WO2018019078A1 - 一种适用于3d mimo***的码本设计方法及码本设计装置 - Google Patents

一种适用于3d mimo***的码本设计方法及码本设计装置 Download PDF

Info

Publication number
WO2018019078A1
WO2018019078A1 PCT/CN2017/090638 CN2017090638W WO2018019078A1 WO 2018019078 A1 WO2018019078 A1 WO 2018019078A1 CN 2017090638 W CN2017090638 W CN 2017090638W WO 2018019078 A1 WO2018019078 A1 WO 2018019078A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
codeword
global
local
generated
Prior art date
Application number
PCT/CN2017/090638
Other languages
English (en)
French (fr)
Inventor
陈琼
王绍鹏
韩萍
李婷
李勇朝
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018019078A1 publication Critical patent/WO2018019078A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a codebook design method suitable for a 3D MIMO system, and a codebook design apparatus.
  • the base station can divide each antenna into several vertically adjustable weights without changing the antenna size, thus promoting 3D MIMO (The development of 3D multi-input and multi-output technology.
  • 3D MIMO technology increases the degree of freedom in the vertical direction, opening up a broader space for the performance improvement of LTE (Long Term Evolution) transmission technology, making it possible to further reduce inter-cell interference, improve system throughput and spectrum efficiency.
  • Shape technology is one of the research hotspots.
  • beamforming technology one is beamforming technology based on real-time channel processing, such as channel inversion, channel block diagonalization, etc.
  • the transmitting end needs to know the complete channel state information.
  • the technology is difficult to implement due to the large amount of feedback; the other is the codebook-based beamforming technology. Due to the limited feedback of this type of technology, it has gradually developed into the mainstream of beamforming technology.
  • the precoding method mostly adopts the processing method of separating and combining the horizontal and vertical dimensions, respectively performing precoding, ignoring the complex spatial correlation of the 3D MIMO channel.
  • the real three-dimensional channel model is spatially superimposed with an infinite number of sub-paths centered on one angle, and different users' downlink channels have different spatial correlations depending on the angular spread.
  • Most of the prior art solutions are only applicable to a strongly correlated channel environment, and are not well adapted to complex three-dimensional channel spatial correlation.
  • the technical problem to be solved by the present disclosure is to provide a two-stage codebook design method and a codebook design apparatus suitable for any correlation of a 3D MIMO system, which is implemented by a two-level codebook, that is, the user is best described by a strong correlation codebook.
  • the main direction of the feature is then approximated by the rotation of the weakly correlated codebook and the double codebook to accommodate the optimal 3D channel spatial correlation.
  • the present disclosure can further reduce feedback overhead and reduce the complexity of precoding search under the premise of ensuring performance.
  • a codebook design method suitable for a three-dimensional multiple input multiple output 3D MIMO system comprising:
  • the final codeword is generated based on the best global codeword and the best local codeword, and the final codeword is fed back to the base station.
  • constructing the global codebook includes:
  • the strongly correlated two-dimensional codebook is selected as the sub-codebooks C a and C e in the horizontal and vertical directions, respectively, and the feedback precisions are N a and N e bits, respectively.
  • the feedback precisions are N a and N e bits, respectively.
  • the strongly correlated two-dimensional codebook is a discrete Fourier transform DFT codebook.
  • constructing the local codebook comprises:
  • the space around the weakly correlated two-dimensional codebook is generated by rotation and scaling.
  • constructing the local codebook comprises:
  • a local codebook is generated for each of the horizontal and vertical active antenna system AAS antenna numbers, and a direct product operation is performed to generate a local codebook:
  • the weakly correlated two-dimensional codebook is a Glassman codebook.
  • the searching for a strongly correlated global codebook includes:
  • H is an estimated value of downlink channel state information between the served user and the base station
  • c i is the i-th codeword in the global codebook C.
  • the searching for a weakly correlated local codebook includes:
  • the best global codeword c in the corresponding local codebook, is selected by the maximum capacity criterion:
  • C local (c) is a local codebook corresponding to the global codebook codeword c.
  • the searching for a strongly correlated global codebook, and searching for a weakly correlated local codebook uses a maximum signal to interference ratio criterion instead of a maximum capacity criterion.
  • the generating the final codeword comprises:
  • c is the best global codebook codeword for the time slot
  • clocal is the best local codebook codeword obtained based on the best global codebook codeword of the previous time slot
  • copt is the codeword of the final feedback.
  • the feeding back the final codeword to the base station includes:
  • the best local codeword obtained based on the best global codeword of the last time slot is compared with the best global codeword of the time slot, and if the best local codeword is better than the best global codeword, the best local code is fed back Word; if the best global codeword is better than the best local codeword, the best global codeword is fed back as long-term information, and the local codebook of the next slot is updated.
  • the embodiment of the present disclosure further provides a codebook design apparatus suitable for a three-dimensional multiple input multiple output 3D MIMO system, including:
  • a construction unit configured to construct a global codebook and a local codebook
  • a global codeword selection unit configured to search for a strongly correlated global codebook to determine an optimal global codeword
  • a local codeword selection unit configured to search for a weakly correlated local codebook to determine an optimal local codeword
  • the feedback unit is configured to generate a final codeword according to the best global codeword and the best local codeword, and feed back the final codeword to the base station.
  • the construction unit is configured to construct a global codebook by the following steps:
  • the strongly correlated two-dimensional codebook is selected as the sub-codebooks C a and C e in the horizontal and vertical directions, respectively, and the feedback precisions are N a and N e bits, respectively.
  • the feedback precisions are N a and N e bits, respectively.
  • the construction unit is arranged to construct a local codebook by the following steps:
  • the construction unit is configured to:
  • a local codebook is generated for each of the horizontal and vertical active antenna system AAS antenna numbers, and a direct product operation is performed to generate a local codebook:
  • the global codeword selection unit is configured to:
  • H is an estimated value of downlink channel state information between the served user and the base station
  • c i is the i-th codeword in the global codebook C.
  • the local codeword selection unit is configured to:
  • the best global codeword c in the corresponding local codebook, is selected by the maximum capacity criterion:
  • C local (c) is a local codebook corresponding to the global codebook codeword c.
  • the feedback unit is configured to generate a final codeword using the following formula:
  • c is the best global codebook codeword for the time slot
  • clocal is the best local codebook codeword obtained based on the best global codebook codeword of the previous time slot
  • copt is the codeword of the final feedback.
  • the feedback unit is configured to:
  • the best local codeword obtained based on the best global codeword of the last time slot is compared with the best global codeword of the time slot, and if the best local codeword is better than the best global codeword, the best local code is fed back Word; if the best global codeword is better than the best local codeword, the best global codeword is fed back as long-term information, and the local codebook of the next slot is updated.
  • the best feature master is determined by the strongly correlated global codebook.
  • the accuracy of the currently used codebook can be achieved; and the channel space is further finely divided by the weakly correlated local codebook and the rotation scaling between the two codebooks to approximate the optimal performance.
  • the global codeword does not need to be updated every time slot, and the codebook feedback is mostly concentrated on the local codeword.
  • the present disclosure can guarantee Under the premise of performance, the feedback overhead is further reduced, the complexity of precoding search is reduced, and better performance is improved.
  • FIG. 1 shows a schematic diagram of codebook generation and search applicable to a 3D MIMO system according to the present disclosure
  • FIG. 2 is a schematic diagram showing the generation of a two-stage codebook based on direct product according to the present disclosure
  • Figure 3 is a schematic diagram showing the rotation and scaling of the codebook of the present disclosure
  • FIG. 4 is a schematic diagram showing a codebook feedback criterion of the present disclosure
  • Figure 5 is a graph showing changes in BER with SNR of the present disclosure
  • FIG. 6 shows a schematic diagram of a codebook design apparatus suitable for use in a 3D MIMO system of the present disclosure.
  • the embodiments of the present disclosure are directed to the complex spatial correlation of the 3D MIMO channel in the prior art.
  • the technical solution is only applicable to a strongly correlated channel environment, and does not well adapt to the problem of complex three-dimensional channel spatial correlation.
  • a two-stage codebook design method suitable for arbitrary correlation of 3D MIMO systems is implemented by a two-level codebook, that is, a strong correlation codebook is first used to describe the user's best feature principal direction, and then a weak correlation codebook and a double code are utilized. This rotation scaling approximates the best performance to accommodate complex 3D channel spatial correlation.
  • the present disclosure can further reduce feedback overhead and reduce the complexity of precoding search under the premise of ensuring performance.
  • the codebook design method of the present disclosure includes the following steps:
  • a DFT Discrete Fourier Transform
  • a straight product codebook that is, a Kronecker product
  • DFT codebooks C a and C e of size N a and N e are used in the horizontal and vertical directions respectively, and a Kronecker product is obtained for each code word to complete a three-dimensional size of Na + N e Codebook design.
  • N az and N el are the number of antennas in each row and each column of the base station, respectively.
  • the local codebook is centered on the codeword of the DFT codebook and is generated by the rotation and scaling of the space around the Glassman codebook.
  • the three-dimensional local codebook generation includes:
  • the center o [1,0,...,0] T , the local root code radius ⁇ and the Glassman codebook among them That is, the Grassman codeword is written in polar form for subsequent transformation.
  • the local root code of the spherical crown can be generated as follows:
  • the horizontal/vertical local codebook can be obtained by rotating and scaling the codeword.
  • the rotation matrix is
  • C root is the local root codebook.
  • the generation of the three-dimensional local codebook is consistent with the generation process of the global three-dimensional direct product codebook, that is, the direct product of the generated horizontal and vertical local codebooks is directly generated, thereby generating a three-dimensional local codebook:
  • the best global codeword is selected by certain criteria such as maximum capacity criterion, maximum signal to interference ratio criterion, etc., for example, according to the maximum capacity criterion, the best global codeword is selected as follows:
  • H is an estimated value of downlink channel state information between the served user and the base station
  • c i is the i-th codeword in the global three-dimensional codebook C.
  • the best global codeword c in the corresponding partial three-dimensional codebook, is selected by certain criteria such as maximum capacity criterion, maximum signal to interference ratio criterion, etc., for example, according to the maximum capacity criterion, the most The best local code words are as follows:
  • C local (c) is a partial three-dimensional codebook corresponding to the global codeword c.
  • the best local codeword obtained based on the best global codeword of the last time slot is compared with the best global codeword of the time slot, and if the best local codeword is better than the best global codeword, the best local code is fed back Word; if the best global codeword is better than the best local codeword, the best global codeword is fed back as long-term information, and the local codebook of the next slot is updated.
  • the best codeword comparison method is as follows:
  • c is the best global codeword for the time slot
  • c local is the best local codeword based on the best global codeword of the previous time slot
  • c opt is the final feedback codeword
  • the codeword feedback criterion mainly includes the following steps:
  • Step 401 The user estimates channel state information.
  • Step 402 Search a three-dimensional global codebook to obtain an initial best global codebook, and perform step 408 to feed back the initial best global codebook as a long-term information to the base station;
  • Step 403 Perform a search in the three-dimensional local codebook based on the best global codeword in step 402 to obtain the current best local codeword.
  • Step 404 Determine whether the local codeword is better than the global codeword, if yes, go to step 405, if no, go to step 406;
  • Step 405 Instantly feedback the local codeword to the base station
  • Step 406 Instantly feedback the global codeword to the base station
  • Step 407 Update the global codeword.
  • steps 404-406 are: if the best local codeword is better than the best global codeword, then the best local codeword is fed back; if the best global codeword is better than the best local codeword, then the best global code is fed back The word is used as long-term information and the local codebook of the next time slot is updated.
  • Figure 5 is a performance diagram of BER (binary) with SNR (signal-to-noise ratio) under 64PSK modulation. It can be seen that the codebook proposed by this scheme has a certain improvement compared with the DFT direct product codebook, especially when the feedback amount When 4+4bits is used, there is a performance improvement of about 1dB, and when the feedback amount is halved, the performance is also slightly improved, which can basically achieve the goal of obtaining performance improvement or reducing feedback overhead under the premise of ensuring performance.
  • the embodiment further provides a codebook design apparatus suitable for a 3D MIMO system.
  • the updating apparatus includes:
  • the constructing unit 601 is configured to construct a global codebook and a local codebook
  • the global codeword selection unit 602 is configured to search for a strongly correlated global codebook to determine an optimal global codeword.
  • a local codeword selection unit 603, configured to search for a weakly correlated local codebook, and determine an optimal local codeword
  • the feedback unit 604 is configured to generate a final codeword according to the best global codeword and the best local codeword, and feed back the final codeword to the base station.
  • the construction unit is configured to construct a global codebook by the following steps:
  • the strongly correlated two-dimensional codebook is selected as the sub-codebooks C a and C e in the horizontal and vertical directions, respectively, and the feedback precisions are N a and N e bits, respectively.
  • the feedback precisions are N a and N e bits, respectively.
  • the construction unit is configured to construct a local codebook by the following steps:
  • the space around the weakly correlated two-dimensional codebook is generated by rotation and scaling.
  • the construction unit is used to:
  • a local codebook is generated for each of the horizontal and vertical active antenna system AAS antenna numbers, and a direct product operation is performed to generate a local codebook:
  • the global codeword selection unit is configured to:
  • H is an estimated value of downlink channel state information between the served user and the base station
  • c i is the i-th codeword in the global codebook C.
  • the local codeword selection unit is used to:
  • the best global codeword c in the corresponding local codebook, is selected by the maximum capacity criterion:
  • C local (c) is a local codebook corresponding to the global codebook codeword c.
  • the feedback unit is configured to generate a final codeword using the following formula:
  • c is the best global codebook codeword for the time slot
  • clocal is the best local codebook codeword obtained based on the best global codebook codeword of the previous time slot
  • copt is the codeword of the final feedback.
  • the feedback unit is configured to:
  • the best local codeword obtained based on the best global codeword of the last time slot is compared with the best global codeword of the time slot, and if the best local codeword is better than the best global codeword, the best local code is fed back Word; if the best global codeword is better than the best local codeword, the best global codeword is fed back as long-term information, and the local codebook of the next slot is updated.
  • modules or steps of the above embodiments of the present invention may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices. Alternatively, they may be implemented by program code executable by a computing device such that they may be stored in a computer storage medium (ROM/RAM, diskette, optical disk) by a computing device, and in some cases
  • ROM/RAM, diskette, optical disk a computer storage medium
  • the steps shown or described may be performed in a different order than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of the modules or steps may be implemented as a single integrated circuit module. Therefore, the invention is not limited to any particular The combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种适用于3D MIMO***的码本设计方法及码本设计装置,所述码本设计方法包括:构造全局码本与局部码本;搜索强相关的全局码本,确定最佳全局码字;搜索弱相关的局部码本,确定最佳局部码字;根据最佳全局码字和最佳局部码字生成最终码字,将最终码字反馈至基站。通过本公开的技术方案,能够在保证性能的前提下进一步降低反馈开销,降低预编码搜索的复杂度,获得更好的性能提升。

Description

一种适用于3D MIMO***的码本设计方法及码本设计装置 技术领域
本公开涉及通信技术领域,尤其涉及一种适用于3D MIMO***的码本设计方法,及码本设计装置。
背景技术
随着有源天线阵列***(AAS)的不断发展,基站可以在不改变天线尺寸的条件下,将每根天线在垂直维度上分成若干个可以独立调整权值的阵子,从而促进了3D MIMO(三维多输入多输出)技术的发展。3D MIMO技术增加了垂直方向上的自由度,为LTE(长期演进)传输技术性能提升开拓出了更广阔的空间,使得进一步降低小区间干扰、提高***吞吐量和频谱效率成为可能,三维波束赋形技术是其中的研究热点。在目前已有的波束赋形技术研究中,一类为基于实时信道处理的波束赋形技术,如信道反转,信道块对角化等,然而发送端需要获知完全的信道状态信息,显然,在实际***由于反馈量太大这类技术很难实现;另外一类为基于码本的波束赋形技术,由于该类技术反馈量有限,因此逐渐发展成为波束赋形技术的主流。
在有限反馈码本设计上,预编码方法大多采用水平和垂直维度分开再合并的处理方式,分别进行预编码,忽视了3D MIMO信道复杂的空间相关性。真实的三维信道模型在空间上,是以一个角度为中心的无数条子径叠加而成的,而根据角度扩展的不同,不同用户的下行信道具有不同的空间相关性。现有技术方案,大多仅适用于强相关的信道环境下,并不能很好的适应复杂的三维信道空间相关性。
发明内容
本公开要解决的技术问题是提供一种适用于3D MIMO***任意相关性的两阶段码本设计方法及码本设计装置,通过两级码本实现,即先用强相关码本描述用户最佳的特征主方向,然后利用弱相关码本和双码本间的旋转缩放逼近最佳性能,以适应复杂的三维信道空间相关性。本公开能够在保证性能的前提下进一步降低反馈开销,降低预编码搜索的复杂度。
本公开实施例提供技术方案如下:
一种适用于三维多输入多输出3D MIMO***的码本设计方法,包括:
构造全局码本与局部码本;
搜索强相关的全局码本,确定最佳全局码字;
搜索弱相关的局部码本,确定最佳局部码字;
根据最佳全局码字和最佳局部码字生成最终码字,将最终码字反馈至基站。
在一实施例中,构造所述全局码本,包括:
选取强相关的二维码本,分别作为水平和垂直方向上的子码本Ca和Ce,反馈精度分别为Na和Ne比特。对其进行直积操作,可生成大小为Na+Ne比特的三维全局码本,
Figure PCTCN2017090638-appb-000001
Figure PCTCN2017090638-appb-000002
Figure PCTCN2017090638-appb-000003
其中,
Figure PCTCN2017090638-appb-000004
为Ca的第m个码字,
Figure PCTCN2017090638-appb-000005
为Ce的第n个码字,C(m,n)为其生成的一个码字,
Figure PCTCN2017090638-appb-000006
表示直积。
在一实施例中,所述强相关二维码本为离散傅里叶变换DFT码本。
在一实施例中,构造所述局部码本,包括:
以所述全局码本的码字为中心,由弱相关二维码本在其周围的空间通过旋转和缩放生成。
在一实施例中,构造所述局部码本包括:
针对水平和垂直的有源天线***AAS天线数目分别生成局部码本,对其进行直积操作,生成局部码本:
Figure PCTCN2017090638-appb-000007
其中,
Figure PCTCN2017090638-appb-000008
Figure PCTCN2017090638-appb-000009
分别表示相对应全局码本垂直和水平码本中第m个和第n个码字生成的局部垂直和水平码本,
Figure PCTCN2017090638-appb-000010
表示全局码本中码字C(m,n)对应的局部码本。
在一实施例中,所述弱相关的二维码本为格拉斯曼码本。
在一实施例中,所述搜索强相关的全局码本,包括:
根据最大容量准则,选取最佳全局码本码字:
Figure PCTCN2017090638-appb-000011
其中,H为所服务用户与基站间的下行信道状态信息估计值,ci为全局码本C中的第i个码字。
所述搜索弱相关的局部码本,包括:
根据最佳全局码本码字c,在其对应局部码本中,通过最大容量准则,选取最佳全局码字:
Figure PCTCN2017090638-appb-000012
其中,Clocal(c)为全局码本码字c对应的局部码本。
在一实施例中,所述搜索强相关的全局码本,以及所述搜索弱相关的局部码本,使用最大信干比准则代替最大容量准则。
在一实施例中,所述生成最终码字,包括:
Figure PCTCN2017090638-appb-000013
其中,c为本时隙最佳的全局码本码字,clocal为基于上一时隙最佳的全局码本码字得到的最佳局部码本码字,copt为最终反馈的码字。
在一实施例中,所述将最终码字反馈至基站,包括:
将所述最佳全局码字作为长时信息反馈至基站;
基于上一时隙最佳的全局码字得到的最佳局部码字与本时隙的最佳全局码字进行比较,若最佳局部码字优于最佳全局码字,则反馈最佳局部码字;若最佳全局码字优于最佳局部码字,则反馈最佳全局码字作为长时信息,并更新下一时隙的局部码本。
本公开实施例还提供了一种适用于三维多输入多输出3D MIMO***的码本设计装置,包括:
构造单元,设置为构造全局码本与局部码本;
全局码字选择单元,设置为搜索强相关的全局码本,确定最佳全局码字;
局部码字选择单元,设置为搜索弱相关的局部码本,确定最佳局部码字;
反馈单元,设置为根据最佳全局码字和最佳局部码字生成最终码字,并将最终码字反馈至基站。
在一实施例中,所述构造单元设置为通过以下步骤构造全局码本:
选取强相关的二维码本,分别作为水平和垂直方向上的子码本Ca和Ce,反馈精度分别为Na和Ne比特。对其进行直积操作,可生成大小为Na+Ne比特的三维全局码本,
Figure PCTCN2017090638-appb-000014
Figure PCTCN2017090638-appb-000015
Figure PCTCN2017090638-appb-000016
其中,
Figure PCTCN2017090638-appb-000017
为Ca的第m个码字,
Figure PCTCN2017090638-appb-000018
为Ce的第n个码字,C(m,n)为其生成的一个码字,
Figure PCTCN2017090638-appb-000019
表示直积。
在一实施例中,所述构造单元设置为通过以下步骤构造局部码本:
以所述全局码本的码字为中心,由弱相关二维码本在其周围的空间通过旋转和缩放生 成。
在一实施例中,所述构造单元设置为:
针对水平和垂直的有源天线***AAS天线数目分别生成局部码本,对其进行直积操作,生成局部码本:
Figure PCTCN2017090638-appb-000020
其中,
Figure PCTCN2017090638-appb-000021
Figure PCTCN2017090638-appb-000022
分别表示相对应全局码本垂直和水平码本中第m个和第n个码字生成的局部垂直和水平码本,
Figure PCTCN2017090638-appb-000023
表示全局码本中码字C(m,n)对应的局部码本。
在一实施例中,所述全局码字选择单元设置为:
根据最大容量准则,选取最佳全局码本码字:
Figure PCTCN2017090638-appb-000024
其中,H为所服务用户与基站间的下行信道状态信息估计值,ci为全局码本C中的第i个码字。
所述局部码字选择单元设置为:
根据最佳全局码本码字c,在其对应局部码本中,通过最大容量准则,选取最佳全局码字:
Figure PCTCN2017090638-appb-000025
其中,Clocal(c)为全局码本码字c对应的局部码本。
在一实施例中,所述反馈单元设置为利用下述公式生成最终码字:
Figure PCTCN2017090638-appb-000026
其中,c为本时隙最佳的全局码本码字,clocal为基于上一时隙最佳的全局码本码字得到的最佳局部码本码字,copt为最终反馈的码字。
在一实施例中,所述反馈单元设置为:
将所述最佳全局码字作为长时信息反馈至基站;
基于上一时隙最佳的全局码字得到的最佳局部码字与本时隙的最佳全局码字进行比较,若最佳局部码字优于最佳全局码字,则反馈最佳局部码字;若最佳全局码字优于最佳局部码字,则反馈最佳全局码字作为长时信息,并更新下一时隙的局部码本。
本公开所带来的有益效果如下:
上述方案中,考虑三维信道的空间相关性,通过强相关的全局码本确定最佳的特征主方 向,可以达到目前常用码本的精度;再通过弱相关的局部码本和两码本间的旋转缩放,进一步对信道空间进行精细的划分,以逼近最佳性能。本公开中,全局码字不需要每个时隙都进行更新,码本反馈大多集中于局部码字上,相比于大多只采用全局码本的现***本设计方案,本公开能够在保证性能的前提下进一步降低反馈开销,降低预编码搜索的复杂度,获得更好的性能提升。
附图说明
图1表示本公开适用于3D MIMO***的码本生成及搜索示意图;
图2表示本公开基于直积的两阶段码本生成示意图;
图3表示本公开码本旋转和缩放的示意图;
图4表示本公开码本反馈准则示意图;
图5表示本公开BER随SNR的变化图;
图6表示本公开适用于3D MIMO***的码本设计装置示意图。
具体实施方式
为使本公开的实施例要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本公开的实施例针对现有技术中大多忽视3D MIMO信道复杂的空间相关性,技术方案仅适用于强相关的信道环境下,并不能很好的适应复杂的三维信道空间相关性的问题,提供一种适用于3D MIMO***任意相关性的两阶段码本设计方法,通过两级码本实现,即先用强相关码本描述用户最佳的特征主方向,然后利用弱相关码本和双码本间的旋转缩放逼近最佳性能,以适应复杂的三维信道空间相关性。本公开能够在保证性能的前提下进一步降低反馈开销,降低预编码搜索的复杂度。
如图1所示,本公开的码本设计方法包括以下步骤:
S101、构造全局码本
由于3D MIMO***中信道具有一定的空间相关性,所以这里以直积码本即克罗内克积形式的DFT(离散傅里叶变换)码本作为全局码本。
在水平和垂直方向上分别采用大小为Na和Ne的DFT码本Ca和Ce,对其每个码字都做克罗内克积即可完成大小为Na+Ne的三维码本设计。
Figure PCTCN2017090638-appb-000027
其中,
Figure PCTCN2017090638-appb-000028
其中,Naz和Nel分别为基站每一行及每一列的天线个数,
Figure PCTCN2017090638-appb-000029
Figure PCTCN2017090638-appb-000030
分别为Ca和Ce的第m和第n个码字,C(m,n)为其生成的一个码字,
Figure PCTCN2017090638-appb-000031
表示直积。
S102、构造局部码本
局部码本以DFT码本的码字为中心,由格拉斯曼码本在其周围的空间通过旋转和缩放生成。
如图2所示,三维局部码本生成,包括:
(1)水平/垂直局部根码本生成
给定局部根码本中心o=[1,0,…,0]T,局部根码本半径δ和格拉斯曼码本
Figure PCTCN2017090638-appb-000032
其中
Figure PCTCN2017090638-appb-000033
即把格拉斯曼码字写成极坐标形式以便后续变换。
以o为中心,可以产生球冠局部根码本如下:
Figure PCTCN2017090638-appb-000034
其中,
Figure PCTCN2017090638-appb-000035
(2)旋转和缩放得到全部水平/垂直局部码本
当得到全局码本及局部根码本之后,可通过对码字进行旋转和缩放,得到水平/垂直局部码本。
具体方法如下:
如图3所示,旋转和缩放操作的示意图。
针对选定的缩放因子δ,将局部根码本从中心码字为o=[1,0,…,0]T的码本旋转到以第k个DFT码字为中心的码本,应设计旋转矩阵为
Figure PCTCN2017090638-appb-000036
其中,ck为第k个DFT码字,
Figure PCTCN2017090638-appb-000037
为其ck的零空间的一组正交基,针对第k个DFT码字的局部码本为
Figure PCTCN2017090638-appb-000038
其中,Croot为局部根码本。
(3)三维局部码本的生成
三维局部码本的生成与全局三维直积码本的生成过程一致,即对上述已生成的水平和垂直局部码本进行直积,从而生成三维局部码本:
Figure PCTCN2017090638-appb-000039
其中,
Figure PCTCN2017090638-appb-000040
Figure PCTCN2017090638-appb-000041
分别表示相对应全局垂直和水平码本中第m个和第n个码字生成的局部垂直和水平码本,
Figure PCTCN2017090638-appb-000042
表示全局三维码本中码字C(m,n)对应的局部三维码本。
S103、搜索强相关的全局码本,确定最佳全局码字
通过一定准则如最大容量准则、最大信干比准则等,选取最佳全局码字,如根据最大容量准则,选取最佳全局码字如下:
Figure PCTCN2017090638-appb-000043
其中,H为所服务用户与基站间的下行信道状态信息估计值,ci为全局三维码本C中的第i个码字。
S104、搜索弱相关的局部码本,确定最佳局部码字
根据选取的最佳全局码字c,在其对应的局部三维码本中,通过一定准则如最大容量准则、最大信干比准则等,选取最佳全局码字,如根据最大容量准则,选取最佳局部码字如下:
Figure PCTCN2017090638-appb-000044
其中,Clocal(c)为全局码字c对应的局部三维码本。
S105、根据最佳全局码字和最佳局部码字生成最终码字,并将最终码字反馈至基站
将最佳全局码字作为长时信息反馈至基站;
基于上一时隙最佳的全局码字得到的最佳局部码字与本时隙的最佳全局码字进行比较,若最佳局部码字优于最佳全局码字,则反馈最佳局部码字;若最佳全局码字优于最佳局部码字,则反馈最佳全局码字作为长时信息,并更新下一时隙的局部码本。
最佳码字比较方法如下:
Figure PCTCN2017090638-appb-000045
其中,c为本时隙最佳的全局码字,clocal为基于上一时隙最佳的全局码字得到的最佳局 部码字,copt为最终反馈的码字。
如图4所示,码字反馈准则主要包括以下步骤:
步骤401、用户估计信道状态信息;
步骤402、搜索三维全局码本,得到最初的最佳全局码本,执行步骤408将最初的最佳全局码本作为长时信息反馈给基站;
步骤403、基于步骤402最佳的全局码字,在其三维局部码本中进行搜索,得到当前最佳的局部码字;
步骤404:判断局部码字是否优于全局码字,如果是,转向步骤405,如果否,转向步骤406;
步骤405:瞬间反馈局部码字至基站;
步骤406:瞬间反馈全局码字至基站;
步骤407:更新全局码字。
其中,步骤404-406即:若最佳局部码字优于最佳全局码字,则反馈最佳局部码字;若最佳全局码字优于最佳局部码字,则反馈最佳全局码字作为长时信息,并更新下一时隙的局部码本。
本公开所述方法的有益效果可以通过以下仿真和分析来进一步进行说明。按照表1设置的***仿真参数如下:
表1基本仿真参数设定
Figure PCTCN2017090638-appb-000046
Figure PCTCN2017090638-appb-000047
图5为64PSK调制下,BER(二进制)随SNR(信噪比)变化的性能图,可以看出,本方案所提出的码本较DFT直积码本有一定的提升,特别是当反馈量均为4+4bits时,有1dB左右的性能提升,而当反馈量减半时,性能也有少许提升,可以基本达到获得性能提升或在保证性能的前提下降低反馈开销的目标。
本实施例还提供了一种适用于3D MIMO***的码本设计装置,如图6所示,所述更新装置包括:
构造单元601,用于构造全局码本与局部码本;
全局码字选择单元602,用于搜索强相关的全局码本,确定最佳全局码字;
局部码字选择单元603,用于搜索弱相关的局部码本,确定最佳局部码字;
反馈单元604,用于根据最佳全局码字和最佳局部码字生成最终码字,并将最终码字反馈至基站。
在一实施例中,所述构造单元用于通过以下步骤构造全局码本:
选取强相关的二维码本,分别作为水平和垂直方向上的子码本Ca和Ce,反馈精度分别为Na和Ne比特。对其进行直积操作,可生成大小为Na+Ne比特的三维全局码本,
Figure PCTCN2017090638-appb-000048
Figure PCTCN2017090638-appb-000049
Figure PCTCN2017090638-appb-000050
其中,
Figure PCTCN2017090638-appb-000051
为Ca的第m个码字,
Figure PCTCN2017090638-appb-000052
为Ce的第n个码字,C(m,n)为其生成的一个码字,
Figure PCTCN2017090638-appb-000053
表示直积。
在一实施例中,所述构造单元用于通过以下步骤构造局部码本:
以所述全局码本的码字为中心,由弱相关二维码本在其周围的空间通过旋转和缩放生成。
在一实施例中,所述构造单元用于:
针对水平和垂直的有源天线***AAS天线数目分别生成局部码本,对其进行直积操作,生成局部码本:
Figure PCTCN2017090638-appb-000054
其中,
Figure PCTCN2017090638-appb-000055
Figure PCTCN2017090638-appb-000056
分别表示相对应全局码本垂直和水平码本中第m个和第n个码字生成的局部垂直和水平码本,
Figure PCTCN2017090638-appb-000057
表示全局码本中码字C(m,n)对应的局部码本。
在一实施例中,所述全局码字选择单元用于:
根据最大容量准则,选取最佳全局码本码字:
Figure PCTCN2017090638-appb-000058
其中,H为所服务用户与基站间的下行信道状态信息估计值,ci为全局码本C中的第i个码字。
所述局部码字选择单元用于:
根据最佳全局码本码字c,在其对应局部码本中,通过最大容量准则,选取最佳全局码字:
Figure PCTCN2017090638-appb-000059
其中,Clocal(c)为全局码本码字c对应的局部码本。
在一实施例中,所述反馈单元用于利用下述公式生成最终码字:
Figure PCTCN2017090638-appb-000060
其中,c为本时隙最佳的全局码本码字,clocal为基于上一时隙最佳的全局码本码字得到的最佳局部码本码字,copt为最终反馈的码字。
在一实施例中,所述反馈单元用于:
将最佳全局码字作为长时信息反馈至基站;
基于上一时隙最佳的全局码字得到的最佳局部码字与本时隙的最佳全局码字进行比较,若最佳局部码字优于最佳全局码字,则反馈最佳局部码字;若最佳全局码字优于最佳局部码字,则反馈最佳全局码字作为长时信息,并更新下一时隙的局部码本。
在本公开各方法实施例中,各步骤的序号并不能用于限定各步骤的先后顺序,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,对各步骤的先后变化也在本公开的保护范围之内。
本领域的技术人员应该明白,上述本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在计算机存储介质(ROM/RAM、磁碟、光盘)中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。所以,本发明不限制于任何特定 的硬件和软件结合。
以上是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (18)

  1. 一种适用于三维多输入多输出3D MIMO***的码本设计方法,包括:
    构造全局码本与局部码本;
    搜索强相关的全局码本,确定最佳全局码字;
    搜索弱相关的局部码本,确定最佳局部码字;
    根据最佳全局码字和最佳局部码字生成最终码字,将最终码字反馈至基站。
  2. 根据权利要求1所述的码本设计方法,其中,构造所述全局码本,包括:
    选取强相关的二维码本,分别作为水平和垂直方向上的子码本Ca和Ce,反馈精度分别为Na和Ne比特;对其进行直积操作,可生成大小为Na+Ne比特的三维全局码本,
    Figure PCTCN2017090638-appb-100001
    Figure PCTCN2017090638-appb-100002
    Figure PCTCN2017090638-appb-100003
    其中,
    Figure PCTCN2017090638-appb-100004
    为Ca的第m个码字,
    Figure PCTCN2017090638-appb-100005
    为Ce的第n个码字,C(m,n)为其生成的一个码字,
    Figure PCTCN2017090638-appb-100006
    表示直积。
  3. 根据权利要求2所述的码本设计方法,其中,所述强相关二维码本为离散傅里叶变换DFT码本。
  4. 根据权利要求1所述的码本设计方法,其中,构造所述局部码本,包括:
    以所述全局码本的码字为中心,由弱相关二维码本在其周围的空间通过旋转和缩放生成。
  5. 根据权利要求4所述的码本设计方法,其中,构造所述局部码本包括:
    针对水平和垂直的有源天线***AAS天线数目分别生成局部码本,对其进行直积操作,生成局部码本:
    Figure PCTCN2017090638-appb-100007
    其中,
    Figure PCTCN2017090638-appb-100008
    Figure PCTCN2017090638-appb-100009
    分别表示相对应全局码本垂直和水平码本中第m个和第n个码字生成的局部垂直和水平码本,
    Figure PCTCN2017090638-appb-100010
    表示全局码本中码字C(m,n)对应的局部码本。
  6. 根据权利要求4所述的码本设计方法,其中,所述弱相关的二维码本为格拉斯曼码本。
  7. 根据权利要求1所述的码本设计方法,其中,所述搜索强相关的全局码本,包括:
    根据最大容量准则,选取最佳全局码本码字:
    Figure PCTCN2017090638-appb-100011
    其中,H为所服务用户与基站间的下行信道状态信息估计值,ci为全局码本C中的第i个码字;
    所述搜索弱相关的局部码本,包括:
    根据最佳全局码本码字c,在其对应局部码本中,通过最大容量准则,选取最佳全局码字:
    Figure PCTCN2017090638-appb-100012
    其中,Clocal(c)为全局码本码字c对应的局部码本。
  8. 根据权利要求7所述的码本设计方法,其中,
    所述搜索强相关的全局码本,以及所述搜索弱相关的局部码本,使用最大信干比准则代替最大容量准则。
  9. 根据权利要求1所述的码本设计方法,其中,所述生成最终码字,包括:
    Figure PCTCN2017090638-appb-100013
    其中,c为本时隙最佳的全局码本码字,clocal为基于上一时隙最佳的全局码本码字得到的最佳局部码本码字,copt为最终反馈的码字。
  10. 根据权利要求1所述的码本设计方法,其中,所述将最终码字反馈至基站,包括:
    将所述最佳全局码字作为长时信息反馈至基站;
    基于上一时隙最佳的全局码字得到的最佳局部码字与本时隙的最佳全局码字进行比较,若最佳局部码字优于最佳全局码字,则反馈最佳局部码字;若最佳全局码字优于最佳局部码字,则反馈最佳全局码字作为长时信息,并更新下一时隙的局部码本。
  11. 一种适用于三维多输入多输出3D MIMO***的码本设计装置,包括:
    构造单元,设置为构造全局码本与局部码本;
    全局码字选择单元,设置为搜索强相关的全局码本,确定最佳全局码字;
    局部码字选择单元,设置为搜索弱相关的局部码本,确定最佳局部码字;
    反馈单元,设置为根据最佳全局码字和最佳局部码字生成最终码字,并将最终码字反馈至基站。
  12. 根据权利要求11所述的码本设计装置,其中,所述构造单元设置为通过以下步骤构造全局码本:
    选取强相关的二维码本,分别作为水平和垂直方向上的子码本Ca和Ce,反馈精度分别为Na和Ne比特;对其进行直积操作,可生成大小为Na+Ne比特的三维全局码本,
    Figure PCTCN2017090638-appb-100014
    Figure PCTCN2017090638-appb-100015
    Figure PCTCN2017090638-appb-100016
    其中,
    Figure PCTCN2017090638-appb-100017
    为Ca的第m个码字,
    Figure PCTCN2017090638-appb-100018
    为Ce的第n个码字,C(m,n)为其生成的一个码字,
    Figure PCTCN2017090638-appb-100019
    表示直积。
  13. 根据权利要求11所述的码本设计装置,其中,所述构造单元设置为通过以下步骤构造局部码本:
    以所述全局码本的码字为中心,由弱相关二维码本在其周围的空间通过旋转和缩放生成。
  14. 根据权利要求13所述的码本设计装置,其中,所述构造单元设置为:
    针对水平和垂直的有源天线***AAS天线数目分别生成局部码本,对其进行直积操作,生成局部码本:
    Figure PCTCN2017090638-appb-100020
    其中,
    Figure PCTCN2017090638-appb-100021
    Figure PCTCN2017090638-appb-100022
    分别表示相对应全局码本垂直和水平码本中第m个和第n个码字生成的局部垂直和水平码本,
    Figure PCTCN2017090638-appb-100023
    表示全局码本中码字C(m,n)对应的局部码本。
  15. 根据权利要求11所述的码本设计装置,其中,所述全局码字选择单元设置为:
    根据最大容量准则,选取最佳全局码本码字:
    Figure PCTCN2017090638-appb-100024
    其中,H为所服务用户与基站间的下行信道状态信息估计值,ci为全局码本C中的第i个码字;
    所述局部码字选择单元设置为:
    根据最佳全局码本码字c,在其对应局部码本中,通过最大容量准则,选取最佳全局码字:
    Figure PCTCN2017090638-appb-100025
    其中,Clocal(c)为全局码本码字c对应的局部码本。
  16. 根据权利要求11所述的码本设计装置,其中,所述反馈单元设置为利用下述公式生成最终码字:
    Figure PCTCN2017090638-appb-100026
    其中,c为本时隙最佳的全局码本码字,clocal为基于上一时隙最佳的全局码本码字得到的最佳局部码本码字,copt为最终反馈的码字。
  17. 根据权利要求11述的码本设计装置,其中,所述反馈单元设置为:
    将所述最佳全局码字作为长时信息反馈至基站;
    基于上一时隙最佳的全局码字得到的最佳局部码字与本时隙的最佳全局码字进行比较,若最佳局部码字优于最佳全局码字,则反馈最佳局部码字;若最佳全局码字优于最佳局部码字,则反馈最佳全局码字作为长时信息,并更新下一时隙的局部码本。
  18. 一种计算机存储介质,所述计算机存储介质存储有执行指令,所述执行指令用于执行权利要求1至10中任一项所述的方法。
PCT/CN2017/090638 2016-07-28 2017-06-28 一种适用于3d mimo***的码本设计方法及码本设计装置 WO2018019078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610605248.XA CN107666343A (zh) 2016-07-28 2016-07-28 一种适用于3d mimo***的码本设计方法及码本设计装置
CN201610605248.X 2016-07-28

Publications (1)

Publication Number Publication Date
WO2018019078A1 true WO2018019078A1 (zh) 2018-02-01

Family

ID=61016277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090638 WO2018019078A1 (zh) 2016-07-28 2017-06-28 一种适用于3d mimo***的码本设计方法及码本设计装置

Country Status (2)

Country Link
CN (1) CN107666343A (zh)
WO (1) WO2018019078A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11349227B2 (en) 2017-03-03 2022-05-31 Groundlinx Technologies, Llc Electrical grounding systems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109379123B (zh) * 2018-11-20 2021-09-07 南京信息工程大学 空时相关信道自适应差分预编码码书设计方法
CN110557180B (zh) * 2019-08-22 2023-04-07 哈尔滨工业大学(深圳) 一种多分查找波束成形方法、装置、***及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291201A (zh) * 2011-08-17 2011-12-21 东南大学 一种面向双码本结构的低复杂度码本搜索方法
CN103746730A (zh) * 2014-01-02 2014-04-23 上海交通大学 Lte-a***中的两级码本选择方法
CN103944621A (zh) * 2013-01-18 2014-07-23 上海贝尔股份有限公司 确定适用于4Tx交叉极化天线配置的两级码本集合的方法
WO2016051792A1 (en) * 2014-10-01 2016-04-07 Nec Corporation Method and system for mimo communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291201A (zh) * 2011-08-17 2011-12-21 东南大学 一种面向双码本结构的低复杂度码本搜索方法
CN103944621A (zh) * 2013-01-18 2014-07-23 上海贝尔股份有限公司 确定适用于4Tx交叉极化天线配置的两级码本集合的方法
CN103746730A (zh) * 2014-01-02 2014-04-23 上海交通大学 Lte-a***中的两级码本选择方法
WO2016051792A1 (en) * 2014-10-01 2016-04-07 Nec Corporation Method and system for mimo communication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11349227B2 (en) 2017-03-03 2022-05-31 Groundlinx Technologies, Llc Electrical grounding systems

Also Published As

Publication number Publication date
CN107666343A (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
Alkhateeb DeepMIMO: A generic deep learning dataset for millimeter wave and massive MIMO applications
Shafin et al. Angle and delay estimation for 3-D massive MIMO/FD-MIMO systems based on parametric channel modeling
WO2021142631A1 (en) Method, device and computer readable medium of communication
TWI580210B (zh) Method, system and equipment for channel status information measurement
CN109257309B (zh) 一种高性能的大规模mimo下行链路传输信道估计方法
TWI632783B (zh) 使用基本與差分碼簿之波束形成技術(三)
CN111193533B (zh) 大规模mimo波束域鲁棒预编码传输方法与***
WO2018019078A1 (zh) 一种适用于3d mimo***的码本设计方法及码本设计装置
CN108631837B (zh) 信息的传输方法和设备
WO2014113992A1 (zh) 信道状态信息的反馈方法、信道状态信息参考信号的传输方法、用户设备以及基站
CN110710123B (zh) 大规模mimo中的主动用户选择
WO2017028331A1 (zh) 码本的配置方法和用户设备
CN114338301B (zh) 一种基于压缩感知的ris辅助毫米波***的信道估计方法
WO2018141233A1 (en) Ultra lean vector processor
Qi et al. Off-grid compressive channel estimation for mm-wave massive MIMO with hybrid precoding
CN108092701B (zh) 混合波束成形hbf***波束选择方法、装置及存储介质
CN109951216B (zh) 一种基于码本辅助的大规模mimo doa估计方法
JP2018514994A (ja) ビーム情報取得方法、装置及び通信システム
WO2017121092A1 (zh) 一种信道估计方法及装置
WO2017032220A1 (zh) 一种预编码矩阵确定方法及装置
US20230353426A1 (en) Channel Estimation for an Antenna Array
CN114553275B (zh) 一种适用于非均匀线/面阵mimo***的改进型码本设计方法及装置
Pang et al. MGGAN-based hybrid beamforming design for massive MIMO systems against rank-deficient channels
WO2020010915A1 (zh) 一种天线连接检测方法及装置
WO2018126776A1 (zh) 一种用户终端调度方法及装置、通信***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833381

Country of ref document: EP

Kind code of ref document: A1