WO2018020902A1 - Solid-state image pickup element and electronic device - Google Patents

Solid-state image pickup element and electronic device Download PDF

Info

Publication number
WO2018020902A1
WO2018020902A1 PCT/JP2017/022437 JP2017022437W WO2018020902A1 WO 2018020902 A1 WO2018020902 A1 WO 2018020902A1 JP 2017022437 W JP2017022437 W JP 2017022437W WO 2018020902 A1 WO2018020902 A1 WO 2018020902A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
solid
imaging device
conductive layer
state imaging
Prior art date
Application number
PCT/JP2017/022437
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 新吾
和典 長畑
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2018020902A1 publication Critical patent/WO2018020902A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00

Definitions

  • the present disclosure relates to a solid-state imaging device and an electronic device.
  • solid-state image sensors are becoming smaller and lighter.
  • a structure of a solid-state imaging device suitable for miniaturization and weight reduction a single-plate structure that does not use a color separation prism or the like can be given.
  • a single-plate type solid-state imaging device has a structure in which, for example, a plurality of light receiving elements that selectively receive light in different wavelength bands (for example, three primary colors of red, green, and blue light) are arranged in one pixel, respectively.
  • a solid-state imaging device can acquire a full-color image, compared with a monochrome type solid-state imaging device in which only one light-receiving element is arranged in one pixel, The light receiving area is reduced.
  • a solid-state imaging device in which light receiving elements that selectively receive light in different wavelength bands are stacked in the light incident direction.
  • the light-receiving area of each light-receiving element can be expanded compared to a solid-state imaging device in which the respective light-receiving elements are arranged in a plane, so that the sensitivity of the solid-state imaging device can be improved. It is expected.
  • Patent Document 1 a photoelectric conversion film including an organic photoelectric conversion material that selectively absorbs light in a red, green, or blue wavelength band is stacked in the thickness direction in order to perform spectroscopy in the light incident direction.
  • a vertical spectral type solid-state imaging device is disclosed.
  • the present disclosure proposes a new and improved solid-state imaging device and electronic apparatus that can improve characteristics as an imaging device.
  • a plurality of organic photoelectric conversion units provided in a stacked manner in a light incident direction and photoelectrically converting light in different wavelength bands, and provided between the plurality of organic photoelectric conversion units, There is provided a solid-state imaging device comprising a conductive layer for shielding.
  • an electronic apparatus comprising: a solid-state imaging device including a conductive layer that shields the light; an optical system that guides incident light to the solid-state imaging device; and an arithmetic processing circuit that performs arithmetic processing on an output signal from the solid-state imaging device.
  • the electric field applied to each of the photoelectric conversion films causes noise in other photoelectric conversion films. It is possible to suppress the occurrence of.
  • FIG. 1 is a plan view showing an overall configuration of a solid-state imaging device 1 according to the present embodiment.
  • the solid-state imaging device 1 is, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the solid-state imaging device 1 includes a pixel unit 100a that is an imaging region on a substrate 60, and a row scanning unit 610, a horizontal selection unit 630, a column scanning unit 640, and a peripheral region of the pixel unit 100a.
  • a peripheral circuit unit 600 including a system control unit 620 is provided.
  • the pixel unit 100a includes, for example, a plurality of unit pixels 100 that are two-dimensionally arranged in a matrix.
  • a pixel drive line L read (specifically, a row selection line and a reset control line) is wired for each pixel row, and a vertical signal line L sig is wired for each pixel column.
  • the pixel drive line L read transmits a drive signal for reading a signal from the pixel, and one end of the pixel drive line L read is connected to an output end corresponding to each row of the row scanning unit 610, for example.
  • the row scanning unit 610 is a pixel driving unit configured by, for example, a shift register and an address decoder, and drives each of the unit pixels 100 provided in the pixel unit 100a in units of rows.
  • a signal output from each of the unit pixels 100 in the pixel row that is selectively scanned by the row scanning unit 610 is supplied to the horizontal selection unit 630 through each of the vertical signal lines L sig .
  • the horizontal selection unit 630 includes an amplifier and a horizontal selection switch that are provided for each vertical signal line L sig .
  • the column scanning unit 640 includes, for example, a shift register and an address decoder, and scans each horizontal selection switch of the horizontal selection unit 630 to drive the horizontal selection unit 630 in order.
  • the signals from each of the unit pixels 100 transmitted through each of the vertical signal lines L sig by the selective scanning by the column scanning unit 640 are sequentially output to the horizontal signal line 650, and the horizontal signal line 650 and the output terminal V It is transmitted to the outside of the substrate 60 through out .
  • the system control unit 620 receives a clock given from the outside of the substrate 60, data indicating an operation mode, and the like, and outputs data such as internal information of the solid-state imaging device 1.
  • the system control unit 620 includes a timing generator that generates various timing signals. Based on the timing signals generated by the timing generator, the system control unit 620 includes peripheral components such as the row scanning unit 610, the horizontal selection unit 630, and the column scanning unit 640. Performs drive control of the circuit.
  • the peripheral circuit unit 600 including the row scanning unit 610, the horizontal selection unit 630, the column scanning unit 640, the horizontal signal line 650, and the system control unit 620 may be provided directly on the substrate 60, or may be an external control IC. (Integrated Circuit) may be provided. Further, the circuit portion may be provided on another substrate connected by a cable or the like.
  • FIG. 2 is a cross-sectional view schematically showing a cross section of the unit pixel 100 in the solid-state imaging device 1 cut in the thickness direction of the substrate 60.
  • the unit pixel 100 of the solid-state imaging device 1 includes a substrate 60 and a plurality of photoelectric conversion units (that is, the first photoelectric conversion unit 10 and the first photoelectric conversion unit 10 provided on the substrate 60. 2 photoelectric conversion unit 20 and third photoelectric conversion unit 30) and conductive layers (that is, first conductive layer 51 and second conductive layer 52) provided between the plurality of photoelectric conversion units.
  • Each of the photoelectric conversion portion and the conductive layer is electrically connected to each other by an interlayer insulating film (that is, the first interlayer insulating film 41, the second interlayer insulating film 42, the third interlayer insulating film 43, and the fourth interlayer insulating film 44). Is insulated.
  • the substrate 60 is a support on which the layers constituting the unit pixel 100 of the solid-state imaging device 1 are stacked.
  • a known substrate can be used as the substrate 60 as long as it is a support for the solid-state imaging device.
  • the substrate 60 is, for example, various glass substrates such as a high strain point glass substrate, a soda glass substrate, and a borosilicate glass substrate, a quartz substrate, a semiconductor substrate, or a resin substrate such as polymethyl methacrylate, polyvinyl alcohol, polyimide, and polycarbonate. There may be.
  • the 1st photoelectric conversion part 10, the 2nd photoelectric conversion part 20, and the 3rd photoelectric conversion part 30 are photoelectric conversion parts provided with the organic photoelectric conversion film which selectively photoelectrically converts the light of a mutually different wavelength band, and light incidence It is provided by being laminated in the direction L.
  • the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 selectively photoelectrically convert light in different wavelength bands and transmit light in wavelength bands other than the light to be photoelectrically converted. Let Accordingly, in the unit pixel 100, the incident light is sequentially dispersed and photoelectrically converted by the stacked first photoelectric conversion unit 10, second photoelectric conversion unit 20, and third photoelectric conversion unit 30. It is possible to acquire a light reception signal corresponding to each color without using it.
  • the wavelength bands of light selectively photoelectrically converted by the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 may be different from each other, and are not particularly limited.
  • the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 are, for example, a wavelength band of 600 nm to less than 750 nm corresponding to red, a wavelength band of 450 nm to 600 nm corresponding to green, Alternatively, light in a wavelength band of 400 nm or more and less than 450 nm corresponding to blue may be selectively photoelectrically converted.
  • the solid-state imaging device 1 uses the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 to detect red, green, and blue light reception signals that are the three primary colors of light. Therefore, a full color image can be acquired.
  • the 1st photoelectric conversion part 10, the 2nd photoelectric conversion part 20, and the 3rd photoelectric conversion part 30 should just detect at least one part light among the wavelength bands mentioned above.
  • the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 are configured to include a pair of transparent electrodes and an organic photoelectric conversion film sandwiched between the transparent electrodes.
  • the organic photoelectric conversion film absorbs light in a wavelength band specified by the compound contained in the organic electric conversion film and generates charge pairs of electrons and holes. The generated electrons and holes move to each of the transparent electrodes by an electric field applied between the transparent electrodes, and then are extracted from each of the transparent electrodes as an electric signal to an external circuit.
  • the pair of transparent electrodes can be made of a known transparent conductive oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or tin oxide (SnO 2 ).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • SnO 2 tin oxide
  • the organic photoelectric conversion film can be formed using, for example, a phthalocyanine derivative when photoelectrically converting light in a wavelength band corresponding to red.
  • the organic photoelectric conversion film when photoelectrically converting light in a wavelength band corresponding to green, can be configured using, for example, a quinacridone derivative.
  • the organic photoelectric conversion film when photoelectrically converting light in a wavelength band corresponding to blue, can be configured using a coumarin derivative.
  • the organic photoelectric conversion film is not limited to the above compounds, but acridine, cyanine, squarylium, oxazine, quinanthenetriphenylamine, benzidine, pyrazoline, styrylamine, hydrazone, triphenylmethane, carbazole, polysilane, thiophene, polyamine , Oxadiazole, triazole, triazine, quinoxaline, phenanthroline, fullerene, aluminum quinoline, polyparaphenylene vinylene, polyfluorene, polyvinyl carbazole, polythiol, polypyrrole, polythiophene and their derivatives alone, or a mixture of two or more thereof It is also possible to configure by laminating.
  • the 1st photoelectric conversion part 10, the 2nd photoelectric conversion part 20, and the 3rd photoelectric conversion part 30 are photoelectric conversion parts using the organic photoelectric conversion film mentioned above, it is between transparent electrodes for charge separation.
  • the applied electric field may become a noise source in other photoelectric conversion units.
  • the vertical spectral type solid-state imaging device 1 in which the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 are stacked in the thickness direction of the substrate 60 the distance between the respective photoelectric conversion units. Therefore, the influence of the applied electric fields on each other tends to be greater.
  • a conductive layer that shields (shields) an electric field between each of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30.
  • the technology according to the present disclosure is a vertical spectroscopic type in which the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 are organic photoelectric conversion units and perform spectroscopy in the light incident direction.
  • the device characteristics can be particularly preferably improved.
  • the first photoelectric conversion unit 10 is a red photoelectric conversion unit that photoelectrically converts light having a wavelength band of 600 nm or more and less than 750 nm
  • the second photoelectric conversion unit 20 is 450 nm or more. It may be a green photoelectric conversion unit that photoelectrically converts light in a wavelength band of 600 nm or less
  • the third photoelectric conversion unit 30 may be a blue photoelectric conversion unit that photoelectrically converts light in a wavelength band of 400 nm or more and less than 450 nm.
  • light having a longer wavelength is less likely to be scattered in the material and reaches the deep part of the incident material. For this reason, light having a shorter wavelength is photoelectrically converted by the third photoelectric conversion unit 30 close to the light incident surface, so that the light incident on the solid-state imaging device 1 is internally scattered and the acquired signal intensity is reduced. Can be prevented.
  • the number of photoelectric conversion units included in the solid-state imaging device 1 is not limited to this example.
  • the number of stacked photoelectric conversion units may be 3 or 4 in order to obtain a full color image without causing a significant increase in cost.
  • the first conductive layer 51 and the second conductive layer 52 shield (shield) the electric fields emitted from the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30.
  • the first conductive layer 51 and the second conductive layer 52 are made of a conductor that can transmit light in the visible wavelength band.
  • the potentials of the first conductive layer 51 and the second conductive layer 52 are fixed to a predetermined potential by being connected to the ground or the power source.
  • the first conductive layer 51 and the second conductive layer 52 cause the electric field generated in each photoelectric conversion unit to flow to the first conductive by flowing a current generated by electrostatic induction by an external electric field to the ground or the power source. Propagation beyond the layer 51 or the second conductive layer 52 can be prevented. Therefore, the first conductive layer 51 and the second conductive layer 52 can prevent the electric field of each photoelectric conversion unit from generating noise in other photoelectric conversion units.
  • first conductive layer 51 and the second conductive layer 52 transmit light in the visible wavelength band, the light to the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30. Does not block the incident. Therefore, according to the first conductive layer 51 and the second conductive layer 52, noise is suppressed without reducing the light receiving areas of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30, It is possible to improve the element characteristics of the solid-state imaging element 1.
  • “transmitting light in the visible wavelength band” means transmitting 70% or more of light in the visible wavelength band, for example.
  • Such first conductive layer 51 and second conductive layer 52 can be made of, for example, a transparent conductive oxide.
  • the transparent conductive oxide include indium tin oxide (ITO), indium zinc oxide (IZO), aluminum-doped zinc oxide (AZO), fluorine-doped tin oxide (FTO), tin oxide (SnO 2 ), and titanium oxide ( TiO 2 ), zinc oxide (ZnO), gallium-doped zinc oxide (GZO), antimony-doped titanium oxide (SbTO), and the like.
  • the first conductive layer 51 and the second conductive layer 52 can be made of, for example, a metal film that is thin enough to transmit light in the visible wavelength band.
  • examples of the material of the metal film constituting the first conductive layer 51 and the second conductive layer 52 include titanium (Ti), copper (Cu), aluminum (Al), tungsten (W), and cobalt (Co).
  • a general material used for a wiring or electrode such as a metal such as tantalum (Ta) or an alloy of the above metal (for example, AlSi, AlCu, WSi, or WTi) can be used.
  • the film thickness that allows transmission of light in the visible wavelength band is, for example, 30 nm or less.
  • the first conductive layer 51 and the second conductive layer 52 can be made of graphene, for example. Since graphene has a single-layer structure of carbon atoms, it can transmit light in the visible wavelength band and has high electrical conductivity. Therefore, by using graphene, the first conductive layer 51 and the second conductive layer 52 that transmit light in the visible wavelength band and shield the electric field can be configured.
  • the first conductive layer 51 and the second conductive layer 52 are preferably composed of a transparent conductive oxide such as IZO.
  • the transparent conductive oxide has a high light-transmitting property in the visible wavelength band, but has a high light-shielding property in the ultraviolet wavelength band. Therefore, when the 1st conductive layer 51 and the 2nd conductive layer 52 are comprised with a transparent conductive oxide, the 1st conductive layer 51 and the 2nd conductive layer 52 can be used also as a ultraviolet protective layer. According to this, the first conductive layer 51 and the second conductive layer 52 shield the ultraviolet rays generated from the plasma or the like used during the manufacture of the solid-state imaging device 1, so that the organic photoelectric conversion film is deteriorated by the ultraviolet rays. It is also possible to prevent.
  • the first conductive layer 51 and the second conductive layer 52 have at least the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 overlap each other when viewed from the stacking direction. Provided in the region. Thereby, the 1st conductive layer 51 and the 2nd conductive layer 52 can shield an electric field reliably between the 1st photoelectric conversion part 10, the 2nd photoelectric conversion part 20, and the 3rd photoelectric conversion part 30.
  • FIG. is there.
  • the first conductive layer 51 and the second conductive layer 52 may be continuous films, or may be patterned films. Specifically, the first conductive layer 51 and the second conductive layer 52 may have a mesh shape or a lattice shape as viewed in the thickness direction.
  • the mesh or grid-like conductor can be approximated as a continuous conductor and has the same effect as a continuous film. Can be expected. Therefore, even in such a case, the first conductive layer 51 and the second conductive layer 52 can further improve the transmittance of light in the visible wavelength band while maintaining the effect of shielding the electric field. it can.
  • the first interlayer insulating film 41, the second interlayer insulating film 42, the third interlayer insulating film 43, and the fourth interlayer insulating film 44 are made of a transparent insulating material,
  • the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, the third photoelectric conversion unit 30, the first conductive layer 51, and the second conductive layer 52 are electrically insulated from each other.
  • the interlayer insulating film 40 may be an inorganic insulating film such as SiN, Si 3 N 4 , SiO, SiO 2, or Al 2 O 3, and is an organic insulating film such as a polyimide resin, an acrylic resin, or a novolac resin. There may be.
  • the interlayer insulating film 40 may be a single layer film or a laminated film made of a plurality of insulating materials.
  • the solid-state imaging device 1 having the cross-sectional structure as described above is separated from each of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 by the first conductive layer 51 and the second conductive layer 52. By shielding this electric field, it is possible to suppress noise in each photoelectric conversion unit and improve element characteristics.
  • FIG. 3 is a cross-sectional view illustrating a cross-sectional configuration of the first photoelectric conversion unit 10 in the first configuration example
  • FIG. 4 is a cross-sectional view illustrating a cross-sectional configuration of the unit pixel 100 in the second configuration example. .
  • the first configuration example is a configuration example in the case where a signal output unit that outputs a signal based on charges photoelectrically converted by the organic photoelectric conversion film is provided inside each photoelectric conversion unit.
  • a signal output unit that outputs a signal based on charges photoelectrically converted by the organic photoelectric conversion film is provided inside each photoelectric conversion unit.
  • FIG. 3 only the first photoelectric conversion unit 10 is shown, but the second photoelectric conversion unit 20 and the third photoelectric conversion unit 30 may have the same cross-sectional structure.
  • a first interlayer insulating film 41 is provided on the first photoelectric conversion unit 10, and a first conductive layer 51 is provided on the first interlayer insulating film 41.
  • the first conductive layer 51 is a transparent conductor layer that shields the electric field applied to the first photoelectric conversion unit 10.
  • the first conductive layer 51 is a transparent conductive oxide, a metal thin film having a thickness of 30 nm or less, or Composed of graphene.
  • the first conductive layer 51 is connected to a through via 501 for connecting to a power supply or ground.
  • the through via 501 may be made of a material used for a general wiring or electrode such as titanium (Ti), copper (Cu), aluminum (Al), and tungsten (W).
  • the first photoelectric conversion unit 10 includes a photoelectric conversion element 10 ⁇ / b> A including a pair of transparent electrodes 111 and 115, an organic photoelectric conversion film 113, a wiring 117 and a through via 119 that apply a voltage to the transparent electrode 115, and the transparent electrode 111.
  • a capacitor 140 that outputs a signal based on the extracted electric charge and a signal output unit 10B including a transistor 130 are provided.
  • Each layer included in the first photoelectric conversion unit 10 is insulated by insulating layers 101, 103, 105, and 107 made of an insulating material similar to the interlayer insulating film 40.
  • the organic photoelectric conversion film 113 is sandwiched between a pair of transparent electrodes 111 and 115, and absorbs light in a specific wavelength band to generate charge pairs of electrons and holes.
  • the generated electrons move to the transparent electrode 111 according to the electric field between the transparent electrodes 111 and 115, and are output from the transparent electrode 111 to the signal output unit.
  • the generated holes are discharged to the power source or the ground through the transparent electrode 115, the wiring 117, and the through via 119.
  • the transparent electrodes 111 and 115 and the organic photoelectric conversion film 113 can be made of the above-described materials.
  • the transparent electrode 115 and the organic photoelectric conversion film 113 may be configured as a continuous film that is not separated for each unit pixel 100. Even in such a case, if the transparent electrode 111 provided in the lower part is separated for each unit pixel 100, the first photoelectric conversion unit 10 can extract the generated electrons for each unit pixel 100. Is possible.
  • the transistor 130 includes, for example, a gate electrode 137, an insulating layer 103 that functions as a gate insulating film, a source electrode 135, and a drain electrode 133.
  • the capacitor 140 includes, for example, an insulating layer 103 that functions as a dielectric of the capacitor,
  • the upper electrode 143 and the lower electrode 141 are included. Note that the upper electrode 143 of the capacitor 140 is connected to the transparent electrode 111 by the contact via 131 and is connected to the drain electrode 133 of the transistor 130.
  • the signal output unit can photoelectrically convert light of a specific wavelength band incident on the organic photoelectric conversion film 113 and extract it as an electrical signal.
  • each of the electrodes or insulating layers constituting the capacitor 140 and the transistor 130 may be made of a transparent material in order to transmit light in the visible light wavelength band.
  • a transparent conductive oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or tin oxide (SnO 2 ) can be used.
  • oxynitride such as SiN, Si 3 N 4 , SiO, SiO 2 or Al 2 O 3
  • transparent resin such as polyimide resin, acrylic resin or novolac resin is used. be able to.
  • FIG. 3 illustrates an example in which the dielectric of the capacitor 140 and the gate insulating film of the transistor 130 are configured by the insulating layer 103
  • the first configuration example is not limited to the above.
  • the dielectric film of the capacitor 140 and the gate insulating film of the transistor 130 may be composed of separate insulating layers, or one of them may be composed of a multilayer film having a plurality of layers.
  • the second configuration example is a configuration example in a case where a signal output unit that outputs a signal based on the electric charge photoelectrically converted by the organic photoelectric conversion film is provided inside the substrate 60 that supports each photoelectric conversion unit.
  • the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 are stacked on the substrate 60.
  • the first conductive layer 51 is provided between the first photoelectric conversion unit 10 and the second photoelectric conversion unit 20, and the second photoelectric conversion unit 20 and the third photoelectric conversion unit 30 have a first Two conductive layers 52 are provided, and a third conductive layer 53 is provided between the first photoelectric conversion unit 10 and the substrate 60.
  • Each of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, the third photoelectric conversion unit 30, the first conductive layer 51, the second conductive layer 52, and the third conductive layer 53 includes the first interlayer insulating film 41.
  • the second interlayer insulating film 42, the third interlayer insulating film 43, the fourth interlayer insulating film 44, the fifth interlayer insulating film 45, the sixth interlayer insulating film 46, and the seventh interlayer insulating film 47 are electrically insulated from each other. ing.
  • These interlayer insulating films may be transparent inorganic insulating films such as SiN, Si 3 N 4 , SiO, SiO 2, or Al 2 O 3, such as polyimide resin, acrylic resin, or novolac resin.
  • a transparent organic insulating film may be used.
  • the substrate 60 is a support on which the above-described layers are stacked. Further, the substrate 60 includes a first signal output unit 123 that outputs a signal based on the charges photoelectrically converted by the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30. A two-signal output unit 223 and a third signal output unit 323 are provided.
  • the substrate 60 may be, for example, a semiconductor substrate such as a silicon substrate on which a transistor or the like can be easily formed.
  • the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 are photoelectric conversion units including organic photoelectric conversion films that selectively photoelectrically convert light in different wavelength bands. As described above, each of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 includes a pair of transparent electrodes and an organic photoelectric conversion film sandwiched between the transparent electrodes. Is done.
  • the first photoelectric conversion unit 10 includes a pair of transparent electrodes 111 and 115 and an organic photoelectric conversion film 113 sandwiched between the transparent electrodes 111 and 115, and is sealed by the insulating layer 107.
  • the second photoelectric conversion unit 20 includes a pair of transparent electrodes 211 and 215 and an organic photoelectric conversion film 213 sandwiched between the transparent electrodes 211 and 215 and is sealed with an insulating layer 207.
  • the third photoelectric conversion unit 30 includes a pair of transparent electrodes 311 and 315 and an organic photoelectric conversion film 313 sandwiched between the transparent electrodes 311 and 315 and is sealed with an insulating layer 307.
  • the organic photoelectric conversion film 113 may be a red photoelectric conversion film that photoelectrically converts red light
  • the organic photoelectric conversion film 213 may be a green photoelectric conversion film that photoelectrically converts green light
  • the conversion film 313 may be a blue photoelectric conversion film that photoelectrically converts blue light.
  • the intensity of the acquired signal can be further increased by photoelectrically converting short-wavelength light that is more easily scattered by the third photoelectric conversion unit 30 close to the light incident surface.
  • one of the transparent electrodes of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 has the generated electrons transferred to the first signal output unit 123, the second signal output unit 223, and Contact vias 331, 231, 131 output to the third signal output unit 323 are connected to each other.
  • the other transparent electrodes of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 have wirings 117, 217, and 317 for discharging generated holes to a power source or a ground. , And through via 119 are connected.
  • These wirings and vias can be made of a common metal used for wiring or electrodes such as titanium (Ti), copper (Cu), aluminum (Al), and tungsten (W).
  • the transparent electrode or the organic photoelectric conversion film is a continuous film that is not separated for each unit pixel 100
  • the transparent electrode or the organic photoelectric conversion film is provided with openings, and the contact vias 331, 231, 131, and the through via 119 are , May be provided through the opening. According to this, the contact vias 331, 231 and 131 and the through via 119 can maintain electrical insulation from the transparent electrode or the organic photoelectric conversion film.
  • the first signal output unit 123, the second signal output unit 223, and the third signal output unit 323 each include a capacitor and a transistor, and the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit. A signal is output based on the charge output from 30.
  • each of the electrodes and insulating layers constituting the capacitors and transistors of the first signal output unit 123, the second signal output unit 223, and the third signal output unit 323 is a general electrode. Consists of materials and insulating materials.
  • the first conductive layer 51, the second conductive layer 52, and the third conductive layer 53 are made of a conductor that can transmit light in the visible wavelength band and shield an electric field. Since specific materials constituting the first conductive layer 51, the second conductive layer 52, and the third conductive layer 53 are as described above, description thereof is omitted here.
  • the first conductive layer 51, the second conductive layer 52, and the third conductive layer 53 are connected to the power supply or the ground through the through via 501. As a result, the first conductive layer 51, the second conductive layer 52, and the third conductive layer 53 cause noise between the photoelectric conversion units and the substrate 60 including the first to third signal output units 123, 223, and 323. Mutual electric fields can be shielded.
  • an electric field is also generated in the substrate 60 due to the currents flowing through the first signal output unit 123, the second signal output unit 223, and the third signal output unit 323. This may cause noise in the conversion unit 10 or the like. Therefore, in the second configuration example, it is preferable to provide the third conductive layer 53 between the first photoelectric conversion unit 10 and the substrate 60 to shield each other's electric field.
  • the distance between the photoelectric conversion units can be reduced, and thus, in particular, the photoelectric conversion units (for example, the first photoelectric conversion unit 10 and the first photoelectric conversion unit 10 far from the light incident surface). 2 photoelectric conversion unit 20) can prevent a decrease in signal intensity due to scattering of incident light.
  • the first configuration example since it is not necessary to provide long contact vias 331, 231, 131 reaching the substrate 60, it can be manufactured by an easier process.
  • the solid-state imaging device 1 according to the first or second configuration example described above can be manufactured by using a general method for manufacturing a semiconductor device. Note that detailed manufacturing conditions of the solid-state imaging device 1 can be appropriately examined and optimized by those skilled in the art, and thus detailed description of the conditions is omitted here.
  • a photolithography method or the like can be used for patterning a wiring or the like.
  • a vacuum deposition method, a sputtering method, an ALD (Atomic Layer Deposition) method, or an electroplating or electroless plating method can be used.
  • CVD Chemical Vapor Deposition
  • PVD Physical Vapor Deposition
  • a molecular beam epitaxy method, etc. can be used for film-forming of an inorganic material.
  • a film made of an organic material can be formed by a coating method such as a vacuum evaporation method or a spin coating method, or a printing method such as a screen printing method or an ink jet printing method.
  • a dry etching method, a wet etching method, a laser etching method, or the like can be used for forming an opening penetrating each layer.
  • FIG. 5 is a schematic diagram illustrating a configuration of an electronic device 2 including the solid-state imaging device 1 according to the present embodiment.
  • the electronic device 2 includes a solid-state imaging device 1, an optical system 710, a shutter device 711, a driving unit 713 that drives the solid-state imaging device 1 and the shutter device 711, and a signal processing unit 712. Prepare.
  • the optical system 710 is, for example, an optical lens, and guides image light (incident light) from a subject to the pixel unit 100 a of the solid-state imaging device 1.
  • the optical system 710 may include a plurality of optical lenses.
  • the shutter device 711 controls the light irradiation period and the light shielding period to the solid-state imaging device 1.
  • the drive unit 713 controls the output operation of the signal from the solid-state imaging device 1 and the shutter operation of the shutter device 711.
  • the signal processing unit 712 performs various types of signal processing on the signal output from the solid-state imaging device 1.
  • the image signal Dout after the signal processing may be stored in a storage medium such as a flash memory, or may be output to a display device such as a monitor.
  • the electronic device 2 including the solid-state imaging device 1 is any type of electronic device having an imaging function.
  • the electronic device 2 may be a digital camera or video camera capable of taking a still image or a moving image, a mobile phone or a smartphone having an imaging function, or the like.
  • the electric field generated from each of the plurality of photoelectric conversion units can be shielded by the conductive layer. Therefore, since the noise in each photoelectric conversion part can be suppressed, the characteristic of the solid-state image sensor 1 can be improved.
  • the solid-state imaging device 1 provided with three photoelectric conversion units is illustrated, but the present technology is not limited to the above example.
  • the solid-state imaging device 1 two photoelectric conversion units may be stacked, or four or more photoelectric conversion units may be stacked.
  • the 1st photoelectric conversion part 10, the 2nd photoelectric conversion part 20, and the 3rd photoelectric conversion part 30 showed the example which all photoelectrically converts incident light using an organic photoelectric conversion film.
  • the present technology is not limited to the above examples.
  • any one of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 may be an inorganic photoelectric conversion element such as a photodiode.
  • the solid-state image sensor according to the present embodiment may be a back-illuminated solid-state image sensor or a front-illuminated solid-state image sensor.
  • a plurality of organic photoelectric conversion units that are stacked in the light incident direction and photoelectrically convert light in different wavelength bands;
  • a conductive layer that is provided between the plurality of organic photoelectric conversion units and shields an electric field;
  • a solid-state imaging device (2) The solid-state imaging element according to (1), wherein the conductive layer is a layer that transmits light in a visible wavelength band.
  • each of the organic photoelectric conversion units includes a pair of electrodes and an organic photoelectric conversion film provided between the pair of electrodes. element.
  • the plurality of organic photoelectric conversion units include a blue photoelectric conversion unit that photoelectrically converts blue light, a green photoelectric conversion unit that photoelectrically converts green light, and a red photoelectric conversion unit that photoelectrically converts red light.
  • the solid-state image sensor as described in any one of (9).
  • Each of the organic photoelectric conversion units further includes a signal output unit that outputs a signal based on charges generated in the organic photoelectric conversion film, according to any one of (10) to (12). Image sensor.
  • a conductive layer that shields an electric field is provided between the substrate and the plurality of organic photoelectric conversion units.
  • a solid provided with a plurality of organic photoelectric conversion units that are stacked in the incident direction of light and photoelectrically convert light of different wavelength bands, and a conductive layer that is provided between the plurality of organic photoelectric conversion units and shields an electric field
  • An image sensor An optical system for guiding incident light to the solid-state imaging device;
  • An arithmetic processing circuit for arithmetically processing an output signal from the solid-state imaging device;
  • Electronic equipment comprising.
  • Solid-state image sensor 2 Electronic device 10 1st photoelectric conversion part 20 2nd photoelectric conversion part 30 3rd photoelectric conversion part 41 1st interlayer insulation film 42 2nd interlayer insulation film 43 3rd interlayer insulation film 44 4th interlayer insulation film 51 First conductive layer 52 Second conductive layer 60

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

[Problem] To provide a solid-state image pickup element that is improved in characteristics as an image pickup element, and an electronic device. [Solution] This solid-state image pickup element is provided with: a plurality of organic photoelectric conversion units that each photoelectrically convert light in a wavelength band different from others and that are provided so as to be stacked in a light incident direction; and a conductive layer that is provided between the organic photoelectric conversion units and that shields electric fields.

Description

固体撮像素子、および電子機器Solid-state imaging device and electronic device
 本開示は、固体撮像素子、および電子機器に関する。 The present disclosure relates to a solid-state imaging device and an electronic device.
 近年、固体撮像素子の小型化および軽量化が増々進んでいる。小型化および軽量化に適した固体撮像素子の構造としては、色分解プリズム等を用いない単板式の構造を挙げることができる。 In recent years, solid-state image sensors are becoming smaller and lighter. As a structure of a solid-state imaging device suitable for miniaturization and weight reduction, a single-plate structure that does not use a color separation prism or the like can be given.
 単板式の固体撮像素子は、例えば、互いに異なる波長帯域の光(例えば、赤色、緑色、および青色の光の三原色など)を選択的に受光する複数の受光素子を1つの画素にそれぞれ配置した構造を有する。ただし、このような固体撮像素子は、フルカラーの画像を取得することが可能であるが、1つの画素に1つの受光素子だけを配置したモノクロタイプの固体撮像素子と比較して、各受光素子における受光面積が減少してしまう。 A single-plate type solid-state imaging device has a structure in which, for example, a plurality of light receiving elements that selectively receive light in different wavelength bands (for example, three primary colors of red, green, and blue light) are arranged in one pixel, respectively. Have However, although such a solid-state imaging device can acquire a full-color image, compared with a monochrome type solid-state imaging device in which only one light-receiving element is arranged in one pixel, The light receiving area is reduced.
 そのため、互いに異なる波長帯域の光を選択に受光する受光素子を光の入射方向に積層した固体撮像素子が提案されている。このような固体撮像素子では、各受光素子を平面的に配置した固体撮像素子と比較して、各受光素子における受光面積を拡大することができるため、固体撮像素子の感度を向上させることができると期待されている。 Therefore, a solid-state imaging device has been proposed in which light receiving elements that selectively receive light in different wavelength bands are stacked in the light incident direction. In such a solid-state imaging device, the light-receiving area of each light-receiving element can be expanded compared to a solid-state imaging device in which the respective light-receiving elements are arranged in a plane, so that the sensitivity of the solid-state imaging device can be improved. It is expected.
 例えば、下記の特許文献1には、光の入射方向に分光を行うために、赤色、緑色または青色の波長帯域の光を選択に吸収する有機光電変換材料を含む光電変換膜を厚み方向に積層した縦分光型の固体撮像素子が開示されている。 For example, in Patent Document 1 below, a photoelectric conversion film including an organic photoelectric conversion material that selectively absorbs light in a red, green, or blue wavelength band is stacked in the thickness direction in order to perform spectroscopy in the light incident direction. A vertical spectral type solid-state imaging device is disclosed.
特開2009-71057号公報JP 2009-71057 A
 しかし、特許文献1に開示された固体撮像素子では、積層された光電変換膜の各々に印加される電界が互いにノイズを発生させてしまうため、固体撮像素子の特性が低下してしまっていた。 However, in the solid-state imaging device disclosed in Patent Document 1, the electric field applied to each of the stacked photoelectric conversion films generates noise, so that the characteristics of the solid-state imaging device are deteriorated.
 そこで、本開示では、撮像素子としての特性を向上させることが可能な、新規かつ改良された固体撮像素子、および電子機器を提案する。 Therefore, the present disclosure proposes a new and improved solid-state imaging device and electronic apparatus that can improve characteristics as an imaging device.
 本開示によれば、光の入射方向に積層して設けられ、互いに異なる波長帯域の光を光電変換する複数の有機光電変換部と、前記複数の有機光電変換部の間に設けられ、電界をシールドする導電層と、を備える、固体撮像素子が提供される。 According to the present disclosure, a plurality of organic photoelectric conversion units provided in a stacked manner in a light incident direction and photoelectrically converting light in different wavelength bands, and provided between the plurality of organic photoelectric conversion units, There is provided a solid-state imaging device comprising a conductive layer for shielding.
 また、本開示によれば、光の入射方向に積層して設けられ、異なる波長帯域の光を光電変換する複数の有機光電変換部、および前記複数の有機光電変換部の間に設けられ、電界をシールドする導電層を備える固体撮像素子と、前記固体撮像素子に入射光を導く光学系と、前記固体撮像素子からの出力信号を演算処理する演算処理回路と、を備える、電子機器が提供される。 In addition, according to the present disclosure, a plurality of organic photoelectric conversion units that are stacked in the light incident direction and photoelectrically convert light in different wavelength bands, and are provided between the plurality of organic photoelectric conversion units, There is provided an electronic apparatus comprising: a solid-state imaging device including a conductive layer that shields the light; an optical system that guides incident light to the solid-state imaging device; and an arithmetic processing circuit that performs arithmetic processing on an output signal from the solid-state imaging device. The
 本開示によれば、積層された光電変換膜の各々の間に、電界をシールド(遮蔽)する導電層を設けることより、光電変換膜の各々に印加された電界が他の光電変換膜でノイズを発生させてしまうことを抑制することが可能である。 According to the present disclosure, by providing a conductive layer that shields an electric field between each of the stacked photoelectric conversion films, the electric field applied to each of the photoelectric conversion films causes noise in other photoelectric conversion films. It is possible to suppress the occurrence of.
 以上説明したように本開示によれば、固体撮像素子の特性を向上させることが可能である。 As described above, according to the present disclosure, it is possible to improve the characteristics of the solid-state imaging device.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の一実施形態に係る固体撮像素子の全体構成を示した平面図である。It is a top view showing the whole solid-state image sensing device composition concerning one embodiment of this indication. 固体撮像素子における単位画素を基板の厚み方向に切断した断面を模式的に示す断面図である。It is sectional drawing which shows typically the cross section which cut | disconnected the unit pixel in the solid-state image sensor in the thickness direction of a board | substrate. 第1の構成例における第1光電変換部の断面構成を示した断面図である。It is sectional drawing which showed the cross-sectional structure of the 1st photoelectric conversion part in a 1st structural example. 第2の構成例における単位画素の断面構成を示した断面図である。It is sectional drawing which showed the cross-sectional structure of the unit pixel in the 2nd structural example. 同実施形態に係る固体撮像素子を備える電子機器の構成を説明する概略図である。It is the schematic explaining the structure of an electronic device provided with the solid-state image sensor concerning the embodiment.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.固体撮像素子の構成
  1.1.固体撮像素子の平面構成
  1.2.固体撮像素子の断面構成
 2.電子機器の構成
 3.まとめ
The description will be made in the following order.
1. Configuration of solid-state imaging device 1.1. Planar configuration of solid-state imaging device 1.2. 1. Cross-sectional configuration of solid-state image sensor 2. Configuration of electronic equipment Summary
 <1.固体撮像素子の構成>
 (1.1.固体撮像素子の平面構成)
 まず、図1を参照して、本開示の一実施形態に係る固体撮像素子の平面構成について説明する。図1は、本実施形態に係る固体撮像素子1の全体構成を示した平面図である。
<1. Configuration of solid-state image sensor>
(1.1. Planar configuration of solid-state imaging device)
First, a planar configuration of a solid-state imaging device according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 1 is a plan view showing an overall configuration of a solid-state imaging device 1 according to the present embodiment.
 図1に示すように、本実施形態に係る固体撮像素子1は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサである。具体的には、固体撮像素子1は、基板60上に、撮像領域である画素部100aを備え、画素部100aの周辺領域に、行走査部610、水平選択部630、列走査部640、およびシステム制御部620を含む周辺回路部600を備える。 As shown in FIG. 1, the solid-state imaging device 1 according to this embodiment is, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor. Specifically, the solid-state imaging device 1 includes a pixel unit 100a that is an imaging region on a substrate 60, and a row scanning unit 610, a horizontal selection unit 630, a column scanning unit 640, and a peripheral region of the pixel unit 100a. A peripheral circuit unit 600 including a system control unit 620 is provided.
 画素部100aは、例えば、マトリクス状に2次元配置された複数の単位画素100を備える。また、単位画素100には、例えば、画素行ごとに画素駆動線Lread(具体的には、行選択線およびリセット制御線)が配線され、画素列ごとに垂直信号線Lsigが配線される。画素駆動線Lreadは、画素からの信号読み出しのための駆動信号を伝送し、画素駆動線Lreadの一端は、例えば、行走査部610の各行に対応した出力端に接続される。 The pixel unit 100a includes, for example, a plurality of unit pixels 100 that are two-dimensionally arranged in a matrix. In the unit pixel 100, for example, a pixel drive line L read (specifically, a row selection line and a reset control line) is wired for each pixel row, and a vertical signal line L sig is wired for each pixel column. . The pixel drive line L read transmits a drive signal for reading a signal from the pixel, and one end of the pixel drive line L read is connected to an output end corresponding to each row of the row scanning unit 610, for example.
 行走査部610は、例えば、シフトレジスタおよびアドレスデコーダ等によって構成され、画素部100aに設けられた単位画素100の各々を行単位で駆動する画素駆動部である。行走査部610によって選択走査された画素行の単位画素100の各々から出力された信号は、垂直信号線Lsigの各々を介して水平選択部630に供給される。なお、水平選択部630は、垂直信号線Lsigごとに設けられたアンプおよび水平選択スイッチ等によって構成される。 The row scanning unit 610 is a pixel driving unit configured by, for example, a shift register and an address decoder, and drives each of the unit pixels 100 provided in the pixel unit 100a in units of rows. A signal output from each of the unit pixels 100 in the pixel row that is selectively scanned by the row scanning unit 610 is supplied to the horizontal selection unit 630 through each of the vertical signal lines L sig . The horizontal selection unit 630 includes an amplifier and a horizontal selection switch that are provided for each vertical signal line L sig .
 列走査部640は、例えば、シフトレジスタおよびアドレスデコーダ等によって構成され、水平選択部630の各水平選択スイッチを走査し、水平選択部630を順番に駆動させる。列走査部640による選択走査によって、垂直信号線Lsigの各々を介して伝送された単位画素100の各々からの信号は、順番に水平信号線650に出力され、水平信号線650および出力端Voutを介して基板60の外部へ伝送される。 The column scanning unit 640 includes, for example, a shift register and an address decoder, and scans each horizontal selection switch of the horizontal selection unit 630 to drive the horizontal selection unit 630 in order. The signals from each of the unit pixels 100 transmitted through each of the vertical signal lines L sig by the selective scanning by the column scanning unit 640 are sequentially output to the horizontal signal line 650, and the horizontal signal line 650 and the output terminal V It is transmitted to the outside of the substrate 60 through out .
 システム制御部620は、基板60の外部から与えられるクロック、および動作モードを指示するデータなどを受け取り、固体撮像素子1の内部情報などのデータを出力する。また、システム制御部620は、各種のタイミング信号を生成するタイミングジェネレータを備え、該タイミングジェネレータで生成されたタイミング信号に基づいて、行走査部610、水平選択部630および列走査部640などの周辺回路の駆動制御を行う。 The system control unit 620 receives a clock given from the outside of the substrate 60, data indicating an operation mode, and the like, and outputs data such as internal information of the solid-state imaging device 1. In addition, the system control unit 620 includes a timing generator that generates various timing signals. Based on the timing signals generated by the timing generator, the system control unit 620 includes peripheral components such as the row scanning unit 610, the horizontal selection unit 630, and the column scanning unit 640. Performs drive control of the circuit.
 なお、行走査部610、水平選択部630、列走査部640、水平信号線650およびシステム制御部620を含む周辺回路部600は、基板60上に直に設けられていてもよく、外部制御IC(Integrated Circuit)等に設けられていてもよい。また、該回路部分は、ケーブル等により接続された他の基板に設けられていてもよい。 The peripheral circuit unit 600 including the row scanning unit 610, the horizontal selection unit 630, the column scanning unit 640, the horizontal signal line 650, and the system control unit 620 may be provided directly on the substrate 60, or may be an external control IC. (Integrated Circuit) may be provided. Further, the circuit portion may be provided on another substrate connected by a cable or the like.
 (1.2.固体撮像素子の断面構成)
 続いて、図2~図4を参照して、上述した固体撮像素子1における単位画素100が備える断面構成について説明する。
(1.2. Cross-sectional structure of solid-state imaging device)
Next, a cross-sectional configuration of the unit pixel 100 in the solid-state imaging device 1 described above will be described with reference to FIGS.
 まず、図2を参照して、固体撮像素子1における単位画素100の断面構成の概略を説明する。図2は、固体撮像素子1における単位画素100を基板60の厚み方向に切断した断面を模式的に示す断面図である。 First, an outline of a cross-sectional configuration of the unit pixel 100 in the solid-state imaging device 1 will be described with reference to FIG. FIG. 2 is a cross-sectional view schematically showing a cross section of the unit pixel 100 in the solid-state imaging device 1 cut in the thickness direction of the substrate 60.
 図2に示すように、本実施形態に係る固体撮像素子1の単位画素100は、基板60と、基板60の上に設けられた複数の光電変換部(すなわち、第1光電変換部10、第2光電変換部20および第3光電変換部30)と、複数の光電変換部の間に設けられた導電層(すなわち、第1導電層51および第2導電層52)とを備える。また、光電変換部および導電層の各々は、層間絶縁膜(すなわち、第1層間絶縁膜41、第2層間絶縁膜42、第3層間絶縁膜43および第4層間絶縁膜44)によって互いに電気的に絶縁されている。 As shown in FIG. 2, the unit pixel 100 of the solid-state imaging device 1 according to the present embodiment includes a substrate 60 and a plurality of photoelectric conversion units (that is, the first photoelectric conversion unit 10 and the first photoelectric conversion unit 10 provided on the substrate 60. 2 photoelectric conversion unit 20 and third photoelectric conversion unit 30) and conductive layers (that is, first conductive layer 51 and second conductive layer 52) provided between the plurality of photoelectric conversion units. Each of the photoelectric conversion portion and the conductive layer is electrically connected to each other by an interlayer insulating film (that is, the first interlayer insulating film 41, the second interlayer insulating film 42, the third interlayer insulating film 43, and the fourth interlayer insulating film 44). Is insulated.
 基板60は、固体撮像素子1の単位画素100を構成する各層が積層配置される支持体である。基板60は、固体撮像素子の支持体となるものであれば、公知のものが使用可能である。基板60は、例えば、高歪点ガラス基板、ソーダガラス基板およびホウケイ酸ガラス基板等の各種ガラス基板、石英基板、半導体基板、またはポリメタクリル酸メチル、ポリビニルアルコール、ポリイミドおよびポリカーボネート等の樹脂基板などであってもよい。 The substrate 60 is a support on which the layers constituting the unit pixel 100 of the solid-state imaging device 1 are stacked. A known substrate can be used as the substrate 60 as long as it is a support for the solid-state imaging device. The substrate 60 is, for example, various glass substrates such as a high strain point glass substrate, a soda glass substrate, and a borosilicate glass substrate, a quartz substrate, a semiconductor substrate, or a resin substrate such as polymethyl methacrylate, polyvinyl alcohol, polyimide, and polycarbonate. There may be.
 第1光電変換部10、第2光電変換部20および第3光電変換部30は、互いに異なる波長帯域の光を選択的に光電変換する有機光電変換膜を備える光電変換部であり、光の入射方向Lに積層されて設けられる。また、第1光電変換部10、第2光電変換部20および第3光電変換部30は、互いに異なる波長帯域の光を選択的に光電変換し、光電変換する光以外の波長帯域の光を透過させる。これにより、単位画素100では、積層された第1光電変換部10、第2光電変換部20および第3光電変換部30によって、入射した光が順次分光されて光電変換されるため、カラーフィルタを用いることなく各色に対応する受光信号を取得することが可能である。 The 1st photoelectric conversion part 10, the 2nd photoelectric conversion part 20, and the 3rd photoelectric conversion part 30 are photoelectric conversion parts provided with the organic photoelectric conversion film which selectively photoelectrically converts the light of a mutually different wavelength band, and light incidence It is provided by being laminated in the direction L. In addition, the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 selectively photoelectrically convert light in different wavelength bands and transmit light in wavelength bands other than the light to be photoelectrically converted. Let Accordingly, in the unit pixel 100, the incident light is sequentially dispersed and photoelectrically converted by the stacked first photoelectric conversion unit 10, second photoelectric conversion unit 20, and third photoelectric conversion unit 30. It is possible to acquire a light reception signal corresponding to each color without using it.
 第1光電変換部10、第2光電変換部20および第3光電変換部30がそれぞれ選択的に光電変換する光の波長帯域は、互いに異なっていればよく、特に限定されない。ただし、第1光電変換部10、第2光電変換部20および第3光電変換部30は、例えば、赤色に対応する600nm以上750nm未満の波長帯域、緑色に対応する450nm以上600nm以下の波長帯域、および青色に対応する400nm以上450nm未満の波長帯域の光を選択的に光電変換してもよい。このような場合、固体撮像素子1は、第1光電変換部10、第2光電変換部20および第3光電変換部30によって、光の三原色である赤色、緑色および青色の受光信号を検出することができるため、フルカラーの画像を取得することができる。なお、第1光電変換部10、第2光電変換部20および第3光電変換部30は、上述した波長帯域のうち少なくとも一部の光を検出可能であればよい。 The wavelength bands of light selectively photoelectrically converted by the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 may be different from each other, and are not particularly limited. However, the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 are, for example, a wavelength band of 600 nm to less than 750 nm corresponding to red, a wavelength band of 450 nm to 600 nm corresponding to green, Alternatively, light in a wavelength band of 400 nm or more and less than 450 nm corresponding to blue may be selectively photoelectrically converted. In such a case, the solid-state imaging device 1 uses the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 to detect red, green, and blue light reception signals that are the three primary colors of light. Therefore, a full color image can be acquired. In addition, the 1st photoelectric conversion part 10, the 2nd photoelectric conversion part 20, and the 3rd photoelectric conversion part 30 should just detect at least one part light among the wavelength bands mentioned above.
 具体的には、第1光電変換部10、第2光電変換部20および第3光電変換部30は、一対の透明電極と、該透明電極によって挟持された有機光電変換膜とを含んで構成される。有機光電変換膜は、該有機電変換膜に含まれる化合物によって特定される波長帯域の光を吸収し、電子および正孔の電荷対を発生させる。発生した電子および正孔は、透明電極間に印加された電界によって、透明電極の各々に移動した後、該透明電極の各々から外部回路に電気信号として取り出される。 Specifically, the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 are configured to include a pair of transparent electrodes and an organic photoelectric conversion film sandwiched between the transparent electrodes. The The organic photoelectric conversion film absorbs light in a wavelength band specified by the compound contained in the organic electric conversion film and generates charge pairs of electrons and holes. The generated electrons and holes move to each of the transparent electrodes by an electric field applied between the transparent electrodes, and then are extracted from each of the transparent electrodes as an electric signal to an external circuit.
 一対の透明電極は、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)または酸化スズ(SnO)などの公知の透明導電性酸化物によって構成することができる。 The pair of transparent electrodes can be made of a known transparent conductive oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or tin oxide (SnO 2 ).
 有機光電変換膜は、赤色に対応する波長帯域の光を光電変換する場合、例えば、フタロシアニン誘導体を用いて構成することができる。また、緑色に対応する波長帯域の光を光電変換する場合、有機光電変換膜は、例えば、キナクリドン誘導体を用いて構成することができる。さらに、青色に対応する波長帯域の光を光電変換する場合、有機光電変換膜は、クマリン誘導体を用いて構成することができる。 The organic photoelectric conversion film can be formed using, for example, a phthalocyanine derivative when photoelectrically converting light in a wavelength band corresponding to red. In addition, when photoelectrically converting light in a wavelength band corresponding to green, the organic photoelectric conversion film can be configured using, for example, a quinacridone derivative. Furthermore, when photoelectrically converting light in a wavelength band corresponding to blue, the organic photoelectric conversion film can be configured using a coumarin derivative.
 なお、有機光電変換膜は、上記の化合物に限らず、アクリジン、シアニン、スクエアリリウム、オキサジン、キナンテントリフェニルアミン、ベンジジン、ピラゾリン、スチリルアミン、ヒドラゾン、トリフェニルメタン、カルバゾール、ポリシラン、チオフェン、ポリアミン、オキサジアゾール、トリアゾール、トリアジン、キノキサリン、フェナンスロリン、フラーレン、アルミニウムキノリン、ポリパラフェニレンビニレン、ポリフルオレン、ポリビニルカルバゾール、ポリチオール、ポリピロール、ポリチオフェンおよびこれらの誘導体を単独で、または2種以上混合もしくは積層することで構成することも可能である。 The organic photoelectric conversion film is not limited to the above compounds, but acridine, cyanine, squarylium, oxazine, quinanthenetriphenylamine, benzidine, pyrazoline, styrylamine, hydrazone, triphenylmethane, carbazole, polysilane, thiophene, polyamine , Oxadiazole, triazole, triazine, quinoxaline, phenanthroline, fullerene, aluminum quinoline, polyparaphenylene vinylene, polyfluorene, polyvinyl carbazole, polythiol, polypyrrole, polythiophene and their derivatives alone, or a mixture of two or more thereof It is also possible to configure by laminating.
 ここで、第1光電変換部10、第2光電変換部20および第3光電変換部30が上述した有機光電変換膜を用いた光電変換部である場合、電荷分離のために透明電極の間に印加される電界が、他の光電変換部においてノイズ源となってしまう可能性がある。特に、第1光電変換部10、第2光電変換部20および第3光電変換部30を基板60の厚み方向に積層した縦分光型の固体撮像素子1では、それぞれの光電変換部の間の距離が短いため、印加される電界が互いに及ぼす影響がより大きくなる傾向にある。 Here, when the 1st photoelectric conversion part 10, the 2nd photoelectric conversion part 20, and the 3rd photoelectric conversion part 30 are photoelectric conversion parts using the organic photoelectric conversion film mentioned above, it is between transparent electrodes for charge separation. The applied electric field may become a noise source in other photoelectric conversion units. In particular, in the vertical spectral type solid-state imaging device 1 in which the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 are stacked in the thickness direction of the substrate 60, the distance between the respective photoelectric conversion units. Therefore, the influence of the applied electric fields on each other tends to be greater.
 そこで、本実施形態に係る固体撮像素子1では、第1光電変換部10、第2光電変換部20および第3光電変換部30の各々の間に電界をシールド(遮蔽)する導電層(第1導電層51および第2導電層52)を設けることで、第1光電変換部10、第2光電変換部20および第3光電変換部30の電界が互いに及ぼすノイズを抑制することができる。 Therefore, in the solid-state imaging device 1 according to the present embodiment, a conductive layer (first shield) that shields (shields) an electric field between each of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30. By providing the conductive layer 51 and the second conductive layer 52), it is possible to suppress noise exerted by the electric fields of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30.
 すなわち、本開示に係る技術は、第1光電変換部10、第2光電変換部20および第3光電変換部30が有機光電変換部であり、かつ光の入射方向に分光を行う縦分光型の固体撮像素子において、特に好適に素子特性を向上させることができる。 That is, the technology according to the present disclosure is a vertical spectroscopic type in which the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 are organic photoelectric conversion units and perform spectroscopy in the light incident direction. In the solid-state imaging device, the device characteristics can be particularly preferably improved.
 ここで、方向Lから光が入射する場合、第1光電変換部10は、600nm以上750nm未満の波長帯域の光を光電変換する赤色光電変換部であり、第2光電変換部20は、450nm以上600nm以下の波長帯域の光を光電変換する緑色光電変換部であり、第3光電変換部30は、400nm以上450nm未満の波長帯域の光を光電変換する青色光電変換部であってもよい。 Here, when light enters from the direction L, the first photoelectric conversion unit 10 is a red photoelectric conversion unit that photoelectrically converts light having a wavelength band of 600 nm or more and less than 750 nm, and the second photoelectric conversion unit 20 is 450 nm or more. It may be a green photoelectric conversion unit that photoelectrically converts light in a wavelength band of 600 nm or less, and the third photoelectric conversion unit 30 may be a blue photoelectric conversion unit that photoelectrically converts light in a wavelength band of 400 nm or more and less than 450 nm.
 一般的に、波長が長い光の方が物質中で散乱されにくく、入射した物質の深部まで到達する。そのため、光の入射面に近い第3光電変換部30にて、より短い波長の光を光電変換することで、固体撮像素子1に入射した光が内部で散乱し、取得される信号強度が低下することを防止することができる。 Generally, light having a longer wavelength is less likely to be scattered in the material and reaches the deep part of the incident material. For this reason, light having a shorter wavelength is photoelectrically converted by the third photoelectric conversion unit 30 close to the light incident surface, so that the light incident on the solid-state imaging device 1 is internally scattered and the acquired signal intensity is reduced. Can be prevented.
 なお、図2では、光電変換部が3つ積層された固体撮像素子1を示したが、固体撮像素子1が備える光電変換部の数は、かかる例示に限定されない。例えば、固体撮像素子1は、2つの光電変換部が積層されていてもよく、4つ以上の光電変換部が積層されていてもよい。ただし、固体撮像素子1において、顕著なコスト増加をもたらすことなく、フルカラーの画像を取得するには、積層される光電変換部の数は、3または4としてもよい。 2 shows the solid-state imaging device 1 in which three photoelectric conversion units are stacked, but the number of photoelectric conversion units included in the solid-state imaging device 1 is not limited to this example. For example, in the solid-state imaging device 1, two photoelectric conversion units may be stacked, or four or more photoelectric conversion units may be stacked. However, in the solid-state imaging device 1, the number of stacked photoelectric conversion units may be 3 or 4 in order to obtain a full color image without causing a significant increase in cost.
 第1導電層51および第2導電層52は、第1光電変換部10、第2光電変換部20および第3光電変換部30から発せられる電界をシールド(遮蔽)する。具体的には、第1導電層51および第2導電層52は、可視光の波長帯域の光を透過可能な導体で構成される。また、第1導電層51および第2導電層52の電位は、グランドまたは電源と接続されることで、所定の電位に固定される。 The first conductive layer 51 and the second conductive layer 52 shield (shield) the electric fields emitted from the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30. Specifically, the first conductive layer 51 and the second conductive layer 52 are made of a conductor that can transmit light in the visible wavelength band. The potentials of the first conductive layer 51 and the second conductive layer 52 are fixed to a predetermined potential by being connected to the ground or the power source.
 これによれば、第1導電層51および第2導電層52は、外部の電界による静電誘導によって生じる電流をグランドまたは電源に流すことで、各光電変換部にて発生した電界が第1導電層51または第2導電層52を越えて伝播することを防止することができる。したがって、第1導電層51および第2導電層52は、各光電変換部の電界が他の光電変換部にてノイズを発生させることを防止することができる。 According to this, the first conductive layer 51 and the second conductive layer 52 cause the electric field generated in each photoelectric conversion unit to flow to the first conductive by flowing a current generated by electrostatic induction by an external electric field to the ground or the power source. Propagation beyond the layer 51 or the second conductive layer 52 can be prevented. Therefore, the first conductive layer 51 and the second conductive layer 52 can prevent the electric field of each photoelectric conversion unit from generating noise in other photoelectric conversion units.
 また、第1導電層51および第2導電層52は、可視光の波長帯域の光を透過させるため、第1光電変換部10、第2光電変換部20および第3光電変換部30への光の入射を遮らない。したがって、第1導電層51および第2導電層52によれば、第1光電変換部10、第2光電変換部20および第3光電変換部30の受光面積を縮小させることなくノイズを抑制し、固体撮像素子1の素子特性を向上させることが可能である。ここで、「可視光の波長帯域の光を透過させる」とは、例えば、可視光の波長帯域の光の70%以上を透過させることを表す。 In addition, since the first conductive layer 51 and the second conductive layer 52 transmit light in the visible wavelength band, the light to the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30. Does not block the incident. Therefore, according to the first conductive layer 51 and the second conductive layer 52, noise is suppressed without reducing the light receiving areas of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30, It is possible to improve the element characteristics of the solid-state imaging element 1. Here, “transmitting light in the visible wavelength band” means transmitting 70% or more of light in the visible wavelength band, for example.
 このような第1導電層51および第2導電層52は、例えば、透明導電性酸化物にて構成することができる。透明導電性酸化物としては、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、アルミニウムドープ酸化亜鉛(AZO)、フッ素ドープ酸化スズ(FTO)、酸化スズ(SnO)、酸化チタン(TiO)、酸化亜鉛(ZnO)、ガリウムドープ酸化亜鉛(GZO)、およびアンチモンドープ酸化チタン(SbTO)などを挙げることができる。 Such first conductive layer 51 and second conductive layer 52 can be made of, for example, a transparent conductive oxide. Examples of the transparent conductive oxide include indium tin oxide (ITO), indium zinc oxide (IZO), aluminum-doped zinc oxide (AZO), fluorine-doped tin oxide (FTO), tin oxide (SnO 2 ), and titanium oxide ( TiO 2 ), zinc oxide (ZnO), gallium-doped zinc oxide (GZO), antimony-doped titanium oxide (SbTO), and the like.
 また、第1導電層51および第2導電層52は、例えば、可視光の波長帯域の光を透過させる程度に薄い金属膜で構成することができる。このとき、第1導電層51および第2導電層52を構成する金属膜の材質としては、例えば、チタン(Ti)、銅(Cu)、アルミニウム(Al)、タングステン(W)、コバルト(Co)、もしくはタンタル(Ta)などの金属、または上記金属の合金(例えば、AlSi、AlCu、WSi、またはWTi等)などの配線または電極に用いられる一般的な材料を用いることができる。なお、金属膜において、可視光の波長帯域の光が透過可能な膜厚とは、例えば、30nm以下である。 Further, the first conductive layer 51 and the second conductive layer 52 can be made of, for example, a metal film that is thin enough to transmit light in the visible wavelength band. At this time, examples of the material of the metal film constituting the first conductive layer 51 and the second conductive layer 52 include titanium (Ti), copper (Cu), aluminum (Al), tungsten (W), and cobalt (Co). Alternatively, a general material used for a wiring or electrode such as a metal such as tantalum (Ta) or an alloy of the above metal (for example, AlSi, AlCu, WSi, or WTi) can be used. In the metal film, the film thickness that allows transmission of light in the visible wavelength band is, for example, 30 nm or less.
 さらに、第1導電層51および第2導電層52は、例えば、グラフェンで構成することができる。グラフェンは、炭素原子の1層構造であるため、可視光の波長帯域の光を透過可能であり、かつ高い電気伝導度を有する。したがって、グラフェンを用いることで、可視光の波長帯域の光を透過させ、かつ電界をシールド可能な第1導電層51および第2導電層52を構成することができる。 Furthermore, the first conductive layer 51 and the second conductive layer 52 can be made of graphene, for example. Since graphene has a single-layer structure of carbon atoms, it can transmit light in the visible wavelength band and has high electrical conductivity. Therefore, by using graphene, the first conductive layer 51 and the second conductive layer 52 that transmit light in the visible wavelength band and shield the electric field can be configured.
 このうち、第1導電層51および第2導電層52は、IZOなどの透明導電性酸化物で構成されることが好ましい。透明導電性酸化物は、可視光の波長帯域の光の透過性が高い一方で、紫外線の波長帯域の光の遮蔽性が高い。したがって、透明導電性酸化物で第1導電層51および第2導電層52を構成した場合、第1導電層51および第2導電層52を紫外線防護層としても用いることができる。これによれば、第1導電層51および第2導電層52は、固体撮像素子1の製造時に用いられるプラズマ等から発生する紫外線を遮蔽することで、有機光電変換膜が紫外線によって劣化することを防止することも可能である。 Of these, the first conductive layer 51 and the second conductive layer 52 are preferably composed of a transparent conductive oxide such as IZO. The transparent conductive oxide has a high light-transmitting property in the visible wavelength band, but has a high light-shielding property in the ultraviolet wavelength band. Therefore, when the 1st conductive layer 51 and the 2nd conductive layer 52 are comprised with a transparent conductive oxide, the 1st conductive layer 51 and the 2nd conductive layer 52 can be used also as a ultraviolet protective layer. According to this, the first conductive layer 51 and the second conductive layer 52 shield the ultraviolet rays generated from the plasma or the like used during the manufacture of the solid-state imaging device 1, so that the organic photoelectric conversion film is deteriorated by the ultraviolet rays. It is also possible to prevent.
 また、第1導電層51および第2導電層52は、積層方向から見た場合に、少なくとも第1光電変換部10、第2光電変換部20および第3光電変換部30が互いに重畳している領域に設けられる。これにより、第1導電層51および第2導電層52は、第1光電変換部10、第2光電変換部20および第3光電変換部30の間で、電界を確実にシールドすることが可能である。 The first conductive layer 51 and the second conductive layer 52 have at least the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 overlap each other when viewed from the stacking direction. Provided in the region. Thereby, the 1st conductive layer 51 and the 2nd conductive layer 52 can shield an electric field reliably between the 1st photoelectric conversion part 10, the 2nd photoelectric conversion part 20, and the 3rd photoelectric conversion part 30. FIG. is there.
 さらに、第1導電層51および第2導電層52は、連続膜であってもよいが、パターニングされた膜であってもよい。具体的には、第1導電層51および第2導電層52は、厚み方向から見た場合の二次元形状が網目状または格子状であってもよい。電磁シールドでは、網目または格子の大きさが遮蔽する電磁波の波長よりも十分に小さい場合、網目状または格子状の導体は、連続した導体と近似することが可能であり、連続膜と同様の効果が期待できる。したがって、このような場合であっても、第1導電層51および第2導電層52は、電界を遮蔽する効果を維持しつつ、可視光の波長帯域の光の透過性をより向上させることができる。 Furthermore, the first conductive layer 51 and the second conductive layer 52 may be continuous films, or may be patterned films. Specifically, the first conductive layer 51 and the second conductive layer 52 may have a mesh shape or a lattice shape as viewed in the thickness direction. In electromagnetic shielding, when the size of the mesh or grid is sufficiently smaller than the wavelength of the electromagnetic wave to be shielded, the mesh or grid-like conductor can be approximated as a continuous conductor and has the same effect as a continuous film. Can be expected. Therefore, even in such a case, the first conductive layer 51 and the second conductive layer 52 can further improve the transmittance of light in the visible wavelength band while maintaining the effect of shielding the electric field. it can.
 第1層間絶縁膜41、第2層間絶縁膜42、第3層間絶縁膜43および第4層間絶縁膜44(以下、まとめて層間絶縁膜40とも称する)は、透明な絶縁性材料で構成され、第1光電変換部10、第2光電変換部20、第3光電変換部30、第1導電層51および第2導電層52を互いに電気的に絶縁する。層間絶縁膜40は、SiN、Si、SiO、SiOまたはAlなどの無機絶縁膜であってもよく、ポリイミド系樹脂、アクリル系樹脂またはノボラック系樹脂などの有機絶縁膜であってもよい。また、層間絶縁膜40は、単層膜であってもよく、複数の絶縁性材料による積層膜であってもよい。 The first interlayer insulating film 41, the second interlayer insulating film 42, the third interlayer insulating film 43, and the fourth interlayer insulating film 44 (hereinafter collectively referred to as the interlayer insulating film 40) are made of a transparent insulating material, The first photoelectric conversion unit 10, the second photoelectric conversion unit 20, the third photoelectric conversion unit 30, the first conductive layer 51, and the second conductive layer 52 are electrically insulated from each other. The interlayer insulating film 40 may be an inorganic insulating film such as SiN, Si 3 N 4 , SiO, SiO 2, or Al 2 O 3, and is an organic insulating film such as a polyimide resin, an acrylic resin, or a novolac resin. There may be. The interlayer insulating film 40 may be a single layer film or a laminated film made of a plurality of insulating materials.
 以上のような断面構造を備える固体撮像素子1は、第1導電層51および第2導電層52によって、第1光電変換部10、第2光電変換部20および第3光電変換部30の各々からの電界をシールドすることで、各光電変換部におけるノイズを抑制し、素子特性を向上させることが可能である。 The solid-state imaging device 1 having the cross-sectional structure as described above is separated from each of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 by the first conductive layer 51 and the second conductive layer 52. By shielding this electric field, it is possible to suppress noise in each photoelectric conversion unit and improve element characteristics.
 続いて、図3または図4を参照して、固体撮像素子1における単位画素100の具体的な断面構成について、第1および第2の構成例を挙げて説明する。図3は、第1の構成例における第1光電変換部10の断面構成を示した断面図であり、図4は、第2の構成例における単位画素100の断面構成を示した断面図である。 Subsequently, with reference to FIG. 3 or FIG. 4, a specific cross-sectional configuration of the unit pixel 100 in the solid-state imaging device 1 will be described with reference to first and second configuration examples. FIG. 3 is a cross-sectional view illustrating a cross-sectional configuration of the first photoelectric conversion unit 10 in the first configuration example, and FIG. 4 is a cross-sectional view illustrating a cross-sectional configuration of the unit pixel 100 in the second configuration example. .
 (第1の構成例)
 第1の構成例は、有機光電変換膜によって光電変換された電荷に基づいて信号を出力する信号出力部が各光電変換部の内部に設けられる場合の構成例である。ここで、図3では、第1光電変換部10についてのみ示すが、第2光電変換部20および第3光電変換部30も同様の断面構造であってもよい。
(First configuration example)
The first configuration example is a configuration example in the case where a signal output unit that outputs a signal based on charges photoelectrically converted by the organic photoelectric conversion film is provided inside each photoelectric conversion unit. Here, in FIG. 3, only the first photoelectric conversion unit 10 is shown, but the second photoelectric conversion unit 20 and the third photoelectric conversion unit 30 may have the same cross-sectional structure.
 図3に示すように、第1の構成例では、第1光電変換部10の上に第1層間絶縁膜41が設けられ、第1層間絶縁膜41の上に第1導電層51が設けられる。 As shown in FIG. 3, in the first configuration example, a first interlayer insulating film 41 is provided on the first photoelectric conversion unit 10, and a first conductive layer 51 is provided on the first interlayer insulating film 41. .
 第1導電層51は、上述したように、第1光電変換部10に印加された電界を遮蔽する透明な導体層であり、例えば、透明導電性酸化物、膜厚30nm以下の金属薄膜、またはグラフェンによって構成される。また、第1導電層51には、電源またはグランドと接続するための貫通ビア501が接続される。貫通ビア501は、例えば、チタン(Ti)、銅(Cu)、アルミニウム(Al)およびタングステン(W)などの一般的な配線または電極に用いられる材料にて構成されてもよい。 As described above, the first conductive layer 51 is a transparent conductor layer that shields the electric field applied to the first photoelectric conversion unit 10. For example, the first conductive layer 51 is a transparent conductive oxide, a metal thin film having a thickness of 30 nm or less, or Composed of graphene. The first conductive layer 51 is connected to a through via 501 for connecting to a power supply or ground. The through via 501 may be made of a material used for a general wiring or electrode such as titanium (Ti), copper (Cu), aluminum (Al), and tungsten (W).
 第1光電変換部10は、一対の透明電極111、115、および有機光電変換膜113からなる光電変換素子10Aと、透明電極115に電圧を印加する配線117および貫通ビア119と、透明電極111から取り出した電荷に基づいて信号を出力するコンデンサ140およびトランジスタ130を含む信号出力部10Bとを備える。なお、第1光電変換部10が備える各層は、層間絶縁膜40と同様の絶縁性材料で構成された絶縁層101、103、105、107によって絶縁される。 The first photoelectric conversion unit 10 includes a photoelectric conversion element 10 </ b> A including a pair of transparent electrodes 111 and 115, an organic photoelectric conversion film 113, a wiring 117 and a through via 119 that apply a voltage to the transparent electrode 115, and the transparent electrode 111. A capacitor 140 that outputs a signal based on the extracted electric charge and a signal output unit 10B including a transistor 130 are provided. Each layer included in the first photoelectric conversion unit 10 is insulated by insulating layers 101, 103, 105, and 107 made of an insulating material similar to the interlayer insulating film 40.
 有機光電変換膜113は、一対の透明電極111、115によって挟持され、特定の波長帯域の光を吸収することで、電子および正孔の電荷対を生成する。生成された電子は、透明電極111、115間の電界に従って透明電極111に移動し、透明電極111から信号出力部に出力される。一方、生成された正孔は、透明電極115、配線117および貫通ビア119を介して、電源またはグランドに排出される。なお、透明電極111、115、および有機光電変換膜113は、上述した材料にて構成することができる。 The organic photoelectric conversion film 113 is sandwiched between a pair of transparent electrodes 111 and 115, and absorbs light in a specific wavelength band to generate charge pairs of electrons and holes. The generated electrons move to the transparent electrode 111 according to the electric field between the transparent electrodes 111 and 115, and are output from the transparent electrode 111 to the signal output unit. On the other hand, the generated holes are discharged to the power source or the ground through the transparent electrode 115, the wiring 117, and the through via 119. The transparent electrodes 111 and 115 and the organic photoelectric conversion film 113 can be made of the above-described materials.
 ここで、透明電極111、115、および有機光電変換膜113のうち、透明電極115および有機光電変換膜113は、単位画素100ごとに分離されない連続膜として構成されていてもよい。このような場合であっても、下部に設けられた透明電極111が単位画素100ごとに分離されていれば、第1光電変換部10は、生成された電子を単位画素100ごとに取り出すことが可能である。 Here, among the transparent electrodes 111 and 115 and the organic photoelectric conversion film 113, the transparent electrode 115 and the organic photoelectric conversion film 113 may be configured as a continuous film that is not separated for each unit pixel 100. Even in such a case, if the transparent electrode 111 provided in the lower part is separated for each unit pixel 100, the first photoelectric conversion unit 10 can extract the generated electrons for each unit pixel 100. Is possible.
 トランジスタ130は、例えば、ゲート電極137、ゲート絶縁膜として機能する絶縁層103、ソース電極135、およびドレイン電極133にて構成され、コンデンサ140は、例えば、コンデンサの誘電体として機能する絶縁層103、上部電極143、および下部電極141によって構成される。なお、コンデンサ140の上部電極143は、コンタクトビア131によって透明電極111と接続され、トランジスタ130のドレイン電極133と接続される。 The transistor 130 includes, for example, a gate electrode 137, an insulating layer 103 that functions as a gate insulating film, a source electrode 135, and a drain electrode 133. The capacitor 140 includes, for example, an insulating layer 103 that functions as a dielectric of the capacitor, The upper electrode 143 and the lower electrode 141 are included. Note that the upper electrode 143 of the capacitor 140 is connected to the transparent electrode 111 by the contact via 131 and is connected to the drain electrode 133 of the transistor 130.
 これによって、有機光電変換膜113にて生成された電子は、コンタクトビア131を介して上部電極143に出力され、コンデンサ140にて蓄積される。コンデンサ140に蓄積された電子は、所定のタイミングで、トランジスタ130によって信号に変換された後、信号線に出力される。したがって、信号出力部は、有機光電変換膜113に入射した特定の波長帯域の光を光電変換し、電気信号として取り出すことができる。 Thus, electrons generated in the organic photoelectric conversion film 113 are output to the upper electrode 143 through the contact via 131 and accumulated in the capacitor 140. The electrons stored in the capacitor 140 are converted into a signal by the transistor 130 at a predetermined timing, and then output to the signal line. Therefore, the signal output unit can photoelectrically convert light of a specific wavelength band incident on the organic photoelectric conversion film 113 and extract it as an electrical signal.
 ここで、コンデンサ140およびトランジスタ130を構成する電極または絶縁層の各々は、可視光の波長帯域の光を透過させるために、透明材料で構成されてもよい。例えば、電極の透明材料としては、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)または酸化スズ(SnO)などの透明導電性酸化物を用いることができる。また、絶縁層の透明材料としては、SiN、Si、SiO、SiOもしくはAlなどの酸窒化物、またはポリイミド系樹脂、アクリル系樹脂またはノボラック系樹脂などの透明樹脂を用いることができる。 Here, each of the electrodes or insulating layers constituting the capacitor 140 and the transistor 130 may be made of a transparent material in order to transmit light in the visible light wavelength band. For example, as the transparent material of the electrode, a transparent conductive oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or tin oxide (SnO 2 ) can be used. As the transparent material for the insulating layer, oxynitride such as SiN, Si 3 N 4 , SiO, SiO 2 or Al 2 O 3 , or transparent resin such as polyimide resin, acrylic resin or novolac resin is used. be able to.
 なお、図3では、絶縁層103によって、コンデンサ140の誘電体、およびトランジスタ130のゲート絶縁膜が構成される例を示したが、第1の構成例は、上記に限定されない。コンデンサ140の誘電体膜、およびトランジスタ130のゲート絶縁膜は、別々の絶縁層で構成されてもよく、いずれか一方が複数層の積層膜で構成されてもよい。 Note that although FIG. 3 illustrates an example in which the dielectric of the capacitor 140 and the gate insulating film of the transistor 130 are configured by the insulating layer 103, the first configuration example is not limited to the above. The dielectric film of the capacitor 140 and the gate insulating film of the transistor 130 may be composed of separate insulating layers, or one of them may be composed of a multilayer film having a plurality of layers.
 (第2の構成例)
 第2の構成例は、有機光電変換膜によって光電変換された電荷に基づいて信号を出力する信号出力部が、各光電変換部を支持する基板60の内部に設けられる場合の構成例である。
(Second configuration example)
The second configuration example is a configuration example in a case where a signal output unit that outputs a signal based on the electric charge photoelectrically converted by the organic photoelectric conversion film is provided inside the substrate 60 that supports each photoelectric conversion unit.
 図4に示すように、第2の構成例では、基板60の上に、第1光電変換部10、第2光電変換部20、および第3光電変換部30が積層されて設けられる。また、第1光電変換部10と第2光電変換部20との間には、第1導電層51が設けられ、第2光電変換部20と第3光電変換部30との間には、第2導電層52が設けられ、第1光電変換部10と基板60との間には、第3導電層53が設けられる。 As shown in FIG. 4, in the second configuration example, the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 are stacked on the substrate 60. The first conductive layer 51 is provided between the first photoelectric conversion unit 10 and the second photoelectric conversion unit 20, and the second photoelectric conversion unit 20 and the third photoelectric conversion unit 30 have a first Two conductive layers 52 are provided, and a third conductive layer 53 is provided between the first photoelectric conversion unit 10 and the substrate 60.
 なお、第1光電変換部10、第2光電変換部20、第3光電変換部30、第1導電層51、第2導電層52、第3導電層53の各々は、第1層間絶縁膜41、第2層間絶縁膜42、第3層間絶縁膜43、第4層間絶縁膜44、第5層間絶縁膜45、第6層間絶縁膜46、および第7層間絶縁膜47によって互いに電気的に絶縁されている。これらの層間絶縁膜は、例えば、SiN、Si、SiO、SiOまたはAlなどの透明な無機絶縁膜であってもよく、ポリイミド系樹脂、アクリル系樹脂またはノボラック系樹脂などの透明な有機絶縁膜であってもよい。 Each of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, the third photoelectric conversion unit 30, the first conductive layer 51, the second conductive layer 52, and the third conductive layer 53 includes the first interlayer insulating film 41. The second interlayer insulating film 42, the third interlayer insulating film 43, the fourth interlayer insulating film 44, the fifth interlayer insulating film 45, the sixth interlayer insulating film 46, and the seventh interlayer insulating film 47 are electrically insulated from each other. ing. These interlayer insulating films may be transparent inorganic insulating films such as SiN, Si 3 N 4 , SiO, SiO 2, or Al 2 O 3, such as polyimide resin, acrylic resin, or novolac resin. A transparent organic insulating film may be used.
 基板60は、上述した各層が積層配置される支持体である。また、基板60には、第1光電変換部10、第2光電変換部20および第3光電変換部30にて光電変換された電荷に基づいて、信号を出力する第1信号出力部123、第2信号出力部223、第3信号出力部323が設けられる。基板60は、例えば、トランジスタ等を形成することが容易なシリコン基板などの半導体基板などであってもよい。 The substrate 60 is a support on which the above-described layers are stacked. Further, the substrate 60 includes a first signal output unit 123 that outputs a signal based on the charges photoelectrically converted by the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30. A two-signal output unit 223 and a third signal output unit 323 are provided. The substrate 60 may be, for example, a semiconductor substrate such as a silicon substrate on which a transistor or the like can be easily formed.
 第1光電変換部10、第2光電変換部20および第3光電変換部30は、互いに異なる波長帯域の光を選択的に光電変換する有機光電変換膜を備える光電変換部である。上述したように、第1光電変換部10、第2光電変換部20および第3光電変換部30は、それぞれ一対の透明電極と、該透明電極によって挟持された有機光電変換膜とを含んで構成される。 The first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 are photoelectric conversion units including organic photoelectric conversion films that selectively photoelectrically convert light in different wavelength bands. As described above, each of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 includes a pair of transparent electrodes and an organic photoelectric conversion film sandwiched between the transparent electrodes. Is done.
 具体的には、第1光電変換部10は、一対の透明電極111、115と、透明電極111、115にて挟持された有機光電変換膜113とによって構成され、絶縁層107によって封止されている。第2光電変換部20は、一対の透明電極211、215と、透明電極211、215にて挟持された有機光電変換膜213によって構成され、絶縁層207によって封止されている。第3光電変換部30は、一対の透明電極311、315と、透明電極311、315にて挟持された有機光電変換膜313によって構成され、絶縁層307によって封止されている。 Specifically, the first photoelectric conversion unit 10 includes a pair of transparent electrodes 111 and 115 and an organic photoelectric conversion film 113 sandwiched between the transparent electrodes 111 and 115, and is sealed by the insulating layer 107. Yes. The second photoelectric conversion unit 20 includes a pair of transparent electrodes 211 and 215 and an organic photoelectric conversion film 213 sandwiched between the transparent electrodes 211 and 215 and is sealed with an insulating layer 207. The third photoelectric conversion unit 30 includes a pair of transparent electrodes 311 and 315 and an organic photoelectric conversion film 313 sandwiched between the transparent electrodes 311 and 315 and is sealed with an insulating layer 307.
 透明電極111、115、211、215、311、315、および有機光電変換膜113、213、313を構成する材料については、上述したとおりであるため、ここでの説明は省略する。また、有機光電変換膜113は、赤色光を光電変換する赤色光電変換膜であってもよく、有機光電変換膜213は、緑色光を光電変換する緑色光電変換膜であってもよく、有機光電変換膜313は、青色光を光電変換する青色光電変換膜であってもよい。上述したように、光の入射面に近い第3光電変換部30にて、より散乱されやすい短波長の光を光電変換することによって、取得される信号の強度をより高めることができる。 Since the materials constituting the transparent electrodes 111, 115, 211, 215, 311 and 315 and the organic photoelectric conversion films 113, 213 and 313 are as described above, the description thereof is omitted here. The organic photoelectric conversion film 113 may be a red photoelectric conversion film that photoelectrically converts red light, and the organic photoelectric conversion film 213 may be a green photoelectric conversion film that photoelectrically converts green light. The conversion film 313 may be a blue photoelectric conversion film that photoelectrically converts blue light. As described above, the intensity of the acquired signal can be further increased by photoelectrically converting short-wavelength light that is more easily scattered by the third photoelectric conversion unit 30 close to the light incident surface.
 また、第1光電変換部10、第2光電変換部20および第3光電変換部30の一方の透明電極には、生成された電子を第1信号出力部123、第2信号出力部223、および第3信号出力部323に出力するコンタクトビア331、231、131がそれぞれ接続される。一方、第1光電変換部10、第2光電変換部20および第3光電変換部30の他方の透明電極には、生成された正孔を電源またはグランドに排出するための配線117、217、317、および貫通ビア119が接続される。 In addition, one of the transparent electrodes of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 has the generated electrons transferred to the first signal output unit 123, the second signal output unit 223, and Contact vias 331, 231, 131 output to the third signal output unit 323 are connected to each other. On the other hand, the other transparent electrodes of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 have wirings 117, 217, and 317 for discharging generated holes to a power source or a ground. , And through via 119 are connected.
 これらの配線、およびビアは、例えば、チタン(Ti)、銅(Cu)、アルミニウム(Al)およびタングステン(W)などの配線または電極に用いられる一般的な金属にて構成することができる。 These wirings and vias can be made of a common metal used for wiring or electrodes such as titanium (Ti), copper (Cu), aluminum (Al), and tungsten (W).
 なお、透明電極または有機光電変換膜が単位画素100ごとに分離されない連続膜である場合、透明電極または有機光電変換膜には開口が設けられ、コンタクトビア331、231、131、および貫通ビア119は、該開口を通って設けられてもよい。これによれば、コンタクトビア331、231、131、および貫通ビア119は、透明電極または有機光電変換膜との電気的な絶縁を維持することができる。 When the transparent electrode or the organic photoelectric conversion film is a continuous film that is not separated for each unit pixel 100, the transparent electrode or the organic photoelectric conversion film is provided with openings, and the contact vias 331, 231, 131, and the through via 119 are , May be provided through the opening. According to this, the contact vias 331, 231 and 131 and the through via 119 can maintain electrical insulation from the transparent electrode or the organic photoelectric conversion film.
 第1信号出力部123、第2信号出力部223、および第3信号出力部323は、それぞれコンデンサおよびトランジスタ等を備え、第1光電変換部10、第2光電変換部20および第3光電変換部30から出力された電荷に基づいて、信号を出力する。なお、第2の構成例において、第1信号出力部123、第2信号出力部223、および第3信号出力部323のコンデンサおよびトランジスタ等を構成する電極および絶縁層の各々は、一般的な電極材料および絶縁性材料にて構成される。 The first signal output unit 123, the second signal output unit 223, and the third signal output unit 323 each include a capacitor and a transistor, and the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit. A signal is output based on the charge output from 30. In the second configuration example, each of the electrodes and insulating layers constituting the capacitors and transistors of the first signal output unit 123, the second signal output unit 223, and the third signal output unit 323 is a general electrode. Consists of materials and insulating materials.
 第1導電層51、第2導電層52および第3導電層53は、可視光の波長帯域の光が透過可能であり、かつ電界をシールドすることが可能な導体で構成される。第1導電層51、第2導電層52および第3導電層53を構成する具体的な材料については、上述したとおりであるため、ここでの説明は省略する。また、第1導電層51、第2導電層52および第3導電層53は、貫通ビア501を介して、電源またはグランドと接続されている。これにより、第1導電層51、第2導電層52および第3導電層53は、各光電変換部および第1~第3信号出力部123、223、323を含む基板60の間で、ノイズの原因となる互いの電界を遮蔽することができる。 The first conductive layer 51, the second conductive layer 52, and the third conductive layer 53 are made of a conductor that can transmit light in the visible wavelength band and shield an electric field. Since specific materials constituting the first conductive layer 51, the second conductive layer 52, and the third conductive layer 53 are as described above, description thereof is omitted here. The first conductive layer 51, the second conductive layer 52, and the third conductive layer 53 are connected to the power supply or the ground through the through via 501. As a result, the first conductive layer 51, the second conductive layer 52, and the third conductive layer 53 cause noise between the photoelectric conversion units and the substrate 60 including the first to third signal output units 123, 223, and 323. Mutual electric fields can be shielded.
 第2の構成例では、第1信号出力部123、第2信号出力部223、および第3信号出力部323に流れる電流によって基板60でも電界が生じるため、基板60からの電界は、第1光電変換部10等にてノイズを発生させる原因になり得る。そのため、第2の構成例では、第1光電変換部10と、基板60との間にも第3導電層53を設け、互いの電界を遮蔽することが好ましい。 In the second configuration example, an electric field is also generated in the substrate 60 due to the currents flowing through the first signal output unit 123, the second signal output unit 223, and the third signal output unit 323. This may cause noise in the conversion unit 10 or the like. Therefore, in the second configuration example, it is preferable to provide the third conductive layer 53 between the first photoelectric conversion unit 10 and the substrate 60 to shield each other's electric field.
 以上にて説明した第2の構成例では、各光電変換部の間の距離を近づけることができるため、特に、光の入射面から遠い光電変換部(例えば、第1光電変換部10、および第2光電変換部20)にて、入射光の散乱による信号強度の低下を防止することができる。一方、第1の構成例では、基板60に達する長いコンタクトビア331、231、131を設ける必要がないため、より容易な工程にて製造することが可能である。 In the second configuration example described above, the distance between the photoelectric conversion units can be reduced, and thus, in particular, the photoelectric conversion units (for example, the first photoelectric conversion unit 10 and the first photoelectric conversion unit 10 far from the light incident surface). 2 photoelectric conversion unit 20) can prevent a decrease in signal intensity due to scattering of incident light. On the other hand, in the first configuration example, since it is not necessary to provide long contact vias 331, 231, 131 reaching the substrate 60, it can be manufactured by an easier process.
 なお、上述した第1または第2の構成例に係る固体撮像素子1は、一般的な半導体素子の製造方法を用いることで製造することができる。なお、固体撮像素子1の詳細な製造条件については、当業者であれば、適宜検討し、最適化することが可能であるため、ここでの詳細な条件の記載は省略する。 Note that the solid-state imaging device 1 according to the first or second configuration example described above can be manufactured by using a general method for manufacturing a semiconductor device. Note that detailed manufacturing conditions of the solid-state imaging device 1 can be appropriately examined and optimized by those skilled in the art, and thus detailed description of the conditions is omitted here.
 例えば、配線等のパターニングには、フォトリソグラフィ法などを用いることができる。また、電極等の金属膜の成膜には、真空蒸着法、スパッタ法、ALD(Atomic Layer Deposition)法、または電気メッキもしくは無電解メッキ法などを用いることができる。また、無機材料からなる膜の成膜には、CVD(Chemical Vapor Deposition)、PVD(Physical Vapor Deposition)、または分子線エピタキシー法などを用いることができる。また、有機材料からなる膜の成膜には、真空蒸着法、スピンコート法などの塗布法、またはスクリーン印刷法もしくはインクジェット印刷法などの印刷法を用いることができる。さらに、各層を貫通する開口の形成には、ドライエッチング法、ウェットエッチング法、またはレーザエッチング法などを用いることができる。 For example, a photolithography method or the like can be used for patterning a wiring or the like. For forming a metal film such as an electrode, a vacuum deposition method, a sputtering method, an ALD (Atomic Layer Deposition) method, or an electroplating or electroless plating method can be used. Moreover, CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), a molecular beam epitaxy method, etc. can be used for film-forming of an inorganic material. In addition, a film made of an organic material can be formed by a coating method such as a vacuum evaporation method or a spin coating method, or a printing method such as a screen printing method or an ink jet printing method. Furthermore, a dry etching method, a wet etching method, a laser etching method, or the like can be used for forming an opening penetrating each layer.
 <2.電子機器の構成>
 次に、図5を参照して、本実施形態に係る固体撮像素子1を備える電子機器2について説明する。図5は、本実施形態に係る固体撮像素子1を備える電子機器2の構成を説明する概略図である。
<2. Configuration of electronic equipment>
Next, with reference to FIG. 5, an electronic apparatus 2 including the solid-state imaging device 1 according to the present embodiment will be described. FIG. 5 is a schematic diagram illustrating a configuration of an electronic device 2 including the solid-state imaging device 1 according to the present embodiment.
 図6に示すように、電子機器2は、固体撮像素子1と、光学系710と、シャッタ装置711と、固体撮像素子1およびシャッタ装置711を駆動させる駆動部713と、信号処理部712とを備える。 As illustrated in FIG. 6, the electronic device 2 includes a solid-state imaging device 1, an optical system 710, a shutter device 711, a driving unit 713 that drives the solid-state imaging device 1 and the shutter device 711, and a signal processing unit 712. Prepare.
 光学系710は、例えば、光学レンズであり、被写体からの像光(入射光)を固体撮像素子1の画素部100aへ導く。なお、光学系710は、複数の光学レンズから構成されていてもよい。シャッタ装置711は、固体撮像素子1への光照射期間および遮光期間を制御する。また、駆動部713は、固体撮像素子1からの信号の出力動作およびシャッタ装置711のシャッタ動作を制御する。信号処理部712は、固体撮像素子1から出力された信号に対し、各種の信号処理を行う。信号処理後の画像信号Doutは、例えば、フラッシュメモリなどの記憶媒体に記憶されてもよく、モニタ等の表示装置に出力されてもよい。 The optical system 710 is, for example, an optical lens, and guides image light (incident light) from a subject to the pixel unit 100 a of the solid-state imaging device 1. Note that the optical system 710 may include a plurality of optical lenses. The shutter device 711 controls the light irradiation period and the light shielding period to the solid-state imaging device 1. Further, the drive unit 713 controls the output operation of the signal from the solid-state imaging device 1 and the shutter operation of the shutter device 711. The signal processing unit 712 performs various types of signal processing on the signal output from the solid-state imaging device 1. The image signal Dout after the signal processing may be stored in a storage medium such as a flash memory, or may be output to a display device such as a monitor.
 すなわち、本実施形態に係る固体撮像素子1を備える電子機器2は、撮像機能を備えたあらゆるタイプの電子機器である。例えば、電子機器2は、静止画または動画を撮影可能なデジタルカメラもしくはビデオカメラ、または撮像機能を有する携帯電話もしくはスマートフォンなどであってもよい。 That is, the electronic device 2 including the solid-state imaging device 1 according to the present embodiment is any type of electronic device having an imaging function. For example, the electronic device 2 may be a digital camera or video camera capable of taking a still image or a moving image, a mobile phone or a smartphone having an imaging function, or the like.
 <3.まとめ>
 以上にて説明したように、本開示の一実施形態に係る固体撮像素子1によれば、導電層によって、複数の光電変換部の各々から発せられる電界をシールドすることができる。これにより、各光電変換部におけるノイズを抑制することができるため、固体撮像素子1の特性を向上させることが可能である。
<3. Summary>
As described above, according to the solid-state imaging device 1 according to an embodiment of the present disclosure, the electric field generated from each of the plurality of photoelectric conversion units can be shielded by the conductive layer. Thereby, since the noise in each photoelectric conversion part can be suppressed, the characteristic of the solid-state image sensor 1 can be improved.
 上記の実施形態では、光電変換部が3つ設けられた固体撮像素子1を例示したが、本技術は、上記例示に限定されない。例えば、固体撮像素子1は、2つの光電変換部が積層されていてもよく、4つ以上の光電変換部が積層されていてもよい。 In the above embodiment, the solid-state imaging device 1 provided with three photoelectric conversion units is illustrated, but the present technology is not limited to the above example. For example, in the solid-state imaging device 1, two photoelectric conversion units may be stacked, or four or more photoelectric conversion units may be stacked.
 また、上記の実施形態では、第1光電変換部10、第2光電変換部20、および第3光電変換部30が、いずれも有機光電変換膜を用いて入射光を光電変換する例を示したが、本技術は上記例示に限定されない。例えば、第1光電変換部10、第2光電変換部20、または第3光電変換部30のいずれか1つがフォトダイオードなどの無機光電変換素子であってもよい。 Moreover, in said embodiment, the 1st photoelectric conversion part 10, the 2nd photoelectric conversion part 20, and the 3rd photoelectric conversion part 30 showed the example which all photoelectrically converts incident light using an organic photoelectric conversion film. However, the present technology is not limited to the above examples. For example, any one of the first photoelectric conversion unit 10, the second photoelectric conversion unit 20, and the third photoelectric conversion unit 30 may be an inorganic photoelectric conversion element such as a photodiode.
 さらに、本実施形態に係る固体撮像素子は、裏面照射型の固体撮像素子であってもよく、表面照射型の固体撮像素子であってもよい。 Furthermore, the solid-state image sensor according to the present embodiment may be a back-illuminated solid-state image sensor or a front-illuminated solid-state image sensor.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 光の入射方向に積層して設けられ、互いに異なる波長帯域の光を光電変換する複数の有機光電変換部と、
 前記複数の有機光電変換部の間に設けられ、電界をシールドする導電層と、
を備える、固体撮像素子。
(2)
 前記導電層は、可視光の波長帯域の光を透過させる層である、前記(1)に記載の固体撮像素子。
(3)
 前記導電層の電位は、所定の電位に固定されている、前記(1)または(2)に記載の固体撮像素子。
(4)
 前記導電層は、少なくとも前記複数の有機光電変換部の各々が積層方向から見て重畳している領域に設けられる、前記(1)~(3)のいずれか一項に記載の固体撮像素子。
(5)
 前記導電層は、透明導電性酸化物にて形成される、前記(1)~(4)のいずれか一項に記載の固体撮像素子。
(6)
 前記導電層は、膜厚が30nm以下の金属膜にて形成される、前記(1)~(4)のいずれか一項に記載の固体撮像素子。
(7)
 前記導電層は、グラフェンにて形成される、前記(1)~(4)のいずれか一項に記載の固体撮像素子。
(8)
 前記導電層は、格子状または網目状の二次元形状にて形成される、前記(1)~(7)のいずれか一項に記載の固体撮像素子。
(9)
 前記有機光電変換部の各々と、前記導電層との間には、絶縁層が設けられる、前記(1)~(8)のいずれか一項に記載の固体撮像素子。
(10)
 前記有機光電変換部の各々は、一対の電極と、前記一対の電極の間に設けられた有機光電変換膜とを備える、前記(1)~(9)のいずれか一項に記載の固体撮像素子。
(11)
 前記複数の有機光電変換部は、青色光を光電変換する青色光電変換部、緑色光を光電変換する緑色光電変換部、および赤色光を光電変換する赤色光電変換部を含む、前記(1)~(9)のいずれか一項に記載の固体撮像素子。
(12)
 前記複数の有機光電変換部は、光の入射面側から青色光電変換部、緑色光電変換部、および赤色光電変換部の順で積層される、前記(11)に記載の固体撮像素子。
(13)
 前記有機光電変換部の各々は、前記有機光電変換膜にて生じた電荷に基づいて信号を出力する信号出力部をさらに備える、前記(10)~(12)のいずれか一項に記載の固体撮像素子。
(14)
 前記複数の有機光電変換部が積層される基板をさらに備え、
 前記基板には、前記有機光電変換膜の各々にて生じた電荷に基づいて信号を出力する信号出力部が設けられる、前記(10)~(12)のいずれか一項に記載の固体撮像素子。
(15)
 前記基板と、前記複数の有機光電変換部との間には、電界をシールドする導電層が設けられる、前記(14)に記載の固体撮像素子。
(16)
 光の入射方向に積層して設けられ、異なる波長帯域の光を光電変換する複数の有機光電変換部、および前記複数の有機光電変換部の間に設けられ、電界をシールドする導電層を備える固体撮像素子と、
 前記固体撮像素子に入射光を導く光学系と、
 前記固体撮像素子からの出力信号を演算処理する演算処理回路と、
を備える電子機器。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A plurality of organic photoelectric conversion units that are stacked in the light incident direction and photoelectrically convert light in different wavelength bands;
A conductive layer that is provided between the plurality of organic photoelectric conversion units and shields an electric field;
A solid-state imaging device.
(2)
The solid-state imaging element according to (1), wherein the conductive layer is a layer that transmits light in a visible wavelength band.
(3)
The solid-state imaging device according to (1) or (2), wherein the potential of the conductive layer is fixed to a predetermined potential.
(4)
The solid-state imaging element according to any one of (1) to (3), wherein the conductive layer is provided in a region where at least each of the plurality of organic photoelectric conversion units overlaps when viewed from the stacking direction.
(5)
The solid-state imaging device according to any one of (1) to (4), wherein the conductive layer is formed of a transparent conductive oxide.
(6)
The solid-state imaging device according to any one of (1) to (4), wherein the conductive layer is formed of a metal film having a thickness of 30 nm or less.
(7)
The solid-state imaging device according to any one of (1) to (4), wherein the conductive layer is formed of graphene.
(8)
The solid-state imaging device according to any one of (1) to (7), wherein the conductive layer is formed in a lattice-like or mesh-like two-dimensional shape.
(9)
The solid-state imaging device according to any one of (1) to (8), wherein an insulating layer is provided between each of the organic photoelectric conversion units and the conductive layer.
(10)
The solid-state imaging according to any one of (1) to (9), wherein each of the organic photoelectric conversion units includes a pair of electrodes and an organic photoelectric conversion film provided between the pair of electrodes. element.
(11)
The plurality of organic photoelectric conversion units include a blue photoelectric conversion unit that photoelectrically converts blue light, a green photoelectric conversion unit that photoelectrically converts green light, and a red photoelectric conversion unit that photoelectrically converts red light. (9) The solid-state image sensor as described in any one of (9).
(12)
The solid-state imaging device according to (11), wherein the plurality of organic photoelectric conversion units are stacked in the order of a blue photoelectric conversion unit, a green photoelectric conversion unit, and a red photoelectric conversion unit from the light incident surface side.
(13)
Each of the organic photoelectric conversion units further includes a signal output unit that outputs a signal based on charges generated in the organic photoelectric conversion film, according to any one of (10) to (12). Image sensor.
(14)
A substrate on which the plurality of organic photoelectric conversion units are stacked;
The solid-state imaging device according to any one of (10) to (12), wherein the substrate is provided with a signal output unit that outputs a signal based on electric charges generated in each of the organic photoelectric conversion films. .
(15)
The solid-state imaging device according to (14), wherein a conductive layer that shields an electric field is provided between the substrate and the plurality of organic photoelectric conversion units.
(16)
A solid provided with a plurality of organic photoelectric conversion units that are stacked in the incident direction of light and photoelectrically convert light of different wavelength bands, and a conductive layer that is provided between the plurality of organic photoelectric conversion units and shields an electric field An image sensor;
An optical system for guiding incident light to the solid-state imaging device;
An arithmetic processing circuit for arithmetically processing an output signal from the solid-state imaging device;
Electronic equipment comprising.
 1   固体撮像素子
 2   電子機器
 10  第1光電変換部
 20  第2光電変換部
 30  第3光電変換部
 41  第1層間絶縁膜
 42  第2層間絶縁膜
 43  第3層間絶縁膜
 44  第4層間絶縁膜
 51  第1導電層
 52  第2導電層
 60  基板
 100   単位画素
 100a  画素部
 101、103、105、107  絶縁層
 111、115  透明電極
 113  有機光電変換膜
 117  配線
 119、501  貫通ビア
 130  トランジスタ
 131  コンタクトビア
 133  ドレイン電極
 135  ソース電極
 137  ゲート電極
 140  コンデンサ
 141  下部電極
 143  上部電極
DESCRIPTION OF SYMBOLS 1 Solid-state image sensor 2 Electronic device 10 1st photoelectric conversion part 20 2nd photoelectric conversion part 30 3rd photoelectric conversion part 41 1st interlayer insulation film 42 2nd interlayer insulation film 43 3rd interlayer insulation film 44 4th interlayer insulation film 51 First conductive layer 52 Second conductive layer 60 Substrate 100 Unit pixel 100a Pixel portion 101, 103, 105, 107 Insulating layer 111, 115 Transparent electrode 113 Organic photoelectric conversion film 117 Wiring 119, 501 Through via 130 Transistor 131 Contact via 133 Drain Electrode 135 Source electrode 137 Gate electrode 140 Capacitor 141 Lower electrode 143 Upper electrode

Claims (16)

  1.  光の入射方向に積層して設けられ、互いに異なる波長帯域の光を光電変換する複数の有機光電変換部と、
     前記複数の有機光電変換部の間に設けられ、電界をシールドする導電層と、
    を備える、固体撮像素子。
    A plurality of organic photoelectric conversion units that are stacked in the light incident direction and photoelectrically convert light in different wavelength bands;
    A conductive layer that is provided between the plurality of organic photoelectric conversion units and shields an electric field;
    A solid-state imaging device.
  2.  前記導電層は、可視光の波長帯域の光を透過させる層である、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the conductive layer is a layer that transmits light in a visible wavelength band.
  3.  前記導電層の電位は、所定の電位に固定されている、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the potential of the conductive layer is fixed to a predetermined potential.
  4.  前記導電層は、少なくとも前記複数の有機光電変換部の各々が積層方向から見て重畳している領域に設けられる、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the conductive layer is provided in a region where at least each of the plurality of organic photoelectric conversion units overlaps when viewed from the stacking direction.
  5.  前記導電層は、透明導電性酸化物にて形成される、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the conductive layer is formed of a transparent conductive oxide.
  6.  前記導電層は、膜厚が30nm以下の金属膜にて形成される、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the conductive layer is formed of a metal film having a thickness of 30 nm or less.
  7.  前記導電層は、グラフェンにて形成される、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the conductive layer is formed of graphene.
  8.  前記導電層は、格子状または網目状の二次元形状にて形成される、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the conductive layer is formed in a two-dimensional shape such as a lattice shape or a mesh shape.
  9.  前記有機光電変換部の各々と、前記導電層との間には、絶縁層が設けられる、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein an insulating layer is provided between each of the organic photoelectric conversion units and the conductive layer.
  10.  前記有機光電変換部の各々は、一対の電極と、前記一対の電極の間に設けられた有機光電変換膜とを備える、請求項1に記載の固体撮像素子。 Each of the said organic photoelectric conversion part is a solid-state image sensor of Claim 1 provided with a pair of electrodes and the organic photoelectric conversion film provided between the said pair of electrodes.
  11.  前記複数の有機光電変換部は、青色光を光電変換する青色光電変換部、緑色光を光電変換する緑色光電変換部、および赤色光を光電変換する赤色光電変換部を含む、請求項1に記載の固体撮像素子。 The plurality of organic photoelectric conversion units include a blue photoelectric conversion unit that performs photoelectric conversion of blue light, a green photoelectric conversion unit that performs photoelectric conversion of green light, and a red photoelectric conversion unit that performs photoelectric conversion of red light. Solid-state image sensor.
  12.  前記複数の有機光電変換部は、光の入射面側から青色光電変換部、緑色光電変換部、および赤色光電変換部の順で積層される、請求項11に記載の固体撮像素子。 The solid-state imaging device according to claim 11, wherein the plurality of organic photoelectric conversion units are stacked in order of a blue photoelectric conversion unit, a green photoelectric conversion unit, and a red photoelectric conversion unit from the light incident surface side.
  13.  前記有機光電変換部の各々は、前記有機光電変換膜にて生じた電荷に基づいて信号を出力する信号出力部をさらに備える、請求項10に記載の固体撮像素子。 Each of the said organic photoelectric conversion part is a solid-state image sensor of Claim 10 further provided with the signal output part which outputs a signal based on the electric charge which generate | occur | produced in the said organic photoelectric conversion film.
  14.  前記複数の有機光電変換部が積層される基板をさらに備え、
     前記基板には、前記有機光電変換膜の各々にて生じた電荷に基づいて信号を出力する信号出力部が設けられる、請求項10に記載の固体撮像素子。
    A substrate on which the plurality of organic photoelectric conversion units are stacked;
    The solid-state imaging device according to claim 10, wherein the substrate is provided with a signal output unit that outputs a signal based on charges generated in each of the organic photoelectric conversion films.
  15.  前記基板と、前記複数の有機光電変換部との間には、電界をシールドする導電層が設けられる、請求項14に記載の固体撮像素子。 The solid-state imaging device according to claim 14, wherein a conductive layer that shields an electric field is provided between the substrate and the plurality of organic photoelectric conversion units.
  16.  光の入射方向に積層して設けられ、異なる波長帯域の光を光電変換する複数の有機光電変換部、および前記複数の有機光電変換部の間に設けられ、電界をシールドする導電層を備える固体撮像素子と、
     前記固体撮像素子に入射光を導く光学系と、
     前記固体撮像素子からの出力信号を演算処理する演算処理回路と、
    を備える、電子機器。
    A solid provided with a plurality of organic photoelectric conversion units that are stacked in the incident direction of light and photoelectrically convert light of different wavelength bands, and a conductive layer that is provided between the plurality of organic photoelectric conversion units and shields an electric field An image sensor;
    An optical system for guiding incident light to the solid-state imaging device;
    An arithmetic processing circuit for arithmetically processing an output signal from the solid-state imaging device;
    An electronic device.
PCT/JP2017/022437 2016-07-27 2017-06-19 Solid-state image pickup element and electronic device WO2018020902A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-147612 2016-07-27
JP2016147612 2016-07-27

Publications (1)

Publication Number Publication Date
WO2018020902A1 true WO2018020902A1 (en) 2018-02-01

Family

ID=61017212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022437 WO2018020902A1 (en) 2016-07-27 2017-06-19 Solid-state image pickup element and electronic device

Country Status (1)

Country Link
WO (1) WO2018020902A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159708A1 (en) * 2018-02-19 2019-08-22 浜松ホトニクス株式会社 Organic photoelectric conversion device, and method for manufacturing organic photoelectric conversion device
WO2021049262A1 (en) * 2019-09-12 2021-03-18 株式会社ジャパンディスプレイ Detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265934A (en) * 2003-02-14 2004-09-24 Canon Inc Solid state imaging device and radiation imaging device
JP2007201086A (en) * 2006-01-25 2007-08-09 Fujifilm Corp Solid state imaging element
JP2011129873A (en) * 2009-11-17 2011-06-30 Sony Corp Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP2014146803A (en) * 2009-06-22 2014-08-14 Universitat Leipzig Transparent rectifying metal-metal oxide-semiconductor contact structure, and production method and use thereof
JP2014183206A (en) * 2013-03-19 2014-09-29 Sony Corp Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP2015056590A (en) * 2013-09-13 2015-03-23 株式会社東芝 Light receiving element and optical coupling type signal isolator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265934A (en) * 2003-02-14 2004-09-24 Canon Inc Solid state imaging device and radiation imaging device
JP2007201086A (en) * 2006-01-25 2007-08-09 Fujifilm Corp Solid state imaging element
JP2014146803A (en) * 2009-06-22 2014-08-14 Universitat Leipzig Transparent rectifying metal-metal oxide-semiconductor contact structure, and production method and use thereof
JP2011129873A (en) * 2009-11-17 2011-06-30 Sony Corp Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP2014183206A (en) * 2013-03-19 2014-09-29 Sony Corp Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP2015056590A (en) * 2013-09-13 2015-03-23 株式会社東芝 Light receiving element and optical coupling type signal isolator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159708A1 (en) * 2018-02-19 2019-08-22 浜松ホトニクス株式会社 Organic photoelectric conversion device, and method for manufacturing organic photoelectric conversion device
US11271044B2 (en) 2018-02-19 2022-03-08 Hamamatsu Photonics K.K. Organic photoelectric conversion device, and method for manufacturing organic photoelectric conversion device
WO2021049262A1 (en) * 2019-09-12 2021-03-18 株式会社ジャパンディスプレイ Detection device
JP7461725B2 (en) 2019-09-12 2024-04-04 株式会社ジャパンディスプレイ Detection device

Similar Documents

Publication Publication Date Title
US10903279B2 (en) Solid state image sensor pixel electrode below a photoelectric conversion film
US10177200B2 (en) Solid-state image pickup device and manufacturing method thereof, and electronic apparatus
US9614010B2 (en) Solid-state image sensing device having an organic photoelectric conversion section fills a depression section and solid-state image pickup unit including same
JP6754156B2 (en) Manufacturing methods for solid-state image sensors and solid-state image sensors, photoelectric conversion elements, image pickup devices, electronic devices, and photoelectric conversion elements.
US20230034528A1 (en) Solid state image sensor, production method thereof and electronic device
US9793324B2 (en) Solid-state image-pickup device, method of manufacturing the same, and electronic apparatus
JP5032954B2 (en) Color imaging device
US9293722B2 (en) Solid-state image pickup device, method of manufacturing the same, and electronic apparatus
US20080036023A1 (en) Image sensor having improved sensitivity and method of manufacturing the same
JP2011187544A (en) Solid-state imaging device, manufacturing method for the same, driving method for the same, and electronic device
JP2011228621A (en) Solid-state image sensor and imaging apparatus
CN108701705B (en) Solid-state imaging element, method for manufacturing the same, and electronic apparatus
US20210013254A1 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP2013135123A (en) Semiconductor device, manufacturing method of semiconductor device, solid-state imaging device and electronic apparatus
US20230017757A1 (en) Image sensor and method of manufacturing same
JP5102692B2 (en) Color imaging device
WO2018020902A1 (en) Solid-state image pickup element and electronic device
WO2023013307A1 (en) Solid-state imaging element and electronic device
US9628734B2 (en) Stacked image sensor
JP2006054448A (en) Functional element and its manufacturing method
WO2022131077A1 (en) Solid-state imaging element and electronic device
US20230142858A1 (en) Image sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP