WO2018020591A1 - 有機性排水の処理方法 - Google Patents

有機性排水の処理方法 Download PDF

Info

Publication number
WO2018020591A1
WO2018020591A1 PCT/JP2016/071926 JP2016071926W WO2018020591A1 WO 2018020591 A1 WO2018020591 A1 WO 2018020591A1 JP 2016071926 W JP2016071926 W JP 2016071926W WO 2018020591 A1 WO2018020591 A1 WO 2018020591A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
reverse osmosis
osmosis membrane
treatment
organic wastewater
Prior art date
Application number
PCT/JP2016/071926
Other languages
English (en)
French (fr)
Inventor
新井 伸説
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to PCT/JP2016/071926 priority Critical patent/WO2018020591A1/ja
Publication of WO2018020591A1 publication Critical patent/WO2018020591A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for treating organic wastewater such as factory wastewater, and more particularly to a water treatment method using a membrane separation device for recovering organic wastewater and reusing it as raw water for producing pure water.
  • RO membranes are widely used because they can remove high-molecular-weight organic substances and provide high-quality treated water. Since this RO membrane has a small pore size, if the concentration of the inflowing organic substance increases, the organic substance tends to accumulate on the membrane surface, and the filtration resistance may increase significantly, making it difficult to pass water. There is a problem.
  • Patent Document 1 discloses organic wastewater in which factory wastewater or the like is treated with a nanofiltration membrane or a reverse osmosis membrane and then concentrated water is biologically treated. The processing method is disclosed. According to this method, it is possible to prevent the separation membrane from being clogged due to a biological metabolite generated by biological treatment. Moreover, there exists an advantage that the scale of a biological treatment apparatus can be made small by making concentrated water into the water for biological treatment.
  • Patent Document 2 an organic substance that is subjected to a reverse osmosis membrane treatment by adding a pH adjuster to precipitate a scale component, removing the scale component deposited by a separation membrane such as a nanofiltration membrane, and then adding an alkali.
  • Patent Document 3 discloses an organic wastewater treatment method in which an alkali agent is added and a separation membrane treatment is performed, and then a scale dispersant is added and a reverse osmosis membrane treatment is performed. According to these methods, scale obstacles in the reverse osmosis membrane can be avoided, and highly purified reverse osmosis membrane treated water can be obtained stably.
  • Patent Document 4 discloses an organic wastewater treatment method in which a photoresist development waste solution is subjected to a nanofiltration membrane (NF membrane) treatment or a reverse osmosis membrane treatment under a pH of 9.5 to 12 to regenerate the development waste solution.
  • NF membrane nanofiltration membrane
  • a reverse osmosis membrane treatment under a pH of 9.5 to 12 to regenerate the development waste solution.
  • This technique is considered to be effective as a processing method considering the characteristics of the photoresist in detail and considering the chemical resistance of the NF membrane or reverse osmosis membrane.
  • Patent Document 5 discloses anaerobic treatment of organic wastewater from a semiconductor / liquid crystal factory (presumed to be similar to the photoresist development wastewater of Patent Document 4), and the treated water is subjected to ultrafiltration membrane treatment and reverse osmosis.
  • An organic wastewater treatment method is disclosed in which membrane treatment is performed and concentrated water is returned to anaerobic treatment. According to this method, it is possible to increase the water recovery rate.
  • the organic wastewater is subjected to anaerobic treatment
  • the treated water is subjected to ultrafiltration membrane treatment and reverse osmosis membrane treatment
  • the concentrated water of the reverse osmosis membrane is subjected to anaerobic treatment. Since it returns to processing, there exists a problem that the scale of a biological treatment apparatus will become large.
  • Organic wastewater such as factory wastewater can avoid slime damage caused by bacterial growth, and organic wastewater can be made compact in its processing equipment.
  • An object is to provide a processing method.
  • the present invention provides an organic wastewater having a reverse osmosis membrane separation step for separating organic wastewater into permeated water and concentrated water using a reverse osmosis membrane, and a biological treatment step for biologically treating the concentrated water.
  • the organic effluent treatment method is characterized in that the reverse osmosis membrane separation step is carried out at an organic effluent pH of 9 or more (Invention 1).
  • invention 1 by treating the organic wastewater with a reverse osmosis membrane at a pH of 9 or higher, the growth of bacterial cells can be suppressed, and slime failure in the reverse osmosis membrane can be avoided. Even if the organic wastewater contains a photoresist, the photoresist dissolves in an alkaline state and precipitates in an acidic state. Therefore, by setting the pH to 9 or more, the photoresist in the organic wastewater is It becomes a dissolved state, and obstruction
  • a separation membrane treatment step is provided before the reverse osmosis membrane separation step, and the separation membrane treatment step is carried out with organic wastewater having a pH of 9 or more (Invention 2).
  • invention 2 by treating the water to be treated with a separation membrane at a pH of 9 or more, the growth of bacterial cells can be suppressed, and slime failure in the separation membrane can be avoided. Even if the organic waste water contains a photoresist, the photoresist dissolves in an alkaline state and precipitates in an acidic state. Therefore, by setting the pH to 9 or more, the photoresist is in a dissolved state. In addition, blockage of the separation membrane can be avoided. Furthermore, since the pH hardly fluctuates in the separation membrane treatment step, the separation membrane permeated water also has a pH of 9 or higher, so that the subsequent reverse osmosis membrane separation step can also be carried out at a pH of 9 or higher.
  • invention 3 it is not necessary to use a scale dispersant together if the content of the inorganic component of the water to be treated is usually a trace amount. Since it is concentrated by reverse osmosis membrane treatment under conditions, there is a concern of scale deposition if inorganic components are contained in the water to be treated even at a minute concentration. Therefore, by using a scale dispersant in combination, it is possible to prevent the scale from precipitating in the concentrated water.
  • invention 4 when a plurality of types of organic wastewater are treated, and it is difficult to apply the present invention (Inventions 1 to 3) to some of them, the organic wastewater is separated in advance. Separately, by directly performing biological treatment, a plurality of types of organic wastewater can be treated while avoiding clogging of the separation membrane.
  • 1 is a system diagram showing a water treatment system capable of implementing an organic wastewater treatment method according to a first embodiment of the present invention. It is a systematic diagram which shows the water treatment system which can implement the processing method of the organic waste_water
  • FIG. 1 shows a water treatment system to which the organic wastewater treatment method of the present embodiment can be applied.
  • a reverse osmosis membrane device 2 is placed in a raw water flow path 1 into which organic wastewater W as raw water flows.
  • the reverse osmosis membrane device 2 is branched into a permeated water flow path 3 from which the permeated water W1 is discharged and a concentrated water flow path 4 from which the concentrated water W2 is discharged.
  • the concentrated water flow path 4 communicates with the biological treatment tank 5, and the biological treated water W 3 is discharged from the biological treatment tank 5 via the discharge path 8.
  • a first pH adjuster supply mechanism 6 is connected to the raw water flow path 1, and a second pH adjuster supply mechanism 7 is connected to the concentrated water flow path 4.
  • the organic waste water W to be treated is not particularly limited as long as it is an organic matter-containing waste water that is normally biologically treated.
  • waste water from an electronic component production process such as semiconductor production or liquid crystal production.
  • Etc. development process wastewater containing a photoresist, tetramethylammonium hydroxide, monoethanolamine, and other organic solvents, separation process wastewater, rinse wastewater in each process, and the like are suitable as wastewater to be treated in the present invention.
  • organic wastewater examples include organic wastewater containing isopropyl alcohol, ethyl alcohol, and the like, organic nitrogen such as monoethanolamine (MEA) and tetramethylammonium hydroxide (TMAH), and ammonia nitrogen.
  • organic waste water and organic waste water containing organic sulfur compounds such as dimethyl sulfoxide (DMSO) can be mentioned.
  • a polyamide composite membrane can be suitably used as the reverse osmosis membrane device 2. From the standpoint of reusing the reverse osmosis membrane treated water as the raw water of the pure water after the subsequent treatment if necessary, it is preferable that the organic components contained in the treated water can be removed as much as possible, and the organic component removal rate A relatively high reverse osmosis membrane for brine / seawater desalination can also be suitably used. A reverse osmosis membrane having a relatively low removal rate may be used in multiple stages.
  • the biological treatment method in the biological treatment tank 5 is not particularly limited, and aerobic and anaerobic biological treatment can be suitably used, but aerobic biological treatment is generally performed. Specifically, the treatment is performed in a transient manner by a biofilm system in which activated sludge is attached to a carrier and held. In addition, the transient treatment of the aerobic biological treatment does not require concentration management by sedimentation separation, return and withdrawal of sludge, and operation management is easy. In addition, when the SS generated in the latter stage is aggregated and removed, a part of residual organic matter that cannot be removed by biological treatment can also be removed.
  • the aerobic biological treatment method may be any microbial bed method such as a fixed bed method, a fluidized bed method, and a developed bed method.
  • an aeration tank provided with oxygen gas supply means such as an air diffuser for supplying oxygen (air) into the tank and an aerator is used. be able to.
  • the carrier activated carbon, various plastic carriers, sponge carriers and the like can be used, but a sponge carrier is preferable because microorganisms can be maintained at a high concentration.
  • the sponge material is not particularly limited, but ester polyurethane is preferable.
  • the first pH adjuster supply mechanism 6 adds an alkaline agent so that the organic waste water W in the reverse osmosis membrane device 2 has a pH of 9 or more.
  • an alkaline agent so that the organic waste water W in the reverse osmosis membrane device 2 has a pH of 9 or more.
  • the second pH adjuster supply mechanism 7 adds an acid agent to the concentrated water W2 of the reverse osmosis membrane device 2 so that the treatment in the biological treatment tank 5 is suitable for biological treatment, and adjusts the pH to 6-8. Adjust to.
  • the acid agent As this pH adjuster, A cheap sulfuric acid and hydrochloric acid can be used suitably.
  • an alkaline agent as a pH adjusting agent is added to the organic waste water W to adjust the pH to 9 or more, preferably pH 9 to 12, particularly pH 10 to 11.
  • the pH of the organic waste water W is adjusted in this way, the growth of bacterial cells in the reverse osmosis membrane device 2 can be suppressed.
  • the organic waste water W contains a photoresist, precipitation of a photoresist can also be avoided.
  • the development / peeling process wastewater is alkaline, and the pH may exceed 12 depending on the wastewater.
  • an acid agent as a pH adjuster to adjust the pH to 9 to 12, particularly 10 to 11.
  • the acid agent is not particularly limited, and inexpensive sulfuric acid and hydrochloric acid can be preferably used.
  • the reverse osmosis membrane device 2 is permeated from the raw water channel 1 to separate the permeated water W1 and the concentrated water W2 (reverse osmosis membrane separation step).
  • the organic waste water W contains a photoresist
  • the photoresist dissolves in an alkaline state and precipitates in an acidic state, so that the photoresist is in a dissolved state by setting the pH to 9 or more. Blockage of the reverse osmosis membrane device 2 can be avoided.
  • the concentrated water W2 of the reverse osmosis membrane device 2 is supplied from the concentrated water channel 4 to the biological treatment tank 5, but since this concentrated water W2 is alkaline, the pH is adjusted as necessary when supplying the biological treatment. It is preferable to do.
  • the second pH adjusting agent supply mechanism 7 adjusts the pH to 6 to 8 by adding an acid agent to the concentrated water W2 of the reverse osmosis membrane device 2.
  • an acid agent there is no restriction
  • the pH of the concentrated water W2 in the biological treatment tank 5 is less than 6 or exceeds 8, the organic matter decomposition becomes insufficient.
  • the biological treatment tank 5 can be reduced in size because the concentrated water W2 is concentrated in the reverse osmosis membrane device 2 and the organic matter is greatly reduced in volume compared to the organic waste water W. Then, the biologically treated water W3 is discharged from the biological treatment tank 5 via the discharge path 8, and this biologically treated water W3 is reused as raw pure water by performing an optional subsequent treatment as necessary. be able to.
  • the permeated water W1 of the reverse osmosis membrane device 2 can be reused as raw water of pure water by performing an arbitrary subsequent treatment as necessary.
  • FIG. 2 shows a water treatment system capable of using the organic wastewater treatment method of the present embodiment.
  • a separation membrane turbidity removal
  • Membrane 11 is provided, and is branched into a permeated water flow channel 12 through which the permeated water W4 is discharged from the separation membrane 11 and a separation membrane concentrated water flow channel 13 through which the separation membrane concentrated water W5 is discharged.
  • the permeate water W4 is introduced from the permeate channel 12 into the reverse osmosis membrane device 2, the same configuration as that of the first embodiment described above is provided.
  • a reverse osmosis membrane device 2 is provided in the permeate flow channel 12, and a permeate flow channel 3 from which the permeate water W1 is discharged from the reverse osmosis membrane device 2 and a concentrated water flow channel 4 from which the concentrated water W2 is discharged.
  • the raw water channel 1 has a first pH adjuster supply mechanism 6 and a scale dispersant supply mechanism S, the concentrated water channel 4 has a second pH adjuster supply mechanism 7, and the separation membrane concentrated water channel 13.
  • a third pH adjuster supply mechanism 14 is connected to each of the two.
  • a microfiltration membrane or an ultrafiltration membrane as the separation membrane 11 from the viewpoint of removing insoluble components that lead to blockage of the reverse osmosis membrane device 2. Further, since the treatment is performed under alkaline conditions, it is preferable to use a separation membrane having high alkali resistance.
  • the water to be treated contains a photoresist, it is preferable to remove the photoresist component of fine particles partially precipitated under the condition of pH 9-12, so that ultrafiltration with a molecular weight cut off of several tens of thousands to several hundred thousand daltons. It is preferable to use a membrane.
  • a polysulfone membrane or a polyether sulfone membrane having high alkali resistance can be preferably used.
  • a chelating agent such as ethylenediaminetetraacetic acid, a phosphonic acid-based dispersant, or the like can be suitably used.
  • an alkaline agent as a pH adjusting agent is added to the organic waste water W to adjust the pH to 9 or more, preferably 9 to 12, particularly 10 to 11.
  • the pH of the organic waste water W By adjusting the pH of the organic waste water W in this way, the growth of bacterial cells in the separation membrane 11 can be suppressed.
  • the organic waste water W contains a photoresist, precipitation of a photoresist can also be avoided.
  • the development / peeling process wastewater is alkaline, and the pH may exceed 12 depending on the wastewater.
  • an acid agent as a pH adjuster to adjust the pH to 9 to 12, particularly 10 to 11.
  • the acid agent is not particularly limited, and inexpensive sulfuric acid and hydrochloric acid can be preferably used.
  • a scale dispersing agent is added from the scale dispersing agent supply mechanism S as needed.
  • the organic waste water W does not contain an inorganic component
  • the treatment is performed by the separation membrane 11 and the reverse osmosis membrane device 2 under high pH conditions, Even if there is an inorganic component in the water to be treated, there is a concern of scale deposition. Therefore, it is preferable to use a scale solution in combination.
  • the scale dispersant may be added before the separation membrane 11 as in the present embodiment in order to avoid scale obstacles in the separation membrane 11, but the reverse osmosis membrane device in consideration of the concentration rate in the reverse osmosis membrane device 2. Additional addition may be performed before the second step.
  • the separation membrane 11 is treated from the raw water flow path 1 to remove insoluble components that lead to the blockage of the reverse osmosis membrane device 2 (separation membrane treatment step).
  • the permeated water W4 of the separation membrane 11 is permeated through the reverse osmosis membrane device 2 and separated into the permeated water W1 and the concentrated water W2 (reverse osmosis membrane separation step).
  • the pH of the permeated water W4 in the reverse osmosis membrane separation step is the same as the pH of the organic waste water W adjusted in the above-described separation membrane treatment step. Therefore, the proliferation of the microbial cells in the reverse osmosis membrane device 2 can be suppressed.
  • the concentrated water W2 of the reverse osmosis membrane device 2 is supplied from the concentrated water channel 4 to the biological treatment tank 5.
  • the pH is adjusted to 6 to 6 by adding an acid agent by the second pH adjusting agent supply mechanism 7.
  • Adjust to 8 the concentrated water W5 of the separation membrane 11 is also supplied from the separation membrane concentrated water flow path 13 to the biological treatment tank 5 for biological treatment, but an acid agent is added by the third pH adjuster supply mechanism 14.
  • the pH is adjusted to 6-8.
  • biological treatment is performed in this biological treatment tank 5.
  • the biological treatment tank 5 is reduced in size because the concentrated water W2 and the concentrated water W5 are concentrated in the separation membrane 11 and the reverse osmosis membrane device 2 and the organic matter is greatly reduced in volume compared to the organic waste water W. You can plan.
  • the biologically treated water W3 is discharged from the biological treatment tank 5 via the discharge path 8, and this biologically treated water W3 is reused as raw pure water by performing an optional subsequent treatment as necessary. be able to.
  • the permeated water W1 of the reverse osmosis membrane device 2 can be reused as raw water of pure water by performing an arbitrary subsequent treatment as necessary.
  • the separation membrane (turbidity-eliminating membrane) 11 is provided in the previous stage of the reverse osmosis membrane device 2, and the pH of the organic waste water W is adjusted to 9 or more to suppress the clogging of the separation membrane 11.
  • blockage of the reverse osmosis membrane device 2 can be further suppressed.
  • FIG. 3 shows a water treatment system to which the organic wastewater treatment method of the present embodiment can be applied.
  • first posterior treatment means are disposed at the latter stages of the reverse osmosis membrane device 2 and the biological treatment tank 5, respectively.
  • 15 has the same configuration as that of the second embodiment described above, except that the second post-processing means 16 is included.
  • the permeated water W1 of the reverse osmosis membrane device 2 contains low molecular weight organic components, inorganic ions, and the like. Therefore, for the purpose of removing these components, as the first post-treatment means 15, an adsorption treatment device using activated carbon or the like, an ion exchange treatment device, or the like can be suitably used. Moreover, you may use the biological treatment apparatus aiming at decomposition
  • the biologically treated water W3 discharged from the biological treatment tank 5 includes suspended substances mainly composed of bacterial cells, organic components that could not be removed by biological treatment, water to be treated, ions derived from decomposition reactions, and the like. Is included. Therefore, a coagulation process, a pressure levitation process, a sand filtration process, a separation membrane process, and the like can be suitably used as the second post-processing unit 16 for removing such suspended substances. Furthermore, as a process for removing organic components and ions, an adsorption process, an ion exchange process, a reverse osmosis membrane process, and the like can be combined and used as necessary.
  • the first post-treatment unit 15 and the second post-treatment unit 16 suitable for the rear stage of the reverse osmosis membrane device 2 and the biological treatment tank 5 are provided, and the permeated water W1 and the biological body of the reverse osmosis membrane device 2 are provided.
  • the treated water W3 can be used as raw water for pure water, and can be used as raw water for various types of water.
  • the first post-treatment unit 15 and the second post-treatment unit 16 as described above merge the permeated water W1 of the reverse osmosis membrane device 2 and the biological treatment water W3 of the biological treatment tank 5 to perform the same post-treatment. May be implemented.
  • FIG. 4 shows a water treatment system to which the organic wastewater treatment method of the present embodiment can be applied.
  • the second organic wastewater W0 is separated into the biological treatment tank 5 and can be received. Except that the fourth pH adjuster supply mechanism 22 is connected to the raw water flow path 21, it has the same configuration as the third embodiment described above.
  • This second organic waste water W0 is a waste water containing a component that cannot prevent clogging of the reverse osmosis membrane device 2 and the separation membrane 11 even under alkaline conditions.
  • the properties of the plurality of types of organic wastewater are determined, and blockage of the reverse osmosis membrane device 2 and the separation membrane 11 cannot be avoided even at pH 9 or higher. It sorts into the 2nd organic waste water W0 in which the component is contained, and the organic waste water W which is not so beforehand.
  • an alkaline agent as a pH adjuster is added to the organic waste water W so that the pH is 9 or more, preferably 9 to 12, particularly 10 to 10. Adjust to 11.
  • the pH of the organic waste water W is 9 or more, preferably 9 to 12, particularly 10 to 10. Adjust to 11.
  • a scale dispersant is added from the scale dispersant supply mechanism S as necessary.
  • the organic waste water W does not contain an inorganic component, it is not necessary to use a scale dispersant together.
  • the treatment is performed by the separation membrane 11 and the reverse osmosis membrane device 2 under high pH conditions, Even if there is an inorganic component in the water to be treated, there is a concern of scale deposition. Therefore, it is preferable to use a scale solution in combination.
  • the scale dispersant may be added before the separation membrane 11 as in the present embodiment in order to avoid scale obstacles in the separation membrane 11, but the reverse osmosis membrane device in consideration of the concentration rate in the reverse osmosis membrane device 2. Additional addition may be performed before the second step.
  • the separation membrane 11 is treated from the raw water flow path 1 to remove insoluble components that lead to the blockage of the reverse osmosis membrane device 2 (separation membrane treatment step).
  • the permeated water W4 from the separation membrane 11 is permeated through the reverse osmosis membrane device 2 and separated into the permeated water W1 and the concentrated water W2 (reverse osmosis membrane separation step).
  • the pH of the permeated water W4 in the reverse osmosis membrane separation step is the same as the pH of the organic waste water W adjusted in the above-described separation membrane treatment step.
  • the permeated water W1 of the reverse osmosis membrane device 2 is treated by the first post-treatment means 15 and can be used as various irrigation water, or can be pure water or raw water of ultrapure water.
  • the concentrated water W2 of the reverse osmosis membrane device 2 is supplied from the concentrated water flow path 4 to the biological treatment tank 5, and an acid agent is added by the second pH adjuster supply mechanism 7 to adjust the pH to 6-8. adjust.
  • the concentrated water W5 of the separation membrane 11 is also supplied to the biological treatment tank 5 from the separation membrane concentrated water flow path 13 for biological treatment, but an acid agent is added from the third pH adjuster supply mechanism 14. Adjust the pH to 6-8.
  • the second organic waste water W0 is also supplied to the biological treatment tank 5 from the second raw water flow path 21 and biologically treated. However, the pH is adjusted to 6 by adding an acid agent from the fourth pH adjuster supply mechanism 22. Adjust to ⁇ 8.
  • the biological treatment tank 5 is small in size because the concentrated water W2 and the separation membrane concentrated water W5 are concentrated in the separation membrane 11 and the reverse osmosis membrane device 2, and the volume is significantly reduced compared to the organic waste water W. Can be achieved.
  • the biologically treated water W3 is discharged from the biological treatment tank 5 via the discharge path 8, and this biologically treated water W3 is reused as raw pure water by performing an optional subsequent treatment as necessary. be able to.
  • the permeated water W1 of the reverse osmosis membrane device 2 can be reused as raw water of pure water by performing an arbitrary subsequent treatment as necessary.
  • the biologically treated water W3 treated in the biological treatment tank 5 is treated by the second post-treatment means 16 and can be used as various irrigation water, or can be used as pure water or raw water of ultrapure water.
  • the first post-treatment unit 15 and the second post-treatment unit 16 as described above merge the permeated water W2 of the reverse osmosis membrane device 2 and the biological treatment water W3 of the biological treatment tank 5 to perform the same post-treatment. May be implemented.
  • the second organic wastewater W0 contains a component that cannot prevent clogging of the reverse osmosis membrane device 2 and the separation membrane 11 even under alkaline conditions. If there is, the wastewater containing the blocking component (second organic wastewater W0) and the wastewater not containing the blocking component (organic wastewater W) are separated upstream. Water treatment methods can be applied.
  • first post-processing unit 15 and the second post-processing unit 16 a deaeration device, a UV device, or the like may be used, and a combination thereof can be appropriately selected.
  • a coagulation treatment device, a solid-liquid separation device, or the like may be provided as pretreatment means.
  • Wellclin A801 manufactured by Kurita Kogyo Co., Ltd.
  • a sodium hydroxide solution is added to adjust the pH to 10.5.
  • the organic waste water W is treated with a reverse osmosis membrane device (KURA-20XU, manufactured by Kurita Kogyo Co., Ltd.) with an operating flux of 0.7 m / d (constant treatment water flow operation), a water temperature of 23 ° C. and a water recovery rate of 80% Processed and observed over time in processing performance.
  • a reverse osmosis membrane device (KURA-20XU, manufactured by Kurita Kogyo Co., Ltd.) with an operating flux of 0.7 m / d (constant treatment water flow operation), a water temperature of 23 ° C. and a water recovery rate of 80% Processed and observed over time in processing performance.
  • the transmembrane pressure difference of RO during treatment in the reverse osmosis membrane device increased by 0.18 MPa when water was passed for about 10 days, and the rate of increase was calculated to be about 16 kPa / d.
  • the implementation standard for chemical cleaning for the purpose of recovering RO performance is “Differential pressure rise 0.5 MPa”
  • the number of continuous water passage days is 31 days ( ⁇ 500 (kPa) ⁇ 16 (kPa / d)). It was estimated that stable water flow with a washing frequency of once / month was possible.
  • Table 1 shows the transmembrane pressure difference of this RO membrane, the rate of increase of the differential pressure, and the estimated chemical cleaning frequency.
  • the concentrated water of the reverse osmosis membrane device was introduced into an aerobic biological treatment tank to perform biological treatment.
  • polyurethane sponge (3 mm square) was added at a filling rate of 40%, activated sludge (MLSS about 6,000 mg / L) was added as seed sludge and acclimatized for 3 weeks.
  • the pH of the concentrated water was adjusted to 6-8.
  • the aerobic biological treatment tank which processes the concentrated water of this reverse osmosis membrane apparatus was much compact compared with the case where the whole quantity of the organic waste water W was processed.
  • Example 2 Prior to the treatment in the reverse osmosis membrane device, an ultrafiltration membrane treatment as a separation membrane was performed, and the treatment was performed in the same manner as in Example 1 except that the permeated water of the ultrafiltration membrane was used as the feed water for the reverse osmosis membrane treatment. Went.
  • the ultrafiltration membrane treatment was performed under the following conditions. ⁇ Ultrafiltration membrane: Aquaflex (manufactured by X-Flow) ⁇ Operating flux: 1m / d (constant treatment water flow rate operation) ⁇ Water temperature: 23 °C ⁇ Backwash flux: 6m / d ⁇ Operation cycle: Repeated operation for 43 minutes for water flow process + 2 minutes for backwash process ⁇ Water recovery rate: 92%
  • the RO transmembrane pressure difference during the treatment by the reverse osmosis membrane apparatus of Example 2 was increased by 0.07 MPa when water was passed for about 10 days, and the rate of increase was calculated to be about 1.5 kPa / d. If the implementation standard of chemical cleaning for the purpose of RO performance recovery is “Differential pressure increase 0.5 MPa”, the number of continuous water passages will be 333 days ( ⁇ 500 (kPa) ⁇ 1.5 (kPa / d)) It was estimated that stable water flow with a chemical cleaning frequency of once / year was possible. Table 1 also shows the transmembrane differential pressure, the differential pressure increase rate, and the estimated chemical cleaning frequency of this RO membrane.
  • Example 1 The treatment was performed in the same manner as in Example 1 except that the pH was not adjusted with sodium hydroxide.
  • the RO transmembrane pressure difference during the treatment by the reverse osmosis membrane device of Comparative Example 1 increased by 0.45 MPa when water was passed for about 10 days, and the rate of increase was calculated to be about 43 kPa / d.
  • the execution standard of chemical cleaning for the purpose of recovering RO performance is “Differential pressure increase 0.5 MPa”
  • the continuous water passage time is 12 days ( ⁇ 500 (kPa) ⁇ 43 (kPa / d)). It was found that frequent washing is necessary and stable treatment is difficult.
  • Table 1 also shows the transmembrane differential pressure, the differential pressure increase rate, and the estimated chemical cleaning frequency of this RO membrane.
  • Example 3 ⁇ Organic drainage W> As the organic waste water W, the following water quality waste water was used. ⁇ PH: 8.8 -Electrical conductivity: 21 mS / m -TOC: 110 mg / L ⁇ Ca: 0.04mg / L ⁇ TMAH: 140mg / L
  • Wellclin A801 manufactured by Kurita Kogyo Co., Ltd.
  • a sodium hydroxide solution is added to adjust the pH to 10.5. It was adjusted.
  • the transmembrane pressure difference of the ultrafiltration membrane during the treatment in the ultrafiltration membrane treatment increased by 6 kPa when water was passed for about 10 days, and the rate of increase was calculated to be about 0.4 kPa / d.
  • the execution standard of chemical cleaning for the purpose of recovering the performance of the ultrafiltration membrane (UF membrane) is “differential pressure increase 50 kPa”
  • the continuous water passage days are 125 days ( ⁇ 50 (kPa) ⁇ 0.4 (kPa) / D)), and it was estimated that stable water flow with a chemical cleaning frequency of once / April was possible.
  • the treated water of the ultrafiltration membrane (UF membrane) was water quality that can be stably treated with a reverse osmosis membrane.
  • Table 2 shows the transmembrane pressure difference of this UF membrane, the rate of increase of the differential pressure, and the estimated chemical cleaning frequency.
  • the permeated water of the ultrafiltration membrane treatment was treated with a reverse osmosis membrane device in the same manner as in Example 1, and was further subjected to biological treatment by introducing the concentrated water of the reverse osmosis membrane device into an aerobic biological treatment tank. .
  • the RO transmembrane pressure difference during the treatment by the reverse osmosis membrane device of Comparative Example 3 was increased by about 40 kPa by passing water for about 10 days, and the rate of increase was calculated to be about 3.9 kPa / d.
  • the execution standard of chemical cleaning for the purpose of recovering the performance of the ultrafiltration membrane (UF membrane) is “differential pressure increase 50 kPa”
  • the continuous water passage days are 1.3 days ( ⁇ 50 (kPa) ⁇ 40 (kPa) / D)), which required frequent chemical cleaning and was difficult to stabilize.
  • Table 2 shows the inter-membrane differential pressure of this UF membrane, the rate of increase of the differential pressure, and the estimated chemical cleaning frequency.
  • Example 3 It is possible to reduce the frequency of washing the ultrafiltration membrane from Example 3 and Comparative Example 2 by providing an ultrafiltration membrane in the previous stage of the reverse osmosis membrane device and setting the pH to 9 or more in front of the ultrafiltration membrane. did it.
  • the process by the latter reverse osmosis membrane apparatus and the process by an aerobic biological treatment tank were also able to be performed similarly to Example 2.
  • FIG. 1 It is possible to reduce the frequency of washing the ultrafiltration membrane from Example 3 and Comparative Example 2 by providing an ultrafiltration membrane in the previous stage of the reverse osmosis membrane device and setting the pH to 9 or more in front of the ultrafiltration membrane. did it.
  • the process by the latter reverse osmosis membrane apparatus and the process by an aerobic biological treatment tank were also able to be performed similarly to Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

この水処理システムは、有機性排水Wが流入する原水流路1に逆浸透膜装置2が設けられていて、この逆浸透膜装置2から透過水W1が排出される透過水流路3と濃縮水W2が排出される濃縮水流路4とに分岐している。濃縮水流路4は生物処理槽5に連通していて、この生物処理槽5から生物処理水W3が排出される。原水流路1には第一のpH調整剤供給機構6が接続している。そして、有機性排水Wにアルカリ剤を添加してpHを9以上に調整し、逆浸透膜装置2を透過させて透過水W1と濃縮水W2とに分離する。続いて、逆浸透膜装置2の濃縮水W2は、生物処理槽5で生物処理を行う。かかる有機性排水の処理方法によれば、工場排水等の有機性排水の菌体増殖によるスライム障害が回避可能であるとともに、処理装置のコンパクト化が可能となる。

Description

有機性排水の処理方法
 本発明は、工場排水等の有機性排水の処理方法に関し、特に有機性排水を回収して純水製造用の原水などとして再利用するための膜分離装置を用いた水処理方法に関する。
 近年、水資源のリサイクルが重要視されるようになり、排水を処理して回収することが積極的に行われるようになってきている。特に逆浸透(RO)膜は高分子量の有機物質をも除去することができ、高度な処理水質が得られるために、広く使用されている。このRO膜は、膜の孔径が小さいために、流入する有機物質濃度が上昇すると、膜面に有機物質が蓄積し易く、濾過抵抗の上昇が著しくなって通水が困難になる虞がある、という課題がある。
 このため膜分離装置の前段に生物処理装置を設置して、膜分離処理に先立ち排水中の有機物質濃度を低減することが、安定処理には効果的である。しかしながら、生物処理では生物代謝物が生成するため、この生物代謝物に起因して分離膜が閉塞する虞がある。また、生物処理装置で処理する処理水量が非常に多くなるため、大規模な生物処理装置が必要になってしまうなどの問題点があった。
 そこで、このような膜分離装置を用いた有機性排水の処理方法として、特許文献1には、工場排水等をナノろ過膜または逆浸透膜で処理した後、濃縮水を生物処理する有機性排水の処理方法が開示されている。この方法によれば、生物処理で生成する生物代謝物に起因した分離膜の閉塞を防止できる。また、濃縮水を生物処理の対象水とすることで、生物処理の装置規模を小さくできるという利点がある。
 また、特許文献2には、pH調整剤を添加してスケール成分を析出させ、ナノろ過膜などの分離膜で析出したスケール成分を除去した後、アルカリを添加して逆浸透膜処理する有機性排水の処理方法が開示されている。特許文献3には、アルカリ剤を添加し分離膜処理した後、スケール分散剤を添加して逆浸透膜処理する有機性排水の処理方法が開示されている。これらの方法によれば、逆浸透膜でのスケール障害を回避し、高純度の逆浸透膜処理水を安定して得ることができる。
 特許文献4には、フォトレジスト現像廃液をpH9.5~12の条件下でナノろ過膜(NF膜)処理、または逆浸透膜処理し、現像廃液を再生処理する有機性排水の処理方法が開示されている。この技術においては、フォトレジストの特性を詳細に調査し該特性を考慮した処理方法、あるいはNF膜、逆浸透膜の耐薬品性を考慮した処理方法として有効であると考えられる。
 さらに特許文献5には、半導体・液晶工場の有機性排水(特許文献4のフォトレジスト現像排水と同類の排水と推定される)を嫌気処理し、この処理水を限外濾過膜処理、逆浸透膜処理し、濃縮水を嫌気処理へ返送する有機性排水の処理方法が開示されている。この方法によれば、水回収率を高めることが可能である。
特開2009-72766号公報 特開平9-276865号公報 特開2013-169511号公報 特開平11-192481号公報 特開2010-17614号公報
 しかしながら、特許文献1に記載された有機性排水の処理方法では、被処理水が生分解性の有機物を含んでいる場合、ナノろ過膜または逆浸透膜に微生物が繁殖しスライム障害が発生するという問題点がある。このスライム障害は、スライムコントロール剤(殺菌剤)の併用である程度は抑制することができるが、スライムコントロール剤は高価であることからコスト増大につながる。また被処理水中の有機成分(生分解性成分)濃度が高い場合には、スライムコントロール剤による菌体増殖抑制は事実上困難である。さらに、被処理水中に分離膜を閉塞させる成分が含まれている場合には、ナノろ過膜または逆浸透膜の閉塞が発生し、安定処理ができないという問題点もある。この対策として、薬品等を用いた洗浄を頻繁に実施する必要があり、洗浄コストに伴う運用コストアップ、さらには高頻度の薬品洗浄に起因した膜の劣化(交換頻度の増大)につながるため好ましくない、という問題点がある。
 また、特許文献2及び特許文献3に記載された有機性排水の処理方法では、ナノろ過膜などの分離膜で析出したスケール成分を除去したり、分散剤で分散させたりした後、有機性排水を逆浸透膜で処理しているので、逆浸透膜でのスケール障害を回避するこができるが、今度は分離膜においてスケール障害が発生する虞がある、という問題点がある。
 特許文献4に記載された有機性排水の処理方法では、ナノろ過膜や逆浸透膜の濃縮水の処理方法については言及されておらず、濃縮水の処理方法をも含めた総合的な水処理方法の提案には至っていない。また、ナノろ過膜の前段に孔径25μm程度の保安フィルターを設置することが好ましい旨記載されているが、保安フィルターではナノろ過膜の閉塞を抑制できるような十分な除濁効果は得られない、という問題点がある。
 さらに、特許文献5に記載された有機性排水の処理方法では、有機性排水を嫌気処理し、この処理水を限外濾過膜処理及び逆浸透膜処理し、この逆浸透膜の濃縮水を嫌気処理へ返送しているので、生物処理装置の規模が大きくなってしまう、という問題点がある。
 本発明は、上記問題点を解決するためになされたものであり、工場排水等の有機性排水を菌体増殖によるスライム障害を回避可能であり、処理装置のコンパクト化の可能な有機性排水の処理方法を提供することを目的とする。
 上記目的に鑑み、本発明は有機性排水を逆浸透膜を用いて透過水と濃縮水とに分離する逆浸透膜分離工程と、前記濃縮水を生物処理する生物処理工程とを有する有機性排水の水処理方法において、前記逆浸透膜分離工程が有機性排水をpH9以上として実施されることを特徴とする有機性排水の処理方法を提供する(発明1)。
 かかる発明(発明1)によれば、有機性排水をpH9以上として逆浸透膜で処理することで菌体の増殖が抑制でき、逆浸透膜におけるスライム障害を回避することができる。また、有機性排水中にフォトレジストが含まれている場合であっても、フォトレジストはアルカリ性で溶解し酸性で析出するので、pHを9以上とすることで、有機性排水中のフォトレジストは溶解した状態となり、逆浸透膜の閉塞を回避することができる。さらに、生物処理する濃縮水は有機物が濃縮されて減容化されているので、生物処理装置を大型化する必要がない。
 上記発明(発明1)においては、前記逆浸透膜分離工程の前段に分離膜処理工程を有し、前記分離膜処理工程が有機性排水をpH9以上として実施されるのが好ましい(発明2)。
 かかる発明(発明2)によれば、被処理水をpH9以上として分離膜処理することで菌体の増殖が抑制でき、分離膜におけるスライム障害を回避することができる。また、有機性排水中にフォトレジストが含まれている場合であっても、このフォトレジストはアルカリ性で溶解し酸性で析出するので、pHを9以上とすることで、フォトレジストは溶解した状態となり、分離膜の閉塞を回避することができる。さらに、分離膜処理工程においてpHはほとんど変動しないので、分離膜透過水もpH9以上となるので、後段の逆浸透膜分離工程もpH9以上で実施することができる。
 上記発明(発明1,2)においては、前記有機性排水にあらかじめスケール分散剤を添加するのが好ましい(発明3)。
 かかる発明(発明3)によれば、通常被処理水の無機成分の含有量が微量であれば、スケール分散剤を併用する必要はないが、本発明(発明1,2)においては、高pH条件下で逆浸透膜処理により濃縮されるため、微量濃度であっても被処理水中に無機成分が含まれるとスケール析出の懸念がある。そこで、スケール分散剤を併用することで、濃縮水へのスケールの析出を防止することができる。
 上記発明(発明1~3)においては、前記有機性排水が複数種あり、この複数種の有機性排水の性状を判定し、該複数種の有機性排水の一部にpH9以上でも逆浸透膜装置の閉塞を回避できない成分が含まれている場合には、閉塞成分が含まれている該一部の有機性排水のみを分別して前記生物処理工程に供給するのが好ましい(発明4)。
 かかる発明(発明4)によれば、複数種の有機性排水を処理する場合であって、その一部に本発明(発明1~3)の適用が困難なときには、当該有機性排水をあらかじめ分別して直接生物処理することで、分離膜の閉塞を回避して複数種の有機性排水を処理することができる。
本発明の第一の実施形態による有機性排水の処理方法を実施可能な水処理システムを示す系統図である。 本発明の第二の実施形態による有機性排水の処理方法を実施可能な水処理システムを示す系統図である。 本発明の第三の実施形態による有機性排水の処理方法を実施可能な水処理システムを示す系統図である。 本発明の第四の実施形態による有機性排水の処理方法を実施可能な水処理システムを示す系統図である。
 以下、本発明の有機性排水の処理方法の第一の実施形態について図1に基づいて詳細に説明する。
 図1は、本実施形態の有機性排水の処理方法を適用可能な水処理システムを示しており、同図において原水としての有機性排水Wが流入する原水流路1には逆浸透膜装置2が設けられていて、この逆浸透膜装置2から透過水W1が排出される透過水流路3と濃縮水W2が排出される濃縮水流路4とに分岐している。この濃縮水流路4は生物処理槽5に連通していて、この生物処理槽5から排出路8を経由して生物処理水W3が排出される構成となっている。そして、原水流路1には第一のpH調整剤供給機構6が、濃縮水流路4には第二のpH調整剤供給機構7がそれぞれ接続している。
 本発明において、処理対象となる有機性排水Wは、通常生物処理される有機物含有排水であれば良く、特に限定されるものではないが、例えば、半導体製造、液晶製造など電子部品製造工程の排水などが挙げられる。特にフォトレジスト、テトラメチルアンモニウムヒドロキシド、モノエタノールアミン、その他有機性溶剤などを含む現像工程排水、剥離工程排水、各工程のリンス排水などが本発明の処理対象の排水として適している。
 このような有機性排水としては例えば、イソプロピルアルコール、エチルアルコールなどを含有する有機性排水、モノエタノールアミン(MEA)、テトラメチルアンモニウムハイドロオキサイド(TMAH)などの有機態窒素、アンモニア態窒素を含有する有機性排水、ジメチルスルホキシド(DMSO)などの有機硫黄化合物を含有する有機性排水が挙げられる。
 逆浸透膜装置2としては、ポリアミド系複合膜を好適に用いることができる。逆浸透膜処理水を、必要に応じて後段処理した後、純水の原水として再利用するという観点では、被処理水中に含まれる有機成分を可能な限り除去できることが好ましく、有機成分の除去率が比較的高いかん水・海水淡水化用の逆浸透膜も好適に用いることかできる。また、比較的除去率が低い逆浸透膜を多段で用いても良い。
 本発明において、生物処理槽5における生物処理方法としては特に制限はなく、好気性、嫌気性の生物処理を好適に用いることができるが、好気性生物処理を行うのが一般的である。具体的には、活性汚泥を担体に付着させて保持する生物膜方式により一過式で処理を行う。なお、好気性生物処理の一過式処理は、汚泥の沈降分離や返送、引抜きによる濃度管理が不要で、運転管理が容易である。また、後段で発生したSSを凝集して除去する際、生物処理で除去しきれない残存有機物も一部除去できる。
 好気性生物処理の方式は、固定床式、流動床式、展開床式など任意の微生物床方式でよい。好気性状態で微生物的に有機物を分解する好気性生物処理槽としては、槽内に酸素(空気)を供給するための散気管、曝気機などの酸素ガス供給手段が設けられた曝気槽を用いることができる。
 担体としては、活性炭、種々のプラスチック担体、スポンジ担体などがいずれも使用できるが、スポンジ担体であれば微生物を高濃度に維持することができることから好ましい。スポンジ素材としても特に限定されないが、エステル系ポリウレタンが好適である。担体の投入量としても特に制限はないが、通常、生物処理槽の槽容量に対する担体の見掛け容量(以下、この割合を「充填率」と称す。)で10~50%程度、特に30~50%程度とすることが好ましい。
 第一のpH調整剤供給機構6は、逆浸透膜装置2における有機性排水WがpH9以上となるようにアルカリ剤を添加する。このpH調整剤としてのアルカリ剤については、特に制限はないが、安価な水酸化ナトリウムを好適に用いることができる。
 さらに第二のpH調整剤供給機構7は、生物処理槽5における処理が生物処理に適したものとなるように逆浸透膜装置2の濃縮水W2に酸剤を添加してpHを6~8に調整する。このpH調整剤としての酸剤についても特に制限はなく、安価な硫酸、塩酸を好適に用いることができる。
 次に上述したような構成を有する水処理システムによる本実施形態の有機性排水の処理方法の作用について説明する。
 まず、有機性排水WにpH調整剤としてのアルカリ剤を添加してpHを9以上、好ましくはpH9~12、特にpH10~11に調整する。有機性排水WのpHをこのように調整することにより、逆浸透膜装置2における菌体の増殖を抑制することができる。また、有機性排水Wがフォトレジストを含有する場合、フォトレジストの析出を回避することもできる。なお、現像・剥離工程排水は多くの場合、アルカリ性を呈し、排水によってはpHが12を超える場合もある。このような場合には、pH調整剤として酸剤を添加しpHを9~12、特にpH10~11にするのが好ましい。この酸剤についても特に制限はなく、安価な硫酸、塩酸を好適に用いることができる。
 このようにして有機性排水WのpHを調整したら原水流路1から逆浸透膜装置2を透過させて透過水W1と濃縮水W2とに分離する(逆浸透膜分離工程)。ここで有機性排水WをpH9以上の条件で処理することにより、逆浸透膜装置2における菌体の増殖を抑制でき、スライム障害を回避することができる。また、有機性排水W中にフォトレジストが含まれている場合であっても、フォトレジストはアルカリ性で溶解し酸性で析出するので、pHを9以上とすることでフォトレジストは溶解した状態となり、逆浸透膜装置2の閉塞を回避することができる。
 そして、逆浸透膜装置2の濃縮水W2は、濃縮水流路4から生物処理槽5に供給されるが、この濃縮水W2はアルカリ性であるため、生物処理への供給に際し必要に応じてpH調整することが好ましい。本実施形態においては、第二のpH調整剤供給機構7により、逆浸透膜装置2の濃縮水W2に酸剤を添加してpHを6~8に調整する。このpH調整剤としての酸剤についても特に制限はなく、安価な硫酸、塩酸を好適に用いることができる。生物処理槽5における濃縮水W2のpHが6未満、あるいは8を超えると、有機物分解が不十分となる。
 続いて、この生物処理槽5で生物処理が行われる。この生物処理槽5は、濃縮水W2は逆浸透膜装置2で有機物が濃縮されていて、有機性排水Wよりも大幅に減容化されているので小型化を図ることができる。そして、生物処理槽5から排出路8を経由して生物処理水W3が排出されるが、この生物処理水W3は、必要に応じて任意の後段処理を施して純水の原水として再利用することができる。なお、逆浸透膜装置2の透過水W1も必要に応じて任意の後段処理を施して純水の原水として再利用することができる。
 次に本発明の第二の実施形態による有機性排水の処理方法について図2を参照して詳細に説明する。
 図2は、本実施形態の有機性排水の処理方法を用可能な水処理システムを示しており、同図において原水としての有機性排水Wが流入する原水流路1には分離膜(除濁膜)11が設けられていて、この分離膜11から透過水W4が排出される透過水流路12と、分離膜濃縮水W5が排出される分離膜濃縮水流路13とに分岐している。そして、この透過水流路12から透過水W4が逆浸透膜装置2に導入される以降は、前述した第一の実施形態と同様の構成を有する。すなわち、透過水流路12には逆浸透膜装置2が設けられていて、この逆浸透膜装置2から透過水W1が排出される透過水流路3と濃縮水W2が排出される濃縮水流路4とに分岐している。この濃縮水流路4は生物処理槽5に連通している一方、本実施形態においては分離膜濃縮水流路13も生物処理槽5に連通していて、この生物処理槽5から生物処理水W3が排出される構成となっている。そして、原水流路1には第一のpH調整剤供給機構6とスケール分散剤供給機構Sが、濃縮水流路4には第二のpH調整剤供給機構7が、そして分離膜濃縮水流路13には第三のpH調整剤供給機構14がそれぞれ接続している。
 上述したような水処理システムにおいて、分離膜11としては、逆浸透膜装置2の閉塞につながるような不溶解成分を除去する観点で、精密ろ過膜、または限外ろ過膜を用いることが好ましい。また、アルカリ条件下での処理となることから、アルカリ耐性の高い分離膜を用いることが好ましい。被処理水がフォトレジストを含む場合には、pH9~12の条件で一部析出した微細粒子のフォトレジスト成分を除去するのが好ましいため、分画分子量数万~数十万ダルトンの限外ろ過膜を用いることが好ましい。この限外ろ過膜の材質としては、アルカリ耐性の高いポリスルフォン膜、ポリエーテルスルフォン膜を好適に用いることができる。
 また、スケール分散剤供給機構Sから供給するスケール分散剤としては、エチレンジアミン四酢酸などのキレート剤、ホスホン酸系の分散剤などを好適に用いることができる。
 次に上述したような構成を有する水処理システムによる本実施形態の有機性排水の処理方法の作用について説明する。
 まず、有機性排水WにpH調整剤としてのアルカリ剤を添加してpHを9以上、好ましくは9~12、特にpH10~11に調整する。有機性排水WのpHをこのように調整することにより、分離膜11における菌体の増殖を抑制することができる。また、有機性排水Wがフォトレジストを含有する場合、フォトレジストの析出を回避することもできる。なお、現像・剥離工程排水は多くの場合、アルカリ性を呈し、排水によってはpHが12を超える場合もある。このような場合には、pH調整剤として酸剤を添加しpHを9~12、特にpH10~11にするのが好ましい。この酸剤についても特に制限はなく、安価な硫酸、塩酸を好適に用いることができる。
 そして、本実施形態においては、必要に応じてスケール分散剤供給機構Sからスケール分散剤を添加する。有機性排水Wが無機成分を含んでいない場合、本来スケール分散剤を併用する必要はないが、本実施形態では、高pH条件で分離膜11及び逆浸透膜装置2により処理するので、微量であっても被処理水中に無機成分が含まれるとスケール析出の懸念がある。そこで、スケール分剤を併用することが好ましい。このスケール分散剤は、分離膜11におけるスケール障害も回避するため、本実施形態のように分離膜11の前段で添加すればよいが、逆浸透膜装置2における濃縮倍率を考慮し逆浸透膜装置2の前段で追加添加しても良い。
 このようにして有機性排水WのpHを調整したら原水流路1から分離膜11で処理して逆浸透膜装置2の閉塞につながる不溶解成分を除去する(分離膜処理工程)。次に分離膜11の透過水W4を逆浸透膜装置2を透過させて透過水W1と濃縮水W2とに分離する(逆浸透膜分離工程)。ここで逆浸透膜分離工程における透過水W4のpHは前述した分離膜処理工程において調整した有機性排水WのpHと同じである。したがって、逆浸透膜装置2における菌体の増殖を抑制することができる。
 そして、逆浸透膜装置2の濃縮水W2は、濃縮水流路4から生物処理槽5に供給されるが、このとき第二のpH調整剤供給機構7により酸剤を添加してpHを6~8に調整する。また、本実施形態においては、分離膜11の濃縮水W5も分離膜濃縮水流路13から生物処理槽5に供給され生物処理されるが、第三のpH調整剤供給機構14により酸剤を添加して同様にpHを6~8に調整する。このpH調整剤としての酸剤についても特に制限はなく、安価な硫酸、塩酸を好適に用いることができる。生物処理槽5における濃縮水W2及び濃縮水W5のpHが6未満、あるいは8を超えると、有機物分解が不十分となる。
 続いて、この生物処理槽5で生物処理が行われる。この生物処理槽5は、濃縮水W2及び濃縮水W5が分離膜11及び逆浸透膜装置2で有機物が濃縮されていて、有機性排水Wよりも大幅に減容化されているので小型化を図ることができる。そして、生物処理槽5から排出路8を経由して生物処理水W3が排出されるが、この生物処理水W3は、必要に応じて任意の後段処理を施して純水の原水として再利用することができる。なお、逆浸透膜装置2の透過水W1も必要に応じて任意の後段処理を施して純水の原水として再利用することができる。
 本実施形態のように逆浸透膜装置2の前段に分離膜(除濁膜)11を設け、有機性排水WのpHを9以上に調整することにより、分離膜11の閉塞を抑制することができることはもちろん、逆浸透膜装置2の閉塞をさらに抑制することができる。
 次に本発明の第三の実施形態による有機性排水の処理方法について図3を参照して詳細に説明する。
 図3は、本実施形態の有機性排水の処理方法を適用可能な水処理システムを示しており、本実施形態は逆浸透膜装置2及び生物処理槽5の後段にそれぞれ第一の後段処理手段15及び第二の後段処理手段16を有する以外、前述した第二の実施形態と同じ構成を有する。
 逆浸透膜装置2の透過水W1には、低分子量の有機成分、および無機イオン類などが含まれる。そこで、これら成分の除去を目的として第一の後段処理手段15としては、活性炭などを用いた吸着処理装置、イオン交換処理装置などを好適に用いることができる。また有機成分の分解除去を目的とした生物処理装置を用いてもよい。生物処理を実施する場合には、菌体の流出もあるため、さらに分離膜処理などの除濁処理を組み合わせることが好ましい。
 また、生物処理槽5から排出される生物処理水W3には、菌体を主体とする懸濁物質、生物処理で除去しきれなかった有機成分、被処理水および分解反応に由来するイオン類などが含まれる。そこで、このような懸濁物質を除去する第二の後段処理手段16として、凝集処理、加圧浮上処理、砂ろ過処理、分離膜処理などを好適に用いることができる。さらに有機成分、イオン類を除去する処理として、吸着処理、イオン交換処理、逆浸透膜処理などを必要に応じて組み合わせ、用いることもできる。
 このように逆浸透膜装置2及び生物処理槽5の後段にそれぞれに適した第一の後段処理手段15及び第二の後段処理手段16を設けて、逆浸透膜装置2の透過水W1及び生物処理水W3を処理することにより、これらを純水の原水として利用することが可能となる他、各種用水の原水とすることができる。
 なお、上述したような第一の後段処理手段15及び第二の後段処理手段16は、逆浸透膜装置2の透過水W1と生物処理槽5の生物処理水W3を合流して同一の後段処理として実施しても良い。
 さらに本発明の第四の実施形態による有機性排水の処理方法について図4を参照して詳細に説明する。
 図4は、本実施形態の有機性排水の処理方法を適用可能な水処理システムを示しており、第二の有機性排水W0を生物処理槽5に分別して受け入れ可能とするとともに、第二の原水流路21に第四のpH調整剤供給機構22が接続している以外、前述した第3の実施形態と同じ構成を有する。この第二の有機性排水W0は、アルカリ条件下でも逆浸透膜装置2や分離膜11の閉塞を回避できない成分が含まれている排水である。
 次に上述したような構成を有する水処理システムによる本実施形態の有機性排水の処理方法の作用について説明する。
 まず、本実施形態では、被処理水である有機性排水が複数種あり、この複数種の有機性排水の性状を判定し、pH9以上でも逆浸透膜装置2や分離膜11の閉塞を回避できない成分が含まれている第二の有機性排水W0と、そうでない有機性排水Wとにあらかじめ分別する。
 そして、この分別した第二の有機性排水W0と有機性排水Wのうち、有機性排水WにpH調整剤としてのアルカリ剤を添加してpHを9以上、好ましくは9~12、特にpH10~11に調整する。有機性排水WのpHをこのように調整することにより、分離膜11及び逆浸透膜装置2における菌体の増殖を抑制することができる。また、有機性排水Wがフォトレジストを含有する場合、フォトレジストの析出を回避することもできる。なお、現像・剥離工程排水は多くの場合、アルカリ性を呈し、排水によってはpHが12を超える場合もある。このような場合には、pH調整剤として酸剤を添加しpHを9~12、特にpH10~11にするのが好ましい。
 さらに、本実施形態においては、必要に応じてスケール分散剤供給機構Sからスケール分散剤を添加する。本来有機性排水Wが無機成分を含んでいない場合、スケール分散剤を併用する必要はないが、本実施形態では、高pH条件で分離膜11及び逆浸透膜装置2により処理するので、微量であっても被処理水中に無機成分が含まれるとスケール析出の懸念がある。そこで、スケール分剤を併用することが好ましい。このスケール分散剤は、分離膜11におけるスケール障害も回避するため、本実施形態のように分離膜11の前段で添加すればよいが、逆浸透膜装置2における濃縮倍率を考慮し逆浸透膜装置2の前段で追加添加しても良い。
 このようにして有機性排水WのpHを調整したら原水流路1から分離膜11で処理して逆浸透膜装置2の閉塞につながる不溶解成分を除去する(分離膜処理工程)。次に分離膜11からの透過水W4を逆浸透膜装置2を透過させて透過水W1と濃縮水W2とに分離する(逆浸透膜分離工程)。ここで逆浸透膜分離工程における透過水W4のpHは前述した分離膜処理工程において調整した有機性排水WのpHと同じである。
 この逆浸透膜装置2の透過水W1は、第一の後段処理手段15により処理されて、各種用水として利用できる他、純水、超純水の原水とすることができる。
 一方、逆浸透膜装置2の濃縮水W2は、濃縮水流路4から生物処理槽5に供給されるが、第二のpH調整剤供給機構7により酸剤を添加してpHを6~8に調整する。本実施形態においては、分離膜11の濃縮水W5も分離膜濃縮水流路13から生物処理槽5に供給され生物処理されるが、第三のpH調整剤供給機構14から酸剤を添加してpHを6~8に調整する。さらに、第二の有機性排水W0も第二の原水流路21から生物処理槽5に供給され生物処理されるが、第四のpH調整剤供給機構22から酸剤を添加してpHを6~8に調整する。
 続いて、この生物処理槽5で生物処理が行われる。この生物処理槽5は、濃縮水W2及び分離膜濃縮水W5が分離膜11及び逆浸透膜装置2で有機物が濃縮されていて、有機性排水Wよりも大幅に減容化されているので小型化を図ることができる。そして、生物処理槽5から排出路8を経由して生物処理水W3が排出されるが、この生物処理水W3は、必要に応じて任意の後段処理を施して純水の原水として再利用することができる。なお、逆浸透膜装置2の透過水W1も必要に応じて任意の後段処理を施して純水の原水として再利用することができる。
 このように生物処理槽5で処理した生物処理水W3は、第二の後段処理手段16で処理され、各種用水として利用できる他、純水、超純水の原水とすることができる。なお、上述したような第一の後段処理手段15及び第二の後段処理手段16は、逆浸透膜装置2の透過水W2と生物処理槽5の生物処理水W3を合流して同一の後段処理として実施しても良い。
 本実施形態のように被処理水である有機性排水が複数種あり、アルカリ条件下でも逆浸透膜装置2や分離膜11の閉塞を回避できない成分が含まれている第二の有機性排水W0がある場合には、閉塞成分が含まれている排水(第二の有機性排水W0)と、閉塞成分が含まれていない排水(有機性排水W)とを上流で分別することにより本発明の水処理方法を適用することができる。
 以上、本発明について添付図面を参照して説明してきたが、本発明は前記各実施形態に限らず種々の変更実施が可能である。例えば、第一の後段処理手段15及び第二の後段処理手段16としては、脱気装置やUV装置などを用いてもよいし、その組み合わせは適宜選定加可能である。さらに、前処手段理として凝集処理装置や固液分離装置などを設けても良い。
 以下の具体的実施例により本発明をさらに詳細に説明する。
〔実施例1〕
<有機性排水W>
  有機性排水Wとして以下の水質の排水を用いた。
・pH:8.8
・電気伝導度:21mS/m
・TOC:110mg/L
・Ca:0.04mg/L
・TMAH:140mg/L
 上記有機性排水Wにスケール分散剤としてウェルクリンA801(栗田工業(株)製)を3mg/Lの濃度となるように添加するとともに、水酸化ナトリウム溶液を添加してpHを10.5に調整した。
<排水処理試験>
 次にこの有機性排水Wを逆浸透膜装置(栗田工業(株)製、KROA-20XU)により運転フラックス0.7m/d(定処理水流量運転)、水温23℃、水回収率80%で処理し、処理性能の経時変化を観察した。
 上記逆浸透膜装置における処理時のROの膜間差圧は約10日間の通水で0.18MPa上昇し、上昇速度は約16kPa/dと算出された。ROの性能回復を目的とする薬品洗浄の実施基準を「差圧上昇0.5MPa」とした場合、連続通水日数は31日(≒500(kPa)÷16(kPa/d))となり、薬品洗浄頻度1回/月の安定通水が可能と推定できた。このRO膜の膜間差圧、差圧の上昇速度、推定薬品洗浄頻度を表1に示す。
 なお、上記逆浸透膜装置による処理の間、この逆浸透膜装置の濃縮水を好気性生物処理槽に導入し生物処理を行った。この生物処理槽では、ポリウレタンスポンジ(3mm角)を40%の充填率で添加し、活性汚泥(MLSS約6,000mg/L)を種汚泥として投入して3週間馴養したものであり、塩酸により濃縮水のpHを6~8に調整した。なお、この逆浸透膜装置の濃縮水を処理する好気性生物処理槽は、有機性排水Wの全量を処理する場合と比べて大幅にコンパクトなものであった。
〔実施例2〕
 逆浸透膜装置での処理に先立ち、分離膜としての限外ろ過膜処理を実施し、この限外ろ過膜の透過水を逆浸透膜処理の給水とした以外は、実施例1と同様に処理を行った。
 限外ろ過膜処理は、以下の条件で行った。
・限外ろ過膜:Aquaflex(X-Flow社製)
・運転フラックス:1m/d(定処理水流量運転)
・水温:23℃
・逆洗フラックス:6m/d
・運転サイクル:通水工程43分+逆洗工程2分の繰り返し運転
・水回収率:92%
 この実施例2の逆浸透膜装置による処理時のROの膜間差圧は約10日間の通水で0.07MPa上昇し、上昇速度は約1.5kPa/dと算出された。ROの性能回復を目的とする薬品洗浄の実施基準を「差圧上昇0.5MPa」とした場合、連続通水日数は333日(≒500(kPa)÷1.5(kPa/d))となり、薬品洗浄頻度1回/年の安定通水が可能と推定できた。このRO膜の膜間差圧、差圧の上昇速度、推定薬品洗浄頻度を表1にあわせて示す。
〔比較例1〕
 水酸化ナトリウムによるpH調整を実施しなかった以外は、実施例1と同様に処理を行った。
 この比較例1の逆浸透膜装置による処理時のROの膜間差圧は約10日間の通水で0.45MPa上昇し、上昇速度は約43kPa/dと算出された。ROの性能回復を目的とする薬品洗浄の実施基準を「差圧上昇0.5MPa」とした場合、連続通水日数は12日(≒500(kPa)÷43(kPa/d))となり、薬品洗浄が頻繁に必要で安定的な処理は困難であることがわかった。このRO膜の膜間差圧、差圧の上昇速度、推定薬品洗浄頻度を表1にあわせて示す。
Figure JPOXMLDOC01-appb-T000001
〔実施例3〕
<有機性排水W>
  有機性排水Wとして以下の水質の排水を用いた。
・pH:8.8
・電気伝導度:21mS/m
・TOC:110mg/L
・Ca:0.04mg/L
・TMAH:140mg/L
 上記有機性排水Wにスケール分散剤として、ウェルクリンA801(栗田工業(株)製)を3mg/Lの濃度となるように添加するとともに、水酸化ナトリウム溶液を添加してpHを10.5に調整した。
<排水処理試験>
 この有機性排水Wを限外ろ過膜(UF膜)により処理を行った。限外ろ過膜処理は、以下の条件で行った。
・限外ろ過膜:Aquaflex(X-Flow社製)
・運転フラックス:1m/d(定処理水流量運転)
・水温:23℃
・逆洗フラックス:6m/d
・運転サイクル:通水工程43分+逆洗工程2分の繰り返し運転
・水回収率:92%
 上記限外ろ過膜処理における処理時の限外ろ過膜の膜間差圧は約10日間の通水で6kPa上昇し、上昇速度は約0.4kPa/dと算出された。限外ろ過膜(UF膜)の性能回復を目的とする薬品洗浄の実施基準を「差圧上昇50kPa」とした場合、連続通水日数は125日(≒50(kPa)÷0.4(kPa/d))となり、薬品洗浄頻度1回/4月の安定通水が可能と推定できた。また、限外ろ過膜(UF膜)の処理水は、逆浸透膜により安定処理が可能な水質であった。このUF膜の膜間差圧、差圧の上昇速度、推定薬品洗浄頻度を表2に示す。
 なお、上記限外ろ過膜処理の透過水は、実施例1と同様に逆浸透膜装置による処理と、さらにこの逆浸透膜装置の濃縮水を好気性生物処理槽に導入し生物処理を行った。
〔比較例2〕
 水酸化ナトリウムによるpH調整を実施しなかった以外は、実施例3と同様に処理を行った。
 この比較例3の逆浸透膜装置による処理時のROの膜間差圧は約10日間の通水で約40kPa上昇し、上昇速度は約3.9kPa/dと算出された。限外ろ過膜(UF膜)の性能回復を目的とする薬品洗浄の実施基準を「差圧上昇50kPa」とした場合、連続通水日数は1.3日(≒50(kPa)÷40(kPa/d))となり、頻繁な薬品洗浄が必要で安定処理が困難な水質であった。このUF膜の膜間差圧、差圧の上昇速度、推定薬品洗浄頻度を表2にあわせて示す。
Figure JPOXMLDOC01-appb-T000002
 上記実施例3及び比較例2から逆浸透膜装置の前段に限外ろ過膜を設けて、この限外ろ過膜の前でpHを9以上としても限外ろ過膜の洗浄頻度を少なくすることができた。なお、後段の逆浸透膜装置による処理と好気性生物処理槽による処理も実施例2と同様に良好に行うことができた。
1…原水流路
2…逆浸透膜装置
5…生物処理槽
6…第一のpH調整剤供給機構
11…分離膜(除濁膜)
W…有機性排水(原水)
W1…透過水
W2…濃縮水
W3…生物処理水
W0…第二の有機性排水
S…スケール分散剤供給機構

Claims (4)

  1.  有機性排水を逆浸透膜を用いて透過水と濃縮水とに分離する逆浸透膜分離工程と、前記濃縮水を生物処理する生物処理工程とを有する有機性排水の水処理方法において、前記逆浸透膜分離工程が有機性排水をpH9以上として実施されることを特徴とする有機性排水の処理方法。
  2.  前記逆浸透膜分離工程の前段に分離膜処理工程を有し、前記分離膜処理工程が有機性排水をpH9以上として実施されることを特徴とする請求項1に記載の有機性排水の処理方法。
  3.  前記有機性排水にあらかじめスケール分散剤を添加することを特徴とする請求項1または2に記載の有機性排水の処理方法。
  4.  前記有機性排水が複数種あり、この複数種の有機性排水の性状を判定し、該複数種の有機性排水の一部にpH9以上でも逆浸透膜装置の閉塞を回避できない成分が含まれている場合には、閉塞成分が含まれている該一部の有機性排水のみを分別して前記生物処理工程に供給することを特徴とする請求項1~3のいずれかに記載の有機性排水の処理方法。
PCT/JP2016/071926 2016-07-26 2016-07-26 有機性排水の処理方法 WO2018020591A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071926 WO2018020591A1 (ja) 2016-07-26 2016-07-26 有機性排水の処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071926 WO2018020591A1 (ja) 2016-07-26 2016-07-26 有機性排水の処理方法

Publications (1)

Publication Number Publication Date
WO2018020591A1 true WO2018020591A1 (ja) 2018-02-01

Family

ID=61016417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071926 WO2018020591A1 (ja) 2016-07-26 2016-07-26 有機性排水の処理方法

Country Status (1)

Country Link
WO (1) WO2018020591A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947787A (ja) * 1995-08-10 1997-02-18 Hitachi Plant Eng & Constr Co Ltd 廃水処理装置
JPH09276865A (ja) * 1996-04-15 1997-10-28 Kurita Water Ind Ltd 高純度水製造装置
JPH11192481A (ja) * 1998-01-05 1999-07-21 Japan Organo Co Ltd フォトレジスト現像廃液の再生処理方法及び装置
JP2006204977A (ja) * 2005-01-25 2006-08-10 Kurita Water Ind Ltd 生物処理水含有水の処理方法及び処理装置
JP2009072766A (ja) * 2007-08-30 2009-04-09 Toray Ind Inc 水処理方法
JP2009226336A (ja) * 2008-03-24 2009-10-08 Chiyoda Kako Kensetsu Kk プロセス水の浄化処理方法
JP2010017614A (ja) * 2008-07-08 2010-01-28 Kurita Water Ind Ltd 有機性排水の処理方法及び装置
JP2010201312A (ja) * 2009-03-02 2010-09-16 Kurita Water Ind Ltd 膜分離方法
JP2012139659A (ja) * 2011-01-05 2012-07-26 Kurita Water Ind Ltd 有機物含有水の処理方法及び処理装置
JP2013169511A (ja) * 2012-02-21 2013-09-02 Toshiba Corp 膜ろ過システム
JP2014012281A (ja) * 2013-10-22 2014-01-23 Kurita Water Ind Ltd ホルムアルデヒド含有排水の膜処理方法
JP2014057931A (ja) * 2012-09-19 2014-04-03 Toray Ind Inc 造水方法
JP2014061486A (ja) * 2012-09-21 2014-04-10 Kubota Corp 水処理方法および水処理システム

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0947787A (ja) * 1995-08-10 1997-02-18 Hitachi Plant Eng & Constr Co Ltd 廃水処理装置
JPH09276865A (ja) * 1996-04-15 1997-10-28 Kurita Water Ind Ltd 高純度水製造装置
JPH11192481A (ja) * 1998-01-05 1999-07-21 Japan Organo Co Ltd フォトレジスト現像廃液の再生処理方法及び装置
JP2006204977A (ja) * 2005-01-25 2006-08-10 Kurita Water Ind Ltd 生物処理水含有水の処理方法及び処理装置
JP2009072766A (ja) * 2007-08-30 2009-04-09 Toray Ind Inc 水処理方法
JP2009226336A (ja) * 2008-03-24 2009-10-08 Chiyoda Kako Kensetsu Kk プロセス水の浄化処理方法
JP2010017614A (ja) * 2008-07-08 2010-01-28 Kurita Water Ind Ltd 有機性排水の処理方法及び装置
JP2010201312A (ja) * 2009-03-02 2010-09-16 Kurita Water Ind Ltd 膜分離方法
JP2012139659A (ja) * 2011-01-05 2012-07-26 Kurita Water Ind Ltd 有機物含有水の処理方法及び処理装置
JP2013169511A (ja) * 2012-02-21 2013-09-02 Toshiba Corp 膜ろ過システム
JP2014057931A (ja) * 2012-09-19 2014-04-03 Toray Ind Inc 造水方法
JP2014061486A (ja) * 2012-09-21 2014-04-10 Kubota Corp 水処理方法および水処理システム
JP2014012281A (ja) * 2013-10-22 2014-01-23 Kurita Water Ind Ltd ホルムアルデヒド含有排水の膜処理方法

Similar Documents

Publication Publication Date Title
JP5908186B2 (ja) 膜を用いた水処理方法および水処理装置
JP2007253115A (ja) 有機物含有排水の処理方法及び処理装置
JP6123840B2 (ja) 有機性排水の処理方法
JP5194783B2 (ja) 有機物含有水の生物処理方法および装置
KR101985037B1 (ko) 유기 배수의 회수 처리 장치 및 회수 처리 방법
JP2011088053A (ja) 淡水化処理設備及び方法
JP2010017614A (ja) 有機性排水の処理方法及び装置
KR20070063423A (ko) 유기물 함유 배수의 처리 장치 및 처리 방법
JP2007021457A (ja) 排水の処理方法とその処理装置
JP2010017615A (ja) Dmso含有排水の処理方法及び装置
JP2012205997A (ja) 膜分離活性汚泥装置による有機性排水の処理方法
JP4496795B2 (ja) 有機物含有排水の処理方法及び処理装置
JP2007244979A (ja) 水処理方法および水処理装置
JP6614175B2 (ja) 有機性排水の処理方法
KR20170023237A (ko) 하수로부터 농축하수 및 재이용수를 생산하는 시스템 및 이를 이용한 방법.
JP2008086849A (ja) 水処理方法および水処理装置
JP2001029752A (ja) 超純水の製造方法及び装置
JPWO2011136043A1 (ja) 廃水処理装置および廃水処理方法
KR100969220B1 (ko) 내부 여과 스크린을 포함하는 하수고도처리시스템
JP4899565B2 (ja) 水処理装置及び水処理方法
JP5105608B2 (ja) 廃水処理システムおよびその運転方法
JP2007244930A (ja) 有機物含有排水の処理方法及び処理装置
WO2018020591A1 (ja) 有機性排水の処理方法
TW201803811A (zh) 有機性廢水的處理方法
JP2012179571A (ja) 有機排液の嫌気性生物処理方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP