WO2018018967A1 - 一种结合空压***与热泵***的复合*** - Google Patents

一种结合空压***与热泵***的复合*** Download PDF

Info

Publication number
WO2018018967A1
WO2018018967A1 PCT/CN2017/082116 CN2017082116W WO2018018967A1 WO 2018018967 A1 WO2018018967 A1 WO 2018018967A1 CN 2017082116 W CN2017082116 W CN 2017082116W WO 2018018967 A1 WO2018018967 A1 WO 2018018967A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
compressor
refrigerant
heat pump
cooling
Prior art date
Application number
PCT/CN2017/082116
Other languages
English (en)
French (fr)
Inventor
袁皓
杨侨明
李日华
张天翼
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2018018967A1 publication Critical patent/WO2018018967A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Definitions

  • the invention belongs to the technical field of air conditioning heat pumps, and particularly relates to a composite system combining a air pressure system and a heat pump system.
  • the air compressor has a high exhaust gas temperature and waste of heat. If it is cooled, it needs to be filled with a cooling liquid (such as cooling water, cooling oil, etc.) or a cooling fan, which brings a cooling liquid or a cooling fan.
  • a cooling liquid such as cooling water, cooling oil, etc.
  • a cooling fan which brings a cooling liquid or a cooling fan.
  • the energy consumption, and the heat pump system lacks a stable heat source to maintain the heat exchange process, and if it takes a large amount of power to extract heat from a low environment, the present invention studies to design a combination of a pneumatic system and a heat pump system. Composite system.
  • the technical problem to be solved by the present invention is to overcome the defects of the prior art air compressor exhaust gas temperature and the lack of a stable heat source of the heat pump system, thereby providing a composite system combining the air pressure system and the heat pump system.
  • the invention provides a composite system combining a pneumatic system and a heat pump system, comprising a compressor, a cooling/condenser, a throttling device and a circulation loop formed by the above components, the compressor including an air inlet end and a refrigerant An inlet end and an outlet end, and the air inlet end is for drawing in air, the refrigerant inlet end is connected to the throttling device, and the outlet end is connected to the cooling/condenser.
  • the circulation loop is located between the cooling/condenser and the throttling device.
  • a compressed air storage tank is further included, the gas outlet of the gas-liquid separator being connected to the compressed air storage tank.
  • a first refrigerant recovery device is further disposed between the outlet end of the gas-liquid separator and the compressed air storage tank.
  • the liquid discharge end of the gas-liquid separator is connected to the throttling device.
  • the air inlet end is connected to an air intake line, and a second refrigerant recovery unit is disposed on the air intake line.
  • a check valve is further disposed on the air intake line between the air inlet end and the second refrigerant recovery unit.
  • the compressor has an suction pressure of 0.1 MPa and a discharge pressure of 0.8 MPa; and the refrigerant in the circulation circuit is at least one of R11, R113, R123, R141b, R245ca, and R245fa.
  • the cooling/condenser is used for heat exchange with water, and the temperature of the water after heat exchange can reach 80 ° C or higher.
  • the composite system combining the air pressure system and the heat pump system of the present invention adopts a combination of an air compression system and a high temperature heat pump system, so that the refrigerant working medium of the high temperature heat pump acts as a cooling liquid spray and air compression of the air compressor.
  • the high-temperature exhaust of the machine acts as a heat source for the high-temperature heat pump, and can use the refrigerant to cool the air to lower its exhaust temperature, and use the high-temperature compressed air to heat the refrigerant to heat up the refrigerant to complete the process of evaporation and heat absorption.
  • the use of the exhaust heat of the air compression system while solving the technical problems of high air compressor exhaust temperature and the lack of a stable heat source of the heat pump system;
  • the refrigerant working medium of the high temperature heat pump acts as a cooling spray of the air compressor
  • the high temperature exhaust of the air compressor acts as a heat source of the high temperature heat pump, thereby making the air
  • the compression system can save fuel cooling, avoid the consumption of lubricating oil and reduce operating costs
  • the air compression system is adopted by the composite system combining the air pressure system and the heat pump system of the present invention. Combined with the high-temperature heat pump system, the single-stage oil-free compression can be realized by using a conventional single-wall compressor, which reduces the production cost of the compressor;
  • the air compression system and the compression heat pump system can share a cooling/condenser and a compressor, so that the compressor functions as compressed air and At the same time, the refrigerant can also act as an evaporator to heat the refrigerant. That is, the compression heat pump system can eliminate the evaporator and the stable high-temperature heat source, and there is almost no equipment input, which reduces the increase of the equipment and reduces the cost.
  • Figure 1 is a schematic view showing the structure of a composite system incorporating a pneumatic system and a heat pump system of the present invention.
  • the present invention provides a composite system combining a pneumatic system and a heat pump system, comprising a compressor 1, a cooling/condenser 2, a throttling device 3, and a circulation circuit (heat pump closed) connected by the above components.
  • the compressor 1 includes an air inlet end 11, a refrigerant inlet end 12 and an outlet end 13, and the air inlet end 11 is for drawing in air, the refrigerant inlet end 12 and the throttling
  • the device 3 is connected, the outlet end 13 is connected to the cooling/condenser 2, and the other end of the throttling device 3 is connected to the cooling/condenser 2.
  • the composite system combining the air pressure system and the heat pump system of the present invention adopts a combination of an air compression system and a high temperature heat pump system, so that the refrigerant working medium of the high temperature heat pump acts as a cooling liquid spray and air compression of the air compressor.
  • the high-temperature exhaust of the machine acts as a heat source for the high-temperature heat pump, which can use the refrigerant to cool the air inside the compressor to reduce its exhaust temperature and utilize the high-temperature compressed air to cool the air.
  • the refrigerant working medium of the high temperature heat pump acts as a cooling spray of the air compressor
  • the high temperature exhaust of the air compressor acts as a heat source of the high temperature heat pump, thereby making the air
  • the compression system can save fuel cooling, avoid the consumption of lubricating oil and reduce operating costs
  • the air compression system and the compression heat pump system can share a cooling/condenser and a compressor, so that the compressor functions as compressed air and At the same time, the refrigerant can also act as an evaporator to heat the refrigerant. That is, the compression heat pump system can eliminate the evaporator and the stable high-temperature heat source, and there is almost no equipment input, which reduces the increase of the equipment and reduces the cost.
  • a gas-liquid separator 4 is further disposed between the cooling/condenser 2 and the throttling device 3 on the circulation circuit.
  • a gas-liquid separator By providing a gas-liquid separator, the mixture of the air cooled by the cooling/condenser and the refrigerant liquid can be separated, thereby introducing the compressed air into a specified desired position, and the liquid refrigerant still enters the heat pump cycle.
  • the process continues with the heating cycle; and the gas-liquid separator is placed between the cooling/condenser and the throttling device, ie, it is placed at the rear end of the cooling/condenser flow direction because of the cooling through the cooling/condenser After the heat exchange, most of the refrigerant has become liquid, so that the gas-liquid separator can be used to effectively separate the air from the refrigerant (if it is placed behind the compressor airflow, because of air and refrigeration)
  • the agents are all gases, which are not conducive to the separation of the two), thereby accomplishing the purpose and effect of air compression and heat pump cycle heating.
  • the gas-liquid separator is a high-efficiency gas-liquid separator, thereby achieving efficient separation of gas and liquid and preventing leakage of refrigerant from the air line.
  • a compressed air storage tank 7 is also included, and the outlet end 41 of the gas-liquid separator 4 is connected to the compressed air storage tank 5.
  • the gas separated by the gas-liquid separator i.e., compressed air
  • the gas-liquid separator can be efficiently stored to be transported to a specified position as needed.
  • a first refrigerant recovery unit 6 is further disposed between the outlet end 41 of the gas-liquid separator 4 and the compressed air storage tank 5.
  • the refrigerant which is incompletely separated and enters the gas discharge passage can be effectively recovered, thereby effectively preventing the leakage of the refrigerant, ensuring the purity of the air and ensuring the purity. Normal, reliable operation of the heat pump cycle.
  • the liquid discharge end 42 of the gas-liquid separator 4 is connected to the throttle device 3.
  • the liquid refrigerant separated from the liquid discharge end of the gas-liquid separator can be reintroduced into the heat pump circulation system and throttled and expanded into the throttle device to continue the heat pump heating cycle.
  • the air inlet end 11 is connected to an air intake line through which air is taken in, and a second refrigeration is provided on the air intake line (at the front end of the air inlet end of the air inlet end) Reagent recovery unit 7.
  • a second refrigeration is provided on the air intake line (at the front end of the air inlet end of the air inlet end) Reagent recovery unit 7.
  • the compression heat pump system is a closed system and the air compression system is an open system
  • the closed heat pump system of the closed system is combined with the air compression system of the open system, it is inevitable that there will be an inlet and outlet end of the open system.
  • a refrigerant recovery device is provided at both the air inlet end of the compressor and the outlet end of the gas-liquid separator, and the leakage of the refrigerant is well prevented.
  • a check valve 8 is provided on the air intake line between the air inlet end 11 and the second refrigerant recovery unit 7.
  • the compressor is an oil-free single stage screw compressor.
  • This is a preferred type and configuration of the compressor of the present invention, and the use of the oil-free single-stage screw compressor enables the exhaust gas temperature to be lowered and the cost to be reduced, and the applicability is stronger.
  • the screw compressor injector and oil-free machine have obvious boundaries, the exhaust gas temperature has been plaguing the development and promotion of oil-free screw compressors for a long time.
  • the production and development cost of oil-free screw compressors is significantly higher than that of fuel injection machines. Taking the production of 0.8MPa compressed air at normal pressure as an example, the single-stage compression of the oil-injected screw compressor can control the exhaust gas temperature below 80 °C.
  • the oil-free compressor must adopt two-stage compression and the double-layer design of the body casting, the exhaust temperature. Still up to 200 ° C or more.
  • the invention solves the problem that the exhaust temperature of the existing oil-free screw compressor is too high by the method of cooling the spray refrigerant, and improves the oil-free screw compression.
  • the single-stage pressure ratio of the machine omits the double-layer structure of the machine and reduces the production cost by at least half.
  • the spray refrigerant screw compressor avoids the consumption of lubricating oil and reduces the operating cost of the system.
  • the compressor has an suction pressure of 0.1 MPa and a discharge pressure of 0.8 MPa; and the refrigerant in the circulation circuit is at least one of R11, R113, R123, R141b, R245ca, and R245fa (ie, any One and two or more).
  • the cooling/condenser 2 is used for heat exchange with water, and the temperature of the water after heat exchange can reach 80 ° C or higher.
  • This is the specific heat exchange medium of the cooling/condenser heat exchange end of the composite system of the air compression and compression heat pump of the present invention, which exchanges heat with water, can effectively produce hot water, and realizes the use of the heat pump circulation system.
  • the purpose and effect of taking hot water, and the water temperature after heat exchange can reach above 80 °C can produce high temperature hot water.
  • the invention designs a composite system combining an air compression system and a compression heat pump system, overcomes the shortcomings of the two, and each takes the required, the air compression system avoids the consumption of lubricating oil and realizes single-stage compression, and reduces the compressor.
  • the compression heat pump system omits the evaporator, and shares a set of coolers and compressors with the air compression system, without equipment input. This patent reduces the operating costs and equipment costs of the two systems and improves energy efficiency.
  • the present invention combines the air compression system with the compression heat pump cycle, and the refrigerant medium of the high temperature heat pump acts as a cooling spray for the air compressor, and the air
  • the high temperature exhaust of the compressor can act as a heat source for the high temperature heat pump.
  • the air compression system can eliminate oil-free compression by conventional compressors for fuel injection cooling, and the evaporator can be omitted by the compression heat pump system.
  • the two systems share one cooler and one compressor, which can be larger. Reduce equipment costs.
  • the invention combines an air compression system and a high temperature heat pump system to produce oil-free compressed air while achieving a heat pump of 80 ° C or higher.
  • the compressed air system there is no need to spray lubricating oil to cool (the bearing lubrication system needs a small amount of lubricating oil), avoiding the contact between air and oil, achieving oil-free compression, avoiding the consumption of lubricating oil and reducing the operating cost of the compressor.
  • exhaust gas temperature may reach 200 ⁇ 300 ° C, in order to ensure that the compressor body castings do not undergo large thermal deformation, usually requires two-stage compression, and each stage of the compressor body design has two layers
  • the structure has a cooling jacket filled with water or other liquid in the middle, which greatly increases the production cost of the compressor.
  • the system is cooled by a refrigerant, the compressor can be single-stage compressed, and the body can adopt a single-layer structure, which will reduce the production cost of the compressor by more than half.
  • the compression heat pump system is a closed system and the compressed air system is an open system.
  • the combination of the two systems needs to solve the problem of refrigerant leakage. Therefore, the suction (at the numeral 11 in Fig. 1) needs to add a check valve, and the exhaust (at the number 41 in Fig. 1) requires high-efficiency liquid separation, and at the same time, the refrigerant absorption device needs to be arranged for recovery and leakage. Refrigerant.
  • the present invention analyzes the preferred embodiment by taking an oil-free liquid-jet screw compressor as an example. Because the screw compressor injector and oil-free machine have obvious boundaries, the exhaust gas temperature has been plaguing the development and promotion of oil-free screw compressors for a long time. The production and development cost of oil-free screw compressors is significantly higher than that of fuel injection machines. Taking the production of 0.8MPa compressed air at normal pressure as an example, the single-stage compression of the oil-injected screw compressor can control the exhaust gas temperature below 80 °C. The oil-free compressor must adopt two-stage compression and the double-layer design of the body casting, the exhaust temperature. Still up to 200 ° C or more.
  • the invention solves the problem that the exhaust temperature of the existing oil-free screw compressor is too high by the method of cooling the spray refrigerant, improves the single-stage pressure ratio of the oil-free screw compressor, and omits the double-layer structure of the body, at least half of which is Cost of production.
  • the spray refrigerant screw compressor avoids the consumption of lubricating oil and reduces the operating cost of the system.
  • the normal temperature atmospheric air a is sucked into the compressor 1 through the second refrigerant recovery unit 7 and the check valve 8, and mixed with the refrigerant liquid to be a gas-liquid two-phase mixture b.
  • the two-phase mixture b is compressed by the compressor 1 to the high-temperature and high-pressure mixed gas c, and the mixed gas c is passed to the cooling/condenser 2 to be cooled and cooled to air and
  • the low temperature gas-liquid two-phase mixture d of the refrigerant, and the two-phase mixture d is separated into low-temperature high-pressure air e and low-temperature high-pressure liquid refrigerant f through the gas-liquid separator 4.
  • the liquid refrigerant f is depressurized to a low pressure liquid g (possibly flashing a certain amount of refrigerant vapor) via a throttling device 3 (preferably a throttle valve) and then returned to the compressor 1 to complete a closed refrigerant heat pump cycle.
  • the compressed air e passes through the first refrigerant recovery unit 6 and is passed to the compressed air storage tank 5 for use by the user to complete an open compression cycle of the air.
  • the most common compressed air system is calculated by taking the suction pressure of 0.1 MPa and the exhaust pressure of 0.8 MPa as an example.
  • the present invention uses the following single refrigerant:
  • the mass flow rate at other points is the ratio of the point value to the inspiratory mass flow rate, for example, 2 is twice the inspiratory value.
  • the state of each point of the system is as follows, the heat exchange temperature difference is taken as 3 ° C (ie, the heat exchange temperature difference between the gas and the cooling water in the cooling condenser), and the isentropic efficiency of the compressor is taken as 90%, as shown in the following table:
  • the system can produce 1.30kg/s of hot water at 80°C.
  • the system comprehensive heating COP decreases, but the amount of compressed air per unit mass of compressed air increases (the liquid volume decreases, the compressor power consumption increases, resulting in compressed air heat) Raising and heating the hot water increases the amount of hot water). That is, when the compressed air output is constant, the amount of liquid spray is reduced, the amount of hot water produced is increased, and the cost of producing unit mass of hot water is also increased (at this time, the power consumption of the compressor is increased, the efficiency is lowered, resulting in more waste and increased cost).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种结合空压***与热泵***的复合***,包括压缩机(1)、冷却/冷凝器(2)、节流装置(3)以及由上述部件连成的循环回路。压缩机(1)包括空气进口端(11)、制冷剂进口端(12)和出口端(13)。空气进口端(11)用于吸入空气,制冷剂进口端(12)与节流装置(3)相连,出口端(13)与冷却/冷凝器(2)相连。

Description

一种结合空压***与热泵***的复合*** 技术领域
本发明属于空调热泵技术领域,具体涉及一种结合空压***与热泵***的复合***。
背景技术
现有技术中的常规空气压缩机排气温度较高热量较大,如果用风冷或水冷***,不仅热量完全浪费,而且消耗大量冷却水或冷却风扇的电能,同时压缩过程为达到较高的压比也需要喷入大量的冷却液体。常规压缩式热泵***,如果要得到80℃以上高温,对热源品质要求较高,如果需要从室外低温环境下吸收热量,则需要消耗整个热泵***尤其是压缩机大量的功率来得以实现,使得能耗较大。
现有技术中存在空气压缩机排气温度较高、热量浪费,若对其进行冷却则需要补入冷却液体(如冷却水、冷却油等)或使用冷却风扇,会带来冷却液体或冷却风扇的能量消耗,且热泵***缺乏稳定的热源以维持换热过程、若从低位环境下吸取热量需要消耗较大的功率等技术问题,因此本发明研究设计出一种结合空压***与热泵***的复合***。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中的空气压缩机排气温度较高以及热泵***缺乏稳定热源的缺陷,从而提供一种结合空压***与热泵***的复合***。
本发明提供一种结合空压***与热泵***的复合***,其包括压缩机、冷却/冷凝器、节流装置以及由上述部件连成的循环回路,所述压缩机包括空气进口端、制冷剂进口端和出口端,且所述空气进口端用于吸入空气、所述制冷剂进口端与所述节流装置相连、所述出口端与所述冷却/冷凝器相连。
优选地,在所述循环回路上位于所述冷却/冷凝器与所述节流装置之间还设 置有气液分离器。
优选地,还包括压缩空气储气罐,所述气液分离器的出气端连接至压缩空气储气罐。
优选地,在所述气液分离器的所述出气端与所述压缩空气储气罐之间还设置有第一制冷剂回收器。
优选地,所述气液分离器的出液端与所述节流装置相连。
优选地,所述空气进口端连接空气吸气管路,且在所述空气吸气管路上设置有第二制冷剂回收器。
优选地,在所述空气吸气管路上、位于所述空气进口端与所述第二制冷剂回收器之间还设置有止回阀。
优选地,所述压缩机为无油单级螺杆压缩机。
优选地,所述压缩机的吸气压力为0.1MPa,排气压力为0.8MPa;所述循环回路中的制冷剂为R11,R113,R123,R141b,R245ca,R245fa中的至少一种。
优选地,所述冷却/冷凝器用于与水进行换热,且经过换热后的水温能达到80℃以上。
本发明提供的一种结合空压***与热泵***的复合***具有如下有益效果:
1.通过本发明的结合空压***与热泵***的复合***,采用将空气压缩***与高温热泵***进行结合的方式,使得高温热泵的制冷剂工质充当空气压缩机的冷却喷液、空气压缩机的高温排气充当高温热泵的热源,能利用制冷剂对空气进行冷却以降低其排气温度、且利用高温的压缩空气对制冷剂进行加热升温以使得制冷剂完成蒸发吸热的过程,有效地利用了空气压缩***的排气热量,同时解决了空气压缩机排气温度较高以及热泵***缺乏稳定的热源的技术问题;
2.通过本发明的结合空压***与热泵***的复合***,使得高温热泵的制冷剂工质充当空气压缩机的冷却喷液、空气压缩机的高温排气充当高温热泵的热源,从而使得空气压缩***能够省去喷油冷却,避免了润滑油的消耗,降低运行成本;
3.通过本发明的结合空压***与热泵***的复合***,采用将空气压缩系 统与高温热泵***进行结合的方式,能使用常规单层壁压缩机实现单级无油压缩,降低了压缩机的成产成本;
4.通过本发明的结合空压***与热泵***的复合***,能够使得空气压缩***和压缩式热泵***两个***共用一个冷却/冷凝器和一台压缩机,使得压缩机起到压缩空气和制冷剂的同时,还能充当蒸发器的作用以对冷媒进行加热,即压缩热泵***能够省去蒸发器和稳定的高温热源,几乎没有设备投入,减小了设备的增加,降低了成本。
5.通过在吸气处设置止回阀、排气处设置高效液分,并配合设置制冷剂吸收装置的方式能够有效回收漏出的制冷剂、防止了制冷剂的泄漏。
附图说明
图1是本发明的结合空压***与热泵***的复合***的结构示意图。
图中附图标记表示为:
1—压缩机,11—空气进口端,12—制冷剂进口端,13—出口端,2—冷却/冷凝器(或称冷却或冷凝器),3—节流装置,4—气液分离器,41—出气端,5—压缩空气储气罐,6—第一制冷剂回收器,7—第二制冷剂回收器,8—止回阀。
具体实施方式
如图1所示,本发明提供一种结合空压***与热泵***的复合***,其包括压缩机1、冷却/冷凝器2、节流装置3以及由上述部件连成的循环回路(热泵闭式循环回路),所述压缩机1包括空气进口端11、制冷剂进口端12和出口端13,且所述空气进口端11用于吸入空气、所述制冷剂进口端12与所述节流装置3相连、所述出口端13与所述冷却/冷凝器2相连,所述节流装置3的另一端连至冷却/冷凝器2。
1.通过本发明的结合空压***与热泵***的复合***,采用将空气压缩***与高温热泵***进行结合的方式,使得高温热泵的制冷剂工质充当空气压缩机的冷却喷液、空气压缩机的高温排气充当高温热泵的热源,能在压缩机内部利用制冷剂对空气进行冷却以降低其排气温度、且利用高温的压缩空气对制冷 剂进行加热升温(即压缩机内部起到热泵***中的蒸发器的作用)以使得制冷剂完成蒸发吸热的过程,有效地利用了空气压缩***的排气热量,同时解决了空气压缩机排气温度较高以及热泵***缺乏稳定的高温热源的技术问题;
2.通过本发明的结合空压***与热泵***的复合***,使得高温热泵的制冷剂工质充当空气压缩机的冷却喷液、空气压缩机的高温排气充当高温热泵的热源,从而使得空气压缩***能够省去喷油冷却,避免了润滑油的消耗,降低运行成本;
3.通过本发明的结合空压***与热泵***的复合***,采用将空气压缩***与高温热泵***进行结合的方式,能使用常规单层壁压缩机实现单级无油压缩,降低了压缩机的生产成本;
4.通过本发明的结合空压***与热泵***的复合***,能够使得空气压缩***和压缩式热泵***两个***共用一个冷却/冷凝器和一台压缩机,使得压缩机起到压缩空气和制冷剂的同时,还能充当蒸发器的作用以对冷媒进行加热,即压缩热泵***能够省去蒸发器和稳定的高温热源,几乎没有设备投入,减小了设备的增加,降低了成本。
优选地,在所述循环回路上位于所述冷却/冷凝器2与所述节流装置3之间还设置有气液分离器4。通过设置气液分离器能够将经过冷却/冷凝器降温放热过后的空气与制冷剂液体的混合物进行分离作用,从而将压缩后的空气导入指定的所需位置、将液体制冷剂仍然进入热泵循环过程继续制热循环;并且将气液分离器设置于冷却/冷凝器与节流装置之间,即将其设置在冷却/冷凝器的气流方向的后端,这是因为经过冷却/冷凝器的降温换热之后制冷剂已绝大部分变成了液态,从而采用气液分离器就能够便利地将空气与制冷剂之间进行有效的分离(若将其设置在压缩机气流后方则因为空气和制冷剂都是气体、不利于二者的分离),从而完成空气压缩和热泵循环制热的目的和效果。
进一步地,所述气液分离器为高效气液分离器,从而实现气液的高效分离,防止制冷剂从空气管路发生泄漏。
优选地,还包括压缩空气储气罐7,所述气液分离器4的出气端41连接至压缩空气储气罐5。通过设置压缩空气储气罐的结构形式能够有效地将气液分离器分离出来的气体(即压缩空气)进行存储,以根据需要时将其输送至指定位置处。
优选地,在所述气液分离器4的所述出气端41与所述压缩空气储气罐5之间还设置有第一制冷剂回收器6。通过设置第一制冷剂回收器的方式,能够有效地对分离不完全、而进入气体排出通道中的制冷剂进行回收,从而有效地防止了制冷剂的泄漏,保证了空气的纯度、同时保证了热泵循环的正常、可靠的运行。
优选地,所述气液分离器4的出液端42与所述节流装置3相连。这样能够将气液分离器出液端分离出的液态制冷剂重新导入热泵循环***中、进入节流装置中节流膨胀,以继续进行热泵制热的循环过程。
优选地,所述空气进口端11连接空气吸气管路,通过所述空气吸气管路吸入空气,且在所述空气吸气管路上(位于空气进口端的气流方向前端)设置有第二制冷剂回收器7。通过在空气吸气管路上还设置第二制冷剂回收器的方式,还能够对从压缩机的空气进口端意外泄漏出的制冷剂进行回收,从而防止制冷剂从该处产生泄漏,避免对热泵压缩***的正常运行造成影响。
由于压缩热泵***为闭式***,而空气压缩***为开式***,将闭式***的压缩热泵***与开式***的空气压缩***进行结合时,难免会存在从开式***的进、出口端出现泄漏的情况,因此采取在上述压缩机的空气进口端和气液分离器的出气端均设置制冷剂回收器的方式,良好地防止了制冷剂的泄漏。
优选地,在所述空气吸气管路上、位于所述空气进口端11与所述第二制冷剂回收器7之间还设置有止回阀8。通过在上述位置还设置止回阀的方式,能够防止空气流和制冷剂从空气吸气管路倒流至压缩机外部,进一步有效地防止了制冷剂从压缩机空气进口端泄漏的情况的发生,保障热泵制热循环回路的正常可靠的运行。
优选地,所述压缩机为无油单级螺杆压缩机。这是本发明的压缩机的优选种类和结构形式,采用无油单级螺杆压缩机能够使得其排气温度降低以及成本降低的效果更佳,适用性更强。因为螺杆压缩机喷油机、无油机界限明显,长期以来排气温度一直困扰无油螺杆压缩机的开发和推广,无油螺杆压缩机生产开发成本明显高于喷油机。以生产常压0.8MPa压缩空气为例,喷油螺杆压缩机单级压缩即可将排气温度控制在80℃以下,无油压缩机必须采用双级压缩且机体铸件双层设计,排气温度仍然高达200℃以上。本发明通过喷制冷剂冷却的方法解决了现有无油螺杆压缩机排气温度过高的问题,提高了无油螺杆压缩 机的单级压比,省略了机体双层结构,至少降低一半的生产成本。相对喷油螺杆压缩机,喷制冷剂螺杆压缩机避免了润滑油的消耗,降低了***运行成本。
优选地,所述压缩机的吸气压力为0.1MPa,排气压力为0.8MPa;所述循环回路中的制冷剂为R11,R113,R123,R141b,R245ca,R245fa中的至少一种(即任意一种及两种以上)。这是本发明的空气压缩与压缩式热泵的复合***中的压缩机的优选吸、排气压力的数值大小,这样的吸、排气压力更佳地适用于无油单级螺杆压缩机,且采用R11,R113,R123,R141b,R245ca,R245fa中的任意一种及两种以上作为制冷剂,是由于经过大量实验研究结果表明,上述制冷剂在上述的吸、排气压力值下能够有效地满足吸气状态下为液体,排气状态下为气体的需求,能够有效地保证进入压缩机中的制冷剂为液态以进行蒸发吸热、而进入冷却/冷凝器中的制冷剂为气体以进行冷凝放热,使得热泵循环***得以正常有效的运行。
优选地,所述冷却/冷凝器2用于与水进行换热,且经过换热后的水的温度能达到80℃以上。这是本发明的空气压缩与压缩式热泵的复合***的冷却/冷凝器换热端的具体换热工质,将其与水进行换热,能够有效地制取热水,实现利用热泵循环***制取热水的目的和效果,且换热后的水温能达到80℃以上能够制取高温热水。
下面介绍一下本发明的工作原理和优选实施例
本发明设计了一种结合空气压缩***和压缩热泵***的复合***,克服两者自身缺点,各取所需,空气压缩***避免了润滑油的消耗且实现了单级压缩,降低了压缩机的生产成本,压缩热泵***省略蒸发器,与空气压缩***共用一套冷却器和压缩机,无设备投入。本专利降低了两套***的运行成本和设备成本,提高了能源利用效率。
由于空压机高温排气热源稳定热量充足温度高,是理想的热泵热源,本发明将空气压缩***与压缩式热泵循环结合,高温热泵的制冷剂工质充当空气压缩机的冷却喷液,空气压缩机的高温排气可以充当高温热泵的热源。通过该复合***,空气压缩***可以省去喷油冷却用常规压缩机实现无油压缩,压缩热泵***可以省去蒸发器,同时两个***共用一个冷却器、一台压缩机,能较大的降低设备成本。
本发明将空气压缩***和高温热泵***结合,在实现80℃以上热泵的同时生产无油的压缩空气。压缩空气***内,不需要喷润滑油冷却(轴承润滑***还需要少量润滑油),避免了空气和油的接触,实现了无油压缩,避免了润滑油的消耗,降低了压缩机运行成本。常规无油压缩机,没有润滑油冷却,排气温度可能达到200~300℃,为保证压缩机机体铸件不发生较大热变形,通常需要双级压缩,且每级压缩机机体设计有双层结构,中间设有充注水或其他液体的冷却夹套,极大了增加了压缩机的生产成本。而本***通过制冷剂冷却,压缩机可以采用单级压缩,且机体可采用单层结构,将降低压缩机的生产成本一半以上。
常规压缩热泵***,设备上需要一台压缩机、一个蒸发器、一个冷凝器,还需要有稳定的高温热源。通过与空气压缩***结合,解决了热源的同时省去了蒸发器,而压缩机和冷凝器也全部由空气压缩***提供。仅需要添加一个气液分离器,而常规喷油空气压缩***也是有油气分离器的,相当于本热泵***无设备投入。
值得注意的是,压缩热泵***为闭式***,压缩空气***为开式***,两***结合需要解决制冷剂泄露问题。因此吸气处(图1中标号11处)需要添加止回阀,排气处(图1中标号41处)需要高效液分,同时吸排气处皆需要布置制冷剂吸收装置用于回收漏出的制冷剂。
本发明以无油喷液螺杆压缩机为例进行最优实施例分析。因为螺杆压缩机喷油机、无油机界限明显,长期以来排气温度一直困扰无油螺杆压缩机的开发和推广,无油螺杆压缩机生产开发成本明显高于喷油机。以生产常压0.8MPa压缩空气为例,喷油螺杆压缩机单级压缩即可将排气温度控制在80℃以下,无油压缩机必须采用双级压缩且机体铸件双层设计,排气温度仍然高达200℃以上。本发明通过喷制冷剂冷却的方法解决了现有无油螺杆压缩机排气温度过高的问题,提高了无油螺杆压缩机的单级压比,省略了机体双层结构,至少降低一半的生产成本。相对喷油螺杆压缩机,喷制冷剂螺杆压缩机避免了润滑油的消耗,降低了***运行成本。
如图1所示,常温常压空气a经第二制冷剂回收器7和止回阀8后吸入压缩机1,与制冷剂喷液混合为气液两相混合物b。两相混合物b经压缩机1压缩至高温高压混合气体c,混合气体c通入冷却/冷凝器2降温冷却为空气和制 冷剂的低温气液两相混合物d,两相混合物d再经气液分离器4分离为低温高压空气e和低温高压液态制冷剂f。液态制冷剂f经节流装置3(优选为节流阀)降压为低压液体g(可能闪发出一定量的制冷剂蒸汽)后喷回压缩机1,完成闭式的制冷剂热泵循环。压缩空气e经第一制冷剂回收器6后通入压缩空气储罐5供用户使用,完成空气的开式压缩循环。
以最常见的压缩空气***:吸气压力0.1MPa,排气压力0.8MPa为例进行计算。对于本发明的压缩热泵***所用制冷剂,本发明用以下单一工质制冷剂:
R11,R113,R114,R115,R116,R12,R123,R124,R125,R13,R134a,R14,R141b,R142b,R143a,R152a,R218,R22,R227ea,R23,R236ea,R236fa,R245ca,R245fa,R32,R41,RC318,ammonia,argon,butane,CO2,ethane,isobutan,methane,nitrogen,oxygen,propane,propylen,water。
和以下混合工质制冷剂:
R401a,R401b,R401c,R402a,R402b,R403a,R403b,
R404a,R405a,R406a,R407a,R407b,R407c,R407d,
R407e,R408a,R409a,R409b,R410a,R410b,R411a,
R411b,R412a,R413a,R414a,R414b,R415a,R415b,
R416a,R417a,R418a,R419a,R420a,R421a,R421b,
R422a,R422b,R422c,R422d,R423a,R424a,R425a,
R426a,R427a,R428a,R500,R501,R502,R503,R504,
R507a,R508a,R508b,R509a。
进行了初步计算。发现只有R11,R113,R123,R141b,R245ca,R245fa的热力性质满足0.1/0.8MPa的要求,即吸气状态下为液体,排气状态下为气体。并最终选择常用的高温工质R245fa为例进行了计算(R245fa 0.1MPa时蒸发温度为14.8℃,R245ca 0.1MPa时蒸发温度24.8℃)。设压缩机吸气相对质量流量(即设压缩机吸气的质量流量为单位1,其他点的质量流量就是该点值就是与吸气质量流量的比值,例如为2就是吸气值的2倍)为1,***各点状态如下,换热温差取为3℃(即冷却冷凝器里气体和冷却水的换热温差),压缩机等熵效率取为90%,如下表所示:
表1***循环点状态表
Figure PCTCN2017082116-appb-000001
***每生产0.8MPa压缩空气1kg/s,可制80℃热水1.30kg/s。
每生产单位质量压缩空气,能源消耗、利用情况如下表所示:
表2***性能表
Figure PCTCN2017082116-appb-000002
随喷液量的降低,***排气温度升高,***综合制热COP降低,但是单位质量压缩空气产热水量随之升高(喷液量降低、压缩机功耗增加,导致压缩空气热量升高、加热热水使得热水量随之升高)。即压缩空气产量不变时,喷液量降低,生产热水量增加,生产单位质量热水的成本也增加(此时压缩机功耗增加、效率降低、导致浪费较多、成本增加)。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。以上所述仅是本发明的优选实施方式,应当指出,对于本技 术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种结合空压***与热泵***的复合***,其特征在于:包括压缩机(1)、冷却/冷凝器(2)、节流装置(3)以及由上述部件连成的循环回路,所述压缩机(1)包括空气进口端(11)、制冷剂进口端(12)和出口端(13),且所述空气进口端(11)用于吸入空气、所述制冷剂进口端(12)与所述节流装置(3)相连、所述出口端(13)与所述冷却/冷凝器(2)相连。
  2. 根据权利要求1所述的复合***,其特征在于:在所述循环回路上位于所述冷却/冷凝器(2)与所述节流装置(3)之间还设置有气液分离器(4)。
  3. 根据权利要求2所述的复合***,其特征在于:还包括压缩空气储气罐(5),所述气液分离器(4)的出气端(41)连接至所述压缩空气储气罐(5)。
  4. 根据权利要求3所述的复合***,其特征在于:在所述气液分离器(4)的所述出气端(41)与所述压缩空气储气罐(5)之间还设置有第一制冷剂回收器(6)。
  5. 根据权利要求2-4之一所述的复合***,其特征在于:所述气液分离器(4)的出液端(42)与所述节流装置(3)相连。
  6. 根据权利要求1-5之一所述的复合***,其特征在于:所述空气进口端(11)连接空气吸气管路,且在所述空气吸气管路上设置有第二制冷剂回收器(7)。
  7. 根据权利要求6所述的复合***,其特征在于:在所述空气吸气管路上、位于所述空气进口端(11)与所述第二制冷剂回收器(7)之间还设置有止回阀(8)。
  8. 根据权利要求1-7之一所述的复合***,其特征在于:所述压缩机为无油单级螺杆压缩机。
  9. 根据权利要求1-8之一所述的复合***,其特征在于:所述压缩机的吸气压力为0.1MPa,排气压力为0.8MPa;所述循环回路中的制冷剂为R11,R113,R123,R141b,R245ca,R245fa中的至少一种。
  10. 根据权利要求1-9之一所述的复合***,其特征在于:所述冷却/冷凝器(2)用于与水进行换热,且经过换热后的水温能达到80℃以上。
PCT/CN2017/082116 2016-07-29 2017-04-27 一种结合空压***与热泵***的复合*** WO2018018967A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610613162.1 2016-07-29
CN201610613162.1A CN106152608B (zh) 2016-07-29 2016-07-29 一种结合空压***与热泵***的复合***

Publications (1)

Publication Number Publication Date
WO2018018967A1 true WO2018018967A1 (zh) 2018-02-01

Family

ID=57327780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082116 WO2018018967A1 (zh) 2016-07-29 2017-04-27 一种结合空压***与热泵***的复合***

Country Status (2)

Country Link
CN (1) CN106152608B (zh)
WO (1) WO2018018967A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114017294A (zh) * 2021-10-29 2022-02-08 山东核电有限公司 一种核电厂仪用压缩空气冷却***及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106152608B (zh) * 2016-07-29 2018-11-02 珠海格力电器股份有限公司 一种结合空压***与热泵***的复合***
CN108035868A (zh) * 2018-01-18 2018-05-15 沈阳天朗艾尔压缩机有限公司 一种空压站***
CN109827357B (zh) * 2019-02-01 2024-07-02 刘文治 一种新型空气热泵
CN112747391A (zh) * 2019-10-29 2021-05-04 青岛海尔空调电子有限公司 空调机组及其压缩机冷却控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052631A (ja) * 2002-07-18 2004-02-19 Mitsubishi Heavy Ind Ltd マイクロコンバインド発電システム
CN101398004A (zh) * 2007-09-28 2009-04-01 株式会社日立产机*** 油冷式空气压缩机
CN202073792U (zh) * 2011-03-03 2011-12-14 江西惟思特科技发展有限公司 空气压缩机主机冷却***
JP5205041B2 (ja) * 2007-12-07 2013-06-05 株式会社日立産機システム 空気圧縮機
CN104061680A (zh) * 2014-06-06 2014-09-24 浙江大学 一种空压机余热回收利用装置及其控制方法
JP5601764B2 (ja) * 2008-08-22 2014-10-08 三菱電機株式会社 気液分離器並びにこれを搭載した空気圧縮装置および空気調和装置
KR20140137777A (ko) * 2013-05-24 2014-12-03 현대중공업 주식회사 선박용 공기 압축 시스템
CN104989625A (zh) * 2009-07-06 2015-10-21 株式会社日立产机*** 压缩机
CN106152608A (zh) * 2016-07-29 2016-11-23 珠海格力电器股份有限公司 一种结合空压***与热泵***的复合***

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201050482Y (zh) * 2007-05-15 2008-04-23 谢育生 螺杆空压机热泵机组
JP5638090B2 (ja) * 2010-11-22 2014-12-10 Udトラックス株式会社 圧縮空気供給装置
CN203742947U (zh) * 2014-04-04 2014-07-30 渤海船舶职业学院 空压机余热回收利用装置
CN104848583B (zh) * 2015-05-21 2017-10-31 西安工程大学 空气压缩机用溴化锂吸收式蒸发冷却除湿空调***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052631A (ja) * 2002-07-18 2004-02-19 Mitsubishi Heavy Ind Ltd マイクロコンバインド発電システム
CN101398004A (zh) * 2007-09-28 2009-04-01 株式会社日立产机*** 油冷式空气压缩机
JP5205041B2 (ja) * 2007-12-07 2013-06-05 株式会社日立産機システム 空気圧縮機
JP5601764B2 (ja) * 2008-08-22 2014-10-08 三菱電機株式会社 気液分離器並びにこれを搭載した空気圧縮装置および空気調和装置
CN104989625A (zh) * 2009-07-06 2015-10-21 株式会社日立产机*** 压缩机
CN202073792U (zh) * 2011-03-03 2011-12-14 江西惟思特科技发展有限公司 空气压缩机主机冷却***
KR20140137777A (ko) * 2013-05-24 2014-12-03 현대중공업 주식회사 선박용 공기 압축 시스템
CN104061680A (zh) * 2014-06-06 2014-09-24 浙江大学 一种空压机余热回收利用装置及其控制方法
CN106152608A (zh) * 2016-07-29 2016-11-23 珠海格力电器股份有限公司 一种结合空压***与热泵***的复合***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114017294A (zh) * 2021-10-29 2022-02-08 山东核电有限公司 一种核电厂仪用压缩空气冷却***及方法
CN114017294B (zh) * 2021-10-29 2024-03-26 山东核电有限公司 一种核电厂仪用压缩空气冷却***及方法

Also Published As

Publication number Publication date
CN106152608B (zh) 2018-11-02
CN106152608A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2018018967A1 (zh) 一种结合空压***与热泵***的复合***
CN102128508B (zh) 喷射器节流补气***以及热泵或制冷***补气方法
CN103629860B (zh) 跨临界co2冷热电联合循环***
CN204373252U (zh) 转换式co2跨临界循环制冷***
CN105135749B (zh) 二氧化碳冷热联供***
CN103759449B (zh) 双喷射器增效的两级蒸气压缩式循环***
CN110044093A (zh) 双级压缩中间补气co2三级回热冷却热泵/制冷***
CN107323217B (zh) 一种余热驱动吸收式制冷辅助过冷的co2汽车空调
CN201666686U (zh) 喷射器节流补气***
CN105004100A (zh) 单制冷剂回路、多吸气压力的蒸气压缩制冷/热泵***
CN201740300U (zh) 带中间冷却器的二级压缩热泵***
CN201837145U (zh) 带经济器的二级压缩热泵***
CN104929704A (zh) 联合循环供能***
CN111141054B (zh) 一种跨临界双级过冷引射二氧化碳***及应用
CN105180492A (zh) 一种气波增压辅助双级蒸汽压缩制冷***及其工作方法
CN201463387U (zh) 一种双循环工业冷水机组
CN105004095A (zh) 一种跨临界循环与两级吸收式热泵联产的复合热泵***
CN109506391A (zh) 热驱动无泵吸收式辅助过冷的跨临界co2的制冷***
CN204063660U (zh) 三级压缩复叠循环热泵***
TWI564524B (zh) Refrigeration cycle
CN210089175U (zh) 喷射式跨临界二氧化碳双级压缩制冷***
WO2022099748A1 (zh) 热泵***
CN105928201A (zh) 一种空气源高温热泵
CN109724284A (zh) 一种两级节流的超临界二氧化碳制冷***
CN115031421A (zh) 加氢机低温撬装冷冻机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833273

Country of ref document: EP

Kind code of ref document: A1