WO2018020642A1 - Flow control valve - Google Patents

Flow control valve Download PDF

Info

Publication number
WO2018020642A1
WO2018020642A1 PCT/JP2016/072190 JP2016072190W WO2018020642A1 WO 2018020642 A1 WO2018020642 A1 WO 2018020642A1 JP 2016072190 W JP2016072190 W JP 2016072190W WO 2018020642 A1 WO2018020642 A1 WO 2018020642A1
Authority
WO
WIPO (PCT)
Prior art keywords
spool
port
spring
neutral position
control valve
Prior art date
Application number
PCT/JP2016/072190
Other languages
French (fr)
Japanese (ja)
Inventor
経博 竹内
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to PCT/JP2016/072190 priority Critical patent/WO2018020642A1/en
Priority to JP2016567886A priority patent/JP6067953B1/en
Publication of WO2018020642A1 publication Critical patent/WO2018020642A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/22Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution
    • F16K3/24Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
    • F16K3/26Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides

Definitions

  • the present invention relates to a flow rate control valve, and more particularly to a flow rate control valve that controls the flow rate by opening and closing an oil passage by moving a spool in the body.
  • a flow rate control valve that opens and closes an oil passage by moving a spool in the body to control the flow rate.
  • Such a flow control valve is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-280705.
  • JP-A-11-280705 discloses a flow control valve having a body provided with an oil passage through which hydraulic oil enters and exits and a spool that moves within the body to open and close the oil passage.
  • the oil passage is closed by the seal portion where the outer peripheral surface of the spool and the valve seat portion which is the inner peripheral surface of the body face each other.
  • a gap (opening) is formed between the spool and the valve seat portion, and the oil passage is opened.
  • the flow control valve disclosed in Japanese Patent Application Laid-Open No. 11-280705 is a proportional control valve that outputs hydraulic oil at a flow rate proportional to the amount of movement of the spool by expanding a gap (opening) according to the amount of movement of the spool. .
  • the length of the seal portion between the outer peripheral surface of the spool and the valve seat in the neutral position is such that the flow control is started after the spool starts to move. This corresponds to the dead zone until (until a gap is formed).
  • the flow control valve is formed so that the length of the seal portion is as small as possible.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is a spool system capable of suppressing leakage of hydraulic oil to an oil passage without impairing responsiveness. Is to provide a flow control valve.
  • a flow control valve includes a body provided with an oil passage through which hydraulic oil enters and exits, and a spool that is movably held in the body and opens and closes the oil passage.
  • the body is provided on the inner peripheral surface of the body, and when the spool is in the neutral position and the standby position, a valve seat portion that blocks the oil passage by the outer peripheral surface of the spool, and an attachment for holding the spool in the neutral position.
  • an actuating force for moving the spool is supplied in a magnitude between a first threshold that is an upper limit for holding the spool in a neutral position and a second threshold that is greater than the first threshold.
  • the spool moves from the neutral position to the standby position against the urging force of the urging means, and an operating force larger than the second threshold is supplied, so that the spool resists the urging force of the urging means.
  • Samba From the position, and is configured to move the control area to change the valve opening in accordance with the movement amount of the spool.
  • the valve seat portion that blocks the oil passage with the outer peripheral surface of the spool is provided on the inner peripheral surface of the body.
  • the valve seat portion can be provided over a range between the neutral position of the spool and the standby position, so that the length of the seal portion between the spool and the valve seat portion in the neutral position can be sufficiently secured.
  • the leakage of hydraulic oil to the oil passage can be suppressed.
  • the operating force for moving the spool is supplied in a magnitude between the first threshold value that is the upper limit for holding the spool in the neutral position and the second threshold value that is larger than the first threshold value.
  • the spool moves from the neutral position to the standby position against the urging force of the urging means, and an operating force larger than the second threshold is supplied, so that the spool resists the urging force of the urging means.
  • the flow rate control valve is configured to move from the standby position to a control region in which the valve opening is changed according to the amount of movement of the spool.
  • the spool can quickly move to the standby position and start flow rate control.
  • the flow rate control can be started immediately from the time when the operating force exceeds the second threshold.
  • the biasing means generates a biasing force equal to the first threshold value when the spool is in the neutral position, and applies a pressure equal to the second threshold value when the spool is in the standby position. It is configured to generate power. If comprised in this way, a spool can be hold
  • the urging means further includes a first spring that is compressed to the spool at least between the neutral position and the standby position, and a second spring that is compressed to the spool in the control region.
  • a first spring that is compressed to the spool at least between the neutral position and the standby position
  • a second spring that is compressed to the spool in the control region.
  • the spring constant of the first spring is preferably smaller than the spring constant of the second spring.
  • the body preferably has a first stopper that restricts movement of the spool in the neutral position and a second stopper that restricts movement of the spool in the standby position.
  • the first spring biases the first stopper against the body with an initial biasing force equal to the first threshold
  • the second spring biases the second stopper against the body with an initial biasing force equal to the second threshold. Is energized against. If comprised in this way, a spool can be hold
  • the spool does not move even if a force below the first threshold is applied to the spool due to disturbance or the like, so the spool can be stably brought to the neutral position. Can be held.
  • the second threshold value can be set by the second spring independently of the first spring. Therefore, compared with the case where the second threshold value is set by the combined spring of the first spring and the second spring, the second threshold value can be easily set and the operating force required to operate the spool in the control region is large. It can be suppressed.
  • the oil passage includes a supply port to which the hydraulic oil is supplied, a discharge port from which the hydraulic oil is discharged, and a first port that allows the hydraulic oil to flow in or out alternately.
  • the second port, and in the neutral position, the spool is provided so as to communicate with the discharge port from the outer peripheral surface of the spool through the inside of the spool, and allows the hydraulic oil to pass between the valve seat portion and the spool.
  • a passage portion for discharging is provided, and the passage portion is disposed at a position facing at least the first valve seat portion between the first port and the supply port in the neutral position of the spool.
  • the passage portion only needs to be disposed at least in the first valve seat portion between the first port and the supply port, and not only the first valve seat portion but also the second port and the supply port.
  • a passage portion may be further arranged in the valve seat portion between the two.
  • the passage portion is disposed at a position closer to the other end portion of the first valve seat portion on the first port side than the one end portion of the first valve seat portion on the supply port side in the neutral position of the spool.
  • path part is arrange
  • the passage portion In the configuration in which the passage portion is disposed at a position close to the other end portion on the first port side of the first valve seat portion in the neutral position of the spool, preferably, the passage portion has the spool from the neutral position to the first port.
  • the first valve passes through the first port and moves to a position facing the second valve seat between the first port and the discharge port. If comprised in this way, a channel
  • the passage portion is always the valve seat portion (the first valve seat portion and the second valve portion at the neutral position and the standby position) without making the first valve seat portion longer than necessary. It is possible to prevent the first seat from communicating with the first port.
  • the length between the passage portion in the neutral position of the spool and the one end portion of the first valve seat portion is movable from the neutral position to the second port side. More than the distance.
  • the passage portion preferably has an inner diameter smaller than the inner diameter of the supply port.
  • the flow control valve 100 is a hydraulic valve that controls the supply of hydraulic oil to a hydraulic machine such as a hydraulic actuator.
  • the flow control valve 100 of the first embodiment is configured as a proportional flow control valve of a spool type (slide spool type).
  • the proportional flow rate control valve is a control valve configured so that the flow rate of the output hydraulic oil is proportional to the spool position (stroke amount).
  • the flow control valve 100 is required to maintain a control position in a neutral state (neutral position of the spool), such as an elevating hydraulic cylinder (lift cylinder) that moves up and down along the gravity action direction (vertical direction). It is suitably used for controlling the flow rate of hydraulic oil to a hydraulic machine.
  • a neutral state neutral position of the spool
  • elevating hydraulic cylinder lift cylinder
  • gravity action direction vertical direction
  • the flow control valve 100 is connected to a lifting hydraulic cylinder (lift cylinder) of a forklift and the flow control valve 100 is used for supply control of hydraulic oil for raising and lowering the cylinder.
  • the flow control valve 100 is connected to a hydraulic cylinder 101, a hydraulic pump 102, and an oil tank 103, respectively.
  • the flow control valve 100 includes four oil passages: a first port A, a second port B, a supply port P, and a discharge port T.
  • the hydraulic cylinder 101 has a structure in which a piston 111 and a rod 112 connected to the piston 111 are slidably provided in the tube 113.
  • the hydraulic cylinder 101 is, for example, a single rod cylinder, and the rod 112 protrudes from one end side of the tube 113 to the outside.
  • the inside of the tube 113 is partitioned by a piston 111 into a rod side oil chamber 114 and a head side oil chamber 115.
  • the first port A of the flow control valve 100 is connected to the head side oil chamber 115 via the check valve 104.
  • a second port B of the flow control valve 100 is connected to the rod side oil chamber 114.
  • the first port A may be connected to the rod side oil chamber 114 and the second port B may be connected to the head side oil chamber 115.
  • the check valve 104 allows the hydraulic oil to flow from the first port A toward the head-side oil chamber 115 and prevents the hydraulic oil from flowing from the head-side oil chamber 115 toward the first port A.
  • the check valve 104 is a pilot check valve, and the pilot port is connected to the flow path between the rod side oil chamber 114 and the second port B.
  • the check valve 104 operates in the direction from the head-side oil chamber 115 toward the first port A. Allow distribution.
  • the supply port P of the flow control valve 100 is connected to the discharge side of the hydraulic pump 102.
  • the hydraulic pump 102 is driven by a pump motor 121 and supplies the hydraulic oil in the oil tank 103 on the suction side to the flow control valve 100 with a predetermined pressure.
  • a discharge port T of the flow control valve 100 is connected to the oil tank 103.
  • the order of supply port P> first port A and second port B >> discharge port T is obtained.
  • the pressure relationship between the first port A and the second port B may be such that the first port A> the second port B or the first port A> the second port B.
  • the pressure of the supply port P on which the discharge pressure of the hydraulic pump 102 acts is the highest, and the pressure of the discharge port T released in the oil tank 103 is the lowest.
  • the flow control valve 100 performs flow path switching and flow control by the operating force supplied from the external operating force supply means 105. That is, the flow control valve 100 connects the supply port P and the first port A to the neutral state in which both the first port A and the second port B are blocked with respect to the supply port P, and the second port B. Functions as a directional control valve capable of switching between a PA control state in which the discharge port T is connected and a PB control state in which the supply port P and the second port B are connected and the first port A and the discharge port T are connected To do.
  • the flow control valve 100 In the neutral state, all of the supply port P, the first port A, and the second port B are blocked by the flow control valve 100. That is, the flow control valve 100 is configured to be fully closed in a neutral state. In the neutral state, since the hydraulic oil in the hydraulic cylinder 101 does not flow, the position of the rod 112 is maintained.
  • the flow rate control valve 100 controls the flow rate of the hydraulic oil from the port according to the position (stroke amount) of the spool 2 (see FIG. 2) moved by the operating force. Is done.
  • the position of the spool 2 corresponds to the magnitude of the operating force supplied from the operating force supply means 105.
  • the operating force supply means 105 supplies an operating force to the flow control valve 100 in accordance with a control signal from the controller 106.
  • the operating force supply means 105 is not particularly limited as long as it can apply an operating force to the spool.
  • the operating force supply means 105 for example, a method of supplying an operating force by electromagnetic force such as a solenoid method, a method of supplying an operating force by hydraulic pressure using a hydraulic pilot valve, or the like can be adopted.
  • the hydraulic pressure of the hydraulic pump 102 is supplied to the pilot port 15 of the flow control valve 100 via the operating force supply means 105 including a hydraulic pilot valve, so that the operating force is supplied.
  • the flow control valve 100 includes a body 1 provided with an oil passage through which hydraulic oil enters and exits, and a spool 2 that is movably held in the body 1 and opens and closes the oil passage.
  • the oil passage includes the supply port P to which the hydraulic oil is supplied, the discharge port T from which the hydraulic oil is discharged, and the first port A and the second port that allow the hydraulic oil to flow in or out alternately.
  • the body 1 has a spool chamber 11 in which the spool 2 is disposed, and a pair of pilot chambers 12 disposed on both sides of the spool chamber 11.
  • the spool chamber 11 is a linear cylindrical internal space, and the spool 2 is slidably disposed along the axial direction (X direction).
  • Each pilot chamber 12 is arranged on both sides of the spool chamber 11 in the axial direction of the spool 2.
  • the oil passages of the supply port P, the discharge port T, the first port A and the second port B pass through the body 1 from the outer periphery of the body 1 and communicate with the spool chamber 11.
  • the supply port P is disposed at the center of the spool chamber 11, and the first port A and the second port B are disposed on both sides of the supply port P, respectively.
  • the discharge port T is disposed outside the first port A and the second port B, respectively.
  • a valve seat portion 13 formed of the inner peripheral surface of the spool chamber 11 (body 1) is provided.
  • the valve seat portion 13 is oiled by an outer peripheral surface (sliding surface) 21 of the spool 2. It is configured to block the road. That is, the valve seat portion 13 blocks the oil passages by facing the outer peripheral surface 21 of the spool 2 with a very small interval for the spool 2 to slide.
  • the valve seat 13 is supplied with the first valve seat 13a between the first port A and the supply port P, the second valve seat 13b between the first port A and the discharge port T, and the second port B.
  • a third valve seat 13c between the port P and a fourth valve seat 13d between the second port B and the discharge port T are included.
  • the length of the facing portion (seal portion 14) between the outer peripheral surface 21 of the spool 2 and the valve seat portion 13 at the neutral position S0 is longer than that of a general proportional flow control valve.
  • the lengths of the facing portions (seal portions 14) of the first valve seat portion 13a, the second valve seat portion 13b, the third valve seat portion 13c, and the fourth valve seat portion 13d in the neutral position S0 are as follows. , L1, L2, L3 and L4.
  • the lengths L1 to L4 of each facing portion are larger than the inner diameter d1 (see FIG. 8) of each port.
  • the pilot chambers 12 on both sides in the axial direction are provided with pilot ports 15 for connection to the operating force supply means 105, respectively.
  • the pilot hydraulic pressure from the operating force supply means 105 is input to the pilot chamber 12 and acts as an operating force that moves the spool 2 in the spool chamber 11 in the axial direction (X direction).
  • the spool 2 is a roughly cylindrical shaft member.
  • the spool 2 is provided with an outer peripheral surface 21 that is a sliding surface and a groove portion 22 for switching between the oil passages to a communication state.
  • the groove portion 22 is formed with a predetermined depth over the entire circumference in the circumferential direction of the spool 2, and is disposed corresponding to the position of the supply port P and each discharge port T at the neutral position S0.
  • the groove portion 22 constitutes an oil passage that allows the first port A or the second port B to communicate with the supply port P or the discharge port T as the spool 2 moves.
  • the two outer peripheral surfaces 21 between the groove portions 22 are formed so as to block the first port A and the second port B at the neutral position S0, respectively.
  • the outer peripheral surfaces 21 at both ends of the spool 2 are provided so as to close the space between the pilot chamber 12 and the spool chamber 11.
  • the notch part 23 is provided in the boundary part (step part) of the three groove parts 22 and the two outer peripheral surfaces 21 between them.
  • a plurality of notches 23 are provided at equal angular intervals in the circumferential direction of the spool 2.
  • each notch 23 has a semicircular shape whose width (width in the circumferential direction) increases as it approaches the groove 22 side.
  • the shape of the notch part 23 is not restricted to what was shown in FIG. 3, It is arbitrary.
  • the notch 23 makes the flow rate of the hydraulic oil proportional to the amount of movement of the spool 2 when the first port A or the second port B communicates with the supply port P or the discharge port T as the spool 2 moves in the axial direction. It has a function.
  • a bypass passage 24 is formed inside the spool 2.
  • the bypass passage 24 is provided so as to connect the groove portions 22 on both sides in the axial direction (X direction).
  • the bypass passage 24 opens in the surface of the spool 2 (the bottom of the groove 22) at a position that coincides with each discharge port T at the neutral position S0 in the X direction.
  • the body 1 includes urging means 30 for holding the spool 2 in the neutral position S0.
  • the urging means 30 holds the spool 2 in the neutral position S0 by the urging force.
  • the flow control valve 100 is maintained in the neutral state (fully closed state) when the operating force is not supplied.
  • the urging means 30 associates the operating force supplied from the operating force supply means 105 with the movement amount of the spool 2 by the urging force.
  • the spool 2 enters a control region S2 (see FIGS. 5 and 7) in which the notch portion 23 and the groove portion 22 are communicated with each other so as to straddle the ports. To reach.
  • the notch 23 changes the opening area (flow channel cross-sectional area) between each port and the groove 22 according to the amount of overlap with each port in the axial direction (X direction).
  • the flow area of the hydraulic oil is proportional to the amount of movement of the spool 2 by increasing the opening area between the notch 23 (groove portion 22) and the port as the amount of movement of the spool 2 increases.
  • the urging means 30 is configured to hold the spool 2 in the standby position S1 (see FIGS. 4 and 6) by the urging force. That is, the flow control valve 100 is provided with a state in which the spool 2 is held at the standby position S1 in addition to a state in which the spool 2 is held at the neutral position S0 and a state in which the spool 2 moves in the control region S2.
  • the flow control valve 100 has a first threshold value TH1 that is an upper limit for holding the spool 2 at the neutral position S0 and a second threshold value TH2 that is larger than the first threshold value TH1.
  • the spool 2 is configured to move from the neutral position S0 to the standby position S1 against the urging force of the urging means 30.
  • the flow rate control valve 100 is supplied with an operating force larger than the second threshold value TH2, so that the spool 2 resists the urging force of the urging means 30 from the standby position S1 to the moving amount of the spool 2. Accordingly, the valve travels to the control region S2 in which the valve opening is changed.
  • the standby position S1 is a position between the neutral position S0 and the control area S2, and is a position immediately before the control by the control area S2 is started. That is, the standby position S1 is a boundary position of the control region S2 where the length of the seal portion 14 between the ports by the outer peripheral surface 21 of the spool 2 and the valve seat portion 13 is minimized. It is set for each port B side. For example, as shown in FIGS. 4 and 5, when the spool 2 moves even slightly from the standby position S1 on the first port A side to the first port A side, the spool 2 enters the control area S2 on the first port A side. Thus, the first port A and the supply port P communicate with each other.
  • the biasing means 30 generates a biasing force equal to the first threshold TH1 when the spool 2 is in the neutral position S0, and the second threshold TH2 when the spool 2 is in the standby position S1. It is comprised so that equal urging
  • the biasing means 30 is compressed to the spool 2 in the control region S2 and the first spring 31 compressed to the spool 2 at least between the neutral position S0 and the standby position S1.
  • the first spring 31 and the second spring 32 are respectively disposed in the pair of pilot chambers 12.
  • the first spring 31 and the second spring 32 are both compression coil springs, and are arranged so as to generate an initial urging force at the neutral position S0 by being arranged in a predetermined compression state.
  • the body 1 further includes a first stopper 33 that restricts the movement of the spool 2 at the neutral position S0 and a second stopper 34 that restricts the movement of the spool 2 at the standby position S1.
  • the first spring 31 biases the first stopper 33 against the body 1 with an initial biasing force equal to the first threshold TH1
  • the second spring 32 biases the second stopper 34 with an initial biasing force equal to the second threshold TH2. Is urged against the body 1.
  • the first stopper 33 and the second stopper 34 are respectively disposed in the pair of pilot chambers 12. These springs and stoppers are arranged side by side in the order of the first stopper 33, the first spring 31, the second stopper 34, and the second spring 32 from the center side where the spool 2 is disposed to the outside.
  • the pilot chamber 12 is provided with a first positioning portion 16 corresponding to the neutral position S0 and a second positioning portion 17 corresponding to the standby position S1.
  • the first positioning portion 16 and the second positioning portion 17 are stepped portions provided so as to reduce the inner diameter of the pilot chamber 12.
  • the first stopper 33 is urged toward the spool 2 by the first spring 31 and is pressed against the first positioning portion 16 which is a part of the body 1.
  • the first stopper 33 is disposed by the first positioning portion 16 at a position substantially equal to the axial end surface of the spool 2 at the neutral position S0.
  • the spool 2 is held at the neutral position S0.
  • the first spring 31 When applied, the first spring 31 is compressed together with the first stopper 33. Conversely, even if a force equal to or less than the first threshold value TH1 acts on the spool 2 due to disturbance or the like, the first stopper 33 does not move. Since the first stopper 33 is pressed by the first positioning portion 16, no pressing force acts on the spool 2 at the neutral position S0.
  • the first stopper 33 functions as a wall surface that moves only when an operating force larger than the first threshold value TH1 is applied to the spool 2.
  • the first spring 31 is held in a state where one end side is in contact with the first stopper 33 and the other end side is in contact with the second stopper 34.
  • the other end side of the first spring 31 is supported by the second spring 32 via the second stopper 34.
  • the second stopper 34 is urged toward the spool 2 by the second spring 32 and is pressed against the second positioning portion 17 which is a part of the body 1.
  • the second stopper 34 is disposed by the second positioning portion 17 so as to hold the spool 2 at the standby position S1. That is, when the spool 2 moves and compresses the first spring 31, the first stopper 33 and the second stopper 34 come into contact with each other, so that the movement of the spool 2 is restricted (see FIGS. 4 and 6). ).
  • the second spring 32 is held in a state where one end is in contact with the second stopper 34 and the other end is in contact with the inner surface of the body 1. As shown in FIGS. 5 and 7, when an operating force larger than the second threshold value TH2 is applied to the spool 2, the spool 2, the first stopper 33, and the second stopper 34 come into contact with each other, and the second The control region S2 for compressing the spring 32 is reached. In the control region S2, the amount of compression of the second spring 32 (that is, the amount of movement of the spool 2) is proportional to the operating force that is greater than the second threshold value TH2.
  • the first spring 31 and the second spring 32 are configured to be compressed by the spool 2 independently of each other. That is, only the urging force of the first spring 31 acts on the spool 2 as a reaction force between the neutral position S0 and the standby position S1, and only the urging force of the second spring 32 acts on the spool 2 as a reaction force in the control region S2. Therefore, the urging force of each spring acts separately.
  • the spring constant K1 of the first spring 31 is smaller than the spring constant K2 of the second spring 32.
  • the first spring 31 is configured such that the generated urging force is less than the second threshold value TH2 even when it is compressed to the maximum extent (see FIGS. 4 to 7).
  • Each of the first stopper 33 and the second stopper 34 is provided with a through hole 35 for allowing hydraulic oil to pass therethrough. For this reason, when hydraulic fluid is supplied to the pilot chamber 12 in order to apply the operational force, the hydraulic fluid acts on the spool 2 through the through hole 35.
  • the operating force F can be increased immediately (in a step function) to a predetermined first operating force F1 (see FIG. 10).
  • the first operating force F1 is preferably set to a magnitude as close as possible to the second threshold TH2 between the first threshold TH1 and the second threshold TH2.
  • the spool 2 compresses the first spring 31 and quickly moves from the neutral position S0 to the standby position S1.
  • the movement of the spool 2 is stopped by the second stopper 34 and the second spring 32 at the standby position S1.
  • the second port B and the discharge port T communicate with each other via the notch portion 23, the groove portion 22 and the bypass passage 24 of the spool 2, and the hydraulic oil (return oil) flowing into the second port B from the hydraulic cylinder 101. Is discharged from the discharge port T.
  • the spool 2 has a passage portion 25 for discharging hydraulic oil that passes between the valve seat portion 13 and the spool 2.
  • the passage portion 25 discharges hydraulic fluid that leaks through a minute gap between the valve seat portion 13 and the outer peripheral surface 21 of the spool 2, so that the hydraulic fluid between the ports in the neutral position S ⁇ b> 0 (fully closed state). Has a function of preventing leakage.
  • the passage portion 25 is disposed at a position facing at least the first valve seat portion 13a between the first port A and the supply port P in the neutral position S0 of the spool 2.
  • a passage portion 26 is provided.
  • the passage portion 25 (passage portion 26) is provided so as to communicate with the discharge port T from the outer peripheral surface 21 of the spool 2 through the inside of the spool 2 at the neutral position S0.
  • the passage portion 25 (passage portion 26) is formed so as to open to the outer peripheral surface 21 between the adjacent groove portions 22, and penetrates through the spool 2 and is connected to the bypass passage 24. Accordingly, the passage portion 25 (passage portion 26) communicates with the discharge port T through a route that is partially in common with the bypass passage 24.
  • the passage portion 25 is a fine hole having an inner diameter d2 smaller than the inner diameter d1 of the supply port P.
  • the passage portion 25 (passage portion 26) discharges a very small amount of hydraulic oil that leaks through the passage between the valve seat portion 13 and the outer peripheral surface 21 of the spool 2 to the discharge port T.
  • a fine annular groove (not shown) is provided on the outer peripheral surface 21 of the spool 2 to reduce sliding resistance, and the passage portion 25 (passage portion 26) is formed at the bottom of the annular groove. Is open.
  • the passage portion 25 is positioned closer to the other end portion on the first port A side of the first valve seat portion 13a than one end portion on the supply port P side of the first valve seat portion 13a. Has been placed.
  • the passage portion 26 is located closer to the other end portion on the second port B side of the third valve seat portion 13c than to one end portion on the supply port P side of the third valve seat portion 13c. It is arranged at a close position. For this reason, the hydraulic oil that leaks into the gap from the high-pressure supply port P is discharged to the discharge port T only after reaching the vicinity of the first port A (second port B).
  • the length L11 between the passage portion 25 and the one end portion of the first valve seat portion 13a at the neutral position S0 of the spool 2 is the spool from the neutral position S0 to the second port B side. It is 2 or more movable distance L21.
  • a length L12 between the passage portion 26 and the one end portion of the third valve seat portion 13c at the neutral position S0 of the spool 2 is a movable distance L22 of the spool 2 from the neutral position S0 to the second port B side. That's it.
  • the lengths L11 and L12 are equal, and the distances L21 and L22 are equal.
  • the distance L21 (L22) is approximately equal to the sum of the distance D1 between the first stopper 33 and the second stopper 34 at the neutral position S0 and the distance D2 between the second stopper 34 and the inner surface of the body 1.
  • the passage portion 25 is blocked by the second valve seat portion 13b, and the passage portion 26 is supplied by the third valve seat portion 13c. Maintain a closed state without communication with P.
  • the passage portion 25 is kept closed by the first valve seat portion 13a so as not to communicate with the supply port P. The state closed by the fourth valve seat portion 13d is maintained.
  • the valve seat portion 13 that blocks the oil passage with the outer peripheral surface 21 of the spool 2 is provided.
  • the valve seat portion 13 can be provided over a range between the neutral position S0 and the standby position S1, and therefore the length (L1 to L4) of the seal portion 14 between the spool 2 and the valve seat portion 13 in the neutral position S0. ) Can be secured sufficiently. As a result, the leakage of hydraulic oil to the oil passage can be suppressed.
  • the operating force F that moves the spool 2 is between the first threshold TH1 that is the upper limit for holding the spool 2 in the neutral position S0 and the second threshold TH2 that is greater than the first threshold TH1.
  • the flow rate control valve 100 is configured so that the spool 2 moves from the standby position S1 to the control region S2 in which the valve opening is changed according to the amount of movement of the spool 2 against the urging force of the urging means 30. .
  • the flow rate control when the flow rate control is performed, if the operating force (first operating force F1) having a magnitude between the first threshold value TH1 and the second threshold value TH2 is supplied in advance, the spool 2 quickly moves to the standby position S1.
  • the flow rate control can be started, and the flow rate control can be started immediately from the time when the operating force F exceeds the second threshold value TH2. That is, since the responsiveness can be improved by moving the spool 2 from the neutral position S0 to the standby position S1 immediately before the flow rate control, the valve seat portion 13 is lengthened and the length of the seal portion 14 ( Even when L1 to L4) are sufficiently secured, high responsiveness can be secured.
  • the flow control device 100 of the first embodiment it is possible to suppress leakage of hydraulic oil to the oil passage without impairing responsiveness.
  • the length of the seal portion is made as small as possible in order to reduce the dead zone (the region where flow control does not start even when the spool is moved) to ensure proportional control responsiveness. For this reason, it is not possible to suppress leakage through a minute gap for sliding the spool, and the sealing performance between the ports in the neutral position is not high.
  • the comparative example of FIG. 10 there is a constant leak flow rate from the supply port P to the first port A or the second port B in the neutral position, although the responsiveness from the flow control start time t2 is ensured. Will continue to do.
  • the lengths L1 to L4 of the seal portion 14 are sufficiently secured. For this reason, the sealing performance between the ports at the neutral position S0 is improved, and a leak flow rate is not substantially generated at the neutral position S0.
  • the dead zone usually increases by the lengths L1 to L4.
  • the seal portion 14 The spool 2 can be moved to the standby position S1 where is as small as possible. In the standby position S1, since the seal portion 14 is small, a leak (so-called pre-leakage) may occur between the supply port P and the first port A or the second port B depending on the moving direction.
  • the movement to the standby position S1 can be completed in a very short time by setting the first operating force F1 in the vicinity of the second threshold value TH2 (the time interval between the times t1 and t2 is reduced). Therefore, the time (leakage flow rate) during which leakage occurs at the standby position S1 can be minimized.
  • the same responsiveness as that of the proportional flow control valve of the comparative example can be ensured.
  • the biasing means 30 when the spool 2 is in the neutral position S0, the biasing means 30 generates a biasing force equal to the first threshold value TH1, and the spool 2 is in the standby position S1. In addition, an urging force equal to the second threshold value TH2 is generated. Accordingly, the spool 2 can be held at the standby position S1 by using the biasing means 30 for holding the spool 2 at the neutral position S0. As a result, it is possible to easily realize the configuration in which the spool 2 is moved stepwise to the neutral position S0, the standby position S1, and the control region S2 by the biasing means 30.
  • the urging means 30 includes at least the first spring 31 compressed by the spool 2 between the neutral position S0 and the standby position S1, and the spool 2 in the control region S2.
  • an initial biasing force equal to the first threshold value TH1 is generated in the first spring 31
  • an initial biasing force equal to the second threshold value TH2 is generated in the second spring 32.
  • Each spring constant can be determined freely. Therefore, it is possible to more easily configure the urging means 30 that generates the urging force equal to the first threshold value TH1 at the neutral position S0 and generates the urging force equal to the second threshold value TH2 at the standby position S1.
  • the spring constant K1 of the first spring 31 is set smaller than the spring constant K2 of the second spring 32 as described above.
  • the magnitude of the operating force required to compress the first spring 31 from the first threshold TH1 to the standby position S1 (K1 ⁇ travel distance) can be reduced.
  • the difference between the operating force (TH1 + K1 ⁇ movement distance) required to move the spool 2 to the standby position S1 and the second threshold value TH2 can be increased, so that the spool 2 is moved to the standby position S1. Can be done quickly.
  • the first stopper 33 for restricting the movement of the spool 2 at the neutral position S0 and the second stopper 34 for restricting the movement of the spool 2 at the standby position S1 are provided on the body 1.
  • the first spring 31 biases the first stopper 33 against the body 1 with an initial biasing force equal to the first threshold value TH1
  • the second spring 32 biases the second stopper 34 with an initial biasing force equal to the second threshold value TH2. Is urged against the body 1.
  • the spool 2 since the spool 2 does not move even if a force of the first threshold value TH1 or less is applied to the spool 2 due to disturbance or the like, the spool 2 can be stably held at the neutral position S0. Further, by providing the second stopper 34, the second threshold value TH 2 can be set by the second spring 32 independently of the first spring 31. Therefore, compared with the case where the second threshold value TH2 is set by the combined spring of the first spring 31 and the second spring 32, the second threshold value TH2 can be set easily, and the spool 2 is operated in the control region S2. It is possible to suppress an increase in necessary operating force.
  • the spool 2 is provided with the passage portion 25 that communicates from the outer peripheral surface 21 of the spool 2 through the inside of the spool 2 to the discharge port T. Is disposed at a position facing at least the first valve seat 13a between the first port A and the supply port P in the neutral position S0 of the spool 2.
  • a slight leakage of hydraulic oil between the spool 2 and the first valve seat portion 13 a can be sent out to the discharge port T by the passage portion 25.
  • the flow rate control valve 100 is used for raising / lowering control of the hydraulic cylinder 101 or the like, it is possible to prevent leakage of hydraulic oil at the neutral position S0 and to prevent displacement.
  • the passage portion 26 is provided not only in the first valve seat portion 13a but also in the valve seat portion 13 between the second port B and the supply port P, the first port A and It is possible to prevent the hydraulic oil from leaking to both of the second ports B.
  • the passage portion 25 is arranged at the neutral position S0 of the spool 2 at the neutral position S0 of the first valve seat portion 13a rather than the one end portion on the supply port P side of the first valve seat portion 13a. It arrange
  • the passage portion 25 passes through the first port A and It is provided so as to move to a position facing the second valve seat 13b between the 1 port A and the discharge port T.
  • the passage portion 25 is moved from the first valve seat portion 13a to the second valve seat portion 13b. 25 can be prevented from being arranged at a position communicating with the first port A.
  • the passage portion 25 is always in the neutral position S0 and the standby position S1 without making the first valve seat portion 13a longer than necessary. It is possible to prevent the first valve seat portion 13a and the second valve seat portion 13b) from communicating with the first port A.
  • the length L11 between the passage portion 25 and the one end portion of the first valve seat portion 13a at the neutral position S0 of the spool 2 is set to the second port B from the neutral position S0. More than the movable distance L21 of the spool 2 to the side. Accordingly, even when the spool 2 is moved to the control region S2 on the second port B side and the flow rate control to the second port B is performed, the passage portion 25 moves to the outside of the first valve seat portion 13a and is supplied. It is possible to prevent communication with the port P.
  • the passage portion 25 having the inner diameter d2 smaller than the inner diameter d1 of the supply port P is provided.
  • the passage portion 25 having a small inner diameter in this way, a small amount of hydraulic oil that leaks from the supply port P to the first port A at the neutral position S0 is reliably discharged, and no hydraulic oil is required due to a pressure difference. Inflow to the passage portion 25 can be suppressed as much as possible.
  • the first spring 31 is configured to urge the spool 2 directly.
  • the spool 2 is held at the neutral position S0 by the biasing force of the first springs 31 on both sides.
  • the first spring 31 is provided such that one end is in contact with the spool 2 and the other end is in contact with the stopper 201.
  • the stopper 201 is biased toward the body 1 by the second spring 32. That is, the stopper 201 is pressed against the positioning portion 202 formed of the step portion of the body 1.
  • the positioning unit 202 defines the standby position S1. As shown in FIG. 12, when the operating force F between the first threshold value TH1 and the second threshold value TH2 is applied to the spool 2, the spool 2 moves until it compresses the first spring 31 and contacts the stopper 201. To do.
  • the stopper 201 is urged by the positioning portion 202 with the urging force equal to the second threshold value TH2 by the second spring 32. Therefore, when the operating force is less than or equal to the second threshold value TH2, the stopper 2 is not moved and is put on standby. Hold at position S1.
  • the second spring 32 is provided such that one end is in contact with the stopper 201 and the other end is in contact with the inner surface of the body 1.
  • the spool 2 compresses the second spring 32 and moves to the control region S2 together with the stopper 201.
  • the port (first port A or second port B) corresponding to the moving direction of the spool 2 is communicated with the supply port P, and the hydraulic oil is circulated at a flow rate proportional to the moving amount.
  • the first spring 31 In the standby position S1, the first spring 31 is compressed and the end surface of the spool 2 comes into contact with the stopper 201. Therefore, the first spring 31 does not function during the movement of the spool 2 in the control region S2. That is, the first spring 31 and the second spring 32 are configured to be compressed by the spool 2 independently of each other. The urging force of each spring acts separately.
  • the spool 2 is held at the neutral position S0 by the balance of the first spring 31. Therefore, in order to stably hold the spool 2 at the neutral position S0, it is preferable to increase the spring constant of the first spring 31.
  • the first spring 31 is provided such that one end contacts the end surface of the spool 2 and the other end contacts the inner surface of the body 1. .
  • the spool 2 is held at the neutral position S0 by the biasing force of the first springs 31 on both sides.
  • the second spring 32 is provided such that one end is in contact with the stopper 301 and the other end is in contact with the inner surface of the body 1.
  • the stopper 301 is biased toward the body 1 by the second spring 32. That is, the stopper 301 is pressed against the positioning portion 302 formed of the step portion of the body 1.
  • the positioning unit 302 defines the standby position S1.
  • the spool 2 compresses the first spring 31, and the step portion 303 of the spool 2 comes into contact with the stopper 301.
  • the stopper 301 is biased to the positioning portion 302 by the second spring 32, and the spool 2 is biased by the first spring 31.
  • the second threshold value TH2 shown in FIG. 14 is the resultant force of the urging force of the first spring 31 and the urging force of the second spring 32 when the spool 2 is moved to the standby position S1.
  • the operating force F is equal to or less than the second threshold value TH2 (greater than the first threshold value TH1), the spool 2 is not moved and is held at the standby position S1.
  • the spool 2 when an operating force F greater than the second threshold value TH2 is applied to the spool 2, the spool 2 compresses the second spring 32 and the first spring 31 and moves to the control region S2 together with the stopper 301. . Therefore, in the control region S2, the position control of the spool 2 is performed by the balance with the combined spring of the first spring 31 and the second spring 32. Even in this case, when the spool 2 moves to the control region S2 by the operating force F larger than the second threshold TH2, the port (first port A or second port B) corresponding to the moving direction of the spool 2 is set as the supply port P. Communicate and distribute the hydraulic oil at a flow rate proportional to the amount of movement.
  • the spool 2 is held at the neutral position S0 by the balance of the first spring 31 as in the second embodiment. Therefore, in order to stably hold the spool 2 at the neutral position S0, it is preferable to increase the spring constant of the first spring 31.
  • the effect of the third embodiment is the same as that of the first embodiment.
  • the passage portion 25 is provided in the spool 2
  • the present invention is not limited to this.
  • the passage portion 25 (26) may not be provided in the spool 2.
  • the lengths L1 to L4 of the seal portion 14 between the outer peripheral surface 21 of the spool 2 and the valve seat portion 13 can be sufficiently secured, It is possible to effectively suppress leakage between hydraulic oil ports caused by passing between 21 and the valve seat portion 13.
  • the passage portion 25 it is possible to more reliably prevent leakage between the ports. Therefore, it is preferable to provide the passage portion 25 in an application in which leakage between the ports is not allowed.
  • the passage portion 25 and the passage portion 26 are provided in the spool 2
  • the present invention is not limited to this.
  • the passage portion when the passage portion is provided, the passage portion may be only between the first port A and the supply port P (only the passage portion 25), or the passage portion 26 may not be provided.
  • the urging means 30 is configured by the first spring 31 and the second spring 32.
  • the present invention is not limited to this.
  • the urging means may be constituted by three or more springs.
  • the biasing means may be configured using a single spring and a variable spring whose spring constant varies.
  • the present invention is not limited to this.
  • the spring constant of the first spring 31 and the spring constant of the second spring 32 may be equal, or the spring constant of the first spring 31 may be larger than the spring constant of the second spring 32.
  • the passage portion 25 is connected to the first valve seat portion 13a at the neutral position S0 of the spool 2 rather than the one end portion on the supply port P side of the first valve seat portion 13a.
  • the passage portion 25 may be disposed at the center of the first valve seat portion 13a or on the supply port P side at the neutral position S0 of the spool 2.
  • the passage portion 26, and it may be arranged at the center of the second valve seat portion 13c or on the supply port P side at the neutral position S0.
  • the passage portion 25 passes through the first port A and faces the second valve seat portion 13b.
  • the passage portion 25 may be disposed at a position facing the first valve seat portion 13a in both the neutral position S0 and the standby position S1.
  • the passage portion 26 may be disposed at a position facing the third valve seat portion 13c in both the neutral position S0 and the standby position S1.
  • the length L11 between the passage portion 25 and the one end portion of the first valve seat portion 13a at the neutral position S0 is the spool from the neutral position S0 to the second port B side.
  • the structural example which becomes 2 or more movable distance L21 was shown, this invention is not limited to this.
  • the length L11 may be smaller than the movable distance L21. In that case, when the spool 2 moves to the standby position S1 of the second port B, the passage portion 25 passes over the supply port P and moves to a position facing the third valve seat portion 13c. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

This flow control valve is configured so that as a result of a spool (2)-moving operating force being supplied at a magnitude between a first threshold (TH1), which is the upper limit for holding the spool in a center position (S0), and a second threshold (TH2), which is greater than the first threshold, the spool moves from the center position to a standby position (S1), and as a result of an operating force greater than the second threshold being supplied, the spool moves from the standby position to a control range (S2).

Description

流量制御弁Flow control valve
 この発明は、流量制御弁に関し、特に、ボディ内でスプールを移動させることにより油路を開閉して流量を制御する流量制御弁に関する。 The present invention relates to a flow rate control valve, and more particularly to a flow rate control valve that controls the flow rate by opening and closing an oil passage by moving a spool in the body.
 従来、ボディ内でスプールを移動させることにより油路を開閉して流量を制御する流量制御弁が知られている。このような流量制御弁は、たとえば、特開平11-280705号公報に開示されている。 Conventionally, a flow rate control valve that opens and closes an oil passage by moving a spool in the body to control the flow rate is known. Such a flow control valve is disclosed in, for example, Japanese Patent Application Laid-Open No. 11-280705.
 上記特開平11-280705号公報には、作動油が出入りする油路が設けられたボディと、ボディ内で移動して油路を開閉させるスプールとを備えた流量制御弁が開示されている。スプールが中立位置にある状態では、スプールの外周面とボディの内周面である弁座部とが対向するシール部分によって、油路が閉鎖される。スプールに作動力が付与されてスプールが中立位置から移動すると、スプールと弁座部との間に隙間(開口)が形成されて油路が開かれる。上記特開平11-280705号公報の流量制御弁は、スプールの移動量に応じて隙間(開口)が拡大することにより、スプールの移動量に比例した流量で作動油を出力する比例制御弁である。 JP-A-11-280705 discloses a flow control valve having a body provided with an oil passage through which hydraulic oil enters and exits and a spool that moves within the body to open and close the oil passage. In the state where the spool is in the neutral position, the oil passage is closed by the seal portion where the outer peripheral surface of the spool and the valve seat portion which is the inner peripheral surface of the body face each other. When an operating force is applied to the spool and the spool moves from the neutral position, a gap (opening) is formed between the spool and the valve seat portion, and the oil passage is opened. The flow control valve disclosed in Japanese Patent Application Laid-Open No. 11-280705 is a proportional control valve that outputs hydraulic oil at a flow rate proportional to the amount of movement of the spool by expanding a gap (opening) according to the amount of movement of the spool. .
 上記特開平11-280705号公報のようなスプール方式の流量制御弁では、中立位置におけるスプールの外周面と弁座部とのシール部分の長さは、スプールが移動し始めてから流量制御が開始されるまで(隙間が形成されるまで)の不感帯に相当する。応答性を向上させるため、流量制御弁では、このシール部分の長さが極力小さくなるように形成される。 In the spool-type flow control valve as described in JP-A-11-280705, the length of the seal portion between the outer peripheral surface of the spool and the valve seat in the neutral position is such that the flow control is started after the spool starts to move. This corresponds to the dead zone until (until a gap is formed). In order to improve responsiveness, the flow control valve is formed so that the length of the seal portion is as small as possible.
特開平11-280705号公報JP-A-11-280705
 しかしながら、中立位置でのシール部分の長さを小さくすると、応答性が向上する一方で、スプールと弁座部との間のシール性が低下するため、油路への作動油の漏れが発生し易いという問題点がある。たとえばフォークリフトの昇降用油圧シリンダ(リフトシリンダ)などの昇降制御に流量制御弁が用いられる場合、中立位置で作動油の漏れが発生すると、高さ位置が保持されずに僅かずつ変化することになる。そこで、スプール方式の流量制御弁において、応答性を損なうことなく、油路への作動油の漏れ(リーク)を抑制することが望まれている。 However, if the length of the seal portion at the neutral position is reduced, the responsiveness is improved, but the sealability between the spool and the valve seat portion is lowered, so that hydraulic oil leaks to the oil passage. There is a problem that it is easy. For example, when a flow control valve is used for raising / lowering control of a lifting cylinder for lifting / lowering a forklift, if hydraulic fluid leaks at a neutral position, the height position is changed little by little without being maintained. . In view of this, in a spool type flow control valve, it is desired to suppress leakage of hydraulic oil into the oil passage without impairing responsiveness.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の目的は、応答性を損なうことなく、油路への作動油の漏れを抑制することが可能なスプール方式の流量制御弁を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is a spool system capable of suppressing leakage of hydraulic oil to an oil passage without impairing responsiveness. Is to provide a flow control valve.
 上記目的を達成するために、この発明による流量制御弁は、作動油が出入りする油路が設けられたボディと、ボディ内に移動可能に保持され、油路を開閉させるスプールと、を備え、ボディは、ボディの内周面に設けられ、スプールが中立位置およびスタンバイ位置にある場合に、スプールの外周面とによって油路を遮断する弁座部と、スプールを中立位置に保持するための付勢手段とを有し、スプールを移動させる作動力が、スプールを中立位置に保持する上限である第1閾値と、第1閾値よりも大きい第2閾値との間の大きさで供給されることにより、スプールが付勢手段の付勢力に抗して中立位置からスタンバイ位置に移動し、第2閾値よりも大きい作動力が供給されることにより、スプールが付勢手段の付勢力に抗して、スタンバイ位置から、スプールの移動量に応じて弁開度を変化させる制御領域に移動するように構成されている。 To achieve the above object, a flow control valve according to the present invention includes a body provided with an oil passage through which hydraulic oil enters and exits, and a spool that is movably held in the body and opens and closes the oil passage. The body is provided on the inner peripheral surface of the body, and when the spool is in the neutral position and the standby position, a valve seat portion that blocks the oil passage by the outer peripheral surface of the spool, and an attachment for holding the spool in the neutral position. And an actuating force for moving the spool is supplied in a magnitude between a first threshold that is an upper limit for holding the spool in a neutral position and a second threshold that is greater than the first threshold. Thus, the spool moves from the neutral position to the standby position against the urging force of the urging means, and an operating force larger than the second threshold is supplied, so that the spool resists the urging force of the urging means. , Samba From the position, and is configured to move the control area to change the valve opening in accordance with the movement amount of the spool.
 この発明による流量制御弁では、上記のように、スプールが中立位置およびスタンバイ位置にある場合に、スプールの外周面とによって油路を遮断する弁座部をボディの内周面に設ける。これにより、スプールの中立位置とスタンバイ位置との間の範囲にわたって弁座部を設けることができるので、中立位置におけるスプールと弁座部とのシール部分の長さを十分に確保することができる。その結果、油路への作動油の漏れを抑制することができる。また、上記のように、スプールを移動させる作動力が、スプールを中立位置に保持する上限である第1閾値と、第1閾値よりも大きい第2閾値との間の大きさで供給されることにより、スプールが付勢手段の付勢力に抗して中立位置からスタンバイ位置に移動し、第2閾値よりも大きい作動力が供給されることにより、スプールが付勢手段の付勢力に抗して、スタンバイ位置から、スプールの移動量に応じて弁開度を変化させる制御領域に移動するように流量制御弁を構成する。これにより、流量制御を行う場合に予め第1閾値と第2閾値との間の大きさの作動力を供給すれば、スプールが速やかにスタンバイ位置に移動して流量制御を開始可能な状態となり、作動力が第2閾値を越えた時点から速やかに流量制御を開始することができる。すなわち、流量制御の直前にスプールを中立位置からスタンバイ位置に移動させておくことにより、応答性を向上させることができるので、弁座部を長くしてシール部分の長さを十分に確保する場合でも、高い応答性を確保することができる。以上により、本発明によれば、応答性を損なうことなく、油路への作動油の漏れを抑制することができる。 In the flow control valve according to the present invention, as described above, when the spool is in the neutral position and the standby position, the valve seat portion that blocks the oil passage with the outer peripheral surface of the spool is provided on the inner peripheral surface of the body. As a result, the valve seat portion can be provided over a range between the neutral position of the spool and the standby position, so that the length of the seal portion between the spool and the valve seat portion in the neutral position can be sufficiently secured. As a result, the leakage of hydraulic oil to the oil passage can be suppressed. Further, as described above, the operating force for moving the spool is supplied in a magnitude between the first threshold value that is the upper limit for holding the spool in the neutral position and the second threshold value that is larger than the first threshold value. Thus, the spool moves from the neutral position to the standby position against the urging force of the urging means, and an operating force larger than the second threshold is supplied, so that the spool resists the urging force of the urging means. The flow rate control valve is configured to move from the standby position to a control region in which the valve opening is changed according to the amount of movement of the spool. As a result, if an operating force having a magnitude between the first threshold value and the second threshold value is supplied in advance when performing flow rate control, the spool can quickly move to the standby position and start flow rate control. The flow rate control can be started immediately from the time when the operating force exceeds the second threshold. In other words, since the responsiveness can be improved by moving the spool from the neutral position to the standby position immediately before the flow rate control, when the valve seat part is lengthened and the length of the seal part is sufficiently secured However, high responsiveness can be ensured. As described above, according to the present invention, it is possible to suppress leakage of hydraulic oil to the oil passage without impairing responsiveness.
 上記発明による流量制御弁において、好ましくは、付勢手段は、スプールが中立位置にある場合、第1閾値と等しい付勢力を発生させ、スプールがスタンバイ位置にある場合に、第2閾値と等しい付勢力を発生させるように構成されている。このように構成すれば、スプールを中立位置に保持するための付勢手段を用いて、スプールをスタンバイ位置に保持することができる。この結果、スプールを中立位置、スタンバイ位置および制御領域に段階的に移動させる構成を付勢手段により容易に実現することができる。 In the flow control valve according to the present invention, preferably, the biasing means generates a biasing force equal to the first threshold value when the spool is in the neutral position, and applies a pressure equal to the second threshold value when the spool is in the standby position. It is configured to generate power. If comprised in this way, a spool can be hold | maintained in a standby position using the biasing means for hold | maintaining a spool in a neutral position. As a result, a configuration in which the spool is moved stepwise to the neutral position, the standby position, and the control region can be easily realized by the biasing means.
 この場合、好ましくは、付勢手段は、少なくとも中立位置とスタンバイ位置との間でスプールに圧縮される第1ばねと、制御領域においてスプールに圧縮される第2ばねと、をさらに含む。このように構成すれば、第1ばねと第2ばねとを設けることにより、たとえば第1ばねに第1閾値と等しい初期付勢力を発生させ、第2ばねに第2閾値と等しい初期付勢力を発生させるなど、各々のばね定数を自由に決められる。そのため、中立位置において第1閾値と等しい付勢力を発生させ、スタンバイ位置において第2閾値と等しい付勢力を発生させる付勢手段を、より容易に構成することができる。 In this case, preferably, the urging means further includes a first spring that is compressed to the spool at least between the neutral position and the standby position, and a second spring that is compressed to the spool in the control region. According to this configuration, by providing the first spring and the second spring, for example, an initial biasing force equal to the first threshold value is generated in the first spring, and an initial biasing force equal to the second threshold value is generated in the second spring. Each spring constant can be freely determined, such as generating. Therefore, it is possible to more easily configure the urging means that generates the urging force equal to the first threshold value in the neutral position and generates the urging force equal to the second threshold value in the standby position.
 上記付勢手段が第1ばねと第2ばねとを含む構成において、好ましくは、第1ばねのばね定数は、第2ばねのばね定数よりも小さい。このように構成すれば、第1ばねのばね定数を相対的に小さくすることにより、第1閾値を越えてからスタンバイ位置まで第1ばねを圧縮するのに必要な作動力の大きさ(圧縮に伴う第1ばねの付勢力の増分)を小さくすることができる。その結果、スプールをスタンバイ位置に移動するのに必要な作動力と、作動力の第2閾値との差を大きくすることができるので、スタンバイ位置へのスプールの移動を迅速に行うことができる。 In the configuration in which the biasing means includes the first spring and the second spring, the spring constant of the first spring is preferably smaller than the spring constant of the second spring. With this configuration, by reducing the spring constant of the first spring relatively, the magnitude of the operating force required to compress the first spring from the first threshold value to the standby position (for compression) The accompanying increase in the biasing force of the first spring) can be reduced. As a result, the difference between the operating force required to move the spool to the standby position and the second threshold value of the operating force can be increased, so that the spool can be quickly moved to the standby position.
 上記付勢手段が第1ばねと第2ばねとを含む構成において、好ましくは、ボディは、中立位置におけるスプールの移動を規制する第1ストッパと、スタンバイ位置におけるスプールの移動を規制する第2ストッパとをさらに含み、第1ばねは、第1閾値と等しい初期付勢力で第1ストッパをボディに対して付勢し、第2ばねは、第2閾値と等しい初期付勢力で第2ストッパをボディに対して付勢している。このように構成すれば、第1ばねによりボディに付勢される第1ストッパにより、スプールを中立位置に保持することができる。この場合、スプールが付勢力の釣り合いによって中立位置に保持される構成と異なり、外乱などによってスプールに第1閾値以下の力が作用してもスプールが移動しないため、安定してスプールを中立位置に保持することができる。また、第2ストッパを設けることにより、第2閾値を第1ばねとは独立して第2ばねにより設定することができる。そのため、第2閾値を第1ばねおよび第2ばねの合成ばねにより設定する場合と比較して、第2閾値を容易に設定できるとともに、スプールを制御領域で動作させるために必要な作動力が大きくなることを抑制することができる。 In the configuration in which the urging means includes a first spring and a second spring, the body preferably has a first stopper that restricts movement of the spool in the neutral position and a second stopper that restricts movement of the spool in the standby position. The first spring biases the first stopper against the body with an initial biasing force equal to the first threshold, and the second spring biases the second stopper against the body with an initial biasing force equal to the second threshold. Is energized against. If comprised in this way, a spool can be hold | maintained in a neutral position with the 1st stopper urged | biased by the body with a 1st spring. In this case, unlike the configuration in which the spool is held at the neutral position by the balance of the urging force, the spool does not move even if a force below the first threshold is applied to the spool due to disturbance or the like, so the spool can be stably brought to the neutral position. Can be held. Further, by providing the second stopper, the second threshold value can be set by the second spring independently of the first spring. Therefore, compared with the case where the second threshold value is set by the combined spring of the first spring and the second spring, the second threshold value can be easily set and the operating force required to operate the spool in the control region is large. It can be suppressed.
 上記発明による流量制御弁において、好ましくは、油路は、作動油が供給される供給ポートと、作動油が排出される排出ポートと、互いに択一的に作動油を流入または流出させる第1ポートおよび第2ポートとを含み、スプールは、中立位置において、スプールの外周面からスプールの内部を通って排出ポートに連通するように設けられ、弁座部とスプールとの間を通過する作動油を排出するための通路部を有し、通路部は、スプールの中立位置において、少なくとも第1ポートと供給ポートとの間の第1弁座部と対向する位置に配置されている。このように構成すれば、スプールをボディ内で移動可能に構成することによって不可避的に発生するスプールと第1弁座部との間での作動油の僅かな漏れを、通路部によって排出ポートへ送り出すことが可能となる。このため、たとえば昇降用シリンダの昇降制御などに流量制御弁が用いられる場合でも、中立位置での作動油の漏れを防止して、位置ずれが生じることを確実に防止することができる。なお、本発明において、通路部は、少なくとも第1ポートと供給ポートとの間の第1弁座部に配置されていればよく、第1弁座部のみならず、第2ポートと供給ポートとの間の弁座部にも通路部がさらに配置されていてもよい。 In the flow control valve according to the present invention, preferably, the oil passage includes a supply port to which the hydraulic oil is supplied, a discharge port from which the hydraulic oil is discharged, and a first port that allows the hydraulic oil to flow in or out alternately. And the second port, and in the neutral position, the spool is provided so as to communicate with the discharge port from the outer peripheral surface of the spool through the inside of the spool, and allows the hydraulic oil to pass between the valve seat portion and the spool. A passage portion for discharging is provided, and the passage portion is disposed at a position facing at least the first valve seat portion between the first port and the supply port in the neutral position of the spool. If comprised in this way, the slight leakage of the hydraulic fluid between the spool and the 1st valve seat part which inevitably generate | occur | produces by comprising a spool so that a movement in a body is carried out to a discharge port by a channel | path part. It can be sent out. For this reason, even when a flow control valve is used for elevating control of the elevating cylinder, for example, it is possible to prevent leakage of hydraulic oil at the neutral position and reliably prevent displacement. In the present invention, the passage portion only needs to be disposed at least in the first valve seat portion between the first port and the supply port, and not only the first valve seat portion but also the second port and the supply port. A passage portion may be further arranged in the valve seat portion between the two.
 この場合、好ましくは、通路部は、スプールの中立位置において、第1弁座部の供給ポート側の一端部よりも、第1弁座部の第1ポート側の他端部に近い位置に配置されている。このように構成すれば、通路部が高圧側の供給ポートから離れた位置に配置されるので、第1ポートへの作動油の漏れを防止しつつ、圧力差によって作動油が供給ポートから通路部へ漏れ出ることを抑制することができる。 In this case, preferably, the passage portion is disposed at a position closer to the other end portion of the first valve seat portion on the first port side than the one end portion of the first valve seat portion on the supply port side in the neutral position of the spool. Has been. If comprised in this way, since a channel | path part is arrange | positioned in the position away from the supply port by the side of a high voltage | pressure, hydraulic oil is prevented from leaking from a supply port by a pressure difference, preventing the hydraulic fluid to leak to a 1st port. It is possible to suppress leakage into the water.
 上記スプールの中立位置において、通路部が第1弁座部の第1ポート側の他端部に近い位置に配置されている構成において、好ましくは、通路部は、スプールが中立位置から第1ポート側のスタンバイ位置に移動する際に、第1ポートを通過して、第1ポートと排出ポートとの間の第2弁座部と対向する位置に移動する。このように構成すれば、スプールを中立位置からスタンバイ位置へと移動させる構造を利用して、通路部を第1弁座部から第2弁座部へと移動させることにより、通路部が第1ポートと連通する位置に配置されることを防止することができる。すなわち、スプールの外周面に通路部を設ける場合でも、第1弁座部を必要以上に長くすることなく、中立位置およびスタンバイ位置で通路部が常に弁座部(第1弁座部および第2弁座部)と対向して第1ポートと連通することがないようにすることが可能となる。 In the configuration in which the passage portion is disposed at a position close to the other end portion on the first port side of the first valve seat portion in the neutral position of the spool, preferably, the passage portion has the spool from the neutral position to the first port. When moving to the standby position on the side, the first valve passes through the first port and moves to a position facing the second valve seat between the first port and the discharge port. If comprised in this way, a channel | path part will be 1st by moving a channel | path part from a 1st valve seat part to a 2nd valve seat part using the structure which moves a spool from a neutral position to a standby position. Arrangement at a position communicating with the port can be prevented. That is, even when the passage portion is provided on the outer peripheral surface of the spool, the passage portion is always the valve seat portion (the first valve seat portion and the second valve portion at the neutral position and the standby position) without making the first valve seat portion longer than necessary. It is possible to prevent the first seat from communicating with the first port.
 上記スプールに通路部を設ける構成において、好ましくは、スプールの中立位置における通路部と第1弁座部の一端部との間の長さは、中立位置から第2ポート側へのスプールの移動可能距離以上である。このように構成すれば、スプールを第2ポート側の制御領域へ移動させて第2ポートへの流量制御が行われる場合でも、通路部が第1弁座部の外部へ移動して供給ポートと連通してしまうことを防止することができる。 In the configuration in which the passage portion is provided in the spool, preferably, the length between the passage portion in the neutral position of the spool and the one end portion of the first valve seat portion is movable from the neutral position to the second port side. More than the distance. With this configuration, even when the spool is moved to the control region on the second port side and flow control to the second port is performed, the passage portion moves to the outside of the first valve seat portion and It is possible to prevent communication.
 上記スプールに通路部を設ける構成において、好ましくは、通路部は、供給ポートの内径よりも小さい内径を有する。このように内径の小さな通路部を設けることにより、中立位置において供給ポートから第1ポートへ漏れようとする僅かな作動油を確実に排出しつつ、圧力差によって作動油が不必要に通路部へ流入することを極力抑制することができる。 In the configuration in which the spool is provided with the passage portion, the passage portion preferably has an inner diameter smaller than the inner diameter of the supply port. By providing the passage portion having a small inner diameter in this way, the hydraulic oil is surely discharged from the supply port to the first port in the neutral position, and the hydraulic oil is unnecessarily moved to the passage portion due to the pressure difference. Inflow can be suppressed as much as possible.
 本発明によれば、上記のように、応答性を損なうことなく、油路への作動油の漏れを抑制することが可能なスプール方式の流量制御弁を提供することができる。 According to the present invention, as described above, it is possible to provide a spool-type flow rate control valve capable of suppressing the leakage of hydraulic oil to the oil passage without impairing responsiveness.
流量制御弁が適用される油圧回路の一例を示した図である。It is the figure which showed an example of the hydraulic circuit to which a flow control valve is applied. 第1実施形態による流量制御弁を示した断面図である。It is sectional drawing which showed the flow control valve by 1st Embodiment. スプールの構成例を示した斜視図である。It is the perspective view which showed the structural example of the spool. 第1ポート側のスタンバイ位置にスプールが移動した状態を示した図である。It is the figure which showed the state which the spool moved to the standby position by the side of the 1st port. 第1ポート側の制御領域にスプールが移動した状態を示した図である。It is the figure which showed the state which the spool moved to the control area of the 1st port side. 第2ポート側のスタンバイ位置にスプールが移動した状態を示した図である。It is the figure which showed the state which the spool moved to the standby position by the side of the 2nd port. 第2ポート側の制御領域にスプールが移動した状態を示した図である。It is the figure which showed the state which the spool moved to the control area of the 2nd port side. 第1ポート側のスタンバイ位置での通路部の位置を示した拡大断面図である。It is the expanded sectional view which showed the position of the channel | path part in the standby position by the side of a 1st port. 第2ポート側のスタンバイ位置での通路部の位置を示した拡大断面図である。It is the expanded sectional view which showed the position of the channel | path part in the standby position on the 2nd port side. 第1実施形態および比較例による流量制御弁の開閉動作の一例を示したグラフである。It is the graph which showed an example of the opening / closing operation | movement of the flow control valve by 1st Embodiment and a comparative example. 第2実施形態による流量制御弁を示した断面図である。It is sectional drawing which showed the flow control valve by 2nd Embodiment. 第1ポート側のスタンバイ位置にスプールが移動した状態を示した図である。It is the figure which showed the state which the spool moved to the standby position by the side of the 1st port. 第3実施形態による流量制御弁を示した断面図である。It is sectional drawing which showed the flow control valve by 3rd Embodiment. 第1ポート側のスタンバイ位置にスプールが移動した状態を示した図である。It is the figure which showed the state which the spool moved to the standby position by the side of the 1st port. 第1実施形態による流量制御弁の変形例を示した断面図である。It is sectional drawing which showed the modification of the flow control valve by 1st Embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[第1実施形態]
 まず、図1~図10を参照して、第1実施形態による流量制御弁について説明する。
[First embodiment]
First, the flow control valve according to the first embodiment will be described with reference to FIGS.
 第1実施形態による流量制御弁100は、油圧アクチュエータなどの油圧機械への作動油の供給を制御する油圧弁である。第1実施形態の流量制御弁100は、スプール形(スライドスプール形)の比例流量制御弁として構成されている。比例流量制御弁は、出力される作動油の流量が、スプールの位置(ストローク量)に比例するように構成された制御弁である。 The flow control valve 100 according to the first embodiment is a hydraulic valve that controls the supply of hydraulic oil to a hydraulic machine such as a hydraulic actuator. The flow control valve 100 of the first embodiment is configured as a proportional flow control valve of a spool type (slide spool type). The proportional flow rate control valve is a control valve configured so that the flow rate of the output hydraulic oil is proportional to the spool position (stroke amount).
(油圧回路の全体構成)
 第1実施形態による流量制御弁100は、重力作用方向(鉛直方向)に沿って昇降する昇降用油圧シリンダ(リフトシリンダ)など、中立状態(スプールの中立位置)において制御位置を保持することが要求される油圧機械に対する作動油の流量制御に好適に用いられる。以下では、一例として、フォークリフトの昇降用油圧シリンダ(リフトシリンダ)に流量制御弁100が接続され、シリンダを昇降させるための作動油の供給制御に流量制御弁100が用いられる例について説明する。
(Whole structure of hydraulic circuit)
The flow control valve 100 according to the first embodiment is required to maintain a control position in a neutral state (neutral position of the spool), such as an elevating hydraulic cylinder (lift cylinder) that moves up and down along the gravity action direction (vertical direction). It is suitably used for controlling the flow rate of hydraulic oil to a hydraulic machine. In the following, an example will be described in which the flow control valve 100 is connected to a lifting hydraulic cylinder (lift cylinder) of a forklift and the flow control valve 100 is used for supply control of hydraulic oil for raising and lowering the cylinder.
 図1に示すように、流量制御弁100は、油圧シリンダ101、油圧ポンプ102、およびオイルタンク103とそれぞれ接続されている。具体的には、流量制御弁100は、第1ポートA、第2ポートB、供給ポートPおよび排出ポートTの4つの油路を備えている。 As shown in FIG. 1, the flow control valve 100 is connected to a hydraulic cylinder 101, a hydraulic pump 102, and an oil tank 103, respectively. Specifically, the flow control valve 100 includes four oil passages: a first port A, a second port B, a supply port P, and a discharge port T.
 油圧シリンダ101は、ピストン111と、ピストン111に接続されたロッド112とが、チューブ113内に摺動可能に設けられた構造を有する。油圧シリンダ101は、たとえば片ロッドシリンダであり、ロッド112がチューブ113の一端側から外部に突出している。チューブ113内は、ピストン111によって、ロッド側油室114と、ヘッド側油室115とに区画されている。流量制御弁100の第1ポートAが、チェック弁104を介してヘッド側油室115に接続されている。流量制御弁100の第2ポートBが、ロッド側油室114に接続されている。なお、第1ポートAをロッド側油室114に接続し、第2ポートBをヘッド側油室115に接続してもよい。チェック弁104は、第1ポートAからヘッド側油室115へ向かう方向への作動油の流通を許容し、ヘッド側油室115から第1ポートAへ向かう方向への作動油の流通を防止する。チェック弁104は、パイロットチェック弁であり、パイロットポートがロッド側油室114と第2ポートBとの流路に接続されている。チェック弁104は、ロッド側油室114と第2ポートBとの間の油圧(パイロットポートの油圧)が所定値を上回ると、ヘッド側油室115から第1ポートAへ向かう方向への作動油の流通を許容する。 The hydraulic cylinder 101 has a structure in which a piston 111 and a rod 112 connected to the piston 111 are slidably provided in the tube 113. The hydraulic cylinder 101 is, for example, a single rod cylinder, and the rod 112 protrudes from one end side of the tube 113 to the outside. The inside of the tube 113 is partitioned by a piston 111 into a rod side oil chamber 114 and a head side oil chamber 115. The first port A of the flow control valve 100 is connected to the head side oil chamber 115 via the check valve 104. A second port B of the flow control valve 100 is connected to the rod side oil chamber 114. The first port A may be connected to the rod side oil chamber 114 and the second port B may be connected to the head side oil chamber 115. The check valve 104 allows the hydraulic oil to flow from the first port A toward the head-side oil chamber 115 and prevents the hydraulic oil from flowing from the head-side oil chamber 115 toward the first port A. . The check valve 104 is a pilot check valve, and the pilot port is connected to the flow path between the rod side oil chamber 114 and the second port B. When the hydraulic pressure between the rod-side oil chamber 114 and the second port B (pilot port hydraulic pressure) exceeds a predetermined value, the check valve 104 operates in the direction from the head-side oil chamber 115 toward the first port A. Allow distribution.
 流量制御弁100の供給ポートPが、油圧ポンプ102の吐出側に接続されている。油圧ポンプ102は、ポンプモータ121によって駆動され、吸込側のオイルタンク103中の作動油を所定の圧力で流量制御弁100に供給する。流量制御弁100の排出ポートTが、オイルタンク103に接続されている。 The supply port P of the flow control valve 100 is connected to the discharge side of the hydraulic pump 102. The hydraulic pump 102 is driven by a pump motor 121 and supplies the hydraulic oil in the oil tank 103 on the suction side to the flow control valve 100 with a predetermined pressure. A discharge port T of the flow control valve 100 is connected to the oil tank 103.
 流量制御弁100における作動油の圧力を比較すると、供給ポートP>第1ポートAおよび第2ポートB>>排出ポートTという順番になる。なお、第1ポートAおよび第2ポートBの圧力の大小関係は、第1ポートA>第2ポートBとなる場合も、第1ポートA>第2ポートBとなる場合もあり得る。油圧ポンプ102の吐出圧が作用する供給ポートPの圧力が最も高く、オイルタンク103内に解放された排出ポートTの圧力が最も低い。 When the pressure of the hydraulic oil in the flow control valve 100 is compared, the order of supply port P> first port A and second port B >> discharge port T is obtained. Note that the pressure relationship between the first port A and the second port B may be such that the first port A> the second port B or the first port A> the second port B. The pressure of the supply port P on which the discharge pressure of the hydraulic pump 102 acts is the highest, and the pressure of the discharge port T released in the oil tank 103 is the lowest.
 流量制御弁100は、外部の作動力供給手段105から供給される作動力によって、流路切替および流量制御を行う。すなわち、流量制御弁100は、供給ポートPに対して第1ポートAおよび第2ポートBのいずれも遮断する中立状態と、供給ポートPと第1ポートAとを接続させるとともに第2ポートBと排出ポートTとを接続させるPA制御状態と、供給ポートPと第2ポートBとを接続させるとともに第1ポートAと排出ポートTとを接続させるPB制御状態とを切り替え可能な方向切換弁として機能する。 The flow control valve 100 performs flow path switching and flow control by the operating force supplied from the external operating force supply means 105. That is, the flow control valve 100 connects the supply port P and the first port A to the neutral state in which both the first port A and the second port B are blocked with respect to the supply port P, and the second port B. Functions as a directional control valve capable of switching between a PA control state in which the discharge port T is connected and a PB control state in which the supply port P and the second port B are connected and the first port A and the discharge port T are connected To do.
 中立状態では、供給ポートP、第1ポートAおよび第2ポートBのいずれもが、流量制御弁100によって遮断される。つまり、流量制御弁100は、中立状態で全閉となるように構成されている。中立状態では、油圧シリンダ101内の作動油が流通しないため、ロッド112の位置が保持される。 In the neutral state, all of the supply port P, the first port A, and the second port B are blocked by the flow control valve 100. That is, the flow control valve 100 is configured to be fully closed in a neutral state. In the neutral state, since the hydraulic oil in the hydraulic cylinder 101 does not flow, the position of the rod 112 is maintained.
 PA制御状態では、油圧ポンプ102から供給される高圧の作動油が、流量制御弁100の供給ポートPおよび第1ポートAを通過して油圧シリンダ101のヘッド側油室115に流入し、ロッド112を押し出す。ロッド側油室114から押し出された作動油が、流量制御弁100の第2ポートBおよび排出ポートTを通過してオイルタンク103に戻される。昇降用油圧シリンダとしては、上昇方向(鉛直上方向)への動作となる。 In the PA control state, high-pressure hydraulic oil supplied from the hydraulic pump 102 passes through the supply port P and the first port A of the flow control valve 100 and flows into the head side oil chamber 115 of the hydraulic cylinder 101, and the rod 112. Extrude The hydraulic oil pushed out from the rod side oil chamber 114 passes through the second port B and the discharge port T of the flow control valve 100 and is returned to the oil tank 103. The lifting hydraulic cylinder operates in the upward direction (vertically upward).
 PB制御状態では、油圧ポンプ102から供給される高圧の作動油が、流量制御弁100の供給ポートPおよび第2ポートBを通過して油圧シリンダ101のロッド側油室114に流入し、ロッド112を引き込む。ヘッド側油室115から押し出された作動油が、流量制御弁100の第1ポートAおよび排出ポートTを通過してオイルタンク103に戻される。昇降用油圧シリンダとしては、下降方向(鉛直下方向)への動作となる。 In the PB control state, high-pressure hydraulic oil supplied from the hydraulic pump 102 passes through the supply port P and the second port B of the flow control valve 100 and flows into the rod-side oil chamber 114 of the hydraulic cylinder 101, and the rod 112. Pull in. The hydraulic oil pushed out from the head side oil chamber 115 passes through the first port A and the discharge port T of the flow control valve 100 and is returned to the oil tank 103. The lifting hydraulic cylinder operates in a descending direction (vertically downward).
 そして、PA制御状態およびPB制御状態においては、流量制御弁100は、作動力によって移動されるスプール2(図2参照)の位置(ストローク量)に応じて、ポートからの作動油の流量が制御される。スプール2の位置は、作動力供給手段105から供給される作動力の大きさに対応する。作動力供給手段105は、コントローラ106からの制御信号に従って、流量制御弁100に作動力を供給する。作動力供給手段105は、スプールに作動力を付与できるものであれば特に限定されない。作動力供給手段105としては、たとえば、ソレノイド方式などの電磁力により作動力を供給する方式、油圧パイロット弁を用いて油圧により作動力を供給する方式などが採用できる。第1実施形態では、油圧ポンプ102の油圧が、油圧パイロット弁からなる作動力供給手段105を介して流量制御弁100のパイロットポート15に供給されることにより、作動力が供給される。 In the PA control state and the PB control state, the flow rate control valve 100 controls the flow rate of the hydraulic oil from the port according to the position (stroke amount) of the spool 2 (see FIG. 2) moved by the operating force. Is done. The position of the spool 2 corresponds to the magnitude of the operating force supplied from the operating force supply means 105. The operating force supply means 105 supplies an operating force to the flow control valve 100 in accordance with a control signal from the controller 106. The operating force supply means 105 is not particularly limited as long as it can apply an operating force to the spool. As the operating force supply means 105, for example, a method of supplying an operating force by electromagnetic force such as a solenoid method, a method of supplying an operating force by hydraulic pressure using a hydraulic pilot valve, or the like can be adopted. In the first embodiment, the hydraulic pressure of the hydraulic pump 102 is supplied to the pilot port 15 of the flow control valve 100 via the operating force supply means 105 including a hydraulic pilot valve, so that the operating force is supplied.
(流量制御弁の構造)
 次に、図2~図9を参照して、流量制御弁100の具体的な構成例について説明する。
(Structure of flow control valve)
Next, a specific configuration example of the flow control valve 100 will be described with reference to FIGS.
 図2に示すように、流量制御弁100は、作動油が出入りする油路が設けられたボディ1と、ボディ1内に移動可能に保持され、油路を開閉させるスプール2と、を備えている。油路は、上述の通り、作動油が供給される供給ポートPと、作動油が排出される排出ポートTと、互いに択一的に作動油を流入または流出させる第1ポートAおよび第2ポートBとを含む。 As shown in FIG. 2, the flow control valve 100 includes a body 1 provided with an oil passage through which hydraulic oil enters and exits, and a spool 2 that is movably held in the body 1 and opens and closes the oil passage. Yes. As described above, the oil passage includes the supply port P to which the hydraulic oil is supplied, the discharge port T from which the hydraulic oil is discharged, and the first port A and the second port that allow the hydraulic oil to flow in or out alternately. B.
 ボディ1は、スプール2が配置されるスプール室11と、スプール室11の両側に配置された一対のパイロット室12とを有する。スプール室11は、直線円筒状の内部空間であり、スプール2が軸方向(X方向)に沿って摺動可能に配置されている。各パイロット室12は、スプール2の軸方向におけるスプール室11の両側に配置されている。 The body 1 has a spool chamber 11 in which the spool 2 is disposed, and a pair of pilot chambers 12 disposed on both sides of the spool chamber 11. The spool chamber 11 is a linear cylindrical internal space, and the spool 2 is slidably disposed along the axial direction (X direction). Each pilot chamber 12 is arranged on both sides of the spool chamber 11 in the axial direction of the spool 2.
 供給ポートP、排出ポートT、第1ポートAおよび第2ポートBの各油路は、ボディ1の外周からボディ1を貫通してスプール室11に連通している。スプール2の軸方向(X方向)において、供給ポートPがスプール室11の中央に配置され、供給ポートPの両側にそれぞれ第1ポートAおよび第2ポートBが配置されている。スプール2の軸方向において、第1ポートAおよび第2ポートBの外側に、それぞれ排出ポートTが配置されている。 The oil passages of the supply port P, the discharge port T, the first port A and the second port B pass through the body 1 from the outer periphery of the body 1 and communicate with the spool chamber 11. In the axial direction (X direction) of the spool 2, the supply port P is disposed at the center of the spool chamber 11, and the first port A and the second port B are disposed on both sides of the supply port P, respectively. In the axial direction of the spool 2, the discharge port T is disposed outside the first port A and the second port B, respectively.
 供給ポートP、排出ポートT、第1ポートAおよび第2ポートBの各油路の間には、スプール室11(ボディ1)の内周面からなる弁座部13が設けられている。弁座部13は、スプール2が中立位置S0(図2参照)および後述するスタンバイ位置S1(図4、図6参照)にある場合に、スプール2の外周面(摺動面)21とによって油路を遮断するように構成されている。すなわち、弁座部13は、スプール2が摺動するための極小さな間隔を隔てて、スプール2の外周面21と対向することにより、各油路の間を遮断する。弁座部13は、第1ポートAと供給ポートPとの間の第1弁座部13a、第1ポートAと排出ポートTとの間の第2弁座部13b、第2ポートBと供給ポートPとの間の第3弁座部13c、および、第2ポートBと排出ポートTとの間の第4弁座部13dを含む。 Between the oil passages of the supply port P, the discharge port T, the first port A, and the second port B, a valve seat portion 13 formed of the inner peripheral surface of the spool chamber 11 (body 1) is provided. When the spool 2 is in a neutral position S0 (see FIG. 2) and a standby position S1 (see FIGS. 4 and 6), which will be described later, the valve seat portion 13 is oiled by an outer peripheral surface (sliding surface) 21 of the spool 2. It is configured to block the road. That is, the valve seat portion 13 blocks the oil passages by facing the outer peripheral surface 21 of the spool 2 with a very small interval for the spool 2 to slide. The valve seat 13 is supplied with the first valve seat 13a between the first port A and the supply port P, the second valve seat 13b between the first port A and the discharge port T, and the second port B. A third valve seat 13c between the port P and a fourth valve seat 13d between the second port B and the discharge port T are included.
 第1実施形態では、中立位置S0におけるスプール2の外周面21と弁座部13との対向部分(シール部分14)の長さが、一般的な比例流量制御弁よりも長くなっている。具体的には、中立位置S0における第1弁座部13a、第2弁座部13b、第3弁座部13cおよび第4弁座部13dの各々の対向部分(シール部分14)の長さは、L1、L2、L3およびL4となっている。各対向部分の長さL1~L4は、各ポートの内径d1(図8参照)よりも大きい。 In the first embodiment, the length of the facing portion (seal portion 14) between the outer peripheral surface 21 of the spool 2 and the valve seat portion 13 at the neutral position S0 is longer than that of a general proportional flow control valve. Specifically, the lengths of the facing portions (seal portions 14) of the first valve seat portion 13a, the second valve seat portion 13b, the third valve seat portion 13c, and the fourth valve seat portion 13d in the neutral position S0 are as follows. , L1, L2, L3 and L4. The lengths L1 to L4 of each facing portion are larger than the inner diameter d1 (see FIG. 8) of each port.
 軸方向両側のパイロット室12には、それぞれ、作動力供給手段105と接続するためのパイロットポート15が設けられている。作動力供給手段105からのパイロット油圧は、パイロット室12に入力され、スプール室11内のスプール2を軸方向(X方向)に移動させる作動力として作用する。 The pilot chambers 12 on both sides in the axial direction are provided with pilot ports 15 for connection to the operating force supply means 105, respectively. The pilot hydraulic pressure from the operating force supply means 105 is input to the pilot chamber 12 and acts as an operating force that moves the spool 2 in the spool chamber 11 in the axial direction (X direction).
 図3に示すように、スプール2は、概略で円柱状の軸部材である。スプール2には、摺動面である外周面21と、各油路の間を連通状態に切り替えるための溝部22とが設けられている。溝部22は、スプール2の周方向に全周にわたって所定の深さで形成され、中立位置S0で供給ポートPおよび各排出ポートTの位置に対応して配置されている。溝部22は、スプール2の移動に伴って第1ポートAまたは第2ポートBを供給ポートPまたは排出ポートTと連通させる油路を構成する。各溝部22の間の2つの外周面21は、それぞれ、中立位置S0で第1ポートAおよび第2ポートBを塞ぐように形成されている。スプール2の両端の外周面21は、パイロット室12とスプール室11との間を塞ぐよう設けられている。 As shown in FIG. 3, the spool 2 is a roughly cylindrical shaft member. The spool 2 is provided with an outer peripheral surface 21 that is a sliding surface and a groove portion 22 for switching between the oil passages to a communication state. The groove portion 22 is formed with a predetermined depth over the entire circumference in the circumferential direction of the spool 2, and is disposed corresponding to the position of the supply port P and each discharge port T at the neutral position S0. The groove portion 22 constitutes an oil passage that allows the first port A or the second port B to communicate with the supply port P or the discharge port T as the spool 2 moves. The two outer peripheral surfaces 21 between the groove portions 22 are formed so as to block the first port A and the second port B at the neutral position S0, respectively. The outer peripheral surfaces 21 at both ends of the spool 2 are provided so as to close the space between the pilot chamber 12 and the spool chamber 11.
 3つの溝部22と、それらの間の2つの外周面21との境界部(段差部分)には、切欠部23が設けられている。切欠部23は、スプール2の周方向に等角度間隔で複数設けられている。図3の構成例では、各々の切欠部23は、溝部22側に近付くほど幅(周方向の幅)が大きくなる半円形状を有している。なお、切欠部23の形状は、図3に示したものに限られず、任意である。切欠部23は、スプール2の軸方向移動に伴って第1ポートAまたは第2ポートBを供給ポートPまたは排出ポートTと連通させる際に、作動油の流量をスプール2の移動量に比例させる機能を有する。 The notch part 23 is provided in the boundary part (step part) of the three groove parts 22 and the two outer peripheral surfaces 21 between them. A plurality of notches 23 are provided at equal angular intervals in the circumferential direction of the spool 2. In the configuration example of FIG. 3, each notch 23 has a semicircular shape whose width (width in the circumferential direction) increases as it approaches the groove 22 side. In addition, the shape of the notch part 23 is not restricted to what was shown in FIG. 3, It is arbitrary. The notch 23 makes the flow rate of the hydraulic oil proportional to the amount of movement of the spool 2 when the first port A or the second port B communicates with the supply port P or the discharge port T as the spool 2 moves in the axial direction. It has a function.
 図2に示すように、スプール2の内部には、バイパス通路24が形成されている。バイパス通路24は、軸方向(X方向)両側の溝部22同士を接続するように設けられている。バイパス通路24は、X方向において、中立位置S0における各排出ポートTと一致する位置で、スプール2の表面(溝部22の底部)に開口している。 2, a bypass passage 24 is formed inside the spool 2. The bypass passage 24 is provided so as to connect the groove portions 22 on both sides in the axial direction (X direction). The bypass passage 24 opens in the surface of the spool 2 (the bottom of the groove 22) at a position that coincides with each discharge port T at the neutral position S0 in the X direction.
(付勢手段)
 ボディ1は、スプール2を中立位置S0に保持するための付勢手段30を備えている。付勢手段30は、付勢力によって、スプール2を中立位置S0に保持する。これにより、流量制御弁100は、作動力が供給されない場合に中立状態(全閉状態)が維持される。また、付勢手段30は、付勢力によって、作動力供給手段105から供給される作動力とスプール2の移動量とを対応付ける。入力される作動力が所定の閾値を越えると、スプール2は、切欠部23および溝部22がポート間に跨がるようにしてポート間を連通させる制御領域S2(図5、図7参照)に到達する。制御領域S2では、切欠部23は、軸方向(X方向)における各ポートとのオーバラップ量に応じて、各ポートと溝部22との間の開口面積(流路断面積)を変化させる。これにより、制御領域S2では、スプール2の移動量の増大に伴って切欠部23(溝部22)とポート間の開口面積が増大することにより、作動油の流量がスプール2の移動量に比例する。
(Biasing means)
The body 1 includes urging means 30 for holding the spool 2 in the neutral position S0. The urging means 30 holds the spool 2 in the neutral position S0 by the urging force. Thereby, the flow control valve 100 is maintained in the neutral state (fully closed state) when the operating force is not supplied. Further, the urging means 30 associates the operating force supplied from the operating force supply means 105 with the movement amount of the spool 2 by the urging force. When the input operating force exceeds a predetermined threshold value, the spool 2 enters a control region S2 (see FIGS. 5 and 7) in which the notch portion 23 and the groove portion 22 are communicated with each other so as to straddle the ports. To reach. In the control region S2, the notch 23 changes the opening area (flow channel cross-sectional area) between each port and the groove 22 according to the amount of overlap with each port in the axial direction (X direction). As a result, in the control region S2, the flow area of the hydraulic oil is proportional to the amount of movement of the spool 2 by increasing the opening area between the notch 23 (groove portion 22) and the port as the amount of movement of the spool 2 increases. .
 ここで、第1実施形態では、付勢手段30は、付勢力によって、スプール2をスタンバイ位置S1(図4、図6参照)に保持するように構成されている。つまり、流量制御弁100には、スプール2が中立位置S0に保持される状態と、制御領域S2を移動する状態とに加えて、さらにスタンバイ位置S1に保持される状態が設けられている。 Here, in the first embodiment, the urging means 30 is configured to hold the spool 2 in the standby position S1 (see FIGS. 4 and 6) by the urging force. That is, the flow control valve 100 is provided with a state in which the spool 2 is held at the standby position S1 in addition to a state in which the spool 2 is held at the neutral position S0 and a state in which the spool 2 moves in the control region S2.
 第1実施形態では、流量制御弁100は、スプール2を移動させる作動力が、スプール2を中立位置S0に保持する上限である第1閾値TH1と、第1閾値TH1よりも大きい第2閾値TH2との間の大きさで供給されることにより、スプール2が付勢手段30の付勢力に抗して中立位置S0からスタンバイ位置S1に移動するように構成されている。そして、流量制御弁100は、第2閾値TH2よりも大きい作動力が供給されることにより、スプール2が付勢手段30の付勢力に抗して、スタンバイ位置S1から、スプール2の移動量に応じて弁開度を変化させる制御領域S2に移動するように構成されている。 In the first embodiment, the flow control valve 100 has a first threshold value TH1 that is an upper limit for holding the spool 2 at the neutral position S0 and a second threshold value TH2 that is larger than the first threshold value TH1. The spool 2 is configured to move from the neutral position S0 to the standby position S1 against the urging force of the urging means 30. The flow rate control valve 100 is supplied with an operating force larger than the second threshold value TH2, so that the spool 2 resists the urging force of the urging means 30 from the standby position S1 to the moving amount of the spool 2. Accordingly, the valve travels to the control region S2 in which the valve opening is changed.
 スタンバイ位置S1は、中立位置S0と制御領域S2との間の位置であり、制御領域S2による制御が開始される直前の位置である。すなわち、スタンバイ位置S1は、スプール2の外周面21と弁座部13とによるポート間のシール部分14の長さが極小となる制御領域S2の境界位置であり、第1ポートA側と第2ポートB側との各々に設定されている。たとえば図4および図5に示すように、第1ポートA側のスタンバイ位置S1から、スプール2が僅かでも第1ポートA側に移動すると、スプール2が第1ポートA側の制御領域S2に進入して第1ポートAと供給ポートPとが連通する。 The standby position S1 is a position between the neutral position S0 and the control area S2, and is a position immediately before the control by the control area S2 is started. That is, the standby position S1 is a boundary position of the control region S2 where the length of the seal portion 14 between the ports by the outer peripheral surface 21 of the spool 2 and the valve seat portion 13 is minimized. It is set for each port B side. For example, as shown in FIGS. 4 and 5, when the spool 2 moves even slightly from the standby position S1 on the first port A side to the first port A side, the spool 2 enters the control area S2 on the first port A side. Thus, the first port A and the supply port P communicate with each other.
 第1実施形態では、付勢手段30は、スプール2が中立位置S0にある場合、第1閾値TH1と等しい付勢力を発生させ、スプール2がスタンバイ位置S1にある場合に、第2閾値TH2と等しい付勢力を発生させるように構成されている。 In the first embodiment, the biasing means 30 generates a biasing force equal to the first threshold TH1 when the spool 2 is in the neutral position S0, and the second threshold TH2 when the spool 2 is in the standby position S1. It is comprised so that equal urging | biasing force may be generated.
 具体的には、図2に示すように、付勢手段30は、少なくとも中立位置S0とスタンバイ位置S1との間でスプール2に圧縮される第1ばね31と、制御領域S2においてスプール2に圧縮される第2ばね32と、を含む。第1ばね31および第2ばね32は、一対のパイロット室12にそれぞれ配置されている。第1ばね31および第2ばね32は、共に圧縮コイルばねであり、所定の圧縮状態で配置されることにより、中立位置S0で初期付勢力を発生するように設けられている。 Specifically, as shown in FIG. 2, the biasing means 30 is compressed to the spool 2 in the control region S2 and the first spring 31 compressed to the spool 2 at least between the neutral position S0 and the standby position S1. A second spring 32. The first spring 31 and the second spring 32 are respectively disposed in the pair of pilot chambers 12. The first spring 31 and the second spring 32 are both compression coil springs, and are arranged so as to generate an initial urging force at the neutral position S0 by being arranged in a predetermined compression state.
 また、第1実施形態では、ボディ1は、中立位置S0におけるスプール2の移動を規制する第1ストッパ33と、スタンバイ位置S1におけるスプール2の移動を規制する第2ストッパ34とをさらに含んでいる。第1ばね31は、第1閾値TH1と等しい初期付勢力で第1ストッパ33をボディ1に対して付勢し、第2ばね32は、第2閾値TH2と等しい初期付勢力で第2ストッパ34をボディ1に対して付勢している。 In the first embodiment, the body 1 further includes a first stopper 33 that restricts the movement of the spool 2 at the neutral position S0 and a second stopper 34 that restricts the movement of the spool 2 at the standby position S1. . The first spring 31 biases the first stopper 33 against the body 1 with an initial biasing force equal to the first threshold TH1, and the second spring 32 biases the second stopper 34 with an initial biasing force equal to the second threshold TH2. Is urged against the body 1.
 第1ストッパ33および第2ストッパ34は、一対のパイロット室12にそれぞれ配置されている。これらのばねおよびストッパは、スプール2が配置される中央側から外側に向かって、第1ストッパ33、第1ばね31、第2ストッパ34、第2ばね32の順で並んで配置されている。 The first stopper 33 and the second stopper 34 are respectively disposed in the pair of pilot chambers 12. These springs and stoppers are arranged side by side in the order of the first stopper 33, the first spring 31, the second stopper 34, and the second spring 32 from the center side where the spool 2 is disposed to the outside.
 パイロット室12には、中立位置S0に対応する第1位置決め部16と、スタンバイ位置S1に対応する第2位置決め部17とが設けられている。第1位置決め部16および第2位置決め部17は、パイロット室12の内径を減少させるように設けられた段差部である。 The pilot chamber 12 is provided with a first positioning portion 16 corresponding to the neutral position S0 and a second positioning portion 17 corresponding to the standby position S1. The first positioning portion 16 and the second positioning portion 17 are stepped portions provided so as to reduce the inner diameter of the pilot chamber 12.
 第1ストッパ33は、第1ばね31によってスプール2側に付勢され、ボディ1の一部である第1位置決め部16に押圧されている。第1ストッパ33は、第1位置決め部16により、中立位置S0におけるスプール2の軸方向端面と略等しい位置に配置される。スプール2に対して軸方向の両側に第1ストッパ33が配置されることにより、スプール2が中立位置S0に保持される。第1ストッパ33が第1閾値TH1と等しい付勢力で押圧されることにより、スプール2に第1閾値TH1と等しい作動力が作用した場合に釣り合い状態となり、第1閾値TH1よりも大きい作動力が付与されると、第1ストッパ33とともに第1ばね31が圧縮される。逆に、外乱などによりスプール2に第1閾値TH1以下の力が作用しても、第1ストッパ33は移動しない。第1ストッパ33は、第1位置決め部16に押圧されているので、中立位置S0のスプール2に押圧力が作用することはない。第1ストッパ33は、スプール2に対しては、第1閾値TH1よりも大きい作動力が付与される場合にのみ移動する壁面として機能する。 The first stopper 33 is urged toward the spool 2 by the first spring 31 and is pressed against the first positioning portion 16 which is a part of the body 1. The first stopper 33 is disposed by the first positioning portion 16 at a position substantially equal to the axial end surface of the spool 2 at the neutral position S0. By disposing the first stoppers 33 on both sides of the spool 2 in the axial direction, the spool 2 is held at the neutral position S0. When the first stopper 33 is pressed with an urging force equal to the first threshold value TH1, an operating force equal to the first threshold value TH1 is applied to the spool 2, and a balanced state is obtained, and an operating force larger than the first threshold value TH1 is applied. When applied, the first spring 31 is compressed together with the first stopper 33. Conversely, even if a force equal to or less than the first threshold value TH1 acts on the spool 2 due to disturbance or the like, the first stopper 33 does not move. Since the first stopper 33 is pressed by the first positioning portion 16, no pressing force acts on the spool 2 at the neutral position S0. The first stopper 33 functions as a wall surface that moves only when an operating force larger than the first threshold value TH1 is applied to the spool 2.
 第1ばね31は、一端側が第1ストッパ33と当接し、他端側が第2ストッパ34と当接した状態で保持されている。第1ばね31の他端側は、第2ストッパ34を介して、第2ばね32によって支持されている。 The first spring 31 is held in a state where one end side is in contact with the first stopper 33 and the other end side is in contact with the second stopper 34. The other end side of the first spring 31 is supported by the second spring 32 via the second stopper 34.
 第2ストッパ34は、第2ばね32によってスプール2側に付勢され、ボディ1の一部である第2位置決め部17に押圧されている。第2ストッパ34は、第2位置決め部17により、スタンバイ位置S1にスプール2を保持するように配置されている。つまり、スプール2が移動して第1ばね31を圧縮すると、第1ストッパ33と第2ストッパ34とが当接することにより、スプール2の移動が規制されるスタンバイ位置S1(図4、図6参照)に達する。第2ストッパ34が第2閾値TH2に等しい付勢力で押圧されることにより、スプール2に第2閾値TH2と等しい作動力が作用した場合に釣り合い状態となり、第2閾値TH2よりも大きい作動力が付与されると、第2ストッパ34とともに第2ばね32が圧縮される。逆に、スプール2に第2閾値TH2以下の力が作用している間は、第2ストッパ34は移動しない。第2ストッパ34は、第2位置決め部17に押圧されているので、第1ばね31に第2ばね32の付勢力が作用することはない。 The second stopper 34 is urged toward the spool 2 by the second spring 32 and is pressed against the second positioning portion 17 which is a part of the body 1. The second stopper 34 is disposed by the second positioning portion 17 so as to hold the spool 2 at the standby position S1. That is, when the spool 2 moves and compresses the first spring 31, the first stopper 33 and the second stopper 34 come into contact with each other, so that the movement of the spool 2 is restricted (see FIGS. 4 and 6). ). When the second stopper 34 is pressed with an urging force equal to the second threshold value TH2, an operating force equal to the second threshold value TH2 is applied to the spool 2, and a balanced state is obtained, and an operating force larger than the second threshold value TH2 is applied. When applied, the second spring 32 is compressed together with the second stopper 34. On the contrary, the second stopper 34 does not move while a force equal to or less than the second threshold value TH2 is acting on the spool 2. Since the second stopper 34 is pressed by the second positioning portion 17, the urging force of the second spring 32 does not act on the first spring 31.
 第2ばね32は、一端側が第2ストッパ34と当接し、他端側がボディ1の内面と当接した状態で保持されている。図5および図7に示すように、スプール2に第2閾値TH2よりも大きい作動力が付与される場合、スプール2と第1ストッパ33と第2ストッパ34とが接触して一体となり、第2ばね32を圧縮する制御領域S2に到達する。制御領域S2では、第2ばね32の圧縮量(すなわち、スプール2の移動量)が、第2閾値TH2よりも大きい作動力に対して比例する。 The second spring 32 is held in a state where one end is in contact with the second stopper 34 and the other end is in contact with the inner surface of the body 1. As shown in FIGS. 5 and 7, when an operating force larger than the second threshold value TH2 is applied to the spool 2, the spool 2, the first stopper 33, and the second stopper 34 come into contact with each other, and the second The control region S2 for compressing the spring 32 is reached. In the control region S2, the amount of compression of the second spring 32 (that is, the amount of movement of the spool 2) is proportional to the operating force that is greater than the second threshold value TH2.
 第1実施形態では、第1ばね31と第2ばね32とが互いに独立してスプール2に圧縮されるように構成されている。つまり、中立位置S0-スタンバイ位置S1間では第1ばね31の付勢力のみがスプール2に反力として作用し、制御領域S2では第2ばね32の付勢力のみがスプール2に反力として作用するため、各ばねの付勢力は分離して作用する。第1実施形態では、第1ばね31のばね定数K1は、第2ばね32のばね定数K2よりも小さい。たとえば、中立位置S0における初期付勢力で比較すると、第2ばね32の初期付勢力(=第2閾値TH2)は、第1ばね31の初期付勢力(=第1閾値TH1)の2倍以上となるように構成されている。また、第1ばね31は、最大限圧縮された状態(図4~図7参照)でも、発生する付勢力が第2閾値TH2未満となるように構成されている。 In the first embodiment, the first spring 31 and the second spring 32 are configured to be compressed by the spool 2 independently of each other. That is, only the urging force of the first spring 31 acts on the spool 2 as a reaction force between the neutral position S0 and the standby position S1, and only the urging force of the second spring 32 acts on the spool 2 as a reaction force in the control region S2. Therefore, the urging force of each spring acts separately. In the first embodiment, the spring constant K1 of the first spring 31 is smaller than the spring constant K2 of the second spring 32. For example, when compared with the initial biasing force at the neutral position S0, the initial biasing force (= second threshold value TH2) of the second spring 32 is at least twice the initial biasing force (= first threshold value TH1) of the first spring 31. It is comprised so that it may become. In addition, the first spring 31 is configured such that the generated urging force is less than the second threshold value TH2 even when it is compressed to the maximum extent (see FIGS. 4 to 7).
 なお、第1ストッパ33および第2ストッパ34の各々には、作動油を通過させるための貫通孔35が設けられている。このため、作動力を付与するためにパイロット室12に作動油が供給されると、作動油が貫通孔35を介してスプール2に油圧を作用させる。 Each of the first stopper 33 and the second stopper 34 is provided with a through hole 35 for allowing hydraulic oil to pass therethrough. For this reason, when hydraulic fluid is supplied to the pilot chamber 12 in order to apply the operational force, the hydraulic fluid acts on the spool 2 through the through hole 35.
 このような構成により、スプール2が、中立位置S0、スタンバイ位置S1、および制御領域S2のそれぞれに移動する。 With this configuration, the spool 2 moves to each of the neutral position S0, the standby position S1, and the control area S2.
〈第1ポートの開放動作〉
 第1ポートAを開く(供給ポートPと連通させる)場合、まず、図4に示すように、スプール2が第1ポートA側のスタンバイ位置S1に移動される。具体的には、第2ポートB側のパイロット室12に、作動力供給手段105から作動油が供給され、第1ポートA側に向かう作動力Fがスプール2に付与される。なお、スプール2をスタンバイ位置S1に移動させるには、第1閾値TH1と、中立位置S0とスタンバイ位置S1との間の移動距離分だけ第1ばね31を圧縮することによる付勢力の増分(ばね定数K1×移動距離)との合計以上の作動力Fが必要となる。作動力Fは、所定の第1作動力F1(図10参照)まで直ち(ステップ関数的に)に上昇させることができる。第1作動力F1は、第1閾値TH1と第2閾値TH2との間で、なるべく第2閾値TH2近傍の大きさとすることが好ましい。これにより、スプール2が第1ばね31を圧縮して中立位置S0からスタンバイ位置S1に速やかに移動する。スプール2の移動は、スタンバイ位置S1で第2ストッパ34および第2ばね32によって停止される。
<Opening operation of the first port>
When opening the first port A (ie, communicating with the supply port P), first, as shown in FIG. 4, the spool 2 is moved to the standby position S1 on the first port A side. Specifically, the hydraulic oil is supplied from the operating force supply means 105 to the pilot chamber 12 on the second port B side, and the operating force F toward the first port A is applied to the spool 2. In order to move the spool 2 to the standby position S1, an increase in the urging force (spring) by compressing the first spring 31 by the first threshold TH1 and the movement distance between the neutral position S0 and the standby position S1. A working force F equal to or greater than the sum of (constant K1 × movement distance) is required. The operating force F can be increased immediately (in a step function) to a predetermined first operating force F1 (see FIG. 10). The first operating force F1 is preferably set to a magnitude as close as possible to the second threshold TH2 between the first threshold TH1 and the second threshold TH2. As a result, the spool 2 compresses the first spring 31 and quickly moves from the neutral position S0 to the standby position S1. The movement of the spool 2 is stopped by the second stopper 34 and the second spring 32 at the standby position S1.
 次に、第2閾値TH2を越える第2作動力F2(図10参照)がスプール2へ付与されることにより、図5に示すように第2ばね32が圧縮され、スプール2がスタンバイ位置S1から制御領域S2へ移動する。これにより、スプール2の切欠部23および溝部22を介して供給ポートPと第1ポートAとが連通するとともに、スプール2の移動量に応じて切欠部23による連通箇所の開口面積が制御される比例流量制御が開始される。このとき、第2ポートBと排出ポートTとが、スプール2の切欠部23、溝部22およびバイパス通路24を介して連通し、油圧シリンダ101から第2ポートBに流入する作動油(戻り油)が排出ポートTから排出される。 Next, when the second operating force F2 (see FIG. 10) exceeding the second threshold TH2 is applied to the spool 2, the second spring 32 is compressed as shown in FIG. 5, and the spool 2 is moved from the standby position S1. Move to control area S2. As a result, the supply port P and the first port A communicate with each other via the notch portion 23 and the groove portion 22 of the spool 2, and the opening area of the communicating portion by the notch portion 23 is controlled according to the amount of movement of the spool 2. Proportional flow control is started. At this time, the second port B and the discharge port T communicate with each other via the notch portion 23, the groove portion 22 and the bypass passage 24 of the spool 2, and the hydraulic oil (return oil) flowing into the second port B from the hydraulic cylinder 101. Is discharged from the discharge port T.
〈第2ポートの開放動作〉
 第2ポートBを開く(供給ポートPと連通させる)場合も同様である。図6に示すように、第1ポートA側のパイロット室12に作動力供給手段105から作動油が供給され、第2ポートB側に向かう第1作動力F1がスプール2に付与されると、スプール2が第1ばね31を圧縮して中立位置S0からスタンバイ位置S1に速やかに移動する。
<Second port opening operation>
The same applies to the case where the second port B is opened (in communication with the supply port P). As shown in FIG. 6, when hydraulic oil is supplied from the operating force supply means 105 to the pilot chamber 12 on the first port A side and the first operating force F1 toward the second port B is applied to the spool 2, The spool 2 compresses the first spring 31 and quickly moves from the neutral position S0 to the standby position S1.
 次に、第2閾値TH2を越える第2作動力F2がスプール2へ付与されることにより、図7に示すように第2ばね32が圧縮され、スプール2がスタンバイ位置S1から制御領域S2へ移動する。これにより、スプール2の切欠部23および溝部22を介して供給ポートPと第2ポートBとが連通し、比例流量制御が開始される。このとき、第1ポートAと排出ポートTとが、スプール2の切欠部23、溝部22およびバイパス通路24を介して連通し、油圧シリンダ101から第1ポートA側に流入する作動油(戻り油)が排出ポートTから排出される。 Next, when the second operating force F2 exceeding the second threshold TH2 is applied to the spool 2, the second spring 32 is compressed as shown in FIG. 7, and the spool 2 moves from the standby position S1 to the control region S2. To do. As a result, the supply port P and the second port B communicate with each other via the notch portion 23 and the groove portion 22 of the spool 2, and proportional flow rate control is started. At this time, the first port A and the discharge port T communicate with each other via the notch 23, the groove 22, and the bypass passage 24 of the spool 2, and hydraulic oil (return oil) flowing from the hydraulic cylinder 101 to the first port A side. ) Is discharged from the discharge port T.
(通路部)
 次に、スプール2に設けられた通路部について説明する。
(Passage)
Next, the passage portion provided in the spool 2 will be described.
 図2に示すように、第1実施形態では、スプール2は、弁座部13とスプール2との間を通過する作動油を排出するための通路部25を有している。 As shown in FIG. 2, in the first embodiment, the spool 2 has a passage portion 25 for discharging hydraulic oil that passes between the valve seat portion 13 and the spool 2.
 通路部25は、弁座部13とスプール2の外周面21との間の微小な隙間を介して漏れ出る作動油を排出することにより、中立位置S0(全閉状態)におけるポート間の作動油のリークを防止する機能を有する。第1実施形態では、通路部25は、スプール2の中立位置S0において、少なくとも第1ポートAと供給ポートPとの間の第1弁座部13aと対向する位置に配置されている。図2の例では、第1ポートAと供給ポートPとの間の第1弁座部13aのみならず、第2ポートBと供給ポートPとの間の第3弁座部13cと対向する位置にも通路部26が設けられている。 The passage portion 25 discharges hydraulic fluid that leaks through a minute gap between the valve seat portion 13 and the outer peripheral surface 21 of the spool 2, so that the hydraulic fluid between the ports in the neutral position S <b> 0 (fully closed state). Has a function of preventing leakage. In the first embodiment, the passage portion 25 is disposed at a position facing at least the first valve seat portion 13a between the first port A and the supply port P in the neutral position S0 of the spool 2. In the example of FIG. 2, not only the first valve seat portion 13 a between the first port A and the supply port P but also the position facing the third valve seat portion 13 c between the second port B and the supply port P. Also, a passage portion 26 is provided.
 通路部25(通路部26)は、中立位置S0において、スプール2の外周面21からスプール2の内部を通って排出ポートTに連通するように設けられている。具体的には、通路部25(通路部26)は、隣り合う溝部22の間の外周面21に開口するように形成され、スプール2内を貫通してバイパス通路24に接続されている。これにより、通路部25(通路部26)は、バイパス通路24と部分的に共通する経路で、排出ポートTと連通する。 The passage portion 25 (passage portion 26) is provided so as to communicate with the discharge port T from the outer peripheral surface 21 of the spool 2 through the inside of the spool 2 at the neutral position S0. Specifically, the passage portion 25 (passage portion 26) is formed so as to open to the outer peripheral surface 21 between the adjacent groove portions 22, and penetrates through the spool 2 and is connected to the bypass passage 24. Accordingly, the passage portion 25 (passage portion 26) communicates with the discharge port T through a route that is partially in common with the bypass passage 24.
 図8に示すように、通路部25(通路部26)は、供給ポートPの内径d1よりも小さい内径d2を有する細孔である。通路部25(通路部26)は、弁座部13とスプール2の外周面21との間を通過して漏れ出るごく僅かな作動油を排出ポートTに排出する。より詳細には、スプール2の外周面21には、摺動抵抗を低減するために微細な環状溝(図示せず)が設けられおり、通路部25(通路部26)は、環状溝の底部に開口している。 As shown in FIG. 8, the passage portion 25 (passage portion 26) is a fine hole having an inner diameter d2 smaller than the inner diameter d1 of the supply port P. The passage portion 25 (passage portion 26) discharges a very small amount of hydraulic oil that leaks through the passage between the valve seat portion 13 and the outer peripheral surface 21 of the spool 2 to the discharge port T. More specifically, a fine annular groove (not shown) is provided on the outer peripheral surface 21 of the spool 2 to reduce sliding resistance, and the passage portion 25 (passage portion 26) is formed at the bottom of the annular groove. Is open.
 通路部25は、スプール2の中立位置S0において、第1弁座部13aの供給ポートP側の一端部よりも、第1弁座部13aの第1ポートA側の他端部に近い位置に配置されている。同様に、通路部26は、スプール2の中立位置S0において、第3弁座部13cの供給ポートP側の一端部よりも、第3弁座部13cの第2ポートB側の他端部に近い位置に配置されている。このため、高圧の供給ポートPから隙間に漏れ出る作動油は、第1ポートA(第2ポートB)の近傍に到達して初めて排出ポートTへ排出される。 In the neutral position S0 of the spool 2, the passage portion 25 is positioned closer to the other end portion on the first port A side of the first valve seat portion 13a than one end portion on the supply port P side of the first valve seat portion 13a. Has been placed. Similarly, in the neutral position S0 of the spool 2, the passage portion 26 is located closer to the other end portion on the second port B side of the third valve seat portion 13c than to one end portion on the supply port P side of the third valve seat portion 13c. It is arranged at a close position. For this reason, the hydraulic oil that leaks into the gap from the high-pressure supply port P is discharged to the discharge port T only after reaching the vicinity of the first port A (second port B).
 図8に示すように、通路部25は、スプール2が中立位置S0から第1ポートA側のスタンバイ位置S1に移動する際に、第1ポートAを通過して、第1ポートAと排出ポートTとの間の第2弁座部13bと対向する位置に移動する。同様に、図9に示すように、通路部26は、スプール2が中立位置S0から第2ポートB側のスタンバイ位置S1に移動する際に、第2ポートBを通過して、第2ポートBと排出ポートTとの間の第4弁座部13dと対向する位置に移動する。したがって、スプール2が中立位置S0からスタンバイ位置S1に移動する際には、通路部25(通路部26)が第1ポートA(第2ポートB)と対向して連通する状態があるが、上記の通り中立位置S0からスタンバイ位置S1への移動が短時間で完了するため、移動中のリークは実質的には発生しないようになっている。スタンバイ位置S1では、対向する第2弁座部13b(第4弁座部13d)によって通路部25(通路部26)が塞がれた状態となるため、通路部25(通路部26)は排出ポートT以外とは連通しない。 As shown in FIG. 8, when the spool 2 moves from the neutral position S0 to the standby position S1 on the first port A side, the passage portion 25 passes through the first port A and passes through the first port A and the discharge port. It moves to a position opposite to the second valve seat 13b between T. Similarly, as shown in FIG. 9, when the spool 2 moves from the neutral position S0 to the standby position S1 on the second port B side, the passage portion 26 passes through the second port B and passes through the second port B. And a position opposite to the fourth valve seat portion 13d between the valve and the discharge port T. Therefore, when the spool 2 moves from the neutral position S0 to the standby position S1, there is a state where the passage portion 25 (passage portion 26) communicates with the first port A (second port B). As described above, since the movement from the neutral position S0 to the standby position S1 is completed in a short time, leakage during movement is substantially not generated. In the standby position S1, the passage portion 25 (passage portion 26) is blocked by the opposing second valve seat portion 13b (fourth valve seat portion 13d), and therefore the passage portion 25 (passage portion 26) is discharged. It does not communicate with anything other than port T.
 また、図2に示すように、スプール2の中立位置S0における通路部25と第1弁座部13aの一端部との間の長さL11は、中立位置S0から第2ポートB側へのスプール2の移動可能距離L21以上である。同様に、スプール2の中立位置S0における通路部26と第3弁座部13cの一端部との間の長さL12は、中立位置S0から第2ポートB側へのスプール2の移動可能距離L22以上である。なお、図2の構成例では、長さL11とL12とは等しく、距離L21とL22とは等しい。距離L21(L22)は、中立位置S0における第1ストッパ33と第2ストッパ34との間の距離D1と、第2ストッパ34とボディ1の内面との間の距離D2との和に概ね等しい。 Further, as shown in FIG. 2, the length L11 between the passage portion 25 and the one end portion of the first valve seat portion 13a at the neutral position S0 of the spool 2 is the spool from the neutral position S0 to the second port B side. It is 2 or more movable distance L21. Similarly, a length L12 between the passage portion 26 and the one end portion of the third valve seat portion 13c at the neutral position S0 of the spool 2 is a movable distance L22 of the spool 2 from the neutral position S0 to the second port B side. That's it. In the configuration example of FIG. 2, the lengths L11 and L12 are equal, and the distances L21 and L22 are equal. The distance L21 (L22) is approximately equal to the sum of the distance D1 between the first stopper 33 and the second stopper 34 at the neutral position S0 and the distance D2 between the second stopper 34 and the inner surface of the body 1.
 このため、スプール2が第1ポートA側へ最大開度となるまで移動した場合、通路部25は第2弁座部13bによって塞がれ、通路部26が第3弁座部13cによって供給ポートPと非連通で塞がれた状態を維持する。スプール2が第2ポートB側へ最大開度となるまで移動した場合、通路部25は第1弁座部13aによって供給ポートPと非連通で塞がれた状態を維持し、通路部26が第4弁座部13dによって塞がれた状態を維持する。 Therefore, when the spool 2 moves to the first port A side until the maximum opening degree is reached, the passage portion 25 is blocked by the second valve seat portion 13b, and the passage portion 26 is supplied by the third valve seat portion 13c. Maintain a closed state without communication with P. When the spool 2 moves to the second port B side until the maximum opening degree is reached, the passage portion 25 is kept closed by the first valve seat portion 13a so as not to communicate with the supply port P. The state closed by the fourth valve seat portion 13d is maintained.
(第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
(Effect of 1st Embodiment)
In the first embodiment, the following effects can be obtained.
 第1実施形態では、上記のように、スプール2が中立位置S0およびスタンバイ位置S1にある場合に、スプール2の外周面21とにより油路を遮断する弁座部13を設ける。これにより、中立位置S0とスタンバイ位置S1との間の範囲にわたって弁座部13を設けることができるので、中立位置S0におけるスプール2と弁座部13とのシール部分14の長さ(L1~L4)を十分に確保することができる。その結果、油路への作動油の漏れを抑制することができる。また、上記のように、スプール2を移動させる作動力Fが、スプール2を中立位置S0に保持する上限である第1閾値TH1と、第1閾値TH1よりも大きい第2閾値TH2との間の大きさで供給されることにより、スプール2が付勢手段30の付勢力に抗して中立位置S0からスタンバイ位置S1に移動し、第2閾値TH2よりも大きい作動力Fが供給されることにより、スプール2が付勢手段30の付勢力に抗して、スタンバイ位置S1から、スプール2の移動量に応じて弁開度を変化させる制御領域S2に移動するように流量制御弁100を構成する。これにより、流量制御を行う場合に予め第1閾値TH1と第2閾値TH2との間の大きさの作動力(第1作動力F1)を供給すれば、スプール2が速やかにスタンバイ位置S1に移動して流量制御を開始可能な状態となり、作動力Fが第2閾値TH2を越えた時点から速やかに流量制御を開始することができる。すなわち、流量制御の直前にスプール2を中立位置S0からスタンバイ位置S1に移動させておくことにより、応答性を向上させることができるので、弁座部13を長くしてシール部分14の長さ(L1~L4)を十分に確保する場合でも、高い応答性を確保することができる。以上により、第1実施形態の流量制御装置100によれば、応答性を損なうことなく、油路への作動油の漏れを抑制することができる。 In the first embodiment, as described above, when the spool 2 is in the neutral position S0 and the standby position S1, the valve seat portion 13 that blocks the oil passage with the outer peripheral surface 21 of the spool 2 is provided. As a result, the valve seat portion 13 can be provided over a range between the neutral position S0 and the standby position S1, and therefore the length (L1 to L4) of the seal portion 14 between the spool 2 and the valve seat portion 13 in the neutral position S0. ) Can be secured sufficiently. As a result, the leakage of hydraulic oil to the oil passage can be suppressed. In addition, as described above, the operating force F that moves the spool 2 is between the first threshold TH1 that is the upper limit for holding the spool 2 in the neutral position S0 and the second threshold TH2 that is greater than the first threshold TH1. By being supplied in a magnitude, the spool 2 moves from the neutral position S0 to the standby position S1 against the urging force of the urging means 30, and an operating force F greater than the second threshold value TH2 is supplied. The flow rate control valve 100 is configured so that the spool 2 moves from the standby position S1 to the control region S2 in which the valve opening is changed according to the amount of movement of the spool 2 against the urging force of the urging means 30. . Thus, when the flow rate control is performed, if the operating force (first operating force F1) having a magnitude between the first threshold value TH1 and the second threshold value TH2 is supplied in advance, the spool 2 quickly moves to the standby position S1. Thus, the flow rate control can be started, and the flow rate control can be started immediately from the time when the operating force F exceeds the second threshold value TH2. That is, since the responsiveness can be improved by moving the spool 2 from the neutral position S0 to the standby position S1 immediately before the flow rate control, the valve seat portion 13 is lengthened and the length of the seal portion 14 ( Even when L1 to L4) are sufficiently secured, high responsiveness can be secured. As described above, according to the flow control device 100 of the first embodiment, it is possible to suppress leakage of hydraulic oil to the oil passage without impairing responsiveness.
 図10に示す開閉制御の一例を用いてより具体的に説明する。一般の比例流量制御弁では、不感帯(スプールを移動させても流量制御が開始しない領域)を減少させて比例制御の応答性を確保するため、シール部分の長さを極力小さくしている。このため、スプールを摺動させるための微小隙間を介したリークを抑制することができず、中立位置におけるポート間のシール性が高くない。図10の比較例に示すように、流量制御の開始時間t2からの応答性は確保されているものの、中立位置において供給ポートPから第1ポートAまたは第2ポートBへ一定のリーク流量が存在し続けることになる。 This will be described more specifically using an example of the opening / closing control shown in FIG. In a general proportional flow control valve, the length of the seal portion is made as small as possible in order to reduce the dead zone (the region where flow control does not start even when the spool is moved) to ensure proportional control responsiveness. For this reason, it is not possible to suppress leakage through a minute gap for sliding the spool, and the sealing performance between the ports in the neutral position is not high. As shown in the comparative example of FIG. 10, there is a constant leak flow rate from the supply port P to the first port A or the second port B in the neutral position, although the responsiveness from the flow control start time t2 is ensured. Will continue to do.
 これに対して、第1実施形態では、シール部分14の長さL1~L4が十分に確保される。このため、中立位置S0における各ポート間のシール性が向上し、中立位置S0においてリーク流量は略発生しない。この場合、通常は長さL1~L4の分だけ不感帯が増大することになるが、流量制御の開始時間t2の直前のタイミングt1において、予め第1作動力F1を供給することにより、シール部分14が極力小さくなるスタンバイ位置S1までスプール2を移動させることができる。スタンバイ位置S1では、シール部分14が小さくなるため、移動方向に応じて供給ポートPと第1ポートAまたは第2ポートBとの間にリーク(いわゆる前漏れ)が発生し得る。しかし、スタンバイ位置S1への移動は、第1作動力F1を第2閾値TH2の近傍に設定することにより、ごく短時間で完了させることができる(時刻t1とt2との間の時間間隔を小さくできる)ため、スタンバイ位置S1においてリークが発生する時間(リーク流量)は極力小さくすることが可能である。その結果、シール性を確保しつつ、時間t2で第2閾値TH2を越える第2作動力F2を供給する際にも、比較例の比例流量制御弁と同等の応答性を確保することができる。 On the other hand, in the first embodiment, the lengths L1 to L4 of the seal portion 14 are sufficiently secured. For this reason, the sealing performance between the ports at the neutral position S0 is improved, and a leak flow rate is not substantially generated at the neutral position S0. In this case, the dead zone usually increases by the lengths L1 to L4. However, by supplying the first operating force F1 in advance at the timing t1 immediately before the start time t2 of the flow control, the seal portion 14 The spool 2 can be moved to the standby position S1 where is as small as possible. In the standby position S1, since the seal portion 14 is small, a leak (so-called pre-leakage) may occur between the supply port P and the first port A or the second port B depending on the moving direction. However, the movement to the standby position S1 can be completed in a very short time by setting the first operating force F1 in the vicinity of the second threshold value TH2 (the time interval between the times t1 and t2 is reduced). Therefore, the time (leakage flow rate) during which leakage occurs at the standby position S1 can be minimized. As a result, when supplying the second operating force F2 that exceeds the second threshold value TH2 at time t2 while ensuring the sealing performance, the same responsiveness as that of the proportional flow control valve of the comparative example can be ensured.
 また、第1実施形態では、上記のように、付勢手段30を、スプール2が中立位置S0にある場合、第1閾値TH1と等しい付勢力を発生させ、スプール2がスタンバイ位置S1にある場合に、第2閾値TH2と等しい付勢力を発生させるように構成する。これにより、スプール2を中立位置S0に保持するための付勢手段30を用いて、スプール2をスタンバイ位置S1に保持することができる。この結果、スプール2を中立位置S0、スタンバイ位置S1および制御領域S2に段階的に移動させる構成を付勢手段30により容易に実現することができる。 In the first embodiment, as described above, when the spool 2 is in the neutral position S0, the biasing means 30 generates a biasing force equal to the first threshold value TH1, and the spool 2 is in the standby position S1. In addition, an urging force equal to the second threshold value TH2 is generated. Accordingly, the spool 2 can be held at the standby position S1 by using the biasing means 30 for holding the spool 2 at the neutral position S0. As a result, it is possible to easily realize the configuration in which the spool 2 is moved stepwise to the neutral position S0, the standby position S1, and the control region S2 by the biasing means 30.
 また、第1実施形態では、上記のように、付勢手段30に、少なくとも中立位置S0とスタンバイ位置S1との間でスプール2に圧縮される第1ばね31と、制御領域S2においてスプール2に圧縮される第2ばね32と、を設ける。第1ばね31と第2ばね32とを設けることにより、たとえば第1ばね31に第1閾値TH1と等しい初期付勢力を発生させ、第2ばね32に第2閾値TH2と等しい初期付勢力を発生させるなど、各々のばね定数を自由に決められる。そのため、中立位置S0において第1閾値TH1と等しい付勢力を発生させ、スタンバイ位置S1において第2閾値TH2と等しい付勢力を発生させる付勢手段30を、より容易に構成することができる。 In the first embodiment, as described above, the urging means 30 includes at least the first spring 31 compressed by the spool 2 between the neutral position S0 and the standby position S1, and the spool 2 in the control region S2. A second spring 32 to be compressed. By providing the first spring 31 and the second spring 32, for example, an initial biasing force equal to the first threshold value TH1 is generated in the first spring 31, and an initial biasing force equal to the second threshold value TH2 is generated in the second spring 32. Each spring constant can be determined freely. Therefore, it is possible to more easily configure the urging means 30 that generates the urging force equal to the first threshold value TH1 at the neutral position S0 and generates the urging force equal to the second threshold value TH2 at the standby position S1.
 また、第1実施形態では、上記のように、第1ばね31のばね定数K1を、第2ばね32のばね定数K2よりも小さくする。第1ばね31のばね定数を相対的に小さくすることにより、第1閾値TH1を越えてからスタンバイ位置S1まで第1ばね31を圧縮するのに必要な作動力の大きさ(K1×移動距離)を小さくすることができる。その結果、スプール2をスタンバイ位置S1に移動するのに必要な作動力(TH1+K1×移動距離)と第2閾値TH2との差を大きくすることができるので、スタンバイ位置S1へのスプール2の移動を迅速に行うことができる。 In the first embodiment, the spring constant K1 of the first spring 31 is set smaller than the spring constant K2 of the second spring 32 as described above. By relatively reducing the spring constant of the first spring 31, the magnitude of the operating force required to compress the first spring 31 from the first threshold TH1 to the standby position S1 (K1 × travel distance) Can be reduced. As a result, the difference between the operating force (TH1 + K1 × movement distance) required to move the spool 2 to the standby position S1 and the second threshold value TH2 can be increased, so that the spool 2 is moved to the standby position S1. Can be done quickly.
 また、第1実施形態では、上記のように、中立位置S0におけるスプール2の移動を規制する第1ストッパ33と、スタンバイ位置S1におけるスプール2の移動を規制する第2ストッパ34とをボディ1に設ける。第1ばね31により、第1閾値TH1と等しい初期付勢力で第1ストッパ33をボディ1に対して付勢し、第2ばね32により、第2閾値TH2と等しい初期付勢力で第2ストッパ34をボディ1に対して付勢する。第1ストッパ33を設けることにより、スプール2を中立位置S0に保持することができる。この場合、外乱などによってスプール2に第1閾値TH1以下の力が作用してもスプール2が移動しないため、安定してスプール2を中立位置S0に保持することができる。また、第2ストッパ34を設けることにより、第2閾値TH2を第1ばね31とは独立して第2ばね32により設定することができる。そのため、第2閾値TH2を第1ばね31および第2ばね32の合成ばねにより設定する場合と比較して、第2閾値TH2を容易に設定できるとともに、スプール2を制御領域S2で動作させるために必要な作動力が大きくなることを抑制することができる。 In the first embodiment, as described above, the first stopper 33 for restricting the movement of the spool 2 at the neutral position S0 and the second stopper 34 for restricting the movement of the spool 2 at the standby position S1 are provided on the body 1. Provide. The first spring 31 biases the first stopper 33 against the body 1 with an initial biasing force equal to the first threshold value TH1, and the second spring 32 biases the second stopper 34 with an initial biasing force equal to the second threshold value TH2. Is urged against the body 1. By providing the first stopper 33, the spool 2 can be held at the neutral position S0. In this case, since the spool 2 does not move even if a force of the first threshold value TH1 or less is applied to the spool 2 due to disturbance or the like, the spool 2 can be stably held at the neutral position S0. Further, by providing the second stopper 34, the second threshold value TH 2 can be set by the second spring 32 independently of the first spring 31. Therefore, compared with the case where the second threshold value TH2 is set by the combined spring of the first spring 31 and the second spring 32, the second threshold value TH2 can be set easily, and the spool 2 is operated in the control region S2. It is possible to suppress an increase in necessary operating force.
 また、第1実施形態では、上記のように、中立位置S0において、スプール2の外周面21からスプール2の内部を通って排出ポートTに連通する通路部25をスプール2に設け、通路部25を、スプール2の中立位置S0において、少なくとも第1ポートAと供給ポートPとの間の第1弁座部13aと対向する位置に配置する。これにより、スプール2と第1弁座部13aとの間での作動油の僅かな漏れを、通路部25によって排出ポートTへ送り出すことが可能となる。このため、油圧シリンダ101の昇降制御などに流量制御弁100が用いられる場合でも、中立位置S0での作動油の漏れを防止して、位置ずれが生じることを防止することができる。なお、第1実施形態では、第1弁座部13aのみならず、第2ポートBと供給ポートPとの間の弁座部13にも通路部26を設けているため、第1ポートAおよび第2ポートBの両方への作動油の漏れを防止することが可能である。 In the first embodiment, as described above, at the neutral position S0, the spool 2 is provided with the passage portion 25 that communicates from the outer peripheral surface 21 of the spool 2 through the inside of the spool 2 to the discharge port T. Is disposed at a position facing at least the first valve seat 13a between the first port A and the supply port P in the neutral position S0 of the spool 2. As a result, a slight leakage of hydraulic oil between the spool 2 and the first valve seat portion 13 a can be sent out to the discharge port T by the passage portion 25. For this reason, even when the flow rate control valve 100 is used for raising / lowering control of the hydraulic cylinder 101 or the like, it is possible to prevent leakage of hydraulic oil at the neutral position S0 and to prevent displacement. In the first embodiment, since the passage portion 26 is provided not only in the first valve seat portion 13a but also in the valve seat portion 13 between the second port B and the supply port P, the first port A and It is possible to prevent the hydraulic oil from leaking to both of the second ports B.
 また、第1実施形態では、上記のように、通路部25を、スプール2の中立位置S0において、第1弁座部13aの供給ポートP側の一端部よりも、第1弁座部13aの第1ポートA側の他端部に近い位置に配置する。これにより、通路部25が高圧側の供給ポートPから離れた位置に配置されるので、第1ポートAへの作動油の漏れを防止しつつ、圧力差によって作動油が供給ポートPから通路部25へ漏れ出ることを抑制することができる。 Further, in the first embodiment, as described above, the passage portion 25 is arranged at the neutral position S0 of the spool 2 at the neutral position S0 of the first valve seat portion 13a rather than the one end portion on the supply port P side of the first valve seat portion 13a. It arrange | positions in the position near the other end part by the side of the 1st port A. As a result, the passage portion 25 is disposed at a position away from the supply port P on the high pressure side, so that the hydraulic oil is prevented from leaking from the supply port P by the pressure difference while preventing leakage of the hydraulic oil to the first port A. Leakage to 25 can be suppressed.
 また、第1実施形態では、上記のように、通路部25を、スプール2が中立位置S0から第1ポートA側のスタンバイ位置S1に移動する際に、第1ポートAを通過して、第1ポートAと排出ポートTとの間の第2弁座部13bと対向する位置に移動するように設ける。このように、スプール2を中立位置S0からスタンバイ位置S1へと移動させる構造を利用して、通路部25を第1弁座部13aから第2弁座部13bへと移動させることにより、通路部25が第1ポートAと連通する位置に配置されることを防止することができる。すなわち、スプール2の外周面21に通路部25を設ける場合でも、第1弁座部13aを必要以上に長くすることなく、中立位置S0およびスタンバイ位置S1で通路部25が常に弁座部13(第1弁座部13aおよび第2弁座部13b)と対向して第1ポートAと連通することがないようにすることが可能となる。 In the first embodiment, as described above, when the spool 2 moves from the neutral position S0 to the standby position S1 on the first port A side, the passage portion 25 passes through the first port A and It is provided so as to move to a position facing the second valve seat 13b between the 1 port A and the discharge port T. Thus, by using the structure in which the spool 2 is moved from the neutral position S0 to the standby position S1, the passage portion 25 is moved from the first valve seat portion 13a to the second valve seat portion 13b. 25 can be prevented from being arranged at a position communicating with the first port A. That is, even when the passage portion 25 is provided on the outer peripheral surface 21 of the spool 2, the passage portion 25 is always in the neutral position S0 and the standby position S1 without making the first valve seat portion 13a longer than necessary. It is possible to prevent the first valve seat portion 13a and the second valve seat portion 13b) from communicating with the first port A.
 また、第1実施形態では、上記のように、スプール2の中立位置S0における通路部25と第1弁座部13aの一端部との間の長さL11を、中立位置S0から第2ポートB側へのスプール2の移動可能距離L21以上とする。これにより、スプール2を第2ポートB側の制御領域S2へ移動させて第2ポートBへの流量制御が行われる場合でも、通路部25が第1弁座部13aの外部へ移動して供給ポートPと連通してしまうことを防止することができる。 In the first embodiment, as described above, the length L11 between the passage portion 25 and the one end portion of the first valve seat portion 13a at the neutral position S0 of the spool 2 is set to the second port B from the neutral position S0. More than the movable distance L21 of the spool 2 to the side. Accordingly, even when the spool 2 is moved to the control region S2 on the second port B side and the flow rate control to the second port B is performed, the passage portion 25 moves to the outside of the first valve seat portion 13a and is supplied. It is possible to prevent communication with the port P.
 また、第1実施形態では、上記のように、供給ポートPの内径d1よりも小さい内径d2を有する通路部25を設ける。このように内径の小さな通路部25を設けることにより、中立位置S0において供給ポートPから第1ポートAへ漏れようとする僅かな作動油を確実に排出しつつ、圧力差によって作動油が不必要に通路部25へ流入することを極力抑制することができる。 In the first embodiment, as described above, the passage portion 25 having the inner diameter d2 smaller than the inner diameter d1 of the supply port P is provided. By providing the passage portion 25 having a small inner diameter in this way, a small amount of hydraulic oil that leaks from the supply port P to the first port A at the neutral position S0 is reliably discharged, and no hydraulic oil is required due to a pressure difference. Inflow to the passage portion 25 can be suppressed as much as possible.
[第2実施形態]
 次に、図11および図12を参照して、本発明の第2実施形態による流量制御弁200について説明する。第2実施形態では、第1ストッパ33によってスプール2を中立位置S0に保持するように構成した上記第1実施形態とは異なり、第1ばね31の釣り合いによってスプール2を中立位置S0に保持する例について説明する。なお、第2実施形態では、上記第1実施形態と同様の構成については、同一の符号を用いるとともに説明を省略する。
[Second Embodiment]
Next, with reference to FIG. 11 and FIG. 12, the flow control valve 200 by 2nd Embodiment of this invention is demonstrated. In the second embodiment, unlike the first embodiment in which the spool 2 is held at the neutral position S0 by the first stopper 33, the spool 2 is held at the neutral position S0 by the balance of the first spring 31. Will be described. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted.
 図11に示すように、第2実施形態の流量制御弁200では、第1ばね31がスプール2を直接付勢するように構成されている。スプール2は、両側の第1ばね31の付勢力によって、中立位置S0に保持される。第1ばね31は、一端がスプール2に当接し、他端がストッパ201に当接するように設けられている。 As shown in FIG. 11, in the flow control valve 200 of the second embodiment, the first spring 31 is configured to urge the spool 2 directly. The spool 2 is held at the neutral position S0 by the biasing force of the first springs 31 on both sides. The first spring 31 is provided such that one end is in contact with the spool 2 and the other end is in contact with the stopper 201.
 ストッパ201は、第2ばね32によってボディ1に向けて付勢されている。すなわち、ストッパ201は、ボディ1の段差部からなる位置決め部202に対して押圧されている。位置決め部202は、スタンバイ位置S1を規定する。図12に示すように、スプール2に第1閾値TH1と第2閾値TH2との間の作動力Fが付与されると、スプール2が第1ばね31を圧縮してストッパ201と当接するまで移動する。ストッパ201は、第2ばね32により第2閾値TH2と等しい付勢力で、位置決め部202に付勢されているため、作動力が第2閾値TH2以下の場合には移動せずにスプール2をスタンバイ位置S1に保持する。 The stopper 201 is biased toward the body 1 by the second spring 32. That is, the stopper 201 is pressed against the positioning portion 202 formed of the step portion of the body 1. The positioning unit 202 defines the standby position S1. As shown in FIG. 12, when the operating force F between the first threshold value TH1 and the second threshold value TH2 is applied to the spool 2, the spool 2 moves until it compresses the first spring 31 and contacts the stopper 201. To do. The stopper 201 is urged by the positioning portion 202 with the urging force equal to the second threshold value TH2 by the second spring 32. Therefore, when the operating force is less than or equal to the second threshold value TH2, the stopper 2 is not moved and is put on standby. Hold at position S1.
 第2ばね32は、一端がストッパ201に当接し、他端がボディ1の内面に当接するように設けられている。スプール2に第2閾値TH2よりも大きい作動力Fが付与されると、スプール2が第2ばね32を圧縮してストッパ201とともに制御領域S2に移動する。その結果、スプール2の移動方向に応じたポート(第1ポートAまたは第2ポートB)を供給ポートPと連通させ、移動量と比例する流量で作動油を流通させる。なお、スタンバイ位置S1では、第1ばね31が圧縮されてスプール2の端面とストッパ201とが当接する状態となるため、制御領域S2でのスプール2の移動中に第1ばね31は機能しない。つまり、第1ばね31と第2ばね32とが互いに独立してスプール2に圧縮されるように構成されている。各ばねの付勢力は分離して作用する。 The second spring 32 is provided such that one end is in contact with the stopper 201 and the other end is in contact with the inner surface of the body 1. When an operating force F greater than the second threshold value TH2 is applied to the spool 2, the spool 2 compresses the second spring 32 and moves to the control region S2 together with the stopper 201. As a result, the port (first port A or second port B) corresponding to the moving direction of the spool 2 is communicated with the supply port P, and the hydraulic oil is circulated at a flow rate proportional to the moving amount. In the standby position S1, the first spring 31 is compressed and the end surface of the spool 2 comes into contact with the stopper 201. Therefore, the first spring 31 does not function during the movement of the spool 2 in the control region S2. That is, the first spring 31 and the second spring 32 are configured to be compressed by the spool 2 independently of each other. The urging force of each spring acts separately.
 第2実施形態の場合、スプール2は、第1ばね31の釣り合いによって中立位置S0に保持される。そのため、スプール2を中立位置S0で安定して保持するためには、第1ばね31のばね定数を大きくすることが好ましい。 In the case of the second embodiment, the spool 2 is held at the neutral position S0 by the balance of the first spring 31. Therefore, in order to stably hold the spool 2 at the neutral position S0, it is preferable to increase the spring constant of the first spring 31.
 第2実施形態のその他の構成は、上記第1実施形態と同様である。 Other configurations of the second embodiment are the same as those of the first embodiment.
 また、第2実施形態の効果は、上記第1実施形態と同様である。 The effect of the second embodiment is the same as that of the first embodiment.
[第3実施形態]
 次に、図13および図14を参照して、本発明の第3実施形態による流量制御弁300について説明する。第3実施形態では、第1ばね31と第2ばね32とが独立して機能するように構成した上記第1および第2実施形態とは異なり、制御領域S2において第1ばね31と第2ばね32とが合成ばねとして機能する例について説明する。なお、第3実施形態では、上記第1実施形態と同様の構成については、同一の符号を用いるとともに説明を省略する。
[Third embodiment]
Next, with reference to FIG. 13 and FIG. 14, the flow control valve 300 by 3rd Embodiment of this invention is demonstrated. In the third embodiment, unlike the first and second embodiments configured such that the first spring 31 and the second spring 32 function independently, the first spring 31 and the second spring in the control region S2. An example in which 32 functions as a composite spring will be described. Note that in the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 図13に示すように、第3実施形態の流量制御弁300では、第1ばね31は、一端がスプール2の端面に当接し、他端がボディ1の内面に当接するように設けられている。スプール2は、両側の第1ばね31の付勢力によって、中立位置S0に保持される。また、第2ばね32は、一端がストッパ301に当接し、他端がボディ1の内面に当接するように設けられている。 As shown in FIG. 13, in the flow control valve 300 of the third embodiment, the first spring 31 is provided such that one end contacts the end surface of the spool 2 and the other end contacts the inner surface of the body 1. . The spool 2 is held at the neutral position S0 by the biasing force of the first springs 31 on both sides. Further, the second spring 32 is provided such that one end is in contact with the stopper 301 and the other end is in contact with the inner surface of the body 1.
 ストッパ301は、第2ばね32によってボディ1に向けて付勢されている。すなわち、ストッパ301は、ボディ1の段差部からなる位置決め部302に対して押圧されている。位置決め部302は、スタンバイ位置S1を規定する。 The stopper 301 is biased toward the body 1 by the second spring 32. That is, the stopper 301 is pressed against the positioning portion 302 formed of the step portion of the body 1. The positioning unit 302 defines the standby position S1.
 スプール2に第1閾値TH1と第2閾値TH2との間の作動力Fが付与されると、スプール2が第1ばね31を圧縮して、スプール2の段差部303がストッパ301と当接するまで移動する。第3実施形態では、ストッパ301が第2ばね32により位置決め部302に付勢され、スプール2が第1ばね31により付勢されている。図14に示す第2閾値TH2は、スプール2がスタンバイ位置S1に移動した状態における、第1ばね31の付勢力と第2ばね32の付勢力との合力となる。作動力Fが第2閾値TH2以下(第1閾値TH1よりも大きい)の場合にはスプール2は移動せずにスタンバイ位置S1に保持される。 When the operating force F between the first threshold value TH1 and the second threshold value TH2 is applied to the spool 2, the spool 2 compresses the first spring 31, and the step portion 303 of the spool 2 comes into contact with the stopper 301. Moving. In the third embodiment, the stopper 301 is biased to the positioning portion 302 by the second spring 32, and the spool 2 is biased by the first spring 31. The second threshold value TH2 shown in FIG. 14 is the resultant force of the urging force of the first spring 31 and the urging force of the second spring 32 when the spool 2 is moved to the standby position S1. When the operating force F is equal to or less than the second threshold value TH2 (greater than the first threshold value TH1), the spool 2 is not moved and is held at the standby position S1.
 第3実施形態では、スプール2に第2閾値TH2よりも大きい作動力Fが付与されると、スプール2が第2ばね32および第1ばね31を圧縮してストッパ301とともに制御領域S2に移動する。そのため、制御領域S2では、第1ばね31と第2ばね32との合成ばねとの釣り合いによりスプール2の位置制御が行われる。この場合でも、第2閾値TH2よりも大きい作動力Fによってスプール2が制御領域S2に移動すると、スプール2の移動方向に応じたポート(第1ポートAまたは第2ポートB)を供給ポートPと連通させ、移動量と比例する流量で作動油を流通させる。 In the third embodiment, when an operating force F greater than the second threshold value TH2 is applied to the spool 2, the spool 2 compresses the second spring 32 and the first spring 31 and moves to the control region S2 together with the stopper 301. . Therefore, in the control region S2, the position control of the spool 2 is performed by the balance with the combined spring of the first spring 31 and the second spring 32. Even in this case, when the spool 2 moves to the control region S2 by the operating force F larger than the second threshold TH2, the port (first port A or second port B) corresponding to the moving direction of the spool 2 is set as the supply port P. Communicate and distribute the hydraulic oil at a flow rate proportional to the amount of movement.
 第3実施形態の場合も、第2実施形態と同様、スプール2は、第1ばね31の釣り合いによって中立位置S0に保持される。そのため、スプール2を中立位置S0で安定して保持するためには、第1ばね31のばね定数を大きくすることが好ましい。 Also in the case of the third embodiment, the spool 2 is held at the neutral position S0 by the balance of the first spring 31 as in the second embodiment. Therefore, in order to stably hold the spool 2 at the neutral position S0, it is preferable to increase the spring constant of the first spring 31.
 第3実施形態のその他の構成は、上記第1実施形態と同様である。 Other configurations of the third embodiment are the same as those of the first embodiment.
 また、第3実施形態の効果は、上記第1実施形態と同様である。 The effect of the third embodiment is the same as that of the first embodiment.
[変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiment but by the scope of claims for patent, and further includes all modifications (modifications) within the meaning and scope equivalent to the scope of claims for patent.
 たとえば、上記第1~第3実施形態では、スプール2に通路部25を設けた例を示したが、本発明はこれに限られない。本発明では、図15に示す変形例による流量制御弁400のように、スプール2に通路部25(26)を設けなくてもよい。この場合でも、上記の通り、スプール2の外周面21と弁座部13との間のシール部分14の長さL1~L4を十分に確保することが可能な本発明では、スプール2の外周面21と弁座部13との間を通過することによる作動油のポート間のリークを効果的に抑制することが可能である。通路部25を設ける場合には、ポート間のリークをより確実に防止できるので、ポート間のリークが許容されない用途においては、通路部25を設けることが好ましい。 For example, in the first to third embodiments, the example in which the passage portion 25 is provided in the spool 2 is shown, but the present invention is not limited to this. In the present invention, unlike the flow control valve 400 according to the modification shown in FIG. 15, the passage portion 25 (26) may not be provided in the spool 2. Even in this case, as described above, in the present invention in which the lengths L1 to L4 of the seal portion 14 between the outer peripheral surface 21 of the spool 2 and the valve seat portion 13 can be sufficiently secured, It is possible to effectively suppress leakage between hydraulic oil ports caused by passing between 21 and the valve seat portion 13. In the case where the passage portion 25 is provided, it is possible to more reliably prevent leakage between the ports. Therefore, it is preferable to provide the passage portion 25 in an application in which leakage between the ports is not allowed.
 また、上記第1~第3実施形態では、スプール2に通路部25および通路部26を設けた例を示したが、本発明はこれに限られない。本発明では、通路部を設ける場合、通路部は、第1ポートAと供給ポートPとの間のみ(通路部25のみ)でもよく、通路部26を設けなくてもよい。 In the first to third embodiments, the example in which the passage portion 25 and the passage portion 26 are provided in the spool 2 has been shown, but the present invention is not limited to this. In the present invention, when the passage portion is provided, the passage portion may be only between the first port A and the supply port P (only the passage portion 25), or the passage portion 26 may not be provided.
 また、上記第1~第3実施形態では、第1ばね31および第2ばね32により付勢手段30を構成した例を示したが、本発明はこれに限られない。本発明では、付勢手段が3つ以上のばねにより構成されてもよい。また、単一のばねで、ばね定数が変化する可変ばねを用いて付勢手段を構成してもよい。 In the first to third embodiments, the urging means 30 is configured by the first spring 31 and the second spring 32. However, the present invention is not limited to this. In the present invention, the urging means may be constituted by three or more springs. Further, the biasing means may be configured using a single spring and a variable spring whose spring constant varies.
 また、上記第1~第3実施形態では、第1ばね31のばね定数を第2ばね32のばね定数よりも小さくする構成例を示したが、本発明はこれに限られない。本発明では、第1ばね31のばね定数と第2ばね32のばね定数とが等しくてもよいし、第1ばね31のばね定数が第2ばね32のばね定数よりも大きくてもよい。 In the first to third embodiments, the configuration example in which the spring constant of the first spring 31 is made smaller than the spring constant of the second spring 32 is shown, but the present invention is not limited to this. In the present invention, the spring constant of the first spring 31 and the spring constant of the second spring 32 may be equal, or the spring constant of the first spring 31 may be larger than the spring constant of the second spring 32.
 また、上記第1~第3実施形態では、通路部25を、スプール2の中立位置S0において、第1弁座部13aの供給ポートP側の一端部よりも、第1弁座部13aの第1ポートA側の他端部に近い位置に配置した例を示したが、本発明はこれに限られない。本発明では、通路部25を、スプール2の中立位置S0において、第1弁座部13aの中央あるいは供給ポートP側に配置してもよい。通路部26についても同様であり、中立位置S0において、第2弁座部13cの中央あるいは供給ポートP側に配置してもよい。 Further, in the first to third embodiments, the passage portion 25 is connected to the first valve seat portion 13a at the neutral position S0 of the spool 2 rather than the one end portion on the supply port P side of the first valve seat portion 13a. Although the example arrange | positioned in the position close | similar to the other end part by the side of 1 port A was shown, this invention is not limited to this. In the present invention, the passage portion 25 may be disposed at the center of the first valve seat portion 13a or on the supply port P side at the neutral position S0 of the spool 2. The same applies to the passage portion 26, and it may be arranged at the center of the second valve seat portion 13c or on the supply port P side at the neutral position S0.
 また、上記第1~第3実施形態では、通路部25を、スプール2が中立位置S0からスタンバイ位置S1に移動する際に、第1ポートAを通過して第2弁座部13bと対向する位置に移動する構成の例を示したが、本発明はこれに限られない。本発明では、中立位置S0およびスタンバイ位置S1の両方で、通路部25が第1弁座部13aと対向する位置に配置されてもよい。通路部26についても同様であり、中立位置S0およびスタンバイ位置S1の両方で、通路部26が第3弁座部13cと対向する位置に配置されてもよい。 In the first to third embodiments, when the spool 2 moves from the neutral position S0 to the standby position S1, the passage portion 25 passes through the first port A and faces the second valve seat portion 13b. Although the example of the structure which moves to a position was shown, this invention is not limited to this. In the present invention, the passage portion 25 may be disposed at a position facing the first valve seat portion 13a in both the neutral position S0 and the standby position S1. The same applies to the passage portion 26, and the passage portion 26 may be disposed at a position facing the third valve seat portion 13c in both the neutral position S0 and the standby position S1.
 また、上記第1~第3実施形態では、中立位置S0における通路部25と第1弁座部13aの一端部との間の長さL11が、中立位置S0から第2ポートB側へのスプール2の移動可能距離L21以上となる構成例を示したが、本発明はこれに限られない。本発明では、長さL11が、移動可能距離L21よりも小さくてもよい。その場合、スプール2が第2ポートBのスタンバイ位置S1に移動する時点で、通路部25が供給ポートP上を通過して第3弁座部13cと対向する位置に移動するような構成であってもよい。 In the first to third embodiments, the length L11 between the passage portion 25 and the one end portion of the first valve seat portion 13a at the neutral position S0 is the spool from the neutral position S0 to the second port B side. Although the structural example which becomes 2 or more movable distance L21 was shown, this invention is not limited to this. In the present invention, the length L11 may be smaller than the movable distance L21. In that case, when the spool 2 moves to the standby position S1 of the second port B, the passage portion 25 passes over the supply port P and moves to a position facing the third valve seat portion 13c. May be.
 1 ボディ
 2 スプール
 13 弁座部
 13a 第1弁座部
 13b 第2弁座部
 21 外周面
 25 通路部
 30 付勢手段
 31 第1ばね
 32 第2ばね
 33 第1ストッパ
 34 第2ストッパ
 A 第1ポート(油路)
 B 第2ポート(油路)
 P 供給ポート(油路)
 T 排出ポート(油路)
 S0 中立位置
 S1 スタンバイ位置
 S2 制御領域
 TH1 第1閾値
 TH2 第2閾値
 100、200、300、400 流量制御弁
DESCRIPTION OF SYMBOLS 1 Body 2 Spool 13 Valve seat part 13a 1st valve seat part 13b 2nd valve seat part 21 Outer peripheral surface 25 Passage part 30 Energizing means 31 1st spring 32 2nd spring 33 1st stopper 34 2nd stopper A 1st port (Oilway)
B 2nd port (oil passage)
P Supply port (oil passage)
T discharge port (oil passage)
S0 Neutral position S1 Standby position S2 Control region TH1 First threshold TH2 Second threshold 100, 200, 300, 400 Flow control valve

Claims (10)

  1.  作動油が出入りする油路が設けられたボディと、
     前記ボディ内に移動可能に保持され、前記油路を開閉させるスプールと、を備え、
     前記ボディは、前記ボディの内周面に設けられ、前記スプールが中立位置およびスタンバイ位置にある場合に、前記スプールの外周面とによって前記油路を遮断する弁座部と、前記スプールを前記中立位置に保持するための付勢手段とを有し、
     前記スプールを移動させる作動力が、前記スプールを前記中立位置に保持する上限である第1閾値と、前記第1閾値よりも大きい第2閾値との間の大きさで供給されることにより、前記スプールが前記付勢手段の付勢力に抗して前記中立位置から前記スタンバイ位置に移動し、
     前記第2閾値よりも大きい作動力が供給されることにより、前記スプールが前記付勢手段の付勢力に抗して、前記スタンバイ位置から、前記スプールの移動量に応じて弁開度を変化させる制御領域に移動するように構成されている、流量制御弁。
    A body provided with an oil passage through which hydraulic oil enters and exits;
    A spool that is movably held in the body and opens and closes the oil passage,
    The body is provided on an inner peripheral surface of the body, and when the spool is in a neutral position and a standby position, a valve seat portion that blocks the oil passage with an outer peripheral surface of the spool; Biasing means for holding in position,
    The operating force for moving the spool is supplied in a magnitude between a first threshold value that is an upper limit for holding the spool in the neutral position and a second threshold value that is larger than the first threshold value. The spool moves from the neutral position to the standby position against the biasing force of the biasing means;
    By supplying an operating force larger than the second threshold value, the spool changes the valve opening degree from the standby position according to the amount of movement of the spool against the urging force of the urging means. A flow control valve configured to move to the control region.
  2.  前記付勢手段は、前記スプールが前記中立位置にある場合、前記第1閾値と等しい付勢力を発生させ、前記スプールが前記スタンバイ位置にある場合に、前記第2閾値と等しい付勢力を発生させるように構成されている、請求項1に記載の流量制御弁。 The biasing means generates a biasing force equal to the first threshold value when the spool is in the neutral position, and generates a biasing force equal to the second threshold value when the spool is in the standby position. The flow control valve according to claim 1, configured as described above.
  3.  前記付勢手段は、
      少なくとも前記中立位置と前記スタンバイ位置との間で前記スプールに圧縮される第1ばねと、
      前記制御領域において前記スプールに圧縮される第2ばねと、をさらに含む、請求項2に記載の流量制御弁。
    The biasing means is
    A first spring that is compressed into the spool at least between the neutral position and the standby position;
    The flow control valve according to claim 2, further comprising a second spring that is compressed by the spool in the control region.
  4.  前記第1ばねのばね定数は、前記第2ばねのばね定数よりも小さい、請求項3に記載の流量制御弁。 The flow rate control valve according to claim 3, wherein a spring constant of the first spring is smaller than a spring constant of the second spring.
  5.  前記ボディは、前記中立位置における前記スプールの移動を規制する第1ストッパと、前記スタンバイ位置における前記スプールの移動を規制する第2ストッパとをさらに含み、
     前記第1ばねは、前記第1閾値と等しい初期付勢力で前記第1ストッパを前記ボディに対して付勢し、
     前記第2ばねは、前記第2閾値と等しい初期付勢力で前記第2ストッパを前記ボディに対して付勢している、請求項3に記載の流量制御弁。
    The body further includes a first stopper that restricts movement of the spool in the neutral position, and a second stopper that restricts movement of the spool in the standby position,
    The first spring biases the first stopper against the body with an initial biasing force equal to the first threshold,
    The flow control valve according to claim 3, wherein the second spring biases the second stopper with respect to the body with an initial biasing force equal to the second threshold.
  6.  前記油路は、作動油が供給される供給ポートと、作動油が排出される排出ポートと、互いに択一的に作動油を流入または流出させる第1ポートおよび第2ポートとを含み、
     前記スプールは、前記中立位置において、前記スプールの外周面から前記スプールの内部を通って前記排出ポートに連通するように設けられ、前記弁座部と前記スプールとの間を通過する作動油を排出するための通路部を有し、
     前記通路部は、前記スプールの前記中立位置において、少なくとも前記第1ポートと前記供給ポートとの間の第1弁座部と対向する位置に配置されている、請求項1に記載の流量制御弁。
    The oil passage includes a supply port to which hydraulic oil is supplied, a discharge port from which hydraulic oil is discharged, and a first port and a second port that allow the hydraulic oil to flow in or out alternately.
    In the neutral position, the spool is provided so as to communicate with the discharge port from the outer peripheral surface of the spool through the inside of the spool, and discharges hydraulic oil passing between the valve seat portion and the spool. Having a passage part for
    2. The flow control valve according to claim 1, wherein the passage portion is disposed at a position facing at least a first valve seat portion between the first port and the supply port in the neutral position of the spool. .
  7.  前記通路部は、前記スプールの前記中立位置において、前記第1弁座部の前記供給ポート側の一端部よりも、前記第1弁座部の前記第1ポート側の他端部に近い位置に配置されている、請求項6に記載の流量制御弁。 The passage portion is closer to the other end portion of the first valve seat portion on the first port side than the one end portion of the first valve seat portion on the supply port side in the neutral position of the spool. The flow control valve according to claim 6, which is arranged.
  8.  前記通路部は、前記スプールが前記中立位置から前記第1ポート側の前記スタンバイ位置に移動する際に、前記第1ポートを通過して、前記第1ポートと前記排出ポートとの間の第2弁座部と対向する位置に移動する、請求項7に記載の流量制御弁。 The passage portion passes through the first port when the spool moves from the neutral position to the standby position on the first port side, and a second portion between the first port and the discharge port. The flow control valve according to claim 7, wherein the flow control valve moves to a position facing the valve seat portion.
  9.  前記スプールの前記中立位置における前記通路部と前記第1弁座部の前記一端部との間の長さは、前記中立位置から前記第2ポート側への前記スプールの移動可能距離以上である、請求項6に記載の流量制御弁。 The length between the passage portion in the neutral position of the spool and the one end portion of the first valve seat portion is equal to or longer than the movable distance of the spool from the neutral position to the second port side. The flow control valve according to claim 6.
  10.  前記通路部は、前記供給ポートの内径よりも小さい内径を有する、請求項6に記載の流量制御弁。 The flow control valve according to claim 6, wherein the passage portion has an inner diameter smaller than an inner diameter of the supply port.
PCT/JP2016/072190 2016-07-28 2016-07-28 Flow control valve WO2018020642A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/072190 WO2018020642A1 (en) 2016-07-28 2016-07-28 Flow control valve
JP2016567886A JP6067953B1 (en) 2016-07-28 2016-07-28 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/072190 WO2018020642A1 (en) 2016-07-28 2016-07-28 Flow control valve

Publications (1)

Publication Number Publication Date
WO2018020642A1 true WO2018020642A1 (en) 2018-02-01

Family

ID=57890555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072190 WO2018020642A1 (en) 2016-07-28 2016-07-28 Flow control valve

Country Status (2)

Country Link
JP (1) JP6067953B1 (en)
WO (1) WO2018020642A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113251174A (en) * 2021-05-27 2021-08-13 徐州重型机械有限公司 Multi-way valve and crane
JP2022010725A (en) * 2020-06-29 2022-01-17 株式会社クボタ Control valve
TWI808544B (en) * 2020-12-10 2023-07-11 日商住友重機械工業股份有限公司 Spool type flow control valve and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10927866B2 (en) * 2017-12-15 2021-02-23 Eaton Intelligent Power Limited Leakage modulation in hydraulic systems containing a three-way spool valve
CN110450099A (en) * 2019-09-16 2019-11-15 三一重机有限公司 Axle sleeve compact system and sleeve pressing machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228172A (en) * 1985-03-29 1986-10-11 Toyoda Autom Loom Works Ltd Insensitive zone time shortening device in directional control valve
JP2002195425A (en) * 2000-12-28 2002-07-10 Kayaba Ind Co Ltd Hydraulic control valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228172A (en) * 1985-03-29 1986-10-11 Toyoda Autom Loom Works Ltd Insensitive zone time shortening device in directional control valve
JP2002195425A (en) * 2000-12-28 2002-07-10 Kayaba Ind Co Ltd Hydraulic control valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022010725A (en) * 2020-06-29 2022-01-17 株式会社クボタ Control valve
JP7386764B2 (en) 2020-06-29 2023-11-27 株式会社クボタ control valve
TWI808544B (en) * 2020-12-10 2023-07-11 日商住友重機械工業股份有限公司 Spool type flow control valve and manufacturing method thereof
CN113251174A (en) * 2021-05-27 2021-08-13 徐州重型机械有限公司 Multi-way valve and crane

Also Published As

Publication number Publication date
JP6067953B1 (en) 2017-01-25
JPWO2018020642A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6067953B1 (en) Flow control valve
KR101671607B1 (en) Actuator
KR20180071261A (en) Fluid control valve
JP6167004B2 (en) Control valve
USRE38355E1 (en) Electrohydraulic control device for double-acting consumer
KR20130103304A (en) Double check valve for construction equipment
KR20150099825A (en) Actuator unit
US9222594B2 (en) Directional valve equipped with pressure control
JP2019215051A (en) Fluid circuit of air cylinder
JP6700137B2 (en) Flow control valve
CA2996155A1 (en) Double acting hydraulic pressure intensifier
JP2011085104A (en) Hydraulic motor drive device
CN111365313B (en) Valve core friction force compensation hydraulic valve under centrifugal environment
KR100965041B1 (en) Actuator control device
US5799485A (en) Electrohydraulic control device for double-acting consumer
JPH11230106A (en) Hydraulic control device
JP6227520B2 (en) Internal pilot type 3 port selector valve
JP3627995B2 (en) Cylinder lowering prevention valve device
KR101505016B1 (en) Automatic pressure regulating control device for reciprocatable double acting booster
CN113775687A (en) Cylinder device
KR101411234B1 (en) Reciprocatable double acting booster and Operating method thereof
JP5470180B2 (en) Control valve
JPH077601Y2 (en) Confluence controller
JPH1061791A (en) Sine flow control valve
CN115962253A (en) Cylinder device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016567886

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910545

Country of ref document: EP

Kind code of ref document: A1