WO2018021548A1 - Novel phosphonium compound - Google Patents

Novel phosphonium compound Download PDF

Info

Publication number
WO2018021548A1
WO2018021548A1 PCT/JP2017/027500 JP2017027500W WO2018021548A1 WO 2018021548 A1 WO2018021548 A1 WO 2018021548A1 JP 2017027500 W JP2017027500 W JP 2017027500W WO 2018021548 A1 WO2018021548 A1 WO 2018021548A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin
curing
weight
parts
Prior art date
Application number
PCT/JP2017/027500
Other languages
French (fr)
Japanese (ja)
Inventor
将範 大賀
賢治 大橋
Original Assignee
北興化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北興化学工業株式会社 filed Critical 北興化学工業株式会社
Priority to KR1020197005820A priority Critical patent/KR102538165B1/en
Priority to JP2018530432A priority patent/JP7012012B2/en
Publication of WO2018021548A1 publication Critical patent/WO2018021548A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5407Acyclic saturated phosphonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/313Monocyclic acids containing more than three carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques

Definitions

  • the present invention provides a curing accelerator for a thermosetting resin, which has low catalytic activity at low temperatures and does not cure a thermosetting resin composition, but exhibits high catalytic activity at a desired curing temperature and can be cured in a short time.
  • a thermosetting resin-based composition containing a curing accelerator for a curable resin, a thermosetting resin-based composition having excellent storage stability in one liquid, and a cured product obtained when the curing agent is an acid anhydride are colorless.
  • the present invention relates to a thermosetting resin-based composition that becomes transparent.
  • thermosetting resin-based composition represented by an epoxy resin or the like
  • a molded body having excellent mechanical, chemical and electrical properties can be obtained.
  • adhesives, paints, and casting materials they are widely used for various electrical parts such as coils, capacitors, printed boards, etc., or for insulating sealing of semiconductor elements and integrated circuits.
  • epoxy resin-based compositions using an epoxy resin as a thermosetting resin are preferably used because of their excellent adhesiveness.
  • the demand for high integration is high, and the structure of semiconductor packages continues to advance.
  • the curing accelerator for a thermosetting resin includes “latency”, that is, a property that can efficiently cure a thermosetting resin-based composition only at a desired set temperature, that is, a low temperature. Then, the catalyst activity is low and the thermosetting resin-based composition is not cured, but a property that exhibits high catalytic activity at a desired curing temperature and can be cured in a short time is required.
  • thermosetting resin-based composition for sealing materials is generally prepared and stored by mixing at a low temperature of about 100 to 120 ° C. and cured at a high temperature of 170 ° C. or higher. This is because if the curing proceeds during mixing, the fluidity deteriorates, which is not preferable. That is, it is preferable that curing is suppressed at a low temperature of about 100 to 120 ° C., and curing is performed at a high temperature of 170 ° C. or more in a short time.
  • thermosetting resin-based compositions that use a thermosetting resin, a thermosetting resin curing agent, and a thermosetting resin curing accelerator are the mainstream, but these materials must be mixed immediately before use.
  • thermosetting resin composition comprising a thermosetting resin and a curing accelerator for thermosetting resins has also been developed.
  • This single curable thermosetting resin composition also has excellent potential, and furthermore, the single curable thermosetting resin composition in which the thermosetting resin is liquid at room temperature (one-part thermosetting resin).
  • thermosetting resin is liquid at room temperature (one-part thermosetting resin).
  • cured material becomes colorless and transparent is calculated
  • thermosetting resin-based composition including a single-curable thermosetting resin-based composition
  • the thermosetting resin curing accelerator has a low catalytic activity at low temperatures (about 100 to 120 ° C.) and the thermosetting resin.
  • a thermosetting resin-based composition that does not cure the system composition but has a high catalytic activity at a desired curing temperature and can be cured in a short time, and has excellent storage stability in one liquid,
  • Another object is to provide a thermosetting resin-based composition in which the cured product is colorless and transparent.
  • R 1 to R 4 are the same or different and each represents a linear or branched alkyl group having 1 to 16 carbon atoms, or a phenyl group which may be substituted with an alkyl group or a methoxy group
  • R 1 to R 4 are the same or different and each represents a linear or branched alkyl group having 1 to 16 carbon atoms, or a phenyl group which may be substituted with an alkyl group or a methoxy group.
  • the catalyst activity is low at low temperatures and the thermosetting resin composition is not cured.
  • Thermal curing that exhibits high catalytic activity at a curing temperature, can be cured in a short time, gives good storage stability in one solution, and further makes the cured product colorless and transparent when the curing agent is an acid anhydride
  • the inventors have found that a functional resin composition can be obtained, and have completed the present invention.
  • R 1 to R 4 are the same or different and each represents a linear or branched alkyl group having 1 to 16 carbon atoms, or a phenyl group which may be substituted with an alkyl group or a methoxy group
  • a phosphonium salt consisting of one molecule of a divalent anionic residue of pyromellitic acid represented by the formula (hereinafter sometimes referred to as “phosphonium salt of the present invention”).
  • R 1 to R 4 are the same or different and each is a substituent selected from a butyl group, a phenyl group, a 4-methylphenyl group, and a 4-methoxyphenyl group.
  • thermosetting resin comprising at least the phosphonium salt according to any one of [1] to [4].
  • thermosetting resin-based composition comprising at least the thermosetting resin curing accelerator according to [5] and a thermosetting resin.
  • thermosetting resin wherein the thermosetting resin is one or more thermosetting resins selected from an epoxy resin, a maleimide resin, a cyanate resin, and an isocyanate resin.
  • System composition [8] The thermosetting resin composition according to [6] or [7], further including a curing agent for a thermosetting resin.
  • the curing agent for thermosetting resin is one or more curing agents for thermosetting resin selected from phenol resin, polyamine, acid anhydride, and benzoxazine, [8] The thermosetting resin-based composition as described.
  • thermosetting resin composition according to [8] or [9] including a master batch obtained by reacting a curing accelerator for a thermosetting resin with a curing agent for a thermosetting resin in advance. , Thermosetting resin-based composition.
  • thermosetting resin-based cured product obtained by curing the thermosetting resin-based composition according to any one of [6] to [10].
  • thermosetting resin-based composition containing the curing accelerator for thermosetting resins containing the phosphonium salt of the present invention as a component has lower catalytic activity at lower temperatures and thermosetting properties than when a conventional curing accelerator is used.
  • the resin-based composition is not cured, but exhibits a high catalytic activity at the desired curing temperature, can be cured in a short time, and gives good storage stability in one liquid, and when an acid anhydride is used as a curing agent
  • the cured product is useful because it is colorless and transparent.
  • FIG. 1 is a diagram showing an IR spectrum of bis (tetraphenylphosphonium) dihydrogen pyromelolitate.
  • FIG. 2 is a diagram showing an IR spectrum of bis (tetrabutylphosphonium) dihydrogen pyromellitate.
  • FIG. 3 is a diagram showing an IR spectrum of the product obtained in Comparative Production Example 1.
  • FIG. 4 shows the 1 H-NMR spectrum of the product obtained in Comparative Production Example 1.
  • FIG. 5 is a diagram showing a 31 P-NMR spectrum of the product obtained in Comparative Production Example 1.
  • the present invention relates to the following general formula (1)
  • R 1 to R 4 are the same or different and each represents a linear or branched alkyl group having 1 to 16 carbon atoms, or a phenyl group which may be substituted with an alkyl group or a methoxy group
  • R 1 ⁇ R 4 in phosphonium cation of the general formula (1) are the same or different and may be substituted with a linear or branched alkyl group or an alkyl group or methoxy group, having 1 to 16 carbon atoms Represents a phenyl group;
  • Examples of the linear or branched alkyl group having 1 to 16 carbon atoms of R 1 to R 4 in the phosphonium cation of the general formula (1) include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, An n-butyl group, sec-butyl group, iso-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-decyl group and n-dodecyl group are preferred. In particular, it is more preferable that all of R 1 to R 4 are n-butyl groups.
  • a phenyl group which may be substituted with an alkyl group of R 1 to R 4 or a methoxy group is a straight chain having 1 to 4 carbon atoms. Or a branched chain, and preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a sec-butyl group, an iso-butyl group, or a tert-butyl group.
  • the phenyl group that may be substituted with an alkyl group or a methoxy group is preferably a phenyl group, a 4-methylphenyl group, or a 4-methoxyphenyl group, and particularly, all of R 1 to R 4 are phenyl groups. It is more preferable that
  • Examples of the phosphonium cation of the general formula (1) include tetrabutylphosphonium cation, tetraphenylphosphonium cation, tetrakis (4-methylphenyl) phosphonium cation, tetrakis (4-methoxyphenyl) phosphonium cation, phenyltris (4-methylphenyl) phosphonium.
  • the divalent anion residue of pyromellitic acid represented by the formula (2) is a divalent carboxyl anion by removing the hydrogen atoms of the 1-position, 4-position or 5-position carboxyl group of pyromellitic acid. Say things.
  • a salt of the above phosphonium cation and a divalent anion residue of pyromellitic acid can be easily produced by a known method based on the description in this specification. For example, after synthesizing a dialkali metal salt of pyromellitic acid by a conventional method (solvent: water, methanol, etc.), 1 mol of tetra-substituted phosphonium halide is charged per 0.5 mol of the dialkali metal salt of pyromellitic acid. And a method for forming a salt by the formation.
  • the salt may be formed by using a tetra-substituted phosphonium halide and a pyromellitic acid dialkali metal salt alone or in combination of two or more.
  • a tetra-substituted phosphonium halide and a pyromellitic acid dialkali metal salt alone or in combination of two or more.
  • bis (tetra-substituted phosphonium) dihydrogen pyromellitate may be formed.
  • two or more kinds of bis (tetra-substituted phosphonium) dihydrogen pyromellitate may be mixed. Production examples according to this production method are described in Production Example 1.
  • a salt may be formed by neutralizing 1 mol of tetrasubstituted phosphonium hydroxide with 0.5 mol of pyromellitic acid or pyromellitic anhydride. Production examples according to this production method are described in Production Example 2.
  • the obtained reaction product is mixed with water, an alcohol-based organic solvent (methanol, ethanol, Propanol, butanol, etc.), ketone organic solvents (acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, etc.), ether organic solvents (tetrahydrofuran, diethyl ether, dibutyl ether, 2-methyltetrahydrofuran, cyclopentyl methyl ether, dioxane, etc.), In addition, these may be washed with a mixed solvent and purified by recrystallization.
  • an alcohol-based organic solvent methanol, ethanol, Propanol, butanol, etc.
  • ketone organic solvents acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, etc.
  • ether organic solvents tetrahydrofuran, diethyl ether, di
  • the phosphonium salt obtained by these methods is usually composed mainly of a 2: 1 (molar ratio) salt of a phosphonium cation and a divalent anion residue of pyromellitic acid, and is represented by the general formula (3). .
  • the anion part represents an anion residue (divalent anion residue) of pyromellitic acid represented by the formula (2), strictly speaking, a plurality of carboxyl groups or carboxyl anions.
  • the carboxyl group and the carboxyl anion are actually equivalent.
  • a hydrogen atom contained in a general carboxyl group has a chemical shift detected in the vicinity of 12 ppm in 1 H-NMR, whereas a hydrogen atom contained in an anion residue of pyromellitic acid described in the general formula (3) Has a very strong hydrogen bond with an adjacent oxygen atom, and thus a chemical shift in 1 H-NMR is detected around 20 ppm.
  • the present invention provides a phosphonium salt (for example, the general formula (1) having two molecules of a phosphonium cation represented by the general formula (1) and one molecule of pyromellitic acid divalent anion residue represented by the formula (2). 3), a curing accelerator for thermosetting resins (hereinafter sometimes referred to as “the curing accelerator for thermosetting resins of the present invention”).
  • a curing accelerator for thermosetting resins of the present invention Compared with conventional phosphonium carboxylates such as tetra-substituted phosphonium acetate and tetra-substituted phosphonium benzoate, the divalent anion residue represented by the general formula (3) is coordinated to two phosphonium cations. It is considered that a time lag until the onset of curing occurs, and low activity (latency) at low temperature and storage stability are imparted.
  • the curing accelerator for a thermosetting resin of the present invention has a good potential even in a single-curing thermosetting resin composition comprising at least the curing accelerator for a thermosetting resin of the present invention and a thermosetting resin. From the preparation of the one-component single-curing, single-curing thermosetting resin composition to curing, good storage stability that can be stored at room temperature can be obtained. When the curing agent is an acid anhydride and the phosphonium salt of the general formula (3) is used as the curing accelerator, a cured product of the resin composition having excellent colorless transparency can be obtained.
  • the phosphonium salt of the general formula (3) is obtained by reacting with the curing agent in advance for the purpose of facilitating homogenization.
  • the master batch may be used as a curing accelerator for thermosetting resins.
  • the curing accelerator for the thermosetting resin of the present invention contains solvents, fillers, additives, etc. that are usually used for the curing accelerator for thermosetting resins, as long as the effect is not affected. Further, it may be included.
  • Examples of the phosphonium salt of the general formula (3) include bis (tetraphenylphosphonium) dihydrogen pyromellitate, bis [tetrakis (4-methylphenyl) phosphonium] dihydrogen pyromellitate, bis [tetrakis (4-methoxyphenyl).
  • the present invention is also a thermosetting resin-based composition comprising at least the thermosetting resin curing accelerator of the present invention and a thermosetting resin (hereinafter referred to as “single curable thermosetting of the present invention”). Sometimes referred to as “resin-based composition”).
  • the present invention further relates to a thermosetting resin-based composition further including a curing agent for thermosetting resin. Hereinafter, these may be referred to as “the thermosetting resin composition of the present invention”.
  • epoxy resins, maleimide resins, cyanate resins, isocyanate resins, and curing agents for thermosetting resins which are preferred examples of thermosetting resins that are components of the thermosetting resin-based composition of the present invention, will be described.
  • the epoxy resin is not particularly limited, and a general-purpose epoxy resin having two or more epoxy groups in one molecule can be used.
  • phenol, cresol, xylenol, catechol, resorcin, bisphenol A, Phenols such as bisphenol F and / or naphthols such as naphthol and dihydroxynaphthalene and a compound having an aldehyde group such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde are condensed or co-condensed in the presence of an acidic catalyst.
  • Phenol novolak type epoxy resin orthocresol novolak type epoxy resin obtained by epoxidizing the resulting novolak resin
  • bisphenol A bisphenol F, bisphenol S, alkyl-substituted or non-substituted Bisphenol type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin obtained by epoxidizing substituted biphenols, stilbene phenols, etc .
  • glycidyl ether type of alcohols such as butanediol, polyethylene glycol and polypropy
  • the maleimide resin is not particularly limited, and a general-purpose maleimide resin having two or more maleimide groups in one molecule can be used.
  • a general-purpose maleimide resin having two or more maleimide groups in one molecule can be used.
  • These maleimide resins may be used alone or in admixture of two or more, may be used as they are, may be added with a solvent or an additive as appropriate, or may be commercially available
  • the cyanate resin is not particularly limited, and a general-purpose cyanate resin having two or more cyanate groups in one molecule can be used.
  • a general-purpose cyanate resin having two or more cyanate groups in one molecule can be used.
  • 1,3-dicyanatobenzene, 1,4-disiocyanate can be used.
  • cyanate resins may be used alone or in admixture of two or more, may be used as they are, may be added with a solvent, an additive or the like as appropriate, or commercially available products may be used. Good.
  • the isocyanate resin is not particularly limited, and a general-purpose isocyanate resin having two or more isocyanate groups in one molecule can be used.
  • polyisocyanate such as tolylene diisocyanate and diphenylmethane diisocyanate
  • polypropylene examples thereof include isocyanate resins obtained by blocking terminal isocyanate groups of terminal isocyanate group oligomers obtained by reaction with polyols such as glycol and polytetramethylene glycol with phenols and alcohols.
  • isocyanate resins may be used alone or in admixture of two or more, may be used as they are, may be appropriately added with a solvent, an additive, etc. Good.
  • thermosetting resins examples include phenol resin curing agents, amine curing agents, acid anhydride curing agents, benzoxazine curing agents, dicyandiamide, and the like. Moreover, you may use thermosetting resins other than the thermosetting resin used as a main ingredient as a hardening agent for thermosetting resins.
  • the phenolic resin-based curing agent is not particularly limited, and a general-purpose phenolic resin having two or more phenolic hydroxyl groups in one molecule generally used as a curing agent can be used.
  • catechol Compounds having two or more phenolic hydroxyl groups in one molecule such as resorcin, hydroquinone, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, catechol, resorcin, hydroquinone, bisphenol A, bisphenol F , Phenols such as phenylphenol and aminophenol and / or naphthols such as naphthol and dihydroxynaphthalene and formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde Novolak type phenol resins synthesized from aralkyl type phenol resins such as phenol aralkyl
  • the amine curing agent is not particularly limited, and general-purpose aromatic amines, aliphatic amines and the like can be used.
  • triethylenetetraamine, tetraethylenepentamine, m-xylenediamine, trimethylhexa Aliphatic polyamines such as methylenediamine and 2-methylpentamethylenediamine, isophoronediamine, 1,3-bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, and 1,2-diaminocyclohexane
  • Piperazine-type polyamines such as formula polyamine, N-aminoethylpiperazine, 1,4-bis (2-amino-2-methylpropyl) piperazine, diethyltoluenediamine, dimethylthiotoluenediamine, 4,4′-diamino-3, 3'-diethyldipheny Methane, bis (methylthio) tol
  • the acid anhydride curing agent is not particularly limited, and general-purpose acid anhydrides can be used.
  • the benzoxazine-based curing agent is not particularly limited, and a general-purpose benzoxazine resin can be used.
  • a general-purpose benzoxazine resin can be used.
  • an Fa type benzoxazine resin obtained by reacting bisphenol F, formaldehyde and aniline, diaminodiphenylmethane.
  • Pd type benzoxazine resin obtained by reacting formaldehyde with phenol.
  • curing agents can be used alone or in admixture of two or more kinds, and can be used as they are, and can be used as a curing agent composition by appropriately adding a solvent, an additive or the like. It is also possible to use a commercially available product.
  • thermosetting resin-based composition of the present invention requires properties that can be efficiently cured only at a desired set temperature, it is preferable to use an epoxy resin or a maleimide resin as the thermosetting resin together with the curing accelerator of the present invention. Furthermore, when a thermosetting resin curing agent is used, a phenol resin is preferably used. Moreover, when colorless and transparent are calculated
  • thermosetting resin-based composition can contain various known inorganic fillers in order to reduce the linear expansion coefficient.
  • examples of the inorganic filler include fused silica, crystalline silica, alumina, and aluminum nitride. These inorganic fillers may be surface-treated with a coupling agent such as a silane coupling agent.
  • a coupling agent such as a silane coupling agent.
  • an ion trapping agent, a release agent, a pigment such as carbon black, or the like may be added to the thermosetting resin-based composition, and a resin other than the thermosetting resin may be included.
  • the content of the phosphonium salt of the general formula (3) in the thermosetting resin-based composition is less than 0.5 parts by weight, the composition may not be able to fully exert the curing power, and is more than 10 parts by weight. In this case, the storage stability of the composition may be deteriorated, so that it is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the thermosetting resin, and this is required when the curable property is considered more strictly.
  • the content is more preferably 0.7 to 5 parts by weight.
  • the content of the curing agent is equivalent to the reactive group equivalent in the thermosetting resin (for example, epoxy equivalent in the resin if it is an epoxy resin) and the equivalent of the curing agent. In general, the equivalent ratio of the reactive group equivalent to the equivalent of the curing agent is set to 1.0: 0.9 to 1.0: 1.2.
  • thermosetting resin-based composition of the present invention When used for a prepreg, it is preferable to have a varnish in which each component is dissolved or dispersed in an organic solvent.
  • organic solvent used when producing the varnish include alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Solvents such as butyl acetate and propylene glycol monomethyl ether acetate, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene, xylene and mesitylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide And aprotic polar solvents such as These organic solvents may be used alone or in combination of two or more, or commercially available products may be used.
  • ester solvents such as butyl acetate and propylene glycol monomethyl ether acetate
  • ether solvents such as tetrahydrofuran
  • aromatic hydrocarbon solvents such as toluene, xylene and mesitylene
  • dimethylformamide dimethylacetamide
  • N-methylpyrrolidone dimethyl sulfoxide
  • aprotic polar solvents such as These organic solvents may be used alone or in combination of two or more, or commercially available products
  • the method for preparing the thermosetting resin-based composition is not particularly limited, and can be prepared by mixing the above-mentioned components uniformly.
  • a method in which the thermosetting resin and the phosphonium salt of the present invention are uniformly stirred and mixed at a temperature of about 20 to 150 ° C. can be exemplified.
  • the solvent is exemplified as a solvent used in the production of the varnish. Solvents may be used.
  • curing agent for thermosetting resins it is preferable to heat and cool the mixture of a hardening
  • the viscosity of the curing agent is reduced, stirring and mixing are facilitated, and the curing agent and the curing accelerator are uniformly dispersed.
  • the mixture of the curing agent and the curing accelerator can be accurately measured by pre-cooling before mixing with the thermosetting resin, and handling becomes easy.
  • a master batch obtained by heating and dissolving the curing accelerator in a high concentration in the curing agent and then cooling may be used as the curing accelerator. This master batch has relatively good solubility in a curing agent.
  • curing agent, a hardening accelerator, and a thermosetting resin may be mixed at once in each mixing process, or may be mixed little by little in several steps.
  • a kneader such as a roll or a kneader may be used to facilitate uniform stirring and mixing.
  • thermosetting resin-based composition of the present invention is desirable in that the thermosetting resin curing accelerator contained in the thermosetting resin-based composition has low catalytic activity at low temperatures and does not cure the thermosetting resin-based composition. It is a thermosetting resin-based composition that has a high catalytic activity at the curing temperature, has the potential to be cured in a short time, and is excellent in storage stability in a one-pack type.
  • the latency of the thermosetting resin-based composition can be measured and evaluated by a conventional latency evaluation method.
  • the gel time can be measured by a gel time measurement method based on JIS K 6910 and evaluated by the ratio of the gel time between low temperature and high temperature.
  • an exothermic peak can be measured using a differential scanning calorimeter, and evaluation can be made based on a difference between an exothermic start temperature and an exothermic top temperature.
  • the stability of the thermosetting resin-based composition can be measured and evaluated by a conventional stability evaluation method.
  • the gel time before and after storage can be measured by a gelation time measuring method based on JIS K 6910, and evaluated by the ratio of the gel time before and after storage.
  • thermosetting resin-based cured product means that the fluidity of the thermosetting resin is lost by heating the thermosetting resin-based composition under specific conditions according to the thermosetting resin-based composition.
  • thermosetting resin-based cured product of the present invention refers to a hardened solid.
  • thermosetting resin-based cured product of the present invention the solid material obtained by curing the thermosetting resin-based composition of the present invention may be referred to as “thermosetting resin-based cured product of the present invention”.
  • the thermosetting resin-based cured product of the present invention can be obtained by heating the above-described thermosetting resin-based composition of the present invention under the conditions for curing a normal thermosetting resin-based composition. Usually, it can be obtained by heating at a curing temperature of about 100 to 250 ° C.
  • thermosetting resin-based cured product of the present invention when an acid anhydride is used as a curing agent, coloring of the cured product is reduced and a colorless and transparent cured product is obtained.
  • the degree of coloring of the cured product can be measured by a conventional color tone evaluation method. Examples of the color tone evaluation method include a method based on JIS-K0071-1, and the degree of coloring is indicated as a value (APHA) represented by a Hazen number. In a scene where colorless transparency is required, it is preferable that APHA is smaller, and it is practical that APHA is 50 or less.
  • thermosetting resin-based composition of the present invention will be described in detail below with reference to examples and test examples, but the present invention is not limited to these.
  • [ 1 H-NMR measurement] 10 mg of crystals were dissolved in about 0.5 ml of heavy DMSO, put in a ⁇ 5 mm sample tube, and measured with JNM-ECS400 manufactured by JEOL RESONANCE. The shift value was based on DMSO ( ⁇ 2.49 ppm).
  • Pyromellitic acid dipotassium salt is prepared by dissolving 56 parts by weight of potassium hydroxide in 1.5 L of water and adding 109 parts by weight of pyromellitic anhydride to this, and then adding 419 parts by weight of tetraphenylphosphonium bromide to this. After reacting at 0 ° C. and cooling, the precipitated crystals were collected by filtration and washed with water to give bis (tetraphenylphosphonium) dihydrogen pyromellitate (hereinafter referred to as “BTPP-pyromellitic acid” represented by the following formula (4). 419 parts by weight (yield 90%). The melting point of the obtained crystal was measured and found to be 277 to 279 ° C.
  • BTBP bis (tetrabutylphosphonium) dihydrogen pyromellitate
  • Table 1 shows the ⁇ (ppm) values of 1 H-NMR spectrum and 31 P-NMR spectrum of the phosphonium salt according to the present invention produced according to Production Examples 1 and 2.
  • thermosetting resin-based composition was performed.
  • Example 1 After adding 5.0 parts by weight of BTPP-pyromellitic acid to 214 parts by weight of a phenolic resin-based curing agent MEH-7785M (hydroxyl equivalent 214, manufactured by Meiwa Kasei Co., Ltd.), stirring and mixing for 2 minutes under heating at 150 ° C. Cooled to room temperature.
  • MEH-7785M hydroxyl equivalent 214, manufactured by Meiwa Kasei Co., Ltd.
  • thermosetting resin composition was obtained in the same manner as in Example 1 except that 5.0 parts by weight of BTBP-pyromellitic acid was used instead of 5.0 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin-based composition was the same as in Example 1, except that 6.0 parts by weight of tetraphenylphosphonium acetate (hereinafter referred to as “TPPA”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid. I got a thing.
  • TPPA tetraphenylphosphonium acetate
  • TPP-phthalic acid tetraphenylphosphonium hydrogen phthalate
  • thermosetting property was the same as in Example 1 except that 6.9 parts by weight of tetrabutylphosphonium benzoate (hereinafter referred to as “TBP-benzoic acid”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid.
  • TBP-benzoic acid tetrabutylphosphonium benzoate
  • TBP-salicylic acid tetrabutylphosphonium salicylate
  • Example 1 was used except that 6.8 parts by weight of tetrabutylphosphonium hydrogen succinate (hereinafter referred to as “TBP-succinic acid”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid.
  • TBP-succinic acid tetrabutylphosphonium hydrogen succinate
  • Example 1 was used except that 8.4 parts by weight of tetrabutylphosphonium hydrogen citrate (hereinafter referred to as “TBP-citric acid”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid.
  • TBP-citric acid tetrabutylphosphonium hydrogen citrate
  • Example 1 was repeated except that 7.1 parts by weight of 1,2-bis (diphenylphosphino) acetylene (hereinafter referred to as “DPPA”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid. Thus, a thermosetting resin composition was obtained.
  • DPPA 1,2-bis (diphenylphosphino) acetylene
  • the gel time (GT) of the obtained thermosetting resin-based composition is a hot plate type gelation test manufactured by Nisshin Kagaku Co., Ltd. according to the gel time measurement method described in JIS K 6910, with the steel plate temperatures set to 150 ° C. and 175 ° C. Measurements were made using the instrument GT-D. In addition, at the steel plate temperature of 120 ° C. or lower, the resin was not sufficiently softened, so that it was difficult to determine the gelation time.
  • the curing accelerator for thermosetting resin has lower catalytic activity at low temperatures and does not cure the thermosetting resin-based composition, but at the desired curing temperature. It can be said that it exhibits high catalytic activity and can be cured in a short time, that is, it has excellent potential, but in a scene where latency is required, it can be said that a gel time ratio of 2.3 or more is practical.
  • Table 2 The results are shown in Table 2.
  • thermosetting resin compositions of Examples 1 and 2 have a large gel time ratio (gel time at 150 ° C./gel time at 175 ° C.).
  • the ratio of the gel time is large, it is predicted that the gel time is further delayed and curing is suppressed at a lower temperature of about 100 to 120 ° C. Therefore, it is clear that the thermosetting resin-based composition of the present invention is excellent in latency.
  • Example 3> After adding 2.8 parts by weight of BTPP-pyromellitic acid to 54 parts by weight of phenol resin curing agent MEH-7785M (hydroxyl equivalent 214, manufactured by Meiwa Kasei Co., Ltd.), stirring and mixing for 2 minutes under heating at 150 ° C. Cooled to room temperature. 125 parts by weight of maleimide resin BMI-2300 (maleimide equivalent 179, manufactured by Daiwa Kasei Kogyo Co., Ltd.) and 71 parts by weight of epoxy resin NC-3000 (epoxy equivalent 274, manufactured by Nippon Kayaku Co., Ltd.) were added and heated at 130 ° C.
  • maleimide resin BMI-2300 maleimide equivalent 179, manufactured by Daiwa Kasei Kogyo Co., Ltd.
  • epoxy resin NC-3000 epoxy equivalent 274, manufactured by Nippon Kayaku Co., Ltd.
  • thermosetting resin-based composition (equivalent ratio of epoxy equivalent and hydroxyl equivalent of 1.0: 1.0, the total weight of epoxy resin and phenolic resin and maleimide resin) A weight ratio of 1.0: 1.0) was obtained.
  • thermosetting resin composition was obtained in the same manner as in Example 7 except that 2.3 parts by weight of BTBP-pyromellitic acid was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin-based composition was obtained in the same manner as in Example 7, except that 1.6 parts by weight of TPP was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin composition was obtained in the same manner as in Example 7 except that 4.3 parts by weight of TPP-MK was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
  • Example 5 Add 2.8 parts by weight of BTPP-pyromellitic acid to 83 parts by weight of epoxy resin NC-3000 (epoxy equivalent 274, manufactured by Nippon Kayaku Co., Ltd.), stir and mix for 40 seconds under heating at 130 ° C., and then to room temperature Cooled down. To this was added 167 parts by weight of maleimide resin BMI-2300 (maleimide equivalent 179, manufactured by Daiwa Kasei Kogyo Co., Ltd.), stirred and mixed under heating at 130 ° C. for 2 minutes, cooled to room temperature, and then a thermosetting resin composition ( The weight ratio of epoxy resin to maleimide resin was 1.0: 2.0).
  • thermosetting resin composition was obtained in the same manner as in Example 9 except that 2.3 parts by weight of BTBP-pyromellitic acid was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin-based composition was obtained in the same manner as in Example 9 except that 1.6 parts by weight of TPP was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin-based composition was obtained in the same manner as in Example 9 except that 4.3 parts by weight of TPP-MK was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin composition was obtained.
  • ⁇ Example 7> 2.8 parts by weight of BTPP-pyromellitic acid was added to 500 parts by weight of acetone, and the mixture was stirred and mixed for 2 minutes while heating at 40 ° C.
  • a system composition was obtained.
  • thermosetting resin composition was obtained in the same manner as in Example 3 except that 2.3 parts by weight of BTBP-pyromellitic acid was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin composition in the same manner as in Example 3 except that 1.6 parts by weight of triphenylphosphine (hereinafter referred to as “TPP”) was used instead of 2.8 parts by weight of BTPP-pyromellitic acid. Got.
  • TPP triphenylphosphine
  • thermosetting resin-based composition was obtained.
  • thermosetting resin-based composition was the same as in Example 3 except that 2.6 parts by weight of 2-phenylimidazole (hereinafter referred to as “2PZ”) was used instead of 2.8 parts by weight of BTPP-pyromellitic acid. I got a thing.
  • 2PZ 2-phenylimidazole
  • Example 9 2.8 parts by weight of BTPP-pyromellitic acid was added to 500 parts by weight of THF, and the mixture was stirred and mixed for 2 minutes while heating at 40 ° C. To this was added 250 parts by weight of maleimide resin BMI-4000 (maleimide equivalent 285, manufactured by Daiwa Kasei Kogyo Co., Ltd.), stirred and mixed for 2 minutes under heating at 40 ° C., and then THF was distilled off by drying to give a thermosetting resin. A system composition was obtained.
  • maleimide resin BMI-4000 maleimide equivalent 285, manufactured by Daiwa Kasei Kogyo Co., Ltd.
  • thermosetting resin composition was obtained in the same manner as in Example 5 except that 2.3 parts by weight of BTBP-pyromellitic acid was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin composition was obtained in the same manner as in Example 5 except that 1.6 parts by weight of TPP was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin-based composition was obtained in the same manner as in Example 5, except that 4.3 parts by weight of TPP-MK was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin-based composition was obtained in the same manner as in Example 5 except that 2.6 parts by weight of 2PZ was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin-based composition was measured using a differential scanning calorimeter (DSC7020 manufactured by SII NanoTechnology) at a measurement temperature range of 30 to 350 ° C. and a temperature increase rate of 10 ° C./min. did.
  • thermosetting resin-based compositions containing two types of thermosetting resins of Examples 3 to 6 and the single-curing thermosetting resin-based compositions of Examples 7 to 10 are:
  • the heat generation start temperature is higher than 120 ° C., which is the temperature at the time of mixing, and the difference ( ⁇ T) between the heat generation start temperature and the heat generation top temperature is as small as 30 or less. Therefore, it is clear that the thermosetting resin-based composition of the present invention is excellent in latency.
  • thermosetting resin-based cured product using an acid anhydride compound as a curing agent.
  • BTPP-pyromellitic acid is added to 100 parts by weight of acid anhydride-based curing agent Ricacid MH-T (acid anhydride equivalent 168, manufactured by Shin Nippon Chemical Co., Ltd .; main component is 4-methylhexahydrophthalic anhydride). After adding 0 part by weight and stirring and mixing for 5 minutes while heating at 60 ° C., the mixture was cooled to room temperature.
  • thermosetting resin-based composition 100 parts by weight of epoxy resin jER828EL (epoxy equivalent 185, manufactured by Mitsubishi Chemical Corporation) was added, stirred and mixed for 2 minutes under heating at 60 ° C., and then cooled to room temperature to obtain a thermosetting resin-based composition. Further, the obtained thermosetting resin composition was heated at 120 ° C. for 1 hour, and further heated at 150 ° C. for 3 hours to obtain a thermosetting resin-based cured product (equivalent ratio of epoxy equivalent to acid anhydride equivalent: 1. 0: 1.1) was obtained.
  • thermosetting resin composition and a cured product were obtained in the same manner as in Example 11 except that 1.0 part by weight of BTBP-pyromellitic acid was used instead of 1.0 part by weight of BTPP-pyromellitic acid. .
  • thermosetting resin-based composition was the same as Example 11 except that 1.0 part by weight of tetrabutylphosphonium acetate (hereinafter referred to as “TBPA”) was used instead of 1.0 part by weight of BTPP-pyromellitic acid. Product and cured product were obtained.
  • TBPA tetrabutylphosphonium acetate
  • thermosetting resin system was used in the same manner as in Example 11 except that 1.0 part by weight of tetrabutylphosphonium laurate (hereinafter referred to as “TBPLA”) was used instead of 1.0 part by weight of BTPP-pyromellitic acid.
  • TPLA tetrabutylphosphonium laurate
  • Example 11 was used except that 1.0 part by weight of benzyltriphenylphosphonium hydrogen phthalate (hereinafter referred to as “TPPZ-phthalic acid”) was used instead of 1.0 part by weight of BTPP-pyromellitic acid.
  • TPPZ-phthalic acid benzyltriphenylphosphonium hydrogen phthalate
  • thermosetting resin-based composition is a hot plate type gelation tester GT-D manufactured by Nisshin Kagaku Co., Ltd. with a steel plate temperature of 175 ° C. according to the gel time measurement method described in JIS K 6910. Was measured using.
  • the results are shown in Table 5.
  • thermosetting resin-based composition The color tone of the cured product of the obtained thermosetting resin-based composition was evaluated according to the color tone evaluation method (Hazen unit color number) described in JIS K0071-1 and indicated by APHA. It can be said that the smaller the APHA, the more excellent the transparency of the cured product of the thermosetting resin-based composition, and it can be said that APHA is 50 or less in situations where colorless transparency is required. The results are shown in Table 5.
  • thermosetting resin-based compositions of Examples 11 and 12 have a smaller APHA than that of Comparative Examples 19 to 22, and thus are nearly colorless and excellent in transparency.
  • thermosetting resin composition An evaluation test was conducted on the storage stability of a one-component single-curing thermosetting resin composition.
  • Example 13> After adding 3.0 parts by weight of BTPP-pyromellitic acid to 100 parts by weight of epoxy resin bisphenol A diglycidyl ether (Mitsubishi Chemical Co., Ltd., jER828EL, epoxy equivalent 185), stirring and mixing for 2 minutes under heating at 60 ° C. And cooled to room temperature to obtain a thermosetting resin composition.
  • thermosetting resin composition was obtained in the same manner as in Example 13 except that 3.0 parts by weight of BTBP-pyromellitic acid was used instead of 3.0 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin-based composition was obtained in the same manner as in Example 13 except that 3.0 parts by weight of TBPLA was used instead of 3.0 parts by weight of BTPP-pyromellitic acid.
  • thermosetting resin-based composition The gel time (GT) of the obtained thermosetting resin-based composition is in accordance with the gel time measurement method described in JIS K 6910, and the hot plate type gelation tester GT-D manufactured by Nisshin Kagaku Co., Ltd. Was measured using. Moreover, the obtained thermosetting resin-type composition was stored at 25 degreeC, and the gel time retention rate in each storage period was calculated
  • thermosetting resin-based compositions of Examples 13 and 14 have a high gel time retention and excellent storage stability, and can be stored at room temperature after the composition is prepared. Become.
  • thermosetting resin-based composition of the present invention has excellent curing characteristics, and the cured product has excellent transparency depending on the type of curing agent. For example, it is useful for resin sealing of various small electrical / electronic components and semiconductor components. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A heat-curable resin composition characterized by comprising (A) a heat-curable resin, (B) a curing agent and (C) a curing accelerator that is a phosphonium salt composed of two molecules of a phosphonium cation represented by general formula (1) and one molecule of a bivalent anion residue of pyromellitic acid represented by formula (2). The heat-curable resin composition potentially has a property such that the curing accelerator has a poor catalytic activity at a lower temperature and therefore cannot cure the heat-curable resin composition at the lower temperature but exhibits a high catalytic activity at an intended curing temperature and therefore can cure the heat-curable resin composition within a short time at the intended curing temperature. The heat-curable resin composition has excellent storage stability in the form of a one-part preparation, and is colorless and transparent when the curing agent is an acid anhydride.

Description

新規ホスホニウム化合物New phosphonium compounds
 本発明は、低温では触媒活性が低く熱硬化性樹脂系組成物を硬化させないが、所望の硬化温度では高い触媒活性を発揮し短時間で硬化させ得る熱硬化性樹脂用硬化促進剤、同熱硬化性樹脂用硬化促進剤を含む熱硬化性樹脂系組成物、一液における貯蔵安定性に優れた熱硬化性樹脂系組成物、ならびに硬化剤が酸無水物の場合に得られる硬化物が無色透明になる熱硬化性樹脂系組成物に関する。 The present invention provides a curing accelerator for a thermosetting resin, which has low catalytic activity at low temperatures and does not cure a thermosetting resin composition, but exhibits high catalytic activity at a desired curing temperature and can be cured in a short time. A thermosetting resin-based composition containing a curing accelerator for a curable resin, a thermosetting resin-based composition having excellent storage stability in one liquid, and a cured product obtained when the curing agent is an acid anhydride are colorless. The present invention relates to a thermosetting resin-based composition that becomes transparent.
 従来、エポキシ樹脂等に代表される熱硬化性樹脂系組成物を用いると、優れた機械的、化学的および電気的性質を有する成形体等が得られるため、熱硬化性樹脂系組成物は、接着剤、塗料、注型材料としてコイル、コンデンサー、プリント基板等の各種の電気部品、あるいは半導体素子や集積回路の絶縁封止等の用途に広く使用されている。これらの用途の中で、半導体素子の絶縁封止の分野では、熱硬化性樹脂としてエポキシ樹脂を用いたエポキシ樹脂系組成物が接着性等に優れるため好適に用いられているが、半導体素子の高集積化への要求が高く、半導体パッケージの構造も進歩し続けている。 Conventionally, when a thermosetting resin-based composition represented by an epoxy resin or the like is used, a molded body having excellent mechanical, chemical and electrical properties can be obtained. As adhesives, paints, and casting materials, they are widely used for various electrical parts such as coils, capacitors, printed boards, etc., or for insulating sealing of semiconductor elements and integrated circuits. Among these uses, in the field of insulation sealing of semiconductor elements, epoxy resin-based compositions using an epoxy resin as a thermosetting resin are preferably used because of their excellent adhesiveness. The demand for high integration is high, and the structure of semiconductor packages continues to advance.
 このため、封止材料等としての熱硬化性樹脂系組成物の性能も、より優れたものが要求されている。そのような状況下にあって、熱硬化性樹脂用の硬化促進剤には、熱硬化性樹脂系組成物を所望の設定温度でのみ効率良く硬化させ得る性質である「潜在性」、すなわち低温では触媒活性が低く熱硬化性樹脂系組成物を硬化させないが、所望の硬化温度では高い触媒活性を発揮し短時間で硬化させ得る性質が求められている。 For this reason, the performance of the thermosetting resin composition as a sealing material or the like is also required to be superior. Under such circumstances, the curing accelerator for a thermosetting resin includes “latency”, that is, a property that can efficiently cure a thermosetting resin-based composition only at a desired set temperature, that is, a low temperature. Then, the catalyst activity is low and the thermosetting resin-based composition is not cured, but a property that exhibits high catalytic activity at a desired curing temperature and can be cured in a short time is required.
 これは、封止材料用途の熱硬化性樹脂系組成物は、100~120℃程度の低温で混合することにより作製・貯蔵し、170℃以上の高温で硬化させることが一般的であり、低温で混合中に硬化が進行してしまうと、流動性悪化の要因となり好ましくないためである。つまり、100~120℃程度の低温では硬化が抑制され、170℃以上の高温では短時間で硬化することが好ましい。
 また、熱硬化性樹脂と熱硬化性樹脂用硬化剤および熱硬化性樹脂用硬化促進剤を併用する熱硬化性樹脂系組成物が主流であるが、これらの材料を使用直前に混合しなくてはならないという煩雑さ、不便さから、熱硬化性樹脂および熱硬化性樹脂用硬化促進剤からなる単独硬化型熱硬化性樹脂系組成物も開発されている。この単独硬化型熱硬化性樹脂系組成物においても潜在性に優れ、さらには、熱硬化性樹脂が常温で液体である単独硬化型の熱硬化性樹脂系組成物(一液性の熱硬化性樹脂系組成物)であって、調製してから硬化させるまでの貯蔵安定性が室温においても良好であるものも望まれている。
This is because a thermosetting resin-based composition for sealing materials is generally prepared and stored by mixing at a low temperature of about 100 to 120 ° C. and cured at a high temperature of 170 ° C. or higher. This is because if the curing proceeds during mixing, the fluidity deteriorates, which is not preferable. That is, it is preferable that curing is suppressed at a low temperature of about 100 to 120 ° C., and curing is performed at a high temperature of 170 ° C. or more in a short time.
In addition, thermosetting resin-based compositions that use a thermosetting resin, a thermosetting resin curing agent, and a thermosetting resin curing accelerator are the mainstream, but these materials must be mixed immediately before use. Due to the inconvenience and inconvenience that it should not be, a single-curing thermosetting resin composition comprising a thermosetting resin and a curing accelerator for thermosetting resins has also been developed. This single curable thermosetting resin composition also has excellent potential, and furthermore, the single curable thermosetting resin composition in which the thermosetting resin is liquid at room temperature (one-part thermosetting resin). There is also a demand for a resin-based composition that has good storage stability from preparation to curing at room temperature.
 既存の熱硬化性樹脂用硬化促進剤、特にエポキシ樹脂用の硬化促進剤としては、リン系、あるいはイミダゾール系があるが、硬化力が高く、かつ電気的信頼性の高い硬化物を得ることが出来るリン系が一般的に知られており、その中でも潜在性硬化促進剤として、ホスホニウムボレート(特許文献1)、ホスホニウムカルボキシレート(特許文献2~6)、ホスホニウムチオシアネート(特許文献7)、1,2-ビス(ジフェニルホスフィノ)アセチレン(特許文献8)が挙げられるが、潜在性の観点では十分ではなかった。 Existing curing accelerators for thermosetting resins, especially curing accelerators for epoxy resins, are phosphorus-based or imidazole-based, but it is possible to obtain cured products with high curing power and high electrical reliability. Phosphorus systems that can be used are generally known. Among them, as latent curing accelerators, phosphonium borate (Patent Document 1), phosphonium carboxylate (Patent Documents 2 to 6), phosphonium thiocyanate (Patent Document 7), 1, Although 2-bis (diphenylphosphino) acetylene (Patent Document 8) is mentioned, it is not sufficient from the viewpoint of potential.
 また、光半導体を封止する際は、硬化物が無色透明となるエポキシ樹脂系組成物が求められている。硬化剤として酸無水物、リン系硬化促進剤としてホスホニウムカルボキシレートを含有するエポキシ樹脂系組成物の硬化物は無色透明になることが知られている(特許文献9~12参照)が、十分な透明性ではなかった。
 さらに近年では、高耐熱用途の熱硬化性樹脂系組成物として、エポキシ樹脂とマレイミド樹脂の併用系等も種々検討されている(特許文献13、14参照)が、硬化促進剤の検討は十分ではなかった。
Moreover, when sealing an optical semiconductor, the epoxy resin-type composition from which hardened | cured material becomes colorless and transparent is calculated | required. It is known that a cured product of an epoxy resin-based composition containing an acid anhydride as a curing agent and a phosphonium carboxylate as a phosphorus curing accelerator becomes colorless and transparent (see Patent Documents 9 to 12). It was not transparent.
In recent years, various types of combined use of epoxy resin and maleimide resin have been studied as thermosetting resin-based compositions for high heat resistance applications (see Patent Documents 13 and 14). There wasn't.
特許第3638258号公報Japanese Patent No. 3638258 国際公開第2010/087526号公報International Publication No. 2010/087526 国際公開第2009/014270号公報International Publication No. 2009/014270 特開平3-20065号公報JP-A-3-20065 特開2016-113475号公報JP 2016-113475 A 特開平11-158251号公報Japanese Patent Laid-Open No. 11-158251 特開2010-209150号公報JP 2010-209150 A 特開2015-172136号公報Japanese Patent Laying-Open No. 2015-172136 特開2005-325178号公報JP 2005-325178 A 特許第5052087号公報Japanese Patent No. 5052087 特許第5191131号公報Japanese Patent No. 5191131 特開2012-240969号公報JP2012-240969A 特開2016-210927号公報Japanese Patent Laid-Open No. 2016-210927 特開2011-219674号公報JP 2011-219664 A
 本発明は、上記の従来技術に伴う問題点を解決しようとするものである。すなわち、単独硬化型熱硬化性樹脂系組成物を含む熱硬化性樹脂系組成物において、熱硬化性樹脂用硬化促進剤が、低温(100~120℃程度)では触媒活性が低く熱硬化性樹脂系組成物を硬化させないが、所望の硬化温度では高い触媒活性を発揮し短時間で硬化させ得る潜在性を有し、また、一液における貯蔵安定性に優れた熱硬化性樹脂系組成物、ならびに硬化物が無色透明になる熱硬化性樹脂系組成物を提供することにある。 The present invention is intended to solve the problems associated with the above-described conventional technology. That is, in a thermosetting resin-based composition including a single-curable thermosetting resin-based composition, the thermosetting resin curing accelerator has a low catalytic activity at low temperatures (about 100 to 120 ° C.) and the thermosetting resin. A thermosetting resin-based composition that does not cure the system composition but has a high catalytic activity at a desired curing temperature and can be cured in a short time, and has excellent storage stability in one liquid, Another object is to provide a thermosetting resin-based composition in which the cured product is colorless and transparent.
 このような状況に鑑み、本発明者らは鋭意検討した。その結果、下記の一般式(1) In view of such a situation, the present inventors have intensively studied. As a result, the following general formula (1)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R~Rは、同一または異なって、炭素数1~16の直鎖状もしくは分岐鎖状のアルキル基、またはアルキル基もしくはメトキシ基で置換してもよいフェニル基を示す置換基である。)
で表されるホスホニウムカチオン2分子と、下記の式(2)
(Wherein R 1 to R 4 are the same or different and each represents a linear or branched alkyl group having 1 to 16 carbon atoms, or a phenyl group which may be substituted with an alkyl group or a methoxy group) Group.)
2 molecules of phosphonium cation represented by the following formula (2)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
で表されるピロメリット酸の2価のアニオン残基1分子からなるホスホニウム塩を硬化促進剤として配合することにより、低温では触媒活性が低く熱硬化性樹脂系組成物を硬化させないが、所望の硬化温度では高い触媒活性を発揮し短時間で硬化させ得、また一液においては良好な貯蔵安定性を与え、さらに硬化剤が酸無水物の使用の場合に硬化物が無色透明になる熱硬化性樹脂系組成物が得られること等を見いだし、本発明を完成するに至った。 By adding a phosphonium salt consisting of one molecule of a divalent anionic residue of pyromellitic acid represented by the formula below as a curing accelerator, the catalyst activity is low at low temperatures and the thermosetting resin composition is not cured. Thermal curing that exhibits high catalytic activity at a curing temperature, can be cured in a short time, gives good storage stability in one solution, and further makes the cured product colorless and transparent when the curing agent is an acid anhydride The inventors have found that a functional resin composition can be obtained, and have completed the present invention.
 すなわち、本発明は以下の内容をその要旨とするものである。
 〔1〕 下記の一般式(1)
That is, the gist of the present invention is as follows.
[1] The following general formula (1)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R~Rは、同一または異なって、炭素数1~16の直鎖状もしくは分岐鎖状のアルキル基、またはアルキル基もしくはメトキシ基で置換してもよいフェニル基を示す置換基である。)で表されるホスホニウムカチオン2分子と、下記の式(2) (Wherein R 1 to R 4 are the same or different and each represents a linear or branched alkyl group having 1 to 16 carbon atoms, or a phenyl group which may be substituted with an alkyl group or a methoxy group) A phosphonium cation molecule represented by the following formula (2):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
で表されるピロメリット酸の2価のアニオン残基1分子からなるホスホニウム塩(以下、「本発明のホスホニウム塩」ということがある)。 A phosphonium salt consisting of one molecule of a divalent anionic residue of pyromellitic acid represented by the formula (hereinafter sometimes referred to as “phosphonium salt of the present invention”).
 〔2〕 前記一般式(1)において、R~Rが、同一または異なって、ブチル基、フェニル基、4-メチルフェニル基、および、4-メトキシフェニル基から選ばれる置換基である、〔1〕に記載のホスホニウム塩。 [2] In the general formula (1), R 1 to R 4 are the same or different and each is a substituent selected from a butyl group, a phenyl group, a 4-methylphenyl group, and a 4-methoxyphenyl group. The phosphonium salt according to [1].
 〔3〕 前記一般式(1)において、R~Rが全てフェニル基である〔1〕に記載のホスホニウム塩である、ビス(テトラフェニルホスホニウム)ジハイドロジェンピロメリテート。 [3] Bis (tetraphenylphosphonium) dihydrogen pyromellitate, which is the phosphonium salt according to [1], wherein R 1 to R 4 are all phenyl groups in the general formula (1).
 〔4〕 前記一般式(1)において、R~Rが全てブチル基である〔1〕に記載のホスホニウム塩である、ビス(テトラブチルホスホニウム)ジハイドロジェンピロメリテート。 [4] Bis (tetrabutylphosphonium) dihydrogen pyromellitate, which is the phosphonium salt according to [1], wherein R 1 to R 4 in the general formula (1) are all butyl groups.
 〔5〕 〔1〕~〔4〕のいずれかに記載のホスホニウム塩を少なくとも含む、熱硬化性樹脂用硬化促進剤。 [5] A curing accelerator for a thermosetting resin, comprising at least the phosphonium salt according to any one of [1] to [4].
 〔6〕 〔5〕に記載の熱硬化性樹脂用硬化促進剤と、熱硬化性樹脂とを少なくとも含む、熱硬化性樹脂系組成物。
 〔7〕 前記熱硬化性樹脂が、エポキシ樹脂、マレイミド樹脂、シアネート樹脂、および、イソシアネート樹脂から選ばれる1種または2種以上の熱硬化性樹脂である、〔6〕に記載の熱硬化性樹脂系組成物。
 〔8〕 さらに熱硬化性樹脂用硬化剤を含む、〔6〕または〔7〕に記載の熱硬化性樹脂系組成物。
[6] A thermosetting resin-based composition comprising at least the thermosetting resin curing accelerator according to [5] and a thermosetting resin.
[7] The thermosetting resin according to [6], wherein the thermosetting resin is one or more thermosetting resins selected from an epoxy resin, a maleimide resin, a cyanate resin, and an isocyanate resin. System composition.
[8] The thermosetting resin composition according to [6] or [7], further including a curing agent for a thermosetting resin.
 〔9〕 前記熱硬化性樹脂用硬化剤が、フェノール樹脂、ポリアミン、酸無水物、および、ベンゾオキサジンから選ばれる1種または2種以上の熱硬化性樹脂用硬化剤である、〔8〕に記載の熱硬化性樹脂系組成物。 [9] The curing agent for thermosetting resin is one or more curing agents for thermosetting resin selected from phenol resin, polyamine, acid anhydride, and benzoxazine, [8] The thermosetting resin-based composition as described.
 〔10〕 〔8〕または〔9〕に記載の熱硬化性樹脂系組成物であって、熱硬化性樹脂用硬化促進剤をあらかじめ熱硬化性樹脂用硬化剤と反応させてなるマスターバッチを含む、熱硬化性樹脂系組成物。 [10] The thermosetting resin composition according to [8] or [9], including a master batch obtained by reacting a curing accelerator for a thermosetting resin with a curing agent for a thermosetting resin in advance. , Thermosetting resin-based composition.
 〔11〕 〔6〕~〔10〕のいずれかに記載の熱硬化性樹脂系組成物を硬化して得られる熱硬化性樹脂系硬化物。 [11] A thermosetting resin-based cured product obtained by curing the thermosetting resin-based composition according to any one of [6] to [10].
 本発明のホスホニウム塩を含む熱硬化性樹脂用硬化促進剤を成分として含有する熱硬化性樹脂系組成物は、従来の硬化促進剤を用いた場合に比べ、低温では触媒活性が低く熱硬化性樹脂系組成物を硬化させないが、所望の硬化温度では高い触媒活性を発揮し短時間で硬化させ得、また一液においては良好な貯蔵安定性を与え、硬化剤として酸無水物を使用の場合に、その硬化物が無色透明となるため有用である。 The thermosetting resin-based composition containing the curing accelerator for thermosetting resins containing the phosphonium salt of the present invention as a component has lower catalytic activity at lower temperatures and thermosetting properties than when a conventional curing accelerator is used. When the resin-based composition is not cured, but exhibits a high catalytic activity at the desired curing temperature, can be cured in a short time, and gives good storage stability in one liquid, and when an acid anhydride is used as a curing agent In addition, the cured product is useful because it is colorless and transparent.
図1は、ビス(テトラフェニルホスホニウム)ジハイドロジェンピロメリテートのIRスペクトルを示す図である。FIG. 1 is a diagram showing an IR spectrum of bis (tetraphenylphosphonium) dihydrogen pyromelolitate. 図2は、ビス(テトラブチルホスホニウム)ジハイドロジェンピロメリテートのIRスペクトルを示す図である。FIG. 2 is a diagram showing an IR spectrum of bis (tetrabutylphosphonium) dihydrogen pyromellitate. 図3は、比較製造例1で得られた生成物のIRスペクトルを示す図である。FIG. 3 is a diagram showing an IR spectrum of the product obtained in Comparative Production Example 1. 図4は、比較製造例1で得られた生成物のH-NMRスペクトルを示す図である。FIG. 4 shows the 1 H-NMR spectrum of the product obtained in Comparative Production Example 1. 図5は、比較製造例1で得られた生成物の31P-NMRスペクトルを示す図である。FIG. 5 is a diagram showing a 31 P-NMR spectrum of the product obtained in Comparative Production Example 1.
 以下、本発明について詳細に説明する。
<硬化促進剤>
 本発明は、下記の一般式(1)
Hereinafter, the present invention will be described in detail.
<Curing accelerator>
The present invention relates to the following general formula (1)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、R~Rは、同一または異なって、炭素数1~16の直鎖状もしくは分岐鎖状のアルキル基、または、アルキル基もしくはメトキシ基で置換してもよいフェニル基を示す置換基である。)
で表されるホスホニウムカチオン2分子と、下記の式(2)
(Wherein R 1 to R 4 are the same or different and each represents a linear or branched alkyl group having 1 to 16 carbon atoms, or a phenyl group which may be substituted with an alkyl group or a methoxy group) It is a substituent.)
2 molecules of phosphonium cation represented by the following formula (2)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
で表されるピロメリット酸の2価のアニオン残基1分子からなるホスホニウム塩である。 It is a phosphonium salt consisting of one molecule of a divalent anionic residue of pyromellitic acid represented by the formula:
 一般式(1)のホスホニウムカチオンにおけるR~Rは、同一または異なって、炭素数1~16の直鎖状もしくは分岐鎖状のアルキル基、またはアルキル基もしくはメトキシ基で置換してもよいフェニル基を示す。 R 1 ~ R 4 in phosphonium cation of the general formula (1) are the same or different and may be substituted with a linear or branched alkyl group or an alkyl group or methoxy group, having 1 to 16 carbon atoms Represents a phenyl group;
 一般式(1)のホスホニウムカチオンにおけるR~Rの炭素数1~16の直鎖状もしくは分岐鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、iso-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基であることが好ましい。特にR~Rの全てが、n-ブチル基であることがより好ましい。 Examples of the linear or branched alkyl group having 1 to 16 carbon atoms of R 1 to R 4 in the phosphonium cation of the general formula (1) include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, An n-butyl group, sec-butyl group, iso-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-decyl group and n-dodecyl group are preferred. In particular, it is more preferable that all of R 1 to R 4 are n-butyl groups.
 一般式(1)のホスホニウムカチオンにおけるR~Rのアルキル基もしくはメトキシ基で置換してもよいフェニル基において、フェニル基を置換してもよいアルキル基としては炭素数1~4の直鎖状もしくは分岐鎖状であり、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、iso-ブチル基、tert-ブチル基が好ましい。アルキル基もしくはメトキシ基で置換してもよいフェニル基として、より具体的には、フェニル基、4-メチルフェニル基、4-メトキシフェニル基が好ましく、特にR~Rの全てが、フェニル基であることがより好ましい。 In the phosphonium cation of the general formula (1), a phenyl group which may be substituted with an alkyl group of R 1 to R 4 or a methoxy group, the alkyl group which may be substituted with a phenyl group is a straight chain having 1 to 4 carbon atoms. Or a branched chain, and preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a sec-butyl group, an iso-butyl group, or a tert-butyl group. More specifically, the phenyl group that may be substituted with an alkyl group or a methoxy group is preferably a phenyl group, a 4-methylphenyl group, or a 4-methoxyphenyl group, and particularly, all of R 1 to R 4 are phenyl groups. It is more preferable that
 一般式(1)のホスホニウムカチオンとしては、テトラブチルホスホニウムカチオン、テトラフェニルホスホニウムカチオン、テトラキス(4-メチルフェニル)ホスホニウムカチオン、テトラキス(4-メトキシフェニル)ホスホニウムカチオン、フェニルトリス(4-メチルフェニル)ホスホニウムカチオン、フェニルトリス(4-メトキシフェニル)ホスホニウムカチオン、フェニルトリブチルホスホニウムカチオン、(4-メチルフェニル)トリフェニルホスホニウムカチオン、(4-メトキシフェニル)トリフェニルホスホニウムカチオン、ブチルトリフェニルホスホニウムカチオン等が挙げられる。 Examples of the phosphonium cation of the general formula (1) include tetrabutylphosphonium cation, tetraphenylphosphonium cation, tetrakis (4-methylphenyl) phosphonium cation, tetrakis (4-methoxyphenyl) phosphonium cation, phenyltris (4-methylphenyl) phosphonium. Cation, phenyltris (4-methoxyphenyl) phosphonium cation, phenyltributylphosphonium cation, (4-methylphenyl) triphenylphosphonium cation, (4-methoxyphenyl) triphenylphosphonium cation, butyltriphenylphosphonium cation and the like.
 式(2)であるピロメリット酸の2価のアニオン残基とは、ピロメリット酸の1位と、4位もしくは5位のカルボキシル基の水素原子が外れて、2価のカルボキシルアニオンとなったものをいう。 The divalent anion residue of pyromellitic acid represented by the formula (2) is a divalent carboxyl anion by removing the hydrogen atoms of the 1-position, 4-position or 5-position carboxyl group of pyromellitic acid. Say things.
 上記のホスホニウムカチオンとピロメリット酸の2価のアニオン残基との塩は本明細書の記載に基づき、公知の方法により容易に製造できる。
 例えば、ピロメリット酸のジアルカリ金属塩を常法で合成(溶媒は、水、メタノール等)した後、そのピロメリット酸のジアルカリ金属塩0.5モルに対してテトラ置換ホスホニウムハライドを1モル仕込み反応させることにより塩形成する方法等が挙げられる。この場合、テトラ置換ホスホニウムハライドとピロメリット酸のジアルカリ金属塩をそれぞれ単独もしくは2種類以上を使用して上記塩を形成させてもよい。2種類以上を混合する場合は、2種類以上のテトラ置換ホスホニウムハライドおよびピロメリット酸のジアルカリ金属塩同士を先に混合した後に、ビス(テトラ置換ホスホニウム)ジハイドロジェンピロメリテートを形成させてもよいし、2種類以上のビス(テトラ置換ホスホニウム)ジハイドロジェンピロメリテートを混合してもよい。本製法による製造例は、製造例1に記載した。
A salt of the above phosphonium cation and a divalent anion residue of pyromellitic acid can be easily produced by a known method based on the description in this specification.
For example, after synthesizing a dialkali metal salt of pyromellitic acid by a conventional method (solvent: water, methanol, etc.), 1 mol of tetra-substituted phosphonium halide is charged per 0.5 mol of the dialkali metal salt of pyromellitic acid. And a method for forming a salt by the formation. In this case, the salt may be formed by using a tetra-substituted phosphonium halide and a pyromellitic acid dialkali metal salt alone or in combination of two or more. When two or more types are mixed, after mixing two or more types of tetra-substituted phosphonium halides and the dialkali metal salt of pyromellitic acid, bis (tetra-substituted phosphonium) dihydrogen pyromellitate may be formed. Alternatively, two or more kinds of bis (tetra-substituted phosphonium) dihydrogen pyromellitate may be mixed. Production examples according to this production method are described in Production Example 1.
 また、テトラ置換ホスホニウムヒドロキシド1モルに対してピロメリット酸または無水ピロメリット酸を0.5モル用いて中和することにより塩を形成してもよい。本製法による製造例は、製造例2に記載した。 Alternatively, a salt may be formed by neutralizing 1 mol of tetrasubstituted phosphonium hydroxide with 0.5 mol of pyromellitic acid or pyromellitic anhydride. Production examples according to this production method are described in Production Example 2.
 得られた反応物から純度の高い結晶を析出させ、未反応の原料および副生する無機塩を除去すること等を目的に、得られた反応物を水、アルコール系有機溶媒(メタノール、エタノール、プロパノール、ブタノール等)、ケトン系有機溶媒(アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン等)、エーテル系有機溶媒(テトラヒドロフラン、ジエチルエーテル、ジブチルエーテル、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテル、ジオキサン等)、およびこれらの混合溶媒で洗浄、再結晶精製してもよい。
 なお、上記テトラ置換ホスホニウムハライド、テトラ置換ホスホニウムヒドロキシド、ピロメリット酸、無水ピロメリット酸、および溶媒はいずれも市販されているものを使用してもよい。
For the purpose of precipitating high-purity crystals from the obtained reaction product and removing unreacted raw materials and by-product inorganic salts, the obtained reaction product is mixed with water, an alcohol-based organic solvent (methanol, ethanol, Propanol, butanol, etc.), ketone organic solvents (acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, etc.), ether organic solvents (tetrahydrofuran, diethyl ether, dibutyl ether, 2-methyltetrahydrofuran, cyclopentyl methyl ether, dioxane, etc.), In addition, these may be washed with a mixed solvent and purified by recrystallization.
Commercially available tetra-substituted phosphonium halides, tetra-substituted phosphonium hydroxides, pyromellitic acid, pyromellitic anhydride, and solvents may be used.
 これらの方法により得られるホスホニウム塩は、通常は、ホスホニウムカチオンとピロメリット酸の2価のアニオン残基との2:1(モル比)塩が主成分であり、一般式(3)で示される。 The phosphonium salt obtained by these methods is usually composed mainly of a 2: 1 (molar ratio) salt of a phosphonium cation and a divalent anion residue of pyromellitic acid, and is represented by the general formula (3). .
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 また、一般式(3)において、アニオン部は、式(2)で表されるピロメリット酸のアニオン残基(2価のアニオン残基)を示し、厳密には、複数のカルボキシル基もしくはカルボキシルアニオンのうち、o-フェニレン鎖を隔てて存在するカルボキシル基およびカルボキシルアニオンがホスホニウムカチオンに配位したアニオン残基である。このとき、カルボキシル基およびカルボキシルアニオンは、実際には等価である。 In the general formula (3), the anion part represents an anion residue (divalent anion residue) of pyromellitic acid represented by the formula (2), strictly speaking, a plurality of carboxyl groups or carboxyl anions. Of these, an anion residue in which a carboxyl group and a carboxyl anion present across an o-phenylene chain are coordinated to a phosphonium cation. At this time, the carboxyl group and the carboxyl anion are actually equivalent.
 一般的なカルボキシル基に含まれる水素原子は、H-NMRにおけるケミカルシフトが12ppm付近に検出されるのに対し、一般式(3)に記載のピロメリット酸のアニオン残基に含まれる水素原子は、隣接する酸素原子との水素結合が非常に強いため、H-NMRにおけるケミカルシフトが20ppm付近に検出される。 A hydrogen atom contained in a general carboxyl group has a chemical shift detected in the vicinity of 12 ppm in 1 H-NMR, whereas a hydrogen atom contained in an anion residue of pyromellitic acid described in the general formula (3) Has a very strong hydrogen bond with an adjacent oxygen atom, and thus a chemical shift in 1 H-NMR is detected around 20 ppm.
 また、本発明は、一般式(1)で表されるホスホニウムカチオン2分子と、式(2)で表されるピロメリット酸の2価のアニオン残基1分子からなるホスホニウム塩(例えば一般式(3)で表されるホスホニウム塩)を少なくとも含む熱硬化性樹脂用硬化促進剤(以下、「本発明の熱硬化性樹脂用硬化促進剤」ということがある)である。
 一般式(3)に記載の2価のアニオン残基がホスホニウムカチオン2分子に配位することが、テトラ置換ホスホニウムアセテート、テトラ置換ホスホニウムベンゾエート等、従来のホスホニウムカルボキシレートと比較し、低温時における樹脂の硬化発現までのタイムラグを生じさせ、低温時の低活性(潜在性)や貯蔵安定性の付与を引き起こしていると考えられる。
In addition, the present invention provides a phosphonium salt (for example, the general formula (1) having two molecules of a phosphonium cation represented by the general formula (1) and one molecule of pyromellitic acid divalent anion residue represented by the formula (2). 3), a curing accelerator for thermosetting resins (hereinafter sometimes referred to as “the curing accelerator for thermosetting resins of the present invention”).
Compared with conventional phosphonium carboxylates such as tetra-substituted phosphonium acetate and tetra-substituted phosphonium benzoate, the divalent anion residue represented by the general formula (3) is coordinated to two phosphonium cations. It is considered that a time lag until the onset of curing occurs, and low activity (latency) at low temperature and storage stability are imparted.
 本発明の熱硬化性樹脂用硬化促進剤は、本発明の熱硬化性樹脂用硬化促進剤と熱硬化性樹脂とを少なくとも含む、単独硬化型の熱硬化性樹脂系組成物においても良好な潜在性が得られ、一液性の単独硬化型熱硬化性樹脂系組成物において調製してから硬化させるまでの間、室温で保存可能な良好な貯蔵安定性を得ることができる。
 また、硬化剤が酸無水物の場合において、硬化促進剤に一般式(3)のホスホニウム塩を使用すると、無色透明性が優れた樹脂系組成物の硬化物が得られる。
 さらに、一般式(3)のホスホニウム塩が硬化剤と均一化し難い場合等は、均一化を容易にすること等を目的として、一般式(3)のホスホニウム塩をあらかじめ硬化剤と反応させて得たマスターバッチを、熱硬化性樹脂用硬化促進剤として用いてもよい。
 本発明の熱硬化性樹脂用硬化促進剤は、本発明のホスホニウム塩の他に、効果に影響しない限り、熱硬化性樹脂用硬化促進剤に通常使用される溶剤、充填剤、添加剤等をさらに含んでもよい。
 なお、本発明の熱硬化性樹脂用硬化促進剤は、上記ホスホニウム塩の他に、適宜熱硬化性樹脂の硬化促進剤を併用して使用してもよい。
The curing accelerator for a thermosetting resin of the present invention has a good potential even in a single-curing thermosetting resin composition comprising at least the curing accelerator for a thermosetting resin of the present invention and a thermosetting resin. From the preparation of the one-component single-curing, single-curing thermosetting resin composition to curing, good storage stability that can be stored at room temperature can be obtained.
When the curing agent is an acid anhydride and the phosphonium salt of the general formula (3) is used as the curing accelerator, a cured product of the resin composition having excellent colorless transparency can be obtained.
Further, when it is difficult to homogenize the phosphonium salt of the general formula (3) with the curing agent, the phosphonium salt of the general formula (3) is obtained by reacting with the curing agent in advance for the purpose of facilitating homogenization. The master batch may be used as a curing accelerator for thermosetting resins.
In addition to the phosphonium salt of the present invention, the curing accelerator for the thermosetting resin of the present invention contains solvents, fillers, additives, etc. that are usually used for the curing accelerator for thermosetting resins, as long as the effect is not affected. Further, it may be included.
In addition, you may use the hardening accelerator for thermosetting resins of this invention in combination with the hardening accelerator of a thermosetting resin suitably other than the said phosphonium salt.
 一般式(3)のホスホニウム塩としては、ビス(テトラフェニルホスホニウム)ジハイドロジェンピロメリテート、ビス[テトラキス(4-メチルフェニル)ホスホニウム]ジハイドロジェンピロメリテート、ビス[テトラキス(4-メトキシフェニル)ホスホニウム]ジハイドロジェンピロメリテート、ビス(テトラブチルホスホニウム)ジハイドロジェンピロメリテート、ビス[フェニルトリス(4-メチルフェニル)ホスホニウム] ジハイドロジェンピロメリテート、ビス[フェニルトリス(4-メトキシフェニル)ホスホニウム] ジハイドロジェンピロメリテート、ビス(フェニルトリブチルホスホニウム)ジハイドロジェンピロメリテート、ビス[(4-メチルフェニル)トリフェニルホスホニウム]ジハイドロジェンピロメリテート、ビス[(4-メトキシフェニル)トリフェニルホスホニウム]ジハイドロジェンピロメリテート、ビス(ブチルトリフェニルホスホニウム)ジハイドロジェンピロメリテート等が挙げられる。 Examples of the phosphonium salt of the general formula (3) include bis (tetraphenylphosphonium) dihydrogen pyromellitate, bis [tetrakis (4-methylphenyl) phosphonium] dihydrogen pyromellitate, bis [tetrakis (4-methoxyphenyl). ) Phosphonium] dihydrogen pyromellitate, bis (tetrabutylphosphonium) dihydrogen pyromellitate, bis [phenyltris (4-methylphenyl) phosphonium] dihydrogen pyromellitate, bis [phenyltris (4-methoxy) Phenyl) phosphonium] dihydrogen pyromellitate, bis (phenyltributylphosphonium) dihydrogen pyromellitate, bis [(4-methylphenyl) triphenylphosphonium] dihydrogen pyromellite , Bis [(4-methoxyphenyl) triphenylphosphonium] dihydrogen pyromellitate, bis (butyl triphenylphosphonium) dihydrogen pyromellitate and the like.
 また、本発明は、本発明の熱硬化性樹脂用硬化促進剤と、熱硬化性樹脂とを少なくとも含む、熱硬化性樹脂系組成物である(以下、「本発明の単独硬化型熱硬化性樹脂系組成物」ということがある)。さらなる本発明は、さらに熱硬化性樹脂用硬化剤を含む、熱硬化性樹脂系組成物である。以下、これらを「本発明の熱硬化性樹脂系組成物」ということがある。
 本発明の熱硬化性樹脂系組成物の成分である熱硬化性樹脂の好ましい例であるエポキシ樹脂、マレイミド樹脂、シアネート樹脂、イソシアネート樹脂、および熱硬化性樹脂用硬化剤について次に説明する。
The present invention is also a thermosetting resin-based composition comprising at least the thermosetting resin curing accelerator of the present invention and a thermosetting resin (hereinafter referred to as “single curable thermosetting of the present invention”). Sometimes referred to as “resin-based composition”). The present invention further relates to a thermosetting resin-based composition further including a curing agent for thermosetting resin. Hereinafter, these may be referred to as “the thermosetting resin composition of the present invention”.
Next, epoxy resins, maleimide resins, cyanate resins, isocyanate resins, and curing agents for thermosetting resins, which are preferred examples of thermosetting resins that are components of the thermosetting resin-based composition of the present invention, will be described.
<エポキシ樹脂>
 エポキシ樹脂としては、特に限定されず、1分子中に2個以上のエポキシ基を有する汎用的なエポキシ樹脂を用いることが可能であり、例えば、フェノール、クレゾール、キシレノール、カテコール、レゾルシン、ビスフェノールA、ビスフェノールF等のフェノール類および/またはナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒の存在下で縮合または共縮合させて得られるノボラック樹脂をエポキシ化したフェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂;ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換または非置換のビフェノール、スチルベン系フェノール類等をエポキシ化したビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂;フェノール類および/またはナフトール類とジメトキシパラキシレンやビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニルアラルキル樹脂等をエポキシ化したフェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂;ブタンジオール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール類のグリシジルエーテル型エポキシ樹脂;フタル酸、イソフタル酸、テトラヒドロフタル酸等のカルボン酸類のグリシジルエステル型エポキシ樹脂;アニリン、イソシアヌル酸等の窒素原子に結合した活性水素をグリシジル基で置換したグリシジル型またはメチルグリシジル型エポキシ樹脂;分子内のオレフィン結合をエポキシ化して得られるビニルシクロヘキセンジエポキシド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ(3,4-エポキシ)シクロヘキサン-m-ジオキサン等の脂環型エポキシ樹脂;パラキシリレンおよび/またはメタキシリレン変性フェノール樹脂のグリシジルエーテル;テルペン変性フェノール樹脂のグリシジルエーテル;フェノール類および/またはナフトール類とジシクロペンタジエンから合成される、ジシクロペンタジエン変性フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂のグリシジルエーテル;シクロペンタジエン変性フェノール樹脂のグリシジルエーテル;多環芳香環変性フェノール樹脂のグリシジルエーテル;ナフタレン環含有フェノール樹脂のグリシジルエーテル;ハロゲン化フェノールノボラック型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;トリメチロールプロパン型エポキシ樹脂;オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂;ジフェニルメタン型エポキシ樹脂;硫黄原子含有エポキシ樹脂等が挙げられる。
 これらのエポキシ樹脂は、単独で、また2種類以上を混合してもよく、有姿のまま使用してもよく、適宜溶剤や添加材等を添加してもよく、市販品を使用してもよい。
<Epoxy resin>
The epoxy resin is not particularly limited, and a general-purpose epoxy resin having two or more epoxy groups in one molecule can be used. For example, phenol, cresol, xylenol, catechol, resorcin, bisphenol A, Phenols such as bisphenol F and / or naphthols such as naphthol and dihydroxynaphthalene and a compound having an aldehyde group such as formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde are condensed or co-condensed in the presence of an acidic catalyst. Phenol novolak type epoxy resin, orthocresol novolak type epoxy resin obtained by epoxidizing the resulting novolak resin; bisphenol A, bisphenol F, bisphenol S, alkyl-substituted or non-substituted Bisphenol type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin obtained by epoxidizing substituted biphenols, stilbene phenols, etc .; synthesized from phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin obtained by epoxidizing phenol aralkyl resin, naphthol aralkyl resin, biphenyl aralkyl resin, etc .; glycidyl ether type of alcohols such as butanediol, polyethylene glycol and polypropylene glycol Epoxy resin: glycidyl ester type epoxy resin of carboxylic acids such as phthalic acid, isophthalic acid, tetrahydrophthalic acid Glycidyl-type or methylglycidyl-type epoxy resin in which active hydrogen bonded to nitrogen atom such as aniline or isocyanuric acid is substituted with glycidyl group; vinylcyclohexene diepoxide obtained by epoxidizing intramolecular olefin bond, 3,4-epoxycyclohexyl Cycloaliphatic epoxy resins such as methyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxy) cyclohexyl-5,5-spiro (3,4-epoxy) cyclohexane-m-dioxane; paraxylylene and / or Or glycidyl ether of metaxylylene-modified phenol resin; glycidyl ether of terpene-modified phenol resin; dicyclopentadiene-modified phenol resin synthesized from phenols and / or naphthols and dicyclopentadiene Glycidyl ether of dicyclopentadiene type naphthol resin; glycidyl ether of cyclopentadiene modified phenol resin; glycidyl ether of polycyclic aromatic ring modified phenol resin; glycidyl ether of phenol resin containing naphthalene ring; halogenated phenol novolac type epoxy resin; hydroquinone type Examples include epoxy resins; trimethylolpropane type epoxy resins; linear aliphatic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid; diphenylmethane type epoxy resins; sulfur atom-containing epoxy resins.
These epoxy resins may be used alone or in combination of two or more, may be used as they are, may be appropriately added with a solvent, an additive, etc. Good.
<マレイミド樹脂>
 マレイミド樹脂としては、特に限定されず、1分子中に2個以上のマレイミド基を有する汎用的なマレイミド樹脂を用いることが可能であり、例えば、4,4’-ビスマレイミドジフェニルメタン、N,N’-1,3-フェニレンジマレイミド、2,2’-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、ポリフェニルメタンマレイミド等が挙げられる。
 これらのマレイミド樹脂は、単独で、また2種類以上を混合してもよく、有姿のまま使用してもよく、適宜溶媒や添加材等を添加してもよく、市販品を使用してもよい。
<Maleimide resin>
The maleimide resin is not particularly limited, and a general-purpose maleimide resin having two or more maleimide groups in one molecule can be used. For example, 4,4′-bismaleimide diphenylmethane, N, N ′ -1,3-phenylene dimaleimide, 2,2′-bis [4- (4-maleimidophenoxy) phenyl] propane, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide 4-methyl-1,3-phenylene bismaleimide, 1,6′-bismaleimide- (2,2,4-trimethyl) hexane, polyphenylmethane maleimide and the like.
These maleimide resins may be used alone or in admixture of two or more, may be used as they are, may be added with a solvent or an additive as appropriate, or may be commercially available. Good.
<シアネート樹脂>
 シアネート樹脂としては、特に限定されず、1分子中に2個以上のシアネート基を有する汎用的なシアネート樹脂を用いることが可能であり、例えば、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、ビス(3,5-ジメチル-4-シアナトフェニル)メタン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2,7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4、4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)メタン、2,2’-ビス(4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、ビス(4-シアナトフェニル)スルホン、2、2’-ビス(4-シアナトフェニル)プロパン、ビス(3,5-ジメチル-4-シアナトフェニル)メタン、ノボラック樹脂をシアネート化したフェノールノボラック型シアネート樹脂等が挙げられる。
 これらのシアネート樹脂は、単独で、また2種類以上を混合してもよく、有姿のまま使用してもよく、適宜溶媒や添加材等を添加してもよく、市販品を使用してもよい。
<イソシアネート樹脂>
 イソシアネート樹脂としては、特に限定されず、1分子中に2個以上のイソシアネート基を有する汎用的なイソシアネート樹脂を用いることが可能であり、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート等のポリイソシアネートと、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリオールとの反応で得られる末端イソシアネート基オリゴマーの末端イソシアネート基を、フェノール類、アルコール類等でブロックしたイソシアネート樹脂等が挙げられる。
 これらのイソシアネート樹脂は、単独で、また2種類以上を混合してもよく、有姿のまま使用してもよく、適宜溶媒や添加材等を添加してもよく、市販品を使用してもよい。
<Cyanate resin>
The cyanate resin is not particularly limited, and a general-purpose cyanate resin having two or more cyanate groups in one molecule can be used. For example, 1,3-dicyanatobenzene, 1,4-disiocyanate can be used. Anatobenzene, 1,3,5-tricyanatobenzene, bis (3,5-dimethyl-4-cyanatophenyl) methane, 1,3-dicyanatonaphthalene, 1,4-dicyanatonaphthalene, 1,6-disi Anatonaphthalene, 1,8-dicyanatonaphthalene, 2,6-dicyanatonaphthalene, 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4′-dicyanatobiphenyl, bis (4- Cyanatophenyl) methane, 2,2′-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanato) Phenyl) thioether, bis (4-cyanatophenyl) sulfone, 2,2′-bis (4-cyanatophenyl) propane, bis (3,5-dimethyl-4-cyanatophenyl) methane, cyanate novolak resin Phenol novolac-type cyanate resin and the like.
These cyanate resins may be used alone or in admixture of two or more, may be used as they are, may be added with a solvent, an additive or the like as appropriate, or commercially available products may be used. Good.
<Isocyanate resin>
The isocyanate resin is not particularly limited, and a general-purpose isocyanate resin having two or more isocyanate groups in one molecule can be used. For example, polyisocyanate such as tolylene diisocyanate and diphenylmethane diisocyanate, and polypropylene Examples thereof include isocyanate resins obtained by blocking terminal isocyanate groups of terminal isocyanate group oligomers obtained by reaction with polyols such as glycol and polytetramethylene glycol with phenols and alcohols.
These isocyanate resins may be used alone or in admixture of two or more, may be used as they are, may be appropriately added with a solvent, an additive, etc. Good.
<硬化剤>
 熱硬化性樹脂用硬化剤としては、フェノール樹脂系硬化剤、アミン系硬化剤、酸無水物系硬化剤、ベンゾオキサジン系硬化剤、ジシアンジアミド等が挙げられる。また、主剤として用いる熱硬化性樹脂以外の熱硬化性樹脂を、熱硬化性樹脂用硬化剤として使用してもよい。
<Curing agent>
Examples of the curing agent for thermosetting resins include phenol resin curing agents, amine curing agents, acid anhydride curing agents, benzoxazine curing agents, dicyandiamide, and the like. Moreover, you may use thermosetting resins other than the thermosetting resin used as a main ingredient as a hardening agent for thermosetting resins.
 フェノール樹脂系硬化剤としては、特に限定されず、一般に硬化剤として使用される1分子中に2個以上のフェノール性水酸基を有する汎用的なフェノール樹脂を用いることが可能であり、例えば、カテコール、レゾルシン、ヒドロキノン、ビスフェノールA、ビスフェノールF、置換または非置換のビフェノール等の1分子中に2個以上のフェノール性水酸基を有する化合物;フェノール、クレゾール、キシレノール、カテコール、レゾルシン、ヒドロキノン、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類および/またはナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等から合成されるノボラック型フェノール樹脂;フェノール類および/またはナフトール類とジメトキシパラキシレンやビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニルアラルキル樹脂等のアラルキル型フェノール樹脂;パラキシリレンおよび/またはメタキシリレン変性フェノール樹脂;メラミン変性フェノール樹脂;テルペン変性フェノール樹脂;フェノール類および/またはナフトール類とジシクロペンタジエンから合成される、ジシクロペンタジエン型フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂;シクロペンタジエン変性フェノール樹脂;多環芳香環変性フェノール樹脂;ビフェニル型フェノール樹脂;トリフェニルメタン型フェノール樹脂等が挙げられる。 The phenolic resin-based curing agent is not particularly limited, and a general-purpose phenolic resin having two or more phenolic hydroxyl groups in one molecule generally used as a curing agent can be used. For example, catechol, Compounds having two or more phenolic hydroxyl groups in one molecule such as resorcin, hydroquinone, bisphenol A, bisphenol F, substituted or unsubstituted biphenol; phenol, cresol, xylenol, catechol, resorcin, hydroquinone, bisphenol A, bisphenol F , Phenols such as phenylphenol and aminophenol and / or naphthols such as naphthol and dihydroxynaphthalene and formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, salicylaldehyde Novolak type phenol resins synthesized from aralkyl type phenol resins such as phenol aralkyl resins, naphthol aralkyl resins and biphenyl aralkyl resins synthesized from phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenyl; paraxylylene And / or metaxylylene-modified phenol resin; melamine-modified phenol resin; terpene-modified phenol resin; synthesized from phenols and / or naphthols and dicyclopentadiene, dicyclopentadiene-type phenol resin, dicyclopentadiene-type naphthol resin; cyclopentadiene Modified phenolic resin; Polycyclic aromatic ring modified phenolic resin; Biphenyl type phenolic resin; Triphenylmethane type phenolic resin It is below.
 アミン系硬化剤としては、特に限定されず、汎用的な芳香族アミン、脂肪族アミン等を用いることが可能であり、例えば、トリエチレンテトラアミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン等の脂肪族ポリアミン、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサン等の脂環式ポリアミン、N-アミノエチルピペラジン、1,4-ビス(2-アミノ-2-メチルプロピル)ピペラジン等のピペラジン型のポリアミン、ジエチルトルエンジアミン、ジメチルチオトルエンジアミン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、ビス(メチルチオ)トルエンジアミン、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジフェニルスルホン、トリメチレンビス(4-アミノベンゾエート)、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート、ポリオキシテトラメチレンビス(p-アミノベンゾエート)等が挙げられる。 The amine curing agent is not particularly limited, and general-purpose aromatic amines, aliphatic amines and the like can be used. For example, triethylenetetraamine, tetraethylenepentamine, m-xylenediamine, trimethylhexa Aliphatic polyamines such as methylenediamine and 2-methylpentamethylenediamine, isophoronediamine, 1,3-bisaminomethylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, and 1,2-diaminocyclohexane Piperazine-type polyamines such as formula polyamine, N-aminoethylpiperazine, 1,4-bis (2-amino-2-methylpropyl) piperazine, diethyltoluenediamine, dimethylthiotoluenediamine, 4,4′-diamino-3, 3'-diethyldipheny Methane, bis (methylthio) toluenediamine, diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, trimethylenebis (4-aminobenzoate), polytetramethylene oxide-di-p-aminobenzoate, polyoxytetramethylenebis (p -Aminobenzoate) and the like.
 酸無水物系硬化剤としては、特に限定されず、汎用的な酸無水物を用いることが可能であり、例えば、ヘキサヒドロフタル酸無水物、3-メチルヘキサヒドロフタル酸無水物、4-メチルヘキサヒドロフタル酸無水物、1-メチルノルボルナン-2,3-ジカルボン酸無水物、5-メチルノルボルナン-2,3-ジカルボン酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、1-メチルナジック酸無水物、5-メチルナジック酸無水物、ナジック酸無水物、フタル酸無水物、テトラヒドロフタル酸無水物、3-メチルテトラヒドロフタル酸無水物、4-メチルテトラヒドロフタル酸無水物、およびドデセニルコハク酸無水物等が挙げられる。 The acid anhydride curing agent is not particularly limited, and general-purpose acid anhydrides can be used. For example, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methyl Hexahydrophthalic anhydride, 1-methylnorbornane-2,3-dicarboxylic anhydride, 5-methylnorbornane-2,3-dicarboxylic anhydride, norbornane-2,3-dicarboxylic anhydride, 1-methylnadic Acid anhydride, 5-methyl nadic anhydride, nadic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyltetrahydrophthalic anhydride, and dodecenyl succinic anhydride Thing etc. are mentioned.
 ベンゾオキサジン系硬化剤としては、特に限定されず、汎用的なベンゾオキサジン樹脂を用いることが可能であり、例えばビスフェノールFとホルムアルデヒドとアニリンを反応させて得られるF-a型ベンゾオキサジン樹脂、ジアミノジフェニルメタンとホルムアルデヒドとフェノールを反応させて得られるP-d型ベンゾオキサジン樹脂等が挙げられる。 The benzoxazine-based curing agent is not particularly limited, and a general-purpose benzoxazine resin can be used. For example, an Fa type benzoxazine resin obtained by reacting bisphenol F, formaldehyde and aniline, diaminodiphenylmethane. Pd type benzoxazine resin obtained by reacting formaldehyde with phenol.
 これらの硬化剤は、単独で、または2種類以上を混合して使用することができ、有姿でそのまま使用してもよく、適宜溶剤や添加材等を添加し、硬化剤組成物として使用することもでき、市販品を使用してもよい。 These curing agents can be used alone or in admixture of two or more kinds, and can be used as they are, and can be used as a curing agent composition by appropriately adding a solvent, an additive or the like. It is also possible to use a commercially available product.
<熱硬化性樹脂系組成物>
 本発明の熱硬化性樹脂系組成物に所望の設定温度でのみ効率良く硬化させ得る性質を求める場合、本発明の硬化促進剤とともに、熱硬化性樹脂としてエポキシ樹脂やマレイミド樹脂を用いることが好ましく、さらに熱硬化性樹脂用硬化剤を使用する場合はフェノール樹脂を用いることが好ましい。また、無色透明性を求める場合は、酸無水物系硬化剤を用いることが好ましい。
 また、本発明の熱硬化性樹脂系組成物は、本発明の熱硬化性樹脂用硬化促進剤、熱硬化性樹脂、および熱硬化性樹脂用硬化剤の他に、効果に影響しない限り、熱硬化性樹脂系組成物に通常使用される溶剤、充填剤、添加剤等をさらに含んでもよい。
 熱硬化性樹脂系組成物は、線膨張率を小さくするために、公知の各種無機充填剤を含有することができる。無機充填剤としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化アルミニウムなどが挙げられる。これらの無機充填剤は、シランカップリング剤等のカップリング剤で表面処理してもよい。
 その他、熱硬化性樹脂系組成物に、イオントラップ剤、離型剤、カーボンブラック等の顔料等を添加してもよく、熱硬化性樹脂以外の樹脂を含むこともできる。
 熱硬化性樹脂系組成物中の一般式(3)のホスホニウム塩の含有量は、0.5重量部より少ないと、組成物の硬化力を十分に発揮できない場合があり、10重量部より多いと、組成物の貯蔵安定性が悪くなる場合があるため、熱硬化性樹脂100重量部に対して0.5~10重量部であることが好ましく、硬化性をより厳密に考慮すれば、かかる含有量を0.7~5重量部とすることが更に好ましい。さらに熱硬化性樹脂用硬化剤を使用する場合、硬化剤の含有量は、熱硬化性樹脂中の反応性基当量(例えばエポキシ樹脂であれば、樹脂中のエポキシ当量)と、硬化剤の当量との当量比を考慮して、一般的には、反応性基当量と硬化剤の当量との当量比が1.0:0.9~1.0:1.2となるようにする。
<Thermosetting resin composition>
When the thermosetting resin-based composition of the present invention requires properties that can be efficiently cured only at a desired set temperature, it is preferable to use an epoxy resin or a maleimide resin as the thermosetting resin together with the curing accelerator of the present invention. Furthermore, when a thermosetting resin curing agent is used, a phenol resin is preferably used. Moreover, when colorless and transparent are calculated | required, it is preferable to use an acid anhydride type hardening | curing agent.
In addition to the thermosetting resin curing accelerator, the thermosetting resin, and the thermosetting resin curing agent of the present invention, the thermosetting resin-based composition of the present invention can be used as long as the effect is not affected. You may further contain the solvent, filler, additive, etc. which are normally used for curable resin system composition.
The thermosetting resin-based composition can contain various known inorganic fillers in order to reduce the linear expansion coefficient. Examples of the inorganic filler include fused silica, crystalline silica, alumina, and aluminum nitride. These inorganic fillers may be surface-treated with a coupling agent such as a silane coupling agent.
In addition, an ion trapping agent, a release agent, a pigment such as carbon black, or the like may be added to the thermosetting resin-based composition, and a resin other than the thermosetting resin may be included.
If the content of the phosphonium salt of the general formula (3) in the thermosetting resin-based composition is less than 0.5 parts by weight, the composition may not be able to fully exert the curing power, and is more than 10 parts by weight. In this case, the storage stability of the composition may be deteriorated, so that it is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the thermosetting resin, and this is required when the curable property is considered more strictly. The content is more preferably 0.7 to 5 parts by weight. Furthermore, when using a curing agent for thermosetting resin, the content of the curing agent is equivalent to the reactive group equivalent in the thermosetting resin (for example, epoxy equivalent in the resin if it is an epoxy resin) and the equivalent of the curing agent. In general, the equivalent ratio of the reactive group equivalent to the equivalent of the curing agent is set to 1.0: 0.9 to 1.0: 1.2.
 本発明の熱硬化性樹脂系組成物をプリプレグに用いる場合、各成分が有機溶媒中に溶解または分散されたワニスの状態とすることが好ましい。
 ワニスを製造する場合に用いる有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、単独で、また2種類以上を混合してもよく、市販品を使用してもよい。
When the thermosetting resin-based composition of the present invention is used for a prepreg, it is preferable to have a varnish in which each component is dissolved or dispersed in an organic solvent.
Examples of the organic solvent used when producing the varnish include alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, and ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Solvents, ester solvents such as butyl acetate and propylene glycol monomethyl ether acetate, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene, xylene and mesitylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide And aprotic polar solvents such as These organic solvents may be used alone or in combination of two or more, or commercially available products may be used.
 熱硬化性樹脂系組成物の調製方法は特に制限されず、前記各成分を均一に混合することにより調製できる。好ましい調製方法として、熱硬化性樹脂と本発明のホスホニウム塩とを温度20~150℃程度で均一に攪拌混合する方法を挙げることができ、場合によっては上記ワニスの製造に用いられる溶媒として例示された溶媒を用いてもよい。また、熱硬化性樹脂用硬化剤を加える場合、硬化剤と硬化促進剤の混合物を加熱後、冷却し、続いて熱硬化性樹脂と混合し、加熱後、冷却することが好ましい。
 硬化剤と硬化促進剤の混合物を加熱することにより、硬化剤の粘度を低下させ、撹拌・混合を容易にし、硬化剤と硬化促進剤が均一に分散される。
 硬化剤と硬化促進剤の混合物は熱硬化性樹脂と混合する前に、予め冷却することにより正確に計量でき、取り扱いが容易になる。
 硬化促進剤が硬化剤に均一化し難い場合は、硬化促進剤を硬化剤に高濃度で加熱溶解後、冷却して得られるマスターバッチを硬化促進剤として用いてもよい。このマスターバッチは、硬化剤への溶解性が比較的良好となる。
The method for preparing the thermosetting resin-based composition is not particularly limited, and can be prepared by mixing the above-mentioned components uniformly. As a preferable preparation method, a method in which the thermosetting resin and the phosphonium salt of the present invention are uniformly stirred and mixed at a temperature of about 20 to 150 ° C. can be exemplified. In some cases, the solvent is exemplified as a solvent used in the production of the varnish. Solvents may be used. Moreover, when adding the hardening | curing agent for thermosetting resins, it is preferable to heat and cool the mixture of a hardening | curing agent and a hardening accelerator, and to mix with a thermosetting resin, and to cool after heating.
By heating the mixture of the curing agent and the curing accelerator, the viscosity of the curing agent is reduced, stirring and mixing are facilitated, and the curing agent and the curing accelerator are uniformly dispersed.
The mixture of the curing agent and the curing accelerator can be accurately measured by pre-cooling before mixing with the thermosetting resin, and handling becomes easy.
When it is difficult to make the curing accelerator uniform in the curing agent, a master batch obtained by heating and dissolving the curing accelerator in a high concentration in the curing agent and then cooling may be used as the curing accelerator. This master batch has relatively good solubility in a curing agent.
 本発明の硬化促進剤は潜在性に優れるため、混合中に熱硬化性樹脂系組成物の硬化が抑制され、熱硬化性樹脂系組成物の調製時のハンドリングがよくなる。
 また、硬化剤、硬化促進剤、および熱硬化性樹脂の各成分は、各混合工程において一度に混合してもよく、または複数回に分けて少しずつ混合してもよい。また、上記溶剤や添加剤、無機充填剤等を混合する場合も、同様に、任意の時期に一度または複数回に分けて混合することができる。
 なお、硬化剤と硬化促進剤との混合や熱硬化性樹脂との混合の際は、均一に攪拌・混合することを容易とするため、ロールやニーダー等の混練機等を用いてもよい。
Since the curing accelerator of the present invention is excellent in latency, curing of the thermosetting resin-based composition is suppressed during mixing, and handling during preparation of the thermosetting resin-based composition is improved.
Moreover, each component of a hardening | curing agent, a hardening accelerator, and a thermosetting resin may be mixed at once in each mixing process, or may be mixed little by little in several steps. Moreover, when mixing the said solvent, an additive, an inorganic filler, etc., it can be mixed in one time or divided into several times similarly at arbitrary times.
In mixing the curing agent and the curing accelerator or the thermosetting resin, a kneader such as a roll or a kneader may be used to facilitate uniform stirring and mixing.
 本発明の熱硬化性樹脂系組成物は、熱硬化性樹脂系組成物に含まれる熱硬化性樹脂用硬化促進剤が低温では触媒活性が低く熱硬化性樹脂系組成物を硬化させないが、所望の硬化温度では高い触媒活性を発揮し短時間で硬化させ得る潜在性を有し、また、一液性における貯蔵安定性に優れた熱硬化性樹脂系組成物である。
 熱硬化性樹脂系組成物の潜在性は、常法の潜在性評価方法により測定・評価することができる。例えばJIS K 6910に準拠したゲル化時間測定方法によりゲルタイムを測定し、低温と高温のゲルタイムの比率等により評価することができる。また、例えば示差走査熱量測定装置を使用して、発熱ピークを測定し、発熱開始温度と発熱トップ温度との差等により評価することができる。
 また、熱硬化性樹脂系組成物の安定性は、常法の安定性評価方法により測定・評価することができる。例えばJIS K 6910に準拠したゲル化時間測定方法により貯蔵前と貯蔵後のゲルタイムを測定し、貯蔵前と貯蔵後のゲルタイムの比率等により評価することができる。
The thermosetting resin-based composition of the present invention is desirable in that the thermosetting resin curing accelerator contained in the thermosetting resin-based composition has low catalytic activity at low temperatures and does not cure the thermosetting resin-based composition. It is a thermosetting resin-based composition that has a high catalytic activity at the curing temperature, has the potential to be cured in a short time, and is excellent in storage stability in a one-pack type.
The latency of the thermosetting resin-based composition can be measured and evaluated by a conventional latency evaluation method. For example, the gel time can be measured by a gel time measurement method based on JIS K 6910 and evaluated by the ratio of the gel time between low temperature and high temperature. Further, for example, an exothermic peak can be measured using a differential scanning calorimeter, and evaluation can be made based on a difference between an exothermic start temperature and an exothermic top temperature.
The stability of the thermosetting resin-based composition can be measured and evaluated by a conventional stability evaluation method. For example, the gel time before and after storage can be measured by a gelation time measuring method based on JIS K 6910, and evaluated by the ratio of the gel time before and after storage.
<熱硬化性樹脂系硬化物>
 本発明において熱硬化性樹脂系硬化物とは、熱硬化性樹脂系組成物を、熱硬化性樹脂系組成物に応じた特定の条件下で加熱することによって熱硬化性樹脂の流動性がなくなり、硬化した固形物のことをいう。以下、本発明の熱硬化性樹脂系組成物を硬化した固形物を「本発明の熱硬化性樹脂系硬化物」ということがある。
 本発明の熱硬化性樹脂系硬化物は、上記した本発明の熱硬化性樹脂系組成物を、通常の熱硬化性樹脂系組成物の硬化の条件下で加熱することで得ることができる。通常硬化温度100~250℃程度で硬化時間30秒~15時間加熱により得ることができ、適宜条件を変更することも可能である。
 本発明の熱硬化性樹脂系硬化物は、硬化剤として酸無水物を使用した場合に、その硬化物の着色が低減され、無色透明な硬化物となる。硬化物の着色の程度は、常法の色調評価方法により測定することができる。色調評価方法としては、例えばJIS-K0071-1に準拠した方法が挙げられ、着色の程度は、ハーゼン式数で表した値(APHA)として示される。無色透明性が求められる場面においては、APHAが小さいほど好ましく、APHAが50以下であると実用的といえる。
<Heat-curing resin-based cured product>
In the present invention, the thermosetting resin-based cured product means that the fluidity of the thermosetting resin is lost by heating the thermosetting resin-based composition under specific conditions according to the thermosetting resin-based composition. , Refers to a hardened solid. Hereinafter, the solid material obtained by curing the thermosetting resin-based composition of the present invention may be referred to as “thermosetting resin-based cured product of the present invention”.
The thermosetting resin-based cured product of the present invention can be obtained by heating the above-described thermosetting resin-based composition of the present invention under the conditions for curing a normal thermosetting resin-based composition. Usually, it can be obtained by heating at a curing temperature of about 100 to 250 ° C. and a curing time of 30 seconds to 15 hours, and the conditions can be appropriately changed.
In the thermosetting resin-based cured product of the present invention, when an acid anhydride is used as a curing agent, coloring of the cured product is reduced and a colorless and transparent cured product is obtained. The degree of coloring of the cured product can be measured by a conventional color tone evaluation method. Examples of the color tone evaluation method include a method based on JIS-K0071-1, and the degree of coloring is indicated as a value (APHA) represented by a Hazen number. In a scene where colorless transparency is required, it is preferable that APHA is smaller, and it is practical that APHA is 50 or less.
 以下に本発明の熱硬化性樹脂系組成物を実施例および試験例により詳細に説明するが、本発明はこれらに限定されるものではない。
[H-NMR測定] 
 結晶10mgを約0.5mlの重DMSOに溶かし、φ5mmの試料管に入れ、(株)JEOL RESONANCE社製JNM-ECS400で測定した。シフト値は、DMSO(δ=2.49ppm)を基準とした。
[31P-NMR測定] 
 結晶10mgを約0.5mlの重DMSOに溶かし、φ5mmの試料管に入れ、(株)JEOL RESONANCE社製JNM-ECS400で測定した。シフト値は、リン酸(δ=0ppm)を基準とした。
[IR測定] 
 ブルカー・オプティクス(株)社製ALPHAを用い、ATR法で測定した。
The thermosetting resin-based composition of the present invention will be described in detail below with reference to examples and test examples, but the present invention is not limited to these.
[ 1 H-NMR measurement]
10 mg of crystals were dissolved in about 0.5 ml of heavy DMSO, put in a φ5 mm sample tube, and measured with JNM-ECS400 manufactured by JEOL RESONANCE. The shift value was based on DMSO (δ = 2.49 ppm).
[ 31 P-NMR measurement]
10 mg of crystals were dissolved in about 0.5 ml of heavy DMSO, put in a φ5 mm sample tube, and measured with JNM-ECS400 manufactured by JEOL RESONANCE. The shift value was based on phosphoric acid (δ = 0 ppm).
[IR measurement]
It measured by ATR method using ALPHA by Bruker Optics.
<製造例1>
 水酸化カリウム56重量部を水1.5Lに溶解させ、これに無水ピロメリット酸109重量部を加える事でピロメリット酸ジカリウム塩を作製し、これにテトラフェニルホスホニウムブロミド419重量部を加えて60℃で反応させ、冷却した後、析出した結晶を濾取、水洗することにより、下記式(4)で示されるビス(テトラフェニルホスホニウム)ジハイドロジェンピロメリテート(以下、「BTPP-ピロメリット酸」という。)を419重量部(収率90%)得た。
 得られた結晶の融点を測定したところ、277~279℃であった。
<Production Example 1>
Pyromellitic acid dipotassium salt is prepared by dissolving 56 parts by weight of potassium hydroxide in 1.5 L of water and adding 109 parts by weight of pyromellitic anhydride to this, and then adding 419 parts by weight of tetraphenylphosphonium bromide to this. After reacting at 0 ° C. and cooling, the precipitated crystals were collected by filtration and washed with water to give bis (tetraphenylphosphonium) dihydrogen pyromellitate (hereinafter referred to as “BTPP-pyromellitic acid” represented by the following formula (4). 419 parts by weight (yield 90%).
The melting point of the obtained crystal was measured and found to be 277 to 279 ° C.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
<製造例2>
 無水ピロメリット酸109重量部を水200重量部に懸濁させ、これにテトラブチルホスホニウムヒドロキシドの40重量%水溶液691重量部を加えて中和し、得られた反応混合物から減圧蒸留法を用いて脱水して得た残渣をメチルイソブチルケトン1Lに仕込み、析出した結晶を濾取することにより、下記式(5)で示されるビス(テトラブチルホスホニウム)ジハイドロジェンピロメリテート(以下、「BTBP-ピロメリット酸」という。)を340重量部(収率88%)得た。
 得られた結晶の融点を測定したところ、130~132℃であった。
<Production Example 2>
109 parts by weight of pyromellitic anhydride is suspended in 200 parts by weight of water, and 691 parts by weight of a 40% by weight aqueous solution of tetrabutylphosphonium hydroxide is added thereto for neutralization. From the resulting reaction mixture, a vacuum distillation method is used. The residue obtained by dehydration was charged into 1 L of methyl isobutyl ketone, and the precipitated crystals were collected by filtration to obtain bis (tetrabutylphosphonium) dihydrogen pyromellitate (hereinafter referred to as “BTBP”) represented by the following formula (5). -Pyromellitic acid ") was obtained in an amount of 340 parts by weight (yield 88%).
The melting point of the obtained crystal was measured and found to be 130 to 132 ° C.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 製造例1、2に準じて製造した本発明に係るホスホニウム塩のH-NMRスペクトル、31P-NMRスペクトルのσ(ppm)値を、表1に示す。 Table 1 shows the σ (ppm) values of 1 H-NMR spectrum and 31 P-NMR spectrum of the phosphonium salt according to the present invention produced according to Production Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 また、製造例1、2で得られた生成物のIRスペクトルデータをそれぞれ、図1、2に示す。
 これらのデータから、製造例1、2で得られた生成物はそれぞれ、式(4)、(5)で示される目的のホスホニウム塩であることを確認した。
In addition, IR spectrum data of the products obtained in Production Examples 1 and 2 are shown in FIGS.
From these data, it was confirmed that the products obtained in Production Examples 1 and 2 were the target phosphonium salts represented by the formulas (4) and (5), respectively.
<比較製造例1>
 無水ピロメリット酸109重量部に代えて、無水フタル酸を74重量部使用した以外は、製造例1と同様にしたところ、得られた結晶はビス(テトラフェニルホスホニウム)フタレートではなく、原料であるテトラフェニルホスホニウムブロミドであり、目的の反応は進行しなかった。
 比較製造例1で得られた生成物のIRスペクトルデータを、図3に示す。比較製造例1で得られた生成物のNMRスペクトルデータを、図4、5に示す。公知のデータベース収録の、テトラフェニルホスホニウムブロミドのスペクトルデータと、比較製造例1のスペクトルデータが一致することを確認した。
<比較製造例2>
 無水ピロメリット酸109重量部に代えて、安息香酸を122重量部使用した以外は、製造例1と同様にしたところ、得られた結晶はテトラフェニルホスホニウムベンゾエートではなく、原料であるテトラフェニルホスホニウムブロミドであり、目的の反応は進行しなかった。
 比較製造例2で得られた生成物について、IR、NMR測定を行ったところ、比較製造例1と同じ結果が得られた。公知のデータベース収録の、テトラフェニルホスホニウムブロミドのスペクトルデータと、比較製造例2のスペクトルデータが一致することを確認した。
<Comparative Production Example 1>
Instead of 109 parts by weight of pyromellitic anhydride, 74 parts by weight of phthalic anhydride was used, and the same procedure as in Production Example 1 was carried out. The resulting crystals were not bis (tetraphenylphosphonium) phthalate but a raw material. Tetraphenylphosphonium bromide, and the target reaction did not proceed.
The IR spectrum data of the product obtained in Comparative Production Example 1 is shown in FIG. The NMR spectrum data of the product obtained in Comparative Production Example 1 are shown in FIGS. It was confirmed that the spectral data of tetraphenylphosphonium bromide recorded in a known database and the spectral data of Comparative Production Example 1 were in agreement.
<Comparative Production Example 2>
Instead of 109 parts by weight of pyromellitic anhydride, 122 parts by weight of benzoic acid was used, and the same procedure as in Production Example 1 was carried out. The resulting crystals were not tetraphenylphosphonium benzoate but tetraphenylphosphonium bromide as a raw material. The target reaction did not proceed.
When IR and NMR measurements were performed on the product obtained in Comparative Production Example 2, the same results as in Comparative Production Example 1 were obtained. It was confirmed that the spectrum data of tetraphenylphosphonium bromide recorded in a known database and the spectrum data of Comparative Production Example 2 were in agreement.
 まず、熱硬化性樹脂系組成物の潜在性の評価試験を行った。
<実施例1>
 フェノール樹脂系硬化剤のMEH-7851M(水酸基当量214、明和化成社製)214重量部に、BTPP-ピロメリット酸を5.0重量部加え、150℃加熱下で2分間攪拌・混合した後、室温まで冷却した。これにエポキシ樹脂のNC-3000(エポキシ当量274、日本化薬社製)280重量部を加え、120℃加熱下で2分間攪拌・混合した後、室温まで冷却し熱硬化性樹脂系組成物(エポキシ当量と水酸基当量の当量比1.0:1.0)を得た。
First, a latent evaluation test of the thermosetting resin-based composition was performed.
<Example 1>
After adding 5.0 parts by weight of BTPP-pyromellitic acid to 214 parts by weight of a phenolic resin-based curing agent MEH-7785M (hydroxyl equivalent 214, manufactured by Meiwa Kasei Co., Ltd.), stirring and mixing for 2 minutes under heating at 150 ° C. Cooled to room temperature. To this was added 280 parts by weight of an epoxy resin NC-3000 (epoxy equivalent 274, manufactured by Nippon Kayaku Co., Ltd.), stirred and mixed for 2 minutes under heating at 120 ° C., then cooled to room temperature, and a thermosetting resin-based composition ( An equivalent ratio of epoxy equivalent to hydroxyl equivalent of 1.0: 1.0 was obtained.
<実施例2>
 BTPP-ピロメリット酸5.0重量部に代えて、BTBP-ピロメリット酸を5.0重量部使用した以外は、実施例1と同様にして熱硬化性樹脂系組成物を得た。
<Example 2>
A thermosetting resin composition was obtained in the same manner as in Example 1 except that 5.0 parts by weight of BTBP-pyromellitic acid was used instead of 5.0 parts by weight of BTPP-pyromellitic acid.
<比較例1>
 BTPP-ピロメリット酸5.0重量部に代えて、テトラフェニルホスホニウムアセテート(以下「TPPA」という。)を6.0重量部使用した以外は、実施例1と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 1>
The thermosetting resin-based composition was the same as in Example 1, except that 6.0 parts by weight of tetraphenylphosphonium acetate (hereinafter referred to as “TPPA”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid. I got a thing.
<比較例2>
 BTPP-ピロメリット酸5.0重量部に代えて、テトラフェニルホスホニウムハイドロジェンフタレート(以下「TPP-フタル酸」という。)を5.0重量部使用した以外は、実施例1と同様にして熱硬化性樹脂系組成物を得た。
<Comparative example 2>
In the same manner as in Example 1, except that 5.0 parts by weight of tetraphenylphosphonium hydrogen phthalate (hereinafter referred to as “TPP-phthalic acid”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid. A curable resin composition was obtained.
<比較例3>
 BTPP-ピロメリット酸5.0重量部に代えて、テトラブチルホスホニウムベンゾエート(以下「TBP-安息香酸」という。)を6.9重量部使用した以外は、実施例1と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 3>
The thermosetting property was the same as in Example 1 except that 6.9 parts by weight of tetrabutylphosphonium benzoate (hereinafter referred to as “TBP-benzoic acid”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid. A resin-based composition was obtained.
<比較例4>
 BTPP-ピロメリット酸5.0重量部に代えて、テトラブチルホスホニウムサリチレート(以下「TBP-サリチル酸」という。)を7.1重量部使用した以外は、実施例1と同様にして熱硬化性樹脂系組成物を得た。
<Comparative example 4>
Thermosetting as in Example 1 except that 7.1 parts by weight of tetrabutylphosphonium salicylate (hereinafter referred to as “TBP-salicylic acid”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid. A functional resin-based composition was obtained.
<比較例5>
 BTPP-ピロメリット酸5.0重量部に代えて、テトラブチルホスホニウムハイドロジェンスクシネート(以下「TBP-コハク酸」という。)を6.8重量部使用した以外は、実施例1と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 5>
Example 1 was used except that 6.8 parts by weight of tetrabutylphosphonium hydrogen succinate (hereinafter referred to as “TBP-succinic acid”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid. A thermosetting resin composition was obtained.
<比較例6>
 BTPP-ピロメリット酸5.0重量部に代えて、テトラブチルホスホニウムハイドロジェンシトレート(以下「TBP-クエン酸」という。)を8.4重量部使用した以外は、実施例1と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 6>
Example 1 was used except that 8.4 parts by weight of tetrabutylphosphonium hydrogen citrate (hereinafter referred to as “TBP-citric acid”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid. A thermosetting resin composition was obtained.
<比較例7>
 BTPP-ピロメリット酸5.0重量部に代えて、ブチルトリフェニルホスホニウムチオシアネート(以下「TPPB-SCN」という。)を2.8重量部使用した以外は、実施例1と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 7>
Thermosetting as in Example 1 except that 2.8 parts by weight of butyltriphenylphosphonium thiocyanate (hereinafter referred to as “TPPPB-SCN”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid. A resin-based composition was obtained.
<比較例8>
 BTPP-ピロメリット酸5.0重量部に代えて、1,2-ビス(ジフェニルホスフィノ)アセチレン(以下「DPPA」という。)を7.1重量部使用した以外は、実施例1と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 8>
Example 1 was repeated except that 7.1 parts by weight of 1,2-bis (diphenylphosphino) acetylene (hereinafter referred to as “DPPA”) was used instead of 5.0 parts by weight of BTPP-pyromellitic acid. Thus, a thermosetting resin composition was obtained.
〔ゲルタイム測定〕
 得られた熱硬化性樹脂系組成物のゲルタイム(GT)はJIS K 6910記載のゲル化時間測定方法に準じ、鋼板温度を150℃および175℃として、日新科学社製ホットプレート式ゲル化試験器GT―Dを使用して測定した。なお、鋼板温度120℃以下では、樹脂が十分に軟化しないため、ゲル化時間の判別は困難であった。
 ゲルタイムの比率(150℃におけるゲルタイム/175℃におけるゲルタイム)が大きいほど、熱硬化性樹脂用硬化促進剤が低温では触媒活性が低く熱硬化性樹脂系組成物を硬化させないが、所望の硬化温度では高い触媒活性を発揮し短時間で硬化させ得る、つまり潜在性に優れるといえ、潜在性が求められる場面においては、ゲルタイムの比率が2.3以上であると実用的といえる。結果を表2に示した。
[Gel time measurement]
The gel time (GT) of the obtained thermosetting resin-based composition is a hot plate type gelation test manufactured by Nisshin Kagaku Co., Ltd. according to the gel time measurement method described in JIS K 6910, with the steel plate temperatures set to 150 ° C. and 175 ° C. Measurements were made using the instrument GT-D. In addition, at the steel plate temperature of 120 ° C. or lower, the resin was not sufficiently softened, so that it was difficult to determine the gelation time.
As the ratio of gel time (gel time at 150 ° C./gel time at 175 ° C.) is larger, the curing accelerator for thermosetting resin has lower catalytic activity at low temperatures and does not cure the thermosetting resin-based composition, but at the desired curing temperature. It can be said that it exhibits high catalytic activity and can be cured in a short time, that is, it has excellent potential, but in a scene where latency is required, it can be said that a gel time ratio of 2.3 or more is practical. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表2に示すように、実施例1、2の熱硬化性樹脂系組成物は、ゲルタイムの比率(150℃におけるゲルタイム/175℃におけるゲルタイム)が大きい。
 当該ゲルタイムの比率が大きい場合、100~120℃程度のより低温ではさらにゲルタイムが遅くなり硬化が抑制されることが予測される。よって、本発明の熱硬化性樹脂系組成物は、潜在性に優れることが明らかである。
As shown in Table 2, the thermosetting resin compositions of Examples 1 and 2 have a large gel time ratio (gel time at 150 ° C./gel time at 175 ° C.).
When the ratio of the gel time is large, it is predicted that the gel time is further delayed and curing is suppressed at a lower temperature of about 100 to 120 ° C. Therefore, it is clear that the thermosetting resin-based composition of the present invention is excellent in latency.
<実施例3>
 フェノール樹脂系硬化剤のMEH-7851M(水酸基当量214、明和化成社製)54重量部に、BTPP-ピロメリット酸を2.8重量部加え、150℃加熱下で2分間攪拌・混合した後、室温まで冷却した。これにマレイミド樹脂のBMI-2300(マレイミド当量179、大和化成工業社製)125重量部とエポキシ樹脂のNC-3000(エポキシ当量274、日本化薬社製)71重量部を加え、130℃加熱下で2分間攪拌・混合した後、室温まで冷却し熱硬化性樹脂系組成物(エポキシ当量と水酸基当量の当量比1.0:1.0、エポキシ樹脂とフェノール樹脂を合算した重量とマレイミド樹脂の重量の重量比1.0:1.0)を得た。
<Example 3>
After adding 2.8 parts by weight of BTPP-pyromellitic acid to 54 parts by weight of phenol resin curing agent MEH-7785M (hydroxyl equivalent 214, manufactured by Meiwa Kasei Co., Ltd.), stirring and mixing for 2 minutes under heating at 150 ° C. Cooled to room temperature. 125 parts by weight of maleimide resin BMI-2300 (maleimide equivalent 179, manufactured by Daiwa Kasei Kogyo Co., Ltd.) and 71 parts by weight of epoxy resin NC-3000 (epoxy equivalent 274, manufactured by Nippon Kayaku Co., Ltd.) were added and heated at 130 ° C. The mixture was stirred and mixed for 2 minutes, cooled to room temperature, and the thermosetting resin-based composition (equivalent ratio of epoxy equivalent and hydroxyl equivalent of 1.0: 1.0, the total weight of epoxy resin and phenolic resin and maleimide resin) A weight ratio of 1.0: 1.0) was obtained.
<実施例4>
 BTPP-ピロメリット酸2.8重量部に代えて、BTBP-ピロメリット酸を2.3重量部使用した以外は、実施例7と同様にして熱硬化性樹脂系組成物を得た。
<Example 4>
A thermosetting resin composition was obtained in the same manner as in Example 7 except that 2.3 parts by weight of BTBP-pyromellitic acid was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
<比較例9>
 BTPP-ピロメリット酸2.8重量部に代えて、TPPを1.6重量部使用した以外は、実施例7と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 9>
A thermosetting resin-based composition was obtained in the same manner as in Example 7, except that 1.6 parts by weight of TPP was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
<比較例10>
 BTPP-ピロメリット酸2.8重量部に代えて、TPP-MKを4.3重量部使用した以外は、実施例7と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 10>
A thermosetting resin composition was obtained in the same manner as in Example 7 except that 4.3 parts by weight of TPP-MK was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
<実施例5>
 エポキシ樹脂のNC-3000(エポキシ当量274、日本化薬社製)83重量部に、BTPP-ピロメリット酸を2.8重量部加え、130℃加熱下で40秒間攪拌・混合した後、室温まで冷却した。これにマレイミド樹脂のBMI-2300(マレイミド当量179、大和化成工業社製)167重量部を加え、130℃加熱下で2分間攪拌・混合した後、室温まで冷却し熱硬化性樹脂系組成物(エポキシ樹脂とマレイミド樹脂の重量比1.0:2.0)を得た。
<Example 5>
Add 2.8 parts by weight of BTPP-pyromellitic acid to 83 parts by weight of epoxy resin NC-3000 (epoxy equivalent 274, manufactured by Nippon Kayaku Co., Ltd.), stir and mix for 40 seconds under heating at 130 ° C., and then to room temperature Cooled down. To this was added 167 parts by weight of maleimide resin BMI-2300 (maleimide equivalent 179, manufactured by Daiwa Kasei Kogyo Co., Ltd.), stirred and mixed under heating at 130 ° C. for 2 minutes, cooled to room temperature, and then a thermosetting resin composition ( The weight ratio of epoxy resin to maleimide resin was 1.0: 2.0).
<実施例6>
 BTPP-ピロメリット酸2.8重量部に代えて、BTBP-ピロメリット酸を2.3重量部使用した以外は、実施例9と同様にして熱硬化性樹脂系組成物を得た。
<Example 6>
A thermosetting resin composition was obtained in the same manner as in Example 9 except that 2.3 parts by weight of BTBP-pyromellitic acid was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
<比較例11>
 BTPP-ピロメリット酸2.8重量部に代えて、TPPを1.6重量部使用した以外は、実施例9と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 11>
A thermosetting resin-based composition was obtained in the same manner as in Example 9 except that 1.6 parts by weight of TPP was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
<比較例12>
 BTPP-ピロメリット酸2.8重量部に代えて、TPP-MKを4.3重量部使用した以外は、実施例9と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 12>
A thermosetting resin-based composition was obtained in the same manner as in Example 9 except that 4.3 parts by weight of TPP-MK was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
 次に単独硬化型熱硬化性樹脂系組成物の潜在性の評価試験を行った。
<実施例7>
 アセトン500重量部に、BTPP-ピロメリット酸を2.8重量部加え、40℃加熱下で2分間攪拌・混合した。これにマレイミド樹脂のBMI-2300(マレイミド当量179、大和化成工業社製)250重量部を加え、40℃加熱下で2分間攪拌・混合した後、乾燥によりアセトンを留去し、熱硬化性樹脂系組成物を得た。
Next, the latent evaluation test of the single curable thermosetting resin composition was performed.
<Example 7>
2.8 parts by weight of BTPP-pyromellitic acid was added to 500 parts by weight of acetone, and the mixture was stirred and mixed for 2 minutes while heating at 40 ° C. To this was added 250 parts by weight of maleimide resin BMI-2300 (maleimide equivalent 179, manufactured by Daiwa Kasei Kogyo Co., Ltd.), stirred and mixed for 2 minutes under heating at 40 ° C., and then acetone was distilled off by drying to give a thermosetting resin. A system composition was obtained.
<実施例8>
 BTPP-ピロメリット酸2.8重量部に代えて、BTBP-ピロメリット酸を2.3重量部使用した以外は、実施例3と同様にして熱硬化性樹脂系組成物を得た。
<Example 8>
A thermosetting resin composition was obtained in the same manner as in Example 3 except that 2.3 parts by weight of BTBP-pyromellitic acid was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
<比較例13>
 BTPP-ピロメリット酸2.8重量部に代えて、トリフェニルホスフィン(以下「TPP」という。)を1.6重量部使用した以外は、実施例3と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 13>
A thermosetting resin composition in the same manner as in Example 3 except that 1.6 parts by weight of triphenylphosphine (hereinafter referred to as “TPP”) was used instead of 2.8 parts by weight of BTPP-pyromellitic acid. Got.
<比較例14>
 BTPP-ピロメリット酸2.8重量部に代えて、テトラフェニルホスホニウムテトラ(p-トリル)ボレート(以下「TPP-MK」という。)を4.3重量部使用した以外は、実施例3と同様にして熱硬化性樹脂系組成物を得た。
<Comparative example 14>
Example 3 was used except that 4.3 parts by weight of tetraphenylphosphonium tetra (p-tolyl) borate (hereinafter referred to as “TPP-MK”) was used instead of 2.8 parts by weight of BTPP-pyromellitic acid. Thus, a thermosetting resin-based composition was obtained.
<比較例15>
 BTPP-ピロメリット酸2.8重量部に代えて、2-フェニルイミダゾール(以下「2PZ」という。)を2.6重量部使用した以外は、実施例3と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 15>
The thermosetting resin-based composition was the same as in Example 3 except that 2.6 parts by weight of 2-phenylimidazole (hereinafter referred to as “2PZ”) was used instead of 2.8 parts by weight of BTPP-pyromellitic acid. I got a thing.
<実施例9>
 THF500重量部に、BTPP-ピロメリット酸を2.8重量部加え、40℃加熱下で2分間攪拌・混合した。これにマレイミド樹脂のBMI-4000(マレイミド当量285、大和化成工業社製)250重量部を加え、40℃加熱下で2分間攪拌・混合した後、乾燥によりTHFを留去し、熱硬化性樹脂系組成物を得た。
<Example 9>
2.8 parts by weight of BTPP-pyromellitic acid was added to 500 parts by weight of THF, and the mixture was stirred and mixed for 2 minutes while heating at 40 ° C. To this was added 250 parts by weight of maleimide resin BMI-4000 (maleimide equivalent 285, manufactured by Daiwa Kasei Kogyo Co., Ltd.), stirred and mixed for 2 minutes under heating at 40 ° C., and then THF was distilled off by drying to give a thermosetting resin. A system composition was obtained.
<実施例10>
 BTPP-ピロメリット酸2.8重量部に代えて、BTBP-ピロメリット酸を2.3重量部使用した以外は、実施例5と同様にして熱硬化性樹脂系組成物を得た。
<Example 10>
A thermosetting resin composition was obtained in the same manner as in Example 5 except that 2.3 parts by weight of BTBP-pyromellitic acid was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
<比較例16>
 BTPP-ピロメリット酸2.8重量部に代えて、TPPを1.6重量部使用した以外は、実施例5と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 16>
A thermosetting resin composition was obtained in the same manner as in Example 5 except that 1.6 parts by weight of TPP was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
<比較例17>
 BTPP-ピロメリット酸2.8重量部に代えて、TPP-MKを4.3重量部使用した以外は、実施例5と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 17>
A thermosetting resin-based composition was obtained in the same manner as in Example 5, except that 4.3 parts by weight of TPP-MK was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
<比較例18>
 BTPP-ピロメリット酸2.8重量部に代えて、2PZを2.6重量部使用した以外は、実施例5と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 18>
A thermosetting resin-based composition was obtained in the same manner as in Example 5 except that 2.6 parts by weight of 2PZ was used instead of 2.8 parts by weight of BTPP-pyromellitic acid.
〔DSC測定〕
 得られた熱硬化性樹脂系組成物を、示差走査熱量測定装置(エスアイアイ・ナノテクノロジー製DSC7020)を使用して、測定温度範囲30~350℃、昇温速度10℃/分の条件で測定した。
 検出される発熱ピークの発熱開始温度と発熱トップ温度との差(ΔT)が小さいほど、熱硬化性樹脂用硬化促進剤が低温では触媒活性が低く熱硬化性樹脂系組成物を硬化させないが、所望の硬化温度では高い触媒活性を発揮し短時間で硬化させ得る、つまり潜在性に優れるといえる。結果を表3、4に示した。
[DSC measurement]
The obtained thermosetting resin-based composition was measured using a differential scanning calorimeter (DSC7020 manufactured by SII NanoTechnology) at a measurement temperature range of 30 to 350 ° C. and a temperature increase rate of 10 ° C./min. did.
The smaller the difference (ΔT) between the exothermic start temperature and the exothermic top temperature of the detected exothermic peak is, the lower the catalyst activity at a low temperature is, the more thermosetting resin curing accelerator does not cure the thermosetting resin-based composition. It can be said that it exhibits high catalytic activity at a desired curing temperature and can be cured in a short time, that is, it has excellent potential. The results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表3、4に示すように、実施例3~6の熱硬化性樹脂を2種類含む熱硬化性樹脂系組成物および実施例7~10の単独硬化型の熱硬化性樹脂系組成物は、発熱開始温度が混合時の温度である120℃よりも高く、且つ、発熱開始温度と発熱トップ温度との差(ΔT)が30以下と小さい。
 よって、本発明の熱硬化性樹脂系組成物は、潜在性に優れることが明らかである。
As shown in Tables 3 and 4, the thermosetting resin-based compositions containing two types of thermosetting resins of Examples 3 to 6 and the single-curing thermosetting resin-based compositions of Examples 7 to 10 are: The heat generation start temperature is higher than 120 ° C., which is the temperature at the time of mixing, and the difference (ΔT) between the heat generation start temperature and the heat generation top temperature is as small as 30 or less.
Therefore, it is clear that the thermosetting resin-based composition of the present invention is excellent in latency.
 次に、硬化剤に酸無水物系化合物を用いた熱硬化性樹脂系硬化物の透明性について評価試験を行った。
<実施例11>
 酸無水物系硬化剤のリカシッドMH-T(酸無水物当量168、新日本理化社製;主成分は4-メチルヘキサヒドロフタル酸無水物)100重量部に、BTPP-ピロメリット酸を1.0重量部加え、60℃加熱下で5分間攪拌・混合した後、室温まで冷却した。これにエポキシ樹脂のjER828EL(エポキシ当量185、三菱化学社製)100重量部を加え、60℃加熱下で2分間攪拌・混合した後、室温まで冷却し熱硬化性樹脂系組成物を得た。また、得られた熱硬化性樹脂系組成物を120℃で1時間加熱後、さらに150℃で3時間加熱して熱硬化性樹脂系硬化物(エポキシ当量と酸無水物当量の当量比1.0:1.1)を得た。
Next, an evaluation test was performed on the transparency of the thermosetting resin-based cured product using an acid anhydride compound as a curing agent.
<Example 11>
BTPP-pyromellitic acid is added to 100 parts by weight of acid anhydride-based curing agent Ricacid MH-T (acid anhydride equivalent 168, manufactured by Shin Nippon Chemical Co., Ltd .; main component is 4-methylhexahydrophthalic anhydride). After adding 0 part by weight and stirring and mixing for 5 minutes while heating at 60 ° C., the mixture was cooled to room temperature. To this, 100 parts by weight of epoxy resin jER828EL (epoxy equivalent 185, manufactured by Mitsubishi Chemical Corporation) was added, stirred and mixed for 2 minutes under heating at 60 ° C., and then cooled to room temperature to obtain a thermosetting resin-based composition. Further, the obtained thermosetting resin composition was heated at 120 ° C. for 1 hour, and further heated at 150 ° C. for 3 hours to obtain a thermosetting resin-based cured product (equivalent ratio of epoxy equivalent to acid anhydride equivalent: 1. 0: 1.1) was obtained.
<実施例12>
 BTPP-ピロメリット酸1.0重量部に代えて、BTBP-ピロメリット酸を1.0重量部使用した以外は、実施例11と同様にして熱硬化性樹脂系組成物および硬化物を得た。
<Example 12>
A thermosetting resin composition and a cured product were obtained in the same manner as in Example 11 except that 1.0 part by weight of BTBP-pyromellitic acid was used instead of 1.0 part by weight of BTPP-pyromellitic acid. .
<比較例19>
 BTPP-ピロメリット酸1.0重量部に代えて、テトラブチルホスホニウムアセテート(以下「TBPA」という。)を1.0重量部使用した以外は、実施例11と同様にして熱硬化性樹脂系組成物および硬化物を得た。
<Comparative Example 19>
The thermosetting resin-based composition was the same as Example 11 except that 1.0 part by weight of tetrabutylphosphonium acetate (hereinafter referred to as “TBPA”) was used instead of 1.0 part by weight of BTPP-pyromellitic acid. Product and cured product were obtained.
<比較例20>
 BTPP-ピロメリット酸1.0重量部に代えて、テトラブチルホスホニウムラウレート(以下「TBPLA」という。)を1.0重量部使用した以外は、実施例11と同様にして熱硬化性樹脂系組成物および硬化物を得た。
<Comparative Example 20>
A thermosetting resin system was used in the same manner as in Example 11 except that 1.0 part by weight of tetrabutylphosphonium laurate (hereinafter referred to as “TBPLA”) was used instead of 1.0 part by weight of BTPP-pyromellitic acid. A composition and a cured product were obtained.
<比較例21>
 BTPP-ピロメリット酸1.0重量部に代えて、テトラブチルホスホニウムカチオンとビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸/メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸(重量比1/4)混合物由来の混合アニオン残基との塩(以下「TBP-HNA」という。)を1.0重量部使用した以外は、実施例11と同様にして熱硬化性樹脂系組成物および硬化物を得た。
<Comparative Example 21>
Instead of 1.0 part by weight of BTPP-pyromellitic acid, a tetrabutylphosphonium cation and bicyclo [2.2.1] heptane-2,3-dicarboxylic acid / methylbicyclo [2.2.1] heptane-2,3 -Thermosetting in the same manner as in Example 11 except that 1.0 part by weight of a salt with a mixed anion residue (hereinafter referred to as "TBP-HNA") derived from a mixture of dicarboxylic acids (1/4 by weight) was used. Resin-based composition and cured product were obtained.
<比較例22>
 BTPP-ピロメリット酸1.0重量部に代えて、ベンジルトリフェニルホスホニウムハイドロジェンフタレート(以下「TPPZ-フタル酸」という。)を1.0重量部使用した以外は、実施例11と同様にして熱硬化性樹脂系組成物および硬化物を得た。
<Comparative Example 22>
Example 11 was used except that 1.0 part by weight of benzyltriphenylphosphonium hydrogen phthalate (hereinafter referred to as “TPPZ-phthalic acid”) was used instead of 1.0 part by weight of BTPP-pyromellitic acid. A thermosetting resin-based composition and a cured product were obtained.
〔ゲルタイム測定〕
 得られた熱硬化性樹脂系組成物のゲルタイム(GT)はJIS K 6910記載のゲル化時間測定方法に準じ、鋼板温度を175℃として日新科学社製ホットプレート式ゲル化試験器GT―Dを使用して測定した。結果を表5に示した。
[Gel time measurement]
The gel time (GT) of the obtained thermosetting resin-based composition is a hot plate type gelation tester GT-D manufactured by Nisshin Kagaku Co., Ltd. with a steel plate temperature of 175 ° C. according to the gel time measurement method described in JIS K 6910. Was measured using. The results are shown in Table 5.
〔色調評価〕
 得られた熱硬化性樹脂系組成物の硬化物の色調は、JIS K 0071-1記載の色調評価方法(ハーゼン単位色数)に準じて評価し、APHAで示した。
 APHAが小さいほど、熱硬化性樹脂系組成物の硬化物がより透明性に優れるといえ、無色透明性が求められる場面においては、APHAが50以下であると実用的といえる。結果を表5に示した。
[Color evaluation]
The color tone of the cured product of the obtained thermosetting resin-based composition was evaluated according to the color tone evaluation method (Hazen unit color number) described in JIS K0071-1 and indicated by APHA.
It can be said that the smaller the APHA, the more excellent the transparency of the cured product of the thermosetting resin-based composition, and it can be said that APHA is 50 or less in situations where colorless transparency is required. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表5に示すように、実施例11、12の熱硬化性樹脂系組成物の硬化物は、比較例19~22に比べてAPHAが小さいため、無色透明に近く、透明性に優れている。 As shown in Table 5, the cured products of the thermosetting resin-based compositions of Examples 11 and 12 have a smaller APHA than that of Comparative Examples 19 to 22, and thus are nearly colorless and excellent in transparency.
 一液性の単独硬化型熱硬化性樹脂系組成物の貯蔵安定性について評価試験を行った。
<実施例13>
 エポキシ樹脂のビスフェノールAジグリシジルエーテル(三菱化学社製、jER828EL、エポキシ当量185)100重量部に、BTPP-ピロメリット酸を3.0重量部加え、60℃加熱下で2分間攪拌・混合した後、室温まで冷却し熱硬化性樹脂系組成物を得た。
An evaluation test was conducted on the storage stability of a one-component single-curing thermosetting resin composition.
<Example 13>
After adding 3.0 parts by weight of BTPP-pyromellitic acid to 100 parts by weight of epoxy resin bisphenol A diglycidyl ether (Mitsubishi Chemical Co., Ltd., jER828EL, epoxy equivalent 185), stirring and mixing for 2 minutes under heating at 60 ° C. And cooled to room temperature to obtain a thermosetting resin composition.
<実施例14>
 BTPP-ピロメリット酸3.0重量部に代えて、BTBP-ピロメリット酸を3.0重量部使用した以外は、実施例13と同様にして熱硬化性樹脂系組成物を得た。
<Example 14>
A thermosetting resin composition was obtained in the same manner as in Example 13 except that 3.0 parts by weight of BTBP-pyromellitic acid was used instead of 3.0 parts by weight of BTPP-pyromellitic acid.
<比較例23>
 BTPP-ピロメリット酸3.0重量部に代えて、TBPLAを3.0重量部使用した以外は、実施例13と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 23>
A thermosetting resin-based composition was obtained in the same manner as in Example 13 except that 3.0 parts by weight of TBPLA was used instead of 3.0 parts by weight of BTPP-pyromellitic acid.
<比較例24>
 BTPP-ピロメリット酸3.0重量部に代えて、2-エチル-4-メチルイミダゾール(以下「2E4MZ」という。)を3.0重量部使用した以外は、実施例13と同様にして熱硬化性樹脂系組成物を得た。
<Comparative Example 24>
Thermosetting was carried out in the same manner as in Example 13 except that 3.0 parts by weight of 2-ethyl-4-methylimidazole (hereinafter referred to as “2E4MZ”) was used instead of 3.0 parts by weight of BTPP-pyromellitic acid. A functional resin-based composition was obtained.
〔ゲルタイム測定および貯蔵安定性試験〕
 得られた熱硬化性樹脂系組成物のゲルタイム(GT)はJIS K 6910記載のゲル化時間測定方法に準じ、鋼板温度を140℃として日新科学社製ホットプレート式ゲル化試験器GT―Dを使用して測定した。
 また得られた熱硬化性樹脂系組成物を25℃で保管し、各保管期間におけるゲルタイム保持率を求めた。
 結果を表6に示した。
[Gel time measurement and storage stability test]
The gel time (GT) of the obtained thermosetting resin-based composition is in accordance with the gel time measurement method described in JIS K 6910, and the hot plate type gelation tester GT-D manufactured by Nisshin Kagaku Co., Ltd. Was measured using.
Moreover, the obtained thermosetting resin-type composition was stored at 25 degreeC, and the gel time retention rate in each storage period was calculated | required.
The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表6に示すように、実施例13、14の熱硬化性樹脂系組成物は、ゲルタイムの保持率が高く、貯蔵安定性に優れており、組成物を調製後、室温での保存が可能となる。 As shown in Table 6, the thermosetting resin-based compositions of Examples 13 and 14 have a high gel time retention and excellent storage stability, and can be stored at room temperature after the composition is prepared. Become.
 本発明の熱硬化性樹脂系組成物は硬化特性に優れ、硬化剤の種類によってその硬化物が透明性に優れるため、例えば、各種の小型の電気・電子部品や半導体部品の樹脂封止に有用である。 The thermosetting resin-based composition of the present invention has excellent curing characteristics, and the cured product has excellent transparency depending on the type of curing agent. For example, it is useful for resin sealing of various small electrical / electronic components and semiconductor components. It is.

Claims (11)

  1.  下記の一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R~Rは、同一または異なって、炭素数1~16の直鎖状もしくは分岐鎖状のアルキル基、または、アルキル基もしくはメトキシ基で置換してもよいフェニル基を示す置換基である。)
    で表されるホスホニウムカチオン2分子と、下記の式(2)
    Figure JPOXMLDOC01-appb-C000002
    で表されるピロメリット酸の2価のアニオン残基1分子からなるホスホニウム塩。
    The following general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 to R 4 are the same or different and each represents a linear or branched alkyl group having 1 to 16 carbon atoms, or a phenyl group which may be substituted with an alkyl group or a methoxy group) It is a substituent.)
    2 molecules of phosphonium cation represented by the following formula (2)
    Figure JPOXMLDOC01-appb-C000002
    A phosphonium salt comprising one molecule of a divalent anionic residue of pyromellitic acid represented by the formula:
  2.  前記一般式(1)において、R~Rが同一または異なって、ブチル基、フェニル基、4-メチルフェニル基、および、4-メトキシフェニル基から選ばれる置換基である、請求項1に記載のホスホニウム塩。 2. The general formula (1), wherein R 1 to R 4 are the same or different and each is a substituent selected from a butyl group, a phenyl group, a 4-methylphenyl group, and a 4-methoxyphenyl group. The phosphonium salt described.
  3.  前記一般式(1)において、R~Rがフェニル基である、請求項1に記載のホスホニウム塩。 The phosphonium salt according to claim 1, wherein, in the general formula (1), R 1 to R 4 are phenyl groups.
  4.  前記一般式(1)において、R~Rがブチル基である、請求項1に記載のホスホニウム塩。 The phosphonium salt according to claim 1, wherein, in the general formula (1), R 1 to R 4 are butyl groups.
  5.  請求項1~4のいずれか一項に記載のホスホニウム塩を少なくとも含む、熱硬化性樹脂用硬化促進剤。 A curing accelerator for a thermosetting resin, comprising at least the phosphonium salt according to any one of claims 1 to 4.
  6.  請求項5に記載の熱硬化性樹脂用硬化促進剤と、熱硬化性樹脂とを少なくとも含む、熱硬化性樹脂系組成物。 A thermosetting resin-based composition comprising at least the thermosetting resin curing accelerator according to claim 5 and a thermosetting resin.
  7.  前記熱硬化性樹脂が、エポキシ樹脂、マレイミド樹脂、シアネート樹脂、および、イソシアネート樹脂から選ばれる1種または2種以上の熱硬化性樹脂である、請求項6に記載の熱硬化性樹脂系組成物。 The thermosetting resin-based composition according to claim 6, wherein the thermosetting resin is one or more thermosetting resins selected from an epoxy resin, a maleimide resin, a cyanate resin, and an isocyanate resin. .
  8.  さらに熱硬化性樹脂用硬化剤を含む、請求項6または7に記載の熱硬化性樹脂系組成物。 The thermosetting resin composition according to claim 6 or 7, further comprising a curing agent for a thermosetting resin.
  9.  前記熱硬化性樹脂用硬化剤が、フェノール樹脂、ポリアミン、酸無水物、および、ベンゾオキサジンから選ばれる1種または2種以上の熱硬化性樹脂用硬化剤である、請求項8に記載の熱硬化性樹脂系組成物。 The heat according to claim 8, wherein the curing agent for a thermosetting resin is one or more curing agents for a thermosetting resin selected from a phenol resin, a polyamine, an acid anhydride, and a benzoxazine. Curable resin composition.
  10.  請求項8または9に記載の熱硬化性樹脂系組成物であって、熱硬化性樹脂用硬化促進剤をあらかじめ熱硬化性樹脂用硬化剤と反応させてなるマスターバッチを含む、熱硬化性樹脂系組成物。 The thermosetting resin composition according to claim 8 or 9, comprising a masterbatch obtained by previously reacting a curing accelerator for a thermosetting resin with a curing agent for a thermosetting resin. System composition.
  11.  請求項6~10のいずれか一項に記載の熱硬化性樹脂系組成物を硬化して得られる熱硬化性樹脂系硬化物。 A thermosetting resin-based cured product obtained by curing the thermosetting resin-based composition according to any one of claims 6 to 10.
PCT/JP2017/027500 2016-07-29 2017-07-28 Novel phosphonium compound WO2018021548A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197005820A KR102538165B1 (en) 2016-07-29 2017-07-28 New phosphonium compounds
JP2018530432A JP7012012B2 (en) 2016-07-29 2017-07-28 New phosphonium compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-150541 2016-07-29
JP2016150541 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021548A1 true WO2018021548A1 (en) 2018-02-01

Family

ID=61017431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027500 WO2018021548A1 (en) 2016-07-29 2017-07-28 Novel phosphonium compound

Country Status (3)

Country Link
JP (1) JP7012012B2 (en)
KR (1) KR102538165B1 (en)
WO (1) WO2018021548A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065904A (en) * 2016-10-18 2018-04-26 日立化成株式会社 Thermosetting resin composition
JP2018065903A (en) * 2016-10-18 2018-04-26 日立化成株式会社 Thermosetting resin composition
JP2020015814A (en) * 2018-07-25 2020-01-30 日立化成株式会社 Thermosetting resin composition for printed wiring board, prepreg, laminate sheet, printed wiring board, and semiconductor package
JP2021046384A (en) * 2019-09-20 2021-03-25 昭和電工マテリアルズ株式会社 Phosphonium compound, and hardening accelerator
KR20210042742A (en) * 2019-10-10 2021-04-20 삼성에스디아이 주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449210A (en) * 1987-08-20 1989-02-23 Asahi Glass Co Ltd Elecrtrolytic capacitor
JPH07330787A (en) * 1994-06-13 1995-12-19 Sumitomo Bakelite Co Ltd Synthesis of tetrasubstituted phosphonium organic acid salt
JP2016003242A (en) * 2014-06-13 2016-01-12 北興化学工業株式会社 Novel phosphonium compound and curing accelerator for epoxy resin

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108557A (en) 1979-02-10 1980-08-20 Naka Tech Lab Guardrail
JPH0320065A (en) 1989-03-27 1991-01-29 Nitto Denko Corp Semiconductor device
JPH11158251A (en) 1997-12-01 1999-06-15 Sumitomo Bakelite Co Ltd Epoxy resin composition for laminate and prepreg and laminate prepared by using the same
JP2005325178A (en) 2004-05-12 2005-11-24 Hokko Chem Ind Co Ltd Epoxy resin composition for sealing optical semiconductor
JP5052087B2 (en) 2006-09-25 2012-10-17 新日本理化株式会社 Epoxy resin composition and epoxy resin thin film
JP5191131B2 (en) 2007-01-25 2013-04-24 新日本理化株式会社 Epoxy resin composition and epoxy resin thin film
US9018321B2 (en) 2007-07-26 2015-04-28 Ajinomoto Co., Inc. Resin composition
TWI494364B (en) 2009-01-30 2015-08-01 Ajinomoto Kk Resin composition
JP2010209150A (en) 2009-03-06 2010-09-24 Hokko Chem Ind Co Ltd Epoxy resin composition
JP2011219674A (en) 2010-04-13 2011-11-04 Sumitomo Bakelite Co Ltd Thermosetting resin composition for circuit board
JP5745248B2 (en) 2010-10-08 2015-07-08 株式会社ダイセル Curing agent composition for epoxy resin, curable resin composition and cured product thereof
JP2012240969A (en) 2011-05-20 2012-12-10 Hokko Chem Ind Co Ltd New phosphonium compound
JP2015063661A (en) 2013-08-29 2015-04-09 北興化学工業株式会社 Epoxy resin-based compositions
JP2015172136A (en) 2014-03-12 2015-10-01 北興化学工業株式会社 Epoxy resin-based composition
JP5721199B1 (en) 2014-06-13 2015-05-20 日本ペイント株式会社 Sealer paint composition
JP2016113475A (en) 2014-12-11 2016-06-23 北興化学工業株式会社 Epoxy resin-based composition
JP6537170B2 (en) 2015-05-12 2019-07-03 京セラ株式会社 Molding material for sealing and electronic component device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449210A (en) * 1987-08-20 1989-02-23 Asahi Glass Co Ltd Elecrtrolytic capacitor
JPH07330787A (en) * 1994-06-13 1995-12-19 Sumitomo Bakelite Co Ltd Synthesis of tetrasubstituted phosphonium organic acid salt
JP2016003242A (en) * 2014-06-13 2016-01-12 北興化学工業株式会社 Novel phosphonium compound and curing accelerator for epoxy resin

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065904A (en) * 2016-10-18 2018-04-26 日立化成株式会社 Thermosetting resin composition
JP2018065903A (en) * 2016-10-18 2018-04-26 日立化成株式会社 Thermosetting resin composition
JP7013643B2 (en) 2016-10-18 2022-02-01 昭和電工マテリアルズ株式会社 Thermosetting resin composition
JP2020015814A (en) * 2018-07-25 2020-01-30 日立化成株式会社 Thermosetting resin composition for printed wiring board, prepreg, laminate sheet, printed wiring board, and semiconductor package
JP2021046384A (en) * 2019-09-20 2021-03-25 昭和電工マテリアルズ株式会社 Phosphonium compound, and hardening accelerator
JP7336932B2 (en) 2019-09-20 2023-09-01 株式会社レゾナック Phosphonium compound and curing accelerator
KR20210042742A (en) * 2019-10-10 2021-04-20 삼성에스디아이 주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
KR102343438B1 (en) 2019-10-10 2021-12-24 삼성에스디아이 주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same

Also Published As

Publication number Publication date
KR102538165B1 (en) 2023-05-31
JP7012012B2 (en) 2022-01-27
KR20190038859A (en) 2019-04-09
JPWO2018021548A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2018021548A1 (en) Novel phosphonium compound
JP4119252B2 (en) Flameproofing agent
JP6366590B2 (en) Epoxy resin mixture, epoxy resin composition, cured product, and semiconductor device
JPH04217675A (en) Epoxy resin and its intermediate, production thereof and epoxy resin composition
TW201610120A (en) Resin composition for encapsulation and semiconductor device
WO2020217679A1 (en) Maleimide, curable resin composition, and cured product
JP6735097B2 (en) Epoxy resin mixture, epoxy resin composition, cured product and semiconductor device
TW201815878A (en) Curable composition and cured product thereof
TWI580687B (en) Phosphonium compound, method for preparing the same, epoxy resin composition comprising the same and semiconductor device prepared from the same
TW201715099A (en) Clathrate compound
US5756564A (en) Epoxy resin composition for encapsulation of semiconductors
JP7038565B2 (en) Thermosetting epoxy resin compositions, adhesives, epoxy resin cured products, salts, and curing agents
JP2015063661A (en) Epoxy resin-based compositions
JP2016216716A (en) Epoxy resin composition
WO2016117298A1 (en) Crystalline polymorphism of inclusion compound, curable composition containing same, and cured product
US6531549B2 (en) Crystallized epoxy resins, their production method, and curable compositions comprising them
JPH09118741A (en) 1-imidazolylmethyl-2-naphthol as catalyst for curing epoxy resin
WO2020032102A1 (en) Novel onium compound
JP2004359672A (en) Aniline-based compound and method for producing the same
TW202012536A (en) Epoxy resin composition
JP2022059378A (en) Thermosetting resin based composition
TW201904932A (en) Active ester compound and hardenable composition
JP6251407B2 (en) Inclusion compound crystals, method for producing the same, and curable resin composition
JP3791711B2 (en) Epoxy resin composition
JP2017088694A (en) Novel phosphonium compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018530432

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197005820

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17834550

Country of ref document: EP

Kind code of ref document: A1