd, J = 1.6, 8.4 Hz, 1H), 4.13-4.08 (m, 2H), 0.97-0.94 (m, 3H).
<단계 4> 에틸-6- 클로오로 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000090
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (40 mg, 0.122 mmol)와 다이클로오로메탄 (1 mL)을 넣고 반응시켰다. 다음, 4-(클로오로페닐)보로닉 엑시드 (39 mg, 0.246 mmol), 코퍼(II)아세테이트 (34 mg, 0.185 mmol), 트라이에틸아민 (25 mg, 0.246 mmol)을 첨가하고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 물를 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (34 mg, 0.072 mmol, 60 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.84 (d, J = 9.2 Hz, 2H), 7.67 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 9.6 Hz, 2H), 7.45 (d, J = 9.2 Hz, 2H), 7.34 (d, J = 9.6 Hz, 2H), 7.24 (dd, J = 2.0, 8.8 Hz, 1H), 7.11 (d, J = 2,0 Hz, 1H), 3.87-3.81 (m, 2H), 0.85-0.82 (m, 3H).
<단계 5> 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000091
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (34 mg, 0.072 mmol)을 넣고, 테트라하이드로퓨란 (0.5 mL) 및 메탄올 (0.5 mL)을 첨가하여 용해시켰다. 다음, 물 (0.5 mL)에 용해된 소듐 하이드록사이드 (15 mg, 0.36 mmol)을 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl을 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실릭 엑시드 (20 mg, 0.045 mmol, 62.5 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.56 (br, OH, 1H), 7.85-7.83 (d, J = 8.0 Hz, 2H), 7.67-7.57 (m, 7H), 7.32-7.30 (d, J = 8.0 Hz, 2H), 7.17(s, 1H).
<단계 6> 6- 클로오로 -1-(4- 클로오로페닐 )-3-((4- 클로오로페닐 )( 하이드록시이미노 )메틸)-1H-인돌-2-카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000092
5 mL의 플라스크에 상기 <단계 5>에서 합성된 6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실릭 엑시드(50 mg, 0.1124 mmol)와 에탄올(1.0ml)를 넣고 반응시켰다. 다음, 하이드록실아민 하이드로클로라이드(12 mg, 0.1686 mmol)과 소디움아세테이트(18.4 mg, 0.2248 mmol)를 첨가하고, 5 시간 동안 환류 교반시킨 후, 상온으로 온도를 낮추고 반응 용액을 농축시켰다. 얻어진 반응물을 물로 희석하고 에틸아세테이트를 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘 설페이트로 제거 하하였다. 다음, 여과한 후 감압 증류하고 혼합물을 컬럼크로마토그래피(MC/MeOH/AcOH = 950:50:1)로 정제하여 6-클로오로-1-(4-클로오로페닐)-3-((4-클로오로페닐)(하이드록시이미노)메틸)-1H-인돌-2-카르복실릭 엑시드 (30 mg, 0.0652 mmol, 58.1 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.10 (s, 1H), 11.61 (s, 1H), 7.71-7.40 (m, 8H), 7.26 (d, J = 8.4 Hz, 1H), 7.19(d, J = 8.4 Hz, 1H), 7.13 (s, 1H).
[ 실시예 69] 6- 클로오로 -1-(4- 클로오로페닐 )-3-((4- 클로오로페닐 )( 메톡시이미노 )메틸)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 1> (E)-에틸-2-(2-(3- 클로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000093
2 L의 플라스크에 정제된 증류수 (520 ml)를 넣는다. 상기 플라스크에 소듐아세테이트 (50 g, 0.6 mol)를 녹인 후, (3-클로오로페닐)하이드라진 하이드로클로라이드 (52 g, 0.3 mol)를 넣고 30 분간 실온에서 교반시킨 후, 에틸-2-옥소프로파노에이트 (35 ml, 0.3 mol)를 천천히 넣고, 6 시간 동안 교반을 실시하였다. 반응 종료 후, 감압필터로 여과한 후 건조시켰다. 3 L의 플라스크에 건조한 고체와 노말헥산 2 L를 넣고 1 시간 동안 교반시킨 후 여과하여 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (57 g, 0.24 mol, 81 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.24 (m, 1H), 7.04 (m, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.84 (m, 1H), 4.35 (q, 2H), 2.11 (s, 3H), 1.40 (t, J = 8.0 Hz, 3H).
<단계 2> 에틸-6-클로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000094
500 ml의 플라스크에 톨루엔 (110 ml)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (10.6 g, 0.044 mol)를 넣었다. 다음, 폴리포스포릭 산 (52 g)을 넣고, 6 시간 동안 환류반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각하고, 톨루엔층만 분리한 후. 분리된 톨루엔층을 감압농축하였다. 다음, 형성된 고체에 톨루엔 (50 ml)을 넣고, 1 시간동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (3.4 g, 0.015 mol, 35 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 8.84 (br, NH, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.42 (s, 1H), 7.19 (s, 1H) 7.13 (d, J = 8.0 Hz, 1H), 4.44 (q, 2H), 1.43 (t, J = 8.0 Hz, 3H).
<단계 3> 에틸-6- 클로오로 -3-(4- 클로오로벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000095
100 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (1 g, 4.47 mmol)와 다이클로오로메탄 (10 mL)을 넣고 용해시켰다. 다음, 4-클로오로벤조일 클로라이드 (939 mg, 5.36 mmol), 알루미늄클로라이드 (714 mg, 5.36 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:6)로 정제하여 에틸-6-클로오로-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (843 mg, 2.32 mmol, 52 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.17 (s, 1H), 7.81 (d, J = 6.8 Hz, 2H), 7.60 (d, J = 8.4 Hz, 1H), 7.49-7.41 (m, 3H), 7.21 (dd, J = 1.6, 8.4 Hz, 1H), 4.13-4.08 (m, 2H), 0.97-0.94 (m, 3H).
<단계 4> 에틸-6- 클로오로 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000096
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (40 mg, 0.122 mmol)와 다이클로오로메탄 (1 mL)을 넣고 용해시켰다. 다음, 4-(클로오로페닐)보로닉 엑시드 (39 mg, 0.246 mmol), 코퍼(II)아세테이트 (34 mg, 0.185 mmol), 트라이에틸아민 (25 mg, 0.246 mmol)을 첨가하고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 물를 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:4)로 정제하여 에틸-6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (34 mg, 0.072 mmol, 60 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.84 (d, J = 9.2 Hz, 2H), 7.67 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 9.6 Hz, 2H), 7.45 (d, J = 9.2 Hz, 2H), 7.34 (d, J = 9.6 Hz, 2H), 7.24 (dd, J = 2.0, 8.8 Hz, 1H), 7.11 (d, J = 2,0 Hz, 1H), 3.87-3.81 (m, 2H), 0.85-0.82 (m, 3H).
<단계 5> 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000097
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (34 mg, 0.072 mmol)을 넣고, 테트라하이드로퓨란 (0.5 mL) 및 메탄올 (0.5 mL)을 첨가하여 용해시켰다. 다음, 물 (0.5 mL)에 용해된 소듐 하이드록사이드 (15 mg, 0.36 mmol)을 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl을 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실릭 엑시드 (20 mg, 0.045 mmol, 62.5 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.56 (br, OH, 1H), 7.85-7.83 (d, J = 8.0 Hz, 2H), 7.67-7.57 (m, 7H), 7.32-7.30 (d, J = 8.0 Hz, 2H), 7.17(s, 1H).
<단계 6> 6- 클로오로 -1-(4- 클로오로페닐 )-3-((4- 클로오로페닐 )( 메톡시이미노 )메틸)-1H-인돌-2-카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000098
5 mL의 플라스크에 상기 <단계 5>에서 합성된 6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실릭 엑시드(30 mg, 0.0675 mmol)와 에탄올(0.5 ml)을 넣고 용해시켰다. 다음, 메틸하이드록실아민 하이드로클로라이드(8.5 mg, 0.1012 mmol)과 소디움설페이트(19.2 mg, 0.1350 mmol)를 첨가하고 환류 교반시킨 후, 상온으로 온도를 낮추고 반응 용액을 농축하였다. 얻어진 반응물을 물로 희석하고 에틸아세테이트를 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후 감압 증류하고, 혼합물을 컬럼크로마토그래피(MC/MeOH/AcOH = 950:50:1)로 정제하여 6-클로오로-1-(4-클로오로페닐)-3-((4-클로오로페닐)(메톡시이미노)메틸)-1H-인돌-2-카르복실릭 엑시드 (15 mg, 0.0317 mmol, 46.9 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 13.13 (s, 1H), 7.64 (d, J = 8.8 Hz, 2H), 7.56-7.51 (m, 4H), 7.44 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 8.4 Hz, 1H), 7.22 (dd, J = 2.0, 8.8 Hz, 1H), 7.15 (s,1H), 3.89 (s, 3H)
[ 실시예 70] 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 1> (E)-에틸-2-(2-(3- 클로오로페닐 ) 하이드라조노 ) 프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000099
2 L의 플라스크에 정제된 증류수 (520 ml)를 넣는다. 상기 플라스크에 소듐아세테이트 (50 g, 0.6 mol)를 녹인 후, (3-클로오로페닐)하이드라진 하이드로클로라이드 (52 g, 0.3 mol)를 넣고 30 분간 실온에서 교반시킨 후, 에틸-2-옥소프로파노에이트 (35 ml, 0.3 mol)를 천천히 넣고, 6 시간 동안 교반을 실시하였다. 반응 종료 후, 감압필터로 여과한 후 건조시켰다. 3 L의 플라스크에 건조한 고체와 노말헥산 2 L를 넣고, 1 시간 동안 교반시킨 후 여과하여 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (57 g, 0.24 mol, 81 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 7.66 (br, NH, 1H), 7.24 (m, 1H), 7.04 (m, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.84 (m, 1H), 4.35 (q, 2H), 2.11 (s, 3H), 1.40 (t, J = 8.0 Hz, 3H).
<단계 2> 에틸-6-클로오로-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000100
500 ml의 플라스크에 톨루엔 (110 ml)을 넣고 상기 <단계 1>에서 합성된 (E)-에틸-2-(2-(3-클로오로페닐)하이드라조노)프로파노에이트 (10.6 g, 0.044 mol)를 넣는다. 다음, 폴리포스포릭 산 (52 g)을 넣고, 6 시간 동안 환류반응을 진행시켰다. 반응이 완료되면 50 ℃까지 냉각시키고, 톨루엔층만 분리한 후. 분리된 톨루엔층을 감압농축하였다. 다음, 형성된 고체에 톨루엔 (50 ml)을 넣고 1 시간 동안 환류시킨 후 실온으로 냉각시켰다. 이후, 재결정된 고체를 여과하여 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (3.4 g, 0.015 mol, 35 %)을 얻었다.
1H NMR (400 MHz, CDCl3) 8.84 (br, NH, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.42 (s, 1H), 7.19 (s, 1H) 7.13 (d, J = 8.0 Hz, 1H), 4.44 (q, 2H), 1.43 (t, J = 8.0 Hz, 3H).
<단계 3> 에틸-6- 클로오로 -3-(4- 클로오로벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000101
100 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-6-클로오로-1H-인돌-2-카르복실레이트 (1 g, 4.47 mmol)와 다이클로오로메탄 (10 mL)을 넣고 용해시켰다. 다음, 4-클로오로벤조일 클로라이드 (939 mg, 5.36 mmol), 알루미늄클로라이드 (714 mg, 5.36 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 1:6)로 정제하여 에틸-6-클로오로-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (843 mg, 2.32 mmol, 52 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.17 (s, 1H), 7.81 (d, J = 6.8 Hz, 2H), 7.60 (d, J = 8.4 Hz, 1H), 7.49-7.41 (m, 3H), 7.21 (dd, J = 1.6, 8.4 Hz, 1H), 4.13-4.08 (m, 2H), 0.97-0.94 (m, 3H).
<단계 4> 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(4- 클로오로벤질 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000102
250 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-6-클로오로-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (2 g, 6.10 mmol)을 넣고, 테트라하이드로퓨란 (10 mL) 및 N,N-다이메틸포름아마이드 (10 mL)을 첨가하여 용해시켰다. 다음, 0 ℃에서 1 M 리튬 비스(트라이메틸실릴)아마이드 (13.5 mL, 13.4 mmol)을 넣고, 15 분 동안 교반시킨 후, 1-(브로모메틸)-4-클로오로벤젠 (1.5 g, 7.32 mmol)를 첨가하고, 상온에서 2 시간 동안 교반시켰다. 반응 종료 후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 4:1)로 정제하여 에틸-6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로벤질)-1H-인돌-2-카르복실레이트 (1 g, 2.05 mmol, 45%)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.78 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.8 Hz, 1H), 7.44-7.42 (m, 3H), 7.28-7.26 (m, 2H), 7.22 (dd, J = 1.6, 8.8 Hz, 1H), 7.03 (d, J = 8.4 Hz, 2H), 5.7 (s, 2H), 3.90-3.84 (m, 2H), 0.88-0.83 (m, 3H).
<단계 5> 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000103
100 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로벤질)-1H-인돌-2-카르복실레이트 (1 g, 2.05 mmol)을 넣고, 테트라하이드로퓨란 (5 mL) 및 메탄올 (5 mL)을 첨가하여 용해시킨다. 다음, 물 (5 mL)에 용해된 소듐 하이드록사이드 (329 mg, 8.21 mmol)을 첨가한 후, 1 시간 동안 교반시킨다. 반응 종료 후, 농축하고, 2N-HCl를 이용하여 pH 5로 맞췄다. 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 6-클로오로-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실릭 엑시드 (1 g, 2.24 mmol, 77 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.88 (d, J = 1.6 Hz, 1H), 7.76 (d, J = 3.6 Hz, 2H), 7.76-7.56 (m, 3H), 7.39 (d, J = 8.4 Hz, 2H), 7.25 (dd, J = 1.6, 8.4 Hz, 1H), 7.12 (d, J = 11.2 Hz, 2H), 5.83 (s, 2H).
[ 실시예 71] 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(3-메톡시벤질)-1H-인돌―카르복실릭 엑시드 합성
<단계 4>에서 사용된 1-(브로모메틸)-4-클로오로벤젠 대신에 1-(브로모메틸)-3-메톡시벤젠을 사용하는 것을 제외하고는 상기 실시예 70과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, MeOD) 7.80 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.4 Hz, 1H), 7.47-7.42 (m, 3H), 7.19-7.13 (m, 2H), 6.78-6.73 (m, 3H), 5.70 (s, 2H), 3.71 (s, 3H).
[ 실시예 72] 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(2- 클로오로벤질 )-1H-인돌-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 1-(브로모메틸)-4-클로오로벤젠 대신에 1-(브로모메틸)-2-클로오로벤젠을 사용하는 것을 제외하고는 상기 실시예 70과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.83 (s, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.62 (t, 3H), 7.54 (d, J = 8.4 Hz, 1H), 7.32 (d, J = 8.0 Hz,1H), 7.28(d, J = 8.0 Hz, 1H), 7.21 (t, 1H), 6.32 (d, J = 7.6 Hz,1H).
[ 실시예 73] 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(피리딘-3- 일메틸 )-1H-인돌-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 1-(브로모메틸)-4-클로오로벤젠 대신에 3-(브로모메틸)피디딘을 사용하는 것을 제외하고는 상기 실시예 70과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 12.73 (br, OH, 1H), 8.50-8.47 (m, 2H), 7.95 (s, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.60-7.56 (m, 3H), 7.50 (d, J = 8.0 Hz, 1H), 7.40 (m, 1H), 7.26 (d, J = 8.0 Hz, 1H), 5.88 (s, 2H).
[ 실시예 74] 6- 클로오로 -3-(4- 클로오로벤조일 )-1-(3-( 트라이플로오로메톡시 )벤질)-1H-인돌-카르복실릭 엑시드의 합성
<단계 4>에서 사용된 1-(브로모메틸)-4-클로오로벤젠 대신에 1-(브로모메틸)-3-(트라이플로오로메톡시)벤젠을 사용하는 것을 제외하고는 상기 실시예 70과 동일한 과정을 수행하여 목적 화합물을 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.77 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 6.0 Hz, 2H), 7.43 (dd, J = 8.4 Hz, 2H), 7.28 (s, 1H), 7.25 (t, 1H) 7.15 (d, J = 8.0 Hz, 1H).
[ 실시예 75] 6- 브로모 -3-(4- 클로오로벤조일 )-1-(4- 클로오로벤질 )-1H-인돌-2-카르복실 엑시드의 합성
<단계 1> 에틸-3-(4-브로모-2-나이트로페닐)-2-옥소프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000104
100 mL의 플라스크에 포타슘 에톡사이드, 에탄올 (4 mL), 다이에틸 에테르(16 mL)을 넣고 용해시킨 후, 다이에틸 에테르 (6 mL)에 용해된 다이에틸 옥살레이트 (1.5 mL, 11.1 mmol)을 첨가하였다. 다음, 다이에틸 에테르 (4 mL)에 용해된 4-브로모-1-메틸-2-나이트로벤젠 (2 g, 9.25 mmol)을 첨가하고, 12 시간 동안 상온에서 교반시켰다. 반응 종료 후, 감압농축하고, 2N-HCl을 이용하여 pH 5로 맞췄다. 다음, 에틸아세테이트로 추출하고, 마그네슘설페이트로 수분을 제거한 후, 농축하여 에틸-3-(4-브로모-2-나이트로페닐)-2-옥소프로파노에이트를 얻었다.
1H NMR (400 MHz, CDCl3) 8.31 (d, J = 2.0 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 2.0 Hz, 1H), 7.76 (dd, J = 2.0, 8.4 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 4.50 (s, 2H), 4.41-4.36 (m, 2H), 1.42-1.38 (m, 3H).
<단계 2> 에틸-6-브로모-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000105
250 mL의 플라스크에 상기 <단계 1>에서 합성된 에틸-3-(4-브로모-2-나이트로페닐)-2-옥소프로파노에이트 (2.57 g, 8.15 mmol)을 넣고, 아세틱 에시드 (15 mL)와 에탄올 (15 mL)을 첨가하여 용해시킨 후, 철 파우더 (4.1 g, 73.4 mmol)을 첨가하고, 4 시간 동안 환류 교반시켰다. 반응 종료 후, 5 ℃로 온도를 낮추고, 셀라이트를 사용하여 혼합 용액을 여과한 후, 감압농축시켰다. 2N-HCl을 이용하여 pH 5로 맞추고 에틸아세테이트로 추출한 후, 마그네슘설페이트로 수분을 제거하고, 농축시켰다. 다음, 다이클로오로메탄으로 재결정해서 에틸-6-브로모-1H-인돌-2-카르복실레이트 (1.5 g, 5.59 mmol, 68.6 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 12.02 (s, 1H), 7.64-7.60 (m, 2H), 7.21 (dd, J = 2.0, 8.4 Hz, 1H), 4.37-4.31 (m, 2H), 1.35-1.32 (m, 3H).
<단계 3> 에틸-6- 브로모 -3-(4- 클로오로벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000106
25 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-6-브로모-1H-인돌-2-카르복실레이트 (100 mg, 0.373 mmol)와 다이클로오로메탄 (1 mL)을 넣고 용해시킨 후, 4-클로오로벤조일 클로라이드 (78 mg, 0.448 mmol), 알루미늄클로라이드 (100 mg, 0.746 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 6:1)로 정제하여 에틸-6-브로모-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (47 mg, 0.115 mmol, 31 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.31 (s, 1H), 7.81 (d, J = 9.2 Hz, 2H), 7.66 (d, J = 1.2 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.43 (d, J = 9.2 Hz, 2H), 7.33 (dd, J = 8.8 Hz, 1H), 4.13-4.08 (m, 2H), 0.97-0.94 (m, 3H).
<단계 4> 에틸-6- 브로모 -3-(4- 클로오로벤조일 )-1-(4- 클로오로벤질 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000107
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-6-브로모-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (80 mg, 0.20 mmol), 테트라하이드로퓨란 (1 mL), N,N-다이메틸포름아마이드 (1 mL)을 넣고 용해시킨 후, 0 ℃에서 1 M 리튬 비스(트라이메틸실릴)아마이드 (0.43 mL, 0.43 mmol)을 넣었다. 15 분간 교반한 후, 1-(브로모메틸)-4-클로오로벤젠 (49 mg, 0,23 mmol)를 첨가하고, 상온에서 2 시간 동안 교반시켰다. 반응 종료 후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 4:1)로 정제하여 에틸-6-브로모-3-(4-클로오로벤조일)-1-(4-클로오로벤질)-1H-인돌-2-카르복실레이트 (95 mg, 0.18 mmol, 91 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.77 (d, J = 9.2 Hz, 2H), 7.61-7.55 (m, 2H), 7.43 (d, J = 9.2 Hz, 2H), 7.35-7.03 (m, 3H), 7.02 (d, J = 8.8 Hz, 2H), 5.70 (s, 2H), 3.90-3.84 (m, 2H), 0.87-0.83 (m, 3H).
<단계 5> 6- 브로모 -3-(4- 클로오로벤조일 )-1-(4- 클로오로벤질 )-1H-인돌- 카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000108
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-6-브로모-3-(4-클로오로벤조일)-1-(4-클로오로벤질)-1H-인돌-2-카르복실레이트 (95 mg, 0.18 mmol), 테트라하이드로퓨란 (1 mL), 메탄올 (1 mL)을 넣고 용해시켰다. 다음, 물 (1 mL)에 용해된 소듐 하이드록사이드 (36 mg, 0.89 mmol)을 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl를 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 6-브로모-3-(4-클로오로벤조일)-1-(4-클로오로벤질)-1H-인돌-카르복실릭 엑시드 (20 mg, 0.040 mmol, 22 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 8.00 (d, J = 1.2 Hz, 1H), 7.56 (d, J = 1.6, 8.4 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.52 (d, J = 8.8 Hz, 1H), 7.41-7.34 (m, 3H), 7.11 (d, J = 8.4 Hz, 2H), 5.82 (s, 2H).
[ 실시예 76] 6- 브로모 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 1> 에틸3-(4-브로모-2-나이트로페닐)-2-옥소프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000109
100 mL의 플라스크에 포타슘 에톡사이드, 에탄올 (4 mL), 다이에틸 에테르(16 mL)을 넣고 용해시 후, 다이에틸 에테르 (6 mL)에 용해된 다이에틸 옥살레이트 (1.5 mL, 11.1 mmol)을 첨가하였다. 다음, 다이에틸 에테르 (4 mL)에 용해된 4-브로모-1-메틸-2-나이트로벤젠 (2 g, 9.25 mmol)을 첨가하고, 12 시간 동안 상온에서 교반시켰다. 반응 종료 후, 감압 농축하고, 2N-HCl를 이용하여 pH 5로 맞췄다. 다음, 에틸아세테이트로 추출하고 마그네슘설페이트로 수분을 제거한 후, 혼합물을 농축해서 에틸-3-(4-브로모-2-나이트로페닐)-2-옥소프로파노에이트를 얻었다.
1H NMR (400 MHz, CDCl3) 8.31 (d, J = 2.0 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 2.0 Hz, 1H), 7.76 (dd, J = 2.0, 8.4 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 4.50 (s, 2H), 4.41-4.36 (m, 2H), 1.42-1.38 (m, 3H).
<단계 2> 에틸-6-브로모-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000110
250 mL의 플라스크에 상기 <단계 1>에서 합성된 에틸-3-(4-브로모-2-나이트로페닐)-2-옥소프로파노에이트 (2.57 g, 8.15 mmol), 아세틱 에시드 (15 mL), 에탄올 (15 mL)을 넣고 용해시킨 후, 철 파우더 (4.1 g, 73.4 mmol)을 첨가하고, 4 시간 동안 환류 교반시켰다. 반응 종료 후, 5 ℃로 온도를 낮춘 후, 셀라이트를 사용하여 혼합 용액을 여과한 후, 감압농축하고, 2N-HCl를 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트로 추출하고, 마그네슘설페이트로 수분을 제거한 후, 농축하고 다이클로오로메탄으로 재결정해서 에틸-6-브로모-1H-인돌-2-카르복실레이트 (1.5 g, 5.59 mmol, 68.6 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 12.02 (s, 1H), 7.64-7.60 (m, 2H), 7.21 (dd, J = 2.0, 8.4 Hz, 1H), 4.37-4.31 (m, 2H), 1.35-1.32 (m, 3H).
<단계 3> 에틸-6- 브로모 -3-(4- 클로오로벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000111
25 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-6-브로모-1H-인돌-2-카르복실레이트 (100 mg, 0.373 mmol), 다이클로오로메탄 (1 mL)을 넣고 용해시켰다. 다음, 4-클로오로벤조일 클로라이드 (78 mg, 0.448 mmol), 알루미늄클로라이드 (100 mg, 0.746 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 6:1)로 정제하여 에틸-6-브로모-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (47 mg, 0.115 mmol, 31 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.31 (s, 1H), 7.81 (d, J = 9.2 Hz, 2H), 7.66 (d, J = 1.2 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.43 (d, J = 9.2 Hz, 2H), 7.33 (dd, J = 8.8 Hz, 1H), 4.13-4.08 (m, 2H), 0.97-0.94 (m, 3H).
<단계 4> 에틸-6- 브로모 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000112
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-6-브로모-1H-인돌-2-카르복실레이트 (50 mg, 0.123 mmol), 다이클로오로메탄 (1 mL)을 넣고 용해시켰다. 다음, 4-(클로오로페닐)보로닉 엑시드 (39 mg, 0.246 mmol), 코퍼(II)아세테이트 (34 mg, 0.185 mmol), 트라이에틸아민 (25 mg, 0.246 mmol)을 첨가하고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 물를 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 4:1)로 정제하여 에틸-6-브로모-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (50 mg, 0.097 mmol, 78.6 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.84 (d, J = 9.2 Hz, 2H), 7.61 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 9.2 Hz, 2H), 7.38-7.28 (m, 3H), 6.92 (d, J = 6.8 Hz, 1H), 3.87-3.79 (m, 2H), 0.88-0.82 (m, 3H).
<단계 5> 6- 브로모 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2- 카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000113
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-6-브로모-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (45 mg, 0.087 mmol), 테트라하이드로퓨란 (0.5 mL), 메탄올 (0.5 mL)을 넣고 용해시켰다. 다음, 물 (0.5 mL)에 용해된 소듐 하이드록사이드 (17.4 mg, 0.43 mmol)을 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl를 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 6-브로모-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실릭 엑시드 (21 mg, 0.043 mmol, 49.4 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 7.84 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 9.6 Hz, 3H), 7.48 (dd, J = 1.2, 10.4 Hz, 4H), 7.36 (dd, J = 2, 10.4 Hz, 1H), 7.29 (d, J = 1.6 Hz, 1H).
[ 실시예 77] 3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-6-(피리딘-3-일)-1H-인돌-2-카르복실릭 엑시드의 합성
<단계 1> 에틸-3-(4-브로모-2-나이트로페닐)-2-옥소프로파노에이트의 합성
Figure PCTKR2017007853-appb-I000114
100 mL의 플라스크에 포타슘 에톡사이드, 에탄올 (4 mL), 다이에틸 에테르(16 mL)을 넣고 용해시킨 후, 다이에틸 에테르 (6 mL)에 용해된 다이에틸 옥살레이트 (1.5 mL, 11.1 mmol)을 첨가하였다. 다음, 다이에틸 에테르 (4 mL)에 용해된 4-브로모-1-메틸-2-나이트로벤젠 (2 g, 9.25 mmol)을 첨가하고, 12 시간 동안 상온에서 교반시켰다. 반응 종료 후, 감압 농축하고, 2N-HCl을 이용하여 pH 5로 맞췄다. 다음, 에틸아세테이트로 추출하고, 마그네슘설페이트로 수분을 제거한 후, 혼합물을 농축해서 에틸-3-(4-브로모-2-나이트로페닐)-2-옥소프로파노에이트를 얻었다.
1H NMR (400 MHz, CDCl3) 8.31 (d, J = 2.0 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 2.0 Hz, 1H), 7.76 (dd, J = 2.0, 8.4 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 4.50 (s, 2H), 4.41-4.36 (m, 2H), 1.42-1.38 (m, 3H).
<단계 2> 에틸-6-브로모-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000115
250 mL의 플라스크에 상기 <단계 1>에서 합성된 에틸-3-(4-브로모-2-나이트로페닐)-2-옥소프로파노에이트 (2.57 g, 8.15 mmol), 아세틱 에시드 (15 mL), 에탄올 (15 mL)을 넣고 용해시킨 후, 철 파우더 (4.1 g, 73.4 mmol)을 첨가하고, 4 시간 동안 환류 교반시켰다. 반응 종료 후, 5 ℃로 온도를 낮추고, 셀라이트를 사용하여 혼합용액을 여과한 후, 감압농축하고, 2N-HCl을 이용하여 pH 5로 맞웠다. 다음, 에틸아세테이트로 추출하고, 마그네슘설페이트로 수분을 제거한 후, 혼합물을 농축하고 다이클로오로메탄으로 재결정해서 에틸-6-브로모-1H-인돌-2-카르복실레이트 (1.5 g, 5.59 mmol, 68.6 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 12.02 (s, 1H), 7.64-7.60 (m, 2H), 7.21 (dd, J = 2.0, 8.4 Hz, 1H), 4.37-4.31 (m, 2H), 1.35-1.32 (m, 3H).
<단계 3> 에틸-6- 브로모 -3-(4- 클로오로벤조일 )-1H-인돌-2- 카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000116
25 mL의 플라스크에 상기 <단계 2>에서 합성된 에틸-6-브로모-1H-인돌-2-카르복실레이트 (100 mg, 0.373 mmol), 다이클로오로메탄 (1 mL)을 용해시켰다. 다음, 4-클로오로벤조일 클로라이드 (78 mg, 0.448 mmol), 알루미늄클로라이드 (100 mg, 0.746 mmol)을 첨가하고, 12 시간 동안 환류 교반시켰다. 반응 종료 후, 상온으로 온도를 낮추고, 다이클로오로메탄과 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 6:1)로 정제하여 에틸-6-브로모-3-(4-클로오로벤조일)-1H-인돌-2-카르복실레이트 (47 mg, 0.115 mmol, 31 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 9.31 (s, 1H), 7.81 (d, J = 9.2 Hz, 2H), 7.66 (d, J = 1.2 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.43 (d, J = 9.2 Hz, 2H), 7.33 (dd, J = 8.8 Hz, 1H), 4.13-4.08 (m, 2H), 0.97-0.94 (m, 3H).
<단계 4> 에틸-6- 브로모 -3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000117
25 mL의 플라스크에 상기 <단계 3>에서 합성된 에틸-6-브로모-1H-인돌-2-카르복실레이트 (50 mg, 0.123 mmol), 다이클로오로메탄 (1 mL)을 넣고 용해시켰다. 다음, 4-(클로오로페닐)보로닉 엑시드 (39 mg, 0.246 mmol), 코퍼(II)아세테이트 (34 mg, 0.185 mmol), 트라이에틸아민 (25 mg, 0.246 mmol)을 첨가하고, 12 시간 동안 교반시켰다. 반응 종료 후, 다이클로오로메탄과 물를 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 4:1)로 정제하여 에틸-6-브로모-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (50 mg, 0.097 mmol, 78.6 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 7.84 (d, J = 9.2 Hz, 2H), 7.61 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 8.8 Hz, 2H), 7.43 (d, J = 9.2 Hz, 2H), 7.38-7.28 (m, 3H), 6.92 (d, J = 6.8 Hz, 1H), 3.87-3.79 (m, 2H), 0.88-0.82 (m, 3H).
<단계 5> 에틸-3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-6-(피리딘-3-일)-1H-인돌-2-카르복실레이트의 합성
Figure PCTKR2017007853-appb-I000118
25 mL의 플라스크에 상기 <단계 4>에서 합성된 에틸-6-브로모-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-1H-인돌-2-카르복실레이트 (50 mg, 0.096 mmol), 테트라하이드로퓨란 (0.5 mL), 에탄올 (0.5 mL), 물 (0.5 mL)을 넣고 용해시켰다. 다음, 피리딘-3-일보로닉 엑시드 (12 mg, 0.096 mmol), [1,1'-비스(다이페닐포스피노)페로센] 다이클로오로팔라듐(II) (0.4 mg 0.00048 mmol), 트리포타슘 포스페이트 (41 mg, 0.19 mmol)을 첨가하고, 4 시간 동안 70 ℃에서 교반시켰다. 반응 종료 후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (EA/n-Hex = 4:1)로 정제하여 에틸-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-6-(피리딘-3-일)-1H-인돌-2-카르복실레이트 (34 mg, 0.066 mmol, 68 %)를 얻었다.
1H NMR (400 MHz, CDCl3) 8.80 (s, 1H), 8.48 (d, J = 3.2 Hz, 1H), 7.90-7.82 (m, 4H) 7.57-7.54 (d, J = 14.4 Hz, 2H), 7.50 (dd, J = 1.2, 10.0 Hz, 1H), 7.45 (d, J = 13.2 Hz, 2H), 7.41-7.27 (m, 4H).
<단계 6> 3-(4- 클로오로벤조일 )-1-(4- 클로오로페닐 )-6-(피리딘-3-일)-1H-인돌-2-카르복실릭 엑시드의 합성
Figure PCTKR2017007853-appb-I000119
25 mL의 플라스크에 상기 <단계 5>에서 합성된 에틸-3-(4-클로오로벤조일)-1-(4-클로오로페닐)-6-(피리딘-3-일)-1H-인돌-2-카르복실레이트 (30 mg, 0.058 mmol), 테트라하이드로퓨란 (0.5 mL), 메탄올 (0.5 mL)을 넣고 용해시켰다. 다음, 물 (0.5 mL)에 용해된 소듐 하이드록사이드 (11.6 mg, 0.29 mmol)을 첨가한 후, 1 시간 동안 교반시켰다. 반응 종료 후, 농축하고, 2N-HCl를 이용하여 pH 5로 맞췄다. 이후, 에틸아세테이트와 물을 사용하여 유기층을 분리한 후, 유기층에 포함된 수분을 마그네슘설페이트로 제거하였다. 다음, 여과한 후, 혼합물을 컬럼크로마토그래피 (MeOH/CH2Cl2 = 1:9)로 정제하여 3-(4-클로오로벤조일)-1-(4-클로오로페닐)-6-(피리딘-3-일)-1H-인돌-2-카르복실릭 엑시드 (20 mg, 0.041 mmol, 70.6 %)를 얻었다.
1H NMR (400 MHz, DMSO-d6) 8.80 (d, J = 1.6 Hz, 1H), 8.56 (dd, J = 1.2, 6.0 Hz, 1H), 8.05 (dt, J = 3.6, 11.6 Hz, 1H), 7.8 (d, J = 13.6 Hz, 2H), 7.70-7.59 (m, 8H), 7.48-7.45 (m, 1H), 7.42 (s, 1H).
[ 비교예 1]
하기 Rosiglitazone 화합물을 사용하였다.
Figure PCTKR2017007853-appb-I000120
[비교예 2]
하기 Pioglitazone 화합물을 사용하였다.
Figure PCTKR2017007853-appb-I000121
[비교예 3]
하기 SR-1664 화합물을 사용하였다.
Figure PCTKR2017007853-appb-I000122
[실험예 1] PPARγ의 경쟁 결합 능력(Competitive binding) 평가
상기 실시예 1 내지 77의 화합물 및 비교예 1 내지 3의 화합물의 PPARγ (Peroxisome proliferator activated receptor-Gamma)에 대한 경쟁 결합 능력을 다음과 같은 방법으로 평가하였으며, 그 결과를 하기 표 1에 나타내었다.
LanthaScreenTM TR-FRET PPARγ Competitive Binding Assay Kit(제조사: Invitrogen / 모델명: PV4894)를 사용하여 kit에서 제공하는 실험방법으로 실험하였다. 96-웰 플레이트(SPL, 34096)에 최종농도의 50배가 되도록 분석 버퍼(assay buffer)에 희석한 실시예 1 내지 77의 화합물 및 비교예 1 내지 3의 화합물 각각 30 ㎕를 5nM FluormoneTM Pan-PPAR Green 15 ㎕와 섞은 후, 5nM GST-PPARG-LBD 15 ㎕과 5nM Tb-GST-antibody 15 ㎕를 더 첨가하여 혼합하고, 384-웰 플레이트(Greiner, 784075)에 20 ㎕씩 옮겨서 1 시간 동안 상온에서 반응시켰다. 반응이 종료된 후, 플랙스테이션3(Flexstation3)(Molecular Devices)에서 시분해형광(Time-Resolved Fluorescence, RFU) 모드, excitation1 340 nm, emission1 518 nm, excitation2 340 nm, emission2 488 nm, integration delay 50 us, integration 400 us 조건으로 형광 값을 읽었다. 실험결과는 518 nm RFUs/ 488 nm RFUs ratio 값을 이용하여 계산하였다. 구체적으로, Vehicle 대비 각 화합물이 얼마나 결합 활성(binding activity)을 가지는지를 [100% - 각 화합물 ratio/vehicle ratio]식으로 계산하였다.
[ 실험예 2] PPARγ의 전사 활성(Transcription activity) 평가
상기 실시예 1 내지 77의 화합물 및 비교예 1 내지 3의 화합물의 PPARγ (Peroxisome proliferator activated receptor-Gamma)에 대한 전사활성을 다음과 같은 방법으로 평가하였으며, 그 결과를 하기 표 1에 나타내었다.
HEK293 세포를 24-웰 플레이트(SPL, 30024)에 5×104로 플레이팅(plating) 하였다. HEK293 세포에 PPRE(PPAR Response Element)를 FuGENE HD(Promega, E2312)로 사용하여 유전자도입(transfection)하였다. 유전자도입 24 시간 후, 실시예 1 내지 77의 화합물과 비교예 1 내지 3의 화합물을 농도별로 24 시간 동안 처리하였다. 24 시간 처리 후, 세포를 수집하여 리포터 유전자 분석(reporter gene assay)과 루시퍼라아제 분석(Luciferase assay)의 활성을 계산하였다. 이때, 상기 리포터 유전자 분석은 Dual Reporter gene assay kit(Promega, E1980)를 사용하였으며, 상기 루시퍼라아제 분석의 활성은 레닐라 활성(renilla activity)을 정규화(normalize)하여 계산하였다.
Figure PCTKR2017007853-appb-T000001
Figure PCTKR2017007853-appb-I000123
상기 표 1을 참조하면, 본 발명의 화합물은 PPARγ에 결합하는 활성이 우수한 것을 알 수 있다. 상기 결합 활성 수치는 결합의 유무를 뜻하는 것으로, 약리활성과 직접적으로 연관되는 것은 아니다. 또한, 본 발명의 화합물은 PPARγ의 전사 활성을 유도하지 않는 반면에, 비교예들의 화합물은 PPARγ의 전사 활성을 유도하는 것을 확인할 수 있다.
이러한 결과는 본 발명의 화합물이 PPARγ에 특이적으로 결합하면서 PPARγ의 유전자 전사 활성을 유도하지 않아 PPARγ의 인산화에 따른 부작용을 예방하는 효과가 우수하다는 것을 뒷받침하는 것이다.
[ 실험예 3] CDK5 ( Cyclin -dependant kinase 5)의 인산화 억제 활성 평가
상기 실시예 1, 2, 19, 20의 화합물 및 비교예 1, 3의 화합물이 PPARγ에 결합하되, CDK5(Cyclin-dependant kinase 5)의 증진제로 작용하지 않아, PPARγ의 세린 273번 위치의 아미노산의 인산화를 억제하는 정도를 알아보기 위해 다음과 같은 방법으로 평가하였다.
실시예 1, 2, 19, 20의 화합물 및 비교예 1, 3의 화합물을 최종시험농도의 2000배가 되도록 DMSO(Dimethylsulfoxide)에 희석한 뒤, 2000배로 희석된 화합물을 50% DMSO(DMSO:DW=1:1)에 1/100 비율로 희석하여 준비하였다. PPARγ-LBD(Ligand binding domain)(human recombinant)(Cayman, 10007941) 0.43 mg, CDK5/p35 active (millipore, 14-477) 100 ng, 10배 키나아제 버퍼(kinase buffer)(CellSignaling, 9802S)와 DW(Data warehousing)를 최종용량 36 ㎕가 되도록 프리믹스(premix)를 준비하였다(프리믹스는 얼음 위에서 준비하여 얼음에 꽂아서 보관하였다). 상기 프리믹스 36 ㎕에 각각의 화합물을 2 ㎕씩 섞어주고 얼음에서 10 분 동안 반응시킨 후, ATP 10mM 2 ㎕(Negative control은 DW 2 ㎕)를 넣어서 37 ℃ 수욕조(water bath)에서 15 분간 동안 반응시켰다. 반응이 끝나면 바로 얼음으로 옮겨 1~2 분 동안 식혀주고, 5배 샘플 버퍼(sample buffer)를 10 ㎕씩 섞은 후, 95 ℃ 히트 블록(heat block)에서 8~10 분 동안 끓여주었다. 히트 블록 처리가 끝나면 꺼내서 잠시 식힌 후, 10% SDS-겔에서 SDS-PAGE(Sodium dodecylsulfate-polyacryl amide gel electrophoresis)로 단백질을 분리하였다.
이후, CDK5에 의한 PPARγ phosphorylation과, 화합물에 의한 inhibition 정도를 phospho-PPARγ Ser273 Antibody(현대약품 제작)와 PPARγ Antibody(Santacruz, sc-7273)를 사용하여 Las4000mini(Fujifilm corp)로 결과를 확인하였으며, 이를 도 1에 나타내었다.
도 1을 참조하면, 실시예 1, 2, 19, 20의 화합물이 비교예 1, 3의 화합물에 비해 PMA로 유도된 PPARγ의 세린 273번의 인산화를 보다 억제하고 있음을 확인할 수 있다.
[ 실험예 4] DIO (Diet-Induced Obesity) 모델을 통한 약학 조성물의 효력평가
실시예 1, 2, 19, 20의 화합물과 비교예 1의 화합물이 각각 10 ㎎/㎏ 농도로 함유된 약학 조성물의 혈당강하 효과를 다음과 같은 방법으로 평가하였으며, 그 결과를 하기 표 2에 나타내었다.
1) DIO (Diet-Induced Obesity) 모델 선정 및 약학 조성물 투여
약 4주령의 수컷 C57BL/6 마우스에 고지방 식이(Lab. Diet co.)를 급여하여 고지방 식이 비만 마우스 모델(Diet-Induced Obesity, DIO)을 유도하였다. 고지방 식이로 체중이 증가된 마우스들 중 40g 이상의 체중을 나타내는 마우스들을 비만 모델로 선정하고, 그 중 임의로 선별하여 각각의 투여를 위한 군 분리(n=5)를 실시하였다.
군 분리가 완료된 DIO 마우스들에게 각 군별로 약학 조성물을 각 용량 별로 1주 동안 투여하였다.
2) 당 부하 테스트(Intraperitoneal Glucose Tolerance Test; IPGTT)
각 약학 조성물을 1주 동안 투여한 DIO 마우스들에게 글루코스 1 g/kg를 경구 투여하고, 미정맥을 천자하여 Accu-chek active strip (Roche diagnostic Co.)로 혈당을 측정하였다. 이때, 측정시간은 글루코스 투여 시간을 기준으로, -30 분, 0 분, 20 분, 40 분, 60 분 및 120 분으로 하였으며, 각 군에서 측정된 값을 평균화하였다.
3) 절식 후 혈당 테스트(Fasting glucose level)
각 약학 조성물의 투여를 종료한 DIO 마우스들을 over-night 절식시켰다. 다음, DIO 마우스들의 혈당을 Accu-chek active strip (Roche diagnostic Co.)로 측정하여 절식 혈당으로 기록한 후, 각 군에서 측정된 값을 평균화하였다.
4) 절식 후 인슐린 테스트(Fasting insulin level)
각 약학 조성물의 투여를 종료한 DIO 마우스들을 over-night 절식시켰다. 다음, 안와채혈법으로 DIO 마우스들의 모세관 (KIMBLE CHASE, USA)을 통해 약 50 ㎕의 혈액을 채혈하고, 혈액을 3600 rpm에서 10 분 동안 원심분리하여 혈장을 분리하였다. 이후, insulin ELISA kit (Miobs사, Japan)를 이용하여 인슐린을 측정한 후, 각 군에서 측정된 값을 평균화하였다.
Figure PCTKR2017007853-appb-T000002
상기 표 2를 참조하면, 실시예 1, 2, 19, 20의 화합물을 함유한 약학 조성물이 비교예 1의 화합물을 함유한 약학 조성물에 비해 동등 이상의 혈당감소를 나타내고 있어, 그 효력이 우수함을 확인할 수 있다.

Claims (9)

  1. 하기 화학식 1로 표시되는 화합물, 또는 이의 약학적으로 허용가능한 염:
    [화학식 1]
    Figure PCTKR2017007853-appb-I000124
    상기 화학식 1에서,
    R1 내지 R4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐기, C1 내지 C10의 알킬기, C1 내지 C10의 알콕시기 및 N, O 및 S로 이루어지는 군에서 선택되는 헤테로 원자를 하나 이상 포함하는 고리원자수 5 내지 10의 헤테로아릴기로 이루어진 군에서 선택되고,
    R5 내지 R9는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐기 및 C1 내지 C10의 알콕시기로 이루어진 군에서 선택되고,
    R10은 수산기, 아미노기 및 C1 내지 C10의 알콕시기로 이루어진 군에서 선택되고,
    R11은 수소, 할로겐기, 니트로기, 티올기, C1 내지 C10의 알킬기, C1 내지 C10의 알콕시기, C6 내지 C10의 아릴기 및 N, O 및 S로 이루어지는 군에서 선택되는 헤테로 원자를 하나 이상 포함하는 고리원자수 5 내지 10의 헤테로아릴기로 이루어진 군에서 선택되고,
    L은 단일결합, C1 내지 C10의 알킬렌기 및 C6 내지 C10의 아릴렌기로 이루어진 군에서 선택되고,
    A는 O 및 NR12로 이루어진 군에서 선택되고,
    R12는 수산기 및 C1 내지 C10의 알콕시기로 이루어진 군에서 선택되고,
    상기 R1 내지 R4의 C1 내지 C10의 알킬기, C1 내지 C10의 알콕시기 및 고리원자수 5 내지 10의 헤테로아릴기와, 상기 R5 내지 R9의 C1 내지 C10의 알콕시기와, 상기 R10의 C1 내지 C10의 알콕시기와, 상기 R11의 티올기, C1 내지 C10의 알킬기, C1 내지 C10의 알콕시기, C6 내지 C10의 아릴기 및 고리원자수 5 내지 10의 헤테로아릴기와, 상기 L의 C1 내지 C10의 알킬렌기 및 C6 내지 C10의 아릴렌기는, 각각 독립적으로, 할로겐, C1 내지 C10의 알킬기 및 C1 내지 C10의 알콕시기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환 또는 비치환될 수 있으며, 상기 치환기가 복수일 경우, 복수의 치환기는 서로 동일하거나 상이하다.
  2. 청구항 1에 있어서,
    상기 R1 내지 R4가 각각 독립적으로 수소, 할로겐기, 피리딘기 및 트리플루오르메틸기로 이루어진 군에서 선택되는 화합물, 또는 이의 약학적으로 허용가능한 염.
  3. 청구항 1에 있어서,
    R5 내지 R9가 각각 독립적으로 수소, 할로겐기, 메톡실기 및 트리플루오르메톡시기로 이루어진 군에서 선택되는 화합물, 또는 이의 약학적으로 허용가능한 염.
  4. 청구항 1에 있어서,
    R10이 수산기인 화합물, 또는 이의 약학적으로 허용가능한 염.
  5. 청구항 1에 있어서,
    상기 화학식 1의 *-L-R11로 표시되는 구조가 하기 S1 내지 S30으로 표시되는 구조로 이루어진 군에서 선택되는 화합물, 또는 이의 약학적으로 허용가능한 염.
    Figure PCTKR2017007853-appb-I000125
  6. 청구항 1에 있어서,
    상기 화학식 1이 하기 화학식 C1 내지 C77 중 어느 하나로 표시되는 화합물, 또는 이의 약학적으로 허용가능한 염.
    Figure PCTKR2017007853-appb-I000127
    Figure PCTKR2017007853-appb-I000128
    Figure PCTKR2017007853-appb-I000129
    Figure PCTKR2017007853-appb-I000130
    Figure PCTKR2017007853-appb-I000131
    Figure PCTKR2017007853-appb-I000132
    Figure PCTKR2017007853-appb-I000133
    Figure PCTKR2017007853-appb-I000134
  7. a) 하기 화학식 2 또는 3으로 표시되는 화합물을 합성하는 단계;
    b) 상기 a) 단계에서 합성된 화학식 2로 표시되는 화합물을 폴리포스포릭 산(Polyphosphoric acids) 존재 하에 고리화 반응시키거나, 화학식 3으로 표시되는 화합물을 아세트산 존재 하에 고리화 반응시켜 하기 화학식 4로 표시되는 화합물을 합성하는 단계;
    c) 상기 b) 단계에서 합성된 화학식 4로 표시되는 화합물을 하기 화학식 5로 표시되는 화합물과 반응시켜 하기 화학식 6으로 표시되는 화합물을 합성하는 단계;
    d) 상기 c) 단계에서 합성된 화학식 6으로 표시되는 화합물의 질소 원자에 결합된 수소를 치환시켜 하기 화학식 7로 표시되는 화합물을 합성하는 단계;
    e) 상기 d) 단계에서 합성된 화학식 7로 표시되는 화합물을 강염기와 반응시켜 하기 화학식 1로 표시되는 화합물을 합성하는 단계를 포함하는 화합물의 제조방법.
    [화학식 2]
    Figure PCTKR2017007853-appb-I000135
    [화학식 3]
    Figure PCTKR2017007853-appb-I000136
    [화학식 4]
    Figure PCTKR2017007853-appb-I000137
    [화학식 5]
    Figure PCTKR2017007853-appb-I000138
    [화학식 6]
    Figure PCTKR2017007853-appb-I000139
    [화학식 7]
    Figure PCTKR2017007853-appb-I000140
    [화학식 1]
    Figure PCTKR2017007853-appb-I000141
    상기 화학식 1 내지 7에서,
    R1 내지 R11, L 및 A에 대한 정의는 청구항 1에 기재된 바와 동일하다.
  8. 청구항 1 내지 청구항 6 중 어느 한 항의 화합물, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 대사성 질환 치료용 약학 조성물.
  9. 청구항 8에 있어서,
    상기 대사성 질환은 당뇨병, 인슐린 내성(insulin resistance), 내당능손상(impaired glucose tolerance), 당뇨병전증(pre-diabetes), 과혈당(hyperglycemia), 과인슐린혈증(hyperinsulinemia), 비만 및 염증(inflammation)으로 이루어진 군에서 선택되는 대사성 질환 치료용 약학 조성물.
PCT/KR2017/007853 2016-07-26 2017-07-20 신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물 WO2018021762A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0094855 2016-07-26
KR1020160094855A KR101741956B1 (ko) 2016-07-26 2016-07-26 신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물

Publications (1)

Publication Number Publication Date
WO2018021762A1 true WO2018021762A1 (ko) 2018-02-01

Family

ID=59052869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007853 WO2018021762A1 (ko) 2016-07-26 2017-07-20 신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물

Country Status (2)

Country Link
KR (1) KR101741956B1 (ko)
WO (1) WO2018021762A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741956B1 (ko) * 2016-07-26 2017-05-30 현대약품 주식회사 신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030895A1 (en) * 2000-10-10 2002-04-18 Smithkline Beecham Corporation SUBSTITUTED INDOLES, PHARMACEUTICAL COMPOSITIONS CONTAINING SUCH INDOLES AND THEIR USE AS PPAR-η BINDING AGENTS
JP2003525217A (ja) * 1999-10-22 2003-08-26 メルク エンド カムパニー インコーポレーテッド 肥満治療用薬剤
KR101741956B1 (ko) * 2016-07-26 2017-05-30 현대약품 주식회사 신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2606031B1 (en) 2010-08-20 2017-09-27 Amira Pharmaceuticals, Inc. Autotaxin inhibitors and uses thereof
US9233921B2 (en) 2013-03-08 2016-01-12 The Trustees Of The University Of Pennsylvania Potent poxvirus inhibitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003525217A (ja) * 1999-10-22 2003-08-26 メルク エンド カムパニー インコーポレーテッド 肥満治療用薬剤
WO2002030895A1 (en) * 2000-10-10 2002-04-18 Smithkline Beecham Corporation SUBSTITUTED INDOLES, PHARMACEUTICAL COMPOSITIONS CONTAINING SUCH INDOLES AND THEIR USE AS PPAR-η BINDING AGENTS
KR101741956B1 (ko) * 2016-07-26 2017-05-30 현대약품 주식회사 신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE Chemical Abstract 18 March 2004 (2004-03-18), retrieved from STN Database accession no. 664346-17-2 *
DATABASE Chemical Abstract 24 February 2003 (2003-02-24), retrieved from STN Database accession no. 494202-68-5 *
DATABASE Chemical Abstract 28 November 2004 (2004-11-28), retrieved from STN Database accession no. 789463-51-0 *
DATABASE Chemical Abstract 30 May 2001 (2001-05-30), retrieved from STN Database accession no. 338997-03-8 *
REGINA, G. L. ET AL.: "New Arylthioindoles and Related Bioisosteres at the Sulfur Bridging Group. 4. Synthesis, Tubulin Polymerization, Cell Growth Inhibition, and Molecular Modeling Studies", JOURNAL OF MEDICINAL CHEMISTRY, vol. 52, no. 23, 2009, pages 7512 - 7527, XP055460034 *

Also Published As

Publication number Publication date
KR101741956B1 (ko) 2017-05-30

Similar Documents

Publication Publication Date Title
WO2021112538A1 (en) Glp-1 receptor agonist
WO2011043568A2 (en) Novel compounds effective as xanthine oxidase inhibitors, method for preparing the same, and pharmaceutical composition containing the same
WO2015030514A1 (ko) 테트라히드로사이클로펜타피롤 유도체 및 이의 제조방법
AU2019381113B2 (en) Novel compound as protein kinase inhibitor, and pharmaceutical composition comprising thereof
WO2012115479A2 (en) Diaminopyrimidine derivatives and processes for the preparation thereof
WO2019074241A1 (ko) 페닐아세틸렌 유도체를 포함하는 pd-1과 pd-l1의 상호작용 억제제
EP2989093A1 (en) Novel triazolone derivatives or salts thereof and pharmaceutical composition comprising the same
WO2013105753A1 (en) Substituted piperidine derivatives and methods for preparing the same
WO2011122815A2 (en) Novel quinoxaline derivatives
WO2021040393A1 (ko) 인돌 카복사미드 유도체 및 그를 포함하는 약제학적 조성물
WO2018021762A1 (ko) 신규 화합물, 이의 제조방법 및 이를 포함하는 약학 조성물
WO2019235879A1 (ko) 신규 mTOR 저해제를 포함하는 암 예방 또는 치료용 조성물
WO2015060613A1 (en) Novel antifungal oxodihydropyridinecarbohydrazide derivative
WO2010032986A2 (ko) 신규 5-(4-아미노페닐)-이소퀴놀린 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 raf 키나제의 과활성에 의해 유발되는 질환의 예방 또는 치료용 조성물
WO2020022787A1 (ko) Jnk 저해 활성을 갖는 신규한 이미다졸 유도체 및 이를 포함하는 약학적 조성물
WO2022086110A1 (ko) 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도
EP3052484A1 (en) Sulfonylindole derivatives and method for preparing the same
WO2021137665A1 (ko) Hsp90 억제제로서의 1,2,3-트리아졸 유도체 화합물 및 이의 용도
WO2011081280A2 (en) Novel glucokinase activators and processes for the preparation thereof
WO2019235894A1 (ko) Aimp2-dx2와 k-ras의 결합을 저해하는 화합물을 포함하는 고형암 예방 또는 치료용 조성물 및 aimp2-dx2와 k-ras의 결합을 저해하는 신규 화합물
WO2019098785A1 (ko) 7-아미노-1h-인돌-5-카르복사미드 유도체 및 이의 용도
WO2022119090A1 (ko) 5-ht7 세로토닌 수용체 활성 저해용 바이페닐 피롤리딘 및 바이페닐 다이하이드로이미다졸 유도체 및 이를 유효성분으로 포함하는 약학 조성물
WO2023191536A1 (ko) 티오벤즈이미다졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도
WO2024005526A1 (ko) Nadph 산화효소 2 저해제로서의 신규 화합물 및 이를 포함하는 약학조성물
WO2022203332A1 (en) Novel indoleamine 2,3-dioxygenase inhibitors, processes for the preparation thereof and pharmaceutical compositions comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834704

Country of ref document: EP

Kind code of ref document: A1