WO2018021480A1 - Positive electrode active substance for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same - Google Patents

Positive electrode active substance for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same Download PDF

Info

Publication number
WO2018021480A1
WO2018021480A1 PCT/JP2017/027262 JP2017027262W WO2018021480A1 WO 2018021480 A1 WO2018021480 A1 WO 2018021480A1 JP 2017027262 W JP2017027262 W JP 2017027262W WO 2018021480 A1 WO2018021480 A1 WO 2018021480A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
ion secondary
lithium ion
carbon particles
Prior art date
Application number
PCT/JP2017/027262
Other languages
French (fr)
Japanese (ja)
Inventor
淳平 下羽
佳太郎 大槻
秀明 関
貞村 英昭
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016147479A external-priority patent/JP2019164881A/en
Priority claimed from JP2016147478A external-priority patent/JP2019164880A/en
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Publication of WO2018021480A1 publication Critical patent/WO2018021480A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for lithium ion secondary batteries having high rate characteristics, a positive electrode for lithium ion secondary batteries, and a lithium ion secondary battery using the same.
  • lithium ion secondary batteries have been widely used as power sources for portable electronic devices, automobiles, and power storage.
  • the lithium ion secondary battery is mainly composed of a positive electrode, a negative electrode, a separator that insulates the positive electrode from the negative electrode, and an electrolyte that enables ions to move between the positive electrode and the negative electrode. Since lithium ion secondary batteries have high energy density, they have been put into practical use as power sources for portable electronic devices such as mobile phones and notebook computers, and are widely used.
  • portable electronic devices, communication devices, and the like there is a strong demand for lithium ion secondary batteries with higher energy density from the viewpoints of downsizing and weight reduction of devices. Further, there is a strong demand for extending the life of automobile batteries.
  • lithium cobaltate LiCoO 2
  • lithium nickelate LiNiO 2
  • lithium nickel oxide in which a part of lithium nickelate is substituted with Co, Mn, Al, etc.
  • a compound having a layered rock salt structure such as a complex oxide is used.
  • LiFePO 4 lithium iron phosphate
  • Patent Document 1 reports that rate characteristics are improved by supporting LiVOPO 4 whose particle surface is coated with carbon on carbon particles.
  • Patent Document 2 reports that the rate characteristic is improved by forming a carbon coating layer on at least a part of the particle surface of LiVOPO 4 .
  • Patent Document 3 reports that rate characteristics are improved by supporting a plurality of hemispherical carbon particles on the surface of LiVOPO 4 particles.
  • Japanese Unexamined Patent Publication No. 2010-86777 A) Japanese Unexamined Patent Publication No. 2008-277119 (A) Japanese Unexamined Patent Publication No. 2010-218830 (A)
  • the present invention has been made in view of the above-described problems of the prior art, and has a positive electrode active material for a lithium ion secondary battery having high rate characteristics, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery using the same.
  • the purpose is to provide.
  • a positive electrode active material for a lithium ion secondary battery which is one embodiment of the present invention has the following configuration.
  • (1) having active material particles mainly composed of lithium vanadium phosphate represented by the following composition formula (1), and a carbon material that expands two-dimensionally,
  • the carbon material is a coating layer containing at least a part of plate-like carbon particles or graphene and covering at least a part of the surface of the active material particles. material.
  • Li a (M) b (PO 4 ) c (1) (M is VO or V, and 0.05 ⁇ a ⁇ 3.3, 0.9 ⁇ b ⁇ 2.2, and 0.9 ⁇ c ⁇ 3.3.)
  • M is VO or V
  • the positive electrode active material for a lithium ion secondary battery includes the above-described two-dimensionally expanded carbon material, which improves the electron conductivity on the surface of the active material particles mainly composed of lithium vanadium phosphate. It is estimated that.
  • the positive electrode active material for a lithium ion secondary battery according to (1) wherein the two-dimensionally expanding carbon material is at least partly plate-like carbon particles.
  • rate characteristics are improved. This is because the active material particles containing lithium vanadium phosphate as the main component and the plate-like carbon particles are used, and the lithium vanadium phosphate is efficiently used as compared with the case where a conventional conductive additive is used. It is presumed that the electron conductivity is greatly improved by reducing the charge transfer resistance on the surface of the active material particles as a component.
  • the ratio (A / B) of the average thickness B to the average plate surface diameter A in the carbon particles is 5 ⁇ A / B ⁇ 1000, according to any one of (2) to (4),
  • the positive electrode active material for lithium ion secondary batteries as described.
  • At least a part of the carbon particles covers at least a part of the surface of the active material particles mainly composed of the lithium vanadium phosphate.
  • the positive electrode active material for lithium ion secondary batteries as described in any one. Thereby, it is estimated that the adhesion between the active material particles mainly composed of carbon particles and lithium vanadium phosphate is improved and the effect of reducing the charge transfer resistance is obtained.
  • At least a part of the carbon particles is complexed with active material particles mainly composed of the lithium vanadium phosphate, according to any one of (2) to (6), The positive electrode active material for lithium ion secondary batteries as described.
  • the plate carbon particles are contained in an amount of 0.1 to 8% by weight with respect to the active material particles mainly composed of lithium vanadium phosphate.
  • the positive electrode active material for lithium ion secondary batteries as described in any one of 7). By setting it as the said range, it is estimated that the charge transfer resistance in the surface of the active material particle which has lithium vanadium phosphate as a main component is reduced more efficiently.
  • Positive electrode active material By using the positive electrode active material for a lithium ion secondary battery, a lithium ion secondary battery with improved rate characteristics can be provided. This is presumably because the electron conductivity is improved by the graphene contained in the coating layer. In particular, when the coating layer is formed using a mechanochemical method, the rate characteristics are greatly improved. This is presumed to be because graphene contained in the coating layer is oriented in the horizontal direction to the coating layer, so that the in-plane direction of graphene with excellent electron conductivity matches the direction of electron conduction in the positive electrode.
  • the single layer graphene flexibly follows the active material, and when it contains multi-layer graphene, it has better electronic conductivity, so that the rate characteristics are improved.
  • a positive electrode for a lithium ion secondary battery comprising the positive electrode active material for a lithium ion secondary battery according to any one of (1) to (10).
  • a positive electrode active material for a lithium ion secondary battery a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery using the same, having high rate characteristics.
  • first and second embodiments of the present invention will be described.
  • this invention is not limited to the following embodiment.
  • the constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.
  • the dimensional ratio of drawing is not restricted to the ratio of illustration.
  • the first embodiment at least a part of plate-like carbon particles is used as a carbon material that expands two-dimensionally.
  • a coating layer that contains graphene and covers at least a part of the surface of the active material particles is used as a carbon material that expands two-dimensionally.
  • the lithium ion secondary battery 100 mainly includes a laminate 40, a case 50 that accommodates the laminate 40 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 40. Although not shown, the electrolytic solution is housed in the case 50 together with the laminate 40.
  • the laminated body 40 is configured such that the positive electrode 20 and the negative electrode 30 are arranged to face each other with the separator 10 interposed therebetween.
  • the positive electrode 20 is obtained by providing a positive electrode active material layer 24 on a plate-like (film-like) positive electrode current collector 22.
  • the negative electrode 30 is obtained by providing a negative electrode active material layer 34 on a plate-like (film-like) negative electrode current collector 32.
  • the positive electrode active material layer 24 and the negative electrode active material layer 34 are in contact with both sides of the separator 10.
  • Leads 62 and 60 are connected to the ends of the positive electrode current collector 22 and the negative electrode current collector 32, respectively, and the ends of the leads 60 and 62 extend to the outside of the case 50.
  • the positive electrode 20 and the negative electrode 30 are collectively referred to as electrodes 20 and 30, and the positive electrode current collector 22 and the negative electrode current collector 32 are collectively referred to as current collectors 22 and 33, the positive electrode active material layer 24 and the negative electrode active material.
  • the material layer 34 is collectively referred to as the active material layers 24 and 34.
  • the positive electrode active material for a lithium ion secondary battery according to this embodiment includes active material particles mainly composed of lithium vanadium phosphate represented by the following composition formula (1), and carbon particles. At least a portion is plate-shaped.
  • Li a (M) b (PO 4 ) c (1) M is VO or V, and 0.05 ⁇ a ⁇ 3.3, 0.9 ⁇ b ⁇ 2.2, and 0.9 ⁇ c ⁇ 3.3.
  • the lithium vanadium phosphate represented by the composition formula (1) does not need to have the stoichiometric oxygen amount represented by this composition formula, and includes a wide range of oxygen-deficient ones. In other words, those identified as the same composition system by X-ray diffraction or the like are targeted.
  • a part of vanadium is selected from the group consisting of W, Mo, Ti, Al, Ni, Co, Mn, Fe, Zr, Cu, Zn, and Yb. It may be substituted with one or more elements.
  • part of phosphorus may be substituted with one or more elements selected from the group consisting of W, Si, S, B, and Mo. .
  • the average particle diameter of the lithium vanadium phosphate according to the present embodiment is preferably 50 nm to 1000 nm.
  • the average particle diameter is 50 nm or more, lithium vanadium phosphate in the electron movement path is efficiently in contact with the plate-like carbon particles, so that the electron conductivity is improved and the rate characteristics are improved.
  • the average particle diameter is 500 nm or less, the path through which electrons move inside the crystal of lithium vanadium phosphate having a low electron conductivity is shortened, thereby improving rate characteristics.
  • the lithium vanadium phosphate is preferably primary particles or flat secondary particles. By being primary particles or flat secondary particles, the path through which electrons move inside the crystal of lithium vanadium phosphate is shortened, and the rate characteristics are improved.
  • lithium vanadium phosphates represented by the composition formula (1) it is preferable to use a compound represented by LiVOPO 4 or Li 3 V 2 (PO 4 ) 3 , and it is particularly preferable to use LiVPO 4 .
  • the LiVOPO 4 can have a plurality of crystal phases such as ⁇ -type (triclinic), ⁇ -type (orthorhombic), and ⁇ -type (tetragonal), and in particular has a ⁇ -type (orthogonal) crystal phase. It is preferable. As a result, a higher charge / discharge capacity can be obtained as compared with the case of having an ⁇ -type (triclinic) or ⁇ -type (tetragonal) crystal phase.
  • the lithium vanadium phosphate in the present embodiment may be used by mixing two or more kinds selected from LiVOPO 4 and Li 3 V 2 (PO 4 ) 2 each having ⁇ -type, ⁇ -type, and ⁇ -type crystal phases. Good.
  • the lithium vanadium phosphate according to this embodiment particularly preferably contains 80% or more of LiVOPO 4 having a ⁇ -type crystal phase.
  • the composition and crystal phase of lithium vanadium phosphate contained in the positive electrode active material according to this embodiment can be identified by X-ray diffraction or the like.
  • the content ratio of the active material particles mainly composed of lithium vanadium phosphate contained in the positive electrode active material according to the present embodiment is 50 to 100% by mass, preferably 80 to 100% by mass, more preferably 95 to 100% by mass. %.
  • the carbon particles according to this embodiment are plate-shaped.
  • a carbon particle having a plate shape means that a plurality of carbon particles are formed into a plate shape.
  • the preferred density of the carbon particles formed into a plate shape is 1.0 to 2.2 g / cm 3 . More preferably, it is 1.2 to 2.0 g / cm 3 . Even more preferably, it is 1.5 to 1.8 g / cm 3 .
  • the content ratio of at least partly plate-like carbon particles contained in the positive electrode active material according to the present embodiment is 2 to 20% by mass, preferably 5 to 15% by mass, more preferably 7 to 10% by mass. .
  • the carbon particles according to the present embodiment preferably have an average plate surface diameter A of 50 ⁇ A ⁇ 10000 nm. More preferably, 100 ⁇ A ⁇ 1000 nm.
  • the plate surface diameter is defined as the longest straight line in the surface direction that can be drawn on the plate within the plate made of carbon particles.
  • the average plate surface diameter A is an average value of the measured plate surface diameter values for a plate made of a certain number of carbon particles.
  • the average aspect ratio of the plate made of carbon particles according to this embodiment is 1.0 to 50. More preferably, it is 1.5 to 35. Even more preferably, it is 2.0-21.
  • the aspect ratio can be obtained from the major axis / minor axis, with the plate surface diameter as the major axis and the plate diameter perpendicular to the plate surface diameter as the minor axis.
  • the average aspect ratio is an average value of measured aspect ratio values for a plate made of a certain number of carbon particles.
  • the carbon particles according to the present embodiment preferably have an average thickness B of 0.3 ⁇ B ⁇ 50 nm. More preferably, 3 nm ⁇ B ⁇ 20 nm.
  • the ratio A / B of the average thickness B to the average plate surface diameter A in the carbon particles according to the present embodiment is preferably 5 ⁇ A / B ⁇ 1000. More preferably, 10 ⁇ A / B ⁇ 500.
  • At least a part of the carbon particles according to the present embodiment covers at least a part of the surface of the active material particles mainly composed of lithium vanadium phosphate.
  • the carbon particles according to the present embodiment preferably cover 30% or more of the surface of the active material particles mainly composed of lithium vanadium phosphate. Further, it is more preferable to cover 50% or more of the surface of the active material particles mainly composed of lithium vanadium phosphate, and it is more preferable to cover the whole.
  • the carbon particles is combined with active material particles mainly composed of lithium vanadium phosphate.
  • the plate-like carbon particles covers at least a part of the surface of the active material particles mainly composed of lithium vanadium phosphate, and More preferably, at least a part of the plate-like carbon particles is combined with active material particles mainly composed of lithium vanadium phosphate.
  • the charge transfer resistance as the whole positive electrode active material for the lithium ion secondary battery is combined. By being reduced, it is estimated that a higher rate characteristic is exhibited.
  • carbon particles according to the present embodiment carbon particles having a plate shape manufactured using a method described later can be used. Moreover, the carbon particle which has the existing plate shape can also be used, and these may be mixed and used.
  • conventionally known carbon materials such as a granular shape and a lump shape may be mixed.
  • plate-like carbon particles are included as a main component.
  • 60% by volume or more of the entire carbon material is preferably carbon particles having a plate shape.
  • a more preferable plate-like carbon particle content is 70% by volume or more.
  • An even more preferable plate-like carbon particle content is 80% by volume or more.
  • the carbon particles according to the present embodiment can be observed using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the carbon particles having a plate shape contained in the electrode can be observed and measured with a scanning electron microscope, a transmission electron microscope, or the like after the cross section of the positive electrode is polished with a cross section polisher or an ion milling device.
  • a transmission electron microscope is particularly preferable.
  • the average plate surface diameter A and average thickness B of the carbon particles are selected randomly from 10 plate-like carbon particles, and the average values are defined as the average plate surface diameter A and average thickness B of the carbon particles in the present embodiment.
  • the value can be used to calculate the A / B value.
  • the carbon particles according to the present embodiment are preferably contained at a ratio of 0.1 to 20% by weight with respect to the active material particles mainly composed of lithium vanadium phosphate. More preferably, it is 0.5 to 15% by mass. Even more preferably, it is 5.0 to 12.0% by mass.
  • the carbon particles contained in the positive electrode for a lithium ion secondary battery according to this embodiment can be measured using a carbon / sulfur analyzer or the like.
  • the positive electrode current collector 22 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
  • the binder binds the active materials to each other and binds the active material to the current collector 22.
  • the binder is not particularly limited as long as it can be bonded as described above.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene- Perfluoroalkyl vinyl ether copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • PVF polyvinyl fluoride
  • binder for example, vinylidene fluoride-hexafluoropropylene-based fluorororubber (VDF-HFP-based fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-HFPPTFE-based) Fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-PFP-TFE fluorine rubber), vinylidene fluoride Ride-perfluoromethyl vinyl ether-tetrafluoroethylene fluoro rubber (VDF-PFMVE-TFE fluoro rubber), vinylidene fluoride-chlorotrifluoroethylene fluoro rubber The containing rubbers (VDF-CTFE-based fluorine
  • an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder.
  • the electron conductive conductive polymer include polyacetylene.
  • the binder since the binder also functions as a conductive material, it is not necessary to add a conductive material.
  • the ion conductive conductive polymer include those obtained by combining a polymer compound such as polyethylene oxide and polypropylene oxide with a lithium salt or an alkali metal salt mainly composed of lithium.
  • the negative electrode active material should just be a compound which can occlude / release lithium ion, and can use the well-known negative electrode active material for lithium ion batteries.
  • the negative electrode active material include carbon materials that can occlude and release lithium ions (natural graphite, artificial graphite), carbon nanotubes, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, and the like, aluminum, silicon And particles containing a metal that can be combined with lithium such as tin, an amorphous compound mainly composed of an oxide such as silicon dioxide and tin dioxide, and lithium titanate (Li 4 Ti 5 O 12 ). . It is preferable to use graphite having a high capacity per unit weight and relatively stable.
  • the negative electrode current collector 32 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
  • the conductive material examples include carbon powder such as carbon black, carbon nanotube, carbon material, fine metal powder such as copper, nickel, stainless steel and iron, a mixture of carbon material and fine metal powder, and conductive oxide such as ITO. It is done.
  • the binder used for a negative electrode can use the same thing as a positive electrode.
  • the separator 18 only needs to be formed of an electrically insulating porous structure, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose, polyester and Examples thereof include a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polypropylene.
  • Non-aqueous electrolyte The nonaqueous electrolytic solution has an electrolyte dissolved in a nonaqueous solvent, and may contain a cyclic carbonate and a chain carbonate as a nonaqueous solvent.
  • the cyclic carbonate is not particularly limited as long as it can solvate the electrolyte, and a known cyclic carbonate can be used.
  • a known cyclic carbonate can be used.
  • ethylene carbonate, propylene carbonate, butylene carbonate, and the like can be used.
  • the chain carbonate is not particularly limited as long as it can reduce the viscosity of the cyclic carbonate, and a known chain carbonate can be used. Examples thereof include diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. In addition, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like may be mixed.
  • the ratio of the cyclic carbonate and the chain carbonate in the non-aqueous solvent is preferably 1: 9 to 1: 1 by volume.
  • Examples of the electrolyte include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 , CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 Lithium salts such as CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB can be used.
  • these lithium salts may be used individually by 1 type, and may use 2 or more types together.
  • LiPF 6 is preferably included from the viewpoint of conductivity.
  • the concentration of the electrolyte in the non-aqueous electrolyte is preferably adjusted to 0.5 to 2.0 mol / L.
  • the concentration of the electrolyte is 0.5 mol / L or more, the conductivity of the nonaqueous electrolytic solution can be sufficiently secured, and a sufficient capacity can be easily obtained during charging and discharging.
  • the electrolyte concentration is suppressed to within 2.0 mol / L, it is possible to suppress an increase in the viscosity of the non-aqueous electrolyte, to sufficiently secure the mobility of lithium ions, and to obtain a sufficient capacity during charging and discharging. It becomes easy.
  • the lithium ion concentration in the non-aqueous electrolyte is preferably adjusted to 0.5 to 2.0 mol / L, and the lithium ion concentration from LiPF 6 is 50 mol%. More preferably, it is contained.
  • the positive electrode active material according to the present embodiment can be synthesized using hydrothermal synthesis, and includes a precursor synthesis step and a heat treatment step.
  • a precursor synthesis process a lithium source.
  • the mixture containing the phosphate source, vanadium source, reducing agent and water is dried in its entirety. Thereby, a precursor is obtained.
  • the obtained precursor is heat treated.
  • Precursor synthesis process In the precursor synthesis step, first, the above-described lithium source, phosphate source, vanadium source, and reducing agent are introduced into water to prepare a mixture (aqueous solution) in which these are dispersed.
  • a mixture of a phosphoric acid source, a vanadium source, and water may be refluxed, and then a lithium source may be added to the refluxed mixture.
  • the whole amount of the mixture (aqueous solution) obtained in the above step is dried. Thereby, a precursor is obtained.
  • any existing apparatus capable of applying heat from the outside such as a dryer and an electric furnace, can be used.
  • the lithium source includes, for example, at least one selected from the group consisting of LiNO 3 , Li 2 Co 3 , LiOH, LiCl, Li 2 SO 4 and CH 3 COOLi.
  • the phosphoric acid source includes, for example, at least one selected from the group consisting of H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 and Li 3 PO 4 .
  • Vanadium sources include, for example, at least one selected from the group consisting of V 2 O 5, VO 2, V 2 O 3 and NH 4 VO 3. Two or more lithium sources, two or more phosphoric acid sources, or two or more vanadium sources may be used in combination. In this case, the mixing ratio of each raw material is adjusted.
  • the reducing agent includes, for example, at least one selected from the group consisting of ascorbic acid, citric acid, tartaric acid, polyethylene, polyethylene glycol, hydrogen peroxide, and hydrazine. Two or more reducing agents may be used in combination, and the mixing ratio of each reducing agent can be appropriately adjusted and used.
  • the precursor synthesis step described above may be performed at room temperature, or may be performed at a temperature equal to or higher than room temperature using an oil bath or the like.
  • the precursor obtained in the precursor synthesis step is heat treated in an inert atmosphere or an oxidizing atmosphere. Thereby, LiVOPO 4 can be synthesized.
  • the heat treatment atmosphere includes, for example, at least one kind or a mixed gas of one or more kinds selected from the group consisting of an inert gas such as nitrogen and argon and an oxidizing gas such as oxygen and air.
  • the temperature of the heat treatment is preferably 400 ° C. to 650 ° C., more preferably 500 ° C. to 600 ° C.
  • the crystal structure, particle diameter, and the like of the obtained LiVOPO 4 can be controlled.
  • the method for producing a positive electrode active material according to the present embodiment is not limited to the above method, and the positive electrode active material may be synthesized by any existing method including a solid phase method, a hydrothermal method, a sol-gel method, and a gas phase method. Can do.
  • the carbon particles having a plate shape For the carbon particles having a plate shape according to the present embodiment, an existing flaky carbon material can be used. Moreover, the carbon particle which has plate shape can also be formed by press-forming the conventional carbon powders, such as acetylene black.
  • the positive electrode active material for a lithium ion secondary battery includes a mechanochemical method using mechanical energy such as friction and compression, and a spray that spray-drys a dispersion containing lithium vanadium phosphate and carbon particles having a plate shape.
  • An existing method for forming a coating layer on the particle surface such as a dry method, can be used.
  • the mechanochemical method is preferable because it is uniform and has high adhesion between the positive electrode active material and the carbon material having a plate shape.
  • an apparatus such as a mechanofusion apparatus or a planetary mill can be used.
  • a specific apparatus for the spray drying method a spray dryer or the like can be used.
  • the adhesion between the carbon material having a plate shape and the active material particles mainly composed of lithium vanadium phosphate can be adjusted by the manufacturing conditions in the conventional apparatus.
  • the adhesion of the coating layer can be adjusted by appropriately adjusting the angle, rotation speed, processing time, and material input amount of the processing apparatus.
  • ⁇ ⁇ Mix the above active material, binder and solvent.
  • a conductive material may be further added as necessary.
  • the solvent for example, water, N-methyl-2-pyrrolidone or the like can be used.
  • the mixing method of the components constituting the paint is not particularly limited, and the mixing order is not particularly limited.
  • the paint is applied to the current collectors 22 and 32.
  • the solvent in the paint applied on the current collectors 22 and 32 is removed.
  • the removal method is not particularly limited, and the current collectors 22 and 32 to which the paint has been applied may be dried, for example, in an atmosphere of 80 ° C. to 150 ° C.
  • the electrode on which the positive electrode active material layer 24 and the negative electrode active material layer 34 are formed in this way is subjected to a press treatment by a roll press device or the like as necessary.
  • the linear pressure of the roll press can be set to 1000 kgf / cm, for example.
  • the method for manufacturing a lithium ion secondary battery includes a positive electrode 20 containing the active material, a negative electrode 30, a separator 10 interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte solution containing a lithium salt. And a step of enclosing the outer body 50 in the exterior body 50.
  • the positive electrode 20 including the active material described above, the negative electrode 30 and the separator 10 are stacked, and the positive electrode 20 and the negative electrode 30 are heated and pressed with a press tool from a direction perpendicular to the stacking direction. 20, the separator 10 and the negative electrode 30 are brought into close contact with each other.
  • a lithium ion secondary battery can be manufactured by putting the laminate 40 into a bag-shaped outer package 50 prepared in advance and injecting a non-aqueous electrolyte solution containing the lithium salt.
  • the laminate 40 may be impregnated in advance with the nonaqueous electrolyte solution containing the lithium salt.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.
  • the laminated film type lithium ion secondary battery has been described.
  • the present invention can be similarly applied to a lithium ion secondary battery having a structure in which a positive electrode, a negative electrode, and a separator are wound or folded. it can.
  • it can apply suitably also about lithium ion secondary batteries, such as a cylindrical shape, a square shape, and a coin type, as a battery shape. (Second embodiment)
  • a coating layer that contains graphene and covers at least a part of the surface of the active material particles is used as a carbon material that expands two-dimensionally.
  • the second embodiment is basically the same as the configuration of the first embodiment. Therefore, the description which overlaps with description of 1st embodiment is abbreviate
  • the lithium ion secondary battery in the second embodiment is the same as that in the first embodiment, detailed description thereof is omitted.
  • the positive electrode active material 200 includes a lithium vanadium phosphate represented by the following composition formula (1) and at least a part of the surface of the lithium vanadium phosphate 110 having single-layer graphene 121 or multilayer It is covered with a covering layer 120 containing at least one kind of graphene 121.
  • Li a (M) b (PO 4 ) c (1) M is VO or V, and 0.05 ⁇ a ⁇ 3.3, 0.9 ⁇ b ⁇ 2.2, and 0.9 ⁇ c ⁇ 3.3.
  • the lithium vanadium phosphate represented by the composition formula (1) does not need to have the stoichiometric oxygen amount represented by this composition formula, and includes a wide range of oxygen-deficient ones. In other words, those identified as the same composition system by X-ray diffraction or the like are targeted.
  • a part of vanadium is selected from the group consisting of W, Mo, Ti, Al, Ni, Co, Mn, Fe, Zr, Cu, Zn, and Yb. It may be substituted with one or more elements.
  • the content ratio of the active material particles mainly composed of lithium vanadium phosphate contained in the positive electrode active material according to this embodiment is 60 to 100% by mass, preferably 80 to 100% by mass, more preferably 96 to 99% by mass. %.
  • the content ratio of the coating layer contained in the positive electrode active material according to this embodiment is 0.5 to 10.0% by mass, preferably 1.0 to 8.0% by mass, and more preferably 2.0 to 4.%. 0% by mass.
  • Single-layer graphene is a single-layer material having a structure in which six-membered rings of carbon atoms are spread on a plane.
  • Multilayer graphene is a substance having a structure in which a plurality of graphenes are stacked, and a multilayer graphene having a thickness of 50 nm or less.
  • the single-layer graphene those having a specific surface area of 300 to 1500 m 2 g and a particle size (side part) of 0.2 to 1.0 ⁇ m are preferable.
  • the multilayer graphene preferably has a specific surface area of 80 to 500 m 2 g and a particle size (side part) of 0.2 to 5.0 ⁇ m.
  • the graphene content in the coating layer is 50 to 100% by mass, preferably 60 to 90% by mass, and more preferably 70 to 80% by mass.
  • the average primary particle diameter of lithium vanadium phosphate as shown in FIG. 2 is preferably 50 nm to 500 nm. If the average primary particle diameter is 50 nm or more, the number of times that the coating layer on the surface of the lithium vanadium phosphate in the electron movement path passes through the contact point connected to the other coating layer is reduced, and the electron conductivity is improved. This improves the rate characteristics. If the average primary particle diameter is 500 nm or less, the path through which electrons move inside the crystal of lithium vanadium phosphate having a low electron conductivity is shortened, thereby improving the rate characteristics.
  • the lithium vanadium phosphate is preferably primary particles or flat secondary particles. By being primary particles or flat secondary particles, the path through which electrons move inside the crystal of lithium vanadium phosphate is shortened, and the rate characteristics are improved.
  • lithium vanadium phosphates represented by the composition formula (1) a compound represented by LiVOPO 4 or Li 3 V 2 (PO 4 ) 3 is preferably used, and particularly LiVOPO 4 is preferably used.
  • the LiVOPO 4 preferably has a ⁇ -type (orthorhombic) crystal phase.
  • a higher charge / discharge capacity can be obtained as compared with the case of having an ⁇ -type (triclinic) or ⁇ -type (tetragonal) crystal phase.
  • a coating layer as shown in FIG. 2 is preferable when the surface of lithium vanadium phosphate particles is covered by 70% or more because the electron conductivity between the active material particles is further improved and the rate characteristics are improved. More preferably, the coating layer covers 80% or more of the particle surface of lithium vanadium phosphate. Even more preferably, the coating layer covers 95% or more of the particle surface of lithium vanadium phosphate.
  • the average thickness of the coating layer is preferably 3 nm to 100 nm. If the average thickness of the coating layer is 3 nm or more, the coating layer shows good electron conductivity, and if the average thickness of the coating layer is 100 nm or less, it shows good diffusibility of Li ions inside the coating layer. Therefore, rate characteristics are improved.
  • the coating layer preferably contains graphene and carbon black.
  • the coating layer preferably contains graphene and carbon black, it improves the electronic conductivity between graphene and the active material, between the graphene, and the diffusion of Li ions is improved by the penetration of the electrolyte into the void around the carbon black, Rate characteristics are improved.
  • the mass ratio of carbon black to graphene is 5% to 60%. If the mass ratio of carbon black to graphene is 5% or more, good electron conductivity and Li ion diffusibility can be obtained, and if the mass ratio is 60% or less, the distance between the graphenes inside the coating layer is close and good. Therefore, rate characteristics are improved.
  • the average thickness of graphene contained in the coating layer is preferably 20 nm or less. If the average thickness of graphene is 20 nm or less, since it follows the particle surface of lithium vanadium phosphate flexibly, better electron conductivity can be obtained, so that rate characteristics are improved.
  • the average thickness of a graphene is below the average thickness of the said coating layer.
  • the crystal phase of lithium vanadium phosphate contained in the positive electrode active material according to this embodiment can be identified by X-ray diffraction or the like.
  • the cross section of the particles can be observed and measured with a scanning electron microscope, a transmission electron microscope, etc. after cutting the positive electrode and polishing the cross section with a cross section polisher or an ion milling device.
  • the average thickness of the coating layer is the average value obtained by observing the cross section of 100 particles with a transmission electron microscope.
  • the average thickness of graphene is the average value obtained by observing a cross section of 100 graphenes included in the coating layer.
  • the mass ratio of graphene and carbon black can be measured by a transmission electron microscope or Raman spectroscopy.
  • the positive electrode current collector, the positive electrode binder, the negative electrode active material, the negative electrode current collector, the negative electrode conductive material, the negative electrode binder, the separator, and the non-aqueous electrolyte in the second embodiment are the same as in the first embodiment. Omitted.
  • the positive electrode active material 200 according to the present embodiment can be manufactured by the following coating layer forming process.
  • a coating layer containing graphene can be formed on the surface of lithium vanadium phosphate particles.
  • the method for forming the coating layer is not particularly limited, but a coating layer on the particle surface, such as a mechanochemical method using mechanical energy such as friction or compression, or a spray drying method in which a dispersion containing lithium vanadium phosphate and graphene is spray-dried is used.
  • a coating layer on the particle surface such as a mechanochemical method using mechanical energy such as friction or compression, or a spray drying method in which a dispersion containing lithium vanadium phosphate and graphene is spray-dried is used.
  • Existing methods of forming can be used.
  • the mechanochemical method is preferable because it can form a coating layer that is uniform and has good adhesion.
  • an apparatus such as a mechanofusion apparatus or a planetary mill can be used.
  • a specific apparatus for the spray drying method a spray dryer or the like can be used.
  • the adhesion between the coating layer containing graphene and the lithium vanadium phosphate particles can be adjusted by the coating layer forming conditions.
  • the adhesion of the coating layer can be adjusted by appropriately adjusting the angle, rotation speed, processing time, and material input amount of the processing apparatus.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.
  • Example A1 (Creation of carbon particles)
  • the carbon particles in Example A1 were prepared by the following method.
  • a 0.5 g of acetylene black was weighed and pressurized with 100 Kgf using a hand press machine to form a thin acetylene black of ⁇ 16 mm.
  • the obtained thin circular acetylene black was sandwiched between PET films, and further pressed and rolled at a linear pressure of 2000 kgf / cm using a roll press.
  • a roll press machine was passed 10 times, and the obtained flaky acetylene black was lightly pulverized in an agate mortar to obtain carbon particles of Example A1.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A1 had a plate shape having an average plate surface diameter A of 200 nm, an average thickness B of 10 nm, and A / B of 20.
  • the positive electrode was punched into an electrode size of 18 mm ⁇ 22 mm using a mold to produce a positive electrode for a lithium ion secondary battery.
  • negative electrode active material 90 parts by mass of natural graphite powder and 10 parts by mass of PVDF were dispersed in NMP to prepare a slurry.
  • the obtained slurry was coated on a copper foil having a thickness of 15 ⁇ m, dried under reduced pressure at a temperature of 140 ° C. for 30 minutes, and then pressed using a roll press apparatus to obtain a negative electrode.
  • the negative electrode was punched into an electrode size of 19 mm ⁇ 23 mm using a mold to prepare a negative electrode for a lithium ion secondary battery.
  • the positive electrode for a lithium ion secondary battery and the negative electrode for a lithium ion secondary battery were laminated via a polyethylene separator to produce an electrode laminate. This was used as one electrode body, and an electrode laminate composed of four layers was produced by the same production method.
  • the said positive electrode and negative electrode are equipped with each mixture layer on both surfaces, they are comprised by 3 negative electrodes, 2 positive electrodes, and 4 separators.
  • a negative electrode lead made of nickel is attached to the protruding end of the copper foil not provided with the negative electrode mixture layer, while the positive electrode mixture layer is provided in the positive electrode of the electrode laminate.
  • the positive electrode lead made of aluminum was attached to the protruding end portion of the aluminum foil that was not formed by an ultrasonic fusion machine. Then, this electrode laminate was fused to an aluminum laminate film for an exterior body, and the laminate film was folded to insert the electrode body into the exterior body. A closed portion was formed by heat-sealing except for one side around the exterior body, and a non-aqueous electrolyte was injected from this opening. And the opening part of the said exterior body was sealed by heat sealing, decompressing with a vacuum sealing machine, and the laminate type battery cell in Example A1 was produced. The lithium ion secondary battery was manufactured in a dry room.
  • the current density during charging / discharging was set to 3C, and the rate characteristics of the battery cells were measured by repeating the above charging / discharging procedure.
  • the ratio of the discharge capacity C2 when the constant current discharge is performed at a current density of 3C to the discharge capacity C1 when the constant current discharge is performed at a current density of 0.1C is calculated according to an expression represented by (Expression 1) Rate characteristics were evaluated.
  • Evaluation of the rate characteristics was performed by preparing five battery cells and taking the average value of the obtained results.
  • Examples A2 to A32 change the charged amount of acetylene black when molding carbon particles, the press pressure of the hand press, the press pressure and the number of presses of the roll press, and the pulverization conditions of the obtained carbon particles.
  • carbon particles were produced in the same manner as in Example A1, except that the average plate surface diameter A and the average thickness B of the plate-like carbon particles were adjusted.
  • the battery cell was produced by using either LiVPO4 or Li3V2 (PO4) 3 as the carbon particle obtained in each Example, and lithium vanadium phosphate. The production method of the plate-like carbon particles and the details of the battery cell in each example are described below.
  • Example A2 When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 2500 kgf / cm. A battery cell of Example A2 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A2 were in the form of a plate having an average plate surface diameter A of 1017 nm, an average thickness B of 10 nm, and A / B of 101.7.
  • Example A3 When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 3000 kgf / cm. A battery cell of Example A3 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A3 were plate-shaped with an average plate surface diameter A of 3915 nm, an average thickness B of 10 nm, and A / B of 391.5.
  • Example A4 When pressurizing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was set to 4000 kgf / cm. A battery cell of Example A4 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A4 had a plate shape with an average plate surface diameter A of 8703 nm, an average thickness B of 10 nm, and A / B of 870.3.
  • Example A5 When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 1000 kgf / cm. A battery cell of Example A5 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A5 had a plate shape having an average plate surface diameter A of 98 nm, an average thickness B of 10 nm, and A / B of 9.8.
  • Example A6 When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 1200 kgf / cm. A battery cell of Example A6 was produced in the same manner as Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A6 were in the form of a plate having an average plate surface diameter A of 108 nm, an average thickness B of 10 nm, and A / B of 10.8.
  • Example A7 When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was set to 1800 kgf / cm. A battery cell of Example A7 was produced in the same manner as Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A7 had a plate shape with an average plate surface diameter A of 982 nm, an average thickness B of 10 nm, and A / B of 98.2.
  • Example A8 When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 1500 kgf / cm. A battery cell of Example A8 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A8 were in the form of a plate having an average plate surface diameter A of 627 nm, an average thickness B of 10 nm, and A / B of 62.7.
  • Example A9 Carbon particles were produced in the same manner as in Example A1, except that 0.1 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press machine. A battery cell of Example A9 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A9 were in the form of a plate having an average plate surface diameter A of 200 nm, an average thickness B of 3 nm, and A / B of 67.
  • Example A10 Carbon particles were produced in the same manner as in Example A1, except that 0.2 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press machine. A battery cell of Example A10 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A10 were in the form of a plate having an average plate surface diameter A of 200 nm, an average thickness B of 5 nm, and A / B of 40.
  • Example A11 Carbon particles were produced in the same manner as in Example A1 except that 0.8 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press machine. A battery cell of Example A11 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A11 had a plate shape having an average plate surface diameter A of 200 nm, an average thickness B of 20 nm, and A / B of 10.
  • Example A12 Carbon particles were produced in the same manner as in Example A1, except that 0.05 g of acetylene black was weighed, pressed and rolled, and the linear pressure of the roll press machine was 3000 kgf / cm. A battery cell of Example A12 was produced in the same manner as Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A12 were in the form of a plate having an average plate surface diameter A of 200 nm, an average thickness B of 0.3 nm, and A / B of 667.
  • Example A13 Carbon particles were produced in the same manner as in Example A1 except that 2.0 g of acetylene black was weighed, pressed and rolled, and the linear pressure of the roll press machine was 3000 kgf / cm. A battery cell of Example A13 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A13 had a plate shape having an average plate surface diameter A of 200 nm, an average thickness B of 20 nm, and A / B of 4.
  • Example A14 A battery cell of Example A14 was produced in the same manner as Example A5 except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A14 had a plate shape with an average plate surface diameter A of 80 nm, an average thickness B of 10 nm, and A / B of 8.
  • Example A15 A battery cell of Example A15 was produced in the same manner as Example A6 except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A15 were in the form of a plate having an average plate surface diameter A of 115 nm, an average thickness B of 10 nm, and A / B of 12.
  • Example A16 A battery cell of Example A16 was produced in the same manner as in Example A8 except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A16 had a plate shape having an average plate surface diameter A of 570 nm, an average thickness B of 10 nm, and A / B of 57.
  • Example A17 A battery cell of Example A17 was produced in the same manner as in Example A7, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A17 had a plate shape having an average plate surface diameter A of 971 nm, an average thickness B of 10 nm, and A / B of 97.
  • Example A18 A battery cell of Example A18 was produced in the same manner as in Example A2, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A18 had a plate shape with an average plate surface diameter A of 1028 nm, an average thickness B of 10 nm, and A / B of 103.
  • Example A19 A battery cell of Example A19 was produced in the same manner as in Example A3, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A19 were plate-shaped with an average plate surface diameter A of 4196 nm, an average thickness B of 10 nm, and A / B of 420.
  • Example A20 A battery cell of Example A20 was produced in the same manner as in Example A4, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A20 were in the form of a plate having an average plate surface diameter A of 9379 nm, an average thickness B of 10 nm, and A / B of 938.
  • Example A21 When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 800 kgf / cm. A battery cell of Example A21 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A21 had a plate shape with an average plate surface diameter A of 51 nm, an average thickness B of 10 nm, and A / B of 5.1.
  • Example A22 When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 4000 kgf / cm and the roll press machine was passed 15 times. A battery cell of Example A22 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A21 had a plate shape with an average plate surface diameter A of 9891 nm, an average thickness B of 10 nm, and A / B of 989.1.
  • Example A23 When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 600 kgf / cm. A battery cell of Example A23 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A23 were in the form of a plate having an average plate surface diameter A of 46 nm, an average thickness B of 10 nm, and A / B of 4.6.
  • Example A24 When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 4000 kgf / cm and the roll press machine was passed 20 times. A battery cell of Example A24 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A21 were in the form of a plate having an average plate surface diameter A of 10027 nm, an average thickness B of 10 nm, and A / B of 1002.7.
  • Example A25 Carbon particles were produced in the same manner as in Example A1, except that 0.12 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press machine. A battery cell of Example A25 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A25 were in the form of a plate having an average plate surface diameter A of 200 nm, an average thickness B of 2.8 nm, and A / B of 71.4.
  • Example A26 Carbon particles were produced in the same manner as in Example A1, except that 1.0 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press machine. A battery cell of Example A26 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A26 had a plate shape with an average plate surface diameter A of 200 nm, an average thickness B of 23 nm, and A / B of 8.7.
  • Example A27 Carbon particles were prepared in the same manner as in Example A1, except that 0.04 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press. A battery cell of Example A27 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A27 were in the form of a plate having an average plate surface diameter A of 200 nm, an average thickness B of 0.2 nm, and A / B of 1000.
  • Example A28 Carbon particles were prepared in the same manner as in Example A1, except that 2.5 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press machine. A battery cell of Example A28 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A28 were in the form of a plate having an average plate surface diameter A of 200 nm, an average thickness B of 51 nm, and A / B of 3.9.
  • Example A29 A battery cell of Example A29 was produced in the same manner as in Example A21 except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A29 were in the form of a plate having an average plate surface diameter A of 51 nm, an average thickness B of 10 nm, and A / B of 5.1.
  • Example A30 A battery cell of Example A30 was produced in the same manner as in Example A23, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A30 had a plate shape with an average plate surface diameter A of 47 nm, an average thickness B of 10 nm, and A / B of 4.7.
  • Example A31 A battery cell of Example A31 was produced in the same manner as in Example A22, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A31 had a plate shape with an average plate surface diameter A of 9861 nm, an average thickness B of 10 nm, and A / B of 986.1.
  • Example A32 A battery cell of Example A29 was produced in the same manner as in Example A24, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
  • the obtained carbon particles were observed using TEM.
  • the carbon particles according to Example A32 had a plate shape having an average plate surface diameter A of 10195 nm, an average thickness B of 10 nm, and A / B of 1019.5.
  • Example A1 A positive electrode active material was produced in the same manner as in Example A1 except that the acetylene black used in Example A1 was used as it was without being pressure-molded, and a battery cell was produced.
  • Comparative Example A2 A positive electrode active material was produced in the same manner as in Comparative Example A1 except that Li 3 V 2 (PO 4 ) 3 having an average particle size of 30 nm was used as lithium vanadium phosphate, and a battery cell was produced.
  • Example A3 A positive electrode active material was produced in the same manner as in Example A1, except that LiVOPO 4 , which is the material of the positive electrode active material used in Example A1, was replaced with orthorhombic LiFePO 4 having an average particle size of 30 nm. Was made.
  • LiVOPO 4 which is the material of the positive electrode active material used in Example A1 was replaced with orthorhombic LiFePO 4 having an average particle diameter of 30 nm, and the acetylene black used in Example A1 was used without being pressure-molded. Except for this, a positive electrode active material was produced in the same manner as in Example A1, and a battery cell was produced.
  • Example B1 (Creation of positive electrode) LiVOPO 4 having an average particle diameter of 170 nm as lithium vanadium phosphate and graphene having an average thickness of 2 nm are mixed at a mass ratio of 9: 1, processed using a Hosokawa Micron mechanofusion at a rotation speed of 3500 rpm, and LiVOPO 4 What formed the coating layer containing a graphene on the particle
  • a slurry was prepared by dispersing 96% of the positive electrode active material powder and 4% of polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP).
  • PVDF polyvinylidene fluoride
  • the obtained slurry was coated on an aluminum foil having a thickness of 15 ⁇ m, dried at a temperature of 120 ° C. for 30 minutes, and then pressed using a roll press apparatus at a linear pressure of 1000 kgf / cm to obtain a positive electrode.
  • the state of the coating layer containing graphene on the surface of LiVOPO 4 particles was measured using a transmission electron microscope (TEM), a scanning electron microscope (SEM), a Raman spectroscope, a cross section polisher, and an ion milling device.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • Raman spectroscope Raman spectroscope
  • a cross section polisher polisher
  • ion milling device An ion milling device
  • a negative electrode, a non-aqueous electrolyte solution, and a separator were prepared in the same manner as in Example 1.
  • Example B1 (Production of battery)
  • the positive electrode, the negative electrode, and the separator were laminated to constitute a power generation element, and a battery cell of Example B1 was produced using this and the non-aqueous electrolyte.
  • C rate The current density for charging or discharging a battery cell in one hour is called 1C.
  • the current density during charging or discharging is expressed using a constant multiple of the C rate (for example, a current density half of 1C is 0.5C). Expressed as)
  • the measurement of rate characteristics was basically performed by the same method as in the first example. However, in Example 2, the current density during charging / discharging was set to 1C (3C in the first example).
  • Examples B2 to B25, Comparative Examples B1 to B7 In Examples B2 to B25 and Comparative Examples B1 to B7, the presence or absence of graphene in the coating layer, the composition / crystal phase / particle size of lithium vanadium phosphate, the thickness of the coating layer containing graphene, and the graphene contained A battery cell was prepared and evaluated in the same manner as in Example B1 by changing the thickness, the presence or absence of carbon black in the coating layer, and the presence or absence of graphene coating. The results are shown in Table 2.
  • Table 2 shows that the rate characteristics are improved by forming a coating layer containing graphene on the surface of lithium vanadium phosphate.
  • the example shows a higher rate characteristic and cycle characteristic than the comparative example.

Abstract

The purpose of the present invention is to provide a positive electrode active substance for lithium ion secondary batteries having high rate characteristics, a positive electrode for lithium ion secondary batteries, and a lithium ion secondary battery using same. The present invention pertains to a positive electrode active substance for lithium ion secondary batteries, characterized by: having a two dimensionally expanding carbon material and active substance particles having as the main component thereof a lithium vanadium phosphate indicated by compositional formula Lia(M)b(PO4)c (M being VO or V, 0.05 ≤ a ≤ 3.3, 0.9 ≤ b ≤ 2.2, and 0.9 ≤ c ≤ 3.3.); and the carbon material at least partially containing plate-shaped carbon particles or graphene and covering at least part of the surface of the active substance particles.

Description

リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
 本発明は、高いレート特性を有するリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池に関する。
 本願は、2016年7月27日に日本に出願された特願2016-147478号及び特願2016-147479号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a positive electrode active material for lithium ion secondary batteries having high rate characteristics, a positive electrode for lithium ion secondary batteries, and a lithium ion secondary battery using the same.
This application claims priority based on Japanese Patent Application Nos. 2016-147478 and 2016-147479 filed in Japan on July 27, 2016, the contents of which are incorporated herein by reference.
 近年、携帯型電子機器、自動車、電力貯蔵用などの電源として、リチウムイオン二次電池が広く利用されている。上記リチウムイオン二次電池は、正極、負極、正極と負極とを絶縁するセパレータ、および正極と負極との間でイオンの移動を可能にするための電解質で主に構成されている。リチウムイオン二次電池は高エネルギー密度であることから、携帯電話やノート型パソコンなどのエレクトロニクス携帯機器の電源として実用化され、広く普及している。昨今、携帯型電子機器、通信機器等の著しい発展に伴い、機器の小型化、軽量化の観点から、更なる高エネルギー密度のリチウムイオン二次電池が強く要望されている。また、自動車用電池においては長寿命化が強く要望されている。 In recent years, lithium ion secondary batteries have been widely used as power sources for portable electronic devices, automobiles, and power storage. The lithium ion secondary battery is mainly composed of a positive electrode, a negative electrode, a separator that insulates the positive electrode from the negative electrode, and an electrolyte that enables ions to move between the positive electrode and the negative electrode. Since lithium ion secondary batteries have high energy density, they have been put into practical use as power sources for portable electronic devices such as mobile phones and notebook computers, and are widely used. In recent years, with the remarkable development of portable electronic devices, communication devices, and the like, there is a strong demand for lithium ion secondary batteries with higher energy density from the viewpoints of downsizing and weight reduction of devices. Further, there is a strong demand for extending the life of automobile batteries.
 従来、リチウムイオン二次電池の代表的な正極活物質として、コバルト酸リチウム(LiCoO)やニッケル酸リチウム(LiNiO)、ニッケル酸リチウムの一部をCo、Mn、Al等に置換したリチウムニッケル複合酸化物等の層状岩塩型構造を有する化合物が用いられている。これらの正極活物質は、高い放電容量が得られる一方で、結晶構造の安定性が低いことが知られている。 Conventionally, as a typical positive electrode active material of a lithium ion secondary battery, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium nickel oxide in which a part of lithium nickelate is substituted with Co, Mn, Al, etc. A compound having a layered rock salt structure such as a complex oxide is used. These positive electrode active materials are known to have a high discharge capacity and low crystal structure stability.
 これらの正極活物質と比較して、リン酸鉄リチウム(LiFePO)に代表されるポリアニオン系化合物は、層状岩塩型構造を有する化合物と比較して結晶構造の安定性に優れていることが知られている。 Compared to these positive electrode active materials, it is known that polyanionic compounds represented by lithium iron phosphate (LiFePO 4 ) are superior in crystal structure stability compared to compounds having a layered rock salt structure. It has been.
 しかしながら、結晶構造の安定性に優れる一方で、ポリアニオン基に由来する化合物自体の密度の低下や、電子伝導性の低下に伴い、十分なレート特性担保できないことが課題となっている。 However, while the crystal structure is excellent in stability, there is a problem that sufficient rate characteristics cannot be ensured with a decrease in density of the compound itself derived from the polyanion group or a decrease in electronic conductivity.
 上記課題を改善するために様々な検討がなされており、ポリアニオン系化合物の粒子表面を炭素材料で被覆する技術が知られている。 Various studies have been made to improve the above-mentioned problems, and a technique for coating the particle surface of a polyanionic compound with a carbon material is known.
 特許文献1には、粒子表面が炭素で被覆されたLiVOPOを炭素粒子に担持させることでレート特性を向上させることが報告されている。特許文献2には、LiVOPOの粒子表面の少なくとも一部に炭素被覆層を形成することでレート特性を向上させることが報告されている。特許文献3には、LiVOPOの粒子表面に複数の半球状の炭素粒子を担持させることでレート特性を向上させることが報告されている。 Patent Document 1 reports that rate characteristics are improved by supporting LiVOPO 4 whose particle surface is coated with carbon on carbon particles. Patent Document 2 reports that the rate characteristic is improved by forming a carbon coating layer on at least a part of the particle surface of LiVOPO 4 . Patent Document 3 reports that rate characteristics are improved by supporting a plurality of hemispherical carbon particles on the surface of LiVOPO 4 particles.
 しかし特許文献1、2、3のような方法においても十分なレート特性が得られず、さらなるレート特性の向上が求められている。 However, sufficient rate characteristics cannot be obtained even in the methods disclosed in Patent Documents 1, 2, and 3, and further improvement of the rate characteristics is required.
日本国特開2010―86777号公報(A)Japanese Unexamined Patent Publication No. 2010-86777 (A) 日本国特開2008―277119号公報(A)Japanese Unexamined Patent Publication No. 2008-277119 (A) 日本国特開2010―218830号公報(A)Japanese Unexamined Patent Publication No. 2010-218830 (A)
 本発明は上記従来技術の有する課題を鑑みてなされたものであり、高いレート特性を有するリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびそれを用いたリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and has a positive electrode active material for a lithium ion secondary battery having high rate characteristics, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery using the same. The purpose is to provide.
 上記課題を解決するために本願発明の一態様であるリチウムイオン二次電池用正極活物質は、以下の構成を備える。
 (1)下記組成式(1)で表されるリン酸バナジウムリチウムを主成分とする活物質粒子と、二次元的に拡がる炭素材料とを有し、
 前記炭素材料は、少なくとも一部が板状の炭素粒子又はグラフェンを含有し前記活物質粒子の表面の少なくとも一部を被覆する被覆層であることを特徴とする、リチウムイオン二次電池用正極活物質。
 Li(M)(PO・・・(1)
 (MはVOまたはVであり、0.05≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3である。)
 上記リチウムイオン二次電池用正極活物質を用いることにより、レート特性が向上したリチウムイオン二次電池を提供することができる。
 これは、このリチウムイオン二次電池用正極活物質が上記二次元的に拡がる炭素材料を備えているため、リン酸バナジウムリチウムを主成分とする活物質粒子の表面における電子伝導性が向上するためであると推測される。
In order to solve the above problems, a positive electrode active material for a lithium ion secondary battery which is one embodiment of the present invention has the following configuration.
(1) having active material particles mainly composed of lithium vanadium phosphate represented by the following composition formula (1), and a carbon material that expands two-dimensionally,
The carbon material is a coating layer containing at least a part of plate-like carbon particles or graphene and covering at least a part of the surface of the active material particles. material.
Li a (M) b (PO 4 ) c (1)
(M is VO or V, and 0.05 ≦ a ≦ 3.3, 0.9 ≦ b ≦ 2.2, and 0.9 ≦ c ≦ 3.3.)
By using the positive electrode active material for a lithium ion secondary battery, a lithium ion secondary battery with improved rate characteristics can be provided.
This is because the positive electrode active material for a lithium ion secondary battery includes the above-described two-dimensionally expanded carbon material, which improves the electron conductivity on the surface of the active material particles mainly composed of lithium vanadium phosphate. It is estimated that.
 (2)前記二次元的に拡がる炭素材料が少なくとも一部が板状の炭素粒子であることを特徴とする前記(1)に記載のリチウムイオン二次電池用正極活物質。
 上記リチウムイオン二次電池用正極活物質を用いることで、レート特性が向上する。これは、リン酸バナジウムリチウムを主成分とする活物質粒子と、板状の炭素粒子を有することで、従来の導電助剤を用いた場合と比較して、効率的にリン酸バナジウムリチウムを主成分とする活物質粒子表面における電荷移動抵抗を低減することで、電子伝導性が大幅に向上したものと推測される。
 (3)前記炭素粒子は、平均板面径Aが50≦A≦10000nmであることを特徴とする前記(2)に記載のリチウムイオン二次電池用正極活物質。
 上記範囲とすることで、より効率的にリン酸バナジウムリチウムを主成分とする活物質粒子表面における電荷移動抵抗を低減するものと推測される。
 (4)前記炭素粒子は、平均厚みBが0.3≦B≦50nmであることを特徴とする前記(2)又は(3)に記載のリチウムイオン二次電池用正極活物質。
 上記範囲とすることで、より効率的にリン酸バナジウムリチウムを主成分とする活物質粒子表面における電荷移動抵抗を低減するものと推測される。
 (5)前記炭素粒子における平均板面径Aに対する平均厚みBの比率A/Bが5≦A/B≦1000であることを特徴とする前記(2)~(4)のいずれか一項に記載のリチウムイオン二次電池用正極活物質。
 上記範囲における炭素粒子を用いることにより、リン酸バナジウムリチウムを主成分とする活物質粒子に対する炭素粒子の追従性が向上することにより、高い電荷移動抵抗を低減する効果が得られると推測される。
(2) The positive electrode active material for a lithium ion secondary battery according to (1), wherein the two-dimensionally expanding carbon material is at least partly plate-like carbon particles.
By using the positive electrode active material for a lithium ion secondary battery, rate characteristics are improved. This is because the active material particles containing lithium vanadium phosphate as the main component and the plate-like carbon particles are used, and the lithium vanadium phosphate is efficiently used as compared with the case where a conventional conductive additive is used. It is presumed that the electron conductivity is greatly improved by reducing the charge transfer resistance on the surface of the active material particles as a component.
(3) The positive electrode active material for a lithium ion secondary battery according to (2), wherein the carbon particles have an average plate surface diameter A of 50 ≦ A ≦ 10000 nm.
By setting it as the said range, it is estimated that the charge transfer resistance in the surface of the active material particle which has lithium vanadium phosphate as a main component is reduced more efficiently.
(4) The positive electrode active material for a lithium ion secondary battery according to (2) or (3), wherein the carbon particles have an average thickness B of 0.3 ≦ B ≦ 50 nm.
By setting it as the said range, it is estimated that the charge transfer resistance in the surface of the active material particle which has lithium vanadium phosphate as a main component is reduced more efficiently.
(5) The ratio (A / B) of the average thickness B to the average plate surface diameter A in the carbon particles is 5 ≦ A / B ≦ 1000, according to any one of (2) to (4), The positive electrode active material for lithium ion secondary batteries as described.
By using the carbon particles in the above range, it is estimated that the effect of reducing the high charge transfer resistance can be obtained by improving the followability of the carbon particles to the active material particles mainly composed of lithium vanadium phosphate.
 (6)前記炭素粒子の少なくとも一部は、前記リン酸バナジウムリチウムを主成分とする活物質粒子の表面の少なくとも一部を被覆していることを特徴とする前記(2)~(5)のいずれか一項に記載のリチウムイオン二次電池用正極活物質。
 これにより炭素粒子とリン酸バナジウムリチウムを主成分とする活物質粒子間における密着性が向上すると共に、電荷移動抵抗を低減する効果が得られると推測される。
 (7)前記炭素粒子の少なくとも一部は、前記リン酸バナジウムリチウムを主成分とする活物質粒子と複合化されていることを特徴とする前記(2)~(6)のいずれか一項に記載のリチウムイオン二次電池用正極活物質。
 これにより炭素粒子とリン酸バナジウムリチウムを主成分とする活物質粒子間における電荷移動抵抗の低減のみならず、リチウムイオン二次電池用正極活物質全体としての電荷移動抵抗が低減されることで、高いレート特性を示すものと推測される。
 (8)前記板炭素粒子は、前記リン酸バナジウムリチウムを主成分とする活物質粒子に対して0.1~8重量%の割合で含有されていることを特徴とする前記(2)~(7)のいずれか一項に記載のリチウムイオン二次電池用正極活物質。
 上記範囲とすることでより効率的にリン酸バナジウムリチウムを主成分とする活物質粒子表面における電荷移動抵抗を低減するものと推測される。
(6) At least a part of the carbon particles covers at least a part of the surface of the active material particles mainly composed of the lithium vanadium phosphate. The positive electrode active material for lithium ion secondary batteries as described in any one.
Thereby, it is estimated that the adhesion between the active material particles mainly composed of carbon particles and lithium vanadium phosphate is improved and the effect of reducing the charge transfer resistance is obtained.
(7) At least a part of the carbon particles is complexed with active material particles mainly composed of the lithium vanadium phosphate, according to any one of (2) to (6), The positive electrode active material for lithium ion secondary batteries as described.
This reduces not only the charge transfer resistance between the active material particles mainly composed of carbon particles and lithium vanadium phosphate, but also the charge transfer resistance as a whole of the positive electrode active material for lithium ion secondary batteries, It is presumed to exhibit high rate characteristics.
(8) The plate carbon particles are contained in an amount of 0.1 to 8% by weight with respect to the active material particles mainly composed of lithium vanadium phosphate. 7) The positive electrode active material for lithium ion secondary batteries as described in any one of 7).
By setting it as the said range, it is estimated that the charge transfer resistance in the surface of the active material particle which has lithium vanadium phosphate as a main component is reduced more efficiently.
 (9)前記二次元的に拡がる炭素材料がグラフェンを含有し前記活物質粒子の表面の少なくとも一部を被覆する被覆層であることを特徴とする前記(1)に記載のリチウムイオン二次電池用正極活物質。
 上記リチウムイオン二次電池用正極活物質を用いることにより、レート特性が向上したリチウムイオン二次電池を提供することができる。これは、被覆層に含まれるグラフェンによって、電子伝導性が向上するためであると推察される。特にメカノケミカル法を用いて被覆層を形成した場合はレート特性が大きく向上する。これは被覆層に含まれるグラフェンが、被覆層に水平な方向に配向することで、電子伝導性の優れるグラフェンの面内方向と、正極内の電子の伝導する方向が一致するためであると推測される。
 (10)前記被覆層は、単層グラフェンまたは多層グラフェンからなる少なくとも1種を含有することを特徴とする前記(9)に記載のリチウムイオン二次電池用正極活物質
 前記被覆層が単層グラフェンを含有する場合、単層グラフェンが活物質に柔軟に追従するため、多層グラフェンを含有する場合、より良好な電子伝導性を有するためにレート特性が向上する。
(9) The lithium ion secondary battery according to (1), wherein the two-dimensionally expanding carbon material is a coating layer containing graphene and covering at least a part of the surface of the active material particles. Positive electrode active material.
By using the positive electrode active material for a lithium ion secondary battery, a lithium ion secondary battery with improved rate characteristics can be provided. This is presumably because the electron conductivity is improved by the graphene contained in the coating layer. In particular, when the coating layer is formed using a mechanochemical method, the rate characteristics are greatly improved. This is presumed to be because graphene contained in the coating layer is oriented in the horizontal direction to the coating layer, so that the in-plane direction of graphene with excellent electron conductivity matches the direction of electron conduction in the positive electrode. Is done.
(10) The positive electrode active material for a lithium ion secondary battery according to (9), wherein the coating layer contains at least one kind of single-layer graphene or multilayer graphene. When it contains, the single layer graphene flexibly follows the active material, and when it contains multi-layer graphene, it has better electronic conductivity, so that the rate characteristics are improved.
 (11)前記(1)~(10)のいずれか一項に記載のリチウムイオンの次電池用正極活物質を有するリチウムイオン二次電池用正極。
 (12)前記(11)に記載のリチウムイオン二次電池用正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在されるセパレータと非水電解質と、を備えてなるリチウムイオン二次電池。
(11) A positive electrode for a lithium ion secondary battery comprising the positive electrode active material for a lithium ion secondary battery according to any one of (1) to (10).
(12) The positive electrode for a lithium ion secondary battery according to (11), a negative electrode having a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte. Lithium ion secondary battery.
 本発明によれば、高いレート特性を有するリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池を提供することができる。 According to the present invention, it is possible to provide a positive electrode active material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery using the same, having high rate characteristics.
第一及び第二実施形態のリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery of 1st and 2nd embodiment. 第二実施形態のリチウムイオン二次電池用正極活物質の模式断面図である。It is a schematic cross section of the positive electrode active material for lithium ion secondary batteries of a second embodiment.
 本願発明の第一及び第二実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。なお図面の寸法比率は図示の比率に限られたものではない。
 第一実施形態では、二次元的に拡がる炭素材料として、少なくとも一部が板状の炭素粒子が使用されている。第二実施形態では、二次元的に拡がる炭素材料として、グラフェンを含有し前記活物質粒子の表面の少なくとも一部を被覆する被覆層が使用されている。
(第一実施形態)
First and second embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined. In addition, the dimensional ratio of drawing is not restricted to the ratio of illustration.
In the first embodiment, at least a part of plate-like carbon particles is used as a carbon material that expands two-dimensionally. In the second embodiment, a coating layer that contains graphene and covers at least a part of the surface of the active material particles is used as a carbon material that expands two-dimensionally.
(First embodiment)
 以下、本発明の第一実施形態について、図面を参照して詳細に説明する。 Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
(リチウムイオン二次電池)
 本実施形態に係る電極、及びリチウムイオン二次電池について図1を参照して簡単に説明する。リチウムイオン二次電池100は、主として積層体40、積層体40を密閉した状態で収容するケース50、及び積層体40に接続された一対のリード60、62を備えている。また図示されていないが、積層体40とともに電解液をケース50に収容している。
(Lithium ion secondary battery)
An electrode and a lithium ion secondary battery according to this embodiment will be briefly described with reference to FIG. The lithium ion secondary battery 100 mainly includes a laminate 40, a case 50 that accommodates the laminate 40 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 40. Although not shown, the electrolytic solution is housed in the case 50 together with the laminate 40.
 積層体40は、正極20、負極30がセパレータ10を挟んで対向配置されたものである。正極20は、板状(膜状)の正極集電体22上に正極活物質層24が設けられたものである。負極30は、板状(膜状)の負極集電体32条に負極活物質層34が設けられたものである。正極活物質層24及び負極活物質層34がセパレータ10の両側にそれぞれ接触している。正極集電体22及び負極集電体32の端部には、それぞれリード62、60が接続されており、リード60、62の端部はケース50の外部にまで延びている。 The laminated body 40 is configured such that the positive electrode 20 and the negative electrode 30 are arranged to face each other with the separator 10 interposed therebetween. The positive electrode 20 is obtained by providing a positive electrode active material layer 24 on a plate-like (film-like) positive electrode current collector 22. The negative electrode 30 is obtained by providing a negative electrode active material layer 34 on a plate-like (film-like) negative electrode current collector 32. The positive electrode active material layer 24 and the negative electrode active material layer 34 are in contact with both sides of the separator 10. Leads 62 and 60 are connected to the ends of the positive electrode current collector 22 and the negative electrode current collector 32, respectively, and the ends of the leads 60 and 62 extend to the outside of the case 50.
 以下、正極20及び負極30を総称して電極20、30といい、正極集電体22及び負極集電体32を総称して集電体22、33といい、正極活物質層24及び負極活物質層34を総称して活物質層24、34という。 Hereinafter, the positive electrode 20 and the negative electrode 30 are collectively referred to as electrodes 20 and 30, and the positive electrode current collector 22 and the negative electrode current collector 32 are collectively referred to as current collectors 22 and 33, the positive electrode active material layer 24 and the negative electrode active material. The material layer 34 is collectively referred to as the active material layers 24 and 34.
(リチウムイオン二次電池用正極活物質)
 本実施形態に係るリチウムイオン二次電池用正極活物質について説明する。本実施形態に係るリチウムイオン二次電池用正極活物質は、下記組成式(1)で表されるリン酸バナジウムリチウムを主成分とする活物質粒子と、炭素粒子を有し、前記炭素粒子の少なくとも一部は板状であることを特徴とする。
 Li(M)(PO (1)
 (MはVOまたはVであり、0.05≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3である。)
(Positive electrode active material for lithium ion secondary battery)
The positive electrode active material for a lithium ion secondary battery according to this embodiment will be described. The positive electrode active material for a lithium ion secondary battery according to the present embodiment includes active material particles mainly composed of lithium vanadium phosphate represented by the following composition formula (1), and carbon particles. At least a portion is plate-shaped.
Li a (M) b (PO 4 ) c (1)
(M is VO or V, and 0.05 ≦ a ≦ 3.3, 0.9 ≦ b ≦ 2.2, and 0.9 ≦ c ≦ 3.3.)
 なお、組成式(1)で表されるリン酸バナジウムリチウムは、この組成式で表現された化学両論組成の酸素量である必要はなく、酸素欠損しているものも広く含むものである。つまり、X線回折等により同じ組成系として同定されているものが対象になる。 Note that the lithium vanadium phosphate represented by the composition formula (1) does not need to have the stoichiometric oxygen amount represented by this composition formula, and includes a wide range of oxygen-deficient ones. In other words, those identified as the same composition system by X-ray diffraction or the like are targeted.
 そのため組成式(1)で表されるリン酸バナジウムリチウムに加え、バナジウムの一部がW、Mo、Ti、Al、Ni、Co、Mn、Fe、Zr、Cu、Zn及びYbからなる群から選択される一種以上の元素で置換されていてもよい。 Therefore, in addition to lithium vanadium phosphate represented by the composition formula (1), a part of vanadium is selected from the group consisting of W, Mo, Ti, Al, Ni, Co, Mn, Fe, Zr, Cu, Zn, and Yb. It may be substituted with one or more elements.
 また、組成式(1)で表されるリン酸バナジウムリチウムに加え、リンの一部がW、Si、S、B、Moからなる群から選択される一種以上の元素で置換されていてもよい。 In addition to lithium vanadium phosphate represented by the composition formula (1), part of phosphorus may be substituted with one or more elements selected from the group consisting of W, Si, S, B, and Mo. .
 本実施形態に係るリン酸バナジウムリチウムの平均粒子径は、50nm~1000nmであることが好ましい。平均粒子径が50nm以上であれば、板状の炭素粒子を通して、電子の移動経路中の、リン酸バナジウムリチウムが効率的に接するため電子伝導性が向上することでレート特性が向上する。平均粒子径が500nm以下であれば、電子が電子伝導性の低いリン酸バナジウムリチウムの結晶内部を移動する経路が短くなることで、レート特性が向上する。 The average particle diameter of the lithium vanadium phosphate according to the present embodiment is preferably 50 nm to 1000 nm. When the average particle diameter is 50 nm or more, lithium vanadium phosphate in the electron movement path is efficiently in contact with the plate-like carbon particles, so that the electron conductivity is improved and the rate characteristics are improved. If the average particle diameter is 500 nm or less, the path through which electrons move inside the crystal of lithium vanadium phosphate having a low electron conductivity is shortened, thereby improving rate characteristics.
 前記リン酸バナジウムリチウムは1次粒子、もしくは扁平状の2次粒子であることが好ましい。1次粒子、もしくは扁平状の2次粒子であることで電子がリン酸バナジウムリチウムの結晶内部を移動する経路が短くなり、レート特性が向上する。 The lithium vanadium phosphate is preferably primary particles or flat secondary particles. By being primary particles or flat secondary particles, the path through which electrons move inside the crystal of lithium vanadium phosphate is shortened, and the rate characteristics are improved.
 組成式(1)で表されるリン酸リチウムバナジウムの中でもLiVOPOまたはLi(POで表される化合物を用いることが好ましく、特にLiVPOを用いることが好ましい。 Among the lithium vanadium phosphates represented by the composition formula (1), it is preferable to use a compound represented by LiVOPO 4 or Li 3 V 2 (PO 4 ) 3 , and it is particularly preferable to use LiVPO 4 .
 前記LiVOPOは、α型(三斜晶)、β型(斜方晶)、γ型(正方晶)等複数の結晶相を取りえるが、中でもβ型(斜方晶)の結晶相を有することが好ましい。これにより、α型(三斜晶)やγ型(正方晶)の結晶相を有する場合と比較して、より高い充放電容量が得られる。 The LiVOPO 4 can have a plurality of crystal phases such as α-type (triclinic), β-type (orthorhombic), and γ-type (tetragonal), and in particular has a β-type (orthogonal) crystal phase. It is preferable. As a result, a higher charge / discharge capacity can be obtained as compared with the case of having an α-type (triclinic) or γ-type (tetragonal) crystal phase.
 本実施形態におけるリン酸バナジウムリチウムはα型、β型、γ型それぞれの結晶相を有するLiVOPO及び、Li(POから選ばれる2種以上を混合して使用してもよい。 The lithium vanadium phosphate in the present embodiment may be used by mixing two or more kinds selected from LiVOPO 4 and Li 3 V 2 (PO 4 ) 2 each having α-type, β-type, and γ-type crystal phases. Good.
 また、本実施形態に係るリン酸バナジウムリチウムは、β型の結晶相を有するLiVOPOを80%以上含有していることが特に好ましい。 The lithium vanadium phosphate according to this embodiment particularly preferably contains 80% or more of LiVOPO 4 having a β-type crystal phase.
 本実施形態に係る正極活物質に含まれるリン酸バナジウムリチウムの組成及び結晶相はX線回折などにより同定することができる。
 本実施形態に係る正極活物質中に含まれるリン酸バナジウムリチウムを主成分とする活物質粒子の含有比率は、50~100質量%、好ましくは80~100質量%、より好ましくは95~100質量%である。
The composition and crystal phase of lithium vanadium phosphate contained in the positive electrode active material according to this embodiment can be identified by X-ray diffraction or the like.
The content ratio of the active material particles mainly composed of lithium vanadium phosphate contained in the positive electrode active material according to the present embodiment is 50 to 100% by mass, preferably 80 to 100% by mass, more preferably 95 to 100% by mass. %.
(板状形状を有する炭素粒子)
 本実施形態に係る炭素粒子は、板状であることを特徴とする。
 炭素粒子が板状であるとは、複数の炭素粒子が板状に成形されたものであることを意味する。板状に成形された炭素粒子の好ましい密度は、1.0~2.2g/cmである。より好ましくは、1.2~2.0g/cmである。さらにより好ましくは、1.5~1.8g/cmである。
 本実施形態に係る正極活物質中に含まれる少なくとも一部が板状の炭素粒子の含有比率は、2~20質量%、好ましくは5~15質量%、より好ましくは7~10質量%である。
(Carbon particles having a plate shape)
The carbon particles according to this embodiment are plate-shaped.
A carbon particle having a plate shape means that a plurality of carbon particles are formed into a plate shape. The preferred density of the carbon particles formed into a plate shape is 1.0 to 2.2 g / cm 3 . More preferably, it is 1.2 to 2.0 g / cm 3 . Even more preferably, it is 1.5 to 1.8 g / cm 3 .
The content ratio of at least partly plate-like carbon particles contained in the positive electrode active material according to the present embodiment is 2 to 20% by mass, preferably 5 to 15% by mass, more preferably 7 to 10% by mass. .
 本実施形態に係る炭素粒子は、平均板面径Aが50≦A≦10000nmであることが好ましい。更に好ましくは100≦A≦1000nmである。
 板面径は、炭素粒子からなる板内で板上に引くことのできる面方向での最も長い直線と定義される。平均板面径Aは、一定数の炭素粒子からなる板を対象として、測定した板面径の値の平均値である。
 本実施形態に係る炭素粒子からなる板の平均アスペクト比は、1.0~50である。より好ましくは、1.5~35である。さらにより好ましくは、2.0~21である。
 アスペクト比は、上記板面径を長径とし、それ直交する板径を短径とし、長径/短径から得ることができる。平均アスペクト比は、一定数の炭素粒子からなる板を対象として、測定したアスペクト比の値の平均値である。
The carbon particles according to the present embodiment preferably have an average plate surface diameter A of 50 ≦ A ≦ 10000 nm. More preferably, 100 ≦ A ≦ 1000 nm.
The plate surface diameter is defined as the longest straight line in the surface direction that can be drawn on the plate within the plate made of carbon particles. The average plate surface diameter A is an average value of the measured plate surface diameter values for a plate made of a certain number of carbon particles.
The average aspect ratio of the plate made of carbon particles according to this embodiment is 1.0 to 50. More preferably, it is 1.5 to 35. Even more preferably, it is 2.0-21.
The aspect ratio can be obtained from the major axis / minor axis, with the plate surface diameter as the major axis and the plate diameter perpendicular to the plate surface diameter as the minor axis. The average aspect ratio is an average value of measured aspect ratio values for a plate made of a certain number of carbon particles.
 本実施形態に係る炭素粒子は、平均厚みBが0.3≦B≦50nmであることが好ましい。更に好ましくは3nm≦B≦20nmである。 The carbon particles according to the present embodiment preferably have an average thickness B of 0.3 ≦ B ≦ 50 nm. More preferably, 3 nm ≦ B ≦ 20 nm.
 本実施形態に係る炭素粒子における平均板面径Aに対する平均厚みBの比率A/Bが5≦A/B≦1000であることが好ましい。更に好ましくは10≦A/B≦500である。 The ratio A / B of the average thickness B to the average plate surface diameter A in the carbon particles according to the present embodiment is preferably 5 ≦ A / B ≦ 1000. More preferably, 10 ≦ A / B ≦ 500.
 上記関係を満たす炭素粒子を用いることで、リン酸バナジウムリチウムを主成分とする活物質粒子の表面において高い電荷移動低減効果が得られ、レート特性が改善するものと推測される。 It is presumed that by using carbon particles satisfying the above relationship, a high charge transfer reducing effect is obtained on the surface of the active material particles mainly composed of lithium vanadium phosphate, and the rate characteristics are improved.
 本実施形態に係る炭素粒子の少なくとも一部は、リン酸バナジウムリチウムを主成分とする活物質粒子の表面の少なくとも一部を被覆していることが好ましい。 It is preferable that at least a part of the carbon particles according to the present embodiment covers at least a part of the surface of the active material particles mainly composed of lithium vanadium phosphate.
 これによりリン酸バナジウムリチウムを主成分とする活物質粒子の表面と、炭素粒子との間における電荷移動抵抗を大幅に低減することが可能となる。 This makes it possible to significantly reduce the charge transfer resistance between the surface of the active material particles mainly composed of lithium vanadium phosphate and the carbon particles.
 本実施形態に係る炭素粒子は、リン酸バナジウムリチウムを主成分とする活物質粒子の表面の30%以上を被覆していることが好ましい。また、リン酸バナジウムリチウムを主成分とする活物質粒子の表面の50%以上を被覆していることがより好ましく、全体を被覆していることがさらに好ましい。 The carbon particles according to the present embodiment preferably cover 30% or more of the surface of the active material particles mainly composed of lithium vanadium phosphate. Further, it is more preferable to cover 50% or more of the surface of the active material particles mainly composed of lithium vanadium phosphate, and it is more preferable to cover the whole.
 リン酸バナジウムリチウムを主成分とする活物質粒子に対する被覆率を高めることにより、より電荷移動抵抗が低減され、レート特性が改善されるものと推測される。 It is presumed that the charge transfer resistance is further reduced and the rate characteristics are improved by increasing the coverage of the active material particles mainly composed of lithium vanadium phosphate.
 また、炭素粒子の少なくとも一部は、リン酸バナジウムリチウムを主成分とする活物質粒子と複合化されていることが好ましい。 Further, it is preferable that at least a part of the carbon particles is combined with active material particles mainly composed of lithium vanadium phosphate.
 これにより炭素粒子とリン酸バナジウムリチウムを主成分とする活物質粒子間における電荷移動抵抗の低減のみならず、リチウムイオン二次電池用正極活物質全体としての電荷移動抵抗が低減されることで、高いレート特性を示すものと推測される。 This reduces not only the charge transfer resistance between the active material particles mainly composed of carbon particles and lithium vanadium phosphate, but also the charge transfer resistance as a whole of the positive electrode active material for lithium ion secondary batteries, It is presumed to exhibit high rate characteristics.
 本実施形態に係るリチウムイオン二次電池用正極活物質は、板状の炭素粒子の少なくとも一部が、リン酸バナジウムリチウムを主成分とする活物質粒子の表面の少なくとも一部を被覆し、かつ板状の炭素粒子の少なくとも一部が、リン酸バナジウムリチウムを主成分とする活物質粒子と複合化されていることがより好ましい。 In the positive electrode active material for a lithium ion secondary battery according to the present embodiment, at least a part of the plate-like carbon particles covers at least a part of the surface of the active material particles mainly composed of lithium vanadium phosphate, and More preferably, at least a part of the plate-like carbon particles is combined with active material particles mainly composed of lithium vanadium phosphate.
 これにより、リン酸バナジウムリチウムを主成分とする活物質粒子の表面と、炭素粒子との間における電荷移動抵抗に加えて、リチウムイオン二次電池用正極活物質全体としての電荷移動抵抗が合わせて低減されることで、より高いレート特性を示すものと推測される。 Thereby, in addition to the charge transfer resistance between the surface of the active material particle mainly composed of lithium vanadium phosphate and the carbon particle, the charge transfer resistance as the whole positive electrode active material for the lithium ion secondary battery is combined. By being reduced, it is estimated that a higher rate characteristic is exhibited.
 本実施形態に係る炭素粒子は、後述する方法を用いて作製された板状形状を有する炭素粒子を用いることができる。また、既存の板状形状を有する炭素粒子を用いることもでき、これらを混合して用いてもよい。 As the carbon particles according to the present embodiment, carbon particles having a plate shape manufactured using a method described later can be used. Moreover, the carbon particle which has the existing plate shape can also be used, and these may be mixed and used.
 また、本実施形態に係る炭素粒子の他に、粒状、塊状等の従来から知られる炭素材料を混合してもよい。 Further, in addition to the carbon particles according to the present embodiment, conventionally known carbon materials such as a granular shape and a lump shape may be mixed.
 本実施形態に係る炭素粒子に対して、他の形状を有する炭素粒子を混合する場合、板状の炭素粒子が主成分として含まれていることが好ましい。具体的には、炭素材料全体における60体積%以上が板状形状を有する炭素粒子であることが好ましい。より好ましい板状の炭素粒子含有量は、70体積%以上である。さらにより好ましい板状の炭素粒子含有量は、80体積%以上である。 When carbon particles having other shapes are mixed with the carbon particles according to the present embodiment, it is preferable that plate-like carbon particles are included as a main component. Specifically, 60% by volume or more of the entire carbon material is preferably carbon particles having a plate shape. A more preferable plate-like carbon particle content is 70% by volume or more. An even more preferable plate-like carbon particle content is 80% by volume or more.
 本実施形態に係る炭素粒子は、透過型電子顕微鏡(TEM)を用いて観察することができる。また、電極中に含まれる板状形状を有する炭素粒子は、正極の断面をクロスセクションポリッシャやイオンミリング装置などで研磨した後に、走査型電子顕微鏡、透過型電子顕微鏡などによって観察・測定できる。特に透過型電子顕微鏡が好ましい。 The carbon particles according to the present embodiment can be observed using a transmission electron microscope (TEM). The carbon particles having a plate shape contained in the electrode can be observed and measured with a scanning electron microscope, a transmission electron microscope, or the like after the cross section of the positive electrode is polished with a cross section polisher or an ion milling device. A transmission electron microscope is particularly preferable.
 炭素粒子における平均板面径A、平均厚みBは、板状の炭素粒子10個を無作為に選択し、その平均値を本実施形態における炭素粒子の平均板面径A、平均厚みBとし、その値を用いてA/Bの値を計算することができる。 The average plate surface diameter A and average thickness B of the carbon particles are selected randomly from 10 plate-like carbon particles, and the average values are defined as the average plate surface diameter A and average thickness B of the carbon particles in the present embodiment. The value can be used to calculate the A / B value.
 本実施形態に係る炭素粒子は、リン酸バナジウムリチウムを主成分とする活物質粒子に対して0.1~20重量%の割合で含有されていることが好ましい。より好ましくは0.5~15質量%である。さらにより好ましくは、5.0~12.0質量%である。 The carbon particles according to the present embodiment are preferably contained at a ratio of 0.1 to 20% by weight with respect to the active material particles mainly composed of lithium vanadium phosphate. More preferably, it is 0.5 to 15% by mass. Even more preferably, it is 5.0 to 12.0% by mass.
 上記範囲とすることで十分な電荷移動抵抗低減効果が得られ、高いレート特性が得られる。 In the above range, a sufficient charge transfer resistance reduction effect can be obtained, and high rate characteristics can be obtained.
 本実施形態に係るリチウムイオン二次電池用正極に含まれる炭素粒子は、炭素・硫黄分析装置などを用いて測定することができる。 The carbon particles contained in the positive electrode for a lithium ion secondary battery according to this embodiment can be measured using a carbon / sulfur analyzer or the like.
(正極集電体)
 正極集電体22は、導電性の板材であればよく、例えば、アルミニウム、銅、ニッケル箔の金属薄板を用いることができる。
(Positive electrode current collector)
The positive electrode current collector 22 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
(正極バインダー)
 バインダーは、活物質同士を結合すると共に、活物質と集電体22とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。
(Positive electrode binder)
The binder binds the active materials to each other and binds the active material to the current collector 22. The binder is not particularly limited as long as it can be bonded as described above. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene- Perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), polyvinyl fluoride (PVF) ) And the like.
 また、上記の他に、バインダーとして、例えば、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFPTFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。 In addition to the above, as the binder, for example, vinylidene fluoride-hexafluoropropylene-based fluororubber (VDF-HFP-based fluororubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber (VDF-HFPPTFE-based) Fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-PFP-TFE fluorine rubber), vinylidene fluoride Ride-perfluoromethyl vinyl ether-tetrafluoroethylene fluoro rubber (VDF-PFMVE-TFE fluoro rubber), vinylidene fluoride-chlorotrifluoroethylene fluoro rubber The containing rubbers (VDF-CTFE-based fluorine rubber) vinylidene fluoride-based fluorine rubbers such as may be used.
 また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、バインダーが導電材の機能も発揮するので導電材を添加しなくてもよい。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等の高分子化合物にリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。 Further, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene. In this case, since the binder also functions as a conductive material, it is not necessary to add a conductive material. Examples of the ion conductive conductive polymer include those obtained by combining a polymer compound such as polyethylene oxide and polypropylene oxide with a lithium salt or an alkali metal salt mainly composed of lithium.
(負極活物質)
 負極活物質はリチウムイオンを吸蔵・放出可能な化合物であればよく、公知のリチウムイオン電池用の負極活物質を使用できる。負極活物質としては、例えば、リチウムイオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、アルミニウム、シリコン、スズ等のリチウムと化合することのできる金属、二酸化シリコン、二酸化スズ等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。単位重量あたりの容量の高く、比較的安定な黒鉛を用いることが好ましい。
(Negative electrode active material)
The negative electrode active material should just be a compound which can occlude / release lithium ion, and can use the well-known negative electrode active material for lithium ion batteries. Examples of the negative electrode active material include carbon materials that can occlude and release lithium ions (natural graphite, artificial graphite), carbon nanotubes, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, and the like, aluminum, silicon And particles containing a metal that can be combined with lithium such as tin, an amorphous compound mainly composed of an oxide such as silicon dioxide and tin dioxide, and lithium titanate (Li 4 Ti 5 O 12 ). . It is preferable to use graphite having a high capacity per unit weight and relatively stable.
(負極集電体)
 負極集電体32は、導電性の板材であればよく、例えば、アルミニウム、銅、ニッケル箔の金属薄板を用いることができる。
(Negative electrode current collector)
The negative electrode current collector 32 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
(負極導電材)
 導電材としては、例えば、カーボンブラック類等のカーボン粉末、カーボンナノチューブ、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
(Negative electrode conductive material)
Examples of the conductive material include carbon powder such as carbon black, carbon nanotube, carbon material, fine metal powder such as copper, nickel, stainless steel and iron, a mixture of carbon material and fine metal powder, and conductive oxide such as ITO. It is done.
(負極バインダー)
 負極に用いるバインダーは正極と同様のものを使用できる。
(Negative electrode binder)
The binder used for a negative electrode can use the same thing as a positive electrode.
(セパレータ)
 セパレータ18は、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いはセルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
(Separator)
The separator 18 only needs to be formed of an electrically insulating porous structure, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose, polyester and Examples thereof include a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polypropylene.
 (非水電解液)
 非水電解液は、非水溶媒に電解質が溶解されており、非水溶媒として環状カーボネートと、鎖状カーボネートと、を含有してもよい。
(Non-aqueous electrolyte)
The nonaqueous electrolytic solution has an electrolyte dissolved in a nonaqueous solvent, and may contain a cyclic carbonate and a chain carbonate as a nonaqueous solvent.
 環状カーボネートとしては、電解質を溶媒和することができるものであれば特に限定されず、公知の環状カーボネートを使用できる。例えば、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネートなどを用いることができる。 The cyclic carbonate is not particularly limited as long as it can solvate the electrolyte, and a known cyclic carbonate can be used. For example, ethylene carbonate, propylene carbonate, butylene carbonate, and the like can be used.
 鎖状カーボネートとしては、環状カーボネートの粘性を低下させることができるものであれば特に限定されず、公知の鎖状カーボネートを使用できる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが挙げられる。その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタンなどを混合して使用してもよい。 The chain carbonate is not particularly limited as long as it can reduce the viscosity of the cyclic carbonate, and a known chain carbonate can be used. Examples thereof include diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. In addition, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like may be mixed.
 非水溶媒中の環状カーボネートと鎖状カーボネートの割合は体積にして1:9~1:1にすることが好ましい。 The ratio of the cyclic carbonate and the chain carbonate in the non-aqueous solvent is preferably 1: 9 to 1: 1 by volume.
 電解質としては、例えば、LiPF、LiClO、LiBF、LiCFSO、LiCF、CFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等のリチウム塩が使用できる。なお、これらのリチウム塩は1種を単独で使用してもよく、2種以上を併用してもよい。特に、導電性の観点から、LiPFを含むことが好ましい。 Examples of the electrolyte include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 , CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 Lithium salts such as CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB can be used. In addition, these lithium salts may be used individually by 1 type, and may use 2 or more types together. In particular, LiPF 6 is preferably included from the viewpoint of conductivity.
 LiPFを非水溶媒に溶解する際は、非水電解液中の電解質の濃度を、0.5~2.0mol/Lに調整することが好ましい。電解質の濃度が0.5mol/L以上であると、非水電解液の導電性を充分に確保することができ、充放電時に十分な容量が得られやすい。また、電解質の濃度が2.0mol/L以内に抑えることで、非水電解液の粘度上昇を抑え、リチウムイオンの移動度を充分に確保することができ、充放電時に十分な容量が得られやすくなる。 When LiPF 6 is dissolved in a non-aqueous solvent, the concentration of the electrolyte in the non-aqueous electrolyte is preferably adjusted to 0.5 to 2.0 mol / L. When the concentration of the electrolyte is 0.5 mol / L or more, the conductivity of the nonaqueous electrolytic solution can be sufficiently secured, and a sufficient capacity can be easily obtained during charging and discharging. Moreover, by suppressing the electrolyte concentration to within 2.0 mol / L, it is possible to suppress an increase in the viscosity of the non-aqueous electrolyte, to sufficiently secure the mobility of lithium ions, and to obtain a sufficient capacity during charging and discharging. It becomes easy.
 LiPFをその他の電解質と混合する場合にも、非水電解液中のリチウムイオン濃度が0.5~2.0mol/Lに調整することが好ましく、LiPFからのリチウムイオン濃度がその50mol%以上含まれることがさらに好ましい。 Even when LiPF 6 is mixed with other electrolytes, the lithium ion concentration in the non-aqueous electrolyte is preferably adjusted to 0.5 to 2.0 mol / L, and the lithium ion concentration from LiPF 6 is 50 mol%. More preferably, it is contained.
(正極活物質の製造方法)
 次に、本実施形態に係る本正極材料の製造方法について説明する。以下に本実施形態に係る正極材料として、LiVOPOの製造方法を例示する。
(Method for producing positive electrode active material)
Next, the manufacturing method of this positive electrode material which concerns on this embodiment is demonstrated. Hereinafter, as a positive electrode material according to this embodiment, a method for producing LiVOPO 4 will be exemplified.
 本実施形態に係る正極活物質は、水熱合成を用いて合成することができ、前駆体合成工程と、熱処理工程と、を備える。前駆体合成工程では、リチウム源。リン酸源、バナジウム源、還元剤および水を含む混合物を、全量乾燥する。これにより、前駆体が得られる。熱処理工程では、得られた前駆体の熱処理がされる。 The positive electrode active material according to the present embodiment can be synthesized using hydrothermal synthesis, and includes a precursor synthesis step and a heat treatment step. In the precursor synthesis process, a lithium source. The mixture containing the phosphate source, vanadium source, reducing agent and water is dried in its entirety. Thereby, a precursor is obtained. In the heat treatment step, the obtained precursor is heat treated.
(前駆体合成工程)
 前駆体合成工程では、まず、上述したリチウム源、リン酸源、バナジウム源および還元剤を水に投入することによって、これらが分散した混合物(水溶液)を調製する。なお、混合物を調製する際は、例えば、最初に、リン酸源、バナジウム源及び水の混合物を還流した後、還流後の混合物にリチウム源を加えてもよい。
(Precursor synthesis process)
In the precursor synthesis step, first, the above-described lithium source, phosphate source, vanadium source, and reducing agent are introduced into water to prepare a mixture (aqueous solution) in which these are dispersed. In preparing the mixture, for example, first, a mixture of a phosphoric acid source, a vanadium source, and water may be refluxed, and then a lithium source may be added to the refluxed mixture.
 上記工程にて得られた混合物(水溶液)を、全量乾燥する。これにより前駆体が得られる。この乾燥では、乾燥機および電気炉などの、外部から熱を加えることが出来る既存の任意の装置を用いることができる。 The whole amount of the mixture (aqueous solution) obtained in the above step is dried. Thereby, a precursor is obtained. In this drying, any existing apparatus capable of applying heat from the outside, such as a dryer and an electric furnace, can be used.
 リチウム源は、例えば、LiNO、LiCo、LiOH、LiCl、LiSO及びCHCOOLiからなる群より選ばれる少なくとも一種を含む。 The lithium source includes, for example, at least one selected from the group consisting of LiNO 3 , Li 2 Co 3 , LiOH, LiCl, Li 2 SO 4 and CH 3 COOLi.
 リン酸源は、例えば、HPO、NHPO、(NHHPO及びLiPOからなる群より選ばれる少なくとも一種を含む。 The phosphoric acid source includes, for example, at least one selected from the group consisting of H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 and Li 3 PO 4 .
 バナジウム源は、例えば、V、VO、V及びNHVOからなる群より選ばれる少なくとも一種を含む。なお、二種以上のリチウム源、二種以上のリン酸源又は二種以上のバナジウム源を併用してもよい。この場合、各原料の混合比は、調整される。 Vanadium sources include, for example, at least one selected from the group consisting of V 2 O 5, VO 2, V 2 O 3 and NH 4 VO 3. Two or more lithium sources, two or more phosphoric acid sources, or two or more vanadium sources may be used in combination. In this case, the mixing ratio of each raw material is adjusted.
 還元剤は、例えば、アスコルビン酸、クエン酸、酒石酸、ポリエチレン、ポリエチレングリコール、過酸化水素、ヒドラジンからなる群より選ばれる少なくとも一種を含む。なお、二種以上の還元剤を併用してもよく、適宜各還元剤の混合比を調整して用いることができる。 The reducing agent includes, for example, at least one selected from the group consisting of ascorbic acid, citric acid, tartaric acid, polyethylene, polyethylene glycol, hydrogen peroxide, and hydrazine. Two or more reducing agents may be used in combination, and the mixing ratio of each reducing agent can be appropriately adjusted and used.
 上記の前駆体合成工程は、常温で実施されてもよいし、オイルバスなどを用いて常温以上の温度で実施してもよい。 The precursor synthesis step described above may be performed at room temperature, or may be performed at a temperature equal to or higher than room temperature using an oil bath or the like.
<熱処理工程>
 熱処理工程では、前駆体合成工程により得られた前駆体が、不活性雰囲気または酸化雰囲気中で熱処理される。これによりLiVOPOを合成することができる。
<Heat treatment process>
In the heat treatment step, the precursor obtained in the precursor synthesis step is heat treated in an inert atmosphere or an oxidizing atmosphere. Thereby, LiVOPO 4 can be synthesized.
 熱処理雰囲気は、例えば窒素、アルゴンなどの不活性ガスおよび酸素や大気のような酸化性ガスからなる群より選ばれる、少なくとも一種、または一種以上の混合気体を含む。 The heat treatment atmosphere includes, for example, at least one kind or a mixed gas of one or more kinds selected from the group consisting of an inert gas such as nitrogen and argon and an oxidizing gas such as oxygen and air.
 熱処理の温度は400℃~650℃であることが好ましく、500℃~600℃であることがより好ましい。 The temperature of the heat treatment is preferably 400 ° C. to 650 ° C., more preferably 500 ° C. to 600 ° C.
 上記熱処理雰囲気、熱処理の温度を制御することで、得られるLiVOPOの結晶構造や粒子径などを制御することができる。 By controlling the heat treatment atmosphere and the temperature of the heat treatment, the crystal structure, particle diameter, and the like of the obtained LiVOPO 4 can be controlled.
 本実施形態に係る正極活物質の製造方法は、上記方法に限定されるものではなく、固相法、水熱法、ゾルゲル法および気相法などを含む既存の任意の方法によっても合成することができる。 The method for producing a positive electrode active material according to the present embodiment is not limited to the above method, and the positive electrode active material may be synthesized by any existing method including a solid phase method, a hydrothermal method, a sol-gel method, and a gas phase method. Can do.
(板状形状を有する炭素粒子の製造方法)
 本実施形態に係る板状形状を有する炭素粒子は、既存の薄片状の炭素材料を用いることができる。また、アセチレンブラック等の従来の炭素粉末を加圧形成することによって板状形状を有する炭素粒子を形成することもできる。
(Method for producing carbon particles having a plate shape)
For the carbon particles having a plate shape according to the present embodiment, an existing flaky carbon material can be used. Moreover, the carbon particle which has plate shape can also be formed by press-forming the conventional carbon powders, such as acetylene black.
 加圧条件や、原料として用いる炭素粉末を種々変更することにより板状形状を有する炭素粒子の平均板面径や、平均厚みと調整することができる。 It is possible to adjust the average plate surface diameter and the average thickness of the carbon particles having a plate shape by variously changing the pressure conditions and the carbon powder used as a raw material.
(リチウムイオン二次電池用正極活物質の製造方法)
 本実施形態に係るリチウムイオン二次電池用正極活物質は、摩擦や圧縮といった機械エネルギーを利用したメカノケミカル法、リン酸バナジウムリチウムと板状形状を有する炭素粒子を含む分散液を噴霧乾燥させるスプレードライ法など、粒子表面に被覆層を形成する既存の方法を用いることができる。中でも、メカノケミカル法は均一で正極活物質と板状形状を有する炭素材料との密着性が高いため好ましい。
(Method for producing positive electrode active material for lithium ion secondary battery)
The positive electrode active material for a lithium ion secondary battery according to the present embodiment includes a mechanochemical method using mechanical energy such as friction and compression, and a spray that spray-drys a dispersion containing lithium vanadium phosphate and carbon particles having a plate shape. An existing method for forming a coating layer on the particle surface, such as a dry method, can be used. Among these, the mechanochemical method is preferable because it is uniform and has high adhesion between the positive electrode active material and the carbon material having a plate shape.
 メカノケミカル法の具体的な製造装置の例としては、メカノフュージョン装置、遊星ミルのような装置を用いることができる。スプレードライ法の具体的な装置の例としては、スプレードライヤ等を用いることができる。 As an example of a specific manufacturing apparatus of the mechanochemical method, an apparatus such as a mechanofusion apparatus or a planetary mill can be used. As an example of a specific apparatus for the spray drying method, a spray dryer or the like can be used.
 板状形状を有する炭素材料とリン酸バナジウムリチウムを主成分とする活物質粒子の密着性は従来装置における製造条件で調整できる。例えばメカノケミカル法を用いる場合、処理装置の角度、回転数、処理時間及び材料投入量を適宜調整することで被覆層の密着性を調整できる。 The adhesion between the carbon material having a plate shape and the active material particles mainly composed of lithium vanadium phosphate can be adjusted by the manufacturing conditions in the conventional apparatus. For example, when the mechanochemical method is used, the adhesion of the coating layer can be adjusted by appropriately adjusting the angle, rotation speed, processing time, and material input amount of the processing apparatus.
(電極20,30の製造方法)
 次に、本実施形態に係る電極20,30の製造方法について説明する。
(Method for manufacturing electrodes 20 and 30)
Next, a method for manufacturing the electrodes 20 and 30 according to the present embodiment will be described.
 上記活物質、バインダー及び溶媒を混合する。必要に応じ導電材を更に加えても良い。溶媒としては例えば、水、N-メチル-2-ピロリドン等を用いることができる。塗料を構成する成分の混合方法は特に制限されず、混合順序もまた特に制限されない。上記塗料を、集電体22、32に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができ、例えば、スリットダイコート法、ドクターブレード法が挙げられる。 上 記 Mix the above active material, binder and solvent. A conductive material may be further added as necessary. As the solvent, for example, water, N-methyl-2-pyrrolidone or the like can be used. The mixing method of the components constituting the paint is not particularly limited, and the mixing order is not particularly limited. The paint is applied to the current collectors 22 and 32. There is no restriction | limiting in particular as an application | coating method, The method employ | adopted when producing an electrode normally can be used, For example, the slit die-coating method and a doctor blade method are mentioned.
 続いて、集電体22、32上に塗布された塗料中の溶媒を除去する。除去法は特に限定されず、塗料が塗布された集電体22、32を、例えば80℃~150℃の雰囲気下で乾燥させればよい。 Subsequently, the solvent in the paint applied on the current collectors 22 and 32 is removed. The removal method is not particularly limited, and the current collectors 22 and 32 to which the paint has been applied may be dried, for example, in an atmosphere of 80 ° C. to 150 ° C.
 そして、このようにして正極活物質層24、負極活物質層34が形成された電極を必要に応じ、ロールプレス装置等によりプレス処理を行う。ロールプレスの線圧は例えば、1000kgf/cmとすることができる。 Then, the electrode on which the positive electrode active material layer 24 and the negative electrode active material layer 34 are formed in this way is subjected to a press treatment by a roll press device or the like as necessary. The linear pressure of the roll press can be set to 1000 kgf / cm, for example.
 以上の工程を経て、集電体22、32上に電極活物質層24,34が形成された電極が得られる。 Through the above steps, an electrode in which the electrode active material layers 24 and 34 are formed on the current collectors 22 and 32 is obtained.
(リチウムイオン二次電池の製造方法)
 続いて、本実施形態に係るリチウムイオン二次電池の製造方法について説明する。本実施形態に係るリチウムイオン二次電池の製造方法は、上述した活物質を含む正極20と、負極30と、正極と負極との間に介在するセパレータ10と、リチウム塩を含む非水電解質溶液と、を外装体50内に封入する工程を備える。
(Method for producing lithium ion secondary battery)
Then, the manufacturing method of the lithium ion secondary battery which concerns on this embodiment is demonstrated. The method for manufacturing a lithium ion secondary battery according to the present embodiment includes a positive electrode 20 containing the active material, a negative electrode 30, a separator 10 interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte solution containing a lithium salt. And a step of enclosing the outer body 50 in the exterior body 50.
 例えば、上述した活物質を含む正極20と、上記負極30と、上記セパレータ10とを積層し、正極20及び負極30を、積層方向に対して垂直な方向から、プレス器具で加熱加圧し、正極20、セパレータ10、及び負極30を密着させる。そして、例えば、予め作製した袋状の外装体50に、上記積層体40を入れ、上記リチウム塩を含む非水電解質溶液を注入することにより、リチウムイオン二次電池を作製することができる。なお、外装体に上記リチウム塩を含む非水電解質溶液を注入するのではなく、積層体40を予め上記リチウム塩を含む非水電解質溶液に含浸させてもよい。 For example, the positive electrode 20 including the active material described above, the negative electrode 30 and the separator 10 are stacked, and the positive electrode 20 and the negative electrode 30 are heated and pressed with a press tool from a direction perpendicular to the stacking direction. 20, the separator 10 and the negative electrode 30 are brought into close contact with each other. Then, for example, a lithium ion secondary battery can be manufactured by putting the laminate 40 into a bag-shaped outer package 50 prepared in advance and injecting a non-aqueous electrolyte solution containing the lithium salt. Instead of injecting the nonaqueous electrolyte solution containing the lithium salt into the outer package, the laminate 40 may be impregnated in advance with the nonaqueous electrolyte solution containing the lithium salt.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.
 以上、本発明に係る実施形態について詳細に説明したが、前記の実施形態に限定されるものではなく、種々変形可能である。例えば、前記の実施形態においては、ラミネートフィルム型のリチウムイオン二次電池について説明したが、正極、負極およびセパレータを巻回または折り畳んだ構造を有するリチウムイオン二次電池についても同様に適用することができる。さらに、電池形状として、円筒型、角型、コイン型などのリチウムイオン二次電池についても好適に応用することができる。
(第二実施形態)
As mentioned above, although embodiment concerning this invention was described in detail, it is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above-described embodiment, the laminated film type lithium ion secondary battery has been described. However, the present invention can be similarly applied to a lithium ion secondary battery having a structure in which a positive electrode, a negative electrode, and a separator are wound or folded. it can. Furthermore, it can apply suitably also about lithium ion secondary batteries, such as a cylindrical shape, a square shape, and a coin type, as a battery shape.
(Second embodiment)
 本発明に係るリチウムイオン二次電池の好適な実施の一例を第二実施形態として、図面を参照しつつ詳細に説明する。
 第二実施形態では、二次元的に拡がる炭素材料として、グラフェンを含有し前記活物質粒子の表面の少なくとも一部を被覆する被覆層が使用されている。その他の構成については、第二実施形態は、第一実施形態の構成と基本的に同一である。従って、第一実施形態の記載と重複する説明は、適宜省略する。
An example of a preferred embodiment of a lithium ion secondary battery according to the present invention will be described in detail as a second embodiment with reference to the drawings.
In the second embodiment, a coating layer that contains graphene and covers at least a part of the surface of the active material particles is used as a carbon material that expands two-dimensionally. Regarding other configurations, the second embodiment is basically the same as the configuration of the first embodiment. Therefore, the description which overlaps with description of 1st embodiment is abbreviate | omitted suitably.
 第二実施形態におけるリチウムイオン二次電池は、第一実施形態と同一であるので、詳しい説明は省略する。 Since the lithium ion secondary battery in the second embodiment is the same as that in the first embodiment, detailed description thereof is omitted.
(正極活物質)
 本実施形態に係る正極活物質200について図2を参照して説明する。本実施形態の正極活物質200は、図2に示すように下記組成式(1)で表されるリン酸バナジウムリチウムと、リン酸バナジウムリチウム110の表面の少なくとも一部が単層グラフェン121または多層グラフェン121からなる少なくとも1種を含有する被覆層120で被覆されている。
 Li(M)(PO (1)
 (MはVOまたはVであり、0.05≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3である。)
(Positive electrode active material)
A positive electrode active material 200 according to this embodiment will be described with reference to FIG. As shown in FIG. 2, the positive electrode active material 200 according to the present embodiment includes a lithium vanadium phosphate represented by the following composition formula (1) and at least a part of the surface of the lithium vanadium phosphate 110 having single-layer graphene 121 or multilayer It is covered with a covering layer 120 containing at least one kind of graphene 121.
Li a (M) b (PO 4 ) c (1)
(M is VO or V, and 0.05 ≦ a ≦ 3.3, 0.9 ≦ b ≦ 2.2, and 0.9 ≦ c ≦ 3.3.)
 なお、組成式(1)で表されるリン酸バナジウムリチウムは、この組成式で表現された化学両論組成の酸素量である必要はなく、酸素欠損しているものも広く含むものである。つまり、X線回折等により同じ組成系として同定されているものが対象になる。 Note that the lithium vanadium phosphate represented by the composition formula (1) does not need to have the stoichiometric oxygen amount represented by this composition formula, and includes a wide range of oxygen-deficient ones. In other words, those identified as the same composition system by X-ray diffraction or the like are targeted.
 そのため組成式(1)で表されるリン酸バナジウムリチウムに加え、バナジウムの一部がW、Mo、Ti、Al、Ni、Co、Mn、Fe、Zr、Cu、Zn及びYbからなる群から選択される一種以上の元素で置換されていてもよい。
 本実施形態に係る正極活物質中に含まれるリン酸バナジウムリチウムを主成分とする活物質粒子の含有比率は、60~100質量%、好ましくは80~100質量%、より好ましくは96~99質量%である。
Therefore, in addition to lithium vanadium phosphate represented by the composition formula (1), a part of vanadium is selected from the group consisting of W, Mo, Ti, Al, Ni, Co, Mn, Fe, Zr, Cu, Zn, and Yb. It may be substituted with one or more elements.
The content ratio of the active material particles mainly composed of lithium vanadium phosphate contained in the positive electrode active material according to this embodiment is 60 to 100% by mass, preferably 80 to 100% by mass, more preferably 96 to 99% by mass. %.
 本実施形態に係る正極活物質中に含まれる被覆層の含有比率は、0.5~10.0質量%、好ましくは1.0~8.0質量%、より好ましくは2.0~4.0質量%である。
 また、単層グラフェンとは、炭素原子の六員環を平面に敷き詰めた構造を持つ単原子層の物質である。多層グラフェンとは、グラフェンが複数積層した構造を持つ物質であり、厚みが50nm以下のものを多層グラフェンとする。
 単層グラフェンとしては、比表面積が300~1500mg、粒径(側部)が0.2~1.0μmのものが好ましい。
 多層グラフェンとしては、比表面積が80~500mg、粒径(側部)が0.2~5.0μmのものが好ましい。
 被覆層中のグラフェン含有割合は50~100質量%であり、好ましくは60~90質量%であり、より好ましくは70~80質量%である。
The content ratio of the coating layer contained in the positive electrode active material according to this embodiment is 0.5 to 10.0% by mass, preferably 1.0 to 8.0% by mass, and more preferably 2.0 to 4.%. 0% by mass.
Single-layer graphene is a single-layer material having a structure in which six-membered rings of carbon atoms are spread on a plane. Multilayer graphene is a substance having a structure in which a plurality of graphenes are stacked, and a multilayer graphene having a thickness of 50 nm or less.
As the single-layer graphene, those having a specific surface area of 300 to 1500 m 2 g and a particle size (side part) of 0.2 to 1.0 μm are preferable.
The multilayer graphene preferably has a specific surface area of 80 to 500 m 2 g and a particle size (side part) of 0.2 to 5.0 μm.
The graphene content in the coating layer is 50 to 100% by mass, preferably 60 to 90% by mass, and more preferably 70 to 80% by mass.
 図2に示したようなリン酸バナジウムリチウムの平均1次粒子径は、50nm~500nmであることが好ましい。平均1次粒子径が50nm以上であれば、電子の移動経路中の、リン酸バナジウムリチウム表面の被覆層と、他の被覆層が接続する接点を通過する回数が少なくなり電子伝導性が向上することでレート特性が向上する。平均1次粒子径が500nm以下であれば、電子が電子伝導性の低いリン酸バナジウムリチウムの結晶内部を移動する経路が短くなることで、レート特性が向上する。 The average primary particle diameter of lithium vanadium phosphate as shown in FIG. 2 is preferably 50 nm to 500 nm. If the average primary particle diameter is 50 nm or more, the number of times that the coating layer on the surface of the lithium vanadium phosphate in the electron movement path passes through the contact point connected to the other coating layer is reduced, and the electron conductivity is improved. This improves the rate characteristics. If the average primary particle diameter is 500 nm or less, the path through which electrons move inside the crystal of lithium vanadium phosphate having a low electron conductivity is shortened, thereby improving the rate characteristics.
 前記リン酸バナジウムリチウムは1次粒子、もしくは扁平状の2次粒子であることが好ましい。1次粒子、もしくは扁平状の2次粒子であることで電子がリン酸バナジウムリチウムの結晶内部を移動する経路が短くなり、レート特性が向上する。 The lithium vanadium phosphate is preferably primary particles or flat secondary particles. By being primary particles or flat secondary particles, the path through which electrons move inside the crystal of lithium vanadium phosphate is shortened, and the rate characteristics are improved.
 上記組成式(1)で表されるリン酸リチウムバナジウムの中でもLiVOPOまたはLi(POで表される化合物を用いることが好ましく、特にLiVOPOを用いることが好ましい。 Among the lithium vanadium phosphates represented by the composition formula (1), a compound represented by LiVOPO 4 or Li 3 V 2 (PO 4 ) 3 is preferably used, and particularly LiVOPO 4 is preferably used.
 前記LiVOPOは、β型(斜方晶)の結晶相を有することが好ましい。これにより、α型(三斜晶)やγ型(正方晶)の結晶相を有する場合と比較して、より高い充放電容量が得られる。 The LiVOPO 4 preferably has a β-type (orthorhombic) crystal phase. As a result, a higher charge / discharge capacity can be obtained as compared with the case of having an α-type (triclinic) or γ-type (tetragonal) crystal phase.
 図2に示したような被覆層は、リン酸バナジウムリチウムの粒子表面を70%以上被覆すると活物質粒子間の電子伝導性がさらに向上し、レート特性が向上するため好ましい。より好ましくは、被覆層はリン酸バナジウムリチウムの粒子表面を80%以上被覆する。さらにより好ましくは、被覆層はリン酸バナジウムリチウムの粒子表面を95%以上被覆する。 A coating layer as shown in FIG. 2 is preferable when the surface of lithium vanadium phosphate particles is covered by 70% or more because the electron conductivity between the active material particles is further improved and the rate characteristics are improved. More preferably, the coating layer covers 80% or more of the particle surface of lithium vanadium phosphate. Even more preferably, the coating layer covers 95% or more of the particle surface of lithium vanadium phosphate.
 被覆層の平均厚さは、3nm~100nmであることが好ましい。被覆層の平均厚さが3nm以上であれば、被覆層が良好な電子伝導性を示し、被覆層の平均厚さが100nm以下であれば、良好な被覆層内部のLiイオンの拡散性を示すため、レート特性が向上する。 The average thickness of the coating layer is preferably 3 nm to 100 nm. If the average thickness of the coating layer is 3 nm or more, the coating layer shows good electron conductivity, and if the average thickness of the coating layer is 100 nm or less, it shows good diffusibility of Li ions inside the coating layer. Therefore, rate characteristics are improved.
 被覆層はグラフェンとカーボンブラックを含むことが好ましい。被覆層にグラフェンとカーボンブラックを含む場合、グラフェンと活物質間、グラフェン同士の電子伝導性を向上させ、またカーボンブラック周辺の空隙に電解液が浸透することでLiイオンの拡散性が向上し、レート特性が向上する。 The coating layer preferably contains graphene and carbon black. When the coating layer contains graphene and carbon black, it improves the electronic conductivity between graphene and the active material, between the graphene, and the diffusion of Li ions is improved by the penetration of the electrolyte into the void around the carbon black, Rate characteristics are improved.
 グラフェンに対するカーボンブラックの質量比率が5%~60%であることがさらに好ましい。グラフェンに対するカーボンブラックの質量比率が5%以上であれば、良好な電子伝導性とLiイオン拡散性が得られ、質量比率が60%以下であれば、被覆層内部のグラフェン同士の距離が近づき良好な電子伝導性が得られるため、レート特性が向上する。 More preferably, the mass ratio of carbon black to graphene is 5% to 60%. If the mass ratio of carbon black to graphene is 5% or more, good electron conductivity and Li ion diffusibility can be obtained, and if the mass ratio is 60% or less, the distance between the graphenes inside the coating layer is close and good. Therefore, rate characteristics are improved.
 被覆層に含まれるグラフェンの平均厚さは、20nm以下であることが好ましい。グラフェンの平均厚さが20nm以下であれば、リン酸バナジウムリチウムの粒子表面に柔軟に追従するため、より良好な電子伝導性が得られるため、レート特性が向上する。 The average thickness of graphene contained in the coating layer is preferably 20 nm or less. If the average thickness of graphene is 20 nm or less, since it follows the particle surface of lithium vanadium phosphate flexibly, better electron conductivity can be obtained, so that rate characteristics are improved.
 なお、グラフェンの平均厚さは前記被覆層の平均厚さ以下であることが好ましい。 In addition, it is preferable that the average thickness of a graphene is below the average thickness of the said coating layer.
 本実施形態に係る正極活物質に含まれるリン酸バナジウムリチウムの結晶相はX線回折などによって同定できる。粒子の断面は、正極を切断し、断面をクロスセクションポリッシャやイオンミリング装置などで研磨した後に、走査型電子顕微鏡、透過型電子顕微鏡などによって観察・測定できる。被覆層の平均厚さは透過型電子顕微鏡によって粒子100個の断面を観察し、その平均値とする。またグラフェンの平均厚さは被覆層に含まれるグラフェン100個の断面を観察し、その平均値とする。また、グラフェンとカーボンブラックの質量比は透過型電子顕微鏡もしくはラマン分光法によって測定できる。 The crystal phase of lithium vanadium phosphate contained in the positive electrode active material according to this embodiment can be identified by X-ray diffraction or the like. The cross section of the particles can be observed and measured with a scanning electron microscope, a transmission electron microscope, etc. after cutting the positive electrode and polishing the cross section with a cross section polisher or an ion milling device. The average thickness of the coating layer is the average value obtained by observing the cross section of 100 particles with a transmission electron microscope. The average thickness of graphene is the average value obtained by observing a cross section of 100 graphenes included in the coating layer. The mass ratio of graphene and carbon black can be measured by a transmission electron microscope or Raman spectroscopy.
 第二実施形態における正極集電体、正極バインダー、負極活物質、負極集電体、負極導電材、負極バインダー、セパレータ及び非水電解液は、第一実施形態と同一であるので、詳しい説明は省略する。 The positive electrode current collector, the positive electrode binder, the negative electrode active material, the negative electrode current collector, the negative electrode conductive material, the negative electrode binder, the separator, and the non-aqueous electrolyte in the second embodiment are the same as in the first embodiment. Omitted.
(正極活物質の製造方法)
 本実施形態に係る正極活物質200は、以下の被覆層形成工程により製造することができる。
(Method for producing positive electrode active material)
The positive electrode active material 200 according to the present embodiment can be manufactured by the following coating layer forming process.
(被覆層形成工程)
 被覆層形成工程では、リン酸バナジウムリチウムの粒子表面にグラフェンを含む被覆層を形成できる。被覆層を形成する方法として、特に限定されないが、摩擦や圧縮といった機械エネルギーを利用したメカノケミカル法、リン酸バナジウムリチウムとグラフェンを含む分散液を噴霧乾燥させるスプレードライ法など、粒子表面に被覆層を形成する既存の方法を用いることができる。中でも、メカノケミカル法は均一で密着性の良い被覆層を形成できるため好ましい。
(Coating layer forming process)
In the coating layer forming step, a coating layer containing graphene can be formed on the surface of lithium vanadium phosphate particles. The method for forming the coating layer is not particularly limited, but a coating layer on the particle surface, such as a mechanochemical method using mechanical energy such as friction or compression, or a spray drying method in which a dispersion containing lithium vanadium phosphate and graphene is spray-dried is used. Existing methods of forming can be used. Among these, the mechanochemical method is preferable because it can form a coating layer that is uniform and has good adhesion.
 メカノケミカル法の具体的な製造装置の例としては、メカノフュージョン装置、遊星ミルのような装置を用いることができる。スプレードライ法の具体的な装置の例としては、スプレードライヤ等を用いることができる。 As an example of a specific manufacturing apparatus of the mechanochemical method, an apparatus such as a mechanofusion apparatus or a planetary mill can be used. As an example of a specific apparatus for the spray drying method, a spray dryer or the like can be used.
 グラフェンを含む被覆層とリン酸バナジウムリチウム粒子の密着性は被覆層形成条件で調整できる。例えばメカノケミカル法を用いて被覆層を形成する場合、処理装置の角度、回転数、処理時間及び材料投入量を適宜調整することで被覆層の密着性を調整できる。 The adhesion between the coating layer containing graphene and the lithium vanadium phosphate particles can be adjusted by the coating layer forming conditions. For example, when the coating layer is formed using a mechanochemical method, the adhesion of the coating layer can be adjusted by appropriately adjusting the angle, rotation speed, processing time, and material input amount of the processing apparatus.
 第二実施形態における電極20,30の製造方法及びリチウムイオン二次電池の製造方法は、第一実施形態と同一であるので、詳しい説明は省略する。 Since the manufacturing method of the electrodes 20 and 30 and the manufacturing method of the lithium ion secondary battery in the second embodiment are the same as those in the first embodiment, detailed description thereof will be omitted.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.
(第一実施例)
 以下、前記の実施形態に基づいて、さらに実施例および比較例を用いて本発明をさらに詳細に説明する。
(First Example)
Hereinafter, based on the above-described embodiment, the present invention will be described in more detail using examples and comparative examples.
(実施例A1)
(炭素粒子の作成)
 実施例A1における炭素粒子を以下に示す方法で作成した。
(Example A1)
(Creation of carbon particles)
The carbon particles in Example A1 were prepared by the following method.
 アセチレンブラックを0.5g秤量し、ハンドプレス機を用いて100Kgfで加圧することでφ16mmの薄円形状のアセチレンブラックを形成した。次いで、得られた薄円形状のアセチレンブラックをPETフィルムに挟み込み、ロールプレス機を用いて2000kgf/cmの線圧で更に加圧、圧延した。ロールプレス機を10回通し、得られた薄片状のアセチレンブラックを瑪瑙乳鉢で軽く粉砕したものを、実施例A1の炭素粒子とした。 A 0.5 g of acetylene black was weighed and pressurized with 100 Kgf using a hand press machine to form a thin acetylene black of φ16 mm. Next, the obtained thin circular acetylene black was sandwiched between PET films, and further pressed and rolled at a linear pressure of 2000 kgf / cm using a roll press. A roll press machine was passed 10 times, and the obtained flaky acetylene black was lightly pulverized in an agate mortar to obtain carbon particles of Example A1.
 得られた炭素粒子はTEMを用いて観察した。実施例A1に係る炭素粒子は、平均板面径Aが200nm、平均厚みBが10nmであり、A/Bが20である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A1 had a plate shape having an average plate surface diameter A of 200 nm, an average thickness B of 10 nm, and A / B of 20.
(リチウムイオン二次電池用正極の作成)
 リン酸バナジウムリチウムとして平均粒径100nmの斜方晶LiVOPOを100重量部、得られた炭素粒子を5重量部とを混合したものをリチウムイオン二次電池用正極活物質として用いた。上記正極活物質96%とポリフッ化ビニリデン(PVDF)4%をN-メチル-2-ピロリドン(NMP)中に分散させ、スラリーを調製した。得られたスラリーを厚さ15μmのアルミ箔上に塗工し、温度120℃で30分間乾燥した後にロールプレス装置を用いて線圧1000kgf/cmでプレス処理することにより、正極を得た。
(Creation of positive electrode for lithium ion secondary battery)
A mixture of 100 parts by weight of orthorhombic LiVOPO 4 having an average particle diameter of 100 nm and 5 parts by weight of the obtained carbon particles as lithium vanadium phosphate was used as a positive electrode active material for a lithium ion secondary battery. 96% of the positive electrode active material and 4% of polyvinylidene fluoride (PVDF) were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a slurry. The obtained slurry was coated on an aluminum foil having a thickness of 15 μm, dried at a temperature of 120 ° C. for 30 minutes, and then pressed using a roll press apparatus at a linear pressure of 1000 kgf / cm to obtain a positive electrode.
 前記の正極は、金型を用いて18mm×22mmの電極サイズに打ち抜き、リチウムイオン二次電池用正極を作製した。 The positive electrode was punched into an electrode size of 18 mm × 22 mm using a mold to produce a positive electrode for a lithium ion secondary battery.
 (負極の作製)
 負極活物質として天然黒鉛粉末90質量部と、PVDF10質量部をNMP中に分散させてスラリーを調製した。得られたスラリーを厚さ15μmの銅箔上に塗工し、温度140℃で30分間減圧乾燥した後に、ロールプレス装置を用いてプレス処理することにより、負極を得た。
(Preparation of negative electrode)
As negative electrode active material, 90 parts by mass of natural graphite powder and 10 parts by mass of PVDF were dispersed in NMP to prepare a slurry. The obtained slurry was coated on a copper foil having a thickness of 15 μm, dried under reduced pressure at a temperature of 140 ° C. for 30 minutes, and then pressed using a roll press apparatus to obtain a negative electrode.
 前記の負極は、金型を用いて19mm×23mmの電極サイズに打ち抜き、リチウムイオン二次電池用負極を作製した。 The negative electrode was punched into an electrode size of 19 mm × 23 mm using a mold to prepare a negative electrode for a lithium ion secondary battery.
 (非水電解質溶液)
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒に、LiPFを1.0mol/L、LiBFを0.1mol/Lとなるように溶解させた非水電解質溶液を用意した。混合溶媒におけるECとDECとの体積比は、EC:DEC=30:70とした。
(Nonaqueous electrolyte solution)
A non-aqueous electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1.0 mol / L and LiBF 4 at a concentration of 0.1 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC). The volume ratio of EC to DEC in the mixed solvent was EC: DEC = 30: 70.
 (セパレータ)
 膜厚20μmのポリエチレン微多孔膜(空孔率:40%、シャットダウン温度:134℃)を用意した。
(Separator)
A polyethylene microporous membrane having a thickness of 20 μm (porosity: 40%, shutdown temperature: 134 ° C.) was prepared.
 (電池の作製) (Battery production)
 (電池セルの作製)
 前記のリチウムイオン二次電池用正極と、前記リチウムイオン二次電池用負極とを、ポリエチレン製のセパレータを介して積層し、電極積層体を作製した。これを電極体1層とし、同様の作製方法にて4層で構成された電極積層体を作製した。なお、前記の正極および負極は、両面に各合剤層を備えているため、負極3枚と正極2枚とセパレータ4枚とで構成されている。さらに、前記の電極積層体の負極において、負極合剤層を設けていない銅箔の突起端部にニッケル製の負極リードを取り付け、一方、電極積層体の正極においては、正極合剤層を設けていないアルミニウム箔の突起端部にアルミニウム製の正極リードを超音波融着機によって取り付けた。そしてこの電極積層体を、外装体用のアルミニウムのラミネートフィルムに融着させ、前記のラミネートフィルムを折り畳むことで前記の電極体を外装体内に挿入させた。外装体周囲の1辺を除いてヒートシールすることにより閉口部を形成し、この開口部より、非水電解液を注入した。そして、前記の外装体の開口部を真空シール機によって減圧しながらヒートシールで密封し、実施例A1におけるラミネートタイプの電池セルを作製した。なお、リチウムイオン二次電池の作製は、ドライルーム内で行った。
(Production of battery cells)
The positive electrode for a lithium ion secondary battery and the negative electrode for a lithium ion secondary battery were laminated via a polyethylene separator to produce an electrode laminate. This was used as one electrode body, and an electrode laminate composed of four layers was produced by the same production method. In addition, since the said positive electrode and negative electrode are equipped with each mixture layer on both surfaces, they are comprised by 3 negative electrodes, 2 positive electrodes, and 4 separators. Furthermore, in the negative electrode of the electrode laminate, a negative electrode lead made of nickel is attached to the protruding end of the copper foil not provided with the negative electrode mixture layer, while the positive electrode mixture layer is provided in the positive electrode of the electrode laminate. The positive electrode lead made of aluminum was attached to the protruding end portion of the aluminum foil that was not formed by an ultrasonic fusion machine. Then, this electrode laminate was fused to an aluminum laminate film for an exterior body, and the laminate film was folded to insert the electrode body into the exterior body. A closed portion was formed by heat-sealing except for one side around the exterior body, and a non-aqueous electrolyte was injected from this opening. And the opening part of the said exterior body was sealed by heat sealing, decompressing with a vacuum sealing machine, and the laminate type battery cell in Example A1 was produced. The lithium ion secondary battery was manufactured in a dry room.
(レート特性の測定)
 作製した実施例A1の電池セルを用いて、0.1Cの電流密度で電圧が4.2V(vs.Li/Li)に到達するまで定電流充電を行い、さらに電流密度が0.05Cに低下するまで4.2V(vs.Li/Li)において定電圧充電を行い、充電容量を測定した。
(Measurement of rate characteristics)
Using the fabricated battery cell of Example A1, constant current charging was performed until the voltage reached 4.2 V (vs. Li / Li + ) at a current density of 0.1 C, and the current density was further increased to 0.05 C. Constant voltage charging was performed at 4.2 V (vs. Li / Li + ) until the voltage decreased, and the charge capacity was measured.
 続いて、5分間の休止後に0.1Cの電流密度で電圧が2.5V(vs.Li/Li)となるまで定電流放電を行い、放電容量を測定した。なお、電流密度は1Cを正極活物質重量あたり、158mAh/gとして計算した。 Subsequently, after resting for 5 minutes, constant current discharge was performed at a current density of 0.1 C until the voltage reached 2.5 V (vs. Li / Li + ), and the discharge capacity was measured. The current density was calculated with 1C as 158 mAh / g per weight of the positive electrode active material.
 充放電時の電流密度を3C、とし上記充放電の手順を繰り返すことで電池セルのレート特性を測定した。 The current density during charging / discharging was set to 3C, and the rate characteristics of the battery cells were measured by repeating the above charging / discharging procedure.
 0.1Cの電流密度で定電流放電した時の放電容量C1に対する、3Cの電流密度で定電流放電した時の放電容量C2の割合を容量維持率として(数1)で表す式により算出し、レート特性を評価した。
Figure JPOXMLDOC01-appb-M000001
The ratio of the discharge capacity C2 when the constant current discharge is performed at a current density of 3C to the discharge capacity C1 when the constant current discharge is performed at a current density of 0.1C is calculated according to an expression represented by (Expression 1) Rate characteristics were evaluated.
Figure JPOXMLDOC01-appb-M000001
 レート特性の評価は、電池セルを5個作成し、得られた結果の平均値を取ることで評価した。 Evaluation of the rate characteristics was performed by preparing five battery cells and taking the average value of the obtained results.
(実施例A2~A32)
 実施例A2~A32は、炭素粒子の成型する際のアセチレンブラックの仕込み量と、ハンドプレスのプレス圧と、ロールプレスのプレス圧及びプレス回数の条件、得られた炭素粒子の粉砕条件を変更することで、板状形状の炭素粒子の平均板面径A、及び平均厚みBを調整したことを除いて実施例A1と同様に炭素粒子を作製した。また、各実施例において得られた炭素粒子とリン酸バナジウムリチウムとしてLiVPO4またはLi3V2(PO4)3のいずれかを用いることで、電池セルを作製した。以下に各実施例における板状形状の炭素粒子の作製方法及び電池セルの詳細を記載する。
(Examples A2 to A32)
Examples A2 to A32 change the charged amount of acetylene black when molding carbon particles, the press pressure of the hand press, the press pressure and the number of presses of the roll press, and the pulverization conditions of the obtained carbon particles. Thus, carbon particles were produced in the same manner as in Example A1, except that the average plate surface diameter A and the average thickness B of the plate-like carbon particles were adjusted. Moreover, the battery cell was produced by using either LiVPO4 or Li3V2 (PO4) 3 as the carbon particle obtained in each Example, and lithium vanadium phosphate. The production method of the plate-like carbon particles and the details of the battery cell in each example are described below.
(実施例A2)
 加圧、圧延する際に、ロールプレス機の線圧を2500kgf/cmとしたことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A2の電池セルを作製した。
(Example A2)
When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 2500 kgf / cm. A battery cell of Example A2 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A2に係る炭素粒子は、平均板面径Aが1017nm、平均厚みBが10nmであり、A/Bが101.7である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A2 were in the form of a plate having an average plate surface diameter A of 1017 nm, an average thickness B of 10 nm, and A / B of 101.7.
(実施例A3)
 加圧、圧延する際に、ロールプレス機の線圧を3000kgf/cmとしたことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A3の電池セルを作製した。
(Example A3)
When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 3000 kgf / cm. A battery cell of Example A3 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A3に係る炭素粒子は、平均板面径Aが3915nm、平均厚みBが10nmであり、A/Bが391.5である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A3 were plate-shaped with an average plate surface diameter A of 3915 nm, an average thickness B of 10 nm, and A / B of 391.5.
(実施例A4)
 加圧、圧延する際に、ロールプレス機の線圧を4000kgf/cmとしたことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A4の電池セルを作製した。
(Example A4)
When pressurizing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was set to 4000 kgf / cm. A battery cell of Example A4 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A4に係る炭素粒子は、平均板面径Aが8703nm、平均厚みBが10nmであり、A/Bが870.3である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A4 had a plate shape with an average plate surface diameter A of 8703 nm, an average thickness B of 10 nm, and A / B of 870.3.
(実施例A5)
 加圧、圧延する際に、ロールプレス機の線圧を1000kgf/cmとしたことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A5の電池セルを作製した。
(Example A5)
When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 1000 kgf / cm. A battery cell of Example A5 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A5に係る炭素粒子は、平均板面径Aが98nm、平均厚みBが10nmであり、A/Bが9.8である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A5 had a plate shape having an average plate surface diameter A of 98 nm, an average thickness B of 10 nm, and A / B of 9.8.
(実施例A6)
 加圧、圧延する際に、ロールプレス機の線圧を1200kgf/cmとしたことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A6の電池セルを作製した。
(Example A6)
When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 1200 kgf / cm. A battery cell of Example A6 was produced in the same manner as Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A6に係る炭素粒子は、平均板面径Aが108nm、平均厚みBが10nmであり、A/Bが10.8である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A6 were in the form of a plate having an average plate surface diameter A of 108 nm, an average thickness B of 10 nm, and A / B of 10.8.
(実施例A7)
 加圧、圧延する際に、ロールプレス機の線圧を1800kgf/cmとしたことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A7の電池セルを作製した。
(Example A7)
When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was set to 1800 kgf / cm. A battery cell of Example A7 was produced in the same manner as Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A7に係る炭素粒子は、平均板面径Aが982nm、平均厚みBが10nmであり、A/Bが98.2である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A7 had a plate shape with an average plate surface diameter A of 982 nm, an average thickness B of 10 nm, and A / B of 98.2.
(実施例A8)
 加圧、圧延する際に、ロールプレス機の線圧を1500kgf/cmとしたことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A8の電池セルを作製した。
(Example A8)
When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 1500 kgf / cm. A battery cell of Example A8 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A8に係る炭素粒子は、平均板面径Aが627nm、平均厚みBが10nmであり、A/Bが62.7である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A8 were in the form of a plate having an average plate surface diameter A of 627 nm, an average thickness B of 10 nm, and A / B of 62.7.
(実施例A9)
 アセチレンブラックを0.1g秤量し、ハンドプレス機を用いて200Kgfで加圧したことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A9の電池セルを作製した。
(Example A9)
Carbon particles were produced in the same manner as in Example A1, except that 0.1 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press machine. A battery cell of Example A9 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A9に係る炭素粒子は、平均板面径Aが200nm、平均厚みBが3nmであり、A/Bが67である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A9 were in the form of a plate having an average plate surface diameter A of 200 nm, an average thickness B of 3 nm, and A / B of 67.
(実施例A10)
 アセチレンブラックを0.2g秤量し、ハンドプレス機を用いて200Kgfで加圧したことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A10の電池セルを作製した。
(Example A10)
Carbon particles were produced in the same manner as in Example A1, except that 0.2 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press machine. A battery cell of Example A10 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A10に係る炭素粒子は、平均板面径Aが200nm、平均厚みBが5nmであり、A/Bが40である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A10 were in the form of a plate having an average plate surface diameter A of 200 nm, an average thickness B of 5 nm, and A / B of 40.
(実施例A11)
 アセチレンブラックを0.8g秤量し、ハンドプレス機を用いて200Kgfで加圧したことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A11の電池セルを作製した。
(Example A11)
Carbon particles were produced in the same manner as in Example A1 except that 0.8 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press machine. A battery cell of Example A11 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A11に係る炭素粒子は、平均板面径Aが200nm、平均厚みBが20nmであり、A/Bが10である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A11 had a plate shape having an average plate surface diameter A of 200 nm, an average thickness B of 20 nm, and A / B of 10.
(実施例A12)
 アセチレンブラックを0.05g秤量し、加圧、圧延する際に、ロールプレス機の線圧を3000kgf/cmとしたことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A12の電池セルを作製した。
(Example A12)
Carbon particles were produced in the same manner as in Example A1, except that 0.05 g of acetylene black was weighed, pressed and rolled, and the linear pressure of the roll press machine was 3000 kgf / cm. A battery cell of Example A12 was produced in the same manner as Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A12に係る炭素粒子は、平均板面径Aが200nm、平均厚みBが0.3nmであり、A/Bが667である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A12 were in the form of a plate having an average plate surface diameter A of 200 nm, an average thickness B of 0.3 nm, and A / B of 667.
(実施例A13)
 アセチレンブラックを2.0g秤量し、加圧、圧延する際に、ロールプレス機の線圧を3000kgf/cmとしたことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A13の電池セルを作製した。
(Example A13)
Carbon particles were produced in the same manner as in Example A1 except that 2.0 g of acetylene black was weighed, pressed and rolled, and the linear pressure of the roll press machine was 3000 kgf / cm. A battery cell of Example A13 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A13に係る炭素粒子は、平均板面径Aが200nm、平均厚みBが20nmであり、A/Bが4である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A13 had a plate shape having an average plate surface diameter A of 200 nm, an average thickness B of 20 nm, and A / B of 4.
(実施例A14)
 リン酸バナジウムリチウムとして、平均粒径30nmのLi(POを用いたことを除いて実施例A5と同様にして実施例A14の電池セルを作製した。
(Example A14)
A battery cell of Example A14 was produced in the same manner as Example A5 except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
 得られた炭素粒子はTEMを用いて観察した。実施例A14に係る炭素粒子は、平均板面径Aが80nm、平均厚みBが10nmであり、A/Bが8である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A14 had a plate shape with an average plate surface diameter A of 80 nm, an average thickness B of 10 nm, and A / B of 8.
(実施例A15)
 リン酸バナジウムリチウムとして、平均粒径30nmのLi(POを用いたことを除いて実施例A6と同様にして実施例A15の電池セルを作製した。
(Example A15)
A battery cell of Example A15 was produced in the same manner as Example A6 except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
 得られた炭素粒子はTEMを用いて観察した。実施例A15に係る炭素粒子は、平均板面径Aが115nm、平均厚みBが10nmであり、A/Bが12である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A15 were in the form of a plate having an average plate surface diameter A of 115 nm, an average thickness B of 10 nm, and A / B of 12.
(実施例A16)
 リン酸バナジウムリチウムとして、平均粒径30nmのLi(POを用いたことを除いて実施例A8と同様にして実施例A16の電池セルを作製した。
(Example A16)
A battery cell of Example A16 was produced in the same manner as in Example A8 except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
 得られた炭素粒子はTEMを用いて観察した。実施例A16に係る炭素粒子は、平均板面径Aが570nm、平均厚みBが10nmであり、A/Bが57である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A16 had a plate shape having an average plate surface diameter A of 570 nm, an average thickness B of 10 nm, and A / B of 57.
(実施例A17)
 リン酸バナジウムリチウムとして、平均粒径30nmのLi(POを用いたことを除いて実施例A7と同様にして実施例A17の電池セルを作製した。
(Example A17)
A battery cell of Example A17 was produced in the same manner as in Example A7, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
 得られた炭素粒子はTEMを用いて観察した。実施例A17に係る炭素粒子は、平均板面径Aが971nm、平均厚みBが10nmであり、A/Bが97である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A17 had a plate shape having an average plate surface diameter A of 971 nm, an average thickness B of 10 nm, and A / B of 97.
(実施例A18)
 リン酸バナジウムリチウムとして、平均粒径30nmのLi(POを用いたことを除いて実施例A2と同様にして実施例A18の電池セルを作製した。
(Example A18)
A battery cell of Example A18 was produced in the same manner as in Example A2, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
 得られた炭素粒子はTEMを用いて観察した。実施例A18に係る炭素粒子は、平均板面径Aが1028nm、平均厚みBが10nmであり、A/Bが103である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A18 had a plate shape with an average plate surface diameter A of 1028 nm, an average thickness B of 10 nm, and A / B of 103.
(実施例A19)
 リン酸バナジウムリチウムとして、平均粒径30nmのLi(POを用いたことを除いて実施例A3と同様にして実施例A19の電池セルを作製した。
(Example A19)
A battery cell of Example A19 was produced in the same manner as in Example A3, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
 得られた炭素粒子はTEMを用いて観察した。実施例A19に係る炭素粒子は、平均板面径Aが4196nm、平均厚みBが10nmであり、A/Bが420である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A19 were plate-shaped with an average plate surface diameter A of 4196 nm, an average thickness B of 10 nm, and A / B of 420.
(実施例A20)
 リン酸バナジウムリチウムとして、平均粒径30nmのLi(POを用いたことを除いて実施例A4と同様にして実施例A20の電池セルを作製した。
(Example A20)
A battery cell of Example A20 was produced in the same manner as in Example A4, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
 得られた炭素粒子はTEMを用いて観察した。実施例A20に係る炭素粒子は、平均板面径Aが9379nm、平均厚みBが10nmであり、A/Bが938である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A20 were in the form of a plate having an average plate surface diameter A of 9379 nm, an average thickness B of 10 nm, and A / B of 938.
(実施例A21)
 加圧、圧延する際に、ロールプレス機の線圧を800kgf/cmとしたことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A21の電池セルを作製した。
(Example A21)
When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 800 kgf / cm. A battery cell of Example A21 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A21に係る炭素粒子は、平均板面径Aが51nm、平均厚みBが10nmであり、A/Bが5.1である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A21 had a plate shape with an average plate surface diameter A of 51 nm, an average thickness B of 10 nm, and A / B of 5.1.
(実施例A22)
 加圧、圧延する際に、ロールプレス機の線圧を4000kgf/cmとし、ロールプレス機を15回通したことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A22の電池セルを作製した。
(Example A22)
When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 4000 kgf / cm and the roll press machine was passed 15 times. A battery cell of Example A22 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A21に係る炭素粒子は、平均板面径Aが9891nm、平均厚みBが10nmであり、A/Bが989.1である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A21 had a plate shape with an average plate surface diameter A of 9891 nm, an average thickness B of 10 nm, and A / B of 989.1.
(実施例A23)
 加圧、圧延する際に、ロールプレス機の線圧を600kgf/cmとしたことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A23の電池セルを作製した。
(Example A23)
When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 600 kgf / cm. A battery cell of Example A23 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A23に係る炭素粒子は、平均板面径Aが46nm、平均厚みBが10nmであり、A/Bが4.6である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A23 were in the form of a plate having an average plate surface diameter A of 46 nm, an average thickness B of 10 nm, and A / B of 4.6.
(実施例A24)
 加圧、圧延する際に、ロールプレス機の線圧を4000kgf/cmとし、ロールプレス機を20回通したことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A24の電池セルを作製した。
(Example A24)
When pressing and rolling, carbon particles were produced in the same manner as in Example A1, except that the linear pressure of the roll press machine was 4000 kgf / cm and the roll press machine was passed 20 times. A battery cell of Example A24 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A21に係る炭素粒子は、平均板面径Aが10027nm、平均厚みBが10nmであり、A/Bが1002.7である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A21 were in the form of a plate having an average plate surface diameter A of 10027 nm, an average thickness B of 10 nm, and A / B of 1002.7.
(実施例A25)
 アセチレンブラックを0.12g秤量し、ハンドプレス機を用いて200Kgfで加圧したことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A25の電池セルを作製した。
(Example A25)
Carbon particles were produced in the same manner as in Example A1, except that 0.12 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press machine. A battery cell of Example A25 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A25に係る炭素粒子は、平均板面径Aが200nm、平均厚みBが2.8nmであり、A/Bが71.4である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A25 were in the form of a plate having an average plate surface diameter A of 200 nm, an average thickness B of 2.8 nm, and A / B of 71.4.
(実施例A26)
 アセチレンブラックを1.0g秤量し、ハンドプレス機を用いて200Kgfで加圧したことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A26の電池セルを作製した。
(Example A26)
Carbon particles were produced in the same manner as in Example A1, except that 1.0 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press machine. A battery cell of Example A26 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A26に係る炭素粒子は、平均板面径Aが200nm、平均厚みBが23nmであり、A/Bが8.7である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A26 had a plate shape with an average plate surface diameter A of 200 nm, an average thickness B of 23 nm, and A / B of 8.7.
(実施例A27)
 アセチレンブラックを0.04g秤量し、ハンドプレス機を用いて200Kgfで加圧したことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A27の電池セルを作製した。
(Example A27)
Carbon particles were prepared in the same manner as in Example A1, except that 0.04 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press. A battery cell of Example A27 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A27に係る炭素粒子は、平均板面径Aが200nm、平均厚みBが0.2nmであり、A/Bが1000である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A27 were in the form of a plate having an average plate surface diameter A of 200 nm, an average thickness B of 0.2 nm, and A / B of 1000.
(実施例A28)
 アセチレンブラックを2.5g秤量し、ハンドプレス機を用いて200Kgfで加圧したことを除いて実施例A1と同様にして炭素粒子を作製した。得られた炭素粒子を用いたことを除いて、実施例A1と同様にして実施例A28の電池セルを作製した。
(Example A28)
Carbon particles were prepared in the same manner as in Example A1, except that 2.5 g of acetylene black was weighed and pressurized with 200 Kgf using a hand press machine. A battery cell of Example A28 was produced in the same manner as in Example A1, except that the obtained carbon particles were used.
 得られた炭素粒子はTEMを用いて観察した。実施例A28に係る炭素粒子は、平均板面径Aが200nm、平均厚みBが51nmであり、A/Bが3.9である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A28 were in the form of a plate having an average plate surface diameter A of 200 nm, an average thickness B of 51 nm, and A / B of 3.9.
(実施例A29)
 リン酸バナジウムリチウムとして、平均粒径30nmのLi(POを用いたことを除いて実施例A21と同様にして実施例A29の電池セルを作製した。
(Example A29)
A battery cell of Example A29 was produced in the same manner as in Example A21 except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
 得られた炭素粒子はTEMを用いて観察した。実施例A29に係る炭素粒子は、平均板面径Aが51nm、平均厚みBが10nmであり、A/Bが5.1である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A29 were in the form of a plate having an average plate surface diameter A of 51 nm, an average thickness B of 10 nm, and A / B of 5.1.
(実施例A30)
 リン酸バナジウムリチウムとして、平均粒径30nmのLi(POを用いたことを除いて実施例A23と同様にして実施例A30の電池セルを作製した。
(Example A30)
A battery cell of Example A30 was produced in the same manner as in Example A23, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
 得られた炭素粒子はTEMを用いて観察した。実施例A30に係る炭素粒子は、平均板面径Aが47nm、平均厚みBが10nmであり、A/Bが4.7である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A30 had a plate shape with an average plate surface diameter A of 47 nm, an average thickness B of 10 nm, and A / B of 4.7.
(実施例A31)
 リン酸バナジウムリチウムとして、平均粒径30nmのLi(POを用いたことを除いて実施例A22と同様にして実施例A31の電池セルを作製した。
(Example A31)
A battery cell of Example A31 was produced in the same manner as in Example A22, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
 得られた炭素粒子はTEMを用いて観察した。実施例A31に係る炭素粒子は、平均板面径Aが9861nm、平均厚みBが10nmであり、A/Bが986.1である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A31 had a plate shape with an average plate surface diameter A of 9861 nm, an average thickness B of 10 nm, and A / B of 986.1.
(実施例A32)
 リン酸バナジウムリチウムとして、平均粒径30nmのLi(POを用いたことを除いて実施例A24と同様にして実施例A29の電池セルを作製した。
(Example A32)
A battery cell of Example A29 was produced in the same manner as in Example A24, except that Li 3 V 2 (PO 4 ) 3 having an average particle diameter of 30 nm was used as lithium vanadium phosphate.
 得られた炭素粒子はTEMを用いて観察した。実施例A32に係る炭素粒子は、平均板面径Aが10195nm、平均厚みBが10nmであり、A/Bが1019.5である板状であった。 The obtained carbon particles were observed using TEM. The carbon particles according to Example A32 had a plate shape having an average plate surface diameter A of 10195 nm, an average thickness B of 10 nm, and A / B of 1019.5.
(比較例A1)
 実施例A1において用いたアセチレンブラックを加圧成型せず、そのまま用いたことを除いて実施例A1と同様に正極活物質を作製し、電池セルを作製した。
(Comparative Example A1)
A positive electrode active material was produced in the same manner as in Example A1 except that the acetylene black used in Example A1 was used as it was without being pressure-molded, and a battery cell was produced.
(比較例A2)
 リン酸バナジウムリチウムとして、平均粒径30nmのLi(POを用いたことを除いて比較例A1と同様に正極活物質を作製し、電池セルを作製した。
(Comparative Example A2)
A positive electrode active material was produced in the same manner as in Comparative Example A1 except that Li 3 V 2 (PO 4 ) 3 having an average particle size of 30 nm was used as lithium vanadium phosphate, and a battery cell was produced.
(比較例A3)
 実施例A1において用いた正極活物質の材料であるLiVOPOを、平均粒径30nmの斜方晶LiFePOに置換したことを除いて、実施例A1と同様に正極活物質を作製し、電池セルを作製した。
(Comparative Example A3)
A positive electrode active material was produced in the same manner as in Example A1, except that LiVOPO 4 , which is the material of the positive electrode active material used in Example A1, was replaced with orthorhombic LiFePO 4 having an average particle size of 30 nm. Was made.
(比較例A4)
 実施例A1において用いた正極活物質の材料であるLiVOPOを、平均粒径30nmの斜方晶LiFePOに置換し、かつ実施例A1において用いたアセチレンブラックを加圧成型せず、そのまま用いたことを除いて、実施例A1と同様に正極活物質を作製し、電池セルを作製した。
(Comparative Example A4)
LiVOPO 4 which is the material of the positive electrode active material used in Example A1 was replaced with orthorhombic LiFePO 4 having an average particle diameter of 30 nm, and the acetylene black used in Example A1 was used without being pressure-molded. Except for this, a positive electrode active material was produced in the same manner as in Example A1, and a battery cell was produced.
 得られた実施例A1~A20、及び比較例A1~A4おける平均板面径A、平均厚みB、及びレート特性をそれぞれ測定し、その結果から算出した容量維持率を表1に示す。 The average plate surface diameter A, the average thickness B, and the rate characteristics in the obtained Examples A1 to A20 and Comparative Examples A1 to A4 were measured, and the capacity retention ratio calculated from the results is shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、板状を有する炭素粒子を用いて作製した電池セルは高い容量維持率を示すことを確認した。また、板状の平均板面径A、平均厚みBおよびその比であるA/Bの値によって容量維持率に変化が見られた。一方で、同じ量の炭素粒子を用いた比較例A1、A2における電池セルは十分な容量維持率を得られないことを確認した。また、正極活物質の材料としてLiFePOを使用した比較例A3及びA4における電池セルにおいても、十分な容量維持率を得ることができないことが確認された。さらに、比較例A3とA4との比較から、正極活物質の主成分がリン酸バナジウムリチウムでない場合、アセチレンブラックの加圧成形の有無にかかわらず十分な容量維持率を得ることができないことが確認された。この結果から、炭素粒子の形態がレート特性を向上させる要因となっていることが分かった。 From the results in Table 1, it was confirmed that the battery cells produced using the carbon particles having a plate shape showed a high capacity retention rate. In addition, a change was observed in the capacity retention ratio depending on the plate-like average plate surface diameter A, the average thickness B, and the ratio A / B. On the other hand, it was confirmed that the battery cells in Comparative Examples A1 and A2 using the same amount of carbon particles could not obtain a sufficient capacity retention rate. In addition, it was confirmed that sufficient capacity maintenance ratios could not be obtained even in the battery cells in Comparative Examples A3 and A4 using LiFePO 4 as the material of the positive electrode active material. Furthermore, from comparison between Comparative Examples A3 and A4, it is confirmed that when the main component of the positive electrode active material is not lithium vanadium phosphate, a sufficient capacity retention rate cannot be obtained regardless of whether or not acetylene black is pressure-molded. It was done. From this result, it was found that the form of carbon particles is a factor for improving the rate characteristics.
 以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここに開示される発明には上述の具体例を様々に変形、変更したものが含まれる。
(第二実施例)
As mentioned above, although this invention was demonstrated in detail, the said embodiment and Example are only illustrations and what changed and modified the above-mentioned specific example is included in the invention disclosed here.
(Second embodiment)
(実施例B1)
(正極の作成)
 リン酸バナジウムリチウムとして平均粒径170nmのLiVOPOと、平均厚さ2nmのグラフェンとを質量比9:1の割合で混合し、ホソカワミクロン製メカノフュージョンを用いて、回転数3500rpmで処理を行いLiVOPO粒子表面にグラフェンを含有する被覆層を形成したものを正極活物質として用いた。上記正極活物質粉末96%とポリフッ化ビニリデン(PVDF)4%をN-メチル-2-ピロリドン(NMP)中に分散させ、スラリーを調製した。得られたスラリーを厚さ15μmのアルミ箔上に塗工し、温度120℃で30分間乾燥した後にロールプレス装置を用いて線圧1000kgf/cmでプレス処理することにより、正極を得た。
(Example B1)
(Creation of positive electrode)
LiVOPO 4 having an average particle diameter of 170 nm as lithium vanadium phosphate and graphene having an average thickness of 2 nm are mixed at a mass ratio of 9: 1, processed using a Hosokawa Micron mechanofusion at a rotation speed of 3500 rpm, and LiVOPO 4 What formed the coating layer containing a graphene on the particle | grain surface was used as a positive electrode active material. A slurry was prepared by dispersing 96% of the positive electrode active material powder and 4% of polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP). The obtained slurry was coated on an aluminum foil having a thickness of 15 μm, dried at a temperature of 120 ° C. for 30 minutes, and then pressed using a roll press apparatus at a linear pressure of 1000 kgf / cm to obtain a positive electrode.
(正極内部の被覆層の測定)
 LiVOPO粒子表面のグラフェンを含有する被覆層の状態の測定は、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)、ラマン分光装置、クロスセクションポリッシャ、イオンミリング装置を用いて測定した。
測定用の試料は、正極を切断し、切断面をクロスセクションポリッシャおよびイオンミリング装置で研磨することで作製した。
(Measurement of the coating layer inside the positive electrode)
The state of the coating layer containing graphene on the surface of LiVOPO 4 particles was measured using a transmission electron microscope (TEM), a scanning electron microscope (SEM), a Raman spectroscope, a cross section polisher, and an ion milling device.
A sample for measurement was prepared by cutting the positive electrode and polishing the cut surface with a cross section polisher and an ion milling device.
 SEM、EDXおよびTEMによる正極表面および正極断面の観察により、LiVOPO粒子表面に均一なグラフェンを含有する被覆層が形成されていることを確認し、被覆層の平均厚さが5nmであるとわかった。 Observation of the positive electrode surface and positive electrode cross section by SEM, EDX, and TEM confirmed that a coating layer containing uniform graphene was formed on the surface of LiVOPO 4 particles, and found that the average thickness of the coating layer was 5 nm. It was.
 ラマン分光装置による正極断面のラマンマッピング測定により、LiVOPO粒子表面に、グラフェンを含有する被覆層が形成されていることを確認した。 It was confirmed that a coating layer containing graphene was formed on the surface of LiVOPO 4 particles by Raman mapping measurement of the cross section of the positive electrode using a Raman spectroscope.
実施例1と同じ方法で負極の作成、非水電解質溶液の調製及びセパレータの作成を行った。 A negative electrode, a non-aqueous electrolyte solution, and a separator were prepared in the same manner as in Example 1.
(電池の作製)
 上記正極、負極、及びセパレータを積層させて発電要素を構成し、これと上記非水電解液とを用いて、実施例B1の電池セルを作製した。
(Production of battery)
The positive electrode, the negative electrode, and the separator were laminated to constitute a power generation element, and a battery cell of Example B1 was produced using this and the non-aqueous electrolyte.
(Cレート)
 電池セルの容量を1時間で充電もしくは放電する電流密度を1Cと呼び、以下では充電もしくは放電時の電流密度をCレートの定数倍を用いて表す(例えば1Cの半分の電流密度は0.5Cと表す。)
(C rate)
The current density for charging or discharging a battery cell in one hour is called 1C. In the following, the current density during charging or discharging is expressed using a constant multiple of the C rate (for example, a current density half of 1C is 0.5C). Expressed as)
 レート特性の測定は、基本的には第一実施例と同じ方法で行った。ただし、実施例2では、充放電時の電流密度を1Cとした(第一実施例では3C)。 The measurement of rate characteristics was basically performed by the same method as in the first example. However, in Example 2, the current density during charging / discharging was set to 1C (3C in the first example).
(実施例B2~B25、比較例B1~B7)
 実施例B2~B25、比較例B1~B7においては、被覆層へのグラフェン含有の有無、リン酸バナジウムリチウムの組成・結晶相・粒径、グラフェンを含有する被覆層の厚さ、含有されるグラフェンの厚さ、被覆層へのカーボンブラック含有の有無、グラフェンによる被覆の有無、を変更し実施例B1と同様に電池セルを作製し、評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
(Examples B2 to B25, Comparative Examples B1 to B7)
In Examples B2 to B25 and Comparative Examples B1 to B7, the presence or absence of graphene in the coating layer, the composition / crystal phase / particle size of lithium vanadium phosphate, the thickness of the coating layer containing graphene, and the graphene contained A battery cell was prepared and evaluated in the same manner as in Example B1 by changing the thickness, the presence or absence of carbon black in the coating layer, and the presence or absence of graphene coating. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
 表2より、リン酸バナジウムリチウムの表面にグラフェンを含有する被覆層を形成することで、レート特性が向上することがわかる。 Table 2 shows that the rate characteristics are improved by forming a coating layer containing graphene on the surface of lithium vanadium phosphate.
 以上、これまで評価した結果から明らかなように、実施例は比較例と比較して高いレート特性とサイクル特性を示すものが得られることが確認できる。 As described above, as is apparent from the results of the evaluations so far, it can be confirmed that the example shows a higher rate characteristic and cycle characteristic than the comparative example.
 レート特性をさらに向上させたリチウムイオン二次電池を提供することができる。 It is possible to provide a lithium ion secondary battery with further improved rate characteristics.
 10  セパレータ
 20  正極
 22  正極集電体
 24  正極活物質層
 30  負極
 32  負極集電体
 34  負極活物質層
 40  発電要素
 50  外装体
 52  金属箔
 54  高分子膜
 60、62  リード
 100  リチウムイオン二次電池
 110  リン酸バナジウムリチウム
 120  被覆層
 121  単層グラフェンまたは多層グラフェン
 200  正極活物質
DESCRIPTION OF SYMBOLS 10 Separator 20 Positive electrode 22 Positive electrode collector 24 Positive electrode active material layer 30 Negative electrode 32 Negative electrode collector 34 Negative electrode active material layer 40 Power generation element 50 Exterior body 52 Metal foil 54 Polymer film 60, 62 Lead 100 Lithium ion secondary battery 110 Lithium vanadium phosphate 120 Coating layer 121 Single layer graphene or multilayer graphene 200 Cathode active material

Claims (12)

  1.  下記組成式(1)で表されるリン酸バナジウムリチウムを主成分とする活物質粒子と、二次元的に拡がる炭素材料とを有し、
     前記炭素材料は、少なくとも一部が板状の炭素粒子又はグラフェンを含有し前記活物質粒子の表面の少なくとも一部を被覆する被覆層であることを特徴とする、リチウムイオン二次電池用正極活物質。
     Li(M)(PO・・・(1)
     (MはVOまたはVであり、0.05≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3である。)
    Active material particles mainly composed of lithium vanadium phosphate represented by the following composition formula (1), and a carbon material that expands two-dimensionally,
    The carbon material is a coating layer containing at least a part of plate-like carbon particles or graphene and covering at least a part of the surface of the active material particles. material.
    Li a (M) b (PO 4 ) c (1)
    (M is VO or V, and 0.05 ≦ a ≦ 3.3, 0.9 ≦ b ≦ 2.2, and 0.9 ≦ c ≦ 3.3.)
  2.  前記二次元的に拡がる炭素材料が少なくとも一部が板状の炭素粒子であることを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質。 2. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the two-dimensionally expanding carbon material is at least partially plate-like carbon particles.
  3.  前記炭素粒子は、平均板面径Aが50≦A≦10000nmであることを特徴とする請求項2に記載のリチウムイオン二次電池用正極活物質。 3. The positive electrode active material for a lithium ion secondary battery according to claim 2, wherein the carbon particles have an average plate surface diameter A of 50 ≦ A ≦ 10000 nm.
  4.  前記炭素粒子は、平均厚みBが0.3≦B≦50nmであることを特徴とする請求項2または請求項3に記載のリチウムイオン二次電池用正極活物質。 4. The positive electrode active material for a lithium ion secondary battery according to claim 2, wherein the carbon particles have an average thickness B of 0.3 ≦ B ≦ 50 nm.
  5.  前記炭素粒子における平均板面径Aに対する平均厚みBの比率A/Bが5≦A/B≦1000であることを特徴とする請求項2~4のいずれか一項に記載のリチウムイオン二次電池用正極活物質。 The lithium ion secondary according to any one of claims 2 to 4, wherein a ratio A / B of an average thickness B to an average plate surface diameter A of the carbon particles is 5≤A / B≤1000. Positive electrode active material for batteries.
  6.  前記炭素粒子の少なくとも一部は、前記リン酸バナジウムリチウムを主成分とする活物質粒子の表面の少なくとも一部を被覆していることを特徴とする請求項2~5のいずれか一項に記載のリチウムイオン二次電池用正極活物質。 6. At least a part of the carbon particles covers at least a part of the surface of the active material particles mainly composed of the lithium vanadium phosphate. Positive electrode active material for lithium ion secondary battery.
  7.  前記炭素粒子の少なくとも一部は、前記リン酸バナジウムリチウムを主成分とする活物質粒子と複合化されていることを特徴とする請求項2~6のいずれか一項に記載のリチウムイオン二次電池用正極活物質。 The lithium ion secondary according to any one of claims 2 to 6, wherein at least a part of the carbon particles are combined with active material particles mainly composed of the lithium vanadium phosphate. Positive electrode active material for batteries.
  8.  前記板炭素粒子は、前記リン酸バナジウムリチウムを主成分とする活物質粒子に対して0.1~8重量%の割合で含有されていることを特徴とする請求項2~7のいずれか一項に記載のリチウムイオン二次電池用正極活物質。 8. The plate carbon particles are contained in a ratio of 0.1 to 8% by weight with respect to the active material particles mainly composed of the lithium vanadium phosphate. The positive electrode active material for lithium ion secondary batteries as described in the paragraph.
  9.  前記二次元的に拡がる炭素材料がグラフェンを含有し前記活物質粒子の表面の少なくとも一部を被覆する被覆層であることを特徴とする請求項1に記載のリチウムイオン二次電池用正極活物質。 2. The positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the two-dimensionally expanding carbon material is a coating layer containing graphene and covering at least a part of the surface of the active material particles. .
  10.  前記被覆層は、単層グラフェンまたは多層グラフェンからなる少なくとも1種を含有することを特徴とする、請求項9に記載のリチウムイオン二次電池用正極活物質 The positive electrode active material for a lithium ion secondary battery according to claim 9, wherein the coating layer contains at least one kind of single-layer graphene or multilayer graphene.
  11.  請求項1~10のいずれか一項に記載のリチウムイオンの次電池用正極活物質を有するリチウムイオン二次電池用正極。 A positive electrode for a lithium ion secondary battery, comprising the positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 10.
  12.  請求項11に記載のリチウムイオン二次電池用正極と、負極活物質を有する負極と、前記正極と前記負極との間に介在されるセパレータと非水電解質と、を備えてなるリチウムイオン二次電池。 A lithium ion secondary comprising the positive electrode for a lithium ion secondary battery according to claim 11, a negative electrode having a negative electrode active material, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte. battery.
PCT/JP2017/027262 2016-07-27 2017-07-27 Positive electrode active substance for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same WO2018021480A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016147479A JP2019164881A (en) 2016-07-27 2016-07-27 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2016147478A JP2019164880A (en) 2016-07-27 2016-07-27 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2016-147479 2016-07-27
JP2016-147478 2016-07-27

Publications (1)

Publication Number Publication Date
WO2018021480A1 true WO2018021480A1 (en) 2018-02-01

Family

ID=61016962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027262 WO2018021480A1 (en) 2016-07-27 2017-07-27 Positive electrode active substance for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same

Country Status (1)

Country Link
WO (1) WO2018021480A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860601A (en) * 2019-04-03 2019-06-07 山东星火科学技术研究院 A kind of preparation method of the composite modified anode material of lithium battery of graphene/carbon nano-tube
WO2021014257A1 (en) * 2019-07-19 2021-01-28 株式会社半導体エネルギー研究所 Method for creating electrode slurry, method for creating electrode, method for creating positive electrode, electrode for secondary battery, and positive electrode for secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120058397A1 (en) * 2010-09-07 2012-03-08 Aruna Zhamu Graphene-Enhanced cathode materials for lithium batteries
CN102386410A (en) * 2011-11-05 2012-03-21 上海大学 Lithium vanadium phosphate/graphene composite material and preparation method thereof
JP2013077377A (en) * 2011-09-29 2013-04-25 Fuji Heavy Ind Ltd Modified phosphoric acid vanadium lithium carbon complex, method of manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP2013084521A (en) * 2011-10-12 2013-05-09 National Institute Of Advanced Industrial & Technology Heat-resistant lithium ion secondary battery
JP2013542903A (en) * 2010-09-10 2013-11-28 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Lithium-containing salt-graphene composite material and preparation method thereof
JP2016122670A (en) * 2010-10-08 2016-07-07 株式会社半導体エネルギー研究所 Power storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120058397A1 (en) * 2010-09-07 2012-03-08 Aruna Zhamu Graphene-Enhanced cathode materials for lithium batteries
JP2013542903A (en) * 2010-09-10 2013-11-28 オーシャンズ キング ライティング サイエンスアンドテクノロジー カンパニー リミテッド Lithium-containing salt-graphene composite material and preparation method thereof
JP2016122670A (en) * 2010-10-08 2016-07-07 株式会社半導体エネルギー研究所 Power storage device
JP2013077377A (en) * 2011-09-29 2013-04-25 Fuji Heavy Ind Ltd Modified phosphoric acid vanadium lithium carbon complex, method of manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP2013084521A (en) * 2011-10-12 2013-05-09 National Institute Of Advanced Industrial & Technology Heat-resistant lithium ion secondary battery
CN102386410A (en) * 2011-11-05 2012-03-21 上海大学 Lithium vanadium phosphate/graphene composite material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860601A (en) * 2019-04-03 2019-06-07 山东星火科学技术研究院 A kind of preparation method of the composite modified anode material of lithium battery of graphene/carbon nano-tube
WO2021014257A1 (en) * 2019-07-19 2021-01-28 株式会社半導体エネルギー研究所 Method for creating electrode slurry, method for creating electrode, method for creating positive electrode, electrode for secondary battery, and positive electrode for secondary battery

Similar Documents

Publication Publication Date Title
Cai et al. Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells
JP5396798B2 (en) Active material, positive electrode and lithium ion secondary battery using the same
CN106025191B (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101411226B1 (en) Lithium manganese oxide positive active material for lithium ion secondary battery and lithium ion secondary battery including the same
WO2012133729A1 (en) Active material, electrode, lithium-ion secondary battery, and process for producing active material
EP2642555A2 (en) Positive electrode for a lithium ion secondary battery and a lithium ion secondary battery including the same
KR20130035911A (en) Positive electrode material, lithium ion secondary battery using thereof, and manufacturing method of positive electrode material
JP2017103207A (en) Positive electrode active material, positive electrode, and lithium ion secondary battery
JP6297991B2 (en) Nonaqueous electrolyte secondary battery
JP2016186933A (en) Positive electrode active material, positive electrode using the same, and lithium ion secondary battery
JP2016189320A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2016189321A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP5347605B2 (en) Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material
US9567238B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2018021480A1 (en) Positive electrode active substance for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
JP2019164880A (en) Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
WO2023166869A1 (en) Lithium ion secondary battery negative electrode active material, method for producing same, and lithium ion secondary battery negative electrode
CN107123787B (en) Positive electrode and lithium ion secondary battery
JP7040832B1 (en) Negative electrode active material for lithium ion secondary battery, its manufacturing method, and negative electrode for lithium ion secondary battery
US9728782B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7135840B2 (en) Positive electrode and lithium ion secondary battery
JP2022189427A (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
EP3683865B1 (en) Electrode and nonaqueous electrolyte battery
JP2017103137A (en) Negative electrode active material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP6197540B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17834482

Country of ref document: EP

Kind code of ref document: A1