WO2018021225A1 - Railroad vehicle location measuring system - Google Patents

Railroad vehicle location measuring system Download PDF

Info

Publication number
WO2018021225A1
WO2018021225A1 PCT/JP2017/026645 JP2017026645W WO2018021225A1 WO 2018021225 A1 WO2018021225 A1 WO 2018021225A1 JP 2017026645 W JP2017026645 W JP 2017026645W WO 2018021225 A1 WO2018021225 A1 WO 2018021225A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
satellite positioning
railway vehicle
doppler
radio wave
Prior art date
Application number
PCT/JP2017/026645
Other languages
French (fr)
Japanese (ja)
Inventor
佳男 三浦
和則 宗像
正人 赤井
裕郁 霜山
Original Assignee
株式会社エイクラ通信
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エイクラ通信 filed Critical 株式会社エイクラ通信
Publication of WO2018021225A1 publication Critical patent/WO2018021225A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/50Determining position whereby the position solution is constrained to lie upon a particular curve or surface, e.g. for locomotives on railway tracks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a railway vehicle position measurement system for specifying the position of a track error in a railway.
  • FIG. 7 (A) illustrates a conventional method for specifying the orbit error using a kilometer post (distance mark).
  • a kilopost (distance marker) is one of track signs and indicates the distance from the starting point of the track.
  • a kilopost (distance marker) is provided, for example, every 1 km.
  • a business operator who wants to identify a trajectory error installs a motion measurement device equipped with, for example, a three-axis acceleration sensor on the railcar 90 and observes the kilometer post (distance marker) 100 at any time to confirm the position of the location where the motion is large. can do.
  • a logger that prints acceleration on paper in real time is connected to a shake measurement device, and when the kilometer post (distance marker) 100 is observed, a mark is placed and the location is determined. Can be considered.
  • the sway measuring device at point A senses a large sway, and therefore the position can be specified from the mark of the kilometer post (distance marker) 100 that is observed at any time.
  • such a method based on manual and human observation is time-consuming and it is difficult to specify the exact position of the trajectory error.
  • a technique using a speed generator capable of constantly measuring the speed of the railway vehicle 90 is also used (for example, Japanese Patent Laid-Open No. 8-68624). See the official gazette).
  • the speed generator is a speedometer attached to the axle of the railway vehicle 90, and can estimate the speed of the railway vehicle 90 from the rotational speed of the axle. Therefore, the travel distance can be calculated by multiplying the speed and time, and the position of the trajectory error can be estimated by combining with the data of the fluctuation measuring device.
  • a speed generator is not always available because it does not have a connector for connecting to the vibration measuring device. Therefore, it may be difficult to obtain the position of the orbit error (about kilometer).
  • FIG. 7B explains a method for specifying the position of an orbital error by satellite positioning.
  • An observer who wants to specify the position of the trajectory shift performs measurement by mounting a satellite positioning radio wave receiver, an acceleration sensor, and the like on the railway vehicle 90 to measure the degree of the shake.
  • the present invention has been made in view of the above problems, and position information and velocity information obtained from a receiver that receives radio waves for satellite positioning, and velocity information obtained from a Doppler sensor that detects a Doppler phenomenon of electromagnetic waves. It is an object of the present invention to provide a simple railway vehicle position measurement system that can accurately and accurately specify the position of the track error (about kilometer) at all times.
  • distance and “km” are not strictly distinguished, and both mean the distance from a predetermined starting point.
  • the present invention provides a Doppler sensor that detects a Doppler phenomenon of electromagnetic waves, a Doppler speed acquisition unit that acquires a Doppler speed, which is a speed of a railway vehicle, based on information obtained from the Doppler sensor, and a satellite positioning system.
  • a Doppler speed acquisition unit that acquires a Doppler speed, which is a speed of a railway vehicle, based on information obtained from the Doppler sensor, and a satellite positioning system.
  • satellite positioning position information acquisition means for acquiring satellite positioning position information which is latitude / longitude information of the position where the railway vehicle exists, and satellite positioning speed which is the speed of the railway vehicle based on the satellite positioning position information
  • Satellite positioning speed acquisition means for acquiring the calibration speed of the railway vehicle, which is a calibration value obtained by calibrating the Doppler speed based on the satellite positioning speed, and the satellite positioning speed or the calibration.
  • the iron comprising: a kilometer determining means for determining a kilometer of the railway vehicle using at least one of
  • the position and speed of the railway vehicle can be acquired using the satellite positioning system, but also the speed of the railway vehicle can be acquired based on information obtained from the Doppler sensor. Because the reception conditions of the receiver that receives the radio waves for satellite positioning are poor, and the location speed cannot be specified from the satellite positioning radio waves, it is possible to identify the accurate speed of the railway vehicle. There is an effect.
  • the present invention provides the railway vehicle position measurement system according to (1) above, further comprising noise removal means for removing a noise signal from the Doppler speed acquired by the Doppler speed acquisition means. .
  • the Doppler sensor In the speed measurement by the Doppler sensor, the Doppler sensor emits electromagnetic waves in a wide range, and acquires the speed from the frequency change of the electromagnetic waves reflected and returned. However, there is a drawback that the speed obtained by the reflection location varies. According to the invention described in (2) above, since the railroad vehicle position measurement system includes the noise removal means for removing the noise signal out of the Doppler speed acquired by the Doppler speed acquisition means, the variation data is removed. An excellent effect is obtained that an accurate Doppler speed can be obtained.
  • the kilometer determination means further comprises a selection means for selecting either the satellite positioning speed or the calibration speed.
  • a railway vehicle position measuring system as described is provided.
  • the kilometer determination means further includes selection means for selecting either the satellite positioning speed or the calibration speed, so that the accuracy of the satellite positioning speed and the calibration speed are compared.
  • selection means for selecting either the satellite positioning speed or the calibration speed, so that the accuracy of the satellite positioning speed and the calibration speed are compared.
  • the present invention further includes radio wave reception state acquisition means for acquiring a radio wave reception state for satellite positioning, and the selection means has a good radio wave reception state for satellite positioning and is accurate.
  • the satellite positioning speed can be acquired, the satellite positioning speed is selected, and when the radio wave reception state for the satellite positioning radio wave is not good and the accurate satellite positioning speed cannot be acquired, the calibration speed is selected.
  • a railway vehicle position measuring system as described in (3) above is provided.
  • an appropriate speed can be selected from the satellite positioning speed and the calibration speed based on the state of radio wave reception for satellite positioning. That is, when the radio wave reception status for satellite positioning is good and an accurate satellite positioning speed can be obtained, the satellite positioning speed is selected, the radio wave reception status for satellite positioning is not good, and the accurate satellite When the positioning speed cannot be acquired, the calibration speed based on the Doppler speed unrelated to the reception of the radio wave from the positioning satellite is selected, so that a more accurate kilometer can be acquired.
  • the Doppler speed acquisition means acquires There is an excellent effect that it is possible to obtain kilos based on the speed.
  • the Doppler sensor and an antenna for receiving a radio wave for satellite positioning are provided in an integral housing.
  • a railway vehicle position measurement system is provided.
  • the Doppler sensor for measuring the speed must be installed in the front window, the rear window, or both, which easily transmit and receive electromagnetic waves outside the vehicle. According to the invention described in (5) above, since the antenna for acquiring the signal from the satellite positioning radio wave is provided in the housing integral with the Doppler sensor, the railway vehicle is easy to handle and can be easily mounted on a commercial vehicle. There is an excellent effect that a position measuring system can be provided.
  • the present invention provides the railway vehicle position measurement system according to (5) above, further comprising a fixing means for fixing the housing to a window of the railway vehicle.
  • the antenna that receives radio waves for satellite positioning and the Doppler sensor for speed measurement must be fixedly installed near the window glass toward the outside of the vehicle. According to the invention described in (6) above, since the housing including the antenna and the Doppler sensor is fixed by the fixing means fixed to the window, accurate reception of radio waves for positioning and accurate speed measurement are performed. There is an excellent effect that becomes possible.
  • the present invention provides a degree-of-movement determination means for determining whether a value indicating the degree of movement of the railway vehicle acquired by the movement sensor mounted on the railway vehicle exceeds a predetermined threshold value.
  • the value indicating the degree of shaking of the railway vehicle acquired by the shaking sensor is determined by the kilometer determining means at the timing when the shaking degree determining means determines that the predetermined threshold is exceeded.
  • the railway vehicle position measurement system according to any one of the above (1) to (6), further comprising storage means for storing the kilometer.
  • the interlocking kilometer determination means includes By combining information about the kilometer of the railway vehicle to be determined, there is an excellent effect that it is possible to specify the exact position (kilometre) of the track error corresponding to the place where the degree of shaking exceeds a predetermined threshold.
  • the position and speed of the railway vehicle can be acquired using the satellite positioning system, but also the speed of the railway vehicle can be acquired based on information obtained from the Doppler sensor. Therefore, there is an excellent effect that the accurate speed of the railway vehicle can be specified even in a place and time zone where the reception condition of the receiver for receiving the radio wave is poor and the position cannot be specified from the satellite positioning radio wave.
  • FIG. 1 is an overall configuration diagram of a railway vehicle position measurement system.
  • A It is explanatory drawing explaining the kilometer determination process which determines distance (km) from the speed of a rail vehicle.
  • B An explanatory diagram for explaining a method for obtaining a distance (about kilometer) by a piecewise quadrature method. It is a flowchart of the program which acquires speed V (t) of a rail vehicle.
  • A A flowchart of a subroutine for obtaining a moving average Ga of the correction coefficient G.
  • B It is a flowchart of the subroutine which acquires the calibration speed Va. It is explanatory drawing explaining the noise removal of a Doppler speed.
  • FIG. 3 is an explanatory diagram for explaining an aspect in which a housing provided with a Doppler sensor or the like for measuring speed is fixed to a window glass.
  • A It is explanatory drawing explaining the method of discovering the position where a trajectory deviation occurs from a distance marker in the past.
  • B It is explanatory drawing explaining the method of discovering the position where a trajectory deviation occurs from the conventional satellite positioning radio signal. It is explanatory drawing explaining the subject in the method of discovering the position where an orbit shift occurs from the conventional satellite positioning radio signal.
  • FIG. 1 to FIG. 6 are examples of embodiments for carrying out the invention, and in the drawings, parts denoted by the same reference numerals represent the same items.
  • a part of the configuration is omitted as appropriate in each drawing to simplify the drawing.
  • the size, shape, thickness, etc. of the members are exaggerated as appropriate.
  • FIG. 1 shows an overall configuration diagram of a railway vehicle position measurement system 1 according to a first embodiment of the present invention.
  • the railway vehicle position measurement system 1 mainly includes a satellite positioning radio wave reception system 2, a Doppler velocity acquisition system 4, a fluctuation measurement module 50, a control unit 60, and a communication I / F (interface) 70.
  • the satellite positioning radio wave reception system 2 and the Doppler velocity acquisition system 4 are included in an integral housing 45.
  • the fluctuation measurement module 50 may also be included in the integral housing 45.
  • the information acquired from the satellite positioning radio wave reception system 2, the Doppler velocity acquisition system 4, and the fluctuation measurement module 50 is integrated, stored, analyzed, and drawn on the monitor as an image. May be included.
  • the satellite positioning radio wave reception system 2 includes a satellite positioning radio wave reception module 10 and a satellite positioning radio wave signal analysis module 20.
  • the satellite positioning radio wave receiving module 10 includes an antenna structure that receives a satellite positioning radio wave 5 that is a signal radio wave from the positioning satellite 3.
  • the satellite positioning radio signal analysis module 20 is a satellite positioning position information acquisition unit and a satellite positioning speed acquisition unit, and is latitude / longitude information of a position where the railway vehicle is present from a signal obtained by the satellite positioning radio wave reception module 10.
  • a satellite positioning position information acquisition process for acquiring satellite positioning position information and a satellite positioning speed acquisition process for acquiring a satellite positioning speed that is the speed of the railway vehicle are performed based on the satellite positioning position information.
  • the satellite positioning radio wave reception system 2 preferably has radio wave reception state acquisition means for acquiring the radio wave reception state for satellite positioning.
  • the Doppler speed acquisition system 4 includes a Doppler sensor 30 and a Doppler signal analysis module 40.
  • the Doppler sensor 30 that detects the Doppler phenomenon of the electromagnetic wave has an antenna structure that transmits the transmission electromagnetic wave 7 and receives the reflected electromagnetic wave 9 that is reflected and returned.
  • the Doppler signal analysis module 40 is Doppler speed acquisition means, and performs Doppler speed acquisition processing for acquiring the Doppler speed, which is the speed of the railway vehicle, based on information obtained from the Doppler sensor 30.
  • the Doppler velocity which is the velocity measured by the Doppler velocity acquisition system 4
  • the satellite positioning velocity which is the accurate velocity measured by the satellite positioning radio wave reception system 2. It is known that the value is about 10% smaller. Therefore, it is necessary to calibrate the Doppler speed in order to estimate an accurate vehicle speed when the satellite positioning radio wave reception state is poor. This calibration process will be described later.
  • the control unit 60 includes a CPU, a RAM, a ROM, and the like, and executes various controls. That is, the control unit 60 realizes a noise removing unit that performs a noise removing process described later, a calibration unit that performs a calibration process, a kilometer determining unit that performs a kilometer determining process, and a selecting unit that performs a selecting process.
  • the CPU is a so-called central processing unit, and executes various programs to realize various functions. Specifically, an abnormal value determination process, an average value calculation process, a noise removal process, a calibration process, a kilometer determination process, a selection process, and the like, which will be described later, are performed on speed information and position information.
  • the RAM is used as a work area and a storage area of the CPU, and the ROM stores an operating system and programs executed by the CPU.
  • the noise removal process is a process of removing a noise signal from the Doppler speed acquired by the Doppler speed acquisition unit, and may be performed by the Doppler signal analysis module 40.
  • the calibration process is a process for acquiring the calibration speed of the railway vehicle, which is a calibration value obtained by calibrating the Doppler speed, based on the satellite positioning speed described above.
  • the kilometer determination process is a process of determining the kilometer of the railway vehicle using at least one of the satellite positioning speed or the calibration speed.
  • Selection processing means that when the radio wave reception status for satellite positioning is good and an accurate satellite positioning speed can be obtained, the satellite positioning speed is selected as the speed of the railway vehicle, and radio wave reception for satellite positioning radio waves is received. This is a process of selecting the calibration speed as the speed of the railway vehicle when the state is not good and an accurate satellite positioning speed cannot be obtained.
  • abnormal value determination processing may be performed by various programs stored in the PC 80.
  • the satellite positioning radio signal analysis module 20, the Doppler signal analysis module 40, and the control unit 60 are connected by wireless or wired communication means.
  • the communication I / F 70 is an interface conforming to an existing communication standard, that is, a standard such as RS232C or Bluetooth (registered trademark), and is connected to an external PC 80.
  • the sway measurement module 50 includes a sway sensor that measures a value indicating the degree of sway of the railway vehicle on which the sway measurement module 50 is installed.
  • a vibration sensor for example, a multi-axis acceleration sensor is provided, and a time change in acceleration in three axis directions of the X axis, the Y axis, and the Z axis orthogonal to each other is acquired.
  • a threshold value may be provided in advance for the magnitude of the time change in acceleration, and a place where a time change in acceleration larger than the threshold value occurs may be determined as a place where there is a trajectory error.
  • the railway vehicle position measurement system 1 measures the position of the railway vehicle and the distance (in kilometers) from a predetermined starting point at each time by a method described later, and associates it with the acceleration measured by the oscillation measurement module 50 at that time.
  • the storage means that is, in the memory, it is possible to specify the exact position of the trajectory error.
  • the railway vehicle position measurement system 1 determines whether or not the value indicating the degree of shaking of the railway vehicle acquired by a multi-axis acceleration sensor that is a shaking sensor mounted on the railway vehicle exceeds a predetermined threshold value.
  • the kilometer process is performed.
  • the memory may be in the control unit 60 or in the PC 80.
  • the fluctuation measurement module 50 is connected to the controller 60 and is included in the railway vehicle position measurement system 1. However, the fluctuation measurement module 50 is provided separately from the railway vehicle position measurement system 1. Also good. Even in that case, at approximately the same time, by integrating both the speed information of the railway vehicle acquired by the railway vehicle position measurement system 1 and the information about the degree of shaking acquired by the shaking measurement module 50, It is possible to specify the exact position of the trajectory error.
  • the housing 45 includes the satellite positioning radio wave reception module 10 and the Doppler sensor 30, and the satellite positioning radio signal analysis module 20 and the Doppler signal analysis module 40 may be provided in a separate housing from the housing 45.
  • the housing 45 includes a Doppler sensor and an antenna that receives radio waves for satellite positioning, and other members may be provided in a housing separate from the housing 45.
  • FIG. 2A is an explanatory diagram illustrating a kilometer determination process for determining a distance (kilometres) based on information obtained from at least one of the satellite positioning radio wave reception system 2 and the Doppler velocity acquisition system 4.
  • the railway vehicle position measurement system 1 includes a satellite positioning speed acquired from the satellite positioning radio wave reception system 2, or a calibration speed obtained based on information acquired from both the satellite positioning radio wave reception system 2 and the Doppler speed acquisition system 4.
  • the distance (about kilometer) is acquired by the piecewise quadrature method. That is, it is desirable to perform calculation using the satellite positioning speed if the satellite positioning radio wave reception state is good, and using the calibration speed if the satellite positioning radio wave reception state is bad. That is, in FIG. 2A, when the satellite positioning radio wave reception state is good, the switch is connected to the right side, and when the satellite positioning radio wave reception state is bad, the switch is connected to the left side.
  • the piecewise quadrature method calculates the moving distance L during the time interval Dt by multiplying the speed V (t) at a predetermined time t by Dt, for example. This is a method of obtaining a distance (about kilometer) from a predetermined position by adding the distance L.
  • the satellite positioning radio wave reception system 2 can acquire satellite positioning position information, which is the position information of the receiver. Therefore, an accurate kilometer to a predetermined position is obtained in advance by another means, and the railway vehicle If it is detected that the distance has been reached, the distance may be corrected to an accurate value, and the distance may be corrected so as not to accumulate an error in the distance obtained from the vehicle speed V (t) (FIG. 2A )reference). Specifically, a point with good reception of satellite positioning radio waves is determined in advance, and the latitude and longitude information of that point is acquired by the satellite positioning radio wave reception system, and the orbit measurement is performed from the specified starting point to the point. It is desirable to measure by car.
  • FIG. 3 shows a flowchart of a program for obtaining the speed V (t) of the railway vehicle at a predetermined time t.
  • Each subroutine for obtaining the moving average Ga of the correction coefficient and the calibration speed Va will be described in detail with reference to FIGS. 4A and 4B, respectively.
  • the control unit 60 acquires the reception status of the satellite positioning radio wave from the satellite positioning radio wave receiving system 2 (step S1).
  • the control unit 60 determines whether or not the satellite positioning radio wave reception state is good (step S2). If good, the control unit 60 acquires the satellite positioning speed Vg from the satellite positioning radio wave reception system 2 (step S3). Subsequently, the control unit 60 acquires the Doppler speed Vd from the Doppler speed acquisition system 4 (step S4).
  • the controller 60 performs a noise removal process to be described later on the acquired Doppler speed Vd, and newly sets the processed value as the Doppler speed Vd (step S5). Further, the control unit 60 calculates the correction coefficient G according to the subroutine, and stores the moving average Ga of G in the memory (step S6). Then, the control unit 60 stores the satellite positioning speed Vg in the memory as the speed V (t) of the railway vehicle at the predetermined time t (step S7).
  • step S2 If the control unit 60 determines in step S2 that the satellite positioning radio wave reception state is not good, the control unit 60 acquires the Doppler velocity Vd from the Doppler velocity acquisition system 4 (step S8). The controller 60 performs a noise removal process to be described later on the acquired Doppler speed Vd, and newly sets the processed value as the Doppler speed Vd (step S9). Subsequently, the control unit 60 calculates the calibration speed Va according to the subroutine (step S10). Then, the control unit 60 stores the calibration speed Va in the memory as the speed V (t) of the railway vehicle at a predetermined time t (step S11).
  • the memory for storing V (t) may be provided in the control unit 60 or in the PC 80.
  • the moving average value may be obtained only from the data of the correction coefficient G accumulated in the memory and stored as the moving average value Ga. Further, when the newly stored correction coefficient G is a value deviated by, for example, ⁇ 5% or more from the immediately preceding moving average value Ga, it may not be used as data for calculating the moving average value.
  • the moving average Ga of the correction coefficient G by the control unit 60 may be updated at a predetermined time interval, for example, in accordance with the acquisition timing of the satellite positioning speed Vg.
  • the control unit 60 uses the Doppler speed Vd and the moving average Ga of the correction coefficient at the time t when the satellite positioning radio wave reception state is poor and the satellite positioning speed Vg cannot be acquired. (T) can be calculated. Therefore, the railway vehicle position measurement system 1 can accurately calculate the distance (about kilometer) from the predetermined starting point of the railway vehicle at each time.
  • FIG. 5 is an explanatory diagram for explaining the noise processing performed by the noise removing means for removing the Doppler speed noise signal.
  • the measured Doppler speed varies greatly, but if the maximum value is selected among the variations within a predetermined time, the satellite is sufficiently smooth and accurate. It has been found that a speed very well correlated with the positioning speed can be obtained.
  • FIG. 5A shows the change over time of the Doppler speed obtained by the Doppler speed acquisition system 4.
  • the Doppler speed acquisition system 4 continuously performs measurement at predetermined time intervals, and the noise removing unit performs, for example, the following abnormal value determination process, average value calculation process, and maximum value process.
  • the data is the Doppler speed measured continuously by the Doppler speed acquisition system 4. If there is no previous data, the first data is considered normal, and when the next data is obtained, the first data is the previous data, and the next data is the current data. We proceed with processing.
  • the average value is obtained using the past 10 speed data.
  • the obtained average value and the current speed difference are a fourth predetermined difference, for example, 30 km / h or more, the average value is adopted as the speed data.
  • ⁇ Maximum value processing> (1) For example, the maximum value is obtained using the past 40 speed data. (2) When the difference between the obtained maximum value and the current speed is a fifth predetermined difference, for example, 5 km / h or more, the maximum value is adopted as speed data.
  • the data in FIG. 5A becomes data from which variation is suppressed and noise is removed as shown in FIG. 5B.
  • FIG. 6 is an explanatory diagram for explaining the housing 45 and the like of the railway vehicle position measurement system.
  • FIG. 6A shows a housing 45 provided with the satellite positioning radio wave receiving module 10 and the Doppler sensor 30 and provided with fixing means 150 for fixing the housing 45 to the window glass of the railway vehicle.
  • the window glass fixing means 150 for example, suction fixing means such as a suction cup for vacuum suction can be considered.
  • the housing 45 can be fixed to the inner side surface 210 of the window glass by the fixing means 150.
  • the housing 45 can be easily fixed to the window glass, so that the signal radio wave of the positioning satellite 3 can be captured through the window glass. Therefore, acquisition of satellite positioning speed and satellite positioning position information can be acquired.
  • the railway vehicle position measurement system 1 has a housing provided with a control unit 60 separately from the housing 45, and exchange of signals between the housing 45 and the control unit 60 is performed by the existing wireless communication unit 300. It is desirable (see FIG. 6B). Note that the fixing means 150 of the housing 45 may be based on magnetic adsorption.
  • the railway vehicle position measurement system 1 As described above, according to the railway vehicle position measurement system 1 according to the above-described embodiment, not only the position and speed of the railway vehicle are acquired by the satellite positioning radio wave reception system 2 using the satellite positioning system, but also the Doppler speed acquisition system 4. Based on the information obtained from the railway vehicle, the speed of the railway vehicle can be acquired, so the reception conditions of the receiver that receives the radio waves for satellite positioning are bad, and the location cannot be specified from the satellite positioning radio waves, Even in the time zone, the exact speed of the railway vehicle can be specified, and by combining it with the degree of shaking at each time measured by the shaking measurement module 50, it is possible to accurately specify the kilometer and position of the railway track deviation. Has an effect.
  • the Doppler speed acquisition system 4 Has an excellent effect of being able to acquire kilometer based on the acquired Doppler speed.
  • railway vehicle position measurement system of the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.
  • the railway vehicle position measurement system 1 acquired in advance may calibrate the kilometer based on matching information corresponding to latitude / longitude information or kilometer information measured in advance.
  • the matching information is, for example, a table representing a kilometer per 1 km and the latitude and longitude at that point, and can be original data for calibrating the kilometer.
  • the position information and velocity information measured by the satellite positioning radio receiver and the velocity information based on the Doppler sensor include a certain amount of error. When continuous distance measurement is performed over a long section, the error accumulates. There is a possibility that the exact position (about kilometer) cannot be grasped. Therefore, the railway operator measures and accumulates matching information in advance, for example, by a track inspection vehicle, and calibrates the kilometer obtained by the railway vehicle position measurement system 1 according to the present invention based on the matching information. It is also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

In the present invention, a location of track irregularity can be accurately identified by use of receiver position information and speed information obtained from a satellite positioning radio wave receiver and speed information obtained from a Doppler sensor used for detecting a Doppler phenomenon in electromagnetic waves. Provided by this technology is a simple railroad vehicle location measuring system capable of automatically and accurately acquiring a location of railroad track irregularity.

Description

鉄道車両位置測定システムRailway vehicle position measurement system
 本発明は、鉄道における軌道狂いの位置を特定するための鉄道車両位置測定システムに関する。 The present invention relates to a railway vehicle position measurement system for specifying the position of a track error in a railway.
 軌条(レール)や枕木、道床等から構成される鉄道の軌道は、重量のある鉄道車両の通過、天候、地震等を原因として、時間経過とともに最初に設置した位置からずれていく。これを軌道狂いと呼ぶ。軌道狂いを放置すると、鉄道車両の乗り心地が悪化する他、重大事故につながる要因にもなる。そのため、軌道狂いの位置を特定して適切に補修することは、鉄道事業者にとって極めて重要な作業である。 Railroad tracks composed of rails, sleepers, roadbeds, etc. deviate from the initial installation position over time due to the passage of heavy railway vehicles, weather, earthquakes, etc. This is called trajectory disorder. Leaving the track error will not only make the ride quality of the railway vehicle worse, but it can also lead to serious accidents. For this reason, it is extremely important for railway operators to identify the location of the track error and repair it appropriately.
 従来、行われていたキロポスト(距離標)を用いた、軌道狂いの位置特定の手法を図7(A)にて説明する。キロポスト(距離標)とは、線路標識のひとつであり、線路の起点からの距離を示す。キロポスト(距離標)は、例えば1km毎に設けられている。軌道狂いを特定したい事業者は、鉄道車両90に例えば3軸の加速度センサを備えた動揺測定装置を設置し、随時キロポスト(距離標)100を観測することで、動揺の大きな地点の位置を確認することができる。具体的には加速度をリアルタイムに紙に印刷するロガー(記録計)を動揺測定装置に接続し、キロポスト(距離標)100を観測したときに、マークを入れていき、場所を確定させていくことが考えられる。例えば図7(A)では、A地点で動揺測定装置は、大きな揺れを感知しているので、随時観測しているキロポスト(距離標)100のマークから位置を特定できる。しかしこのような手動と人間による観測に基づく方法は、手間も掛かり、軌道狂いの正確な位置を特定することが困難である。 FIG. 7 (A) illustrates a conventional method for specifying the orbit error using a kilometer post (distance mark). A kilopost (distance marker) is one of track signs and indicates the distance from the starting point of the track. A kilopost (distance marker) is provided, for example, every 1 km. A business operator who wants to identify a trajectory error installs a motion measurement device equipped with, for example, a three-axis acceleration sensor on the railcar 90 and observes the kilometer post (distance marker) 100 at any time to confirm the position of the location where the motion is large. can do. Specifically, a logger (recording meter) that prints acceleration on paper in real time is connected to a shake measurement device, and when the kilometer post (distance marker) 100 is observed, a mark is placed and the location is determined. Can be considered. For example, in FIG. 7A, the sway measuring device at point A senses a large sway, and therefore the position can be specified from the mark of the kilometer post (distance marker) 100 that is observed at any time. However, such a method based on manual and human observation is time-consuming and it is difficult to specify the exact position of the trajectory error.
 鉄道車両90の位置を自動的に取得する方法としては、鉄道車両90の速度を、常時測定することが可能な、速度発電機を用いる手法も使用されている(例えば、特開平8-68624号公報参照)。速度発電機とは、鉄道車両90の車軸に取り付けられた速度計であり、車軸の回転速度から鉄道車両90の速度を推定可能である。したがって、速度と時間を掛け合わせることで、走行距離を計算することが可能であり、動揺測定装置のデータと合わせることで、軌道狂いの位置を推定することができる。しかし、営業車両においては、速度発電機を搭載していても動揺測定装置に接続するためのコネクタが付いていない等、必ずしも速度発電機が利用できるとは限らない。よって軌道狂いの位置(キロ程)を求めることが困難な場合もある。 As a method for automatically acquiring the position of the railway vehicle 90, a technique using a speed generator capable of constantly measuring the speed of the railway vehicle 90 is also used (for example, Japanese Patent Laid-Open No. 8-68624). See the official gazette). The speed generator is a speedometer attached to the axle of the railway vehicle 90, and can estimate the speed of the railway vehicle 90 from the rotational speed of the axle. Therefore, the travel distance can be calculated by multiplying the speed and time, and the position of the trajectory error can be estimated by combining with the data of the fluctuation measuring device. However, in a commercial vehicle, even if a speed generator is mounted, a speed generator is not always available because it does not have a connector for connecting to the vibration measuring device. Therefore, it may be difficult to obtain the position of the orbit error (about kilometer).
 鉄道車両90の位置を取得する方法としては、測位衛星の電波を使用することも考えられる。代表的な衛星測位システムとしては、GPS(Global Positioning System)がある。複数の人工衛星から発信された時刻信号を受信機で受信して、電波の遅延の差から地上の座標を求めるものであり、極めて正確かつ容易に受信機のある位置および速度を特定できる。図7(B)に、衛星測位による軌道狂い箇所の位置特定の手法を説明する。軌道狂いの位置を特定したい観測者は、鉄道車両90に衛星測位電波受信機と、加速度センサ等を搭載し動揺の度合いを計測できる動揺測定装置を載せ、測定を行う。時間軸上の動揺情報を、衛星測位電波受信機により取得した位置情報に基づく距離軸上に割り付け、軌道狂い箇所の位置を特定することが可能である(例えば、特開2007-245916号公報参照)。 As a method of acquiring the position of the railway vehicle 90, it is conceivable to use radio waves of a positioning satellite. As a typical satellite positioning system, there is a GPS (Global Positioning System). The time signals transmitted from a plurality of artificial satellites are received by the receiver, and the coordinates on the ground are obtained from the difference in radio wave delay, and the position and speed of the receiver can be identified extremely accurately and easily. FIG. 7B explains a method for specifying the position of an orbital error by satellite positioning. An observer who wants to specify the position of the trajectory shift performs measurement by mounting a satellite positioning radio wave receiver, an acceleration sensor, and the like on the railway vehicle 90 to measure the degree of the shake. It is possible to assign the fluctuation information on the time axis on the distance axis based on the position information acquired by the satellite positioning radio wave receiver, and specify the position of the orbit error (see, for example, Japanese Patent Application Laid-Open No. 2007-245916). ).
 しかし、衛星測位システムの技術だけでは、トンネル、山間部、谷間、駅構内では電波の受信状態が悪化して、位置測定できないことがある。つまり図8(A)で示すように、衛星測位のための電波の受信機を搭載した鉄道車両90が、トンネル110の中に入ってしまうと、トンネル内の鉄道車両120内では、位置および速度を特定することができない。すなわち速度および位置を随時取得して、軌道狂いの位置を知りたい場合、図8(B)のようなトンネル110の中では、トンネル内の鉄道車両120の位置、速度とも不明となってしまうという課題がある。また衛星測位のための電波の受信機は、起動に時間が掛かるため(2~3分間)、受信機の位置および速度を測定できない時間帯が生じるのも欠点である。 However, with the technology of the satellite positioning system alone, radio wave reception may deteriorate in tunnels, mountainous areas, valleys, and station premises, and position measurement may not be possible. That is, as shown in FIG. 8A, when a railway vehicle 90 equipped with a radio wave receiver for satellite positioning enters the tunnel 110, the position and speed of the railway vehicle 120 in the tunnel are changed. Cannot be specified. That is, when the speed and position are acquired at any time and it is desired to know the position of the trajectory error, the position and speed of the railway vehicle 120 in the tunnel are unknown in the tunnel 110 as shown in FIG. There are challenges. In addition, since a radio wave receiver for satellite positioning takes a long time to start (2 to 3 minutes), there is a drawback that a time zone in which the position and speed of the receiver cannot be measured is generated.
 さらに近年、我が国の国土は地震活動期に入ったとも言われており、地震が頻発している。地震が起こった後、軌道の様子を知るためには、目視観察の他、動揺度測定装置による測定が欠かせない。しかし軌道検測車ですぐに全線を検査するのは、大きな手間が掛かるため、簡単に営業車両に搭載が可能で、軌道狂いを発見できるシステムが強く求められている。 In recent years, it is said that our country has entered the period of seismic activity, and earthquakes are frequent. In order to know the state of the orbit after an earthquake, it is essential to use a motion measurement device in addition to visual observation. However, since it takes a lot of time and effort to inspect all the lines immediately with the track inspection and measurement vehicle, there is a strong demand for a system that can be easily installed in a commercial vehicle and can detect a track error.
 本発明は、上記課題を鑑みてなされたものであり、衛星測位のための電波を受信する受信機から得られる位置情報および速度情報と、電磁波のドップラー現象を検出するドップラーセンサから得られる速度情報の両者を利用することで、常時、正確に軌道狂いの位置(キロ程)を特定することができる簡便な鉄道車両位置測定システムを提供することを目的とする。 The present invention has been made in view of the above problems, and position information and velocity information obtained from a receiver that receives radio waves for satellite positioning, and velocity information obtained from a Doppler sensor that detects a Doppler phenomenon of electromagnetic waves. It is an object of the present invention to provide a simple railway vehicle position measurement system that can accurately and accurately specify the position of the track error (about kilometer) at all times.
 なお、本明細書において、距離、キロ程という言葉については厳密に区別せず、いずれも所定の起点からの距離を意味することとする。 In this specification, the terms “distance” and “km” are not strictly distinguished, and both mean the distance from a predetermined starting point.
 (1)本発明は、電磁波のドップラー現象を検出するドップラーセンサと、前記ドップラーセンサから得られる情報に基づいて、鉄道車両の速度であるドップラー速度を取得するドップラー速度取得手段と、衛星測位システムを用いて、前記鉄道車両が存在する位置の緯度経度情報である衛星測位位置情報を取得する衛星測位位置情報取得手段と、前記衛星測位位置情報に基づいて、前記鉄道車両の速度である衛星測位速度を取得する衛星測位速度取得手段と、前記衛星測位速度に基づいて、前記ドップラー速度を較正した較正値である前記鉄道車両の較正速度を取得する較正手段と、前記衛星測位速度、又は、前記較正速度のうち、少なくとも一つを用いて前記鉄道車両のキロ程を決定するキロ程決定手段とを備えることを特徴とする鉄道車両位置測定システムを提供する。 (1) The present invention provides a Doppler sensor that detects a Doppler phenomenon of electromagnetic waves, a Doppler speed acquisition unit that acquires a Doppler speed, which is a speed of a railway vehicle, based on information obtained from the Doppler sensor, and a satellite positioning system. Using satellite positioning position information acquisition means for acquiring satellite positioning position information which is latitude / longitude information of the position where the railway vehicle exists, and satellite positioning speed which is the speed of the railway vehicle based on the satellite positioning position information Satellite positioning speed acquisition means for acquiring the calibration speed of the railway vehicle, which is a calibration value obtained by calibrating the Doppler speed based on the satellite positioning speed, and the satellite positioning speed or the calibration. The iron comprising: a kilometer determining means for determining a kilometer of the railway vehicle using at least one of the speeds To provide a vehicle location system.
 上記(1)に記載する発明によれば、衛星測位システムを用いて鉄道車両の位置や速度を取得するだけでなく、ドップラーセンサから得られる情報に基づいて、鉄道車両の速度を取得することができるので、衛星測位のための電波を受信する受信機の受信条件が悪く、衛星測位電波から位置を特定することができない場所、時間帯においても、鉄道車両の正確な速度が特定できるという優れた効果を奏する。 According to the invention described in (1) above, not only the position and speed of the railway vehicle can be acquired using the satellite positioning system, but also the speed of the railway vehicle can be acquired based on information obtained from the Doppler sensor. Because the reception conditions of the receiver that receives the radio waves for satellite positioning are poor, and the location speed cannot be specified from the satellite positioning radio waves, it is possible to identify the accurate speed of the railway vehicle. There is an effect.
 (2)本発明は、前記ドップラー速度取得手段が取得した前記ドップラー速度のうち、ノイズ信号を取り除くノイズ除去手段を備えることを特徴とする上記(1)に記載の鉄道車両位置測定システムを提供する。 (2) The present invention provides the railway vehicle position measurement system according to (1) above, further comprising noise removal means for removing a noise signal from the Doppler speed acquired by the Doppler speed acquisition means. .
 ドップラーセンサによる速度測定において、ドップラーセンサは広範囲に電磁波を放出し、反射して戻ってくる電磁波の周波数変化から速度を取得する。しかし反射場所によって取得される速度にはバラツキがでてしまうという欠点がある。上記(2)に記載する発明によれば、ドップラー速度取得手段が取得した前記ドップラー速度のうち、ノイズ信号を取り除くノイズ除去手段を鉄道車両位置測定システムが備えるので、バラツキのあるデータを除去して正確なドップラー速度を取得できるという優れた効果を奏する。 In the speed measurement by the Doppler sensor, the Doppler sensor emits electromagnetic waves in a wide range, and acquires the speed from the frequency change of the electromagnetic waves reflected and returned. However, there is a drawback that the speed obtained by the reflection location varies. According to the invention described in (2) above, since the railroad vehicle position measurement system includes the noise removal means for removing the noise signal out of the Doppler speed acquired by the Doppler speed acquisition means, the variation data is removed. An excellent effect is obtained that an accurate Doppler speed can be obtained.
 (3)本発明は、前記キロ程決定手段が、前記衛星測位速度、または、前記較正速度のどちらか一方を選択する選択手段をさらに備えることを特徴とする上記(1)または(2)に記載の鉄道車両位置測定システムを提供する。 (3) According to the present invention, in the above (1) or (2), the kilometer determination means further comprises a selection means for selecting either the satellite positioning speed or the calibration speed. A railway vehicle position measuring system as described is provided.
 上記(3)に記載する発明によれば、キロ程決定手段が、衛星測位速度、または、較正速度のどちらか一方を選択する選択手段をさらに備えるので、衛星測位速度と較正速度の精度を比較した上で適切な速度を選択でき、より正確な鉄道車両の位置を特定可能になるという優れた効果を奏する。 According to the invention described in (3) above, the kilometer determination means further includes selection means for selecting either the satellite positioning speed or the calibration speed, so that the accuracy of the satellite positioning speed and the calibration speed are compared. In addition, it is possible to select an appropriate speed and to obtain an excellent effect that the position of the railway vehicle can be specified more accurately.
 (4)本発明は、衛星測位のための電波受信の状態を取得する電波受信状態取得手段をさらに有し、前記選択手段は、衛星測位のための電波受信の状態が良好であって、正確な衛星測位速度を取得できるときには、前記衛星測位速度を選択し、衛星測位電波のための前記電波受信の状態が良好ではなく、正確な衛星測位速度を取得できないときには、前記較正速度を選択することを特徴とする上記(3)に記載の鉄道車両位置測定システムを提供する。 (4) The present invention further includes radio wave reception state acquisition means for acquiring a radio wave reception state for satellite positioning, and the selection means has a good radio wave reception state for satellite positioning and is accurate. When the satellite positioning speed can be acquired, the satellite positioning speed is selected, and when the radio wave reception state for the satellite positioning radio wave is not good and the accurate satellite positioning speed cannot be acquired, the calibration speed is selected. A railway vehicle position measuring system as described in (3) above is provided.
 上記(4)に記載する発明によれば、衛星測位のための電波受信の状態に基づいて、衛星測位速度と較正速度のうち適切な速度を選択できる。すなわち衛星測位のための電波受信の状態が良好であって、正確な衛星測位速度を取得できるときには、衛星測位速度を選択し、衛星測位のための電波受信の状態が良好ではなく、正確な衛星測位速度を取得できないときには、測位衛星からの電波受信と関係のないドップラー速度に基づく較正速度を選択することで、より正確なキロ程を取得可能になるという著しく優れた効果を奏する。 According to the invention described in (4) above, an appropriate speed can be selected from the satellite positioning speed and the calibration speed based on the state of radio wave reception for satellite positioning. That is, when the radio wave reception status for satellite positioning is good and an accurate satellite positioning speed can be obtained, the satellite positioning speed is selected, the radio wave reception status for satellite positioning is not good, and the accurate satellite When the positioning speed cannot be acquired, the calibration speed based on the Doppler speed unrelated to the reception of the radio wave from the positioning satellite is selected, so that a more accurate kilometer can be acquired.
 また、衛星測位位置情報取得手段が、十全に位置を取得できない時間帯、すなわち鉄道車両位置測定システム自体が起動された直後において、鉄道車両が動き出した場合でも、ドップラー速度取得手段が取得したドップラー速度に基づいてキロ程を取得できるという優れた効果を奏する。 Further, even when the railway vehicle starts to move immediately after the time when the satellite positioning position information acquisition means cannot acquire the position sufficiently, that is, immediately after the railway vehicle position measurement system itself is started, the Doppler speed acquisition means acquires There is an excellent effect that it is possible to obtain kilos based on the speed.
 (5)本発明は、前記ドップラーセンサと、衛星測位のための電波を受信するアンテナが、一体のハウジングに備えられることを特徴とする上記(1)乃至(4)のうちのいずれかに記載の鉄道車両位置測定システムを提供する。 (5) In the present invention, the Doppler sensor and an antenna for receiving a radio wave for satellite positioning are provided in an integral housing. A railway vehicle position measurement system is provided.
 衛星測位電波受信機においては、測位衛星からの電波を受信するためのアンテナを、窓際等の電波の受信しやすい場所に設置することが必要である。また速度を測定するためのドップラーセンサも車外に電磁波を送信、受信し易い前方窓もしくは後方窓、またはその両方に設置しなければならない。上記(5)に記載する発明によれば、衛星測位電波からの信号を取得するアンテナが、ドップラーセンサと一体のハウジングに備えられるので、取り回しが簡便で営業車両にも簡単に搭載可能な鉄道車両位置測定システムを提供できるという優れた効果を奏する。 In satellite positioning radio receivers, it is necessary to install an antenna for receiving radio waves from positioning satellites in a place where it is easy to receive radio waves, such as near a window. Also, the Doppler sensor for measuring the speed must be installed in the front window, the rear window, or both, which easily transmit and receive electromagnetic waves outside the vehicle. According to the invention described in (5) above, since the antenna for acquiring the signal from the satellite positioning radio wave is provided in the housing integral with the Doppler sensor, the railway vehicle is easy to handle and can be easily mounted on a commercial vehicle. There is an excellent effect that a position measuring system can be provided.
 (6)本発明は、前記ハウジングを前記鉄道車両の窓に固定させる固定手段を備えることを特徴とする上記(5)に記載の鉄道車両位置測定システムを提供する。 (6) The present invention provides the railway vehicle position measurement system according to (5) above, further comprising a fixing means for fixing the housing to a window of the railway vehicle.
 衛星測位のための電波を受信するアンテナと、速度測定のためのドップラーセンサは、車両の外に向けて窓ガラス近傍に固定設置する必要がある。上記(6)に記載する発明によれば、アンテナとドップラーセンサを備えたハウジングが、窓に固定される固定手段により固定されるので、測位のための電波の的確な受信と、正確な速度測定が可能になるという優れた効果を奏する。 The antenna that receives radio waves for satellite positioning and the Doppler sensor for speed measurement must be fixedly installed near the window glass toward the outside of the vehicle. According to the invention described in (6) above, since the housing including the antenna and the Doppler sensor is fixed by the fixing means fixed to the window, accurate reception of radio waves for positioning and accurate speed measurement are performed. There is an excellent effect that becomes possible.
 (7)本発明は、前記鉄道車両に搭載される動揺センサで取得される該鉄道車両の動揺の度合を示す値が、所定の閾値を超過しているか否かを判別する動揺度合判別手段と、前記動揺センサで取得される前記鉄道車両の動揺の度合を示す値が、前記動揺度合判別手段によって、前記所定の閾値を超過したと判別されたタイミングに、前記キロ程決定手段で決定された前記キロ程を記憶する記憶手段とを、さらに備えることを特徴とする上記(1)乃至(6)のうちのいずれかに記載の鉄道車両位置測定システムを提供する。 (7) The present invention provides a degree-of-movement determination means for determining whether a value indicating the degree of movement of the railway vehicle acquired by the movement sensor mounted on the railway vehicle exceeds a predetermined threshold value. The value indicating the degree of shaking of the railway vehicle acquired by the shaking sensor is determined by the kilometer determining means at the timing when the shaking degree determining means determines that the predetermined threshold is exceeded. The railway vehicle position measurement system according to any one of the above (1) to (6), further comprising storage means for storing the kilometer.
 上記(7)に記載する発明によれば、鉄道車両位置測定システムが、自動的に所定の閾値を超過しているか否かを判別できる動揺度合判別手段を有するので、連動するキロ程決定手段が決定する鉄道車両のキロ程の情報を組み合わせることで、動揺の度合いが所定の閾値を超過する場所に該当する軌道狂いの正確な位置(キロ程)を特定できるという優れた効果を奏する。 According to the invention described in (7) above, since the railway vehicle position measurement system has the sway degree determination means that can automatically determine whether or not the predetermined threshold value is exceeded, the interlocking kilometer determination means includes By combining information about the kilometer of the railway vehicle to be determined, there is an excellent effect that it is possible to specify the exact position (kilometre) of the track error corresponding to the place where the degree of shaking exceeds a predetermined threshold.
 本発明によれば、衛星測位システムを用いて鉄道車両の位置や速度を取得するだけでなく、ドップラーセンサから得られる情報に基づいて、鉄道車両の速度を取得することができるので、衛星測位のための電波を受信する受信機の受信条件が悪く、衛星測位電波から位置を特定することができない場所、時間帯においても、鉄道車両の正確な速度が特定できるという優れた効果を奏する。 According to the present invention, not only the position and speed of the railway vehicle can be acquired using the satellite positioning system, but also the speed of the railway vehicle can be acquired based on information obtained from the Doppler sensor. Therefore, there is an excellent effect that the accurate speed of the railway vehicle can be specified even in a place and time zone where the reception condition of the receiver for receiving the radio wave is poor and the position cannot be specified from the satellite positioning radio wave.
鉄道車両位置測定システムの全体構成図である。1 is an overall configuration diagram of a railway vehicle position measurement system. (A)鉄道車両の速度から距離(キロ程)を決定するキロ程決定処理を説明 する説明図である。(B)区分求積法により距離(キロ程)を求める方法を説明する説 明図である。(A) It is explanatory drawing explaining the kilometer determination process which determines distance (km) from the speed of a rail vehicle. (B) An explanatory diagram for explaining a method for obtaining a distance (about kilometer) by a piecewise quadrature method. 鉄道車両の速度V(t)を取得するプログラムのフローチャートである。It is a flowchart of the program which acquires speed V (t) of a rail vehicle. (A)補正係数Gの移動平均Gaを取得するサブルーチンのフローチャート である。(B)較正速度Vaを取得するサブルーチンのフローチャートである。(A) A flowchart of a subroutine for obtaining a moving average Ga of the correction coefficient G. (B) It is a flowchart of the subroutine which acquires the calibration speed Va. ドップラー速度のノイズ除去を説明する説明図である。It is explanatory drawing explaining the noise removal of a Doppler speed. 速度を測定するドップラーセンサ等を備えたハウジングを窓ガラスに固定す る態様を説明する説明図である。FIG. 3 is an explanatory diagram for explaining an aspect in which a housing provided with a Doppler sensor or the like for measuring speed is fixed to a window glass. (A)従来の、距離標から軌道狂いが生じる位置を発見する手法を説明する 説明図である。(B)従来の、衛星測位電波信号から軌道狂いが生じる位置を発見する手法 を説明する説明図である。(A) It is explanatory drawing explaining the method of discovering the position where a trajectory deviation occurs from a distance marker in the past. (B) It is explanatory drawing explaining the method of discovering the position where a trajectory deviation occurs from the conventional satellite positioning radio signal. 従来の衛星測位電波信号から軌道狂いが生じる位置を発見する手法における課題 を説明する説明図である。It is explanatory drawing explaining the subject in the method of discovering the position where an orbit shift occurs from the conventional satellite positioning radio signal.
 以下、本発明の実施形態を添付図面を参照して説明する。図1~図6は発明を実施する形態の一例であって、図中、同一の符号を付した部分は同一物を表わす。なお、各図において一部の構成を適宜省略して、図面を簡略化する。そして、部材の大きさ、形状、厚みなどを適宜誇張して表現する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 to FIG. 6 are examples of embodiments for carrying out the invention, and in the drawings, parts denoted by the same reference numerals represent the same items. In addition, a part of the configuration is omitted as appropriate in each drawing to simplify the drawing. The size, shape, thickness, etc. of the members are exaggerated as appropriate.
 図1は、本発明の第一実施形態に係る鉄道車両位置測定システム1の全体構成図を示す。鉄道車両位置測定システム1は、衛星測位電波受信システム2と、ドップラー速度取得システム4と、動揺測定モジュール50と、制御部60と、通信用I/F(インターフェース)70から主に構成される。衛星測位電波受信システム2とドップラー速度取得システム4は、一体のハウジング45に包含される。また動揺測定モジュール50も、一体のハウジング45に包含しても良い。 FIG. 1 shows an overall configuration diagram of a railway vehicle position measurement system 1 according to a first embodiment of the present invention. The railway vehicle position measurement system 1 mainly includes a satellite positioning radio wave reception system 2, a Doppler velocity acquisition system 4, a fluctuation measurement module 50, a control unit 60, and a communication I / F (interface) 70. The satellite positioning radio wave reception system 2 and the Doppler velocity acquisition system 4 are included in an integral housing 45. The fluctuation measurement module 50 may also be included in the integral housing 45.
 なお鉄道車両位置測定システム1には、衛星測位電波受信システム2と、ドップラー速度取得システム4と、動揺測定モジュール50から取得された情報を統合して記憶、解析し、画像としてモニターに描画するPC80を含んで良い。 In the railway vehicle position measurement system 1, the information acquired from the satellite positioning radio wave reception system 2, the Doppler velocity acquisition system 4, and the fluctuation measurement module 50 is integrated, stored, analyzed, and drawn on the monitor as an image. May be included.
 衛星測位電波受信システム2は、衛星測位電波受信モジュール10と、衛星測位電波信号解析モジュール20を備える。衛星測位電波受信モジュール10は、測位衛星3からの信号電波である衛星測位電波5を受信するアンテナ構造を備える。衛星測位電波信号解析モジュール20は衛星測位位置情報取得手段、且つ、衛星測位速度取得手段であり、衛星測位電波受信モジュール10で得られた信号から、鉄道車両が存在する位置の緯度経度情報である衛星測位位置情報を取得する衛星測位位置情報取得処理と、衛星測位位置情報に基づいて、鉄道車両の速度である衛星測位速度を取得する衛星測位速度取得処理を行う。また衛星測位電波受信システム2は、衛星測位のための電波受信の状態を取得する電波受信状態取得手段を有することが望ましい。 The satellite positioning radio wave reception system 2 includes a satellite positioning radio wave reception module 10 and a satellite positioning radio wave signal analysis module 20. The satellite positioning radio wave receiving module 10 includes an antenna structure that receives a satellite positioning radio wave 5 that is a signal radio wave from the positioning satellite 3. The satellite positioning radio signal analysis module 20 is a satellite positioning position information acquisition unit and a satellite positioning speed acquisition unit, and is latitude / longitude information of a position where the railway vehicle is present from a signal obtained by the satellite positioning radio wave reception module 10. A satellite positioning position information acquisition process for acquiring satellite positioning position information and a satellite positioning speed acquisition process for acquiring a satellite positioning speed that is the speed of the railway vehicle are performed based on the satellite positioning position information. The satellite positioning radio wave reception system 2 preferably has radio wave reception state acquisition means for acquiring the radio wave reception state for satellite positioning.
 ドップラー速度取得システム4は、ドップラーセンサ30と、ドップラー信号解析モジュール40を備える。電磁波のドップラー現象を検出するドップラーセンサ30は、送信電磁波7を送信し、反射されて戻ってくる反射電磁波9を受信するアンテナ構造を有する。ドップラー信号解析モジュール40は、ドップラー速度取得手段であり、ドップラーセンサ30から得られる情報に基づいて、鉄道車両の速度であるドップラー速度を取得するドップラー速度取得処理を行う。 The Doppler speed acquisition system 4 includes a Doppler sensor 30 and a Doppler signal analysis module 40. The Doppler sensor 30 that detects the Doppler phenomenon of the electromagnetic wave has an antenna structure that transmits the transmission electromagnetic wave 7 and receives the reflected electromagnetic wave 9 that is reflected and returned. The Doppler signal analysis module 40 is Doppler speed acquisition means, and performs Doppler speed acquisition processing for acquiring the Doppler speed, which is the speed of the railway vehicle, based on information obtained from the Doppler sensor 30.
 発明者らがこれまでおこなった研究によれば、ドップラー速度取得システム4によって測定された速度であるドップラー速度は、衛星測位電波受信システム2によって測定された正確な速度である衛星測位速度より数%から10%前後小さな値になることがわかっている。したがって衛星測位電波の受信状態が悪い場合に、正確な車両速度を推定するには、ドップラー速度を較正する必要がある。この較正処理については、後述する。 According to studies conducted by the inventors so far, the Doppler velocity, which is the velocity measured by the Doppler velocity acquisition system 4, is several percent of the satellite positioning velocity, which is the accurate velocity measured by the satellite positioning radio wave reception system 2. It is known that the value is about 10% smaller. Therefore, it is necessary to calibrate the Doppler speed in order to estimate an accurate vehicle speed when the satellite positioning radio wave reception state is poor. This calibration process will be described later.
 制御部60は、CPU、RAMおよびROMなどから構成され、各種制御を実行する。すなわち制御部60は、後述するノイズ除去処理を行うノイズ除去手段、較正処理を行う較正手段、キロ程決定処理を行うキロ程決定手段、選択処理を行う選択手段をそれぞれ実現する。CPUはいわゆる中央演算処理装置であり、各種プログラムが実行されて様々な機能を実現する。具体的には、速度情報や位置情報について、後述する異常値判定処理、平均値算出処理、ノイズ除去処理、較正処理、キロ程決定処理、選択処理等をおこなう。RAMはCPUの作業領域、記憶領域として使用され、ROMはCPUで実行されるオペレーティングシステムやプログラムを記憶する。 The control unit 60 includes a CPU, a RAM, a ROM, and the like, and executes various controls. That is, the control unit 60 realizes a noise removing unit that performs a noise removing process described later, a calibration unit that performs a calibration process, a kilometer determining unit that performs a kilometer determining process, and a selecting unit that performs a selecting process. The CPU is a so-called central processing unit, and executes various programs to realize various functions. Specifically, an abnormal value determination process, an average value calculation process, a noise removal process, a calibration process, a kilometer determination process, a selection process, and the like, which will be described later, are performed on speed information and position information. The RAM is used as a work area and a storage area of the CPU, and the ROM stores an operating system and programs executed by the CPU.
 ノイズ除去処理とは、ドップラー速度取得手段が取得したドップラー速度のうち、ノイズ信号を取り除く処理であり、ドップラー信号解析モジュール40が行なってもよい。 The noise removal process is a process of removing a noise signal from the Doppler speed acquired by the Doppler speed acquisition unit, and may be performed by the Doppler signal analysis module 40.
 較正処理とは、上述の衛星測位速度に基づいて、ドップラー速度を較正した較正値である鉄道車両の較正速度を取得する処理である。 The calibration process is a process for acquiring the calibration speed of the railway vehicle, which is a calibration value obtained by calibrating the Doppler speed, based on the satellite positioning speed described above.
 キロ程決定処理とは、衛星測位速度、又は、較正速度のうち、少なくとも一つを用いて鉄道車両のキロ程を決定する処理である。 The kilometer determination process is a process of determining the kilometer of the railway vehicle using at least one of the satellite positioning speed or the calibration speed.
 選択処理とは、衛星測位のための電波受信の状態が良好であって、正確な衛星測位速度を取得できるときには、鉄道車両の速度として衛星測位速度を選択し、衛星測位電波のための電波受信の状態が良好ではなく、正確な衛星測位速度を取得できないときには、鉄道車両の速度として較正速度を選択する処理である。 Selection processing means that when the radio wave reception status for satellite positioning is good and an accurate satellite positioning speed can be obtained, the satellite positioning speed is selected as the speed of the railway vehicle, and radio wave reception for satellite positioning radio waves is received. This is a process of selecting the calibration speed as the speed of the railway vehicle when the state is not good and an accurate satellite positioning speed cannot be obtained.
 上記の異常値判定処理、平均値算出処理、ノイズ除去処理、較正処理、キロ程決定処理、選択処理等については、PC80に記憶された各種プログラムで行っても良い。 The above-described abnormal value determination processing, average value calculation processing, noise removal processing, calibration processing, kilometer determination processing, selection processing, and the like may be performed by various programs stored in the PC 80.
 衛星測位電波信号解析モジュール20、および、ドップラー信号解析モジュール40、と制御部60は、無線又は有線の通信手段によって接続される。 The satellite positioning radio signal analysis module 20, the Doppler signal analysis module 40, and the control unit 60 are connected by wireless or wired communication means.
 通信用I/F70は、既存の通信規格、すなわちRS232CやBluetooth(登録商標)といった規格に則ったインターフェースであり、外付けのPC80に接続される。 The communication I / F 70 is an interface conforming to an existing communication standard, that is, a standard such as RS232C or Bluetooth (registered trademark), and is connected to an external PC 80.
 動揺測定モジュール50は、動揺測定モジュール50が設置される鉄道車両の動揺の度合いを示す値を測定する動揺センサを有する。具体的には動揺センサとしては、例えば、多軸の加速度センサを備え、互いに直交するX軸、Y軸、Z軸の3軸方向の加速度の時間変化を取得する。加速度の時間変化の大きさについて、閾値をあらかじめ設けておき、その閾値よりも大きな加速度の時間変化が生じている場所を軌道狂いのある場所と定めて良い。鉄道車両位置測定システム1は、各時刻において、鉄道車両の位置および、所定の起点からの距離(キロ程)を後述する手法で測定し、その時刻において動揺測定モジュール50が測定した加速度と関連づけて記憶手段、すなわちメモリに記憶することで、軌道狂いの正確な位置を特定することができる。 The sway measurement module 50 includes a sway sensor that measures a value indicating the degree of sway of the railway vehicle on which the sway measurement module 50 is installed. Specifically, as the vibration sensor, for example, a multi-axis acceleration sensor is provided, and a time change in acceleration in three axis directions of the X axis, the Y axis, and the Z axis orthogonal to each other is acquired. A threshold value may be provided in advance for the magnitude of the time change in acceleration, and a place where a time change in acceleration larger than the threshold value occurs may be determined as a place where there is a trajectory error. The railway vehicle position measurement system 1 measures the position of the railway vehicle and the distance (in kilometers) from a predetermined starting point at each time by a method described later, and associates it with the acceleration measured by the oscillation measurement module 50 at that time. By storing the data in the storage means, that is, in the memory, it is possible to specify the exact position of the trajectory error.
 すなわち、鉄道車両位置測定システム1は、鉄道車両に搭載される動揺センサである多軸の加速度センサで取得される該鉄道車両の動揺の度合を示す値が、所定の閾値を超過しているか否かを判別する動揺度合判別手段と、動揺センサで取得される鉄道車両の動揺の度合を示す値が、動揺度合判別手段によって、所定の閾値を超過したと判別されたタイミングに、キロ程処理を行うキロ程決定手段で決定されたキロ程を記憶する記憶手段であるメモリとを、さらに備えてよい。メモリは制御部60にあっても良く、またPC80にあっても良い。 That is, the railway vehicle position measurement system 1 determines whether or not the value indicating the degree of shaking of the railway vehicle acquired by a multi-axis acceleration sensor that is a shaking sensor mounted on the railway vehicle exceeds a predetermined threshold value. When the value indicating the degree of motion of the railway vehicle acquired by the motion sensor is determined by the motion level determination unit to have exceeded a predetermined threshold, the kilometer process is performed. You may further provide the memory which is a memory | storage means to memorize | store the kilometer determined by the kilometer determination means to perform. The memory may be in the control unit 60 or in the PC 80.
 また図1では、動揺測定モジュール50は制御部60に接続され、鉄道車両位置測定システム1に含まれた形態を示しているが、動揺測定モジュール50を鉄道車両位置測定システム1とは別に設けてもよい。その場合でも、略同時刻において、鉄道車両位置測定システム1で取得される鉄道車両の速度情報、および、動揺測定モジュール50で取得される動揺の度合いについての情報、の両者を統合することで、軌道狂いの正確な位置を特定することができる。 In FIG. 1, the fluctuation measurement module 50 is connected to the controller 60 and is included in the railway vehicle position measurement system 1. However, the fluctuation measurement module 50 is provided separately from the railway vehicle position measurement system 1. Also good. Even in that case, at approximately the same time, by integrating both the speed information of the railway vehicle acquired by the railway vehicle position measurement system 1 and the information about the degree of shaking acquired by the shaking measurement module 50, It is possible to specify the exact position of the trajectory error.
 なおハウジング45には、衛星測位電波受信モジュール10とドップラーセンサ30が包含され、衛星測位電波信号解析モジュール20とドップラー信号解析モジュール40は、ハウジング45とは別の筐体内に設けられても良い。またハウジング45には、ドップラーセンサと、衛星測位のための電波を受信するアンテナが包含され、他の部材はハウジング45とは別の筐体内に設けられても良い。 The housing 45 includes the satellite positioning radio wave reception module 10 and the Doppler sensor 30, and the satellite positioning radio signal analysis module 20 and the Doppler signal analysis module 40 may be provided in a separate housing from the housing 45. The housing 45 includes a Doppler sensor and an antenna that receives radio waves for satellite positioning, and other members may be provided in a housing separate from the housing 45.
 図2(A)は、衛星測位電波受信システム2と、ドップラー速度取得システム4の少なくとも一方から得られる情報に基づいて、距離(キロ程)を決定するキロ程決定処理を説明する説明図である。鉄道車両位置測定システム1は、衛星測位電波受信システム2から取得した衛星測位速度、または、衛星測位電波受信システム2とドップラー速度取得システム4の両者から取得した情報に基づいて求められた較正速度、のいずれかを用いて、区分求積法により距離(キロ程)を取得する。すなわち衛星測位電波の受信状態が良好であれば、衛星測位速度を用い、衛星測位電波の受信状態が悪ければ較正速度を用いて計算をおこなうことが望ましい。すなわち、図2(A)でいうならば、衛星測位電波の受信状態が良好なときには、スイッチは右側に接続され、衛星測位電波の受信状態が悪ければ、スイッチは左側に接続される。 FIG. 2A is an explanatory diagram illustrating a kilometer determination process for determining a distance (kilometres) based on information obtained from at least one of the satellite positioning radio wave reception system 2 and the Doppler velocity acquisition system 4. . The railway vehicle position measurement system 1 includes a satellite positioning speed acquired from the satellite positioning radio wave reception system 2, or a calibration speed obtained based on information acquired from both the satellite positioning radio wave reception system 2 and the Doppler speed acquisition system 4. The distance (about kilometer) is acquired by the piecewise quadrature method. That is, it is desirable to perform calculation using the satellite positioning speed if the satellite positioning radio wave reception state is good, and using the calibration speed if the satellite positioning radio wave reception state is bad. That is, in FIG. 2A, when the satellite positioning radio wave reception state is good, the switch is connected to the right side, and when the satellite positioning radio wave reception state is bad, the switch is connected to the left side.
 ここで区分求積法というのは、図2(B)のように、時間間隔Dtの間の移動距離Lを、例えば所定の時刻tにおける速度V(t)にDtを掛け合わせて求め、移動距離Lを足し合わせることで、所定の位置からの距離(キロ程)を求める手法である。 Here, the piecewise quadrature method, as shown in FIG. 2 (B), calculates the moving distance L during the time interval Dt by multiplying the speed V (t) at a predetermined time t by Dt, for example. This is a method of obtaining a distance (about kilometer) from a predetermined position by adding the distance L.
 なお衛星測位電波受信システム2は、受信機の位置情報である衛星測位位置情報を取得できるので、あらかじめ所定の位置までの正確なキロ程を、別の手段で求めておき、鉄道車両がその位置に到達したことを検出したならば、そこで距離を正確な値に補正し、車両速度V(t)から求める距離の誤差が蓄積しないように、キロ程補正をおこなってもよい(図2(A)参照)。具体的には、衛星測位電波の受信状態の良いポイントをあらかじめ決めておき、そのポイントの緯度経度情報を衛星測位電波受信システムで取得し、所定の起点からそのポイントまでのキロ程を軌道検測車で計測しておくことが望ましい。 The satellite positioning radio wave reception system 2 can acquire satellite positioning position information, which is the position information of the receiver. Therefore, an accurate kilometer to a predetermined position is obtained in advance by another means, and the railway vehicle If it is detected that the distance has been reached, the distance may be corrected to an accurate value, and the distance may be corrected so as not to accumulate an error in the distance obtained from the vehicle speed V (t) (FIG. 2A )reference). Specifically, a point with good reception of satellite positioning radio waves is determined in advance, and the latitude and longitude information of that point is acquired by the satellite positioning radio wave reception system, and the orbit measurement is performed from the specified starting point to the point. It is desirable to measure by car.
 次に、上記した第一実施形態に係る鉄道車両位置測定システム1の詳細な動作を説明する。 Next, detailed operation of the railway vehicle position measurement system 1 according to the first embodiment will be described.
 図3は、所定の時刻tにおける鉄道車両の速度V(t)を取得するプログラムのフローチャートを示す。なお補正係数の移動平均Ga、較正速度Vaを取得する各サブルーチンについては、それぞれ図4(A)、図4(B)にて詳述する。 FIG. 3 shows a flowchart of a program for obtaining the speed V (t) of the railway vehicle at a predetermined time t. Each subroutine for obtaining the moving average Ga of the correction coefficient and the calibration speed Va will be described in detail with reference to FIGS. 4A and 4B, respectively.
 まず制御部60は、衛星測位電波受信システム2から衛星測位電波の受信状態を取得する(ステップS1)。制御部60は、衛星測位電波の受信状態が良好かどうかを判断する(ステップS2)。もしも良好であれば、制御部60は、衛星測位電波受信システム2から衛星測位速度Vgを取得する(ステップS3)。続いて制御部60は、ドップラー速度取得システム4から、ドップラー速度Vdを取得する(ステップS4)。制御部60は、取得したドップラー速度Vdについて、後述するノイズ除去処理をおこない、処理後の値を新たにドップラー速度Vdとする(ステップS5)。さらに制御部60は、サブルーチンに従い、補正係数Gを計算し、Gの移動平均Gaをメモリに記憶する(ステップS6)。そして制御部60は、衛星測位速度Vgを、所定の時刻tにおける鉄道車両の速度V(t)としてメモリに記憶する(ステップS7)。 First, the control unit 60 acquires the reception status of the satellite positioning radio wave from the satellite positioning radio wave receiving system 2 (step S1). The control unit 60 determines whether or not the satellite positioning radio wave reception state is good (step S2). If good, the control unit 60 acquires the satellite positioning speed Vg from the satellite positioning radio wave reception system 2 (step S3). Subsequently, the control unit 60 acquires the Doppler speed Vd from the Doppler speed acquisition system 4 (step S4). The controller 60 performs a noise removal process to be described later on the acquired Doppler speed Vd, and newly sets the processed value as the Doppler speed Vd (step S5). Further, the control unit 60 calculates the correction coefficient G according to the subroutine, and stores the moving average Ga of G in the memory (step S6). Then, the control unit 60 stores the satellite positioning speed Vg in the memory as the speed V (t) of the railway vehicle at the predetermined time t (step S7).
 ステップS2において制御部60により、衛星測位電波の受信状態が良好でないと判断されたならば、制御部60は、ドップラー速度取得システム4からドップラー速度Vdを取得する(ステップS8)。制御部60は、取得したドップラー速度Vdについて、後述するノイズ除去処理をおこない、処理後の値を新たにドップラー速度Vdとする(ステップS9)。続いて制御部60は、サブルーチンに従って較正速度Vaを計算する(ステップS10)。そして制御部60は、較正速度Vaを所定の時刻tにおける鉄道車両の速度V(t)としてメモリに記憶する(ステップS11)。 If the control unit 60 determines in step S2 that the satellite positioning radio wave reception state is not good, the control unit 60 acquires the Doppler velocity Vd from the Doppler velocity acquisition system 4 (step S8). The controller 60 performs a noise removal process to be described later on the acquired Doppler speed Vd, and newly sets the processed value as the Doppler speed Vd (step S9). Subsequently, the control unit 60 calculates the calibration speed Va according to the subroutine (step S10). Then, the control unit 60 stores the calibration speed Va in the memory as the speed V (t) of the railway vehicle at a predetermined time t (step S11).
 ここでV(t)を記憶するメモリは、制御部60に備えられてもよく、PC80にあってもよい。 Here, the memory for storing V (t) may be provided in the control unit 60 or in the PC 80.
 図4(A)を用いて、補正係数Gを計算し、補正係数Gの移動平均Gaをメモリに記憶するサブルーチンについて説明する。まず制御部60は、補正係数G=Vg/Vdを計算する(ステップS12)。続いて制御部60は、補正係数Gをメモリに記憶する(ステップS13)。そして制御部60は、補正係数Gの移動平均値Gaを取得する(ステップS14)。このとき制御部60は、移動平均値Gaについては例えば過去10件を常に保持し、10件の移動平均値Gaを適宜求めてメモリに記憶し(ステップS15)、後述する較正速度Vaの計算に用いる。ただし過去10件分のデータがない場合には、メモリに蓄積されている補正係数Gのデータのみで移動平均値を求め、移動平均値Gaとして記憶してよい。また新たに記憶された補正係数Gが、直前の移動平均値Gaから例えば±5%以上ずれた値であるときには、移動平均値を計算するためのデータとして用いなくても良い。 4A, a subroutine for calculating the correction coefficient G and storing the moving average Ga of the correction coefficient G in the memory will be described. First, the control unit 60 calculates the correction coefficient G = Vg / Vd (step S12). Subsequently, the control unit 60 stores the correction coefficient G in the memory (step S13). And the control part 60 acquires the moving average value Ga of the correction coefficient G (step S14). At this time, the control unit 60 always holds, for example, the past 10 cases for the moving average value Ga, appropriately obtains the 10 moving average values Ga and stores them in the memory (step S15), and calculates the calibration speed Va described later. Use. However, when there is no data for the past 10 cases, the moving average value may be obtained only from the data of the correction coefficient G accumulated in the memory and stored as the moving average value Ga. Further, when the newly stored correction coefficient G is a value deviated by, for example, ± 5% or more from the immediately preceding moving average value Ga, it may not be used as data for calculating the moving average value.
 なお制御部60による補正係数Gの移動平均Gaの更新は、衛星測位速度Vgの取得タイミングに合わせるなど、所定の時間間隔でおこなっても良い。 The moving average Ga of the correction coefficient G by the control unit 60 may be updated at a predetermined time interval, for example, in accordance with the acquisition timing of the satellite positioning speed Vg.
 図4(B)を用いて、較正速度Vaを取得するサブルーチンについて説明する。制御部60は、較正速度Va=Ga×Vdを取得する(ステップS16)。このとき制御部60は、移動平均値Gaがまだ取得されていない場合には、デフォルト値として、メモリにあらかじめ蓄積されている数値を用いてVaを計算してもよい。 A subroutine for obtaining the calibration speed Va will be described with reference to FIG. The control unit 60 acquires the calibration speed Va = Ga × Vd (Step S16). At this time, if the moving average value Ga has not yet been acquired, the control unit 60 may calculate Va using a numerical value stored in advance in the memory as a default value.
 以上説明した手法により、制御部60は、衛星測位電波の受信状態が悪く、衛星測位速度Vgが取得できない時刻tにおいても、ドップラー速度Vdと補正係数の移動平均Gaを用いて鉄道車両の速度V(t)を計算することができる。したがって、鉄道車両位置測定システム1は、各時刻における鉄道車両の所定の起点からの距離(キロ程)を正確に計算できる。 With the method described above, the control unit 60 uses the Doppler speed Vd and the moving average Ga of the correction coefficient at the time t when the satellite positioning radio wave reception state is poor and the satellite positioning speed Vg cannot be acquired. (T) can be calculated. Therefore, the railway vehicle position measurement system 1 can accurately calculate the distance (about kilometer) from the predetermined starting point of the railway vehicle at each time.
 図5は、ドップラー速度のノイズ信号を取り除くノイズ除去手段で行うノイズ処理を説明する説明図である。発明者らの研究によれば、測定されたドップラー速度については、バラツキが大きいものの、所定の時間内のバラツキのなかで、最大値を選択していけば十分滑らかで、正確な速度である衛星測位速度とも極めて相関の良い速度が得られることがわかっている。図5(A)は、ドップラー速度取得システム4で得られたドップラー速度の時間変化を表す。ドップラー速度取得システム4は、所定の時間間隔で測定を連続しておこない、ノイズ除去手段は、例えば次のような異常値判定処理、平均値算出処理、最大値処理をおこなう。 FIG. 5 is an explanatory diagram for explaining the noise processing performed by the noise removing means for removing the Doppler speed noise signal. According to the research by the inventors, the measured Doppler speed varies greatly, but if the maximum value is selected among the variations within a predetermined time, the satellite is sufficiently smooth and accurate. It has been found that a speed very well correlated with the positioning speed can be obtained. FIG. 5A shows the change over time of the Doppler speed obtained by the Doppler speed acquisition system 4. The Doppler speed acquisition system 4 continuously performs measurement at predetermined time intervals, and the noise removing unit performs, for example, the following abnormal value determination process, average value calculation process, and maximum value process.
 なおここでいうデータとは、ドップラー速度取得システム4が連続して測定したドップラー速度である。前回データがない場合には、最初に得られたデータを正常とみなし、次にデータが得られたときに、最初に得られたデータを前回のデータ、次に得られたデータを今回のデータと考えて処理を進める。 Note that the data here is the Doppler speed measured continuously by the Doppler speed acquisition system 4. If there is no previous data, the first data is considered normal, and when the next data is obtained, the first data is the previous data, and the next data is the current data. We proceed with processing.
 <異常値判定処理>
(1)前回データが正常であり、今回と前回の速度差が第一所定差、例えば5km/h以上あった場合は異常値とみなす。
(2)前回データが正常であり、今回の速度が所定速度、例えば5km/h未満、且つ、前回との速度差が第二所定差、例えば30km/hあった場合は異常値とみなす。
(3)前回データが異常であり、異常時の速度が今回の速度と異なっていることと、今回と過去直近の正常時の速度差が第三所定差、例えば20km/h以下であった場合は正常値とみなす。
(4)前回データが異常であり、今回で異常データの継続回数が例えば40回を超えている場合は正常値とみなす。
<Abnormal value determination processing>
(1) When the previous data is normal and the speed difference between the current time and the previous time is a first predetermined difference, for example, 5 km / h or more, it is regarded as an abnormal value.
(2) If the previous data is normal, the current speed is less than a predetermined speed, for example, less than 5 km / h, and the speed difference from the previous time is a second predetermined difference, for example, 30 km / h, it is regarded as an abnormal value.
(3) When the previous data is abnormal, the speed at the time of abnormality is different from the current speed, and the speed difference between the current time and the last normal time is a third predetermined difference, for example, 20 km / h or less Is considered normal.
(4) If the previous data is abnormal and the number of times that the abnormal data is continued exceeds 40, for example, this time, it is regarded as a normal value.
 <平均値処理>
(1)例えば過去10回の速度データを使い、平均値を求める。
(2)求めた平均値と今回の速度差が第四所定差、例えば30km/h以上あった場合は、速度データとして平均値を採用する。
<Average value processing>
(1) For example, the average value is obtained using the past 10 speed data.
(2) When the obtained average value and the current speed difference are a fourth predetermined difference, for example, 30 km / h or more, the average value is adopted as the speed data.
 <最大値処理>
(1)例えば過去40回の速度データを使い、最大値を求める。
(2)求めた最大値と今回の速度差が第五所定差、例えば5km/h以上あった場合は、速度データとして最大値を採用する。
<Maximum value processing>
(1) For example, the maximum value is obtained using the past 40 speed data.
(2) When the difference between the obtained maximum value and the current speed is a fifth predetermined difference, for example, 5 km / h or more, the maximum value is adopted as speed data.
 以上のような処理をおこなうことで、図5(A)のデータは、図5(B)のようにバラツキが抑えられ、ノイズが除去されたデータとなる。 By performing the processing as described above, the data in FIG. 5A becomes data from which variation is suppressed and noise is removed as shown in FIG. 5B.
 図6は、鉄道車両位置測定システムのハウジング45等を説明する説明図である。図6(A)は、衛星測位電波受信モジュール10とドップラーセンサ30を備えたハウジング45であって、ハウジング45を鉄道車両の窓ガラスに固定する固定手段150を備えたものを表す。窓ガラス固定手段150としては、例えば真空吸着をする吸盤のような吸着固定手段が考えられる。図6(B)のように、窓ガラスの内側面210に固定手段150でハウジング45を固定することができる。このような態様にすることで、ハウジング45は窓ガラスに簡単に固定できるので、窓ガラスを通して測位衛星3の信号電波を捉えることが可能になる。したがって衛星測位速度の取得および衛星測位位置情報を取得することができる。またドップラーセンサ30のアンテナ構造により電磁波の送信、受信が可能なので、ドップラー速度の取得もできる。なお、鉄道車両位置測定システム1は、ハウジング45とは別に、制御部60を備えた筐体を有し、ハウジング45と制御部60の間の信号のやりとりは、既存の無線通信手段300によっておこなうことが望ましい(図6(B)参照)。なおハウジング45の固定手段150は、磁気吸着によるものであっても良い。 FIG. 6 is an explanatory diagram for explaining the housing 45 and the like of the railway vehicle position measurement system. FIG. 6A shows a housing 45 provided with the satellite positioning radio wave receiving module 10 and the Doppler sensor 30 and provided with fixing means 150 for fixing the housing 45 to the window glass of the railway vehicle. As the window glass fixing means 150, for example, suction fixing means such as a suction cup for vacuum suction can be considered. As shown in FIG. 6B, the housing 45 can be fixed to the inner side surface 210 of the window glass by the fixing means 150. By adopting such an aspect, the housing 45 can be easily fixed to the window glass, so that the signal radio wave of the positioning satellite 3 can be captured through the window glass. Therefore, acquisition of satellite positioning speed and satellite positioning position information can be acquired. Further, since the electromagnetic wave can be transmitted and received by the antenna structure of the Doppler sensor 30, the Doppler speed can be acquired. The railway vehicle position measurement system 1 has a housing provided with a control unit 60 separately from the housing 45, and exchange of signals between the housing 45 and the control unit 60 is performed by the existing wireless communication unit 300. It is desirable (see FIG. 6B). Note that the fixing means 150 of the housing 45 may be based on magnetic adsorption.
 以上、上述した実施形態に係る鉄道車両位置測定システム1によれば、衛星測位システムを用いて衛星測位電波受信システム2により、鉄道車両の位置や速度を取得するだけでなく、ドップラー速度取得システム4から得られる情報に基づいて、鉄道車両の速度を取得することができるので、衛星測位のための電波を受信する受信機の受信条件が悪く、衛星測位電波から位置を特定することができない場所、時間帯においても、鉄道車両の正確な速度が特定でき、動揺測定モジュール50によって測定される各時刻における動揺の度合いと合わせることで、鉄道の軌道狂いのキロ程、位置を正確に特定できるという優れた効果を奏する。 As described above, according to the railway vehicle position measurement system 1 according to the above-described embodiment, not only the position and speed of the railway vehicle are acquired by the satellite positioning radio wave reception system 2 using the satellite positioning system, but also the Doppler speed acquisition system 4. Based on the information obtained from the railway vehicle, the speed of the railway vehicle can be acquired, so the reception conditions of the receiver that receives the radio waves for satellite positioning are bad, and the location cannot be specified from the satellite positioning radio waves, Even in the time zone, the exact speed of the railway vehicle can be specified, and by combining it with the degree of shaking at each time measured by the shaking measurement module 50, it is possible to accurately specify the kilometer and position of the railway track deviation. Has an effect.
 また、衛星測位電波受信システム2が、十全に位置や速度を取得できない時間帯、すなわち鉄道車両位置測定システム1自体が起動された直後において、鉄道車両が動き出した場合でも、ドップラー速度取得システム4が取得したドップラー速度に基づいてキロ程を取得できるという優れた効果を奏する。 Even when the railroad vehicle starts to move immediately after the satellite positioning radio wave reception system 2 cannot acquire the position and speed sufficiently, that is, immediately after the railcar position measurement system 1 itself is activated, the Doppler speed acquisition system 4 Has an excellent effect of being able to acquire kilometer based on the acquired Doppler speed.
 なお、本発明の鉄道車両位置測定システムは、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 In addition, the railway vehicle position measurement system of the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.
 例えば、あらかじめ取得された、鉄道車両位置測定システム1は、あらかじめ測定した緯度経度情報あるいはキロ程情報を対応させたマッチング情報に基づいて、キロ程を較正しても良い。ここでマッチング情報とは、例えば1km毎のキロ程と、その地点での緯度経度を表すテーブルであり、キロ程を較正する元データとなり得る。衛星測位電波受信機により測定された位置情報や速度情報、およびドップラーセンサに基づく速度情報には、ある程度の誤差が含まれており、長い区間にわたって連続した距離測定をおこなうと、誤差が蓄積して正確な位置(キロ程)が把握できなくなる可能性がある。そこで、鉄道事業者は例えば軌道検測車であらかじめマッチング情報を測定して蓄積しておき、このマッチング情報に基づいて、本発明に係る鉄道車両位置測定システム1で得られたキロ程を較正することも考えられる。 For example, the railway vehicle position measurement system 1 acquired in advance may calibrate the kilometer based on matching information corresponding to latitude / longitude information or kilometer information measured in advance. Here, the matching information is, for example, a table representing a kilometer per 1 km and the latitude and longitude at that point, and can be original data for calibrating the kilometer. The position information and velocity information measured by the satellite positioning radio receiver and the velocity information based on the Doppler sensor include a certain amount of error. When continuous distance measurement is performed over a long section, the error accumulates. There is a possibility that the exact position (about kilometer) cannot be grasped. Therefore, the railway operator measures and accumulates matching information in advance, for example, by a track inspection vehicle, and calibrates the kilometer obtained by the railway vehicle position measurement system 1 according to the present invention based on the matching information. It is also possible.
 1  鉄道車両位置測定システム
 2  衛星測位電波受信システム
 3  測位衛星
 4  ドップラー速度取得システム
 5  衛星測位電波
 7  送信電磁波
 9  反射電磁波
 10  衛星測位電波受信モジュール
 20  衛星測位電波解析モジュール
 25  アンテナ構造
 30  ドップラーセンサ
 40  ドップラー信号解析モジュール
 45  ハウジング
 50  動揺測定モジュール
 60  制御部
 70  通信用I/F(インターフェース)
 80  PC
 90  鉄道車両
 100  キロポスト(距離標)
 110  トンネル
 120  トンネル内の鉄道車両
 150  固定手段
 200  窓ガラス
 210  窓ガラスの内側面
 300  無線通信手段
DESCRIPTION OF SYMBOLS 1 Rail vehicle position measurement system 2 Satellite positioning radio wave reception system 3 Positioning satellite 4 Doppler velocity acquisition system 5 Satellite positioning radio wave 7 Transmission electromagnetic wave 9 Reflected electromagnetic wave 10 Satellite positioning radio wave reception module 20 Satellite positioning radio wave analysis module 25 Antenna structure 30 Doppler sensor 40 Doppler Signal analysis module 45 Housing 50 Shaking measurement module 60 Control unit 70 Communication I / F (interface)
80 PC
90 railway vehicle 100 kilometer post (distance mark)
DESCRIPTION OF SYMBOLS 110 Tunnel 120 Rail vehicle in tunnel 150 Fixing means 200 Window glass 210 Inner side surface of window glass 300 Wireless communication means

Claims (7)

  1.  電磁波のドップラー現象を検出するドップラーセンサと、
     前記ドップラーセンサから得られる情報に基づいて、鉄道車両の速度であるドップラー速度を取得するドップラー速度取得手段と、
     衛星測位システムを用いて、前記鉄道車両が存在する位置の緯度経度情報である衛星測位位置情報を取得する衛星測位位置情報取得手段と、
     前記衛星測位位置情報に基づいて、前記鉄道車両の速度である衛星測位速度を取得する衛星測位速度取得手段と、
     前記衛星測位速度に基づいて、前記ドップラー速度を較正した較正値である前記鉄道車両の較正速度を取得する較正手段と、
     前記衛星測位速度、又は、前記較正速度のうち、少なくとも一つを用いて前記鉄道車両のキロ程を決定するキロ程決定手段と、
    を備えることを特徴とする鉄道車両位置測定システム。
    A Doppler sensor that detects the Doppler phenomenon of electromagnetic waves,
    Based on information obtained from the Doppler sensor, Doppler speed acquisition means for acquiring a Doppler speed that is the speed of a railway vehicle;
    Using satellite positioning system, satellite positioning position information acquisition means for acquiring satellite positioning position information which is latitude and longitude information of the position where the railway vehicle exists;
    Based on the satellite positioning position information, satellite positioning speed acquisition means for acquiring a satellite positioning speed that is the speed of the railway vehicle;
    Calibration means for obtaining a calibration speed of the railway vehicle, which is a calibration value obtained by calibrating the Doppler speed based on the satellite positioning speed;
    A kilometer determining means for determining the kilometer of the railway vehicle using at least one of the satellite positioning speed or the calibration speed;
    A railway vehicle position measurement system comprising:
  2.  前記ドップラー速度取得手段が取得した前記ドップラー速度のうち、ノイズ信号を取り除くノイズ除去手段を備えることを特徴とする請求の範囲1に記載の鉄道車両位置測定システム。 The railway vehicle position measurement system according to claim 1, further comprising noise removing means for removing a noise signal from the Doppler speed acquired by the Doppler speed acquisition means.
  3.  前記キロ程決定手段が、前記衛星測位速度、または、前記較正速度のどちらか一方を選択する選択手段をさらに備えることを特徴とする請求の範囲1または請求の範囲2に記載の鉄道車両位置測定システム。 The railway vehicle position measurement according to claim 1 or 2, wherein the kilometer determination means further comprises a selection means for selecting either the satellite positioning speed or the calibration speed. system.
  4.  衛星測位のための電波受信の状態を取得する電波受信状態取得手段をさらに有し、前記選択手段は、衛星測位のための電波受信の状態が良好であって、正確な衛星測位速度を取得できるときには、前記衛星測位速度を選択し、衛星測位電波のための前記電波受信の状態が良好ではなく、正確な衛星測位速度を取得できないときには、前記較正速度を選択することを特徴とする請求の範囲3に記載の鉄道車両位置測定システム。 It further has radio wave reception status acquisition means for acquiring radio wave reception status for satellite positioning, and the selection means is in good radio wave reception status for satellite positioning and can acquire an accurate satellite positioning speed. The satellite positioning speed is sometimes selected, and when the radio wave reception state for satellite positioning radio waves is not good and an accurate satellite positioning speed cannot be obtained, the calibration speed is selected. 4. The railway vehicle position measurement system according to 3.
  5.  前記ドップラーセンサと、衛星測位のための電波を受信するアンテナが、一体のハウジングに備えられることを特徴とする請求の範囲1から請求の範囲4のうちのいずれか一項に記載の鉄道車両位置測定システム。 The railway vehicle position according to any one of claims 1 to 4, wherein the Doppler sensor and an antenna for receiving radio waves for satellite positioning are provided in an integral housing. Measuring system.
  6.  前記ハウジングを前記鉄道車両の窓に固定させる固定手段を備えることを特徴とする請求の範囲5に記載の鉄道車両位置測定システム。 6. The railway vehicle position measuring system according to claim 5, further comprising a fixing means for fixing the housing to a window of the railway vehicle.
  7.  前記鉄道車両に搭載される動揺センサで取得される該鉄道車両の動揺の度合を示す値
    が、所定の閾値を超過しているか否かを判別する動揺度合判別手段と、
     前記動揺センサで取得される前記鉄道車両の動揺の度合を示す値が、前記動揺度合判別手段によって、前記所定の閾値を超過したと判別されたタイミングに、前記キロ程決定手段で決定された前記キロ程を記憶する記憶手段と
    を、さらに備えることを特徴とする請求の範囲1から請求の範囲6のうちのいずれか一項に記載の鉄道車両位置測定システム。
    A degree-of-movement determination means for determining whether a value indicating the degree of movement of the railway vehicle acquired by the vibration sensor mounted on the railway vehicle exceeds a predetermined threshold;
    The value determined by the kilometer determining means at a timing when the value indicating the degree of the shaking of the railway vehicle acquired by the shaking sensor is determined by the shaking degree determining means to exceed the predetermined threshold. The railway vehicle position measurement system according to any one of claims 1 to 6, further comprising storage means for storing kilometres.
PCT/JP2017/026645 2016-07-25 2017-07-24 Railroad vehicle location measuring system WO2018021225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016145467A JP6802555B2 (en) 2016-07-25 2016-07-25 Railroad vehicle position measurement system
JP2016-145467 2016-07-25

Publications (1)

Publication Number Publication Date
WO2018021225A1 true WO2018021225A1 (en) 2018-02-01

Family

ID=61016276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026645 WO2018021225A1 (en) 2016-07-25 2017-07-24 Railroad vehicle location measuring system

Country Status (2)

Country Link
JP (1) JP6802555B2 (en)
WO (1) WO2018021225A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645727A (en) * 2019-03-04 2020-09-11 比亚迪股份有限公司 Train and positioning method and device thereof
WO2021235178A1 (en) * 2020-05-22 2021-11-25 株式会社 東芝 Position measurement device, speed measurement device, and position measurement method
CN115158412A (en) * 2022-06-14 2022-10-11 深圳市远望谷信息技术股份有限公司 Railway wagon running quality online detection method and device, electronic equipment and medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6994808B2 (en) * 2018-02-05 2022-01-14 日本無線株式会社 Hull speed measuring device and hull speed measuring program
JP7114363B2 (en) * 2018-06-21 2022-08-08 株式会社東芝 Measuring device
CN110803200B (en) * 2019-11-05 2021-07-06 武汉市市政建设集团有限公司 CPIII control point-based track mileage positioning method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247217A (en) * 2007-03-30 2008-10-16 Daido Signal Co Ltd Train position detecting device
JP2013244758A (en) * 2012-05-23 2013-12-09 Mitsubishi Electric Corp Train position calculation device, and train position calculation method
JP2014141157A (en) * 2013-01-23 2014-08-07 Toyota Motor Corp Travel control device and travel control method
JP2015089150A (en) * 2013-10-28 2015-05-07 株式会社エイクラ通信 Mileage arithmetic unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247217A (en) * 2007-03-30 2008-10-16 Daido Signal Co Ltd Train position detecting device
JP2013244758A (en) * 2012-05-23 2013-12-09 Mitsubishi Electric Corp Train position calculation device, and train position calculation method
JP2014141157A (en) * 2013-01-23 2014-08-07 Toyota Motor Corp Travel control device and travel control method
JP2015089150A (en) * 2013-10-28 2015-05-07 株式会社エイクラ通信 Mileage arithmetic unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645727A (en) * 2019-03-04 2020-09-11 比亚迪股份有限公司 Train and positioning method and device thereof
WO2021235178A1 (en) * 2020-05-22 2021-11-25 株式会社 東芝 Position measurement device, speed measurement device, and position measurement method
CN115158412A (en) * 2022-06-14 2022-10-11 深圳市远望谷信息技术股份有限公司 Railway wagon running quality online detection method and device, electronic equipment and medium

Also Published As

Publication number Publication date
JP2018016098A (en) 2018-02-01
JP6802555B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2018021225A1 (en) Railroad vehicle location measuring system
US20200393491A1 (en) Systems and Methods for 3-Axis Accelerometer Calibration with Vertical Sample Buffers
US10319222B2 (en) Traffic condition monitoring system, method, and storage medium
US10107831B2 (en) Systems and methods for efficient characterization of acceleration events
US20200064370A1 (en) Systems and Methods for Low Latency 3-Axis Accelerometer Calibration
US20130073142A1 (en) Systems and Methods for 3-Axis Accelerometer Calibration
US10365109B2 (en) Travel distance estimation device
US20160091324A1 (en) Travel route information generation apparatus
CN107247275B (en) Urban GNSS vulnerability monitoring system and method based on bus
WO2002008042A1 (en) A method of determining train characteristics using navigational data
JP2011221671A (en) Vehicle tracking system
JP2009145167A (en) Position estimating apparatus and position estimating system
CN108195374A (en) For the integrated navigation system of track automatic measurement vehicle and integrated navigation calculation method
JP2007284013A (en) Vehicle position measuring device and vehicle position measuring method
CN109642955A (en) Train position detection device and method
JP5554560B2 (en) Positioning reliability evaluation apparatus, positioning reliability evaluation method, and positioning reliability evaluation program
CN110952427A (en) Modularized intelligent road sensing equipment and system based on driving feeling
US20200158815A1 (en) Method of Determining Locomotive Position by Triangulation
JP2011232128A (en) Road gradient measurement device and road gradient measurement method
KR20170110988A (en) System and method for measuring position of trail
WO2015049539A1 (en) Improvements relating to remote monitoring of user environments using mobile devices
AU2015268770B2 (en) Device and Method for a Rail Vehicle
KR101445872B1 (en) apparatus and method for estimating position of vehicle usig driving Record
CN211734979U (en) Modularized intelligent road sensing equipment based on driving feeling
JP6191508B2 (en) Position measurement system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834231

Country of ref document: EP

Kind code of ref document: A1