WO2018018890A1 - 触控屏及其制备方法、触控显示装置 - Google Patents

触控屏及其制备方法、触控显示装置 Download PDF

Info

Publication number
WO2018018890A1
WO2018018890A1 PCT/CN2017/075598 CN2017075598W WO2018018890A1 WO 2018018890 A1 WO2018018890 A1 WO 2018018890A1 CN 2017075598 W CN2017075598 W CN 2017075598W WO 2018018890 A1 WO2018018890 A1 WO 2018018890A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive lines
line
touch screen
lines
Prior art date
Application number
PCT/CN2017/075598
Other languages
English (en)
French (fr)
Inventor
王延峰
董学
王丹
邱云
徐晓玲
杜渊鑫
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP17768656.5A priority Critical patent/EP3493035A4/en
Priority to US15/562,329 priority patent/US20180348903A1/en
Publication of WO2018018890A1 publication Critical patent/WO2018018890A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • Embodiments of the present invention relate to a touch screen, a method of fabricating the same, and a touch display device.
  • the metal mesh when the metal mesh is applied to the touch screen, the metal mesh is often distributed in different layers, and the intersection between the metal wire and the metal wire and the intersection between the metal wire and the black matrix layer may be avoided. This brings many problems, such as the problem of moiré, the problem of light transmittance, and so on.
  • At least one embodiment of the present invention provides a touch screen including: a substrate substrate, a driving electrode and a sensing electrode disposed on the substrate, wherein the driving electrode includes a plurality of first conductive lines and a connection a first conductive bus of the plurality of first conductive lines; the sensing electrode includes a plurality of second conductive lines and a second conductive bus connecting the plurality of second conductive lines; a plurality of the first conductive lines and a plurality of The strips of the second conductive lines are staggered with each other.
  • the plurality of first conductive lines and the plurality of second conductive lines are arranged in parallel.
  • the touch screen provided by at least one embodiment of the present invention further includes a black matrix disposed on the base substrate, wherein the first conductive bus and the second conductive bus are on the base substrate An orthographic projection is located within the orthographic projection of the black matrix on the substrate.
  • the touch screen provided by at least one embodiment of the present invention further includes a color filter layer, wherein an orthographic projection of the plurality of first conductive lines and the plurality of second conductive lines on the base substrate is located
  • the black matrix and the color filter layer are within an orthographic projection on the base substrate.
  • each of the first conductive lines has a line width of 50 to 140 nm
  • each of the second conductive lines has a line width of 50 to 140 nm.
  • a distance between any two adjacent conductive lines of the first conductive line and the second conductive line is 50-140 nm.
  • an orthographic projection of the plurality of first conductive lines and the plurality of second conductive lines on the base substrate is located at the black matrix. Inside the orthographic projection on the substrate.
  • a line width of each of the first conductive lines and each of the second conductive lines is 50 nm to 10 ⁇ m.
  • At least two of the plurality of adjacent first conductive lines constitute a first conductive line group and a plurality of adjacent second conductive lines. At least two of the lines constitute a second set of conductive lines, and the first set of conductive lines and the second set of conductive lines are staggered in parallel with each other.
  • a vertical distance between the first conductive bus and the second conductive bus is 2.5 to 3.5 mm.
  • the vertical distance between any two adjacent first conductive buses is 7.5 to 8.5 mm.
  • the plurality of first conductive lines and the plurality of second conductive lines are disposed in the same layer.
  • the plurality of first conductive lines and the plurality of second conductive lines are disposed in different layers, the plurality of first conductive lines and the plurality of An insulating layer is also disposed between the second conductive lines.
  • a touch display device includes any one of the above touch screens, further comprising: a gate line and a data line disposed on the base substrate, wherein the first conductive line and The second conductive line is parallel to the data line, the first conductive bus and the second conductive bus are parallel to the gate line, or the first conductive line and the second conductive line are The gate lines are parallel, and the first conductive bus and the second conductive bus are parallel to the data line.
  • At least one embodiment of the present invention provides a touch display device, including any one of the above touch screens, further comprising: an array substrate disposed opposite to the base substrate, wherein the array substrate includes a gate line and a data line The first conductive line and the second conductive line are parallel to the data line, the first conductive bus and the second conductive bus are parallel to the gate line, or the first guide The wire and the second conductive line are parallel to the gate line, and the first conductive bus and the second conductive bus are parallel to the data line.
  • At least one embodiment of the present invention provides a method of fabricating a touch screen, including: providing a substrate on which a driving electrode and a sensing electrode are formed, wherein the driving electrode includes a plurality of first conductive And a first conductive bus connecting the plurality of first conductive lines, the sensing electrode includes a plurality of second conductive lines and a second conductive bus connecting the plurality of second conductive lines; The conductive line and the plurality of the second conductive lines are staggered with each other.
  • the plurality of first conductive lines and the plurality of second conductive lines are arranged in parallel.
  • the method for fabricating a touch screen according to at least one embodiment of the present invention further includes forming the first conductive line and the second conductive line by using nanoimprint or holographic lithography.
  • the method for fabricating a touch screen according to at least one embodiment of the present invention further includes: forming a black matrix on the base substrate, wherein the first conductive bus and the second conductive bus are in the lining An orthographic projection on the base substrate is located within the orthographic projection of the black matrix on the substrate.
  • the method for fabricating a touch screen according to at least one embodiment of the present invention further includes: forming a color filter layer on the substrate, wherein the plurality of first conductive lines and the plurality of second conductive lines An orthographic projection of the line on the substrate is located within an orthographic projection of the black matrix and the color filter layer on the substrate.
  • FIG. 1 is a schematic diagram of a planar structure of a touch screen according to an embodiment of the invention
  • FIG. 2 is a schematic diagram of a planar structure of still another touch screen according to an embodiment of the present invention.
  • FIG. 3 is a partially enlarged plan view showing the touch screen of FIG. 2;
  • FIG. 4 is a schematic structural diagram of still another touch screen according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a touch display device according to an embodiment of the invention.
  • FIG. 6 is a schematic diagram of a planar structure of still another touch display device according to an embodiment of the invention.
  • FIG. 7 is a schematic diagram of a planar structure of still another touch display device according to an embodiment of the invention.
  • FIGS. 8a-8h are process diagrams of a method for preparing a conductive wire according to an embodiment of the invention.
  • At least one embodiment of the present invention provides a touch screen, a method for fabricating the same, and a touch display device.
  • the touch panel includes: a substrate, a driving electrode and a sensing electrode disposed on the substrate, wherein the driving electrode includes a plurality of first conductive lines and a first conductive bus connecting the plurality of first conductive lines; the sensing electrode includes a plurality of second conductive lines and a second conductive bus connecting the plurality of second conductive lines; a plurality of first conductive lines and A plurality of second conductive lines are staggered with each other.
  • the sensing electrode and the driving electrode are designed as a wire grid structure which is arranged in a staggered manner, which can avoid the moiré problem caused by the intersection of the sensing electrode line and the driving electrode line, and can also realize the touch function.
  • FIG. 1 is a schematic structural diagram of a touch screen according to an embodiment of the present invention.
  • the touch screen includes a base substrate 101 and a driving electrode 102 and a sensing electrode 103 disposed on the base substrate 101.
  • the driving electrode 102 includes a plurality of first conductive lines 1021 and a plurality of connecting electrodes. a first conductive bus 1022 of the first conductive line 1021;
  • the sensing electrode 103 includes a plurality of second conductive lines 1031 and a second conductive bus 1032 connecting the plurality of second conductive lines 1031; the plurality of first conductive lines 1021 and the plurality of second conductive lines 1031 are staggered with each other.
  • the plurality of first conductive lines 1021 and the plurality of second conductive lines 1031 are alternately arranged to each other including the following cases: along the direction of the first conductive bus 1031, each first A second conductive line is disposed on both sides of the conductive line (except when the first conductive line is disposed at the edge); along the direction of the second conductive bus 1032, the first conductive line is disposed on both sides of each of the second conductive lines a line (except in the case where the second conductive line is disposed at the edge); a second conductive line is disposed on both sides of each of the first conductive lines along the direction of the first conductive bus 1031 (the first conductive line is disposed at the edge) Except), and along the direction of the second conductive bus 1032, each of the second conductive lines is provided with a first conductive line on both sides (except when the second conductive line is disposed at the edge); a plurality of adjacent first The conductive lines 1021 are disposed in a group,
  • each of the plurality of first conductive lines 1021 is disposed between two adjacent second conductive lines 1031 of the plurality of second conductive lines.
  • Each of the plurality of second conductive lines 101 is disposed between the adjacent two first conductive lines 1021 among the plurality of first conductive lines. That is, each of the first conductive lines 1021 is adjacent to the second conductive line 1031, and each of the second conductive lines 1031 is adjacent to the first conductive line 1021.
  • one, two or more second conductive lines 1031 may be spaced between two adjacent first conductive lines 1021, and/or two adjacent One, two or more first conductive lines 1021 may be spaced apart between the two conductive lines 1031.
  • the first conductive line and the second conductive line are not strictly one-to-one correspondence.
  • the width of each of the plurality of first conductive lines and the plurality of second conductive lines and the distance between the adjacent two conductive lines are not fixed, and may be any size between 50 nm and 10 ⁇ m.
  • FIG. 2 is a schematic structural diagram of still another touch screen provided by this embodiment.
  • a plurality of adjacent first conductive lines 1021 are disposed in a group, and a plurality of adjacent second conductive lines 1031 are disposed in another group, and two sets of conductive lines are alternately arranged.
  • Each set of first conductive lines 1021 is disposed in one-to-one correspondence with each set of second conductive lines 1031.
  • adjacent two sets of first conductive lines One, two or more sets of second conductive lines 1031 may be spaced apart from each other, or one, two or more sets of first conductive lines 1021 may be spaced between adjacent two sets of second conductive lines 1031.
  • each set of first conductive lines and each set of second conductive lines are not disposed in one-to-one correspondence.
  • the number of conductive lines in each set of first conductive lines and each set of second conductive lines is not fixed, and the width of the conductive lines and the distance between adjacent two conductive lines are not fixed.
  • FIG. 3 is a partially enlarged plan view of the touch screen shown in FIG. 2, and the enlarged area is an area shown by a dotted rectangular frame in FIG.
  • the touch screen further includes: a black matrix 104 disposed on the base substrate 101, wherein the orthographic projection of the first conductive bus 1022 and the second conductive bus 1032 on the base substrate 101 is located in the black matrix. 104 is within the orthographic projection on the base substrate 101. That is, the first conductive bus 1022 and the second conductive bus 1032 are disposed in the area corresponding to the black matrix 104 so as not to block the light, so that the transmittance of the light and the aperture ratio are not affected.
  • the first conductive bus 1022, the second conductive bus 1032, the plurality of first conductive lines 1021, and the plurality of second conductive lines 1031 are disposed in a region corresponding to the black matrix 104 without blocking light. Therefore, it does not affect the transmittance of light and the aperture ratio.
  • the touch screen further includes a color filter layer 105
  • the color filter layer 105 includes an array of color filter units (eg, a red filter unit, a green filter unit, and a blue filter unit), and the filter units can be
  • the black matrix is spaced apart, that is, the black matrix 104 is separated by the color filter layer 105 into a plurality of black matrix regions, and a thick conductive line may be disposed in each black matrix region, or a plurality of thin conductive wires may be disposed. line.
  • the first conductive line 1021 or the second conductive line 1031 may not be disposed in a portion of the black matrix region.
  • the line width of the first conductive line 1021 and the second conductive line 1031 and the distance between adjacent two conductive lines are all in the range of 50 nm to 10 ⁇ m.
  • the orthographic projections of the plurality of first conductive lines 1021 and the plurality of second conductive lines 1031 on the base substrate 101 are located within the orthographic projection of the black matrix 104 on the base substrate 101.
  • the first conductive line 1021 and the second conductive line 1031 do not block the light, do not affect the transmittance of the light, and do not affect the aperture ratio. No moiré is generated between the black matrix, the first conductive line 1021, and the second conductive line 1031.
  • the line width of each of the first conductive lines 1021 and each of the second conductive lines 1031 is 50 nm to 10 ⁇ m.
  • a thicker conductive line is provided in each black matrix region in the same manner as the arrangement in which a plurality of thin conductive lines are disposed in each black matrix region.
  • the vertical distance between the first conductive bus and the second conductive bus is 2.5 to 3.5 mm, which corresponds to a line length of 2.5 to 3.5 mm per first conductive line 1021 and each second conductive line 1031.
  • the vertical distance between two adjacent first conductive bus lines is 7.5 to 8.5 mm, which is equivalent to 7.5 of each adjacent two sets of sensing electrodes or each adjacent two sets of driving electrodes. ⁇ 8.5mm.
  • a plurality of first conductive lines and a plurality of second conductive lines are parallel and staggered, arranged in the same layer, each of the first conductive lines or each of the second conductive lines and the black matrix Moiré is not generated between each, and no moiré is generated between each of the first conductive lines and each of the second conductive lines, that is, the moiré phenomenon can be completely eliminated.
  • a plurality of first conductive lines and a plurality of second conductive lines may also be disposed in different layers, and are further disposed between the plurality of first conductive lines and the plurality of second conductive lines of different layers.
  • no moiré is generated between each of the first conductive lines or each of the second conductive lines and the black matrix, and no moiré is generated between each of the first conductive lines and each of the second conductive lines, that is, Moiré can be completely eliminated.
  • each of the first conductive bus and the corresponding second conductive bus is very short, between 2.5 and 3.5 mm, and the distance between each of the first conductive lines and each of the second conductive lines is also short.
  • a stylus or a touch panel in a direction perpendicular to the conductive bus, greater than the distance between adjacent two conductive buses
  • the change in capacitance sensed on the different first conductive bus and the second conductive bus is different, along the extending direction of each of the first conductive bus or each of the second conductive buses, on the first conductive bus or the second conductive bus
  • the capacitance change that can be sensed is different, and the position of the touch is determined according to the magnitude of the change in capacitance.
  • the touch screen is touched by a conductor such as a finger, a stylus, or a certain contact area with the touch screen (a distance larger than the distance between the adjacent two conductive buses in a direction perpendicular to the conductive bus)
  • the area of the touch screen including the conductive bus is always touched, so that the touch position can be accurately determined.
  • the touch screen is touched by a finger, a stylus, or the like, if the first conductive bus or the second conductive bus cannot be touched, if the touched position is on the first conductive line or the second conductive line or is located in the radiation Within the area, the change in capacitance at the location of the conductive bus connected thereto can be sensed accordingly to determine the location of the touch.
  • the coordinates in the direction parallel to the corresponding conductive bus can be determined, but the coordinates in the direction perpendicular to the conductive bus can only be accurate to the millimeter level.
  • the touch display device can be disposed on the color film substrate or on the array substrate having the color film layer.
  • the touch screen may be disposed inside the display panel formed by the color film substrate and the array substrate, or may be formed on the outer side of the display panel (ie, the side facing the user).
  • FIG. 5 is a schematic cross-sectional view of a touch display device.
  • the touch screen in the touch display device is disposed outside the display panel as an example.
  • the structure is as follows: A black matrix 104, a color filter layer 105, a first insulating layer 108, a driving electrode 102, a sensing electrode 103, and a second insulating layer 109 are provided. It should be noted that the black matrix and the color filter layer may also be disposed in the same layer, and the structure is not shown in the drawing.
  • the plurality of first conductive lines 1021 and the plurality of second conductive lines 1031 are alternately arranged in parallel, which solves the problem that moiré is easily generated between the conductive lines; the plurality of first conductive lines 1021 and the plurality of lines
  • the orthographic projection of the second conductive lines 1031 on the substrate substrate is located in the orthographic projection of the black matrix on the substrate, eliminating the problem that moiré is easily generated between the conductive lines and the black matrix.
  • the materials of the first conductive line, the second conductive line, the first conductive bus, and the second conductive bus may include conductive metals such as copper, aluminum, molybdenum, silver, chromium, titanium, or the like.
  • conductive metals such as copper, aluminum, molybdenum, silver, chromium, titanium, or the like.
  • Formed alloys for example, copper aluminum alloy (CuAl), copper titanium alloy (CuTi), copper molybdenum alloy (CuMo), chromium molybdenum alloy (CrMo), aluminum titanium alloy (AlTi), aluminum molybdenum alloy (AlMo), etc.
  • the metal material can achieve a small electrical resistance; if it is not required for electrical resistance, for example, it can also be a metal oxide such as indium tin oxide, indium zinc oxide or the like.
  • FIG. 6 is a schematic diagram of a planar structure of another touch display device according to an embodiment of the present invention.
  • the touch screen may be disposed on the color film substrate or on the array substrate having the color film layer.
  • the touch screen may be disposed inside the display panel formed by the color film substrate and the array substrate, or may be formed outside the display panel.
  • the touch screen is disposed on the color film substrate as an example.
  • the touch screen includes a black matrix 104 and a color filter layer 105 , and a plurality of first conductive lines 1021 and a plurality of second lines.
  • the orthographic projection of the conductive line 1031 on the base substrate 101 is located within the orthographic projection of the black matrix 104 and the color filter layer 105 on the base substrate 101.
  • each of the first conductive lines 1021 has a line width of 50 to 140 nm
  • each of the second conductive lines 1031 has a line width of 50 to 140 nm.
  • the thickness of each of the first conductive lines 1021 and the thickness of each of the second conductive lines 1031 are both 50 to 140 nm.
  • the distance between two adjacent conductive lines 1021 and two adjacent conductive lines 1031 is 50-140 nm.
  • each of the plurality of first conductive lines 1021 and the plurality of second conductive lines 1031 has a length of 2.5 to 3.5 mm.
  • a plurality of parallel conductive thin wires having a specific line width and line spacing may form a wire grid polarizer to convert the transmitted light into polarized light adapted to the liquid crystal display mode (ie, the width and thickness of the conductive line).
  • the arrangement pitch and the like are all set according to the polarized light required for the liquid crystal display mode).
  • the thickness of the conductive lines in the wire grid polarizer (WGP) is nanometer size, the length is macroscopic, and can be disposed in the film structure instead of the conventional polarizer, so that the sensing electrode and the driving electrode are equivalent to a small polarizer. .
  • the polarizer when the touch screen of the embodiment is applied to a liquid crystal display, on the side of the touch screen, the polarizer can be omitted, thereby reducing the thickness of the product and simplifying the manufacturing process.
  • the characteristics of the polarizer are optical characteristics of the conductive lines arranged in a specified manner, regardless of the case where the voltage is applied to the conductive line, all of the sensing electrodes and the driving electrodes can form a polarizer based on the principle of polarization, that is, simultaneously functioning as a touch. The role of the electrode and the polarizer.
  • the touch capacitance formed between the driving electrode and the sensing electrode can sense the touch action on the surface of the substrate, and the touch position can be determined by the position of the sensed touch action, thereby implementing the touch function.
  • the plurality of first conductive lines 1021 and the plurality of second conductive lines 1031 included in the sensing electrode and the driving electrode in FIG. 6 can be subjected to other different designs according to the needs of touch sensing.
  • the number of conductive lines, the direction of extension, and the length of the conductive lines may be other different designs according to the needs of polarization, and the disclosure is not limited herein.
  • the wire grid polarizer can simultaneously realize the functions of the polarizer and the touch electrode in the LCD product that originally requires the polarizer, which is equivalent to only The pattern of the wire grid in the polarizer was modified without the need to add a new layer structure. Therefore, in this embodiment, the multiplexing process of the touch electrode and the polarizer can simplify the manufacturing process, reduce the thickness of the product, increase the transmittance of the light, and reduce the moiré phenomenon.
  • FIG. 7 a schematic diagram of a planar structure of a touch display device according to an embodiment of the present invention, in which the touch screen is disposed on an array substrate, and the array substrate includes a gate line 106 and a data line 107 on the base substrate 101, wherein the first conductive line 1021 and the second conductive line 1031 in the touch screen are parallel to the data line 106, and the first conductive bus 1022 and the second conductive bus 1032 Parallel to the gate line 106, or the first conductive line 1021 and the first The second conductive line 1031 is parallel to the gate line 106, and the first conductive bus 1022 and the second conductive bus 1032 are parallel to the data line 106.
  • the gate lines and the data lines disposed in the peripheral region are shown in FIG. 7, and gate lines and data lines (not shown) are provided at the periphery of each of the sub-pixels.
  • the touch screen may also be disposed on the color filter substrate, and an array substrate (not shown) disposed opposite to the color filter substrate.
  • the array substrate includes a gate line, a data line, and a plurality of pixel units.
  • the gate lines and the data lines cross each other thereby defining pixel cells, each of which includes a display driving structure such as a switching element, a pixel electrode, or the like.
  • the first conductive line and the second conductive line are parallel to the data line, the first conductive bus and the second conductive bus are parallel to the gate line, or the first conductive line and the second conductive line are parallel to the gate line, the first conductive bus and the second The conductive bus is parallel to the data line.
  • the materials of the first conductive line, the second conductive line, the first conductive bus, and the second conductive bus may include conductive metals such as copper, aluminum, molybdenum, silver, chromium, titanium, or the like.
  • conductive metals such as copper, aluminum, molybdenum, silver, chromium, titanium, or the like.
  • Formed alloys for example, copper aluminum alloy (CuAl), copper titanium alloy (CuTi), copper molybdenum alloy (CuMo), chromium molybdenum alloy (CrMo), aluminum titanium alloy (AlTi), aluminum molybdenum alloy (AlMo), etc.
  • the metal material can achieve a small electrical resistance; if it is not required for electrical resistance, for example, it can also be a metal oxide such as indium tin oxide, indium zinc oxide or the like.
  • An embodiment of the present invention further provides a method for fabricating a touch screen, the method comprising: providing a substrate, forming a driving electrode and a sensing electrode on the substrate, wherein the driving electrode includes a plurality of first conductive lines and connections a first conductive bus of the plurality of first conductive lines, the sensing electrode includes a plurality of second conductive lines and a second conductive bus connecting the plurality of second conductive lines, and the plurality of first conductive lines and the plurality of second conductive lines are mutually Staggered arrangement.
  • first conductive line and the second conductive line may be formed by a nanoimprint method, and the first conductive line and the second conductive line may also be formed by a method of holographic lithography.
  • the materials of the first conductive line, the second conductive line, the first conductive bus, and the second conductive bus may include conductive metals such as copper, aluminum, molybdenum, silver, chromium, titanium, or alloys thereof.
  • conductive metals such as copper, aluminum, molybdenum, silver, chromium, titanium, or alloys thereof.
  • copper aluminum alloy (CuAl), copper titanium alloy (CuTi), copper molybdenum alloy (CuMo), chromium molybdenum alloy (CrMo), aluminum titanium alloy (AlTi), aluminum molybdenum alloy (AlMo), etc. may be made of a metal material.
  • a smaller resistance is achieved; if the resistance is not high, for example, it may be a metal oxide such as indium tin oxide, indium zinc oxide or the like.
  • FIGS. 8a-8h are process diagrams of a method for fabricating a conductive line according to an embodiment of the present invention, that is, a process flow diagram for forming a first conductive line and a second conductive line, with a first conductive line and a second conductive line
  • the preparation of the metal material is taken as an example to illustrate the preparation of the first conductive line and the second conductive line.
  • the process includes:
  • a metal thin film 202 is formed on the cleaned glass substrate 201, and the method of forming the thin film may be sputtering, deposition, or the like;
  • a dielectric layer 203 is formed on the glass substrate on which the metal thin film 202 is formed, and the method of forming the dielectric layer may be coating, deposition, or the like;
  • a photoresist layer 204 is formed on the dielectric layer, and the method of forming the photoresist layer may be spin coating, spray coating, or the like;
  • the template 205 is pressed into the photoresist, and then the process of nanoimprinting is performed under conditions of heat or ultraviolet light curing and forming;
  • the template 205 is separated to form a desired photoresist pattern
  • an etching process is performed on the metal thin film and the dielectric layer to form a pattern of conductive lines
  • a protective film 206 is formed on the formed conductive line pattern.
  • the line width and length of the conductive lines are determined by the size of the selected template.
  • the dielectric layer is formed on the metal thin film mainly for improving the reflection of the conductive line, the polarizing performance, and the like.
  • the design of the dielectric layer can be removed according to different requirements.
  • the etching process may select a dry etch, such as etching a metal film and a dielectric layer using a corrosive plasma.
  • the touch screen provided by the embodiment of the present invention, the preparation method thereof and the touch display device have at least one of the following beneficial effects:
  • the sensing electrode and the driving electrode are designed as a wire grid structure arranged in a staggered manner, which can avoid the moiré problem caused by the intersection of the first conductive line and the second conductive line, and can also be touched. Control function.
  • the orthographic projection of the first conductive line and the second conductive line on the base substrate is located in the orthographic projection of the black matrix on the base substrate, the first conductive There is no intersection between the line and the second conductive line and the black matrix, which can avoid the moiré problem caused by the intersection of the conductive line and the black matrix.
  • the conductive line is very thin and the wire grid polarizer is formed, the functions of the polarizer and the touch electrode can be simultaneously realized, and a polarizer can be saved.
  • the conductive lines can be disposed on the color filter layer and the black matrix. Since the wire grid polarizer has polarization characteristics, the transmittance of the light is not affected.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控屏及其制备方法、触控显示装置,该触控屏包括:衬底基板 (101)、设置在所述衬底基板(101)上的驱动电极 (102)和感应电极 (103),其中,所述驱动电极 (102)包括多条第一导电线 (1021)和连接多条第一导电线 (1021)的第一导电总线 (1022);所述感应电极 (103)包括多条第二导电线 (1031)和连接多条所述第二导电线(1031)的第二导电总线 (1032);所述多条第一导电线 (1021)和所述多条第二导电线 (1031)相互交错排布。在该触控屏中,感应电极 (103)和驱动电极 (102)设计成相互交错排布的线栅结构,从而避免了形成感应电极的第一导电线和形成驱动电极的第二导电线交叉带来的摩尔纹问题,同时也可以实现触控功能。

Description

触控屏及其制备方法、触控显示装置 技术领域
本发明的实施例涉及一种触控屏及其制备方法、触控显示装置。
背景技术
在触控领域中,采用金属网格作为触控屏的驱动电极和感应电极的方法已被广泛地应用。
但是,当金属网格应用于触控屏中时,金属网格往往分布在不同的层,避免不了地会出现金属线与金属线之间的交叉、金属线与黑矩阵层之间的交叉,从而带来很多问题,例如:摩尔纹问题、光透过率的问题等。
目前,仅通过降低金属网格线的线宽来解决摩尔纹问题和光透过率的问题。但是,由于金属网格的结构限制,仅仅只降低金属网格线的线宽会造成制作工艺难度和制作成本的增加,并且将金属网格线的线宽降得很低极易造成金属线断裂、抗静电击穿能力差等问题。
发明内容
本发明至少一实施例提供一种触控屏,包括:衬底基板,设置在所述衬底基板上的驱动电极和感应电极,其中,所述驱动电极包括多条第一导电线和连接所述多条第一导电线的第一导电总线;所述感应电极包括多条第二导电线和连接所述多条第二导电线的第二导电总线;多条所述第一导电线和多条所述第二导电线相互交错排布。
例如,在本发明至少一实施例提供的触控屏中,所述多条第一导电线和所述多条第二导电线平行排布。
例如,本发明至少一实施例提供的触控屏,还包括设置在所述衬底基板上的黑矩阵,其中,所述第一导电总线和所述第二导电总线在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影内。
例如,本发明至少一实施例提供的触控屏还包括彩色滤光层,其中,所述多条第一导电线和所述多条第二导电线在所述衬底基板上的正投影位于所述黑矩阵和所述彩色滤光层在所述衬底基板上的正投影内。
例如,在本发明至少一实施例提供的触控屏中,每条所述第一导电线的线宽为50~140nm,每条所述第二导电线的线宽为50~140nm。
例如,在本发明一实施例提供的触控屏中,所述第一导电线和所述第二导电线中任意相邻两条导电线之间的距离为50~140nm。
例如,在本发明至少一实施例提供的触控屏中,所述多条第一导电线和所述多条第二导电线在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影内。
例如,在本发明至少一实施例提供的触控屏中,每条所述第一导电线和每条所述第二导电线的线宽为50nm~10μm。
例如,在本发明至少一实施例提供的触控屏中,多条相邻的所述第一导电线中至少每两条构成一第一导电线组和多条相邻的所述第二导电线中至少每两条构成一第二导电线组,所述第一导电线组和所述第二导电线组相互交错平行排布。
例如,在本发明至少一实施例提供的触控屏中,所述第一导电总线和所述第二导电总线之间的垂直距离为2.5~3.5mm。
例如,在本发明至少一实施例提供的触控屏中,任意相邻的两条所述第一导电总线之间的垂直距离为7.5~8.5mm。
例如,在本发明至少一实施例提供的触控屏中,所述多条第一导电线和所述多条第二导电线设置在同一层。
例如,在本发明至少一实施例提供的触控屏中,所述多条第一导电线和所述多条第二导电线设置在不同层,所述多条第一导电线和所述多条第二导电线之间还设置有绝缘层。
本发明至少一实施例还提供一种触控显示装置,包括上述任一触控屏,还包括:设置在所述衬底基板上的栅线和数据线,其中,所述第一导电线和所述第二导电线与所述数据线平行,所述第一导电总线和所述第二导电总线与所述栅线平行,或者所述第一导电线和所述第二导电线与所述栅线平行,所述第一导电总线和所述第二导电总线与所述数据线平行。
本发明至少一实施例还提供一种触控显示装置,包括上述任一触控屏,还包括:与所述衬底基板相对设置的阵列基板,其中,所述阵列基板包括栅线和数据线,所述第一导电线和所述第二导电线与所述数据线平行,所述第一导电总线和所述第二导电总线与所述栅线平行,或者所述第一导 电线和所述第二导电线与所述栅线平行,所述第一导电总线和所述第二导电总线与所述数据线平行。
本发明至少一实施例还提供一种触控屏的制备方法,包括:提供衬底基板,在所述衬底基板上形成驱动电极和感应电极,其中,所述驱动电极包括多条第一导电线和连接所述多条第一导电线的第一导电总线,所述感应电极包括多条第二导电线和连接所述多条第二导电线的第二导电总线;多条所述第一导电线和多条所述第二导电线相互交错排布。
例如,在本发明至少一实施例提供的触控屏的制备方法中,所述多条第一导电线和所述多条第二导电线平行排布。
例如,本发明至少一实施例提供的触控屏的制备方法还包括:采用纳米压印或者全息光刻的方法形成所述第一导电线和所述第二导电线。
例如,本发明至少一实施例提供的触控屏的制备方法,还包括:在所述衬底基板上形成黑矩阵,其中,所述第一导电总线和所述第二导电总线在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影内。
例如,本发明至少一实施例提供的触控屏的制备方法还包括:在所述衬底基板上形成彩色滤光层,其中,所述多条第一导电线和所述多条第二导电线在所述衬底基板上的正投影位于所述黑矩阵和所述彩色滤光层在所述衬底基板上的正投影内。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明一实施例提供的一种触控屏的平面结构示意图;
图2为本发明一实施例提供的再一种触控屏的平面结构示意图;
图3为图2中触控屏局部放大的平面结构示意图;
图4为本发明一实施例提供的又一种触控屏的平面结构示意图;
图5为本发明一实施例提供的一种触控显示装置的截面结构示意图;
图6为本发明一实施例提供的又一种触控显示装置的平面结构示意图;
图7为本发明一实施例提供的又一种触控显示装置的平面结构示意图;
图8a-8h为本发明一实施例提供的一种导电线的制备方法过程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本发明至少一实施例提供一种触控屏及其制备方法和触控显示装置,该触控屏包括:衬底基板,设置在衬底基板上的驱动电极和感应电极,其中,驱动电极包括多条第一导电线和连接多条第一导电线的第一导电总线;感应电极包括多条第二导电线和连接多条第二导电线的第二导电总线;多条第一导电线和多条第二导电线相互交错排布。
在该触控屏中,感应电极和驱动电极设计成相互交错排布的线栅结构,可以避免感应电极线和驱动电极线交叉带来的摩尔纹问题,同时也可以实现触控功能。
本发明的实施例提供一种触控屏,图1为本实施例提供的一种触控屏的结构示意图。如图1所示,该触控屏包括:衬底基板101以及设置在衬底基板101上的驱动电极102和感应电极103,其中,驱动电极102包括多条第一导电线1021和连接多条第一导电线1021的第一导电总线1022; 感应电极103包括多条第二导电线1031和连接多条第二导电线1031的第二导电总线1032;多条第一导电线1021和多条第二导电线1031相互交错排布。
需要说明的是,在本实施例中,多条第一导电线1021和多条第二导电线1031相互交错排布包括以下几种情况:沿着第一导电总线1031的方向,每条第一导电线的两侧都设置有第二导电线(第一导电线设置在边缘的情况除外);沿着第二导电总线1032的方向,每条第二导电线的两侧都设置有第一导电线(第二导电线设置在边缘的情况除外);沿着第一导电总线1031的方向,每条第一导电线的两侧都设置有第二导电线(第一导电线设置在边缘的情况除外),且沿着第二导电总线1032的方向,每条第二导电线的两侧都设置有第一导电线(第二导电线设置在边缘的情况除外);多条相邻的第一导电线1021设置成一组,多条相邻的第二导电线1031设置成另一组,第一导电线1021形成的第一导线组和第二导电线1031形成的第二导线组一一对应地相邻设置。
例如,如图1所示,除边缘处外,多条第一导电线中的每条第一导电线1021均设置在多条第二导电线中相邻两条第二导电线1031之间,多条第二导电线中的每条第二导电线1031均设置在多条第一导电线中相邻两条第一导电线1021之间。即每条第一导电线1021均与第二导电线1031相邻,每条第二导电线1031均与第一导电线1021相邻。
例如,在满足触控功能且精确定位的前提下,相邻的两条第一导电线1021之间可以间隔一条、两条或者多条第二导电线1031,和/或相邻的两条第二导电线1031之间可以间隔一条、两条或者多条第一导电线1021,在此不做限制,即第一导电线和第二导电线不是严格的一一对应地设置。
例如,多条第一导电线和多条第二导电线中每条导电线的宽度、相邻两条导电线之间的距离不是固定不变的,可以是50nm~10μm之间任意的尺寸。
例如,图2为本实施例提供的再一种触控屏的结构示意图。如图2所示,多条相邻的第一导电线1021设置成一组,多条相邻的第二导电线1031设置成另一组,两组导电线交错设置。每组第一导电线1021和每组第二导电线1031一一对应地设置。
例如,在满足触控功能且精确定位的前提下,相邻的两组第一导电线 1021之间可以间隔一组、两组或者多组第二导电线1031,或者相邻的两组第二导电线1031之间可以间隔一组、两组或者多组第一导电线1021,在此不做限制,即每组第一导电线和每组第二导电线不是一一对应地设置。
例如,每组第一导电线和每组第二导电线中导电线的条数也不是固定不变的,导电线的宽度、相邻两条导电线之间的距离也不是固定不变的。
例如,图3为图2中所示的触控屏局部放大的平面结构示意图,放大区域为如图2中虚线矩形框所示的区域。如图3所示,该触控屏还包括:设置在衬底基板101上的黑矩阵104,其中,第一导电总线1022和第二导电总线1032在衬底基板101上的正投影位于黑矩阵104在衬底基板101上的正投影内。即第一导电总线1022和第二导电总线1032设置在黑矩阵104所对应的区域内不会遮挡光线,从而不会影响光的透过率和开口率的大小。
例如,如图3所示,第一导电总线1022、第二导电总线1032、多条第一导电线1021和多条第二导电线1031均设置在黑矩阵104所对应的区域内不会遮挡光线,从而不会影响光的透过率和开口率的大小。
例如,该触摸屏还包括彩色滤光层105,彩色滤光层105包括彩色滤光单元(例如红色滤光单元、绿色滤光单元、蓝色滤光单元)的阵列,滤光单元之间可以被黑矩阵间隔开,也即,黑矩阵104被彩色滤光层105间隔成多个黑矩阵区域,在每个黑矩阵区域内可以设置一条较粗的导电线,也可以设置多条较细的导电线。在部分黑矩阵区域内也可以不设置第一导电线1021或第二导电线1031。例如,上述中第一导电线1021和第二导电线1031的线宽和相邻两条导电线之间的距离均在50nm~10μm的范围内。
例如,如图4所示,多条第一导电线1021和多条第二导电线1031在衬底基板101上的正投影位于黑矩阵104在衬底基板101上的正投影内。第一导电线1021和第二导电线1031不会对光线造成遮挡,不会影响光线的透过率,也不会影响开口率的大小。在黑矩阵、第一导电线1021、第二导电线1031三者之间不会产生摩尔纹。每条第一导电线1021和每条第二导电线1031的线宽均为50nm~10μm。例如,在每一个黑矩阵区域内设置一条较粗的导电线,这种方式与在每一个黑矩阵区域内设置多条较细的导电线的设置方式所能达到的效果完全相同。
例如,图1至图4中,第一导电总线和第二导电总线的垂直距离为 2.5~3.5mm,相当于每条第一导电线1021和每条第二导电线1031的线长为2.5~3.5mm。
例如,图1至图4中,相邻的两条第一导电总线之间的垂直距离为7.5~8.5mm,相当于每相邻的两组感应电极或每相邻的两组驱动电极相距7.5~8.5mm。
例如,图1至图4中,多条第一导电线和多条第二导电线相互平行且交错排布,设置在同一层,每条第一导电线或每条第二导电线与黑矩阵之间不会产生摩尔纹,每条第一导电线与每条第二导电线之间不会产生摩尔纹,即可以完全消除摩尔纹现象。
例如,图1至图4中,多条第一导电线和多条第二导电线也可以设置在不同层,在不同层的多条第一导电线和多条第二导电线之间还设置有绝缘层。同样地,每条第一导电线或每条第二导电线与黑矩阵之间不会产生摩尔纹,每条第一导电线与每条第二导电线之间也不会产生摩尔纹,即可以完全消除摩尔纹现象。
每条第一导电总线和与之对应的第二导电总线的距离很短,在2.5~3.5mm之间,每条第一导电线和每条第二导电线之间的距离也很短,在50nm~10μm之间,当触控屏受到如手指、触控笔或能与触控屏具有一定接触区域(在垂直于导电总线的方向上大于相邻的两条导电总线之间的距离)的导电体触碰时,被触控的导电线(包括第一导电线、第二导电线、第一导电总线和第二导电总线)上会有电容的变化。在不同的第一导电总线和第二导电总线上感测的电容的变化不同,沿着每条第一导电总线或者每条第二导电总线的延伸方向,第一导电总线或第二导电总线上能感测到的电容变化不一样,根据电容变化的大小来确定触摸的位置。
通常,当触控屏受到如手指、触控笔或能与触控屏具有一定接触区域(在垂直于导电总线的方向上大于相邻的两条导电总线之间的距离)的导电体触碰时,总会触碰到触控屏包括导电总线的区域,从而可以精确地确定触摸位置。当触控屏受到手指、触控笔等的触碰时,如果不能触碰到第一导电总线或第二导电总线,如果触摸的位置位于第一导电线或第二导电线上或位于它们辐射的区域之内,则可以相应地感测与之连接的导电总线位置处的电容变化,从而确定触摸的位置。在平行于对应导电总线的方向上的坐标可以确定,但是在垂直于导电总线的方向上的坐标只能精确到毫米 级。
例如,本实施例还提供一种触控显示装置,在该触控显示装置中,触控屏可以设置在彩膜基板上也可以设置在具有彩膜层的阵列基板上。触控屏既可以设置在彩膜基板和阵列基板对盒形成的显示面板的内部,也可以形成在显示面板的外侧(即朝向用户的一侧)。
例如,图5是一种触控显示装置的截面结构示意图,例如,以触控显示装置中的触控屏设置在显示面板的外部为例加以说明,其结构为:在衬底基板101上依次设置有黑矩阵104、彩色滤光层105、第一绝缘层108、驱动电极102和感应电极103、第二绝缘层109。需要说明的是,黑矩阵和彩色滤光层也可以设置在同一层,该种结构在图中未示出。
在本实施例中,多条第一导电线1021和多条第二导电线1031相互交错平行排布,解决了导电线之间易产生摩尔纹的问题;多条第一导电线1021和多条第二导电线1031在衬底基板上的正投影均位于黑矩阵在衬底基板上的正投影内,消除了导电线与黑矩阵之间易产生摩尔纹的问题。
需要说明的是,在本实施例中,第一导电线、第二导电线、第一导电总线和第二导电总线的材料可以包括铜、铝、钼、银、铬、钛等导电金属或它们形成的合金,例如,铜铝合金(CuAl)、铜钛合金(CuTi)、铜钼合金(CuMo)、铬钼合金(CrMo)、铝钛合金(AlTi)、铝钼合金(AlMo)等,采用金属材料可以实现较小的电阻;如果对于电阻要求不高的话,例如还可以为金属氧化物,例如氧化铟锡、氧化铟锌等。
本发明的实施例还提供另一种触控显示装置,图6为本实施例提供的另一种触控显示装置的平面结构示意图。在该触控显示装置中,触控屏可以设置在彩膜基板上也可以设置在具有彩膜层的阵列基板上。触控屏既可以设置在彩膜基板和阵列基板对盒形成的显示面板的内部,也可以形成在显示面板的外部。例如,如图6所示,以触控屏设置在彩膜基板上为例加以说明,该触控屏包括黑矩阵104和彩色滤光层105,多条第一导电线1021和多条第二导电线1031在衬底基板101上的正投影位于黑矩阵104和彩色滤光层105在衬底基板101上的正投影内。
例如,如图6所示,每条第一导电线1021的线宽为50~140nm,每条第二导电线1031的线宽为50~140nm。每条第一导电线1021的厚度和每条第二导电线1031的厚度均为50~140nm。
例如,如图6所示,多条第一导电线1021和多条第二导电线1031中相邻两条导电线之间的距离均为50~140nm。
例如,多条第一导电线1021和多条第二导电线1031中每条导电线的长度为2.5~3.5mm。
由此,多条平行设置的具有特定线宽和线间距的导电细线可以形成线栅偏振器,以将透过的光线转换为适应于液晶显示模式的偏振光(即导电线的宽度、厚度、排列间距等均按照液晶显示模式所要求的偏振光进行设置)。该线栅偏振器(WGP)中导电线条的厚度为纳米尺寸,长度为宏观量级,可以代替传统的偏光片设置在膜层结构中,使得感应电极和驱动电极等效为一小块偏光片。这样当本实施例的触控屏被应用于液晶显示器时,则在触控屏一侧,可无需再贴附偏光片,从而降低了产品的厚度和简化了制作工艺。同时,由于偏光片特性是导电线按照指定方式排列而具有的光学特性,与导电线上加载电压的情况无关,所有的感应电极和驱动电极可以基于偏光原理形成偏光片,即同时起到触控电极和偏光片的作用。
基于电容式触控原理,驱动电极和感应电极之间形成的触控电容可以感测衬底基板表面上的触摸动作,由感测到的触摸动作的位置来判断触摸位置,从而实现触控功能。
可以理解的是,图6中感应电极和驱动电极包含的多条第一导电线1021和多条第二导电线1031可以根据触摸感测的需要进行其他不同的设计。例如,导电线的数量、延伸方向和导电线的长度可以根据偏光需要进行其他不同的设计,本公开在此不做限制。
本实施例中基于相互复用的线栅偏振器和感应电极、驱动电极,可以在原本就需要偏光片的LCD产品中使线栅偏振器同时实现偏光片和触控电极的功能,相当于仅对偏光片内的线栅的图案进行了改造,而不需要增加新的层结构。因此,本实施例可以通过触控电极与偏光片的复用简化制作工艺、减小产品厚度、增大光线的透过率同时减少摩尔纹现象。
例如,如图7所示,为本发明一实施例提供的一种触控显示装置的平面结构示意图,在该触控显示装置中,触控屏设置在阵列基板上,,该阵列基板包括设置在衬底基板101上的栅线106和数据线107,其中,触控屏中的第一导电线1021和第二导电线1031与数据线106平行,第一导电总线1022和第二导电总线1032与栅线106平行,或者第一导电线1021和第 二导电线1031与栅线106平行,第一导电总线1022和第二导电总线1032与数据线106平行。需要说明的是,图7中只示出了设置在***区域的栅线和数据线,在每个子像素的周边均设置有栅线和数据线(未示出)。
例如,触控屏也可以设置在彩膜基板上,与彩膜基板相对设置的有阵列基板(未示出)。阵列基板包括栅线、数据线和多个像素单元。栅线和数据线彼此交叉由此界定了像素单元,每个像素单元包括开关元件、像素电极等显示驱动结构。第一导电线和第二导电线与数据线平行,第一导电总线和第二导电总线与栅线平行,或者第一导电线和第二导电线与栅线平行,第一导电总线和第二导电总线与数据线平行。
需要说明的是,在本实施例中,第一导电线、第二导电线、第一导电总线和第二导电总线的材料可以包括铜、铝、钼、银、铬、钛等导电金属或它们形成的合金,例如,铜铝合金(CuAl)、铜钛合金(CuTi)、铜钼合金(CuMo)、铬钼合金(CrMo)、铝钛合金(AlTi)、铝钼合金(AlMo)等,采用金属材料可以实现较小的电阻;如果对于电阻要求不高的话,例如还可以为金属氧化物,例如氧化铟锡、氧化铟锌等。
本发明的实施例还提供一种触控屏的制备方法,该方法包括:提供衬底基板,在衬底基板上形成驱动电极和感应电极,其中,驱动电极包括多条第一导电线和连接多条第一导电线的第一导电总线,感应电极包括多条第二导电线和连接多条第二导电线的第二导电总线,并且多条第一导电线和多条第二导电线相互交错排布。
例如,可采用纳米压印的方法形成第一导电线和第二导电线,也可以采用全息光刻的方法来形成第一导电线和第二导电线。
例如,在本实施例中,第一导电线、第二导电线、第一导电总线和第二导电总线的材料可以包括铜、铝、钼、银、铬、钛等导电金属或它们形成的合金,例如,铜铝合金(CuAl)、铜钛合金(CuTi)、铜钼合金(CuMo)、铬钼合金(CrMo)、铝钛合金(AlTi)、铝钼合金(AlMo)等,采用金属材料可以实现较小的电阻;如果对于电阻要求不高的话,例如还可以为金属氧化物,例如氧化铟锡、氧化铟锌等。
例如,图8a~8h为本发明一实施例提供的一种导电线的制备方法过程图,即形成第一导电线和第二导电线的工艺流程图,以第一导电线和第二导电线采用金属材料制备为例加以说明,第一导电线和第二导电线的制备 过程包括:
如图8a所示,清洗玻璃基板201;
如图8b所示,在清洗后的玻璃基板201上形成金属薄膜202,形成薄膜的方法可以是溅射、沉积等;
如图8c所示,在形成有金属薄膜202的玻璃基板上形成介质层203,形成介质层的方法可以是涂覆、沉积等;
如图8d所示,在介质层上形成光刻胶层204,形成光刻胶层的方法可以是旋涂、喷涂等;
如图8e所示,将模板205压至光刻胶中,然后在加热或紫外光照射固化成形的条件下进行纳米压印的过程;
如图8f所示,分离模板205,形成所需的光刻胶图案;
如图8g所示,对金属薄膜和介质层进行刻蚀工艺,形成导电线的图案;
如图8h所示,在形成的导电线图案上形成一层保护层薄膜206。
在此形成过程中,导电线的线宽和长度由所选择的模板的尺寸决定。在金属薄膜上形成介质层,主要是为了改进导电线的反射、偏光性能等。可以根据不同的要求去除介质层的设计。该刻蚀工艺可以选择干法刻蚀,例如使用腐蚀性等离子体对对金属薄膜和介质层进行刻蚀。
本发明的实施例提供的触控屏及其制备方法和触控显示装置至少具有以下有益效果之一:
(1)在该触控屏中,感应电极和驱动电极设计成相互交错排布的线栅结构,可以避免第一导电线和第二导电线交叉带来的摩尔纹问题,同时也可以实现触控功能。
(2)当导电线较粗,不形成线栅偏振器时,第一导电线和第二导电线在衬底基板上的正投影位于黑矩阵在衬底基板上的正投影内,第一导电线和第二导电线与黑矩阵均无交叉,可以避免导电线与黑矩阵的交叉带来的摩尔纹问题。
(3)当导电线很细,形成线栅偏振器时,可同时实现偏光片和触控电极的功能,可以节省一层偏光片。同时导电线可以设置于彩色滤光层和黑矩阵上,由于线栅偏振器具有偏光特性,不会影响光线的透过率。
还有以下几点需要说明:
(1)本发明实施例附图只涉及到与本发明实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本发明的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以所述权利要求的保护范围为准。
本申请要求于2016年7月28日递交的中国专利申请第201610607545.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种触控屏,包括:
    衬底基板,
    设置在所述衬底基板上的驱动电极和感应电极,
    其中,所述驱动电极包括多条第一导电线和连接所述多条第一导电线的第一导电总线;所述感应电极包括多条第二导电线和连接所述多条第二导电线的第二导电总线;多条所述第一导电线和多条所述第二导电线相互交错排布。
  2. 根据权利要求1所述的触控屏,其中,所述多条第一导电线和所述多条第二导电线平行排布。
  3. 根据权利要求2所述的触控屏,还包括设置在所述衬底基板上的黑矩阵,其中,所述第一导电总线和所述第二导电总线在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影内。
  4. 根据权利要求3所述的触控屏,还包括彩色滤光层,其中,所述多条第一导电线和所述多条第二导电线在所述衬底基板上的正投影位于所述黑矩阵和所述彩色滤光层在所述衬底基板上的正投影内。
  5. 根据权利要求4所述的触控屏,其中,每条所述第一导电线的线宽为50~140nm,每条所述第二导电线的线宽为50~140nm。
  6. 根据权利要求1~5中任一项所述的触控屏,其中,所述第一导电线和所述第二导电线中任意相邻两条导电线之间的距离为50~140nm。
  7. 根据权利要求3所述的触控屏,其中,所述多条第一导电线和所述多条第二导电线在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影内。
  8. 根据权利要求7所述的触控屏,其中,每条所述第一导电线和每条所述第二导电线的线宽为50nm~10μm。
  9. 根据权利要求1所述的触控屏,其中,多条相邻的所述第一导电线中至少每两条构成一第一导电线组和多条相邻的所述第二导电线中至少每两条构成一第二导电线组,所述第一导电线组和所述第二导电线组相互交错平行排布。
  10. 根据权利要求2~9中任一项所述的触控屏,其中,所述第一导电 总线和所述第二导电总线之间的垂直距离为2.5~3.5mm。
  11. 根据权利要求10所述的触控屏,其中,任意相邻的两条所述第一导电总线之间的垂直距离为7.5~8.5mm。
  12. 根据权利要求11所述的触控屏,其中,所述多条第一导电线和所述多条第二导电线设置在同一层。
  13. 根据权利要求12所述的触控屏,其中,所述多条第一导电线和所述多条第二导电线设置在不同层,所述多条第一导电线和所述多条第二导电线之间还设置有绝缘层。
  14. 一种触控显示装置,包括权利要求1~3中任一项所述的触控屏,还包括:设置在所述衬底基板上的栅线和数据线,其中,
    所述第一导电线和所述第二导电线与所述数据线平行,所述第一导电总线和所述第二导电总线与所述栅线平行,或者
    所述第一导电线和所述第二导电线与所述栅线平行,所述第一导电总线和所述第二导电总线与所述数据线平行。
  15. 一种触控显示装置,包括权利要求1~3中任一项所述的触控屏,还包括:与所述衬底基板相对设置的阵列基板,其中,
    所述阵列基板包括栅线和数据线,所述第一导电线和所述第二导电线与所述数据线平行,所述第一导电总线和所述第二导电总线与所述栅线平行,或者
    所述第一导电线和所述第二导电线与所述栅线平行,所述第一导电总线和所述第二导电总线与所述数据线平行。
  16. 一种触控屏的制备方法,包括:
    提供衬底基板,
    在所述衬底基板上形成驱动电极和感应电极,
    其中,所述驱动电极包括多条第一导电线和连接所述多条第一导电线的第一导电总线,所述感应电极包括多条第二导电线和连接所述多条第二导电线的第二导电总线;多条所述第一导电线和多条所述第二导电线相互交错排布。
  17. 根据权利要求16所述的触控屏的制备方法,其中,所述多条第一导电线和所述多条第二导电线平行排布。
  18. 根据权利要求17所述的触控屏的制备方法,其中,采用纳米压 印或者全息光刻的方法形成所述第一导电线和所述第二导电线。
  19. 根据权利要求16所述的触控屏的制备方法,还包括:在所述衬底基板上形成黑矩阵,其中,所述第一导电总线和所述第二导电总线在所述衬底基板上的正投影位于所述黑矩阵在所述衬底基板上的正投影内。
  20. 根据权利要求19所述的触控屏的制备方法,还包括:在所述衬底基板上形成彩色滤光层,其中,所述多条第一导电线和所述多条第二导电线在所述衬底基板上的正投影位于所述黑矩阵和所述彩色滤光层在所述衬底基板上的正投影内。
PCT/CN2017/075598 2016-07-28 2017-03-03 触控屏及其制备方法、触控显示装置 WO2018018890A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17768656.5A EP3493035A4 (en) 2016-07-28 2017-03-03 TOUCH-CONTROLLED SCREEN AND MANUFACTURING METHOD THEREFOR, AND TOUCH-CONTROLLED DISPLAY DEVICE
US15/562,329 US20180348903A1 (en) 2016-07-28 2017-03-03 Touch panel, manufacturing method thereof and touch display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610607545.8 2016-07-28
CN201610607545.8A CN107665054A (zh) 2016-07-28 2016-07-28 触控屏及其制备方法

Publications (1)

Publication Number Publication Date
WO2018018890A1 true WO2018018890A1 (zh) 2018-02-01

Family

ID=61016347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075598 WO2018018890A1 (zh) 2016-07-28 2017-03-03 触控屏及其制备方法、触控显示装置

Country Status (4)

Country Link
US (1) US20180348903A1 (zh)
EP (1) EP3493035A4 (zh)
CN (1) CN107665054A (zh)
WO (1) WO2018018890A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114035364A (zh) * 2021-11-26 2022-02-11 深圳市华星光电半导体显示技术有限公司 液晶显示面板及终端设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108322729A (zh) * 2018-02-27 2018-07-24 广东欧珀移动通信有限公司 激光投射模组的控制方法、控制装置和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202771407U (zh) * 2012-07-20 2013-03-06 上海思立微电子科技有限公司 电容式触摸屏及单层布线电极阵列
CN202904526U (zh) * 2012-10-19 2013-04-24 深圳市汇顶科技股份有限公司 一种单层多点二维触摸传感器
CN104182102A (zh) * 2013-05-28 2014-12-03 晨星半导体股份有限公司 互容式触控感应装置
CN104216582A (zh) * 2013-05-29 2014-12-17 爱特梅尔公司 无边缘单层触摸传感器
CN105320320A (zh) * 2014-06-30 2016-02-10 晨星半导体股份有限公司 触控感应装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115751B2 (en) * 2008-12-30 2012-02-14 Young Fast Optoelectronics Co., Ltd. Capacitive touch sensing assembly
JP5182164B2 (ja) * 2009-03-12 2013-04-10 セイコーエプソン株式会社 タッチパネルの製造方法及び表示装置製造方法並びに電子機器製造方法
US9510456B2 (en) * 2012-11-09 2016-11-29 Shenzhen O-Film Tech Co., Ltd. Transparent conductor and preparation method thereof
US20140218637A1 (en) * 2013-02-06 2014-08-07 Nanchang O-Film Tech. Co., Ltd. Conductive film, manufacturing method thereof, and touch screen including the conducting film
US20150055057A1 (en) * 2013-08-23 2015-02-26 Austin L. Huang Touch sensitive display
TW201537401A (zh) * 2014-03-21 2015-10-01 Wintek Corp 觸控面板
CN104122706A (zh) * 2014-07-14 2014-10-29 深圳市华星光电技术有限公司 彩色滤光片基板及显示装置
CN104570447B (zh) * 2015-01-27 2018-01-16 昆山龙腾光电有限公司 触控式液晶显示面板及装置
CN104793799B (zh) * 2015-05-04 2016-03-23 京东方科技集团股份有限公司 触控结构、触控显示面板、触控显示装置和触控驱动方法
CN104991377B (zh) * 2015-08-03 2018-01-30 京东方科技集团股份有限公司 阵列基板、液晶显示面板及显示装置
CN105468201A (zh) * 2016-01-28 2016-04-06 京东方科技集团股份有限公司 触摸显示基板、触摸显示面板、触摸显示屏及电子设备
CN105652504B (zh) * 2016-04-11 2019-01-25 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202771407U (zh) * 2012-07-20 2013-03-06 上海思立微电子科技有限公司 电容式触摸屏及单层布线电极阵列
CN202904526U (zh) * 2012-10-19 2013-04-24 深圳市汇顶科技股份有限公司 一种单层多点二维触摸传感器
CN104182102A (zh) * 2013-05-28 2014-12-03 晨星半导体股份有限公司 互容式触控感应装置
CN104216582A (zh) * 2013-05-29 2014-12-17 爱特梅尔公司 无边缘单层触摸传感器
CN105320320A (zh) * 2014-06-30 2016-02-10 晨星半导体股份有限公司 触控感应装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3493035A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114035364A (zh) * 2021-11-26 2022-02-11 深圳市华星光电半导体显示技术有限公司 液晶显示面板及终端设备

Also Published As

Publication number Publication date
EP3493035A4 (en) 2020-01-22
EP3493035A1 (en) 2019-06-05
CN107665054A (zh) 2018-02-06
US20180348903A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
TWI584163B (zh) Touch panel sensors, touch panel devices and display devices
CN107632453B (zh) 显示面板及制造方法和显示装置
CN103135292B (zh) 具有触摸面板的液晶显示器装置
TWI506752B (zh) 導電結構體及其製備方法
WO2018099174A1 (zh) 触摸屏及其制作方法、触控显示装置
US20120127387A1 (en) Electrode substrate, method for manufacturing electrode substrate, and image display device
WO2015035716A1 (zh) 触摸屏及其制作方法、显示装置
TWI473147B (zh) 包括導電圖案之觸控面板
WO2015129112A1 (ja) 液晶表示装置
WO2018024133A1 (zh) 一种触控屏及其制作方法、外挂式触摸显示装置
JP5827972B2 (ja) タッチセンサ一体型表示装置
US9182844B2 (en) Touch panel, display device provided with touch panel, and method for manufacturing touch panel
WO2016086648A1 (zh) 触摸屏及其制作方法及显示装置
KR20140141469A (ko) 터치 스크린 전도성 필름 및 그 제조 방법
JP2014026510A (ja) タッチパネル用電極基材、及びタッチパネル、並びに画像表示装置
US20180252951A1 (en) Conductive structure, electrode comprising same, and display device
WO2018018890A1 (zh) 触控屏及其制备方法、触控显示装置
KR20130072402A (ko) 터치패널의 전극형성방법
WO2018082324A1 (zh) 触控结构及其制作方法和触控装置
JP5736913B2 (ja) カラーフィルタ基板及びそれを備えた液晶表示装置
KR20120110885A (ko) 편광판 일체형 터치 센서 및 이를 포함하는 디스플레이 장치
WO2014127566A1 (zh) 一种液晶显示面板及其制造方法、显示装置
JP2017142382A (ja) 電極付きカラーフィルタ基板および液晶ディスプレイ
TW201528080A (zh) 電子裝置
US8717528B2 (en) Liquid crystal display panel and liquid crystal display

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2017768656

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17768656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE