WO2018016750A1 - Process for recovery and purification of nitrous oxide from nitrous oxide-containing gas mixture - Google Patents

Process for recovery and purification of nitrous oxide from nitrous oxide-containing gas mixture Download PDF

Info

Publication number
WO2018016750A1
WO2018016750A1 PCT/KR2017/006586 KR2017006586W WO2018016750A1 WO 2018016750 A1 WO2018016750 A1 WO 2018016750A1 KR 2017006586 W KR2017006586 W KR 2017006586W WO 2018016750 A1 WO2018016750 A1 WO 2018016750A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrous oxide
gas mixture
adsorption
membrane separation
bar
Prior art date
Application number
PCT/KR2017/006586
Other languages
French (fr)
Korean (ko)
Inventor
김정훈
이수복
박인준
하종욱
강호철
장봉준
이광원
육신홍
이상구
박보령
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to CN201780044589.7A priority Critical patent/CN109476483A/en
Publication of WO2018016750A1 publication Critical patent/WO2018016750A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/22Nitrous oxide (N2O)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/30Improvements relating to adipic acid or caprolactam production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention recovers and purifies nitrous oxide from gas mixtures generated in industrial processes such as nitrous oxide (N 2 O) production process, adipic acid production process, nitric acid production process, caprolactam production process by pyrolysis of ammonium nitrate.
  • the present invention relates to a process for purifying nitrous oxide contained in exhaust gases generated in production processes such as nitrous oxide, adipic acid, nitric acid, and caprolactam with high purity to recover with high recovery.
  • Nitrous oxide is used in the process of forming a silicon oxide layer by reacting with silane by a chemical method or a plasma deposition method. Nitrous oxide is also used for nitriding thin film silicon films.
  • nitrous oxide is prepared by pyrolyzing ammonium nitrate, which must be purified by removing impurities such as nitrogen contained in the pyrolysis product.
  • nitrous oxide is contained in the exhaust gas discharged from production processes such as adipic acid, nitric acid and caprolactam. There is a demand for recovery of nitrous oxide from such nitrous oxide-containing gas mixtures for industrial reuse.
  • Nitrous oxide is one of the representative greenhouse gases and has a global warming index (GWP) of 310 times higher than that of carbon dioxide. Recovering and reusing nitrous oxide can reduce greenhouse gas emissions as well as gain economic benefits. Therefore, separation and recovery with high efficiency to obtain high-purity nitrous oxide from nitrous oxide-containing gas mixture produced by pyrolysis of ammonium nitrate and nitrous oxide-containing exhaust gas discharged from production processes such as adipic acid, nitric acid and caprolactam Process is required.
  • GWP global warming index
  • U.S. Pat.No. 6,348,083 discloses a method and apparatus for recovering and / or purifying nitrous oxide contained in exhaust gases from industrial processes for producing adipic acid, nitric acid, glycoxyl acid, nitrous oxide or phenol.
  • the exhaust gas used in this patent contains 5% by volume to 99.9% by volume of nitrous oxide, and contains at least one gas impurity selected from the group consisting of nitrogen, oxygen and carbon monoxide.
  • the exhaust gas is passed through at least one permeation module (membrane separation module) to recover a gas containing 85 to 90 volume percent nitrous oxide.
  • the nitrous oxide-containing exhaust gas generated in the adipic acid manufacturing process includes carbon dioxide, nitrogen dioxide, nitrogen monoxide, organic hydrocarbons, water vapor, and the like in addition to the impurities described in this patent. Therefore, the permeation module using separation (membrane separation) technology proposed by this patent alone cannot efficiently remove these impurities and recover high purity nitrous oxide for semiconductors in high yield. In addition, the membrane material and membrane separation process of the permeable membrane separation module used in this patent are not specifically presented.
  • U.S. Patent Publication No. US 2014/0366576 also discloses a process for purifying nitrous oxide from exhaust gases containing nitrous oxide, impurities, moisture and organohydrocarbons, including wet distillation, adsorption, liquefaction, flash distillation or continuous distillation under reflux. The process is shown. Wet cleaning removes carbon dioxide and nitrogen dioxide, and adsorption removes trace impurities such as carbon dioxide, nitrogen dioxide, water vapor, and organic hydrocarbons. After liquefying this, about 30% by volume of the nitrous oxide containing gas mixture and about 98% of the nitrous oxide containing liquid mixture are separated.
  • a liquid mixture containing about 98% nitrous oxide is fed to the distillation apparatus to obtain high purity nitrous oxide of 99.999% by volume or more.
  • this patent does not use a separate device for high concentration of the nitrous oxide containing gas mixture supplied to the emitter. This releases about 30% by volume of the nitrous oxide containing gas mixture from the emitter before the distillation unit into the atmosphere. Therefore, there is a problem that the recovery rate of nitrous oxide is very low, about 50%, based on the total nitrous oxide content contained in the adipic acid exhaust gas supplied to the purification process as described in the Examples of this patent.
  • the present inventors have studied in depth to improve the disadvantages and problems of the technology proposed by the above-mentioned prior patent.
  • the present inventors introduced a membrane separation step of removing nitrogen or / and oxygen from a low concentration of nitrous oxide-containing exhaust gas to a high concentration of nitrous oxide in an adsorption step of removing impurities and a distillation step of recovering high purity nitrous oxide.
  • the present invention solves the disadvantages and problems of the technology proposed by the above-mentioned prior patent.
  • the present invention provides a high recovery rate (more than 90%) of high purity (more than 99.999% by volume) nitrous oxide which can be used for semiconductors from a gas mixture which is an exhaust gas generated in production processes such as nitrous oxide, adipic acid, nitric acid and caprolactam. It is related with the process to collect
  • the high purity nitrous oxide recovery process proposed by the present inventors unlike the prior patents described above, uses a membrane separation process that selectively separates nitrous oxide from nitrogen or / and oxygen, thereby increasing the concentration of nitrous oxide by 80 vol. After concentrating to about 95 to 95% by volume, the distillation process is to recover 99.999% by volume or more of nitrous oxide to recover a high recovery rate (90% or more).
  • the present invention also includes an adsorption process for removing impurities that are difficult to separate by membrane separation and distillation.
  • the purification process for recovering high purity nitrous oxide with high recovery yield includes: 1) a membrane separation process for removing nitrous oxide and / or oxygen contained in the exhaust gas containing low concentration of nitrous oxide in a high concentration. 2) adsorption process to remove small amount of impurities contained in exhaust gas; and 3) distillation process to separate high purity nitrous oxide from the highly concentrated nitrous oxide containing gas mixture concentrated and purified by membrane separation process and adsorption process.
  • It provides a recovery and purification process of nitrous oxide comprising a; distillation step of recovering nitrous oxide by compressing and cooling the gas mixture passed through the adsorption step and separated by distillation.
  • It provides a process for recovering and purifying nitrous oxide comprising a; distillation step of recovering nitrous oxide by compressing, cooling and distilling the gas mixture passed through the membrane separation process.
  • the greenhouse gas is recovered from nitrous oxide, adipic acid, nitric acid and caprolactam production process by recovering nitrous oxide 310 times higher in global warming index (GWP) than carbon dioxide.
  • GWP global warming index
  • a reduction effect of can be obtained.
  • Nitrous oxide of) can be recovered and purified at a high recovery rate (90% or more).
  • FIG. 1 and 2 are schematic diagrams showing an example of a nitrous oxide purification process according to the present invention
  • FIG. 3 is a schematic diagram showing an example of the case where the membrane separation process in the nitrous oxide purification process according to the present invention includes a three-stage membrane separation apparatus.
  • the present invention is a.
  • It provides a recovery and purification process of nitrous oxide comprising a; distillation step of recovering nitrous oxide by compressing and cooling the gas mixture subjected to the membrane separation process and separated by distillation.
  • the nitrous oxide recovery and purification process of the present invention may be configured in the order of the pretreatment step, membrane separation step, adsorption step and distillation step, or may be configured in the order of pretreatment step, adsorption step, membrane separation step and distillation step. .
  • Prior art US Pat. No. 6,348,083 discloses a membrane separation technique for recovering more than 90% by volume of nitrous oxide from exhaust gases produced in industrial processes for the production of adipic acid, nitric acid, glycolic acid, nitrous oxide or phenol.
  • membrane separation technology alone cannot efficiently remove various impurities contained in exhaust gas and recover high purity nitrous oxide for semiconductors in high yield.
  • U.S. Patent Publication No. US 2014/0366576 also discloses a process for purifying nitrous oxide from exhaust gases containing nitrous oxide, impurities, moisture and organohydrocarbons, including wet distillation, adsorption, liquefaction, flash distillation or continuous distillation under reflux. The process is shown.
  • the technique proposed in this patent does not use a separate device for concentrating a nitrous oxide-containing gas mixture at high concentration, and emits and distillates a gas mixture containing nitrous oxide of 30 vol% to 60 vol% or less. It is supplied to recover more than 99.999% by volume nitrous oxide. As a result, about 30% by volume of the nitrous oxide-containing gas mixture is released from the emitter to the atmosphere, the recovery rate of nitrous oxide is very low, about 50%.
  • nitrous oxide which consists of membrane separation, adsorption and distillation, as described in the present invention, is characterized by low purity nitrous oxide (containing less than 60% by volume nitrous oxide). From the gas mixture comprising a high purity nitrous oxide of 99.999% by volume or more can be recovered, the recovery is also characterized by very high as 90% or more.
  • the pretreatment step (10) is to supply a gas mixture or exhaust gas containing nitrous oxide in the state of fine droplets contained in the gas mixture, At least one selected from the group consisting of oil and fine particle impurities in the state of fine droplets is removed.
  • the gas mixture or exhaust gas containing the nitrous oxide supplied to the pretreatment process 10 is an exhaust gas generated in industrial processes such as nitrous oxide production process, adipic acid production process, nitric acid production process and caprolactam production process. It is preferable.
  • the gas mixture or exhaust gas comprising nitrous oxide may comprise 0.3 vol% to 60 vol% nitrous oxide and 5 vol% to 60 vol% nitrogen, or zero or greater than 0 vol% to 40 vol% oxygen, Zero or more than 0% to 5% by volume of carbon dioxide, zero or more than 0% by volume to 1% by volume of carbon monoxide, zero or more than 0% by volume to 2% by volume of nitrogen dioxide, or zero or more than 0% by volume to 2% by volume of nitrogen monoxide, or Greater than 0% by volume to 1% by volume of water vapor, zero or greater than 0% by volume to 1% by volume of organic hydrocarbons, or traces of fine water droplets or oil, fine particles, and the like.
  • the gas mixture or exhaust gas containing the nitrous oxide may be supplied using a supply device 11 such as a booster or a compressor which is commonly used in industry.
  • the pretreatment step 10 is a step of removing trace amounts of water or oil and particulate impurities contained in the nitrous oxide-containing gas mixture generated in the nitrous oxide, adipic acid, nitric acid and caprolactam production process.
  • the gaseous mixture exiting the nitrous oxide, adipic acid, nitric acid and caprolactam production processes may contain water or oil or fine particles in small droplets.
  • the first agglomerator 12 may be used to remove the water droplets or oil droplets.
  • the first agglomerator 12 is a device for capturing fine droplets to form large droplets, and may be equipped with a stainless steel mesh of 200 to 300 mesh, and may be used as an apparatus commonly used in industry. Is not particularly limited.
  • the particulate impurities in the particulate state may use a filtration device 13 equipped with a filter cloth.
  • the filter cloth may be in the form of a bag filter or a cartridge.
  • the filter cloth or filtration device is not particularly limited, it is possible to use a filter cloth or filtration device commonly used.
  • the pretreatment step 10 is preferably carried out at a temperature of 10 °C to 40 °C and pressure conditions of 1 bar to 2 bar, the operating conditions of the pretreatment process is not limited thereto.
  • the membrane separation step 20 is included in the gas mixture after the pretreatment step (10) using a separation membrane having excellent separation performance of nitrous oxide.
  • Nitrous oxide is selectively isolated from concentrated nitrogen or oxygen and concentrated.
  • nitrous oxide is selectively separated from the nitrogen or / and oxygen contained in the gas mixture which has undergone the pretreatment step 10 and the adsorption step 30 and concentrated.
  • the membrane separation process 20 is a step of selectively separating nitrous oxide contained in a nitrous oxide-containing gas mixture or exhaust gas from nitrogen or / and oxygen and concentrating at a high concentration.
  • the nitrous oxide-containing gas mixture to be concentrated contains 0.3% to 60% by volume of nitrous oxide, the most impurity of 5% to 60% by volume of nitrogen and zero or more than 0% by volume up to 40% by volume of oxygen Contains.
  • the membrane used in the membrane separation process to concentrate nitrous oxide at high yield and high concentration should have high separation coefficient for nitrogen and oxygen and high permeability of nitrogen dioxide.
  • the nitrous oxide / nitrogen and nitrous oxide / oxygen selectivity of the separator used in the membrane separation of the membrane separation process 20 is preferably 20 or more, more preferably 30 or more, and most preferably 40 or more.
  • the permeability of the separator is preferably 80 GPU or more, more preferably 100 GPU or more, and most preferably 120 GPU or more. It is preferable to use a conventional polymer membrane as the separator, and more preferably, a polymer membrane including polysulfone polymer resin, polyimide polymer resin, or a resin in combination thereof as a main component of the gas separation layer.
  • the inventors have described nitrous oxide / nitrogen and nitrous oxide / oxygen in a membrane module composed of a gas separation layer using a polysulfone polymer resin and a polyimide polymer resin used in industry as described in Patent Application No. 10-2016-0082598. It was confirmed that the selectivity is 30 to 50 and the transmittance is 100 to 150 GPU or more.
  • the membrane separation process 20 is preferably carried out at a supply pressure of 2 bar to 15 bar at a temperature of 10 °C to 100 °C, the temperature and pressure is the first compressor 21 and the first cooler 22 Can be adjusted with.
  • the membrane separation process 20 compresses the gas mixture discharged from the pretreatment process 10 to the first compressor 21, removes the heat of compression through the first cooler 22, and constantly adjusts the temperature of the gas mixture. Can be.
  • the membrane separation process 20 is one stage or two or more stages, or three or more stages of the separation membranes are connected in series or in parallel to each other and the concentrated nitrous oxide-containing gas mixture of the permeate at the first stage is the following adsorption process or It is carried out using a multi-stage membrane separator with a connection structure connected to the distillation process and the remaining part is connected to an additional two or three stage and recycled to the front of the first compressor or to the rear of the first compressor through an additional compressor without an additional compressor. Can be.
  • a gas mixture containing nitrous oxide discharged to the remaining portion of the first stage membrane separator (or the first membrane separator 24) is followed by two stages.
  • Nitrous oxide is concentrated by supplying the membrane separator (or the second membrane separator 25) and permeating the permeate again. At this time, the concentrated nitrous oxide-containing gas mixture discharged from the permeation part of the two-stage membrane separator 25 is compressed in the second compressor 21 and is recycled to the first-stage membrane separator 24 and supplied again. The gas mixture discharged from the remaining portion of the two-stage membrane separator 25 may be released to the atmosphere after pyrolysis or catalytic decomposition of the contained nitrous oxide commonly used in industry. The concentrated nitrous oxide-containing gas mixture discharged from the permeate of the first stage membrane separator 24 is fed to the next adsorption or distillation process.
  • a gas mixture containing nitrous oxide discharged to the remaining portion of the one-stage membrane separator 24 is followed by a two-stage membrane separator. It is supplied to (25), and permeate
  • the gas mixture containing nitrous oxide discharged to the permeate of the first stage membrane separator 24 is connected to the fourth compressor 27 and the third cooler 28, followed by a three stage membrane separator 26. ), And the gas mixture including nitrous oxide remaining in the remainder of the gas mixture supplied to the three-stage membrane separator 26 may be supplied to the front end of the initial compressor 21 again.
  • the concentrated nitrous oxide-containing gas mixture discharged from the permeate of the first stage membrane separator (24) is passed through an additional compressor (27) to the permeate of the third stage membrane separator (26) and concentrated to the next adsorption process or distillation. Supply to the process.
  • the gas mixture including low concentration nitrous oxide discharged from the remaining portion of the two-stage membrane separator 25 may be released to the atmosphere after pyrolysis or catalytic decomposition of nitrous oxide.
  • the supply pressure is preferably 2 bar to 15 bar, more preferably 5 bar to 10 bar.
  • the permeate side pressure is preferably from vacuum to 3 bar, more preferably from 1 bar to 2 bar.
  • the permeation temperature is preferably 10 ° C to 100 ° C, more preferably 25 ° C to 50 ° C.
  • impurities such as carbon dioxide, nitrogen dioxide, carbon monoxide, water, organic hydrocarbons, etc. may also be partially removed to the remaining side.
  • the mixture may be fed to the adsorption process 30.
  • the gas mixture from which impurities such as carbon dioxide, nitrogen dioxide, water vapor and organic hydrocarbons are removed in the adsorption step 30 is concentrated in the membrane separation step 20, the gas mixture is purified in the membrane separation step 20. 80 to 95 volume% nitrous oxide containing gas mixture may be fed to the distillation process (40).
  • the adsorption step 30 is carbon dioxide, nitrogen dioxide, water vapor and organic hydrocarbons contained in the gas mixture passed through the membrane separation step 20 At least one impurity selected from the group consisting of adsorption is removed or at least one impurity selected from the group consisting of carbon dioxide, nitrogen dioxide, water vapor and organic hydrocarbons contained in the gas mixture passed through the pretreatment step (10) is used for adsorption. By removing.
  • the adsorption process 30 is a step of removing impurities such as carbon dioxide, nitrogen dioxide, water vapor or organic hydrocarbons contained in the nitrous oxide-containing gas mixture or exhaust gas. These impurities cannot be removed in the membrane separation process 20 or the distillation process 40.
  • the gas mixture or exhaust gases from the production processes such as nitrous oxide, adipic acid, nitric acid and caprolactam are absent or free from more than 0% by volume up to 5% by volume of carbon dioxide, or greater than 0% by volume and up to 2% by volume of nitrogen dioxide More than 1% by volume of water vapor and zero or more than 1% by volume of organohydrocarbons.
  • these impurities are adsorbed and removed to lower the contents of nitrogen dioxide, carbon dioxide and water vapor to 1.0 ppm or less, respectively, and to lower the organic hydrocarbon to 0.1 ppm or less.
  • carbon dioxide and nitrogen dioxide are adsorbents such as sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2 ), potassium hydroxide (KOH) or the like, which are commonly used in industry, or they are coated with silica or zeolite ( For example, Ascarite ® ), an adsorbent coated with sodium hydroxide on silica, may be removed by gas-solid reaction in an adsorption tower. At this time, water vapor is generated by the reaction. The gas-solid reaction filler can be removed after it has been consumed and filled with fresh adsorbent.
  • NaOH sodium hydroxide
  • Ca (OH) 2 calcium hydroxide
  • KOH potassium hydroxide
  • the steam and organic hydrocarbons produced by the neutralization adsorption reaction of water vapor and the carbon dioxide or nitrogen dioxide in the adsorption process 30 are silica or zeolites commonly used in industry (X, Y, CaY, ZnX, 5A, 13X, etc.) or It can adsorb
  • the adsorption process 30 may be carried out at a temperature of 10 °C to 50 °C and pressure conditions of 1 bar to 10 bar.
  • the adsorption process 30 may be performed by the adsorption towers 31 and 32, and the size of the adsorbent filled in the adsorption towers 31 and 32 is preferably in the range of 3 mm to 30 mm, but the adsorption force and the adsorption layer of the adsorbent.
  • the optimum size should be selected in consideration of the pressure loss in the chamber.
  • one adsorption tower including carbon dioxide, nitrogen dioxide, moisture and organic hydrocarbon removal adsorption layer can be used, it is preferable to separate adsorption tower having carbon dioxide and nitrogen dioxide removal adsorption layer and adsorption tower having water and organic hydrocarbon removal adsorption layer, respectively. desirable.
  • two or more carbon dioxide and nitrogen dioxide adsorption towers and two or more water and organic hydrocarbon adsorption towers may be installed to alternately perform regeneration and operation.
  • the first adsorption tower 31 may be configured to remove carbon dioxide and nitrogen dioxide in the gas mixture containing nitrous oxide in the adsorption process 30, and the water vapor and the agent in the gas mixture containing nitrous oxide.
  • a second adsorption tower 32 may be configured to remove water vapor and organic hydrocarbons generated by neutralization adsorption of carbon dioxide or nitrogen dioxide.
  • Nitrogen dioxide, carbon dioxide, and water contained in the nitrous oxide gas mixture purified in the adsorption step 20 are each 1.0 ppm (volume) or less, and the organic hydrocarbon is 0.1 ppm (volume) or less.
  • the composition of the concentrated and purified gas mixture may include at least 80% by volume, more preferably at least 90% by volume of nitrous oxide, nitrogen dioxide, carbon dioxide and Water vapor may each contain 1.0 ppm or less, organic hydrocarbons 0.1 ppm or less, and trace amounts of carbon monoxide and nitrogen monoxide.
  • the distillation step 40 is a gas mixture that has undergone the pretreatment step (10), membrane separation step (20) and adsorption step (30) Compressed, cooled and separated by distillation to recover nitrous oxide.
  • the distillation process 40 is nitrogen, oxygen, trace carbon monoxide and traces contained in the nitrous oxide containing gas mixture purified and concentrated through the pretreatment process 10, the membrane separation process 20 and the adsorption process 30. Nitrogen monoxide is removed by distillation at low temperature using a difference in vapor pressure (boiling point) to recover high purity nitrous oxide of 99.999% by volume or more.
  • the distillation process 40 may be carried out at a temperature of -160 °C to -10 °C and pressure conditions of 3 bar to 30 bar, the adjustment of the temperature and pressure is the third compressor (41) and the second cooler (42). ) Can be performed.
  • the second cooler 42 is cooled to the liquefaction temperature of nitrous oxide while removing the heat of compression and then supplied to the distillation column 44.
  • Operation conditions for performing the distillation process may be determined according to the gas-liquid equilibrium vapor pressure of nitrous oxide.
  • Fine droplets of oil may be generated during the cooling in the second cooler 42 of the distillation process 40, which may be removed from the second agglomerator 43.
  • the second agglomerator 43 may be equipped with a stainless steel mesh of 200 to 300 mesh in the same manner as the first agglomerator 12.
  • the distillation tower 44 of the distillation process 40 is a packed tower filled with a filler of a ceramic material such as metal or alumina of 5 mm to 30 mm size, or several stages (for example, sheave tray ( A tray tower consisting of a sieve tray or a valve tray can be used.
  • the distillation column 44 is preferably in the theoretical range of 5 to 50. More preferable theoretical stages are 10-30 stages.
  • nitrous oxide can be condensed to reflux to the distillation tower (44).
  • the reflux ratio is preferably in the range of 1 to 5.
  • a steam generator 45 is provided below the distillation column 44 to vaporize nitrous oxide to supply steam to the distillation column 44. High purity purified nitrous oxide liquid is recovered from the steam generator 45 at the bottom of the distillation column 44.
  • nitrous oxide recovery and purification process of the present invention the purity of the finally recovered nitrous oxide is 99.999% by volume or more, nitrous oxide recovery is 90% or more.
  • Nitrous oxide recovered / purified with high purity of 99.999% by volume or more according to the present invention can be used for semiconductor, LCD, OLED process.
  • feeder 12 first flocculator
  • first adsorption tower 32 second adsorption tower
  • the recovery and purification of nitrous oxide carried out in the present invention is a pilot-scale recovery and purification as shown in FIG.
  • Specific implementation method of the nitrous oxide recovery and purification process for the off-gas of the adipic acid production process will be described below in accordance with FIG.
  • the pretreatment process 10 supplies the exhaust gas generated in the adipic acid production process from the supply device 11 to be included in the exhaust gas in the first agglomerator 12 and the filtration device 13. Fine droplets and dust from water and oil were removed.
  • the first agglomerator was equipped with a 200 mesh stainless steel mesh having a thickness of 20 cm, the stainless steel mesh having a diameter of 30 cm and a length of 60 cm.
  • the filtering device is equipped with a bag filter made of polyester, the diameter of the bag filter is 30 cm, the length is 80 cm.
  • the supply flow rate of the exhaust gas of the adipic acid production process used in the recovery and purification process of nitrous oxide is 100 Nm 3 / hr and the composition is as follows.
  • the membrane separation process 20 uses a gas mixture discharged from the pretreatment process 10 using a first compressor 21 and a first cooler 22 at a pressure of 7 bar and 50 ° C.
  • the gas mixture discharged from the permeate of the two-stage membrane separator 25 and the gas mixture discharged from the condenser 46 of the distillation process 40 were supplied to the membrane separators 24 and 25 at a temperature of 1 stage. Recycled to separator 24.
  • the permeate pressure of the membrane separator was maintained at 1.2 bar.
  • the polysulfone resin hollow fiber membrane modules of 100 m 2 area and 100 m 2 area of Air Lane, a membrane manufacturer, were respectively mounted in the first stage membrane separator 24 and the second stage membrane separator 25.
  • a gas mixture containing 90.1% by volume of nitrous oxide was obtained at a flow rate of 21.6 Nm 3 / hr, and a gas mixture containing 14.7% by volume of nitrous oxide at a flow rate of 56.3 Nm 3 / hr, was obtained.
  • the residual gas mixture was supplied to the second membrane separator 25 to obtain a gas mixture containing 40.3% by volume of nitrous oxide at a flow rate of 15.4 Nm 3 / hr to the permeate side, and a 5.1% mixture of nitrous oxide containing 5.1% by volume Obtained at a flow rate of 40.9 Nm 3 / hr.
  • the gas mixture (flow rate 15.4 Nm 3 / hr) discharged from the permeate side of the second membrane separation device 25 was pressurized by the second compressor 23 and recycled to the first membrane separation device 24.
  • the gas mixture exiting the condenser 46 of the distillation process 40 contained 16.0% by volume nitrous oxide and the flow rate was 2.5 Nm 3 / hr. Therefore, the gas mixture supplied to the first membrane separator 24 is composed of 35 vol% nitrous oxide containing gas mixture (flow rate 60 Nm 3 / hr) supplied in the pretreatment step 10 and the second membrane separator 25.
  • the adsorption step 30 is a mixture of 90.1% by volume of nitrous oxide (21.6 Nm 3 / hr) which is discharged to the permeate side of the first stage membrane separation device 24 in the membrane separation step 20. Supply to the adsorption process to remove impurities such as carbon dioxide, nitrogen dioxide, steam and organic hydrocarbons.
  • the adsorption layers filled with the adsorbents of the first adsorption tower 31 and the second adsorption tower 32 are 20 cm in diameter and 200 cm in length, respectively.
  • a first adsorption column (31) was filled with Ascarite ® is a sodium hydroxide coating on the silica adsorbent of the size of 5 ⁇ 10 mm
  • the second adsorption tower (32) was filled with a 5 ⁇ 10 mm in size of the zeolite 5A.
  • the first packed tower 31 is equipped with a jacket for supplying cooling water to remove heat generated by the adsorption reaction.
  • the first adsorption tower and the second adsorption tower were operated at room temperature and a pressure of 1 to 2 bar, respectively.
  • carbon dioxide and nitrogen dioxide are removed by reaction with sodium hydroxide, and steam is generated at this time.
  • Water vapor and organic hydrocarbons contained in the water vapor and the gas mixture supplied are adsorbed and removed in the second adsorption tower 32.
  • the flow rate of the purified nitrous oxide-containing gas mixture in the adsorption process is 21.4 Nm 3 / hr, and the composition is as follows.
  • the distillation process 40 supplies the gas mixture purified in the adsorption process 30 to the distillation process 40 at a flow rate of 21.4 Nm 3 / hr to remove nitrogen and oxygen to nitrous oxide of high purity. Nitrogen was obtained.
  • the gas mixture discharged from the second adsorption tower 32 of the adsorption step 30 is pressurized to a pressure of 20 bar by the third compressor 41 of the distillation step 40, and the heat of compression is transferred to the second cooler 42. While removing, the gas mixture was cooled to a temperature of ⁇ 60 ° C., and fine droplets of water and oil, which may be produced, were removed from the second agglomerator 43 and then supplied to the distillation tower 44.
  • the distillation column 44 was filled with a 5/8 inch stainless steel ring ring, and the packed bed was 15 cm in diameter and 5 m in height. Nitrous oxide was condensed in the condenser 46 installed at the top of the distillation tower 44 and recycled to the distillation tower 44. The temperature of condenser 46 was maintained at -70 ° C. The reflux ratio of the distillation column 44 was maintained at approximately 2. The non-liquefied gas mixture (16.0 volume% nitrous oxide, flow rate 2.5 Nm 3 / hr) in condenser 46 was recycled to membrane separation step 20. In the steam generator 45 installed below the distillation column 44, liquid nitrous oxide was vaporized and supplied to the distillation tower 44. The temperature of the steam generator 45 was maintained at -23 ° C.
  • High purity purified nitrous oxide was recovered from the lower steam generator of the distillation column 44.
  • the flow rate of the liquid nitrous oxide recovered in the distillation process 40 is about 34.0 kg / hr, the composition was as follows, the purity of the carbon dioxide is 99.9999 volume%.
  • the recovery rate of nitrous oxide finally obtained in the distillation process is about 90%.
  • nitrous oxide 310 times higher global warming index (GWP) than carbon dioxide It is possible to obtain a greenhouse gas reduction effect.
  • GWP global warming index
  • the recovery and purification process of nitrous oxide according to the present invention from the exhaust gas of the nitrous oxide adipic acid, nitric acid and caprolactam production process can be used for semiconductor, LCD, OLED process, etc. It can be seen that nitrous oxide can be recovered and purified at a high recovery rate (90%).
  • the greenhouse gas is recovered from nitrous oxide, adipic acid, nitric acid and caprolactam production process by recovering nitrous oxide 310 times higher in global warming index (GWP) than carbon dioxide.
  • GWP global warming index
  • GWP global warming index
  • the recovery and purification process of nitrous oxide according to the present invention from the exhaust gas of the nitrous oxide, adipic acid, nitric acid and caprolactam production process for high purity (99.999% by volume or more) It is useful for recovering and purifying nitrous oxide of) with high recovery rate (90% or more).

Abstract

The present invention relates to a process for recovering and purifying nitrous oxide from a gas mixture generated in industrial processes, such as a nitrous oxide (N2O) production process by pyrolysis of ammonium nitrate, an adipic acid production process, a nitric acid production process, and a caprolactam production process.

Description

아산화질소 함유 기체 혼합물로부터 아산화질소의 회수 및 정제공정Recovery and purification of nitrous oxide from nitrous oxide containing gas mixture
본 발명은 질산암모늄의 열분해에 의한 아산화질소(N2O) 생산공정, 아디프산 생산공정, 질산 생산공정, 카프로락탐 생산공정 등의 산업공정에서 발생하는 기체 혼합물로부터 아산화질소를 회수 및 정제하는 공정에 관한 것으로, 상세하게는, 아산화질소, 아디프산, 질산 및 카프로락탐 등의 생산공정에서 발생하는 배출가스 중에 함유된 아산화질소를 고순도로 정제하여 고회수율로 회수하기 위한 공정에 관한 것이다.The present invention recovers and purifies nitrous oxide from gas mixtures generated in industrial processes such as nitrous oxide (N 2 O) production process, adipic acid production process, nitric acid production process, caprolactam production process by pyrolysis of ammonium nitrate. In particular, the present invention relates to a process for purifying nitrous oxide contained in exhaust gases generated in production processes such as nitrous oxide, adipic acid, nitric acid, and caprolactam with high purity to recover with high recovery.
최근에 아산화질소(N2O)는 반도체, LCD와 OLED 분야의 미세전자공정에서 수요가 크게 증가하고 있다. 아산화질소는 화학적 방법 또는 플라즈마 증착 방법에 의하여 실란과 반응하여 실리콘 산화층을 형성하는 공정에 사용된다. 아산화질소는 또한 박막 실리콘 필름의 질화용으로 사용된다.Recently, nitrous oxide (N 2 O) is increasing in demand in the microelectronic process of semiconductor, LCD and OLED fields. Nitrous oxide is used in the process of forming a silicon oxide layer by reacting with silane by a chemical method or a plasma deposition method. Nitrous oxide is also used for nitriding thin film silicon films.
산업적으로 아산화질소는 질산암모늄(ammonium nitrate)을 열분해하여 제조되는데, 열분해 생성물에 함유된 질소를 비롯한 불순물을 제거하여 고순도화해야 한다. 또한, 아산화질소는 아디프산, 질산 및 카프로락탐 등의 생산공정에서 배출되는 배기가스에 함유되어 있다. 이와 같은 아산화질소 함유 기체 혼합물로부터 아산화질소를 회수하여 산업적으로 재사용하는 것이 요구되고 있다. Industrially, nitrous oxide is prepared by pyrolyzing ammonium nitrate, which must be purified by removing impurities such as nitrogen contained in the pyrolysis product. In addition, nitrous oxide is contained in the exhaust gas discharged from production processes such as adipic acid, nitric acid and caprolactam. There is a demand for recovery of nitrous oxide from such nitrous oxide-containing gas mixtures for industrial reuse.
아산화질소는 대표적인 온실가스의 하나로 이산화탄소에 비하여 지구온난화지수(GWP)가 310 배 높다. 아산화질소를 회수하여 재사용함으로써 온실가스 배출을 저감할 수 있을 뿐만 아니라 경제적 이익을 얻을 수 있다. 따라서, 질산암모늄의 열분해에 의하여 생성되는 아산화질소 함유 기체 혼합물 및 아디프산, 질산 및 카프로락탐 등의 생산공정에서 배출되는 아산화질소 함유 배기가스로부터 고순도 아산화질소를 얻기 위해서 고효율로 회수하고 정제하는 분리공정이 요구되고 있다. Nitrous oxide is one of the representative greenhouse gases and has a global warming index (GWP) of 310 times higher than that of carbon dioxide. Recovering and reusing nitrous oxide can reduce greenhouse gas emissions as well as gain economic benefits. Therefore, separation and recovery with high efficiency to obtain high-purity nitrous oxide from nitrous oxide-containing gas mixture produced by pyrolysis of ammonium nitrate and nitrous oxide-containing exhaust gas discharged from production processes such as adipic acid, nitric acid and caprolactam Process is required.
그러나 아직까지 반도체. LCD 및 OLED 산업에서 사용할 수 있는 고순도의 아산화질소를 아산화질소 함유 배기가스로부터 회수하고 정제하는 공정이 산업에서 보편적으로 적용되지 않고 있는 실정이다. 현재까지 특허에 보고된 고순도 아산화질소의 회수 및 정제에 관한 기술을 살펴보면 다음과 같다.But still semiconductor. The process of recovering and purifying high purity nitrous oxide, which can be used in the LCD and OLED industries, from nitrous oxide-containing exhaust gas is not commonly applied in the industry. Looking at the technology for the recovery and purification of high-purity nitrous oxide reported in the patent so far as follows.
미국 특허 US 6,348,083에 아디프산, 질산, 글리콕실산, 아산화질소 또는 페놀을 제조하는 산업공정에서 발생하는 배기가스 중에 함유된 아산화질소를 회수 및/또는 정제하는 방법 및 장치가 제시되어 있다. 이 특허에서 사용하는 배기가스는 5 부피% 내지 99.9 부피%의 아산화질소를 함유하고, 질소, 산소 및 일산화탄소로 이루어진 군 중에서 선택된 1종 이상의 가스 불순물을 함유한다. 이 배기가스를 1개 이상의 투과 모듈(막분리 모듈)에 통과시켜 85 부피% 내지 90 부피%의 아산화질소를 함유하는 가스를 회수한다. 그러나 아디프산 제조공정에서 발생하는 아산화질소 함유 배기가스에는 이 특허에서 제시하는 불순물 외에 이산화탄소, 이산화질소, 일산화질소, 유기탄화수소, 수증기 등이 포함되어 있다. 따라서 이 특허가 제시하는 투과 모듈 사용 분리(막분리) 기술만으로는 이들 불순물들을 효율적으로 제거하여 반도체용 고순도 아산화질소를 고수율로 회수할 수 없다. 또한, 이 특허에 사용하는 투과 막분리 모듈의 분리막 소재 및 막분리공정이 구체적으로 제시되어 있지 않다.U.S. Pat.No. 6,348,083 discloses a method and apparatus for recovering and / or purifying nitrous oxide contained in exhaust gases from industrial processes for producing adipic acid, nitric acid, glycoxyl acid, nitrous oxide or phenol. The exhaust gas used in this patent contains 5% by volume to 99.9% by volume of nitrous oxide, and contains at least one gas impurity selected from the group consisting of nitrogen, oxygen and carbon monoxide. The exhaust gas is passed through at least one permeation module (membrane separation module) to recover a gas containing 85 to 90 volume percent nitrous oxide. However, the nitrous oxide-containing exhaust gas generated in the adipic acid manufacturing process includes carbon dioxide, nitrogen dioxide, nitrogen monoxide, organic hydrocarbons, water vapor, and the like in addition to the impurities described in this patent. Therefore, the permeation module using separation (membrane separation) technology proposed by this patent alone cannot efficiently remove these impurities and recover high purity nitrous oxide for semiconductors in high yield. In addition, the membrane material and membrane separation process of the permeable membrane separation module used in this patent are not specifically presented.
또한, 미국 특허 공개번호 US 2014/0366576에는 아산화질소, 불순물, 수분 및 유기탄화수소를 함유하는 배기가스로부터 아산화질소를 정제하기 위한 공정으로서 습식 세정, 흡착, 액화, 플래쉬 증류 또는 환류되는 연속 증류를 포함하는 공정이 제시되어 있다. 습식 세정으로 이산화탄소와 이산화질소 등을 제거하고, 흡착으로 미량의 불순물인 이산화탄소, 이산화질소, 수증기, 유기탄화수소를 제거한다. 이후 이를 액화시킨 후 방출기에서 약 30 부피% 정도의 아산화질소 함유 기체 혼합물과 약 98% 정도의 아산화질소 함유 액체 혼합물을 분리시킨다. 98% 정도의 아산화질소를 함유하는 액체 혼합물을 증류장치에 공급하여 99.999 부피% 이상의 고순도 아산화질소를 얻는다. 그러나 이 특허는 방출기에 공급되는 아산화질소 함유 기체 혼합물을 고농도로 농축하는 별도의 장치를 사용하지 않는다. 이로 인하여 증류장치 전의 방출기로부터 약 30 부피%의 아산화질소 함유 기체 혼합물을 대기로 방출한다. 따라서 이 특허의 실시예에 기술된 바와 같이 정제공정에 공급되는 아디프산 배기가스에 함유된 총 아산화질소 함량을 기준으로 아산화질소의 회수율이 약 50 % 정도로 매우 낮다는 문제점이 있다.U.S. Patent Publication No. US 2014/0366576 also discloses a process for purifying nitrous oxide from exhaust gases containing nitrous oxide, impurities, moisture and organohydrocarbons, including wet distillation, adsorption, liquefaction, flash distillation or continuous distillation under reflux. The process is shown. Wet cleaning removes carbon dioxide and nitrogen dioxide, and adsorption removes trace impurities such as carbon dioxide, nitrogen dioxide, water vapor, and organic hydrocarbons. After liquefying this, about 30% by volume of the nitrous oxide containing gas mixture and about 98% of the nitrous oxide containing liquid mixture are separated. A liquid mixture containing about 98% nitrous oxide is fed to the distillation apparatus to obtain high purity nitrous oxide of 99.999% by volume or more. However, this patent does not use a separate device for high concentration of the nitrous oxide containing gas mixture supplied to the emitter. This releases about 30% by volume of the nitrous oxide containing gas mixture from the emitter before the distillation unit into the atmosphere. Therefore, there is a problem that the recovery rate of nitrous oxide is very low, about 50%, based on the total nitrous oxide content contained in the adipic acid exhaust gas supplied to the purification process as described in the Examples of this patent.
이에, 본 발명자들은 상기한 선행특허가 제시하는 기술의 단점과 문제점을 개선하기 위하여 심도있게 연구하였다. 그 결과, 본 발명자들은 저농도의 아산화질소 함유 배기가스에서 질소 또는/및 산소를 제거하여 아산화질소를 고농도로 농축하는 막분리공정을 불순물을 제거하는 흡착공정과 고순도 아산화질소를 회수하는 증류공정에 도입함으로써 상기한 선행특허에서 제시하는 기술의 단점과 문제점을 해결하여 본 발명에 이르게 되었다.Thus, the present inventors have studied in depth to improve the disadvantages and problems of the technology proposed by the above-mentioned prior patent. As a result, the present inventors introduced a membrane separation step of removing nitrogen or / and oxygen from a low concentration of nitrous oxide-containing exhaust gas to a high concentration of nitrous oxide in an adsorption step of removing impurities and a distillation step of recovering high purity nitrous oxide. As a result, the present invention solves the disadvantages and problems of the technology proposed by the above-mentioned prior patent.
본 발명은 아산화질소, 아디프산, 질산 및 카프로락탐 등의 생산공정에서 발생하는 배기가스인 기체 혼합물로부터 반도체용으로 사용할 수 있는 고순도(99.999 부피% 이상)의 아산화질소를 고회수율(90 % 이상)로 회수하는 공정에 관한 것이다. 본 발명자들이 본 특허에서 제안하는 고순도 아산화질소 회수공정은 상기한 선행특허와는 달리 아산화질소를 질소 또는/및 산소로부터 선택적으로 분리하는 분리막을 사용하는 막분리공정를 사용하여 아산화질소의 농도를 80 부피% 내지 95 부피% 정도까지 농축시킨 후 증류공정으로 99.999 부피% 이상의 아산화질소를 정제하여 고회수율(90 % 이상)로 회수하는 공정이다. 또한 본 발명은 막분리와 증류로 분리하기 어려운 불순물들을 제거하기 위한 흡착공정이 포함된다. 다시 말하면, 본 발명이 제시하는 고순도 아산화질소를 고회수율로 회수하는 정제공정은 1) 저농도 아산화질소 함유 배기가스로부터 이에 포함된 질소 또는/및 산소를 제거하여 아산화질소를 고농도로 농축하는 막분리공정, 2) 배기가스에 함유된 소량의 불순물을 제거하는 흡착공정 및 3) 막분리공정과 흡착공정으로 농축되고 정제된 고농도 아산화질소 함유 기체 혼합물로부터 고순도 아산화질소를 분리하는 증류공정으로 구성된다.The present invention provides a high recovery rate (more than 90%) of high purity (more than 99.999% by volume) nitrous oxide which can be used for semiconductors from a gas mixture which is an exhaust gas generated in production processes such as nitrous oxide, adipic acid, nitric acid and caprolactam. It is related with the process to collect | recover). The high purity nitrous oxide recovery process proposed by the present inventors, unlike the prior patents described above, uses a membrane separation process that selectively separates nitrous oxide from nitrogen or / and oxygen, thereby increasing the concentration of nitrous oxide by 80 vol. After concentrating to about 95 to 95% by volume, the distillation process is to recover 99.999% by volume or more of nitrous oxide to recover a high recovery rate (90% or more). The present invention also includes an adsorption process for removing impurities that are difficult to separate by membrane separation and distillation. In other words, the purification process for recovering high purity nitrous oxide with high recovery yield according to the present invention includes: 1) a membrane separation process for removing nitrous oxide and / or oxygen contained in the exhaust gas containing low concentration of nitrous oxide in a high concentration. 2) adsorption process to remove small amount of impurities contained in exhaust gas; and 3) distillation process to separate high purity nitrous oxide from the highly concentrated nitrous oxide containing gas mixture concentrated and purified by membrane separation process and adsorption process.
본 발명의 목적은 아산화질소, 아디프산, 질산 및 카프로락탐 등의 생산공정에서 발생하는 기체 혼합물 또는 배기가스로부터 반도체, LCD 및 OLED 공정용으로 사용할 수 있는 고순도(99.999 부피% 이상)의 아산화질소를 고회수율(90 % 이상)로 정제하는 공정을 제공하는 것이다.It is an object of the present invention to provide high purity (more than 99.999% by volume) nitrous oxide which can be used for semiconductor, LCD and OLED processes from gas mixtures or exhaust gases generated in production processes such as nitrous oxide, adipic acid, nitric acid and caprolactam. It is to provide a process for refining to a high recovery rate (90% or more).
상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention
아산화질소를 포함하는 기체 혼합물 또는 배기가스를 공급하여 기체 혼합물 내 함유된 미세 액적 상태의 수분, 미세 액적 상태의 유분 및 미세 입자 불순물로 이루어지는 군으로부터 선택되는 1 종 이상을 제거하는 전처리공정;A pretreatment step of supplying a gas mixture or exhaust gas containing nitrous oxide to remove at least one selected from the group consisting of water in fine droplet state, oil in fine droplet state and fine particle impurities contained in the gas mixture;
상기 전처리공정을 거친 기체 혼합물로부터 이에 포함된 질소 또는/및 산소를 제거하여 아산화질소를 농축하는 막분리공정;A membrane separation step of concentrating nitrous oxide by removing nitrogen or / and oxygen contained therein from the gas mixture which has undergone the pretreatment step;
상기 막분리공정을 거친 기체 혼합물에 함유된 이산화탄소, 이산화질소, 수증기 및 유기탄화수소로 이루어지는 군으로부터 선택되는 1 종 이상의 불순물을 흡착에 의해 제거하는 흡착공정; 및An adsorption step of removing, by adsorption, one or more impurities selected from the group consisting of carbon dioxide, nitrogen dioxide, water vapor and organic hydrocarbons contained in the gas mixture subjected to the membrane separation step; And
상기 흡착공정을 거친 기체 혼합물을 압축 및 냉각하고 증류로 분리하여 아산화질소를 회수하는 증류공정;을 포함하는 아산화질소의 회수 및 정제공정을 제공한다.It provides a recovery and purification process of nitrous oxide comprising a; distillation step of recovering nitrous oxide by compressing and cooling the gas mixture passed through the adsorption step and separated by distillation.
또한, 본 발명은In addition, the present invention
아산화질소를 포함하는 기체 혼합물 또는 배기가스를 공급하여 기체 혼합물 내 함유된 미세 액적 상태의 수분, 미세 액적 상태의 유분 및 미세 입자 불순물로 이루어지는 군으로부터 선택되는 1 종 이상을 제거하는 전처리공정;A pretreatment step of supplying a gas mixture or exhaust gas containing nitrous oxide to remove at least one selected from the group consisting of water in fine droplet state, oil in fine droplet state and fine particle impurities contained in the gas mixture;
상기 전처리공정을 거친 기체 혼합물에 함유된 이산화탄소, 이산화질소, 수증기 및 유기탄화수소로 이루어지는 군으로부터 선택되는 1 종 이상의 불순물을 흡착에 의해 제거하는 흡착공정;An adsorption step of removing, by adsorption, one or more impurities selected from the group consisting of carbon dioxide, nitrogen dioxide, water vapor and organic hydrocarbons contained in the gas mixture subjected to the pretreatment step;
상기 흡착공정을 거친 기체 혼합물로부터 이에 포함된 질소 또는/및 산소를 제거하여 아산화질소를 농축하는 막분리공정; 및A membrane separation step of concentrating nitrous oxide by removing nitrogen or / and oxygen contained in the gas mixture that has undergone the adsorption step; And
상기 막분리공정을 거친 기체 혼합물을 압축 및 냉각하고 증류하여 아산화질소를 회수하는 증류공정;을 포함하는 아산화질소의 회수 및 정제공정을 제공한다.It provides a process for recovering and purifying nitrous oxide comprising a; distillation step of recovering nitrous oxide by compressing, cooling and distilling the gas mixture passed through the membrane separation process.
본 발명에 따른 아산화질소의 회수 및 정제공정에 의하여 아산화질소, 아디프산, 질산 및 카프로락탐 생산공정의 배기가스로부터 이산화탄소에 비하여 지구온난화지수(GWP)가 310배 높은 아산화질소를 회수하여 온실가스의 저감 효과를 얻을 수 있다. 또한, 본 발명에 따른 아산화질소의 회수 및 정제공정에 의하여 아산화질소, 아디프산, 질산 및 카프로락탐 생산공정의 배기가스로부터 반도체, LCD, OLED 공정용 등으로 사용할 수 있는 고순도(99.999 부피% 이상)의 아산화질소를 고회수율(90 % 이상)로 회수 및 정제할 수 있다.By recovering and purifying nitrous oxide according to the present invention, the greenhouse gas is recovered from nitrous oxide, adipic acid, nitric acid and caprolactam production process by recovering nitrous oxide 310 times higher in global warming index (GWP) than carbon dioxide. A reduction effect of can be obtained. In addition, by using the recovery and purification process of nitrous oxide according to the present invention from the exhaust gas of the nitrous oxide, adipic acid, nitric acid and caprolactam production process for high purity (99.999% by volume or more) Nitrous oxide of) can be recovered and purified at a high recovery rate (90% or more).
도 1 및 도 2는 본 발명에 따른 아산화질소 정제 공정의 일례를 나타낸 모식도이고;1 and 2 are schematic diagrams showing an example of a nitrous oxide purification process according to the present invention;
도 3은 본 발명에 따른 아산화질소 정제 공정에서 막분리공정이 3 단 막분리장치를 포함하는 경우의 일례를 나타낸 모식도이다.Figure 3 is a schematic diagram showing an example of the case where the membrane separation process in the nitrous oxide purification process according to the present invention includes a three-stage membrane separation apparatus.
본 발명은The present invention
아산화질소를 포함하는 기체 혼합물 또는 배기가스를 공급하여 기체 혼합물 내 함유된 미세 액적 상태의 수분, 미세 액적 상태의 유분 및 미세 입자 불순물로 이루어지는 군으로부터 선택되는 1 종 이상을 제거하는 전처리공정;A pretreatment step of supplying a gas mixture or exhaust gas containing nitrous oxide to remove at least one selected from the group consisting of water in fine droplet state, oil in fine droplet state and fine particle impurities contained in the gas mixture;
상기 전처리공정을 거친 기체 혼합물에 함유된 이산화탄소, 이산화질소, 수증기 및 유기탄화수소로 이루어지는 군으로부터 선택되는 1 종 이상의 불순물을 흡착에 의해 제거하는 흡착공정;An adsorption step of removing, by adsorption, one or more impurities selected from the group consisting of carbon dioxide, nitrogen dioxide, water vapor and organic hydrocarbons contained in the gas mixture subjected to the pretreatment step;
상기 흡착공정을 거친 기체 혼합물로부터 이에 포함된 질소 또는/및 산소를 제거하여 아산화질소를 농축하는 막분리공정; 및A membrane separation step of concentrating nitrous oxide by removing nitrogen or / and oxygen contained in the gas mixture that has undergone the adsorption step; And
상기 막분리공정을 거친 기체 혼합물을 압축 및 냉각하고 증류로 분리하여 아산화질소를 회수하는 증류공정;을 포함하는 아산화질소의 회수 및 정제공정을 제공한다.It provides a recovery and purification process of nitrous oxide comprising a; distillation step of recovering nitrous oxide by compressing and cooling the gas mixture subjected to the membrane separation process and separated by distillation.
본 발명의 아산화질소 회수 및 정제공정은 상기한 전처리공정, 막분리공정, 흡착공정 및 증류공정의 순서로 구성되거나, 또는 전처리공정, 흡착공정, 막분리공정 및 증류공정의 순서로 구성될 수 있다. The nitrous oxide recovery and purification process of the present invention may be configured in the order of the pretreatment step, membrane separation step, adsorption step and distillation step, or may be configured in the order of pretreatment step, adsorption step, membrane separation step and distillation step. .
이때, 본 발명에 따른 아산화질소의 회수 및 정제 공정의 일례를 도 1 및 도 2의 모식도를 통해 나타내었으며,At this time, an example of the recovery and purification process of nitrous oxide according to the present invention is shown through the schematic diagrams of FIGS.
이하, 도 1 및 도 2에 나타낸 모식도를 참조하여 본 발명에 따른 아산화질소의 회수 및 정제공정에 대하여 각 공정별로 상세히 설명한다.Hereinafter, the recovery and purification of nitrous oxide according to the present invention with reference to the schematic diagram shown in Figures 1 and 2 will be described in detail for each step.
선행 특허인 미국 특허 US 6,348,083에는 아디프산, 질산, 글리콕실산, 아산화질소 또는 페놀을 제조하는 산업공정에서 발생하는 배기가스로부터 90 부피% 이상의 아산화질소를 회수하는 막분리기술이 제시되어 있다. 그러나 막분리 기술만으로는 배기가스에 함유된 여러 불순물들을 효율적으로 제거하여 반도체용 고순도 아산화질소를 고수율로 회수할 수 없다. 또한, 미국 특허 공개번호 US 2014/0366576에는 아산화질소, 불순물, 수분 및 유기탄화수소를 함유하는 배기가스로부터 아산화질소를 정제하기 위한 공정으로서 습식 세정, 흡착, 액화, 플래쉬 증류 또는 환류되는 연속 증류를 포함하는 공정이 제시되어 있다. 그러나 이 특허에서 제시하는 기술에는 아산화질소 함유 기체 혼합물을 고농도로 농축하는 별도의 장치를 사용하지 않고, 아산화질소를 30 부피% 내지 60 부피% 이하의 아산화질소를 함유하는 기체 혼합물을 방출기와 증류장치에 공급하여 99.999 부피% 이상의 아산화질소를 회수한다. 이로 인하여 방출기로부터 약 30 부피%의 아산화질소 함유 기체 혼합물이 대기로 방출되기 때문에 아산화질소의 회수율이 약 50% 정도로 매우 낮다는 문제점이 있다.Prior art US Pat. No. 6,348,083 discloses a membrane separation technique for recovering more than 90% by volume of nitrous oxide from exhaust gases produced in industrial processes for the production of adipic acid, nitric acid, glycolic acid, nitrous oxide or phenol. However, membrane separation technology alone cannot efficiently remove various impurities contained in exhaust gas and recover high purity nitrous oxide for semiconductors in high yield. U.S. Patent Publication No. US 2014/0366576 also discloses a process for purifying nitrous oxide from exhaust gases containing nitrous oxide, impurities, moisture and organohydrocarbons, including wet distillation, adsorption, liquefaction, flash distillation or continuous distillation under reflux. The process is shown. However, the technique proposed in this patent does not use a separate device for concentrating a nitrous oxide-containing gas mixture at high concentration, and emits and distillates a gas mixture containing nitrous oxide of 30 vol% to 60 vol% or less. It is supplied to recover more than 99.999% by volume nitrous oxide. As a result, about 30% by volume of the nitrous oxide-containing gas mixture is released from the emitter to the atmosphere, the recovery rate of nitrous oxide is very low, about 50%.
이들 특허에서 제시하는 기술과는 다르게, 본 발명에서 제시하는 막분리공정, 흡착공정 및 증류공정으로 구성되는 아산화질소의 회수 및 정제공정은 낮은 순도의 아산화질소(60 부피% 이하의 아산화질소 함유)를 포함하는 기체 혼합물로부터 99.999 부피% 이상의 고순도의 아산화질소를 회수할 수 있으며, 그 회수율 또한 90 % 이상으로 매우 높다는 특징을 갖는다.Unlike the techniques described in these patents, the recovery and purification of nitrous oxide, which consists of membrane separation, adsorption and distillation, as described in the present invention, is characterized by low purity nitrous oxide (containing less than 60% by volume nitrous oxide). From the gas mixture comprising a high purity nitrous oxide of 99.999% by volume or more can be recovered, the recovery is also characterized by very high as 90% or more.
먼저, 본 발명에 따른 아산화질소의 회수 및 정제공정(100)에 있어서, 상기 전처리공정(10)은 아산화질소를 포함하는 기체 혼합물 또는 배기가스를 공급하여 기체 혼합물 내 함유된 미세 액적 상태의 수분, 미세 액적 상태의 유분 및 미세 입자 불순물로 이루어지는 군으로부터 선택되는 1 종 이상을 제거한다.First, in the recovery and purification process of nitrous oxide according to the present invention (100), the pretreatment step (10) is to supply a gas mixture or exhaust gas containing nitrous oxide in the state of fine droplets contained in the gas mixture, At least one selected from the group consisting of oil and fine particle impurities in the state of fine droplets is removed.
상기 전처리공정(10)에 공급되는 상기 아산화질소를 포함하는 기체 혼합물 또는 배기가스는 아산화질소 생산공정, 아디프산 생산공정, 질산 생산공정 및 카프로락탐 생산공정 등의 산업공정에서 발생하는 배출가스인 것이 바람직하다.The gas mixture or exhaust gas containing the nitrous oxide supplied to the pretreatment process 10 is an exhaust gas generated in industrial processes such as nitrous oxide production process, adipic acid production process, nitric acid production process and caprolactam production process. It is preferable.
상기 아산화질소를 포함하는 기체 혼합물 또는 배기가스는 0.3 부피% 내지 60 부피%의 아산화질소 및 5 부피% 내지 60 부피%의 질소를 포함할 수 있고, 없거나 0 부피% 초과 내지 40 부피%의 산소, 없거나 0 부피% 초과 내지 5 부피%의 이산화탄소, 없거나 0 부피% 초과 내지 1 부피%의 일산화탄소, 없거나 0 부피% 초과 내지 2 부피%의 이산화질소, 없거나 0 부피% 초과 내지 2 부피%의 일산화질소, 없거나 0 부피% 초과 내지 1 부피%의 수증기, 없거나 0 부피% 초과 내지 1 부피%의 유기탄화수소, 또는 미량의 미세한 액적 상태의 수분 또는 유분, 및 미세한 입자 등을 포함할 수 있다. 상기 아산화질소를 포함하는 기체 혼합물 또는 배기가스는 산업에서 통상적으로 사용하는 부스터 또는 컴프레서 등의 공급장치(11)를 사용하여 공급할 수 있다.The gas mixture or exhaust gas comprising nitrous oxide may comprise 0.3 vol% to 60 vol% nitrous oxide and 5 vol% to 60 vol% nitrogen, or zero or greater than 0 vol% to 40 vol% oxygen, Zero or more than 0% to 5% by volume of carbon dioxide, zero or more than 0% by volume to 1% by volume of carbon monoxide, zero or more than 0% by volume to 2% by volume of nitrogen dioxide, or zero or more than 0% by volume to 2% by volume of nitrogen monoxide, or Greater than 0% by volume to 1% by volume of water vapor, zero or greater than 0% by volume to 1% by volume of organic hydrocarbons, or traces of fine water droplets or oil, fine particles, and the like. The gas mixture or exhaust gas containing the nitrous oxide may be supplied using a supply device 11 such as a booster or a compressor which is commonly used in industry.
상기 전처리공정(10)은 아산화질소, 아디프산, 질산 및 카프로락탐 생산공정에서 발생하는 아산화질소 함유 기체 혼합물에 포함된 미량의 액적 상태의 수분 또는 유분, 및 입자 불순물을 제거하는 단계이다. 아산화질소, 아디프산, 질산 및 카프로락탐 생산공정에서 배출되는 기체 혼합물에는 소량의 액적 상태의 수분 또는 유분 또는 미세 입자가 포함될 수 있다. 상기 수분 액적 또는 유분 액적을 제거하기 위하여 제1 응집기(12)를 사용할 수 있다. 상기 제1 응집기(12)는 미세한 액적들을 포집하여 큰 액적을 형성시키는 장치이며, 200 내지 300 메쉬(mesh)의 스테인레스스틸 망이 장착될 수 있고, 산업에서 통상적으로 사용하는 장치를 사용할 수 있으나, 특별하게 한정되지 않는다. 입자 상태의 입자 불순물은 여과포가 장착된 여과장치(13)를 사용할 수 있는데, 상기 여과포는 백필터 형태 또는 카트리지 형태 등을 사용할 수 있다. 상기 여과포 또는 여과장치는 특별하게 한정되지 않으며, 통상적으로 사용하는 여과포나 여과장치를 사용할 수 있다. The pretreatment step 10 is a step of removing trace amounts of water or oil and particulate impurities contained in the nitrous oxide-containing gas mixture generated in the nitrous oxide, adipic acid, nitric acid and caprolactam production process. The gaseous mixture exiting the nitrous oxide, adipic acid, nitric acid and caprolactam production processes may contain water or oil or fine particles in small droplets. The first agglomerator 12 may be used to remove the water droplets or oil droplets. The first agglomerator 12 is a device for capturing fine droplets to form large droplets, and may be equipped with a stainless steel mesh of 200 to 300 mesh, and may be used as an apparatus commonly used in industry. Is not particularly limited. The particulate impurities in the particulate state may use a filtration device 13 equipped with a filter cloth. The filter cloth may be in the form of a bag filter or a cartridge. The filter cloth or filtration device is not particularly limited, it is possible to use a filter cloth or filtration device commonly used.
상기 전처리공정(10)은 10 ℃ 내지 40 ℃의 온도 및 1 bar 내지 2 bar의 압력 조건에서 수행되는 것이 바람직하나, 상기 전처리공정의 운전 조건이 이에 제한되는 것은 아니다.The pretreatment step 10 is preferably carried out at a temperature of 10 ℃ to 40 ℃ and pressure conditions of 1 bar to 2 bar, the operating conditions of the pretreatment process is not limited thereto.
다음으로, 본 발명에 따른 아산화질소의 회수 및 정제공정(100)에 있어서, 상기 막분리공정(20)은 아산화질소의 분리성능이 우수한 분리막을 사용하여 전처리공정(10)을 거친 기체 혼합물에 포함된 질소 또는/및 산소로부터 아산화질소를 선택적으로 분리하여 농축한다. 또는, 전처리공정(10) 및 흡착공정(30)을 거친 기체 혼합물에 포함된 질소 또는/및 산소로부터 아산화질소를 선택적으로 분리하여 농축한다.Next, in the recovery and purification of nitrous oxide according to the present invention (100), the membrane separation step 20 is included in the gas mixture after the pretreatment step (10) using a separation membrane having excellent separation performance of nitrous oxide. Nitrous oxide is selectively isolated from concentrated nitrogen or oxygen and concentrated. Alternatively, nitrous oxide is selectively separated from the nitrogen or / and oxygen contained in the gas mixture which has undergone the pretreatment step 10 and the adsorption step 30 and concentrated.
상기 막분리공정(20)은 아산화질소 함유 기체 혼합물 또는 배기가스에 포함된 아산화질소를 질소 또는/및 산소로부터 선택적으로 분리하여 고농도로 농축하는 단계이다. 농축하고자 하는 아산화질소 함유 기체 혼합물에는 0.3 부피% 내지 60 부피%의 아산화질소를 함유되어 있으며, 가장 많은 불순물로서 5 부피% 내지 60 부피%의 질소와, 없거나 0 부피% 초과 40 부피% 이하의 산소가 함유되어 있다. 상기 막분리공정(20)에서는 아산화질소를 질소 또는/및 산소로부터 분리하여 80 부피% 이상 내지 95 부피%의 농도로 농축하는 것이 바람직하다. 이 때, 막분리공정(20)에 공급되는 기체 혼합물에 함유된 아산화질소를 기준으로 아산화질소 회수율이 높을수록 아산화질소의 손실을 작게 하여 바람직하다. 이와 같이 아산화질소를 고효수율 및 고농도로 농축하기 위해서 막분리공정에 사용하는 분리막은 아산화질소의 질소와 산소에 대한 분리계수가 높고 이산화질소의 투과도가 높아야 한다. The membrane separation process 20 is a step of selectively separating nitrous oxide contained in a nitrous oxide-containing gas mixture or exhaust gas from nitrogen or / and oxygen and concentrating at a high concentration. The nitrous oxide-containing gas mixture to be concentrated contains 0.3% to 60% by volume of nitrous oxide, the most impurity of 5% to 60% by volume of nitrogen and zero or more than 0% by volume up to 40% by volume of oxygen Contains. In the membrane separation process 20, it is preferable to separate nitrous oxide from nitrogen or / and oxygen and concentrate it to a concentration of 80% by volume to 95% by volume. At this time, the higher the nitrous oxide recovery rate based on the nitrous oxide contained in the gas mixture supplied to the membrane separation process 20, the smaller the loss of nitrous oxide is preferable. As described above, the membrane used in the membrane separation process to concentrate nitrous oxide at high yield and high concentration should have high separation coefficient for nitrogen and oxygen and high permeability of nitrogen dioxide.
구체적으로, 상기 막분리공정(20)의 막분리에서 사용하는 분리막의 아산화질소/질소 및 아산화질소/산소 선택도는 20 이상인 것이 바람직하고, 30 이상인 것이 더욱 바람직하며, 40 이상인 것이 가장 바람직하다. 상기 분리막의 투과도(permeability)는 80 GPU 이상인 것이 바람직하고, 100 GPU 이상인 것이 더욱 바람직하며, 120 GPU 이상인 것이 가장 바람직하다. 상기 분리막은 통상적인 고분자 분리막을 사용하는 것이 바람직하며, 폴리설폰계 고분자 수지, 폴리이미드계 고분자 수지, 또는 이들을 조합한 수지 등을 기체 분리층의 주성분으로 하는 고분자 분리막을 사용하는 것이 더욱 바람직하다. 본 발명자들은 특허출원 제10-2016-0082598호에 기술한 바와 같이 산업계에서 사용하는 폴리설폰계 고분자 수지 및 폴리이미드계 고분자 수지를 기체 분리층으로 구성된 분리막 모듈의 아산화질소/질소 및 아산화질소/산소 선택도는 30 내지 50이고, 투과도는 100 내지 150 GPU 이상인 것을 확인하였다.Specifically, the nitrous oxide / nitrogen and nitrous oxide / oxygen selectivity of the separator used in the membrane separation of the membrane separation process 20 is preferably 20 or more, more preferably 30 or more, and most preferably 40 or more. The permeability of the separator is preferably 80 GPU or more, more preferably 100 GPU or more, and most preferably 120 GPU or more. It is preferable to use a conventional polymer membrane as the separator, and more preferably, a polymer membrane including polysulfone polymer resin, polyimide polymer resin, or a resin in combination thereof as a main component of the gas separation layer. The inventors have described nitrous oxide / nitrogen and nitrous oxide / oxygen in a membrane module composed of a gas separation layer using a polysulfone polymer resin and a polyimide polymer resin used in industry as described in Patent Application No. 10-2016-0082598. It was confirmed that the selectivity is 30 to 50 and the transmittance is 100 to 150 GPU or more.
상기 막분리공정(20)은 10 ℃ 내지 100 ℃의 온도에서, 2 bar 내지 15 bar의 공급 압력으로 수행되는 것이 바람직하며, 상기 온도 및 압력은 제1 압축기(21) 및 제1 냉각기(22)로 조절할 수 있다. 상기 막분리공정(20)은 전처리공정(10)에서 배출되는 기체 혼합물을 제1 압축기(21)로 압축하고, 제1 냉각기(22)를 통해 압축열을 제거하고 기체 혼합물의 온도를 일정하게 조절할 수 있다.The membrane separation process 20 is preferably carried out at a supply pressure of 2 bar to 15 bar at a temperature of 10 ℃ to 100 ℃, the temperature and pressure is the first compressor 21 and the first cooler 22 Can be adjusted with. The membrane separation process 20 compresses the gas mixture discharged from the pretreatment process 10 to the first compressor 21, removes the heat of compression through the first cooler 22, and constantly adjusts the temperature of the gas mixture. Can be.
또한, 상기 막분리공정(20)은 1 단 또는 2 단 이상, 또는 3 단 이상의 분리막들이 직렬 또는 병렬로 상호 배열되어 연결되고 1 단에서 투과부의 농축된 아산화질소 함유 기체혼합물은 다음의 흡착공정 또는 증류공정으로 연결되고 잔류부는 추가적인 2 단 또는 3 단과 연결되어 추가적인 압축기 없이 최초의 압축기의 전단으로 또는 추가되는 압축기를 통해 최초의 압축기의 후단으로 재순환되는 연결구조를 가진 다단 막분리장치를 이용하여 수행될 수 있다. 예를 들면, 상기 막분리공정(20)이 2 단으로 수행되는 경우에는 1 단 막분리장치(또는 제1 막분리장치, 24)의 잔류부로 배출되는 아산화질소를 포함하는 기체 혼합물을 다음 2 단 막분리장치(또는 제2 막분리장치, 25)에 공급하여 다시 투과부로 투과시켜 아산화질소를 농축한다. 이 때, 2 단 막분리장치(25)의 투과부에서 배출되는 농축된 아산화질소 함유 기체 혼합물은 제2 압축기(21)에서 압축되어 다시 1 단 막분리장치(24)로 재순환하여 공급한다. 2 단 막분리장치(25)의 잔류부에서 배출되는 기체 혼합물은 함유된 아산화질소를 산업에서 통상적으로 사용하는 열분해 또는 촉매분해한 후 대기에 방출할 수 있다. 1 단 막분리장치(24)의 투과부에서 배출되는 농축된 아산화질소 함유 기체 혼합물은 다음 흡착공정 또는 증류공정으로 공급한다. In addition, the membrane separation process 20 is one stage or two or more stages, or three or more stages of the separation membranes are connected in series or in parallel to each other and the concentrated nitrous oxide-containing gas mixture of the permeate at the first stage is the following adsorption process or It is carried out using a multi-stage membrane separator with a connection structure connected to the distillation process and the remaining part is connected to an additional two or three stage and recycled to the front of the first compressor or to the rear of the first compressor through an additional compressor without an additional compressor. Can be. For example, when the membrane separation process 20 is performed in two stages, a gas mixture containing nitrous oxide discharged to the remaining portion of the first stage membrane separator (or the first membrane separator 24) is followed by two stages. Nitrous oxide is concentrated by supplying the membrane separator (or the second membrane separator 25) and permeating the permeate again. At this time, the concentrated nitrous oxide-containing gas mixture discharged from the permeation part of the two-stage membrane separator 25 is compressed in the second compressor 21 and is recycled to the first-stage membrane separator 24 and supplied again. The gas mixture discharged from the remaining portion of the two-stage membrane separator 25 may be released to the atmosphere after pyrolysis or catalytic decomposition of the contained nitrous oxide commonly used in industry. The concentrated nitrous oxide-containing gas mixture discharged from the permeate of the first stage membrane separator 24 is fed to the next adsorption or distillation process.
예를 들면, 도 3에 나타낸 바와 같이, 상기 막분리공정이 3 단으로 수행되는 경우에는 1 단 막분리장치(24)의 잔류부로 배출되는 아산화질소를 포함하는 기체 혼합물을 다음 2 단 막분리장치(25)에 공급하여 다시 투과부로 투과시켜 아산화질소를 농축한다. 이 때, 2 단 막분리장치(25)의 투과부에서 배출되는 농축된 아산화질소 함유 기체 혼합물은 다시 1 단 막분리장치(24)로 재순환하여 공급한다. For example, as shown in FIG. 3, when the membrane separation process is performed in three stages, a gas mixture containing nitrous oxide discharged to the remaining portion of the one-stage membrane separator 24 is followed by a two-stage membrane separator. It is supplied to (25), and permeate | transmitted again to a permeation part, and nitrous oxide is concentrated. At this time, the concentrated nitrous oxide-containing gas mixture discharged from the permeation part of the two-stage membrane separator 25 is recycled and supplied to the one-stage membrane separator 24 again.
또한, 1 단 막분리장치(24)의 투과부로 배출되는 아산화질소를 포함하는 기체 혼합물은 추가되는 제4 압축기(27) 및 제3 냉각기(28) 다음으로 연결되는 3 단의 막분리장치(26)에 공급하고, 3 단 막분리장치(26)에 공급된 기체 혼합물 중 잔류부에 잔류하는 아산화질소를 포함하는 기체 혼합물은 다시 초기 압축기(21) 전단으로 공급될 수 있다. 1 단 막분리장치(24)의 투과부에서 배출되는 농축된 아산화질소를 함유 기체 혼합물은 추가되는 압축기(27)를 지나 3 단 막분리장치(26)의 투과부로 모이고 농축되어 다음의 흡착공정 또는 증류공정으로 공급한다. 상기 2 단 막분리장치(25)의 잔류부에서 배출되는 저농도 아산화질소를 포함하는 기체 혼합물은 아산화질소의 열분해 또는 촉매분해한 후 대기에 방출할 수 있다.In addition, the gas mixture containing nitrous oxide discharged to the permeate of the first stage membrane separator 24 is connected to the fourth compressor 27 and the third cooler 28, followed by a three stage membrane separator 26. ), And the gas mixture including nitrous oxide remaining in the remainder of the gas mixture supplied to the three-stage membrane separator 26 may be supplied to the front end of the initial compressor 21 again. The concentrated nitrous oxide-containing gas mixture discharged from the permeate of the first stage membrane separator (24) is passed through an additional compressor (27) to the permeate of the third stage membrane separator (26) and concentrated to the next adsorption process or distillation. Supply to the process. The gas mixture including low concentration nitrous oxide discharged from the remaining portion of the two-stage membrane separator 25 may be released to the atmosphere after pyrolysis or catalytic decomposition of nitrous oxide.
상기 막분리공정(20)에서 공급측 압력은 2 bar 내지 15 bar인 것이 바람직하며, 5 bar 내지 10 bar인 것이 더욱 바람직하다. 투과측 압력은 진공 내지 3 bar인 것이 바람직하며, 1 bar 내지 2 bar인 것이 더욱 바람직하다. 투과 온도는 10 ℃ 내지 100 ℃인 것이 바람직하며, 25 ℃ 내지 50 ℃인 것이 더욱 바람직하다.In the membrane separation process 20, the supply pressure is preferably 2 bar to 15 bar, more preferably 5 bar to 10 bar. The permeate side pressure is preferably from vacuum to 3 bar, more preferably from 1 bar to 2 bar. The permeation temperature is preferably 10 ° C to 100 ° C, more preferably 25 ° C to 50 ° C.
도 1에 나타낸 바와 같이, 상기 막분리공정(20)에서 이산화탄소, 이산화질소, 일산화탄소, 수분, 유기탄화수소 등의 불순물들도 소량이지만 잔류측으로 일부 제거될 수 있다. 제1 막분리장치(24)의 투과측에서 배출되는 80 부피% 내지 95 부피%의 아산화질소, 소량의 질소 또는/및 산소 및 소량의 이산화탄소, 이산화질소, 수증기, 유기탄화수소 등의 불순물을 포함하는 기체 혼합물은 흡착공정(30)으로 공급될 수 있다. 또는, 도 2에 나타낸 바와 같이 흡착공정(30)에서 이산화탄소, 이산화질소, 수증기, 유기탄화수소 등의 불순물을 제거한 기체 혼합물을 막분리공정(20)에서 농축하는 경우에는 막분리공정(20)에서 정제된 80 부피% 내지 95 부피% 의 아산화질소 함유 기체 혼합물은 증류공정(40)으로 공급될 수 있다. As shown in FIG. 1, in the membrane separation process 20, impurities such as carbon dioxide, nitrogen dioxide, carbon monoxide, water, organic hydrocarbons, etc. may also be partially removed to the remaining side. A gas containing 80% by volume to 95% by volume of nitrous oxide, a small amount of nitrogen or / and oxygen, and a small amount of impurities such as carbon dioxide, nitrogen dioxide, water vapor, organic hydrocarbons and the like discharged from the permeate side of the first membrane separation device 24. The mixture may be fed to the adsorption process 30. Alternatively, as shown in FIG. 2, when the gas mixture from which impurities such as carbon dioxide, nitrogen dioxide, water vapor and organic hydrocarbons are removed in the adsorption step 30 is concentrated in the membrane separation step 20, the gas mixture is purified in the membrane separation step 20. 80 to 95 volume% nitrous oxide containing gas mixture may be fed to the distillation process (40).
다음으로, 본 발명에 따른 아산화질소의 회수 및 정제공정(100)에 있어서, 상기 흡착공정(30)은 상기 막분리공정(20)을 거친 기체 혼합물에 함유된 이산화탄소, 이산화질소, 수증기 및 유기탄화수소로 이루어지는 군으로부터 선택되는 1 종 이상의 불순물을 흡착에 의해 제거하거나, 상기 전처리공정(10)을 거친 기체 혼합물에 함유된 이산화탄소, 이산화질소, 수증기 및 유기탄화수소로 이루어지는 군으로부터 선택되는 1 종 이상의 불순물을 흡착에 의해 제거한다.Next, in the recovery and purification step of nitrous oxide according to the present invention 100, the adsorption step 30 is carbon dioxide, nitrogen dioxide, water vapor and organic hydrocarbons contained in the gas mixture passed through the membrane separation step 20 At least one impurity selected from the group consisting of adsorption is removed or at least one impurity selected from the group consisting of carbon dioxide, nitrogen dioxide, water vapor and organic hydrocarbons contained in the gas mixture passed through the pretreatment step (10) is used for adsorption. By removing.
상기 흡착공정(30)은 아산화질소 함유 기체 혼합물 또는 배출가스에 포함되어 있는 이산화탄소, 이산화질소, 수증기 또는 유기탄화수소 등의 불순물을 제거하는 단계이다. 이들 불순물들은 막분리공정(20)이나 증류공정(40)에서 제거할 수 없다. 아산화질소, 아디프산, 질산 및 카프로락탐 등의 생산 공정에서 배출되는 기체 혼합물 또는 배기가스에는 없거나 0 부피% 초과 5 부피% 이하의 이산화탄소, 없거나 0 부피% 초과 2 부피% 이하의 이산화질소, 없거나 0 부피% 초과 1 부피% 이하의 수증기 및 없거나 0 부피% 초과 1 부피% 이하의 유기탄화수소 등이 포함되어 있다. 상기 흡착공정에서 이들 불순물을 흡착 제거하여 이산화질소, 이산화탄소 및 수증기의 함량을 각각 1.0 ppm 이하로 낮추며, 유기탄화수소는 0.1 ppm 이하로 낮추는 것이 바람직하다.The adsorption process 30 is a step of removing impurities such as carbon dioxide, nitrogen dioxide, water vapor or organic hydrocarbons contained in the nitrous oxide-containing gas mixture or exhaust gas. These impurities cannot be removed in the membrane separation process 20 or the distillation process 40. The gas mixture or exhaust gases from the production processes such as nitrous oxide, adipic acid, nitric acid and caprolactam are absent or free from more than 0% by volume up to 5% by volume of carbon dioxide, or greater than 0% by volume and up to 2% by volume of nitrogen dioxide More than 1% by volume of water vapor and zero or more than 1% by volume of organohydrocarbons. In the adsorption step, these impurities are adsorbed and removed to lower the contents of nitrogen dioxide, carbon dioxide and water vapor to 1.0 ppm or less, respectively, and to lower the organic hydrocarbon to 0.1 ppm or less.
상기 흡착공정(30)에서 이산화탄소와 이산화질소는 산업에서 통상적으로 사용하는 수산화나트륨(NaOH), 수산화칼슘(Ca(OH)2) 또는 수산화칼륨(KOH) 등의 흡착제 또는 이들이 실리카 또는 제올라이트 등에 코팅된 흡착제(예를 들어, 실리카에 수산화나트륨이 코팅된 흡착제인 Ascarite®)가 충진된 흡착탑에서 기체-고체 반응에 의하여 제거될 수 있다. 이 때, 반응에 의하여 수증기가 발생한다. 기체-고체 반응 충진제가 소모된 후에 제거하고 새로운 흡착제를 충진하여 사용할 수 있다. In the adsorption process 30, carbon dioxide and nitrogen dioxide are adsorbents such as sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2 ), potassium hydroxide (KOH) or the like, which are commonly used in industry, or they are coated with silica or zeolite ( For example, Ascarite ® ), an adsorbent coated with sodium hydroxide on silica, may be removed by gas-solid reaction in an adsorption tower. At this time, water vapor is generated by the reaction. The gas-solid reaction filler can be removed after it has been consumed and filled with fresh adsorbent.
상기 흡착공정(30)에서 수증기와 상기의 이산화탄소 또는 이산화질소의 중화 흡착반응으로 생성된 수증기 및 유기탄화수소는 산업에서 통상적으로 사용하는 실리카 또는 제올라이트(X, Y, CaY, ZnX, 5A, 13X 등) 또는 알루미나 실리케이트 또는 활성탄 등과 이들 흡착제의 흡착층을 조합한 흡착장치로 흡착하여 제거할 수 있다. The steam and organic hydrocarbons produced by the neutralization adsorption reaction of water vapor and the carbon dioxide or nitrogen dioxide in the adsorption process 30 are silica or zeolites commonly used in industry (X, Y, CaY, ZnX, 5A, 13X, etc.) or It can adsorb | suck and remove with an adsorption apparatus which combined the adsorption layer of an alumina silicate or activated carbon, etc., and these adsorbents.
상기 흡착공정(30)은 10 ℃ 내지 50 ℃의 온도 및 1 bar 내지 10 bar의 압력 조건에서 수행될 수 있다.The adsorption process 30 may be carried out at a temperature of 10 ℃ to 50 ℃ and pressure conditions of 1 bar to 10 bar.
상기 흡착공정(30)은 흡착탑(31, 32)에 의해 수행될 수 있으며, 상기 흡착탑(31, 32)에 충진되는 흡착제의 크기는 3 mm 내지 30 mm 범위가 바람직하지만, 흡착제의 흡착력과 흡착층 내의 압력 손실을 고려하여 최적의 크기를 선택하여야 한다. 이산화탄소, 이산화질소, 수분과 유기탄화수소 제거 흡착층을 모두 포함하는 하나의 흡착탑을 사용할 수 있으나, 이산화탄소와 이산화질소 제거 흡착층을 갖는 흡착탑과 수분과 유기탄화수소 제거 흡착층을 갖는 흡착탑을 각각 분리하여 사용하는 것이 바람직하다. 흡착단계의 연속 운전을 위하여 이산화탄소와 이산화질소 흡착탑 및 수분과 유기탄화수소 흡착탑을 각각 2 개 이상 설치하여 교대로 재생과 운전을 수행할 수 있다. The adsorption process 30 may be performed by the adsorption towers 31 and 32, and the size of the adsorbent filled in the adsorption towers 31 and 32 is preferably in the range of 3 mm to 30 mm, but the adsorption force and the adsorption layer of the adsorbent. The optimum size should be selected in consideration of the pressure loss in the chamber. Although one adsorption tower including carbon dioxide, nitrogen dioxide, moisture and organic hydrocarbon removal adsorption layer can be used, it is preferable to separate adsorption tower having carbon dioxide and nitrogen dioxide removal adsorption layer and adsorption tower having water and organic hydrocarbon removal adsorption layer, respectively. desirable. In order to continuously operate the adsorption step, two or more carbon dioxide and nitrogen dioxide adsorption towers and two or more water and organic hydrocarbon adsorption towers may be installed to alternately perform regeneration and operation.
구체적인 일례로써, 상기 흡착공정(30)에서 아산화질소를 포함하는 기체혼합물 내 이산화탄소와 이산화질소를 제거하기 위하여 제1 흡착탑(31)을 구성할 수 있고, 아산화질소를 포함하는 기체혼합물 내 수증기와 상기 제1 흡착탑(31)에서 이산화탄소 또는 이산화질소의 중화 흡착반응으로 생성된 수증기 및 유기탄화수소를 제거하기 위해 제2 흡착탑(32)을 구성할 수 있다.As a specific example, the first adsorption tower 31 may be configured to remove carbon dioxide and nitrogen dioxide in the gas mixture containing nitrous oxide in the adsorption process 30, and the water vapor and the agent in the gas mixture containing nitrous oxide. In the first adsorption tower 31, a second adsorption tower 32 may be configured to remove water vapor and organic hydrocarbons generated by neutralization adsorption of carbon dioxide or nitrogen dioxide.
상기 흡착공정(20)에서 정제된 아산화질소 기체 혼합물에 포함된 이산화질소와 이산화탄소 및 수분은 각각 1.0 ppm(부피) 이하이며, 유기탄화수소는 0.1 ppm(부피) 이하이다.Nitrogen dioxide, carbon dioxide, and water contained in the nitrous oxide gas mixture purified in the adsorption step 20 are each 1.0 ppm (volume) or less, and the organic hydrocarbon is 0.1 ppm (volume) or less.
상기 막분리공정(20) 및 흡착공정(30)이 수행되어 농축, 정제된 기체 혼합물의 조성은 80 부피% 이상, 더욱 바람직하게는 90 부피% 이상의 아산화질소를 포함할 수 있으며, 이산화질소, 이산화탄소 및 수증기 각각 1.0 ppm 이하, 유기탄화수소 0.1 ppm 이하 및 미량의 일산화탄소와 일산화질소를 포함할 수 있다. The membrane separation process 20 and the adsorption process 30 are carried out, the composition of the concentrated and purified gas mixture may include at least 80% by volume, more preferably at least 90% by volume of nitrous oxide, nitrogen dioxide, carbon dioxide and Water vapor may each contain 1.0 ppm or less, organic hydrocarbons 0.1 ppm or less, and trace amounts of carbon monoxide and nitrogen monoxide.
다음으로, 본 발명에 따른 아산화질소의 회수 및 정제공정(100)에 있어서, 상기 증류공정(40)은 전처리공정(10), 막분리공정(20) 및 흡착공정(30)을 거친 기체 혼합물을 압축 및 냉각하고 증류로 분리하여 아산화질소를 회수한다.Next, in the recovery and purification process of nitrous oxide according to the present invention (100), the distillation step 40 is a gas mixture that has undergone the pretreatment step (10), membrane separation step (20) and adsorption step (30) Compressed, cooled and separated by distillation to recover nitrous oxide.
상기 증류공정(40)은 상기의 전처리공정(10), 막분리공정(20)과 흡착공정(30)을 통하여 정제되고 농축된 아산화질소 함유 기체 혼합물에 포함된 질소, 산소, 미량의 일산화탄소 및 미량의 일산화질소 등을 증기압(비점) 차이를 이용하여 저온에서 증류로 제거하여 99.999 부피% 이상의 고순도 아산화질소를 회수하는 공정이다. The distillation process 40 is nitrogen, oxygen, trace carbon monoxide and traces contained in the nitrous oxide containing gas mixture purified and concentrated through the pretreatment process 10, the membrane separation process 20 and the adsorption process 30. Nitrogen monoxide is removed by distillation at low temperature using a difference in vapor pressure (boiling point) to recover high purity nitrous oxide of 99.999% by volume or more.
상기 증류공정(40)은 -160 ℃ 내지 -10 ℃의 온도 및 3 bar 내지 30 bar의 압력 조건에서 수행할 수 있으며, 상기 온도 및 압력의 조절은 제3 압축기(41) 및 제2 냉각기(42)에서 수행할 수 있다. 상기 제2 냉각기(42)에서 압축열을 제거하면서 아산화질소의 액화 온도까지 냉각한 후 증류탑(44)으로 공급한다. 상기 증류공정을 수행하는 운전 조건은 아산화질소의 기액 평형 증기압에 따라 결정될 수 있다.The distillation process 40 may be carried out at a temperature of -160 ℃ to -10 ℃ and pressure conditions of 3 bar to 30 bar, the adjustment of the temperature and pressure is the third compressor (41) and the second cooler (42). ) Can be performed. The second cooler 42 is cooled to the liquefaction temperature of nitrous oxide while removing the heat of compression and then supplied to the distillation column 44. Operation conditions for performing the distillation process may be determined according to the gas-liquid equilibrium vapor pressure of nitrous oxide.
상기 증류공정(40)의 제2 냉각기(42)에서 냉각하는 과정 중에 유분의 미세 액적이 생성될 수 있는데, 이를 제2 응집기(43)에서 제거할 수 있다. 상기 제2 응집기(43)는 제1 응집기(12)와 동일하게 200 내지 300 메쉬(mesh)의 스테인레스스틸 망이 장착될 수 있다.Fine droplets of oil may be generated during the cooling in the second cooler 42 of the distillation process 40, which may be removed from the second agglomerator 43. The second agglomerator 43 may be equipped with a stainless steel mesh of 200 to 300 mesh in the same manner as the first agglomerator 12.
상기 증류공정(40)의 증류탑(44)은 5 mm 내지 30 mm 크기의 금속 또는 알루미나 등의 세라믹 재질의 충진제가 충진된 충진탑(Packed tower), 또는 여러 개의 단(예를 들어, 시브 트래이(sieve tray) 또는 밸브 트래이(valve tray))으로 구성되는 다단탑(Tray tower)을 사용할 수 있다. 상기 증류탑(44)은 이론 단수가 5 내지 50 범위가 바람직하다. 더욱 바람직한 이론 단수는 10 내지 30 단이다. The distillation tower 44 of the distillation process 40 is a packed tower filled with a filler of a ceramic material such as metal or alumina of 5 mm to 30 mm size, or several stages (for example, sheave tray ( A tray tower consisting of a sieve tray or a valve tray can be used. The distillation column 44 is preferably in the theoretical range of 5 to 50. More preferable theoretical stages are 10-30 stages.
또한, 상기 증류탑(44) 상부에 설치된 응축기(46)를 -160℃ 내지 -20℃의 온도 범위로 운전함으로써 아산화질소를 응축하여 증류탑(44)으로 환류시킬 수 있다. 이 때, 환류비(reflux ratio)는 1 내지 5 범위가 바람직하다. 증류탑(44) 하부에는 아산화질소를 기화시켜 증류탑(44)에 증기를 공급하는 증기발생기(45)가 설치되어 있다. 증류탑(44)의 하부에 증기발생기(45)로부터 고순도로 정제된 아산화질소 액체가 회수된다.In addition, by operating the condenser 46 installed above the distillation column 44 in the temperature range of -160 ° C to -20 ° C nitrous oxide can be condensed to reflux to the distillation tower (44). At this time, the reflux ratio is preferably in the range of 1 to 5. A steam generator 45 is provided below the distillation column 44 to vaporize nitrous oxide to supply steam to the distillation column 44. High purity purified nitrous oxide liquid is recovered from the steam generator 45 at the bottom of the distillation column 44.
이와 같은 본 발명의 아산화질소 회수 및 정제공정을 통해, 최종적으로 회수된 아산화질소의 순도는 99.999 부피% 이상이며, 아산화질소 회수율은 90 % 이상이다. 본 발명에 따라 99.999 부피% 이상의 고순도로 회수/정제된 아산화질소는 반도체, LCD, OLED 공정용으로 사용할 수 있다.Through the nitrous oxide recovery and purification process of the present invention, the purity of the finally recovered nitrous oxide is 99.999% by volume or more, nitrous oxide recovery is 90% or more. Nitrous oxide recovered / purified with high purity of 99.999% by volume or more according to the present invention can be used for semiconductor, LCD, OLED process.
도 1 내지 도 3의 부호의 의미는 아래와 같다.The meanings of the symbols of FIGS. 1 to 3 are as follows.
100 : 아산화질소 회수 및 정제공정100: nitrous oxide recovery and purification process
10 : 전처리공정10: pretreatment process
11 : 공급장치 12 : 제1 응집기11: feeder 12: first flocculator
13 : 여과장치 13 filter device
20 : 막분리공정20 membrane separation process
21 : 제1 압축기 22 : 제1 냉각기21 first compressor 22 first cooler
23 : 제2 압축기 24 : 제1 막분리장치23 second compressor 24 first membrane separator
25 : 제2 막분리장치 26 : 제3 막분리장치25: second membrane separator 26: third membrane separator
27 : 제4 압축기 28 : 제3 냉각기27: fourth compressor 28: third cooler
30 : 흡착공정30: adsorption process
31 : 제1 흡착탑 32 : 제2 흡착탑31: first adsorption tower 32: second adsorption tower
40 : 증류공정40 distillation process
41 : 제3 압축기 42 : 제2 냉각기41: third compressor 42: second cooler
43 : 제2 응집기 44 : 증류탑43: second flocculator 44: distillation column
45 : 증기발생기 46 : 응축기45: steam generator 46: condenser
이하, 하기 실시예에 의하여 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail by the following examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐 발명의 범위가 실시예에 의해 한정되는 것은 아니다.However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited by the examples.
<실시예 1><Example 1>
본 발명에서 실시한 아산화질소의 회수 및 정제 공정은 도 1에 나타낸 바와 같은 파이롯트 규모의 회수 및 정제 공정이다. 아디프산 생산공정의 배출가스를 대상으로 아산화질소 회수 및 정제 공정의 구체적인 실시 방법을 도 1에 따라 아래에 기술한다.The recovery and purification of nitrous oxide carried out in the present invention is a pilot-scale recovery and purification as shown in FIG. Specific implementation method of the nitrous oxide recovery and purification process for the off-gas of the adipic acid production process will be described below in accordance with FIG.
(1) 전처리공정: 전처리공정(10)은 아디프산 생산공정에서 발생하는 배출가스를 공급장치(11)로부터 공급하여 제1 응집기(12) 및 여과장치(13)에서 배출가스에 포함된 수분과 유분의 미세 액적 및 분진을 제거하였다. 상기 제1 응집기는 두께 20 cm의 200 메쉬(mesh) 스테인레스스틸 망을 장착하였으며, 상기 스테인레스스틸 망의 직경은 30 cm이고, 길이는 60 cm이다. 상기 여과장치는 폴리에스터 재질의 백필터가 장착되었으며, 상기 백필터의 직경은 30 cm이고, 길이는 80 cm이다. 아산화질소의 회수 및 정제 공정(100)에 사용된 아디프산 생산공정의 배출가스의 공급유량은 60 Nm3/hr이고 조성은 다음과 같다.(1) Pretreatment Process: The pretreatment process 10 supplies the exhaust gas generated in the adipic acid production process from the supply device 11 to be included in the exhaust gas in the first agglomerator 12 and the filtration device 13. Fine droplets and dust from water and oil were removed. The first agglomerator was equipped with a 200 mesh stainless steel mesh having a thickness of 20 cm, the stainless steel mesh having a diameter of 30 cm and a length of 60 cm. The filtering device is equipped with a bag filter made of polyester, the diameter of the bag filter is 30 cm, the length is 80 cm. The supply flow rate of the exhaust gas of the adipic acid production process used in the recovery and purification process of nitrous oxide is 100 Nm 3 / hr and the composition is as follows.
-아산화질소(N2O): 35 부피%, Nitrous oxide (N 2 O): 35% by volume,
-질소(N2): 55 부피%Nitrogen (N 2 ): 55% by volume
-산소(O2): 5 부피%Oxygen (O 2 ): 5% by volume
-이산화탄소(CO2): 4 부피%Carbon dioxide (CO 2 ): 4% by volume
-물(H2O): 1 부피%Water (H 2 O): 1% by volume
-이산화질소(NO2): 200 ppmNitrogen dioxide (NO 2 ): 200 ppm
-일산화질소(NO): 800 ppmNitrogen Monoxide (NO): 800 ppm
-유기탄화수소: 100 ppm Organic hydrocarbons: 100 ppm
(2) 막분리공정: 상기 막분리공정(20)은 상기 전처리공정(10)에서 배출된 기체 혼합물을 제1 압축기(21)와 제1 냉각기(22)를 이용하여 7 bar의 압력과 50 ℃의 온도로 막분리장치(24, 25)에 공급하였으며, 2 단 막분리장치(25)의 투과부에서 배출되는 기체 혼합물과 증류공정(40)의 응축기(46)에서 배출되는 기체 혼합물을 1 단 막분리장치(24)에 재순환시켰다. 막분리장치의 투과부 압력은 1.2 bar로 유지하였다. 1 단 막분리장치(24)와 2 단 막분리장치(25)에 각각 분리막 제조회사인 에어레인의 100 m2 면적, 100 m2 면적의 폴리설폰계 수지 중공사막 모듈을 장착하였다. 상기 1 단 막분리장치(24)에서 투과측으로 아산화질소 90.1 부피% 함유 기체 혼합물을 21.6 Nm3/hr 유량으로 얻을 수 있었으며, 잔류측으로 아산화질소 14.7 부피% 함유 기체 혼합물을 56.3 Nm3/hr 유량으로 얻을 수 있었다. 이 잔류측 기체 혼합물을 제2 막분리장치(25)에 공급하여 투과측으로 아산화질소 40.3 부피% 함유 기체 혼합물을 15.4 Nm3/hr 유량으로 얻을 수 있었으며, 잔류측으로 아산화질소 5.1 부피% 함유 기체 혼합물을 40.9 Nm3/hr 유량으로 얻을 수 있었다. 제2 막분리장치(25)의 투과측에서 배출되는 기체 혼합물(유량 15.4 Nm3/hr)을 제2 압축기(23)로 가압하여 제1 막분리장치(24)로 재순환하였다. 증류공정(40)의 응축기(46)에서 배출되는 기체 혼합물은 아산화질소 16.0 부피%를 함유하였으며, 유량은 2.5 Nm3/hr이다. 따라서, 제1 막분리장치(24)에 공급되는 기체 혼합물은 전처리공정(10)에서 공급되는 아산화질소 35 부피% 함유 기체 혼합물(유량 60 Nm3/hr)과 제2 막분리장치(25)의 투과측으로 분리되는 아산화질소 40.3 부피% 함유 기체 혼합물(유량 15.4 Nm3/hr) 및 증류탑(44)의 응축기(46)로부터 재순환되는 아산화질소 16.0 부피%(유량 2.5 Nm3/hr) 함유 기체 혼합물이다. 최종적으로 막분리공정에서 농축된 아산화질소의 농도는 약 90.1 부피%이고 회수율은 약 90 %이다. 상기 제2 막분리장치(25)의 잔류측에서 배출되는 아산화질소 5.1 부피% 함유 기체 혼합물은 열분해 처리하여 대기에 방출되는 아산화질소의 농도를 100 ppm 이하로 낮추었다.(2) Membrane Separation Process: The membrane separation process 20 uses a gas mixture discharged from the pretreatment process 10 using a first compressor 21 and a first cooler 22 at a pressure of 7 bar and 50 ° C. The gas mixture discharged from the permeate of the two-stage membrane separator 25 and the gas mixture discharged from the condenser 46 of the distillation process 40 were supplied to the membrane separators 24 and 25 at a temperature of 1 stage. Recycled to separator 24. The permeate pressure of the membrane separator was maintained at 1.2 bar. The polysulfone resin hollow fiber membrane modules of 100 m 2 area and 100 m 2 area of Air Lane, a membrane manufacturer, were respectively mounted in the first stage membrane separator 24 and the second stage membrane separator 25. In the first stage membrane separator 24, a gas mixture containing 90.1% by volume of nitrous oxide was obtained at a flow rate of 21.6 Nm 3 / hr, and a gas mixture containing 14.7% by volume of nitrous oxide at a flow rate of 56.3 Nm 3 / hr, was obtained. Could get The residual gas mixture was supplied to the second membrane separator 25 to obtain a gas mixture containing 40.3% by volume of nitrous oxide at a flow rate of 15.4 Nm 3 / hr to the permeate side, and a 5.1% mixture of nitrous oxide containing 5.1% by volume Obtained at a flow rate of 40.9 Nm 3 / hr. The gas mixture (flow rate 15.4 Nm 3 / hr) discharged from the permeate side of the second membrane separation device 25 was pressurized by the second compressor 23 and recycled to the first membrane separation device 24. The gas mixture exiting the condenser 46 of the distillation process 40 contained 16.0% by volume nitrous oxide and the flow rate was 2.5 Nm 3 / hr. Therefore, the gas mixture supplied to the first membrane separator 24 is composed of 35 vol% nitrous oxide containing gas mixture (flow rate 60 Nm 3 / hr) supplied in the pretreatment step 10 and the second membrane separator 25. Gas mixture containing 40.3 volume% nitrous oxide (flow rate 15.4 Nm 3 / hr) separated on the permeate side and 16.0 volume% (flow rate 2.5 Nm 3 / hr) nitrous oxide recycled from condenser 46 of distillation column 44. . Finally, the concentration of nitrous oxide concentrated in the membrane separation process is about 90.1% by volume and the recovery is about 90%. The gas mixture containing 5.1 vol% of nitrous oxide discharged from the remaining side of the second membrane separation device 25 was pyrolyzed to lower the concentration of nitrous oxide released to the atmosphere to 100 ppm or less.
(3) 흡착공정: 상기 흡착공정(30)은 상기 막분리공정(20)에서 1단 막분리장치(24)의 투과측으로 배출되는 아산화질소 90.1 부피% 함유 기체 혼합물(21.6 Nm3/hr)을 흡착공정에 공급하여 이산화탄소, 이산화질소, 수증기 및 유기탄화수소 등의 불순물을 제거하였다. 흡착공정에서 제1 흡착탑(31)과 제2 흡착탑(32)의 흡착제가 충진된 흡착층은 각각 직경은 20 cm이고, 길이는 200 cm이다. 제1 흡착탑(31)에는 5~10 mm 크기의 실리카에 수산화나트륨이 코팅된 흡착제인 Ascarite®를 충진하였으며, 제2 흡착탑(32)에는 5~10 mm 크기의 제올라이트 5A를 충진하였다. 제1 충진탑(31)은 흡착 반응에 의하여 발생하는 열을 제거하기 위하여 냉각수를 공급하는 자켓이 장착되었다. 제1 흡착탑과 제2 흡착탑은 각각 상온 및 1~2 bar의 압력에서 운전하였다. 제1 충진탑(31)에서 이산화탄소와 이산화질소가 수산화나트륨과 반응하여 제거되고 이때 수증기가 발생한다. 이 수증기와 공급되는 기체 혼합물에 함유된 수증기 및 유기탄화수소는 제2 흡착탑(32)에서 흡착되어 제거된다. 흡착공정에서 정제된 아산화질소 함유 기체 혼합물의 유량은 21.4 Nm3/hr이고, 조성은 다음과 같다.(3) Adsorption step: The adsorption step 30 is a mixture of 90.1% by volume of nitrous oxide (21.6 Nm 3 / hr) which is discharged to the permeate side of the first stage membrane separation device 24 in the membrane separation step 20. Supply to the adsorption process to remove impurities such as carbon dioxide, nitrogen dioxide, steam and organic hydrocarbons. In the adsorption process, the adsorption layers filled with the adsorbents of the first adsorption tower 31 and the second adsorption tower 32 are 20 cm in diameter and 200 cm in length, respectively. A first adsorption column (31) was filled with Ascarite ® is a sodium hydroxide coating on the silica adsorbent of the size of 5 ~ 10 mm, the second adsorption tower (32) was filled with a 5 ~ 10 mm in size of the zeolite 5A. The first packed tower 31 is equipped with a jacket for supplying cooling water to remove heat generated by the adsorption reaction. The first adsorption tower and the second adsorption tower were operated at room temperature and a pressure of 1 to 2 bar, respectively. In the first packing tower 31, carbon dioxide and nitrogen dioxide are removed by reaction with sodium hydroxide, and steam is generated at this time. Water vapor and organic hydrocarbons contained in the water vapor and the gas mixture supplied are adsorbed and removed in the second adsorption tower 32. The flow rate of the purified nitrous oxide-containing gas mixture in the adsorption process is 21.4 Nm 3 / hr, and the composition is as follows.
-아산화질소(N2O): 90.2 부피%, Nitrous oxide (N 2 O): 90.2% by volume,
-질소(N2): 8.9 부피%Nitrogen (N 2 ): 8.9% by volume
-산소(O2): 0.9 부피%Oxygen (O 2 ): 0.9% by volume
-이산화탄소(CO2): 0.2 ppmCarbon dioxide (CO 2 ): 0.2 ppm
-수증기: 0.6 ppmWater vapor: 0.6 ppm
-이산화질소(NO2): 0.1 ppmNitrogen dioxide (NO 2 ): 0.1 ppm
-일산화질소(NO): 500 ppmNitrogen monoxide (NO): 500 ppm
-유기탄화수소: 0.1 ppm Organic hydrocarbons: 0.1 ppm
(4) 증류공정: 상기 증류공정(40)은 상기 흡착공정(30)에서 정제된 기체 혼합물을 21.4 Nm3/hr의 유량으로 증류공정(40)에 공급하여 질소와 산소를 제거하여 고순도의 아산화질소를 얻었다. 상기 흡착공정(30)의 제2 흡착탑(32)에서 배출되는 기체 혼합물을 증류공정(40)의 제3 압축기(41)로 20 bar의 압력으로 가압하고, 제2 냉각기(42)에서 압축열을 제거하면서 기체 혼합물을 -60 ℃의 온도로 냉각시킨 후 생성될 수 있는 수분과 유분의 미세 액적을 제2 응집기(43)에서 제거한 다음 증류탑(44)에 공급하였다. 증류탑(44)은 5/8 인치의 스테인레스스틸 폴 링(Pall ring)이 충진되었으며, 충진층은 직경이 15 cm이고, 높이가 5 m이다. 증류탑(44) 상부에 설치된 응축기(46)에서 아산화질소를 응축하여 증류탑(44)으로 재순환하였다. 응축기(46)의 온도를 -70 ℃로 유지하였다. 증류탑(44)의 환류비(reflux ratio)는 대략 2로 유지하였다. 응축기(46)에서 액화되지 않은 기체 혼합물(아산화질소 16.0 부피%, 유량 2.5 Nm3/hr)을 막분리단계(20)로 재순환하였다. 증류탑(44) 하부에 설치된 증기발생기(45)에서 액체 아산화질소를 기화시켜 증류탑(44)에 공급하였다. 증기발생기(45)의 온도는 -23 ℃로 유지되었다. 증류탑(44)의 하부 증기발생기로부터 고순도로 정제된 아산화질소를 회수하였다. 증류공정(40)에서 회수된 액체 아산화질소의 유량은 약 34.0 kg/hr이고, 조성은 다음과 같았으며, 이산화탄소의 순도는 99.9999 부피%이다. (4) Distillation process: The distillation process 40 supplies the gas mixture purified in the adsorption process 30 to the distillation process 40 at a flow rate of 21.4 Nm 3 / hr to remove nitrogen and oxygen to nitrous oxide of high purity. Nitrogen was obtained. The gas mixture discharged from the second adsorption tower 32 of the adsorption step 30 is pressurized to a pressure of 20 bar by the third compressor 41 of the distillation step 40, and the heat of compression is transferred to the second cooler 42. While removing, the gas mixture was cooled to a temperature of −60 ° C., and fine droplets of water and oil, which may be produced, were removed from the second agglomerator 43 and then supplied to the distillation tower 44. The distillation column 44 was filled with a 5/8 inch stainless steel ring ring, and the packed bed was 15 cm in diameter and 5 m in height. Nitrous oxide was condensed in the condenser 46 installed at the top of the distillation tower 44 and recycled to the distillation tower 44. The temperature of condenser 46 was maintained at -70 ° C. The reflux ratio of the distillation column 44 was maintained at approximately 2. The non-liquefied gas mixture (16.0 volume% nitrous oxide, flow rate 2.5 Nm 3 / hr) in condenser 46 was recycled to membrane separation step 20. In the steam generator 45 installed below the distillation column 44, liquid nitrous oxide was vaporized and supplied to the distillation tower 44. The temperature of the steam generator 45 was maintained at -23 ° C. High purity purified nitrous oxide was recovered from the lower steam generator of the distillation column 44. The flow rate of the liquid nitrous oxide recovered in the distillation process 40 is about 34.0 kg / hr, the composition was as follows, the purity of the carbon dioxide is 99.9999 volume%.
-아산화질소(N2O): 99.9999 부피% Nitrous oxide (N 2 O): 99.9999% by volume
-질소(N2): 0.8 ppmNitrogen (N 2 ): 0.8 ppm
-산소(O2): 0.6 ppmOxygen (O 2 ): 0.6 ppm
-이산화탄소(CO2): 0.2 ppmCarbon dioxide (CO 2 ): 0.2 ppm
-물(H2O): 0.6 ppmWater (H 2 O): 0.6 ppm
-이산화질소(NO2): 0.1 ppmNitrogen dioxide (NO 2 ): 0.1 ppm
-일산화질소(NO): 0.1 ppmNitric oxide (NO): 0.1 ppm
-유기탄화수소: 0.1 ppm Organic hydrocarbons: 0.1 ppm
상기 증류공정에서 최종적으로 얻은 아산화질소의 회수율은 약 90 %이다.The recovery rate of nitrous oxide finally obtained in the distillation process is about 90%.
이와 같이, 본 발명에 따른 아산화질소의 회수 및 정제공정에 의하여 아산화질소, 아디프산, 질산 및 카프로락탐 생산공정의 배출가스로부터 이산화탄소에 비하여 지구온난화지수(GWP)가 310배 높은 아산화질소를 회수하여 온실가스의 저감 효과를 얻을 수 있다. 또한, 본 발명에 따른 아산화질소의 회수 및 정제공정에 의하여 아산화질소, 아디프산, 질산 및 카프로락탐 생산공정의 배출가스로부터 반도체, LCD, OLED 공정용 등으로 사용할 수 있는 99.999 부피% 이상의 고순도의 아산화질소를 고회수율(90%)로 회수 및 정제할 수 있음을 확인할 수 있다.In this way, by recovering and purifying nitrous oxide according to the present invention from the exhaust gas of the nitrous oxide, adipic acid, nitric acid and caprolactam production process recovers nitrous oxide 310 times higher global warming index (GWP) than carbon dioxide It is possible to obtain a greenhouse gas reduction effect. In addition, by the recovery and purification process of nitrous oxide according to the present invention from the exhaust gas of the nitrous oxide, adipic acid, nitric acid and caprolactam production process can be used for semiconductor, LCD, OLED process, etc. It can be seen that nitrous oxide can be recovered and purified at a high recovery rate (90%).
본 발명에 따른 아산화질소의 회수 및 정제공정에 의하여 아산화질소, 아디프산, 질산 및 카프로락탐 생산공정의 배기가스로부터 이산화탄소에 비하여 지구온난화지수(GWP)가 310배 높은 아산화질소를 회수하여 온실가스의 저감 효과를 얻을 수 있다. 또한, 본 발명에 따른 아산화질소의 회수 및 정제공정에 의하여 아산화질소, 아디프산, 질산 및 카프로락탐 생산공정의 배기가스로부터 반도체, LCD, OLED 공정용 등으로 사용할 수 있는 고순도(99.999 부피% 이상)의 아산화질소를 고회수율(90 % 이상)로 회수 및 정제하는데 유용하다.By recovering and purifying nitrous oxide according to the present invention, the greenhouse gas is recovered from nitrous oxide, adipic acid, nitric acid and caprolactam production process by recovering nitrous oxide 310 times higher in global warming index (GWP) than carbon dioxide. A reduction effect of can be obtained. In addition, by using the recovery and purification process of nitrous oxide according to the present invention from the exhaust gas of the nitrous oxide, adipic acid, nitric acid and caprolactam production process for high purity (99.999% by volume or more) It is useful for recovering and purifying nitrous oxide of) with high recovery rate (90% or more).

Claims (10)

  1. 아산화질소를 포함하는 기체 혼합물 또는 배기가스를 공급하여 기체 혼합물 내 함유된 미세 액적 상태의 수분, 미세 액적 상태의 유분 및 미세 입자 불순물로 이루어지는 군으로부터 선택되는 1 종 이상을 제거하는 전처리공정;A pretreatment step of supplying a gas mixture or exhaust gas containing nitrous oxide to remove at least one selected from the group consisting of water in fine droplet state, oil in fine droplet state and fine particle impurities contained in the gas mixture;
    상기 전처리공정을 거친 기체 혼합물로부터 이에 포함된 질소 또는/및 산소를 제거하여 아산화질소를 농축하는 막분리공정;A membrane separation step of concentrating nitrous oxide by removing nitrogen or / and oxygen contained therein from the gas mixture which has undergone the pretreatment step;
    상기 막분리공정을 거친 기체 혼합물에 함유된 이산화탄소, 이산화질소, 수증기 및 유기탄화수소로 이루어지는 군으로부터 선택되는 1 종 이상의 불순물을 흡착에 의해 제거하는 흡착공정; 및An adsorption step of removing, by adsorption, one or more impurities selected from the group consisting of carbon dioxide, nitrogen dioxide, water vapor and organic hydrocarbons contained in the gas mixture subjected to the membrane separation step; And
    상기 흡착공정을 거친 기체 혼합물을 압축 및 냉각하고 증류로 분리하여 아산화질소를 회수하는 증류공정;을 포함하는 아산화질소의 회수 및 정제공정.Recovering and purifying nitrous oxide comprising a; distillation step of recovering nitrous oxide by compressing and cooling the gas mixture passed through the adsorption step and separated by distillation.
  2. 아산화질소를 포함하는 기체 혼합물 또는 배기가스를 공급하여 기체 혼합물 내 함유된 미세 액적 상태의 수분, 미세 액적 상태의 유분 및 미세 입자 불순물로 이루어지는 군으로부터 선택되는 1 종 이상을 제거하는 전처리공정;A pretreatment step of supplying a gas mixture or exhaust gas containing nitrous oxide to remove at least one selected from the group consisting of water in fine droplet state, oil in fine droplet state and fine particle impurities contained in the gas mixture;
    상기 전처리공정을 거친 기체 혼합물에 함유된 이산화탄소, 이산화질소, 수증기 및 유기탄화수소로 이루어지는 군으로부터 선택되는 1 종 이상의 불순물을 흡착에 의해 제거하는 흡착공정;An adsorption step of removing, by adsorption, one or more impurities selected from the group consisting of carbon dioxide, nitrogen dioxide, water vapor and organic hydrocarbons contained in the gas mixture subjected to the pretreatment step;
    상기 흡착공정을 거친 기체 혼합물로부터 이에 포함된 질소 또는/및 산소를 제거하여 아산화질소를 농축하는 막분리공정; 및A membrane separation step of concentrating nitrous oxide by removing nitrogen or / and oxygen contained in the gas mixture that has undergone the adsorption step; And
    상기 막분리공정을 거친 기체 혼합물을 압축 및 냉각하고 증류하여 아산화질소를 회수하는 증류공정;을 포함하는 아산화질소의 회수 및 정제공정.Recovering and purifying nitrous oxide comprising a; distillation step of recovering nitrous oxide by compressing, cooling and distilling the gas mixture passed through the membrane separation process.
  3. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 아산화질소를 포함하는 기체 혼합물 또는 배기가스는 아산화질소 생산공정, 아디프산 생산공정, 질산 생산공정 및 카프로락탐 생산공정으로 이루어지는 군으로부터 선택되는 1 종의 공정에서 발생하는 배출가스인 것을 특징으로 하는 아산화질소의 회수 및 정제공정.The gas mixture or exhaust gas containing nitrous oxide is characterized in that the exhaust gas generated in one process selected from the group consisting of nitrous oxide production process, adipic acid production process, nitric acid production process and caprolactam production process. Recovery and purification of nitrous oxide.
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 막분리공정에는 폴리설폰계 수지, 폴리이미드계 수지 및 이들을 조합한 수지로 이루어지는 군으로부터 선택되는 1 종 이상을 기체 분리층의 주 성분으로 하는 분리막을 사용하는 것을 특징으로 하는 아산화질소의 회수 및 정제공정.In the membrane separation step, the recovery of nitrous oxide, characterized in that a separation membrane comprising at least one member selected from the group consisting of polysulfone resins, polyimide resins, and combinations thereof as a main component of the gas separation layer is used. Refining process.
  5. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 막분리공정과 증류공정에서 대기로 배출되는 기체 혼합물에 함유된 아산화질소를 열분해 또는 촉매분해를 통해 분해하는 공정을 더 포함하는 것을 특징으로 하는 아산화질소의 회수 및 정제공정.Recovering and purifying nitrous oxide, characterized in that further comprising the step of decomposing nitrous oxide contained in the gas mixture discharged to the atmosphere in the membrane separation process and distillation through pyrolysis or catalytic decomposition.
  6. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 아산화질소의 회수 및 정제공정으로 최종 회수되는 아산화질소의 순도가 99.999 부피% 이상이고, 회수율이 90 % 이상인 것을 특징으로 하는 아산화질소의 회수 및 정제공정.The process of recovering and purifying nitrous oxide, characterized in that the purity of the nitrous oxide finally recovered by the recovery and purification process of nitrous oxide is 99.999% by volume or more, the recovery rate is 90% or more.
  7. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 전처리공정은 10 ℃ 내지 40 ℃의 온도 및 1 bar 내지 2 bar의 압력 조건에서 수분 또는 유분의 미세 액적을 제거하기 위하여 응집기 및 미세 분진을 제거하기 위한 여과장치로 운전되는 것을 특징으로 하는 아산화질소의 회수 및 정제공정.The pretreatment process is operated by a filtration device to remove agglomerators and fine dust to remove fine droplets of water or oil at a temperature of 10 ℃ to 40 ℃ and a pressure of 1 bar to 2 bar nitrous oxide, characterized in that Nitrogen recovery and purification process.
  8. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 막분리공정은 10 ℃ 내지 100 ℃의 온도에서, 2 bar 내지 15 bar의 공급 압력 및 진공 내지 3 bar의 투과 압력 조건에서 1 단 이상의 막분리장치로 운전되는 것을 특징으로 하는 아산화질소의 회수 및 정제공정.The membrane separation process is operated with one or more stages of membrane separation apparatus at a temperature of 10 ℃ to 100 ℃, a supply pressure of 2 bar to 15 bar and a permeation pressure of vacuum to 3 bar and recovery of nitrous oxide, characterized in that Refining process.
  9. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 흡착공정은 10 ℃ 내지 50 ℃의 온도 및 1 bar 내지 10 bar의 압력 조건에서 수산화나트륨(NaOH), 수산화칼슘(Ca(OH)2) 및 수산화칼륨(KOH)으로 이루어지는 군으로부터 선택되는 1 종 이상의 흡착제 또는 이들이 실리카 또는 제올라이트에 코팅된 흡착제를 사용하여 이산화탄소 및 이산화질소를 제거하고, 10 ℃ 내지 50 ℃의 온도 및 1 bar 내지 10 bar의 압력 조건에서 실리카, 제올라이트, 알루미나 실리케이트 및 활성탄으로 이루어지는 군으로부터 선택되는 1 종 이상의 흡착제를 사용하여 수증기 및 유기탄화수소를 제거하는 것을 특징으로 하는 아산화질소의 회수 및 정제공정.The adsorption process is at least one selected from the group consisting of sodium hydroxide (NaOH), calcium hydroxide (Ca (OH) 2 ) and potassium hydroxide (KOH) at a temperature of 10 ℃ to 50 ℃ and pressure conditions of 1 bar to 10 bar. Adsorbents or adsorbents coated on silica or zeolites are used to remove carbon dioxide and nitrogen dioxide, and selected from the group consisting of silica, zeolites, alumina silicates and activated carbons at temperatures of 10 ° C. to 50 ° C. and pressure conditions of 1 bar to 10 bar. A process for recovering and purifying nitrous oxide, characterized in that water vapor and organic hydrocarbons are removed using at least one adsorbent.
  10. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 증류공정은 -160 ℃ 내지 -10 ℃의 온도 및 3 bar 내지 30 bar의 압력 조건에서 금속 또는 세라믹인 소재로 이루어진 충진제가 충진된 충진탑(packed tower); 또는 복수 개의 단으로 구성되는 다단탑(tray tower);으로 운전하는 것을 특징으로 하는 아산화질소의 회수 및 정제공정.The distillation process is a packed tower packed with a filler made of a metal or ceramic material at a temperature of -160 ℃ to -10 ℃ and a pressure of 3 bar to 30 bar; Or a multi-stage tower (tray tower) composed of a plurality of stages.
PCT/KR2017/006586 2016-07-20 2017-06-22 Process for recovery and purification of nitrous oxide from nitrous oxide-containing gas mixture WO2018016750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780044589.7A CN109476483A (en) 2016-07-20 2017-06-22 From the method for admixture of gas recycling and nitrous oxide purification containing nitrous oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0091920 2016-07-20
KR1020160091920A KR101858190B1 (en) 2016-07-20 2016-07-20 Process for the recovery and purification of nitrous oxide from industrial emission gas mixtures

Publications (1)

Publication Number Publication Date
WO2018016750A1 true WO2018016750A1 (en) 2018-01-25

Family

ID=60993220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006586 WO2018016750A1 (en) 2016-07-20 2017-06-22 Process for recovery and purification of nitrous oxide from nitrous oxide-containing gas mixture

Country Status (3)

Country Link
KR (1) KR101858190B1 (en)
CN (1) CN109476483A (en)
WO (1) WO2018016750A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210309520A1 (en) * 2018-09-28 2021-10-07 Showa Denko K.K. Nitrous oxide purification method
KR102247285B1 (en) * 2019-10-07 2021-05-03 한국에너지기술연구원 Hybrid gas separation process including membrane process and distillation process
CN111072001A (en) * 2019-12-11 2020-04-28 宿州伊维特新材料有限公司 Nitrous oxide purification system and method of operating a system
KR102342829B1 (en) * 2020-03-26 2021-12-24 주식회사 에프알디 High purity nitrous oxide refining apparatus for manufacturing semiconductor and OLED and for medical
KR102394305B1 (en) * 2020-05-22 2022-05-04 주식회사 에프알디 Impurity removing apparatus applied in high purity nitrous oxide refining facilities for manufacturing semiconductor and OLED and for medical
CN111871146A (en) * 2020-07-16 2020-11-03 中国能源建设集团广东省电力设计研究院有限公司 Carbon dioxide capture system based on coupling membrane separation method and adsorption method
KR102461654B1 (en) * 2020-12-02 2022-11-01 주식회사 에프알디 High purity nitrous oxide refining apparatus for manufacturing semiconductor and OLED and for medical
CN114272890B (en) * 2021-12-30 2022-06-28 大连科利德光电子材料有限公司 Oxygen adsorbent, preparation method and method for reducing oxygen content in nitrous oxide feed gas
CN115430283B (en) * 2022-09-23 2023-03-28 全椒科利德电子材料有限公司 Method for purifying nitrous oxide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000076663A (en) * 1999-02-17 2000-12-26 쉬에르 피에르 Process and installation for the recovery and/or purification of the nitrous oxide contained in a waste gas
KR20060019035A (en) * 2004-08-26 2006-03-03 한국화학연구원 A method for removing nitrogen oxides by using dual catalyst beds
KR100646312B1 (en) * 2005-06-10 2006-11-23 (주)에어레인 Hollow fiber membrane for oxygen separation and preparation method thereof
KR20130001755A (en) * 2011-06-28 2013-01-07 이영상 System for preprocessing of bio-gas
KR20140147048A (en) * 2013-06-18 2014-12-29 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Recovery and purification of nitrous oxide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105110304B (en) * 2015-09-01 2018-02-02 上海交通大学 The apparatus and method for preparing high-purity nitrous oxide using adipic acid production tail gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000076663A (en) * 1999-02-17 2000-12-26 쉬에르 피에르 Process and installation for the recovery and/or purification of the nitrous oxide contained in a waste gas
KR20060019035A (en) * 2004-08-26 2006-03-03 한국화학연구원 A method for removing nitrogen oxides by using dual catalyst beds
KR100646312B1 (en) * 2005-06-10 2006-11-23 (주)에어레인 Hollow fiber membrane for oxygen separation and preparation method thereof
KR20130001755A (en) * 2011-06-28 2013-01-07 이영상 System for preprocessing of bio-gas
KR20140147048A (en) * 2013-06-18 2014-12-29 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Recovery and purification of nitrous oxide

Also Published As

Publication number Publication date
CN109476483A (en) 2019-03-15
KR20180010366A (en) 2018-01-31
KR101858190B1 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
WO2018016750A1 (en) Process for recovery and purification of nitrous oxide from nitrous oxide-containing gas mixture
US10207928B2 (en) Combined membrane-pressure swing adsorption method for recovery of helium
WO2018084553A1 (en) Process for separating and recovering carbon monoxide from iron and steel industry byproduct gases
KR102059068B1 (en) Separation and recovery process of carbon monoxide from by-product gas of steel industry
US7794523B2 (en) Method for the recovery and re-use of process gases
EP1345664B1 (en) Improved coproduction of gases, especially of hydrogen and carbon dioxide
US8398747B2 (en) Processes for purification of acetylene
US7025803B2 (en) Methane recovery process
KR960004608B1 (en) Hybrid prepurifier for cryogenic air separation plants
CA2875795C (en) Process and apparatus for the separation of a stream containing carbon dioxide, water and at least one light impurity including a separation step at subambient temperature.
WO2022119376A1 (en) Method for separation and purification of hydrogen from decomposed mixed gas of ammonia
AU2001297607A1 (en) Improved hydrogen and carbon dioxide coproduction
CN86104191A (en) Strengthen gas separating method
KR100199883B1 (en) Method of recovering argon from silicone single crystal
KR19980070554A (en) Method and system for separating and purifying perfluoro compound
KR890015954A (en) Local high purity nitrogen production system and process
US7261763B2 (en) Method for the recovery and recycle of helium and chlorine
KR101955015B1 (en) method and APPARATUS for recovering nitrous oxide
US20150360165A1 (en) Separation of biologically generated gas streams
US6565821B1 (en) Process for removing the fluorocompounds or fluorosulphur compounds from a stream of xenon and/or krypton by permeation
EP0792185A1 (en) Very high purity nitrogen by membrane separation
US6032484A (en) Recovery of perfluorinated compounds from the exhaust of semiconductor fabs with recycle of vacuum pump diluent
WO2016105156A1 (en) Method and apparatus for purification of dimethyl carbonate using pervaporation
KR101952945B1 (en) Method for recorvering nitrous oxide
JP4157328B2 (en) Membrane separator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831223

Country of ref document: EP

Kind code of ref document: A1