WO2018016370A1 - Organic electroluminescent element, method for manufacturing organic electroluminescent element, organic electroluminescent lighting device, and organic electroluminescent display device - Google Patents

Organic electroluminescent element, method for manufacturing organic electroluminescent element, organic electroluminescent lighting device, and organic electroluminescent display device Download PDF

Info

Publication number
WO2018016370A1
WO2018016370A1 PCT/JP2017/025158 JP2017025158W WO2018016370A1 WO 2018016370 A1 WO2018016370 A1 WO 2018016370A1 JP 2017025158 W JP2017025158 W JP 2017025158W WO 2018016370 A1 WO2018016370 A1 WO 2018016370A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
unevenness
transparent substrate
anode
Prior art date
Application number
PCT/JP2017/025158
Other languages
French (fr)
Japanese (ja)
Inventor
愛沙子 藤井
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2018016370A1 publication Critical patent/WO2018016370A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to an organic EL (Electro Luminescence) element, an organic EL element manufacturing method, an organic EL lighting device, and an organic EL display device.
  • organic EL Electro Luminescence
  • Organic EL elements have been applied to displays for mobile phones and digital cameras, and to lighting devices because of their advantages such as wide viewing angle due to self-emission, high-speed response, and thin and light weight.
  • an organic EL element has an electrode stack in which a hole stack, a hole transport layer, an interlayer, a light emitting layer, an electron transport layer, and an electron injection layer are stacked in this order between an anode and a cathode.
  • the anode has a structure provided on the light-transmitting substrate so that the anode faces the light-transmitting substrate.
  • the organic EL element generates excitons by applying a DC voltage to the anode and cathode described above, injecting electrons and holes into the light emitting layer and recombining them, and the light generated when the excitons are deactivated. Light emission occurs using the emission.
  • an organic EL element when light from a light emitting layer is emitted from a translucent substrate that is a light emitting side surface of the organic EL element, a part of the light is transmitted through an interface between the translucent substrate and air, an anode, There is a problem that the total amount of light reflected at the interface with the optical substrate is lost, and the amount of light extracted outside is lost.
  • plasmon loss there is a loss called plasmon loss that light from the light emitting layer enters the metal electrode side, is combined with free electrons of the metal electrode, is captured by the metal electrode as surface plasmon polariton, and is finally absorbed.
  • the light loss rate due to plasmon loss is said to be about 50%, and the light extraction efficiency of light extracted outside in this case is generally said to be about 20%. Therefore, it is necessary to increase the input power as the display and illumination with high brightness are required. Since a large current flows through the organic EL element, the load on the organic EL element increases, resulting in a decrease in luminance and a reduction in lifetime. Inviting, the reliability of the organic EL element itself is lowered.
  • the surface of the metal electrode is freed by suppressing the light absorption on the surface of the metal electrode by providing a concavo-convex structure on each layer of the transparent electrode such as ITO, the organic layer, and the metal electrode.
  • Methods have been proposed to avoid coupling with electrons.
  • the distance from the light emitting layer to the metal electrode is increased (by increasing the thickness of the electron transport layer / injection layer), thereby coupling with free electrons on the metal surface.
  • a method for avoiding the problem has been proposed.
  • the present invention has been made in view of the above-described problems, and exhibits high light extraction efficiency, a wide range of applications, and a method for manufacturing an organic EL element, an organic EL lighting device, and an organic EL display device. For the purpose of provision.
  • an organic EL device includes a transparent substrate and a surface opposite to the surface on the transparent substrate side provided on one surface of the transparent substrate.
  • a light extraction lens having first unevenness, a barrier layer provided on the other surface of the transparent substrate, an optical path changing functional layer provided on the barrier layer, and an optical path changing functional layer.
  • a cathode provided on the organic EL layer, wherein the transparent substrate has a flexural rigidity of 0.02 N ⁇ m 2 or less.
  • the optical path changing functional layer has a second unevenness on the surface on the anode side, and an adhesive layer and an adhesive layer are not interposed at the interface between the layers.
  • an inorganic filler mixed resin containing a transparent resin material is applied to one surface of a transparent substrate having a flexural rigidity of 0.02 N ⁇ m 2 or less.
  • a light extraction lens forming step of forming a light extraction lens by transferring and curing the first unevenness to the inorganic filler mixed resin, and an inorganic material formed of an inorganic material on the other surface of the transparent substrate A barrier layer forming step of forming a barrier layer having at least a film, and applying an inorganic filler mixed resin containing a transparent resin material on the barrier layer, transferring and curing the second irregularities on the inorganic filler mixed resin Forming an optical path changing functional layer, forming an anode on the optical path changing functional layer, and forming an organic EL layer including a light emitting layer on the anode.
  • An organic EL layer forming step, and a cathode forming step of forming a cathode on the organic EL layer An organic EL layer forming step, and a cathode forming step of forming a cathode on the organic EL layer.
  • An organic EL lighting device uses the above-described organic EL element.
  • An organic EL display device uses the above-described organic EL element.
  • an organic EL element having a higher light extraction efficiency and a wider application range than the conventional one, a method for manufacturing the organic EL element, an organic EL lighting device, and an organic EL display device.
  • an organic EL element 10 according to a first embodiment will be described.
  • the shape of the organic EL element 10 according to the first embodiment will be described with reference to the drawings, the same reference numerals are assigned to the same or similar constituent elements throughout the drawings, and the same. Description is omitted.
  • the shape of the organic EL element 10 described in the first embodiment is merely a configuration example, and is not limited to the illustrated shape, and can be appropriately selected according to a desired application / performance.
  • each drawing is a schematic diagram of the organic EL element according to the first embodiment, and the scale of each part does not match the actual configuration of the organic EL element according to this embodiment.
  • the organic EL element 10 includes a transparent substrate 11, a light extraction lens 17, a barrier layer 12, and an optical path changing functional layer 13. And an anode 14, an organic EL layer 15, and a cathode 16.
  • the organic EL element 10 has a light extraction lens having first irregularities on the light emitting surface 11 b side of the transparent base material 11.
  • a light extraction lens 17 having unevenness 17 a is formed on one surface of the transparent substrate 11.
  • a barrier layer 12, an optical path changing function layer 13, an anode 14, an organic EL layer 15, and a cathode 16 are laminated in this order on the other surface of the transparent substrate 11. Is formed.
  • the optical path changing functional layer 13 has irregularities 13 a on the surface facing the anode 14.
  • the thickness of the organic EL element 10 will not be specifically limited if it is a range which can express flexibility, It is preferable that it is less than 0.5 mm from the surface of flexibility. In such an organic EL element 10, an adhesive layer or an adhesive layer is not interposed at the interface between the layers. For this reason, the thickness of the organic EL element 10 can be reduced, and the organic EL element 10 has high flexibility. In addition to the demerits of reduced efficiency and increased material costs due to light absorption in the adhesive layer or the adhesive layer due to the absence of the adhesive layer or adhesive layer, the light extraction film production line, elementization line, and bonding line In addition, there is a disadvantage in that it leads to an increase in processing lines.
  • the transparent substrate 11 is formed of a transparent material having light transmittance.
  • a lighting device using the flexible organic EL element 10 it is necessary to enable various bent shapes in order to express a special shape such as design illumination.
  • the radius of curvature R of the bent portion when the organic EL element 10 is bent needs to be about 15 mm or less.
  • the thickness of the transparent base material 11 occupies most of the thickness.
  • the transparent base material 11 preferably has a bending rigidity of 0.02 N ⁇ m 2 or less, 0.01 N ⁇ More preferably, it is m 2 or less.
  • the radius of curvature of the bent portion when the organic EL element 10 is bent can be 16.5 mm or less, preferably 14.0 mm or less. Thereby, the flexibility of the organic EL element 10 is sufficiently increased.
  • the transparent substrate 11 is preferably formed of, for example, a resin material, and specifically, formed of polyethylene terephthalate (PET), polycarbonate (PC), polyethylene naphthalate (PEN), polyimide (PI), or the like. Is preferred.
  • the resin material for the transparent substrate 11 it is preferable to use polyethylene terephthalate (PET) that is excellent in heat resistance, cold resistance, strength, high transparency, and chemical resistance.
  • PET polyethylene terephthalate
  • the material of the transparent base material 11 is not limited to these, It can select arbitrarily.
  • the thickness of the transparent substrate 11 is preferably 0.35 mm or less, and more preferably 0.3 mm or less.
  • the above-described radius of curvature is realized at the bent portion of the organic EL element 10 to increase the flexibility of the organic EL element 10, and the organic EL element by a roll-to-roll method or the like. 10 can be manufactured. Thereby, it becomes possible to reduce a production line, and production of the organic EL element 10 becomes easy.
  • the thickness of the transparent substrate 11 is preferably 0.01 mm or more, and more preferably 0.05 mm or more.
  • the thickness of the transparent substrate 11 is within this range, the minimum strength required for the substrate of the organic EL element 10 can be obtained, and each of the metal films constituting the barrier layer 12, the anode 14, the cathode 16, etc. It is possible to suppress cracks from occurring. If the thickness of the transparent base material 11 is made thinner than this range, fold marks and wrinkles are likely to occur, and it becomes difficult to maintain flatness as illumination.
  • the light extraction lens 17 is a layer having a function of reducing the amount of total reflected light at the interface between the transparent substrate 11 and the air, which is the light emission surface of the transparent substrate 11.
  • the light extraction lens 17 is provided on one surface of the transparent substrate 11 (the light emission surface 11b described above) and has an unevenness 17a.
  • the irregularities 17a may be regularly arranged or irregularly arranged.
  • the unevenness 17a is regularly arranged when the unevenness 13a of the optical path changing function layer 13 to be described later is irregularly arranged, and irregularly arranged when the unevenness 13a is regularly arranged. May be.
  • the light extraction lens 17 is preferably a mixed layer of an organic substance and an inorganic substance. Specifically, the light extraction lens 17 is preferably formed of an inorganic filler mixed resin containing a transparent resin material.
  • any resin material such as an ultraviolet curable resin, a thermoplastic resin, and a thermosetting resin can be used as long as the adhesion to the transparent substrate 11 is good.
  • an ultraviolet curable resin as the transparent resin material used for the light extraction lens 17.
  • the inorganic filler which consists of at least any one of a metal and a metal compound can be used, for example.
  • the metal compound for example, at least one of metal oxide and metal nitride can be used.
  • metal particles such as silver and aluminum having a high reflectance can be used as the metal.
  • titanium oxide, silicon oxide, aluminum oxide, zirconium oxide, silicon nitride, tin-added indium oxide, or the like can be used.
  • resin material for example, a resin material having a refractive index different from that of the resin material constituting the transparent substrate 11 can be used. Specifically, a methacrylic resin, a polyurethane resin, a silicone resin, or the like can be used as the resin material.
  • Each of the inorganic filler and the resin material may be used alone or in combination of two or more in consideration of optical properties such as light scattering, refractive index, and light transmittance. Also good.
  • a transparent inorganic filler mixed resin is applied, and the shape of the mold is transferred by pressing the mold from above when the inorganic filler mixed resin is in an uncured state or after curing to transfer the shape of the mold.
  • the unevenness 17a is formed in the inorganic filler mixed resin by using the roll having the unevenness corresponding to the unevenness 17a formed on the roll surface and transferring the uneven shape to the inorganic filler mixed resin using a roll-to-roll method. Can do.
  • unevenness formed by protruding the inorganic filler from the resin film of the inorganic filler mixed resin may be used, and the formation method of the light extraction lens 17 can be appropriately selected depending on the desired performance. .
  • the barrier layer 12 reduces the influence of moisture from the transparent substrate 11 side as much as possible in order to improve the durability of the organic EL element 10, that is, prevents moisture from entering the organic EL layer 15 from the transparent substrate 11 side. It is a layer provided for suppression.
  • the barrier layer 12 is provided on the surface of the transparent substrate 11 opposite to the surface on which the light extraction lens 17 is formed, that is, between the transparent substrate 11 and the optical path changing functional layer 13 so that the surface is substantially flat. .
  • the barrier layer 12 has at least an inorganic material film formed of an inorganic material.
  • the barrier layer 12 may be a single-layer inorganic material film formed of an inorganic material, and is formed of a laminated film in which a plurality of inorganic material films made of different inorganic materials are laminated or an inorganic material film and an organic material.
  • the laminated organic material film may be a laminated film in which a plurality of layers are laminated.
  • inorganic materials include metal oxides such as silicon oxide and aluminum oxide, metal fluorides such as aluminum fluoride and magnesium fluoride, metal nitrides such as silicon nitride, aluminum nitride, and carbon nitride, and silicon oxynitride.
  • At least one of metal oxynitrides and metal carbides such as silicon carbide can be used.
  • the organic material at least one of resins such as acrylic resin, epoxy resin, silicone resin, and polyester resin can be used. Further, a hygroscopic agent such as silica gel may be mixed in the organic material.
  • the barrier layer 12 is formed by a CVD (Chemical Vapor Deposition) method, a sputtering method, an ion plating method, a vapor deposition method, or the like.
  • CVD Chemical Vapor Deposition
  • the barrier layer 12 be an inorganic film of silicon oxide, silicon oxynitride, or silicon nitride formed by a CVD method.
  • the optical path changing function layer 13 changes the refraction angle of the light that enters the optical path changing function layer 13 from the light emitting layer of the organic EL layer 15 and enters the transparent base material 11 through the barrier layer 12, so that the light is in the total reflection condition. It has a function to improve the light extraction efficiency by reducing. Further, the optical path changing function layer 13 has the function of suppressing the plasmon loss by suppressing the light absorption at the interface between the optical path changing function layer 13 and the anode 14 by having the unevenness 13a on the surface on the anode side.
  • the irregularities 13a may be regularly arranged or irregularly arranged.
  • the unevenness 13a is regularly arranged when the unevenness 17a of the light extraction lens 17 is irregularly arranged, and is irregularly arranged when the unevenness 17a is regularly arranged. Also good.
  • the optical path changing function layer 13 is preferably a mixed layer of an organic substance and an inorganic substance.
  • the optical path changing function layer 13 is formed of, for example, an inorganic filler mixed resin in which an inorganic filler is mixed with a transparent resin material.
  • the inorganic filler for example, at least one of a metal and a metal compound can be used.
  • the metal compound for example, at least one of metal oxide and metal nitride can be used.
  • metal particles such as silver and aluminum having a high reflectance can be used as the metal.
  • titanium oxide, silicon oxide, aluminum oxide, zirconium oxide, silicon nitride, tin-added indium oxide, or the like can be used.
  • the resin material for example, a resin material having a refractive index different from that of the resin material constituting the transparent substrate 11 can be used.
  • the resin material include methacrylic resin, polyurethane resin, and silicone resin.
  • 1 type may be used independently and what mixed 2 or more types may be used.
  • the anode 14 is provided on the optical path changing function layer 13 and is a layer for applying a DC voltage to the cathode 16 to cause the light emitting layer of the organic EL layer 15 to emit light. Since the anode 14 serves as an electrode on the side from which emitted light generated in the light emitting layer of the organic EL layer 15 is extracted, a material having a light transmitting property is appropriately selected, and the film is formed so as to obtain a light transmittance suitable for the application. This is a transparent electrode with an adjusted thickness.
  • the anode 14 is formed of a conductive material having a large work function.
  • the conductive material used for the anode 14 include nickel, silver, gold, platinum, palladium, selenium, rhodium, ruthenium, iridium, rhenium, tungsten, molybdenum, chromium, tantalum, niobium and alloys thereof, or tin oxide. (SnO 2 ), indium tin oxide (ITO), zinc oxide, titanium oxide and the like.
  • the anode 14 is formed by a CVD method, a sputtering method, an ion plating method, a vapor deposition method, or the like.
  • the cathode 16 is a metal electrode provided on the organic EL layer 15 and connected to the anode 14 via a power source (not shown). A DC voltage is applied between the anode 14 and the light-emitting layer of the organic EL layer 15. This is a layer for emitting light.
  • a material having good reflectance is appropriately selected and used. .
  • the cathode 16 is configured using a conductive material having a small work function.
  • the conductive material used for the cathode 16 include metals such as silver, aluminum, and indium, alloys of these metals with active metals such as lithium, magnesium, and calcium, or laminated metals obtained by laminating these metals. Layers can be used. Further, a structure in which an active metal such as lithium, magnesium, or calcium and a compound layer of halogen, oxygen, or the like is thinly inserted between the cathode 16 and the organic EL layer 15 may be employed. As the halogen, fluorine, bromine, or the like can be used.
  • the cathode 16 is formed by a CVD method, a sputtering method, an ion plating method, a vapor deposition method, or the like.
  • the anode 14 and the cathode 16 are patterned into a suitable shape by a driving method of an organic EL display device (not shown) using the organic EL element 10.
  • a driving method of an organic EL display device is a simple matrix type
  • the anode 14 and the cathode 16 are formed in a stripe shape intersecting each other, and a portion where these intersect is the organic EL element 10.
  • the driving method of the organic EL display device is an active matrix type provided with a thin film transistor (TFT) for each pixel
  • the anode 14 is patterned in correspondence with a plurality of colored pixels arranged.
  • the anode 14 is formed in a state in which each of the TFTs provided in the colored pixel is connected via a contact hole formed in a partition wall covering these TFTs.
  • the cathode 16 may be formed as a solid film formed so as to cover one surface of the organic EL layer 15, and is used as a common electrode for each pixel.
  • the organic EL layer 15 has at least a white light emitting layer (hereinafter referred to as a white light emitting layer).
  • the organic EL layer 15 includes a white light emitting layer, a charge injection layer such as a hole injection layer and an electron injection layer, a hole transport layer that transports holes to the white light emitting layer, and an electron transport layer that transports electrons to the white light emitting layer.
  • a white light emitting layer includes a white light emitting layer, a charge injection layer such as a hole injection layer and an electron injection layer, a hole transport layer that transports holes to the white light emitting layer, and an electron transport layer that transports electrons to the white light emitting layer.
  • Such a laminated structure having a charge transport layer may be used.
  • the white light-emitting layer may be any white light-emitting layer as long as white light-emitting light can be obtained.
  • the characteristics of white emitted light it is sufficient that emitted light is present in at least three regions of the red region (600 nm to 780 nm), the green region (475 nm to 600 nm), and the blue region (380 nm to 475 nm).
  • the number of emission peaks does not necessarily need to be three or more. For example, it is only necessary to have emission light in the above region even with two emission peaks. However, in order to obtain a wide color reproducibility, it is preferable to use a white light emitting layer having three or more light emission peaks, and more preferably, one or more of the three color regions has a light emission peak.
  • the material constituting such a white light emitting layer is not particularly limited as long as it emits light such as fluorescence or phosphorescence.
  • the light emitting material may have a hole transport property or an electron transport property.
  • As the light emitting material at least one of a dye material, a metal complex material, and a polymer material can be used.
  • dye-based light-emitting materials include cyclopentamine derivatives, tetraphenylbutadiene derivatives, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, silole derivatives, thiophene ring compounds, pyridine At least one of a ring compound, a perinone derivative, a perylene derivative, an oligothiophene derivative, a trifumanylamine derivative, an oxadiazole dimer, and a pyrazoline dimer can be used.
  • an aluminum quinolinol complex for example, an aluminum quinolinol complex, a benzoquinolinol beryllium complex, a benzoxazole zinc complex, a benzothiazole zinc complex, an azomethylzinc complex, a porphyrin zinc complex, a europium complex, and a central metal, Al or Zn
  • a metal complex having a metal such as Be or a rare earth metal such as Tb, Eu, or Dy, and having a oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline structure, or the like as a ligand.
  • polymer light-emitting material examples include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and the above-described dye materials and metal complex materials. At least one of polymerized materials can be used.
  • the thickness of the white light emitting layer is preferably about 5 nm to 5 ⁇ m.
  • a hole injection layer may be formed between the white light emitting layer and the anode 14. This is because by providing the hole injection layer, the injection of holes into the white light emitting layer is stabilized and the light emission efficiency can be increased.
  • a material for forming the hole injection layer a material generally used for a hole injection layer of an organic EL element can be used.
  • the material for forming the hole injection layer may be any material that has either a hole injection property or an electron barrier property.
  • the material for forming the hole injection layer include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives. , Oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, polysilane copolymers, aniline copolymers, and conductive polymer oligomers such as thiophene oligomers. Can do.
  • a formation material of a positive hole injection layer at least any 1 type of a porphyrin compound, an aromatic tertiary amine compound, and a styrylamine compound can be used, for example.
  • the thickness of the hole injection layer is preferably about 5 nm to 1 ⁇ m.
  • an electron injection layer may be formed between the white light emitting layer and the cathode 16. This is because by providing the electron injection layer, the injection of electrons into the white light emitting layer is stabilized, and the light emission efficiency can be increased.
  • Examples of the material for forming the electron injection layer include nitro-substituted fluorene derivatives, anthraquinodimethane derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, and heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, carbodiimide derivatives, and fluorenylidene.
  • a quinoxaline derivative a metal complex of an 8-quinolinol derivative such as tris (8-quinolinol) aluminum, a phthalocyanine, a metal phthalocyanine, and a distyrylpyrazine derivative can be used.
  • a hole transport layer may be formed between the hole injection layer and the white light emitting layer. This is because by providing the hole transport layer, the transport of holes from the hole injection layer to the white light emitting layer is stabilized, and the light emission efficiency can be increased.
  • At least one kind of material selected from the following (a) to (f) can be used.
  • Metal phthalocyanines such as copper phthalocyanine and tetra (t-butyl) copper phthalocyanine, metal phthalocyanines or low molecular hole transport materials of quinacridone compounds, or 1,1-bis (4-di-p-tolylamino) Phenyl) cyclohexane, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine, N, N′-di (1-naphthyl)- Aromatic amine-based low molecular hole transport materials such as N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine.
  • C Polymer material.
  • an electron transport layer may be formed between the electron injection layer and the white light emitting layer. This is because by providing the electron transport layer, the transport of electrons from the electron injection layer to the white light emitting layer is stabilized, and the light emission efficiency can be increased.
  • the material for forming the electron transport layer include 2- (4-bifinylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole and 2,5-bis (1-naphthyl).
  • At least one of oxadiazole derivatives such as -1,3,4-oxadiazole, bis (10-hydroxybenzo [h] quinolinolato) beryllium complex, and triazole compounds can be used.
  • these electron transport materials may be used as an electron injection layer by doping a small amount of alkali metal or alkaline earth metal having a low work function such as sodium, barium, or lithium.
  • the sealing substrate (not shown) covers the surface of the cathode 16 and at least the side surfaces of the anode 14, the organic EL layer 15, and the cathode 16 in order to reduce deterioration of the organic EL element 10 due to moisture and air.
  • the sealing substrate examples include flexible transparent or opaque resin materials such as polyethylene terephthalate (PET), polyethersulfone (PES), and polyethylene naphthalate (PEN), and metal materials such as stainless steel and aluminum. At least one of these can be used.
  • the organic EL element 10 according to the first embodiment is a bottom emission type organic EL element in which emitted light from the organic EL layer 15 is emitted through the transparent substrate 11. For this reason, the sealing base provided on the upper surface of the cathode 16 does not require translucency, and it is also possible to use a metal material or an opaque resin material as the material of the sealing base.
  • Such a sealing substrate can be provided by a method in which a resin material is applied and solidified so as to cover the surface of the cathode 16 and at least the side surfaces of the anode 14, the organic EL layer 15, and the cathode 16. Further, such a sealing substrate is made of a metal so as to cover the surface of the cathode 16 and at least the side surfaces of the anode 14, the organic EL layer 15, and the cathode 16 by CVD, sputtering, ion plating, or vapor deposition. It can be formed by a method of forming a film.
  • a light extraction lens 17 is formed. First, an inorganic filler mixed resin containing a transparent resin material is applied to one surface of the transparent base 11 having both surfaces substantially flat and flexible and having a flexural rigidity of 0.02 N ⁇ m 2 or less. Next, the light extraction lens 17 is formed by transferring the unevenness 17a to the inorganic filler mixed resin and curing it.
  • the uneven shape is transferred to the inorganic filler mixed resin using a roll-to-roll method, whereby the light extraction lens 17 having the unevenness 17a is obtained.
  • Curing of the inorganic filler mixed resin is performed by a method suitable for the selected resin material.
  • the resin material is an ultraviolet curable resin
  • the light extraction lens 17 can be formed by curing the inorganic filler mixed resin to which the unevenness 17a is transferred by irradiation with ultraviolet rays.
  • the barrier layer 12 is formed.
  • a barrier layer having at least an inorganic material film formed of an inorganic material on the other surface (the surface opposite to the surface on which the light extraction lens 17 is formed) of the transparent substrate 11 is formed by, for example, a CVD method, a sputtering method, or an ion plating method. Or it forms by a vapor deposition method etc.
  • the barrier layer 12 may be formed of a single layer or a plurality of laminated inorganic material films, or may be formed by stacking a plurality of inorganic material films and organic material films.
  • the optical path changing function layer 13 is formed. First, an inorganic filler mixed resin containing a transparent resin material is applied on the barrier layer 12. Subsequently, the optical path changing functional layer 13 is formed by transferring the unevenness 13a to the inorganic filler mixed resin and curing it. For example, after applying the inorganic filler mixed resin directly on the barrier layer 12 (or the flat layer), the unevenness shape is transferred to the inorganic filler mixed resin by a roll-to-roll method, whereby the optical path changing function layer 13 having the unevenness 13a is formed. Can be formed. Curing of the inorganic filler mixed resin is performed by a method suitable for the selected resin material. For example, when the resin material is an ultraviolet curable resin, the optical path changing functional layer 13 can be formed by curing the inorganic filler mixed resin to which the unevenness 13a is transferred by irradiation with ultraviolet rays.
  • An anode 14 is formed.
  • a film of a conductive material having light transmittance and a large work function is formed by a CVD method, a sputtering method, an ion plating method, a vapor deposition method or the like, and the anode 14 is formed. .
  • Organic EL layer 15 including a light emitting layer is formed.
  • the organic EL layer 15 is formed, for example, by sequentially forming a buffer layer / hole transport layer / white light emitting layer / electron transport layer / buffer layer from the anode 14 side.
  • the white light emitting layer is, for example, a vapor deposition method, a printing method, an inkjet method, a spin coating method, a casting method, a dipping method, a bar coating method, a blade coating method, a roll coating method, a gravure coating method, a flexographic printing method, a spray coating method, It is formed by a self-assembly method (alternate adsorption method, self-assembled monolayer method) or the like. In particular, it is preferable to use a vapor deposition method, a spin coating method, or an inkjet method.
  • the hole transport layer is, for example, a spin coating method, a bar coating method, a wire coating method, a slit coating method, a die coating method, a spray coating method, a curtain coating method, a flow coating method, Wet printing methods such as letterpress printing, letterpress reverse offset printing, ink jet printing, nozzle printing, etc., or vapor deposition methods such as resistance heating vapor deposition, electron beam vapor deposition, reactive vapor deposition, ion plating, and sputtering are used. be able to.
  • a vacuum evaporation method such as a resistance heating evaporation method, an electron beam evaporation method, a reactive evaporation method, an ion plating method, or a sputtering method can be used depending on the material to be used.
  • a cathode 16 is formed.
  • a cathode 16 is formed by depositing a film of a conductive material having a good reflectivity and a small work function by a CVD method, a sputtering method, an ion plating method, a vapor deposition method, or the like. .
  • the organic EL element 10 is in contact with at least one surface of the barrier layer 12, that is, between the transparent substrate 11 and the barrier layer 12, or between the barrier layer 12 and the optical path changing functional layer 13.
  • a flat layer (not shown) may be provided therebetween.
  • the flat layer improves the quality by flattening the organic EL element 10 and improves the adhesion between the barrier layer 12 that is an inorganic layer and the transparent substrate 11 or the optical path changing functional layer 13 that is an organic layer. Therefore, it is preferable.
  • the material constituting the flat layer is made of, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene.
  • a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene.
  • polypropylene, modified polyethylene, or a modified resin of modified polypropylene it is preferable to use polypropylene, modified polyethylene, or a modified resin of modified polypropylene.
  • the flat layer forming step is provided at least before and after the barrier layer forming step. That is, after forming a flat layer on the other surface of the transparent substrate 11, the barrier layer 12 may be formed on the flat layer, and the barrier layer 12 is formed on the other surface of the transparent substrate 11. After that, a flat layer may be formed on the barrier layer 12.
  • An organic EL lighting device and an organic EL display device can be obtained by using the organic EL element 10 thus manufactured. Hereinafter, the configurations of the organic EL lighting device and the organic EL display device will be briefly described.
  • the organic EL lighting device 40 includes an organic EL element 10, that is, a transparent substrate 11, a light extraction lens 17, and a barrier layer. 12, an optical path changing functional layer 13, an anode 14, an organic EL layer 15, and a cathode 16. Furthermore, the organic EL lighting device 40 includes a sealing substrate 32 that seals the organic EL layer 15. The anode 14 and the cathode 16 are each provided with a terminal (not shown) for applying a voltage to each electrode.
  • a substrate including the transparent base material 11, the light extraction lens 17, the barrier layer 12, the optical path changing function layer 13, and the anode 14 is represented as a light extraction substrate 34.
  • a voltage can be applied to at least one of the anode 14 and the cathode 16 through the terminal, so that light can be extracted from the light extraction lens 17 side.
  • the sealing substrate 32 may be fixed to the anode 14 and the cathode 16 using an adhesive layer 30, for example. Further, the desiccant 31 may be attached to the inner wall of the sealing substrate 32.
  • FIG. 4 shows the configuration of the organic EL element 10 sealed by the sealing substrate 32.
  • the organic EL display device 50 includes the organic EL element 10 sealed by the sealing substrate 32, that is, the transparent base material 11, the light extraction lens 17, the barrier layer 12, and the optical path changing functional layer 13. , An anode 14, an organic EL layer 15, a cathode 16, and a sealing substrate 32 that seals the entire organic EL element 10.
  • the organic EL display device 50 includes a TFT 35, a glass substrate 36, and a polarizing plate substrate 37, respectively.
  • the organic EL element 10 according to the present embodiment includes a plurality of partition walls 33 for forming pixels.
  • the sealing substrate 32 may be fixed using an adhesive layer 30 so as to cover the entire organic EL element 10, for example. Further, the desiccant 31 may be attached to the inner wall of the sealing substrate 32.
  • the organic EL element 10 according to the first embodiment can obtain the following effects. (1) By using a transparent base material having a bending stiffness of 0.02 N ⁇ m 2 or less, a curvature radius R of the bent portion of the organic EL element can be about 15 mm or less, and a flexible organic EL element is obtained. be able to.
  • the transparent substrate By forming the transparent substrate with polyethylene terephthalate (PET) with a thickness of 0.35 mm or less, a flexible organic EL having excellent heat resistance, cold resistance and strength, high transparency and excellent chemical resistance. An element can be obtained.
  • PET polyethylene terephthalate
  • the optical path changing functional layer By making the light extraction lens and the optical path changing functional layer a mixed layer of an organic substance and an inorganic substance, it is possible to improve light scattering and realize a high optical path changing function.
  • the first unevenness arranged regularly or irregularly is formed on the light extraction lens, whereby the total amount of light reflected at the interface between the translucent substrate and air can be reduced.
  • the organic EL element according to the present invention is provided with the light extraction lens having the first unevenness on the light emission surface of the transparent substrate, it is possible to arbitrarily control the light emission direction. The entire emitted light can be effectively utilized as the brightness.
  • the second unevenness arranged regularly or irregularly is formed in the optical path changing functional layer, thereby suppressing light absorption on the surface of the metal electrode and avoiding binding with free electrons on the metal surface. , Plasmon loss can be suppressed.
  • An organic EL element is produced by directly forming each layer on a transparent base material by applying / curing the material or by CVD, etc., and therefore there is no adhesive layer and adhesive layer at the interface of each layer, so that the organic EL The thickness of the element can be reduced to increase flexibility.
  • an organic EL element 20 according to a second embodiment will be described.
  • the shape of the organic EL element 20 according to the second embodiment will be described with reference to the drawings, the component that exhibits the same or similar function as the organic EL element 10 described in the first embodiment is the first.
  • the same reference numerals as those used in one embodiment are attached, and the duplicate description is omitted.
  • the shape of the organic EL element 20 described in the second embodiment is merely an example configuration, and is not limited to the illustrated shape, and can be appropriately selected according to a desired application and performance.
  • each drawing is a schematic view of the organic EL element according to the second embodiment, and the scale of each part does not match the actual configuration of the organic EL element according to this embodiment.
  • the organic EL element 20 includes a transparent substrate 11, a light extraction lens 17, a barrier layer 12, and an optical path changing functional layer 13.
  • the transparent base material 11, the light extraction lens 17, the barrier layer 12, and the optical path changing functional layer 13 the transparent base material 11, the light extraction lens 17, the barrier layer 12, and the optical path change of the organic EL element 10 according to the first embodiment. Since it is the same structure as the functional layer 13, description is abbreviate
  • the same sealing substrate as the sealing substrate used for sealing the organic EL element 10 according to the first embodiment is used.
  • a material (not shown) needs to be provided on the upper surface of the cathode 26.
  • the anode 24, the organic EL layer 25, and the cathode 26 are provided with irregularities having shapes corresponding to the shapes of the irregularities 13 a provided in the optical path changing function layer 13. In this respect, it differs from the organic EL element 10 of the first embodiment.
  • the anode 24 has unevenness 24 a having a shape corresponding to the unevenness 13 a provided in the optical path changing function layer 13 on the surface on the organic EL layer 25 side.
  • the “shape corresponding to the unevenness 13a” is provided in the optical path changing function layer 13 in which the shape of the unevenness 13a of the optical path changing function layer 13 spills over the surface of the anode 24 on the organic EL layer 25 side. It refers to a shape following the unevenness 13a. That is, it means that at least a part of the projections of the projections and depressions 13a and the projections of the projections and depressions 24a overlap in the longitudinal sectional view of the organic EL element 20.
  • the anode 24 has the unevenness
  • the unevenness 24b has a shape obtained by transferring the unevenness 13a. Since the other configuration of the anode 24 is the same as that of the anode 14, the description thereof is omitted.
  • the organic EL layer 25 has unevenness 25a having a shape corresponding to the unevenness 13a provided in the optical path changing function layer 13 on the surface on the cathode 26 side.
  • the shape corresponding to the unevenness 13 a means an optical path change formed by the shape of the unevenness 13 a of the optical path changing functional layer 13 spreading through the anode 24 to the surface of the organic EL layer 25 on the cathode 26 side. It refers to the shape following the irregularities 13a provided in the functional layer 13. That is, it means that at least a part of the projections of the projections and depressions 13 a and the projections of the projections and depressions 25 a overlap in the vertical cross-sectional view of the organic EL element 20.
  • the organic EL layer 25 has unevenness 25b formed on the surface on the anode 24 side by being in close contact with the unevenness 24a.
  • the unevenness 25b has a shape obtained by transferring the unevenness 24a.
  • the other configuration of the organic EL layer 25 is the same as that of the organic EL layer 15, and thus the description thereof is omitted.
  • the cathode 26 has unevenness 26b formed on the surface on the organic EL layer 25 side by being in close contact with the unevenness 25a.
  • the unevenness 26b has a shape obtained by transferring the unevenness 25a.
  • the surface of the cathode 26 opposite to the organic EL layer 25 has a substantially flat shape.
  • the other configuration of the cathode 26 is the same as that of the cathode 16, and thus the description thereof is omitted.
  • the organic EL element 20 according to the second embodiment can obtain the following effects. (10) By providing a concavo-convex structure in each layer of the anode, the organic EL layer, and the cathode, light absorption on the surface of each layer of the anode, the organic EL layer, and the cathode is suppressed, and binding with free electrons on the metal surface is avoided. Can do. For this reason, the plasmon loss in the surface of a metal electrode can be suppressed.
  • Example 1 A transparent substrate made of a polyethylene terephthalate (PET) film having a thickness of 0.3 mm was prepared.
  • a silicone filler-containing acrylic ultraviolet curable resin was applied to one surface (light emitting surface) of such a transparent substrate. Thereafter, the regularly arranged first irregularities formed on the roll mirror surface were transferred to a silicon filler-containing acrylic ultraviolet curable resin. Subsequently, the first irregularities regularly arranged are cured by irradiating ultraviolet rays from the transparent substrate side while transferring the shape of the first irregularities to cure the acrylic ultraviolet curable resin containing silicon filler. A light extraction lens was formed.
  • a mixed layer of alumina and silicon oxide was formed by CVD on the other surface (surface opposite to the light exit surface) of the transparent substrate on which the light extraction lens was formed, thereby forming a barrier layer.
  • an acrylic ultraviolet curable resin containing titanium oxide (TiO 2 ) particles is applied on the barrier layer, the shape of the second irregularities regularly arranged on the roll mirror surface is changed to titanium oxide (TiO 2).
  • TiO 2 titanium oxide
  • Transferred to particle-containing acrylic UV-curable resin Thereafter, the ultraviolet rays are irradiated from the transparent substrate side while transferring the shape of the second unevenness to cure the titanium-containing (TiO 2 ) particle-containing acrylic ultraviolet curable resin, thereby regularly arranging on the surface.
  • the optical path changing functional layer having the second unevenness was formed.
  • An anode that is an ITO film was formed by depositing ITO on the surface of the optical path changing functional layer (surface opposite to the barrier layer) by reactive sputtering using ITO as a target.
  • a hole emitting layer, an organic light emitting layer and an electron transporting layer were laminated in this order to form a white light emitting layer.
  • a buffer layer was provided between the anode and the white light emitting layer, and between the cathode and the white light emitting layer. That is, a buffer layer / hole transport layer / organic light emitting layer / electron transport layer / buffer layer were sequentially laminated on the ITO film as an anode.
  • the buffer layer provided between the anode and the hole transport layer was formed using copper phthalocyanine (CuPc).
  • the hole transport layer was formed of a material obtained by doping 1% rubrene into diphenylnaphthyldiamine ( ⁇ -NPD).
  • the organic light emitting layer was formed of a material obtained by doping 1% perylene with dinaphthylanthracene.
  • the electron transport layer was formed using a quinolinol aluminum complex (Alq 3 ).
  • the buffer layer provided on the electron transport layer was formed using lithium fluoride (LiF). This formed the organic EL layer containing a white light emitting layer.
  • Al and Ag were deposited on the organic EL layer by a reactive sputtering method using aluminum (Al) and silver (Ag) as targets, thereby forming a cathode which was an Al and Ag mixed film.
  • the organic EL element of Example 1 was produced.
  • Example 2 Example 1 except that the light extraction lens is formed so that the first unevenness is irregularly arranged and the optical path changing functional layer is formed so that the second unevenness is irregularly arranged. Similarly, an organic EL device of Example 2 was produced. ⁇ Example 3> An organic EL device of Example 3 was produced in the same manner as in Example 1 except that the optical path changing functional layer was formed so that the second unevenness was irregularly arranged.
  • Example 4 An organic EL element of Example 4 was produced in the same manner as in Example 1 except that the light extraction lens was formed so that the first unevenness was irregularly arranged.
  • Example 5> An uneven shape corresponding to the shape of the second unevenness formed on the optical path changing functional layer is propagated to the anode, the organic EL layer and the cathode formed on the optical path changing functional layer, and the interface between the anode and the organic EL layer And the uneven
  • Comparative Example 5 An organic EL device of Comparative Example 5 was produced in the same manner as in Example 1 except that a 0.7 mm thick glass substrate was used as the transparent substrate and no barrier layer was provided.
  • the transparent base material of the comparative example 5 is a non-flexible board
  • substrate which cannot endure the bending of 100 times in the bending test which bends a transparent base material to R 15mm, and bending rigidity is 2.16N * m ⁇ 2 >. Met.
  • the following organic EL elements were prepared as reference examples serving as evaluation criteria.
  • a glass substrate having a thickness of 0.7 mm was used as a transparent substrate, and a light extraction lens was formed by attaching a microlens sheet to the light emitting surface of the glass substrate via an adhesive layer.
  • the barrier layer was not provided in the surface on the opposite side to the light-projection surface of a glass substrate, and the optical path change functional layer which does not provide a 2nd unevenness
  • an organic EL element of a reference example was produced in the same manner as in Example 1.
  • the organic EL elements of the examples and comparative examples were evaluated in terms of light extraction efficiency, application range, workability, life, and cost.
  • the evaluation criteria were as follows. (Light extraction efficiency) If the total luminous flux is measured using an integrating sphere and the total luminous flux is 1.5 times or more than the total luminous flux of the organic EL element of the reference example, “ ⁇ ”, the total luminous flux is the organic EL element of the reference example If it was 1.1 times or more of the total luminous flux, “ ⁇ ”, and if it was less than the total luminous flux of the organic EL element of the reference example, “x”.
  • a transparent base material having flexibility, a light extraction lens having irregularities on the light exit surface, a barrier layer, and an optical path changing functional layer having irregularities on the surface opposite to the barrier layer An organic EL device having an anode, an organic EL layer, and a cathode is excellent in light extraction efficiency, and has a higher evaluation than the organic EL device of the reference example in terms of application range, workability, life and manufacturing cost. Obtained.
  • the shape of the irregularities formed on the surface opposite to the barrier layer of the optical path changing functional layer affects the anode, the organic EL layer and the cathode, and the irregularities corresponding to the irregularities are the anode, the organic EL layer and the cathode.
  • Example 5 formed in the above the light extraction efficiency was further improved.
  • the lifetime of the organic EL element of Comparative Example 2 using a PET film as a transparent substrate and not having a barrier layer was reduced. This is considered to be because moisture permeates the organic EL element and the organic EL element deteriorates.
  • the light extraction efficiency was lowered. This is considered to be because the plasmon loss on the electrode surface cannot be suppressed because the unevenness is not provided on the anode side surface of the optical path changing functional layer.
  • the cost increased with a decrease in light extraction efficiency and a decrease in workability. This is because light extraction efficiency decreases due to light absorption in the adhesive layer, and it is necessary to increase the number of processing lines such as a light extraction film production line and a light extraction film sticking line, and an additional adhesive is required. Because.
  • Comparative Example 5 using a glass substrate as the transparent substrate, the application range and workability were reduced, and the cost was increased. This is considered to be because use of a glass substrate reduces flexibility, limits the shape, and makes it difficult to process with a roll-to-roll.
  • the transparent substrate, the light extraction lens having the first unevenness on the surface opposite to the surface of the transparent substrate provided on one surface of the transparent substrate, and the other of the transparent substrate A barrier layer provided on the surface, an optical path changing functional layer provided on the barrier layer, an anode provided on the optical path changing functional layer, an organic EL layer provided on the anode, and an organic EL layer
  • a transparent substrate having a flexural rigidity of 0.02 N ⁇ m 2 or less, and the optical path changing functional layer has second irregularities on the surface on the anode side, and at the interface of each layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A broad range of uses is realized by improving the light extraction efficiency of an organic electroluminescent device. An organic electroluminescent element comprises: a transparent substrate; a light-extracting lens that is provided to one surface of the transparent substrate and has a first raised-and-recessed section on the surface opposite to the transparent substrate-side surface; a barrier layer provided to the other surface of the transparent substrate; a light-path-modifying functional layer provided on top of the barrier layer; a positive electrode provided on top of the light-path-modifying functional layer; an organic electroluminescent layer provided on top of the positive electrode; and a negative electrode provided on top of the organic electroluminescent layer. The transparent substrate has a bending rigidity of 0.02 N·m2 or less. The light-path-modifying functional layer has a second raised-and-recessed section on the positive electrode-side surface. There are no bonding layers or adhesive layers interposed between the interfaces of the layers.

Description

有機EL素子及び有機EL素子の製造方法、並びに有機EL照明装置及び有機EL表示装置Organic EL element, organic EL element manufacturing method, organic EL lighting device, and organic EL display device
 本発明は、有機EL(Electro Luminescence:電界発光)素子及び有機EL素子の製造方法、並びに有機EL照明装置及び有機EL表示装置に関する。 The present invention relates to an organic EL (Electro Luminescence) element, an organic EL element manufacturing method, an organic EL lighting device, and an organic EL display device.
 有機EL素子は、自発光による広視野角、高速応答、薄型軽量などの利点から、携帯電話やデジタルカメラのディスプレイ、更には照明機器に応用されている。
 一般に、有機EL素子は、正孔注入層、正孔輸送層、インターレイヤー層、発光層、電子輸送層及び電子注入層を順に積層した積層体を陽極と陰極とで挟んだ電極積層体が、陽極が透光性基板に対向するようにして透光性基板上に設けられた構造を有している。有機EL素子は、上述した陽極と陰極に直流電圧を印加し、発光層に電子および正孔を注入して再結合させることにより励起子を生成し、この励起子の失活する際の光の放出を利用して発光に至る。
Organic EL elements have been applied to displays for mobile phones and digital cameras, and to lighting devices because of their advantages such as wide viewing angle due to self-emission, high-speed response, and thin and light weight.
In general, an organic EL element has an electrode stack in which a hole stack, a hole transport layer, an interlayer, a light emitting layer, an electron transport layer, and an electron injection layer are stacked in this order between an anode and a cathode. The anode has a structure provided on the light-transmitting substrate so that the anode faces the light-transmitting substrate. The organic EL element generates excitons by applying a DC voltage to the anode and cathode described above, injecting electrons and holes into the light emitting layer and recombining them, and the light generated when the excitons are deactivated. Light emission occurs using the emission.
 従来、有機EL素子において、発光層からの光が有機EL素子の発光側面である透光性基板から射出される際、光の一部が透光性基板と空気との界面や、陽極と透光性基板との界面において全反射してしまい、外部に取り出す光量が損失するという問題があった。また、発光層からの光が、金属電極側に入射し、金属電極の自由電子と結合して表面プラズモンポラリトンとして金属電極に補足され、最終的に吸収されるプラズモン損失と呼ばれる損失も存在する。プラズモン損失による光の損失率は約50%とも言われており、この場合の外部に取り出す光の光取り出し効率は、一般的には20%程度と言われている。そのため、高輝度の表示や照明が必要となればなるほど投入電力を大きくする必要があり、有機EL素子に大電流が流れることから、有機EL素子の負荷が増大し、輝度低下や低寿命化を招来して有機EL素子自体の信頼性が低下する。 Conventionally, in an organic EL element, when light from a light emitting layer is emitted from a translucent substrate that is a light emitting side surface of the organic EL element, a part of the light is transmitted through an interface between the translucent substrate and air, an anode, There is a problem that the total amount of light reflected at the interface with the optical substrate is lost, and the amount of light extracted outside is lost. In addition, there is a loss called plasmon loss that light from the light emitting layer enters the metal electrode side, is combined with free electrons of the metal electrode, is captured by the metal electrode as surface plasmon polariton, and is finally absorbed. The light loss rate due to plasmon loss is said to be about 50%, and the light extraction efficiency of light extracted outside in this case is generally said to be about 20%. Therefore, it is necessary to increase the input power as the display and illumination with high brightness are required. Since a large current flows through the organic EL element, the load on the organic EL element increases, resulting in a decrease in luminance and a reduction in lifetime. Inviting, the reliability of the organic EL element itself is lowered.
 この問題を受けて、有機EL素子の光取出し効率を上げる試みが種々実施されている。例えば、特許文献1,2,5,7-9に開示されているように、透光性基板の外部にレンズ形状を付与した光取出し率向上フィルムを貼付することにより透光性基板と空気との界面での全反射光量を低減させることが検討されている。また、特許文献1,3及び8に開示されているように、陽極であるITO(Indium Tin Oxide)等の透明電極と透光性基板との間に光散乱層を挿入することにより、陽極と透光性基板との間の全反射光量を低減させることが検討されている。これにより、有機EL素子全体として、光取出し効率を向上させることが試みられている。 In response to this problem, various attempts have been made to increase the light extraction efficiency of organic EL elements. For example, as disclosed in Patent Documents 1, 2, 5, and 7-9, by attaching a light extraction rate improving film having a lens shape to the outside of the translucent substrate, the translucent substrate and air Reducing the amount of total reflected light at the interface has been studied. Further, as disclosed in Patent Documents 1, 3 and 8, by inserting a light scattering layer between a transparent electrode such as ITO (Indium Tin Oxide) which is an anode and a translucent substrate, It has been studied to reduce the total amount of light reflected from the light-transmitting substrate. Thereby, it is attempted to improve the light extraction efficiency as the whole organic EL element.
 また、透明基材側での全反射による発光損失よりも、金属電極側でのプラズモン損失の割合の方が大きい為、近年では、プラズモン損失の回避方法も種々研究されてきている。例えば、特許文献4,5に開示されているように、ITO等の透明電極・有機層・金属電極の各層に凹凸構造を設けて金属電極表面での光吸収を抑制することにより金属表面の自由電子との結合を回避したりする方法が提案されてきている。また、特許文献11,12,13に開示されているように、発光層から金属電極までの距離を広げる(電子輸送層/注入層の厚膜化)ことにより、金属表面の自由電子との結合を回避したりする方法が提案されてきている。
 また、特許文献6,10に開示されているように、ガスバリア膜やフレキシブル電極の性能を向上させ、フレキシブル基材を用いて素子化することで、有機EL素子の用途拡大を試みることも提案されている。
Further, since the ratio of plasmon loss on the metal electrode side is larger than the light emission loss due to total reflection on the transparent substrate side, various methods for avoiding plasmon loss have been studied in recent years. For example, as disclosed in Patent Documents 4 and 5, the surface of the metal electrode is freed by suppressing the light absorption on the surface of the metal electrode by providing a concavo-convex structure on each layer of the transparent electrode such as ITO, the organic layer, and the metal electrode. Methods have been proposed to avoid coupling with electrons. Further, as disclosed in Patent Documents 11, 12, and 13, the distance from the light emitting layer to the metal electrode is increased (by increasing the thickness of the electron transport layer / injection layer), thereby coupling with free electrons on the metal surface. A method for avoiding the problem has been proposed.
In addition, as disclosed in Patent Documents 6 and 10, it is also proposed to try to expand the use of organic EL elements by improving the performance of gas barrier films and flexible electrodes and using flexible substrates as elements. ing.
特開2011-248104号公報JP 2011-248104 A 特開2010-182449号公報JP 2010-182449 A 国際公開第2009/116531号International Publication No. 2009/116531 特開2014-123533号公報JP 2014-123533 A 国際公開第2013/187149号International Publication No. 2013/187149 特開2009-54420号公報JP 2009-54420 A 特開2010-040211号公報JP 2010-040221 A 特開2013-077410号公報JP2013-077741A 国際公開第2012/046741号International Publication No. 2012/046741 国際公開第2014/163104号International Publication No. 2014/163104 国際公開第2013/108618号International Publication No. 2013/108618 国際公開第2013/072250号International Publication No. 2013/072250 特開2014-220369号公報JP 2014-220369 A 米国特許第6967437号明細書US Pat. No. 6,967,437
 しかしながら、光取出し効率の向上のために、リジットな基板を用いて有機EL素子を形成した場合、有機EL素子が可撓性に乏しく用途が限定されている。また、可撓性に優れたフレキシブルな有機EL素子では、光取出し効率が不十分であり、光取出し効率がリジットな基板を用いた有機EL素子に及ばない場合があるという問題がある。また、例えば、特許文献14に開示されているように、素子内の複数の層に凹凸構造を設けて光効率を向上させたフレキシブルな有機EL素子も開発されているが、光が外部に射出される際に、外側に広がる光が多く、明るさとして有効に機能していない例もある。
 本発明は、上述の問題点を鑑みてなされたものであり、高い光取出し効率を示し、用途範囲が広い有機EL素子及び有機EL素子の製造方法、並びに有機EL照明装置及び有機EL表示装置の提供を目的とする。
However, when an organic EL element is formed using a rigid substrate in order to improve the light extraction efficiency, the organic EL element has poor flexibility and uses are limited. In addition, a flexible organic EL element having excellent flexibility has a problem that light extraction efficiency is insufficient, and the light extraction efficiency may not reach that of an organic EL element using a rigid substrate. In addition, for example, as disclosed in Patent Document 14, a flexible organic EL element in which an uneven structure is provided in a plurality of layers in the element to improve light efficiency has been developed, but light is emitted to the outside. In some cases, there is a lot of light spreading outside, and it does not function effectively as brightness.
The present invention has been made in view of the above-described problems, and exhibits high light extraction efficiency, a wide range of applications, and a method for manufacturing an organic EL element, an organic EL lighting device, and an organic EL display device. For the purpose of provision.
 上記目的を達成する為に、本発明の一態様に係る有機EL素子は、透明基材と、前記透明基材の一方の面に設けられた、前記透明基材側の面と逆側の面に第一の凹凸を有する光取出しレンズと、前記透明基材の他方の面に設けられたバリア層と、前記バリア層上に設けられた光路変更機能層と、前記光路変更機能層上に設けられた陽極と、前記陽極上に設けられた有機EL層と、前記有機EL層上に設けられた陰極と、を備え、前記透明基材は、曲げ剛性が0.02N・m以下であり、前記光路変更機能層は、前記陽極側の面に第二の凹凸を有し、各層の界面に接着層及び粘着層が介在しないことを特徴とする。 In order to achieve the above object, an organic EL device according to an aspect of the present invention includes a transparent substrate and a surface opposite to the surface on the transparent substrate side provided on one surface of the transparent substrate. A light extraction lens having first unevenness, a barrier layer provided on the other surface of the transparent substrate, an optical path changing functional layer provided on the barrier layer, and an optical path changing functional layer. And a cathode provided on the organic EL layer, wherein the transparent substrate has a flexural rigidity of 0.02 N · m 2 or less. The optical path changing functional layer has a second unevenness on the surface on the anode side, and an adhesive layer and an adhesive layer are not interposed at the interface between the layers.
 また、本発明の一態様に係る有機EL素子の製造方法は、曲げ剛性が0.02N・m以下の透明基材の一方の面に、透明の樹脂材料を含む無機フィラー混合樹脂を塗布し、前記無機フィラー混合樹脂に第一の凹凸を転写して硬化させることにより光取出しレンズを形成する光取出しレンズ形成工程と、前記透明基材の他方の面に、無機材料により形成された無機材料膜を少なくとも有するバリア層を形成するバリア層形成工程と、前記バリア層上に、透明の樹脂材料を含む無機フィラー混合樹脂を塗布し、前記無機フィラー混合樹脂に第二の凹凸を転写して硬化させることにより光路変更機能層を形成する光路変更機能層形成工程と、前記光路変更機能層上に陽極を形成する陽極形成工程と、前記陽極上に発光層を含む有機EL層を形成する有機EL層形成工程と、前記有機EL層上に陰極を形成する陰極形成工程と、を有することを特徴とする。 In addition, in the method for manufacturing an organic EL element according to one embodiment of the present invention, an inorganic filler mixed resin containing a transparent resin material is applied to one surface of a transparent substrate having a flexural rigidity of 0.02 N · m 2 or less. A light extraction lens forming step of forming a light extraction lens by transferring and curing the first unevenness to the inorganic filler mixed resin, and an inorganic material formed of an inorganic material on the other surface of the transparent substrate A barrier layer forming step of forming a barrier layer having at least a film, and applying an inorganic filler mixed resin containing a transparent resin material on the barrier layer, transferring and curing the second irregularities on the inorganic filler mixed resin Forming an optical path changing functional layer, forming an anode on the optical path changing functional layer, and forming an organic EL layer including a light emitting layer on the anode. An organic EL layer forming step, and a cathode forming step of forming a cathode on the organic EL layer.
 本発明の一態様に係る有機EL照明装置は、上述した有機EL素子を用いることを特徴とする。
 本発明の一態様に係る有機EL表示装置は、上述した有機EL素子を用いることを特徴とする。
An organic EL lighting device according to one embodiment of the present invention uses the above-described organic EL element.
An organic EL display device according to one embodiment of the present invention uses the above-described organic EL element.
 本発明によれば、従来よりも光取出し効率が高く、用途範囲が広い有機EL素子及び有機EL素子の製造方法、並びに有機EL照明装置及び有機EL表示装置を提供することが可能となる。 According to the present invention, it is possible to provide an organic EL element having a higher light extraction efficiency and a wider application range than the conventional one, a method for manufacturing the organic EL element, an organic EL lighting device, and an organic EL display device.
本発明の第一の実施形態に係る有機EL素子の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the organic EL element which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る有機EL素子の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the organic EL element which concerns on 2nd embodiment of this invention. 本発明の実施形態に係る有機EL素子を備えた有機EL照明装置の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the organic electroluminescent illuminating device provided with the organic electroluminescent element which concerns on embodiment of this invention. 本発明の実施形態に係る有機EL素子を封止した状態の一構成例を示す断面図である。It is sectional drawing which shows one structural example in the state which sealed the organic EL element which concerns on embodiment of this invention. 本発明の実施形態に係る有機EL素子を備えた有機EL表示装置の一構成例を示す断面図である。It is sectional drawing which shows one structural example of the organic electroluminescent display apparatus provided with the organic electroluminescent element which concerns on embodiment of this invention.
1.第一の実施形態
 以下、第一の実施形態に係る有機EL素子10について説明する。なお、第一の実施形態に係る有機EL素子10の形状について図面を元に説明するが、同様又は類似した機能を発揮する構成要素には全ての図面を通じて同一の参照符号を付し、重複する説明は省略する。また、第一の実施形態で説明する有機EL素子10の形状はあくまで一構成例であり、図示した形状に限ったものではなく、所望の用途・性能に応じて適宜選択することが可能である。更に、各図面は第一の実施形態に係る有機EL素子の模式図であり、各部位の縮尺は実際の本実施形態に係る有機EL素子の構成とは一致しない。
1. First Embodiment Hereinafter, an organic EL element 10 according to a first embodiment will be described. In addition, although the shape of the organic EL element 10 according to the first embodiment will be described with reference to the drawings, the same reference numerals are assigned to the same or similar constituent elements throughout the drawings, and the same. Description is omitted. In addition, the shape of the organic EL element 10 described in the first embodiment is merely a configuration example, and is not limited to the illustrated shape, and can be appropriately selected according to a desired application / performance. . Furthermore, each drawing is a schematic diagram of the organic EL element according to the first embodiment, and the scale of each part does not match the actual configuration of the organic EL element according to this embodiment.
(1-1)有機EL素子の構成
 図1に示すように、本実施形態に係る有機EL素子10は、透明基材11と、光取出しレンズ17と、バリア層12と、光路変更機能層13と、陽極14と、有機EL層15と、陰極16と、を備えている。有機EL素子10は、透明基材11の光出射面11b側に第一の凹凸を有する光取出しレンズを有している。有機EL素子10において、透明基材11の一方の面には、凹凸17aを有する光取出しレンズ17が形成されている。また、有機EL素子10において、透明基材11の他方の面には、バリア層12と、光路変更機能層13と、陽極14と、有機EL層15と、陰極16とがこの順に積層されて形成されている。光路変更機能層13は、陽極14に対向する面に凹凸13aを有している。
(1-1) Configuration of Organic EL Element As shown in FIG. 1, the organic EL element 10 according to the present embodiment includes a transparent substrate 11, a light extraction lens 17, a barrier layer 12, and an optical path changing functional layer 13. And an anode 14, an organic EL layer 15, and a cathode 16. The organic EL element 10 has a light extraction lens having first irregularities on the light emitting surface 11 b side of the transparent base material 11. In the organic EL element 10, a light extraction lens 17 having unevenness 17 a is formed on one surface of the transparent substrate 11. In the organic EL element 10, a barrier layer 12, an optical path changing function layer 13, an anode 14, an organic EL layer 15, and a cathode 16 are laminated in this order on the other surface of the transparent substrate 11. Is formed. The optical path changing functional layer 13 has irregularities 13 a on the surface facing the anode 14.
 有機EL素子10の厚さは、可撓性を発現可能な範囲であれば特に限定されないが、フレキシブル性の面から、0.5mm未満であることが好ましい。
 このような有機EL素子10では、各層の界面に接着層又は粘着層が介在していない。このため、有機EL素子10の厚みを薄くすることができ、有機EL素子10が高いフレキシブル性を有する。また、接着層又は粘着層が介在しないことにより、接着層又は若しくは粘着層での光吸収による効率低下や材料費の増加というデメリットに加え、光取出しフィルムの作製ライン、素子化ライン、貼合ライン及び加工ラインの増加につながる点で、不都合がある。
Although the thickness of the organic EL element 10 will not be specifically limited if it is a range which can express flexibility, It is preferable that it is less than 0.5 mm from the surface of flexibility.
In such an organic EL element 10, an adhesive layer or an adhesive layer is not interposed at the interface between the layers. For this reason, the thickness of the organic EL element 10 can be reduced, and the organic EL element 10 has high flexibility. In addition to the demerits of reduced efficiency and increased material costs due to light absorption in the adhesive layer or the adhesive layer due to the absence of the adhesive layer or adhesive layer, the light extraction film production line, elementization line, and bonding line In addition, there is a disadvantage in that it leads to an increase in processing lines.
 なお、有機EL素子10を有機ELパネルとして完成させ、大気中で使用するためには、陰極16の上面に、水分や空気による有機EL素子10の劣化を軽減させるための封止基材(図示せず)を設ける必要がある。
 以下、有機EL素子10の各部について、詳細に説明する。
In order to complete the organic EL element 10 as an organic EL panel and use it in the atmosphere, a sealing base material for reducing deterioration of the organic EL element 10 due to moisture or air on the upper surface of the cathode 16 (see FIG. Need to be provided).
Hereinafter, each part of the organic EL element 10 will be described in detail.
<透明基材>
 透明基材11は、光透過性を有する透明材料により形成されている。フレキシブルな有機EL素子10を用いた照明装置では、デザイン照明など特殊な形状を表現するために、さまざまな折り曲げ形状を可能にする必要がある。このため、有機EL素子10のフレキシブル性の指標としては、有機EL素子10を折り曲げた際の折り曲げ部の曲率半径Rが15mm程度以下であることが必要である。この時、上述した曲率半径Rと有機EL素子10を構成する材料の特性との関連性を鑑みた場合、曲げ剛性との相関を見ることが一般的である。また、有機EL素子10において、その厚みのほとんどを透明基材11の厚みが占めている。
<Transparent substrate>
The transparent substrate 11 is formed of a transparent material having light transmittance. In a lighting device using the flexible organic EL element 10, it is necessary to enable various bent shapes in order to express a special shape such as design illumination. For this reason, as an index of the flexibility of the organic EL element 10, the radius of curvature R of the bent portion when the organic EL element 10 is bent needs to be about 15 mm or less. At this time, in view of the relationship between the radius of curvature R and the characteristics of the material constituting the organic EL element 10, it is common to see the correlation with the bending rigidity. Moreover, in the organic EL element 10, the thickness of the transparent base material 11 occupies most of the thickness.
 このため、有機EL素子10において曲げ部分の曲率半径R=15mm程度以下を実現するために、透明基材11は、曲げ剛性が0.02N・m以下であることが好ましく、0.01N・m以下であることがより好ましい。透明基材11が、上述した曲げ剛性を有することにより、有機EL素子10を曲げた際の曲げ部分の曲率半径を16.5mm以下、好ましくは14.0mm以下とすることができる。これにより、有機EL素子10の柔軟性が十分に高くなる。 For this reason, in order to realize the curvature radius R of the bent portion in the organic EL element 10 of about 15 mm or less, the transparent base material 11 preferably has a bending rigidity of 0.02 N · m 2 or less, 0.01 N · More preferably, it is m 2 or less. When the transparent substrate 11 has the bending rigidity described above, the radius of curvature of the bent portion when the organic EL element 10 is bent can be 16.5 mm or less, preferably 14.0 mm or less. Thereby, the flexibility of the organic EL element 10 is sufficiently increased.
 なお、透明基材としてガラス基板を用いる場合、曲げ部分の曲率半径R=15mm程度以下を実現するためには透明基材の厚さを0.03mm以下とする必要がある。このため、透明基材11としてガラス基板を用いることは現実的ではない。
 透明基材11は、例えば樹脂材料により形成されることが好ましく、具体的には、ポリエチレンテレフタレート(PET)やポリカーボネート(PC)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)等により形成されることが好ましい。中でも、透明基材11の樹脂材料として、耐熱性や耐寒性、強度に優れ、透明度が高く、かつ耐薬品性に優れたポリエチレンテレフタレート(PET)が用いられることが好ましい。なお、透明基材11の材料はこれらに限定されるものではなく、任意に選択可能である。
In addition, when using a glass substrate as a transparent base material, in order to implement | achieve the curvature radius R = about 15 mm or less of a bending part, it is necessary to make the thickness of a transparent base material 0.03 mm or less. For this reason, it is not realistic to use a glass substrate as the transparent base material 11.
The transparent substrate 11 is preferably formed of, for example, a resin material, and specifically, formed of polyethylene terephthalate (PET), polycarbonate (PC), polyethylene naphthalate (PEN), polyimide (PI), or the like. Is preferred. Among them, as the resin material for the transparent substrate 11, it is preferable to use polyethylene terephthalate (PET) that is excellent in heat resistance, cold resistance, strength, high transparency, and chemical resistance. In addition, the material of the transparent base material 11 is not limited to these, It can select arbitrarily.
 透明基材11の厚さは、0.35mm以下であることが好ましく、0.3mm以下であることがより好ましい。透明基材11の厚さをこの範囲とした場合、有機EL素子10の曲げ部分において上述した曲率半径が実現し有機EL素子10の柔軟性が高くなるとともに、ロールtoロール法等による有機EL素子10の製造が可能となる。これにより、製造ラインを削減することが可能となり、有機EL素子10の生産が容易となる。 The thickness of the transparent substrate 11 is preferably 0.35 mm or less, and more preferably 0.3 mm or less. When the thickness of the transparent substrate 11 is within this range, the above-described radius of curvature is realized at the bent portion of the organic EL element 10 to increase the flexibility of the organic EL element 10, and the organic EL element by a roll-to-roll method or the like. 10 can be manufactured. Thereby, it becomes possible to reduce a production line, and production of the organic EL element 10 becomes easy.
 また、透明基材11の厚さは、0.01mm以上であることが好ましく、0.05mm以上であることがより好ましい。透明基材11の厚さをこの範囲とした場合、有機EL素子10の基材として必要な最低限の強度を得られるとともに、バリア層12や陽極14、陰極16等を構成する金属膜のそれぞれにクラックが生じることを抑制することができる。透明基材11の厚さをこの範囲よりも薄くすると、折れ痕やシワが発生しやすくなり、照明としての平面性を維持することが困難となる。 Further, the thickness of the transparent substrate 11 is preferably 0.01 mm or more, and more preferably 0.05 mm or more. When the thickness of the transparent substrate 11 is within this range, the minimum strength required for the substrate of the organic EL element 10 can be obtained, and each of the metal films constituting the barrier layer 12, the anode 14, the cathode 16, etc. It is possible to suppress cracks from occurring. If the thickness of the transparent base material 11 is made thinner than this range, fold marks and wrinkles are likely to occur, and it becomes difficult to maintain flatness as illumination.
<光取出しレンズ>
 光取出しレンズ17は、透明基材11の光出射面である透明基材11と空気との界面における全反射光量を低減させる機能を有する層である。光取出しレンズ17は、透明基材11の一方の面(上述した光出射面11b)に設けられ、凹凸17aを有している。
 凹凸17aは、規則的に配列されていてもよく、不規則に配列されていてもよい。また、凹凸17aは、後述する光路変更機能層13の凹凸13aが不規則的に配列されている場合には規則に配列され、凹凸13aが規則的に配列されている場合には不規則に配列されていてもよい。
 光取出しレンズ17は、有機物と無機物との混合層であることが好ましく、具体的には、透明の樹脂材料を含む無機フィラー混合樹脂により形成されることが好ましい。
<Light extraction lens>
The light extraction lens 17 is a layer having a function of reducing the amount of total reflected light at the interface between the transparent substrate 11 and the air, which is the light emission surface of the transparent substrate 11. The light extraction lens 17 is provided on one surface of the transparent substrate 11 (the light emission surface 11b described above) and has an unevenness 17a.
The irregularities 17a may be regularly arranged or irregularly arranged. The unevenness 17a is regularly arranged when the unevenness 13a of the optical path changing function layer 13 to be described later is irregularly arranged, and irregularly arranged when the unevenness 13a is regularly arranged. May be.
The light extraction lens 17 is preferably a mixed layer of an organic substance and an inorganic substance. Specifically, the light extraction lens 17 is preferably formed of an inorganic filler mixed resin containing a transparent resin material.
 光取出しレンズ17に用いる透明の樹脂材料としては、透明基材11との密着性が良好であれば、紫外線硬化型樹脂や熱可塑性樹脂、熱硬化性樹脂等のどの樹脂材料でも用いることができる。なかでも、加工時のエネルギー使用量や型を用いての形状転写の簡便さを考慮すると、光取出しレンズ17に用いる透明の樹脂材料としては、紫外線硬化型樹脂を用いることが好ましい。また、無機物としては、例えば、金属及び金属化合物の少なくともいずれか一種からなる無機フィラーを用いることができる。金属化合物としては、例えば、金属酸化物及び金属窒化物の少なくともいずれか一種を用いることができる。具体的に、金属としては、反射率が高い銀やアルミニウム等の金属粒子等を用いることができる。また、金属化合物としては、酸化チタンや酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、窒化ケイ素、スズ添加酸化インジウム等を用いることができる。樹脂材料としては、例えば、透明基材11を構成する樹脂材料と屈折率が異なる樹脂材料を用いることができる。具体的に、樹脂材料としては、メタクリル樹脂やポリウレタン樹脂、シリコーン樹脂等を用いることができる。なお、無機フィラー及び樹脂材料のそれぞれは、光散乱性や屈折率、光透過率等の光学特性を鑑み、1種類が単独で用いられてもよく、2種類以上を混合したものが用いられてもよい。 As the transparent resin material used for the light extraction lens 17, any resin material such as an ultraviolet curable resin, a thermoplastic resin, and a thermosetting resin can be used as long as the adhesion to the transparent substrate 11 is good. . In particular, considering the amount of energy used during processing and the ease of shape transfer using a mold, it is preferable to use an ultraviolet curable resin as the transparent resin material used for the light extraction lens 17. Moreover, as an inorganic substance, the inorganic filler which consists of at least any one of a metal and a metal compound can be used, for example. As the metal compound, for example, at least one of metal oxide and metal nitride can be used. Specifically, metal particles such as silver and aluminum having a high reflectance can be used as the metal. As the metal compound, titanium oxide, silicon oxide, aluminum oxide, zirconium oxide, silicon nitride, tin-added indium oxide, or the like can be used. As the resin material, for example, a resin material having a refractive index different from that of the resin material constituting the transparent substrate 11 can be used. Specifically, a methacrylic resin, a polyurethane resin, a silicone resin, or the like can be used as the resin material. Each of the inorganic filler and the resin material may be used alone or in combination of two or more in consideration of optical properties such as light scattering, refractive index, and light transmittance. Also good.
 光取出しレンズ17においては、透明の無機フィラー混合樹脂を塗工し、無機フィラー混合樹脂の未硬化状態時又は硬化後に上から型を押し当てて型の形状を転写することで、凹凸17aを形成することができる。例えば、ロール表面に凹凸17aに対応する凹凸が形成されたロールを用い、ロールtoロール法を用いて無機フィラー混合樹脂に凹凸形状を転写することにより、無機フィラー混合樹脂に凹凸17aを形成することができる。
 また、光取出しレンズ17としては、無機フィラー混合樹脂の樹脂膜から無機フィラーをはみ出させてできる凹凸を利用しても良く、所望の性能によって、光取出しレンズ17の形成方法は適宜選択可能である。
In the light extraction lens 17, a transparent inorganic filler mixed resin is applied, and the shape of the mold is transferred by pressing the mold from above when the inorganic filler mixed resin is in an uncured state or after curing to transfer the shape of the mold. can do. For example, the unevenness 17a is formed in the inorganic filler mixed resin by using the roll having the unevenness corresponding to the unevenness 17a formed on the roll surface and transferring the uneven shape to the inorganic filler mixed resin using a roll-to-roll method. Can do.
In addition, as the light extraction lens 17, unevenness formed by protruding the inorganic filler from the resin film of the inorganic filler mixed resin may be used, and the formation method of the light extraction lens 17 can be appropriately selected depending on the desired performance. .
<バリア層>
 バリア層12は、有機EL素子10の耐久性を向上させるために、透明基材11側からの水分の影響を極力少なくする、すなわち透明基材11側から有機EL層15への水分の浸入を抑制するために設けられた層である。バリア層12は、透明基材11の光取出しレンズ17形成面とは反対側の面上、すなわち透明基材11と光路変更機能層13との間に、表面が略平坦となるように設けられる。
<Barrier layer>
The barrier layer 12 reduces the influence of moisture from the transparent substrate 11 side as much as possible in order to improve the durability of the organic EL element 10, that is, prevents moisture from entering the organic EL layer 15 from the transparent substrate 11 side. It is a layer provided for suppression. The barrier layer 12 is provided on the surface of the transparent substrate 11 opposite to the surface on which the light extraction lens 17 is formed, that is, between the transparent substrate 11 and the optical path changing functional layer 13 so that the surface is substantially flat. .
 バリア層12は、無機材料により形成された無機材料膜を少なくとも有する。例えば、バリア層12は、無機材料により形成された単層の無機材料膜であってもよく、異なる無機材料からなる複数の無機材料膜が積層された積層膜又は無機材料膜と有機材料により形成された有機材料膜とが複数層に積層された積層膜であってもよい。
 無機材料としては、例えば、酸化ケイ素や酸化アルミニウム等の金属酸化物、フッ化アルミニウムやフッ化マグネシウム等の金属フッ化物、窒化ケイ素や窒化アルミニウム、窒化炭素等の金属窒化物、酸窒化ケイ素等の金属酸窒化物、及び炭化ケイ素等の金属炭化物のうちの少なくとも一種を用いることができる。また、有機材料としては、アクリル樹脂やエポキシ樹脂、シリコーン樹脂、ポリエステル樹脂等の樹脂の少なくともいずれか一種を用いることができる。また、有機材料には、シリカゲル等の吸湿剤を混合してもよい。
The barrier layer 12 has at least an inorganic material film formed of an inorganic material. For example, the barrier layer 12 may be a single-layer inorganic material film formed of an inorganic material, and is formed of a laminated film in which a plurality of inorganic material films made of different inorganic materials are laminated or an inorganic material film and an organic material. The laminated organic material film may be a laminated film in which a plurality of layers are laminated.
Examples of inorganic materials include metal oxides such as silicon oxide and aluminum oxide, metal fluorides such as aluminum fluoride and magnesium fluoride, metal nitrides such as silicon nitride, aluminum nitride, and carbon nitride, and silicon oxynitride. At least one of metal oxynitrides and metal carbides such as silicon carbide can be used. As the organic material, at least one of resins such as acrylic resin, epoxy resin, silicone resin, and polyester resin can be used. Further, a hygroscopic agent such as silica gel may be mixed in the organic material.
 バリア層12は、CVD(Chemical Vapor Deposition)法やスパッタリング法、イオンプレーティング法、蒸着法等により形成される。特に、バリア性、被覆性及び成膜速度の観点から、CVD法により成膜された酸化ケイ素、酸窒化ケイ素又は窒化ケイ素の無機膜をバリア層12とすることが好ましい。 The barrier layer 12 is formed by a CVD (Chemical Vapor Deposition) method, a sputtering method, an ion plating method, a vapor deposition method, or the like. In particular, from the viewpoints of barrier properties, covering properties, and film formation speed, it is preferable that the barrier layer 12 be an inorganic film of silicon oxide, silicon oxynitride, or silicon nitride formed by a CVD method.
<光路変更機能層>
 光路変更機能層13は、有機EL層15の発光層から光路変更機能層13に入りバリア層12を介して透明基材11に入射する光の屈折角を変化させて、全反射条件にある光を減らすことにより光取出し効率を向上させる機能を有する。また、光路変更機能層13は、陽極側の面に凹凸13aを有することにより、光路変更機能層13と陽極14との界面での光吸収を抑制してプラズモン損失を抑制する機能を有する。凹凸13aは、規則的に配列されていてもよく、不規則に配列されていてもよい。また、凹凸13aは、光取出しレンズ17の凹凸17aが不規則的に配列されている場合には規則に配列され、凹凸17aが規則的に配列されている場合には不規則に配列されていてもよい。
<Optical path changing functional layer>
The optical path changing function layer 13 changes the refraction angle of the light that enters the optical path changing function layer 13 from the light emitting layer of the organic EL layer 15 and enters the transparent base material 11 through the barrier layer 12, so that the light is in the total reflection condition. It has a function to improve the light extraction efficiency by reducing. Further, the optical path changing function layer 13 has the function of suppressing the plasmon loss by suppressing the light absorption at the interface between the optical path changing function layer 13 and the anode 14 by having the unevenness 13a on the surface on the anode side. The irregularities 13a may be regularly arranged or irregularly arranged. The unevenness 13a is regularly arranged when the unevenness 17a of the light extraction lens 17 is irregularly arranged, and is irregularly arranged when the unevenness 17a is regularly arranged. Also good.
 光路変更機能層13は、有機物と無機物との混合層であることが好ましく、具体的には、例えば透明の樹脂材料に無機フィラーが混合された無機フィラー混合樹脂により形成される。無機フィラーとしては、例えば、金属及び金属化合物の少なくともいずれか一種を用いることができる。金属化合物としては、例えば、金属酸化物及び金属窒化物の少なくともいずれか一種を用いることができる。具体的に、金属としては、反射率が高い銀やアルミニウム等の金属粒子等を用いることができる。また、金属化合物としては、酸化チタンや酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、窒化ケイ素、スズ添加酸化インジウム等を用いることができる。樹脂材料としては、例えば、透明基材11を構成する樹脂材料と屈折率が異なる樹脂材料を用いることができる。具体的に、樹脂材料としては、メタクリル樹脂やポリウレタン樹脂、シリコーン樹脂等を挙げることができる。なお、無機フィラー及び樹脂材料のそれぞれは、1種類が単独で用いられてもよく、2種類以上を混合したものが用いられてもよい。光路変更機能層13の材料としては、例えば、無機フィラーとして酸化チタン(TiO)を含む、酸化チタン(TiO)粒子含有アクリル系紫外線硬化型樹脂を用いることが好ましい。 The optical path changing function layer 13 is preferably a mixed layer of an organic substance and an inorganic substance. Specifically, the optical path changing function layer 13 is formed of, for example, an inorganic filler mixed resin in which an inorganic filler is mixed with a transparent resin material. As the inorganic filler, for example, at least one of a metal and a metal compound can be used. As the metal compound, for example, at least one of metal oxide and metal nitride can be used. Specifically, metal particles such as silver and aluminum having a high reflectance can be used as the metal. As the metal compound, titanium oxide, silicon oxide, aluminum oxide, zirconium oxide, silicon nitride, tin-added indium oxide, or the like can be used. As the resin material, for example, a resin material having a refractive index different from that of the resin material constituting the transparent substrate 11 can be used. Specifically, examples of the resin material include methacrylic resin, polyurethane resin, and silicone resin. In addition, as for each of an inorganic filler and resin material, 1 type may be used independently and what mixed 2 or more types may be used. As a material of the optical path changing functional layer 13, for example, it is preferable to use an acrylic ultraviolet curable resin containing titanium oxide (TiO 2 ) particles containing titanium oxide (TiO 2 ) as an inorganic filler.
<陽極>
 陽極14は、光路変更機能層13上に設けられ、陰極16との間に直流電圧を印加して有機EL層15の発光層を発光させるための層である。陽極14は、有機EL層15の発光層で生じた発光光を取り出す側の電極となるため、光透過性を有する材料を適宜選択し、用途に合った光透過率が得られるようにその膜厚を調整された透明電極である。
<Anode>
The anode 14 is provided on the optical path changing function layer 13 and is a layer for applying a DC voltage to the cathode 16 to cause the light emitting layer of the organic EL layer 15 to emit light. Since the anode 14 serves as an electrode on the side from which emitted light generated in the light emitting layer of the organic EL layer 15 is extracted, a material having a light transmitting property is appropriately selected, and the film is formed so as to obtain a light transmittance suitable for the application. This is a transparent electrode with an adjusted thickness.
 陽極14は、仕事関数の大きな導電性材料により形成される。陽極14に用いられる導電性材料としては、例えば、ニッケルや銀、金、白金、パラジウム、セレン、ロジウム、ルテニウム、イリジウム、レニウム、タングステン、モリブデン、クロム、タンタル、ニオブやこれらの合金、あるいは酸化スズ(SnO)、酸化インジウムスズ(ITO:Indium Tin Oxide)、酸化亜鉛、酸化チタン等が挙げられる。
 陽極14は、CVD法やスパッタリング法、イオンプレーティング法、蒸着法等により形成される。
The anode 14 is formed of a conductive material having a large work function. Examples of the conductive material used for the anode 14 include nickel, silver, gold, platinum, palladium, selenium, rhodium, ruthenium, iridium, rhenium, tungsten, molybdenum, chromium, tantalum, niobium and alloys thereof, or tin oxide. (SnO 2 ), indium tin oxide (ITO), zinc oxide, titanium oxide and the like.
The anode 14 is formed by a CVD method, a sputtering method, an ion plating method, a vapor deposition method, or the like.
<陰極>
 陰極16は、有機EL層15上に設けられ、図示しない電源を介して陽極14と接続された金属電極であり、陽極14との間に直流電圧を印加して有機EL層15の発光層を発光させるための層である。陰極16は、有機EL層15の発光層で生じた発光光を有機EL素子10の発光面(透明基材11)側に反射させるために、反射率の良好な材料が適宜選択して用いられる。
<Cathode>
The cathode 16 is a metal electrode provided on the organic EL layer 15 and connected to the anode 14 via a power source (not shown). A DC voltage is applied between the anode 14 and the light-emitting layer of the organic EL layer 15. This is a layer for emitting light. For the cathode 16, in order to reflect the emitted light generated in the light emitting layer of the organic EL layer 15 to the light emitting surface (transparent substrate 11) side of the organic EL element 10, a material having good reflectance is appropriately selected and used. .
 陰極16は、仕事関数が小さな導電性材料を用いて構成されている。陰極16に用いられる導電性材料としては、例えば、銀やアルミニウム、インジウム等の金属、これらの金属とリチウムやマグネシウム、カルシウム等の活性な金属との合金、又はこれらの金属を積層させた積層金属層を用いることができる。また、陰極16と有機EL層15との間に、例えば、リチウムやマグネシウム、カルシウム等の活性な金属と、ハロゲンや酸素等との化合物層を薄く挿入した構造としても良い。ハロゲンとしては、フッ素や臭素等を用いることができる。
 陰極16は、CVD法やスパッタリング法、イオンプレーティング法、蒸着法等により形成される。
The cathode 16 is configured using a conductive material having a small work function. Examples of the conductive material used for the cathode 16 include metals such as silver, aluminum, and indium, alloys of these metals with active metals such as lithium, magnesium, and calcium, or laminated metals obtained by laminating these metals. Layers can be used. Further, a structure in which an active metal such as lithium, magnesium, or calcium and a compound layer of halogen, oxygen, or the like is thinly inserted between the cathode 16 and the organic EL layer 15 may be employed. As the halogen, fluorine, bromine, or the like can be used.
The cathode 16 is formed by a CVD method, a sputtering method, an ion plating method, a vapor deposition method, or the like.
<陽極及び陰極の形状>
 陽極14及び陰極16は、有機EL素子10を用いた有機EL表示装置(図示せず)の駆動方式によって適する形状にパターニングされる。例えば、有機EL表示装置の駆動方式が単純マトリックス型である場合には、この陽極14及び陰極16が互いに交差するストライプ状に形成され、これらが交差した部分が有機EL素子10となる。
<Shape of anode and cathode>
The anode 14 and the cathode 16 are patterned into a suitable shape by a driving method of an organic EL display device (not shown) using the organic EL element 10. For example, when the driving method of the organic EL display device is a simple matrix type, the anode 14 and the cathode 16 are formed in a stripe shape intersecting each other, and a portion where these intersect is the organic EL element 10.
 また、有機EL表示装置の駆動方式が画素毎に薄膜トランジスタ(Thin Film Transistor:TFT)を備えたアクティブマトリックス型である場合には、陽極14は複数配列された着色画素に対応してパターン形成される。また、この場合、陽極14は着色画素に設けられたTFTに対して、これらのTFTを覆う隔壁に形成されたコンタクトホールを介してそれぞれが接続される状態で形成されることとする。
 一方、陰極16は、有機EL層15上の一面を覆う状態で成膜されたベタ膜状に形成されて良く、各画素に共通の電極として用いられることとする。
Further, when the driving method of the organic EL display device is an active matrix type provided with a thin film transistor (TFT) for each pixel, the anode 14 is patterned in correspondence with a plurality of colored pixels arranged. . In this case, the anode 14 is formed in a state in which each of the TFTs provided in the colored pixel is connected via a contact hole formed in a partition wall covering these TFTs.
On the other hand, the cathode 16 may be formed as a solid film formed so as to cover one surface of the organic EL layer 15, and is used as a common electrode for each pixel.
<有機EL層>
 有機EL層15は、少なくとも白色の発光層(以下、白色発光層と記載する)を有する。有機EL層15は、白色発光層とともに、正孔注入層や電子注入層といった電荷注入層、及び白色発光層に正孔を輸送する正孔輸送層や白色発光層に電子を輸送する電子輸送層といった電荷輸送層を有する積層構造とされていてもよい。
<Organic EL layer>
The organic EL layer 15 has at least a white light emitting layer (hereinafter referred to as a white light emitting layer). The organic EL layer 15 includes a white light emitting layer, a charge injection layer such as a hole injection layer and an electron injection layer, a hole transport layer that transports holes to the white light emitting layer, and an electron transport layer that transports electrons to the white light emitting layer. Such a laminated structure having a charge transport layer may be used.
(白色発光層)
 白色発光層は、白色の発光光が得られれば良く、公知のものを用いることができる。白色の発光光の特性は、少なくとも赤色領域(600nm~780nm)、緑色領域(475nm~600nm)及び青色領域(380nm~475nm)の3つの領域に発光光があればよい。発光ピークは必ずしも3つあるいはそれ以上の数を必要とするのではなく、例えば2つの発光ピークでも上記の領域に発光光があればよい。しかし、広い色再現性を得るためには3つ以上の発光ピークがある白色発光層を用いることが好ましく、さらに好ましくは、上記3つの色領域のひとつ以上に発光ピークがあることが好ましい。
(White light emitting layer)
The white light-emitting layer may be any white light-emitting layer as long as white light-emitting light can be obtained. As for the characteristics of white emitted light, it is sufficient that emitted light is present in at least three regions of the red region (600 nm to 780 nm), the green region (475 nm to 600 nm), and the blue region (380 nm to 475 nm). The number of emission peaks does not necessarily need to be three or more. For example, it is only necessary to have emission light in the above region even with two emission peaks. However, in order to obtain a wide color reproducibility, it is preferable to use a white light emitting layer having three or more light emission peaks, and more preferably, one or more of the three color regions has a light emission peak.
 このような白色発光層を構成する材料としては、例えば蛍光や燐光等の発光性を発するものであれば良く、特に限定されるものではない。また、発光材料は、正孔輸送性や電子輸送性を有していてもよい。発光材料としては、色素系材料、金属錯体系材料、及び高分子系材料の少なくともいずれか一種を用いることができる。
 色素系発光材料としては、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、シロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、トリフマニルアミン誘導体、オキサジアゾールダイマー、及びピラゾリンダイマーの少なくともいずれか一種を用いることができる。
The material constituting such a white light emitting layer is not particularly limited as long as it emits light such as fluorescence or phosphorescence. In addition, the light emitting material may have a hole transport property or an electron transport property. As the light emitting material, at least one of a dye material, a metal complex material, and a polymer material can be used.
Examples of dye-based light-emitting materials include cyclopentamine derivatives, tetraphenylbutadiene derivatives, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, silole derivatives, thiophene ring compounds, pyridine At least one of a ring compound, a perinone derivative, a perylene derivative, an oligothiophene derivative, a trifumanylamine derivative, an oxadiazole dimer, and a pyrazoline dimer can be used.
 金属錯体系発光材料としては、例えば、アルミキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾール亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、及びユーロピウム錯体、及び中心金属に、AlやZn、Be等の金属、又はTbやEu、Dy等の希土類金属を有し、配位子に、オキサジアゾールやチアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造等を有する金属錯体の少なくともいずれか一種を用いることができる。 As the metal complex light emitting material, for example, an aluminum quinolinol complex, a benzoquinolinol beryllium complex, a benzoxazole zinc complex, a benzothiazole zinc complex, an azomethylzinc complex, a porphyrin zinc complex, a europium complex, and a central metal, Al or Zn, A metal complex having a metal such as Be or a rare earth metal such as Tb, Eu, or Dy, and having a oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline structure, or the like as a ligand. Can be used.
 高分子系発光材料としては、例えば、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、並びに上述した色素系材料及び金属錯体系材料を高分子化したものの少なくともいずれか一種を用いることができる。
 白色発光層の膜厚は、5nm以上5μm以下程度で形成されることが好ましい。
Examples of the polymer light-emitting material include polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, and the above-described dye materials and metal complex materials. At least one of polymerized materials can be used.
The thickness of the white light emitting layer is preferably about 5 nm to 5 μm.
(正孔注入層)
 有機EL素子10においては、白色発光層と陽極14との間に正孔注入層が形成されていても良い。正孔注入層を設けることにより、白色発光層への正孔の注入が安定化し、発光効率を高めることができるからである。
 正孔注入層の形成材料としては、一般的に有機EL素子の正孔注入層に使用されている材料を用いることができる。また、正孔注入層の形成材料は、正孔の注入性又は電子の障壁性のいずれかを有するものであれば良い。
(Hole injection layer)
In the organic EL element 10, a hole injection layer may be formed between the white light emitting layer and the anode 14. This is because by providing the hole injection layer, the injection of holes into the white light emitting layer is stabilized and the light emission efficiency can be increased.
As a material for forming the hole injection layer, a material generally used for a hole injection layer of an organic EL element can be used. The material for forming the hole injection layer may be any material that has either a hole injection property or an electron barrier property.
 具体的に、正孔注入層の形成材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ポリシラン系共重合体、アニリン系共重合体、及びチオフェンオリゴマー等の導電性高分子オリゴマーの少なくともいずれか一種を用いることができる。
 また、正孔注入層の形成材料としては、例えば、ポルフィリン化合物、芳香族第三級アミン化合物、及びスチリルアミン化合物の少なくともいずれか一種を用いることができる。
 正孔注入層の膜厚は、5nm以上1μm以下程度であることが好ましい。
Specific examples of the material for forming the hole injection layer include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives. , Oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, polysilane copolymers, aniline copolymers, and conductive polymer oligomers such as thiophene oligomers. Can do.
Moreover, as a formation material of a positive hole injection layer, at least any 1 type of a porphyrin compound, an aromatic tertiary amine compound, and a styrylamine compound can be used, for example.
The thickness of the hole injection layer is preferably about 5 nm to 1 μm.
(電子注入層)
 有機EL素子10においては、白色発光層と陰極16との間に電子注入層が形成されていても良い。電子注入層を設けることにより、白色発光層への電子の注入が安定化し、発光効率を高めることができるからである。
(Electron injection layer)
In the organic EL element 10, an electron injection layer may be formed between the white light emitting layer and the cathode 16. This is because by providing the electron injection layer, the injection of electrons into the white light emitting layer is stabilized, and the light emission efficiency can be increased.
 電子注入層の形成材料としては、例えば、ニトロ置換フルオレン誘導体、アントラキノジメタン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、カルボジイミド誘導体、フレオレニリデンメタン誘導体、アントラキノジメタン誘導体、アントロン誘導体、オキサジアゾール誘導体、オキサジアゾール誘導体のオキサジアゾール環の酸素原子を硫黄原子に置換したチアゾール誘導体、電子吸引基として知られているキノキサリン環を有したキノキサリン誘導体、トリス(8-キノリノール)アルミニウム等の8-キノリノール誘導体の金属錯体、フタロシアニン、金属フタロシアニン、及びジスチリルピラジン誘導体の少なくともいずれか一種を用いることができる。 Examples of the material for forming the electron injection layer include nitro-substituted fluorene derivatives, anthraquinodimethane derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, and heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, carbodiimide derivatives, and fluorenylidene. Methane derivatives, anthraquinodimethane derivatives, anthrone derivatives, oxadiazole derivatives, thiazole derivatives in which the oxygen atom of the oxadiazole ring of the oxadiazole derivative is substituted with a sulfur atom, and a quinoxaline ring known as an electron withdrawing group At least one of a quinoxaline derivative, a metal complex of an 8-quinolinol derivative such as tris (8-quinolinol) aluminum, a phthalocyanine, a metal phthalocyanine, and a distyrylpyrazine derivative can be used.
(正孔輸送層)
 有機EL素子10においては、正孔注入層と白色発光層との間に正孔輸送層が形成されていても良い。正孔輸送層を設けることにより、正孔注入層から白色発光層への正孔の輸送が安定化し、発光効率を高めることができるからである。
(Hole transport layer)
In the organic EL element 10, a hole transport layer may be formed between the hole injection layer and the white light emitting layer. This is because by providing the hole transport layer, the transport of holes from the hole injection layer to the white light emitting layer is stabilized, and the light emission efficiency can be increased.
 正孔輸送層の形成材料としては、例えば、下記(a)~(f)の中から選択される少なくともいずれか一種の材料を用いることができる。
 (a)銅フタロシアニンやテトラ(t-ブチル)銅フタロシアニン等の金属フタロシアニン類、無金属フタロシアニン類若しくはキナクリドン化合物の低分子正孔輸送材料、又は1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサンやN,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン等の芳香族アミン系低分子正孔輸送材料。
 (b)ポリアニリンやポリチオフェン、ポリビニルカルバゾール、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸との混合物、ポリビニルカルバゾール、ポリビニルカルバゾールの誘導体、側鎖又は主鎖に芳香族アミンを有するポリアリーレン誘導体、アリールアミン誘導体、トリフェニルジアミン誘導体等の、芳香族アミンを含む高分子正孔輸送材料。
 (c)ポリマー材料。
 (d)ポリチオフェンオリゴマー材料。
 (e)CuO、Cr、Mn、FeOx(x~0.1)、NiO、CoO、Pr、AgO、MoO、Bi、ZnO、TiO、SnO、ThO、V、Nb、Ta、MoO、WO、MnOなどの無機材料。
 (f)その他既存の正孔輸送材料。
As a material for forming the hole transport layer, for example, at least one kind of material selected from the following (a) to (f) can be used.
(A) Metal phthalocyanines such as copper phthalocyanine and tetra (t-butyl) copper phthalocyanine, metal phthalocyanines or low molecular hole transport materials of quinacridone compounds, or 1,1-bis (4-di-p-tolylamino) Phenyl) cyclohexane, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine, N, N′-di (1-naphthyl)- Aromatic amine-based low molecular hole transport materials such as N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine.
(B) Polyaniline, polythiophene, polyvinyl carbazole, a mixture of poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid, polyvinyl carbazole, a derivative of polyvinyl carbazole, a polyarylene having an aromatic amine in the side chain or main chain Polymeric hole transport materials containing aromatic amines, such as derivatives, arylamine derivatives, and triphenyldiamine derivatives.
(C) Polymer material.
(D) Polythiophene oligomer material.
(E) Cu 2 O, Cr 2 O 3 , Mn 2 O 3 , FeOx (x to 0.1), NiO, CoO, Pr 2 O 3 , Ag 2 O, MoO 2 , Bi 2 O 3 , ZnO, TiO 2 , inorganic materials such as SnO 2 , ThO 2 , V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 , MoO 3 , WO 3 and MnO 2 .
(F) Other existing hole transport materials.
(電子輸送層)
 有機EL素子10においては、電子注入層と白色発光層との間に電子輸送層が形成されていても良い。電子輸送層を設けることにより、電子注入層から白色発光層への電子の輸送が安定化し、発光効率を高めることができるからである。
 電子輸送層の形成材料としては、例えば、2-(4-ビフィニルイル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾールや2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール等のオキサジアゾール誘導体、ビス(10-ヒドロキシベンゾ[h]キノリノラート)ベリリウム錯体及びトリアゾール化合物の少なくともいずれか一種を用いることができる。
 また、これらの電子輸送材料に、ナトリウムやバリウム、リチウムといった仕事関数が低いアルカリ金属、アルカリ土類金属を少量ドープすることにより、電子注入層としてもよい。
(Electron transport layer)
In the organic EL element 10, an electron transport layer may be formed between the electron injection layer and the white light emitting layer. This is because by providing the electron transport layer, the transport of electrons from the electron injection layer to the white light emitting layer is stabilized, and the light emission efficiency can be increased.
Examples of the material for forming the electron transport layer include 2- (4-bifinylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole and 2,5-bis (1-naphthyl). At least one of oxadiazole derivatives such as -1,3,4-oxadiazole, bis (10-hydroxybenzo [h] quinolinolato) beryllium complex, and triazole compounds can be used.
Alternatively, these electron transport materials may be used as an electron injection layer by doping a small amount of alkali metal or alkaline earth metal having a low work function such as sodium, barium, or lithium.
<封止基材>
 封止基材(図示せず)は、水分や空気による有機EL素子10の劣化を軽減するために、陰極16の表面、並びに少なくとも陽極14、有機EL層15及び陰極16の側面を覆うように設けられ、保護層の機能を有する。
<Sealing substrate>
The sealing substrate (not shown) covers the surface of the cathode 16 and at least the side surfaces of the anode 14, the organic EL layer 15, and the cathode 16 in order to reduce deterioration of the organic EL element 10 due to moisture and air. Provided and has a function of a protective layer.
 封止基材としては、例えば、ポリエチレンテレフタレート(PET)やポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)等の可撓性を有する透明又は不透明な樹脂材料、及びステンレスやアルミなどの金属材料の少なくともいずれか一種を用いることができる。第一の実施形態に係る有機EL素子10は、有機EL層15からの発光光が透明基材11を介して出射されるボトムエミッション型の有機EL素子である。このため、陰極16の上面に設けられる封止基材には透光性が必要とされず、封止基材の材料として、金属材料や、不透明な樹脂材料を用いることも可能である。 Examples of the sealing substrate include flexible transparent or opaque resin materials such as polyethylene terephthalate (PET), polyethersulfone (PES), and polyethylene naphthalate (PEN), and metal materials such as stainless steel and aluminum. At least one of these can be used. The organic EL element 10 according to the first embodiment is a bottom emission type organic EL element in which emitted light from the organic EL layer 15 is emitted through the transparent substrate 11. For this reason, the sealing base provided on the upper surface of the cathode 16 does not require translucency, and it is also possible to use a metal material or an opaque resin material as the material of the sealing base.
 このような封止基材は、陰極16の表面、並びに少なくとも陽極14、有機EL層15及び陰極16の側面を覆うように樹脂材料を塗布して固化させる方法により設けることができる。また、このような封止基材は、CVD法やスパッタリング法、イオンプレーティング法、蒸着法により、陰極16の表面、並びに少なくとも陽極14、有機EL層15及び陰極16の側面を覆うように金属膜を形成する方法により形成することができる。 Such a sealing substrate can be provided by a method in which a resin material is applied and solidified so as to cover the surface of the cathode 16 and at least the side surfaces of the anode 14, the organic EL layer 15, and the cathode 16. Further, such a sealing substrate is made of a metal so as to cover the surface of the cathode 16 and at least the side surfaces of the anode 14, the organic EL layer 15, and the cathode 16 by CVD, sputtering, ion plating, or vapor deposition. It can be formed by a method of forming a film.
(1-2)有機EL素子の製造方法
 以下、有機EL素子10の製造方法について説明する。
<光取出しレンズ形成工程>
 光取出しレンズ17を形成する。まず、両面が略平坦であり、可撓性を有する、曲げ剛性が0.02N・m以下の透明基材11の一方の面に、透明の樹脂材料を含む無機フィラー混合樹脂を塗布する。次に、無機フィラー混合樹脂に凹凸17aを転写して硬化させることにより光取出しレンズ17を形成する。例えば、透明基材11の一方の面に直接無機フィラー混合樹脂を塗布した後、ロールtoロール法を用いて無機フィラー混合樹脂に凹凸形状を転写することにより、凹凸17aを有する光取出しレンズ17を形成することができる。無機フィラー混合樹脂の硬化は、選択した樹脂材料に合った方法により行われる。例えば、樹脂材料が紫外線硬化型樹脂である場合には、紫外線の照射により凹凸17aを転写した無機フィラー混合樹脂を硬化させて光取出しレンズ17を形成することができる。
(1-2) Manufacturing Method of Organic EL Element Hereinafter, a manufacturing method of the organic EL element 10 will be described.
<Light extraction lens formation process>
A light extraction lens 17 is formed. First, an inorganic filler mixed resin containing a transparent resin material is applied to one surface of the transparent base 11 having both surfaces substantially flat and flexible and having a flexural rigidity of 0.02 N · m 2 or less. Next, the light extraction lens 17 is formed by transferring the unevenness 17a to the inorganic filler mixed resin and curing it. For example, after applying the inorganic filler mixed resin directly on one surface of the transparent substrate 11, the uneven shape is transferred to the inorganic filler mixed resin using a roll-to-roll method, whereby the light extraction lens 17 having the unevenness 17a is obtained. Can be formed. Curing of the inorganic filler mixed resin is performed by a method suitable for the selected resin material. For example, when the resin material is an ultraviolet curable resin, the light extraction lens 17 can be formed by curing the inorganic filler mixed resin to which the unevenness 17a is transferred by irradiation with ultraviolet rays.
<バリア層形成工程>
 バリア層12を形成する。透明基材11の他方の面(光取出しレンズ17形成面と逆側の面)に、無機材料により形成された無機材料膜を少なくとも有するバリア層を、例えばCVD法、スパッタリング法、イオンプレーティング法又は蒸着法等により形成する。バリア層12は、無機材料膜を単層で又は複数層積層して形成してもよく、無機材料膜と有機材料膜とを複数層に積層して形成してもよい。
<Barrier layer forming step>
The barrier layer 12 is formed. A barrier layer having at least an inorganic material film formed of an inorganic material on the other surface (the surface opposite to the surface on which the light extraction lens 17 is formed) of the transparent substrate 11 is formed by, for example, a CVD method, a sputtering method, or an ion plating method. Or it forms by a vapor deposition method etc. The barrier layer 12 may be formed of a single layer or a plurality of laminated inorganic material films, or may be formed by stacking a plurality of inorganic material films and organic material films.
<光路変更機能層形成工程>
 光路変更機能層13を形成する。まず、バリア層12上に、透明の樹脂材料を含む無機フィラー混合樹脂を塗布する。続いて、無機フィラー混合樹脂に凹凸13aを転写して硬化させることにより光路変更機能層13を形成する。例えば、バリア層12(又は平坦層)上に直接無機フィラー混合樹脂を塗布した後、ロールtoロール法により無機フィラー混合樹脂に凹凸形状を転写することにより、凹凸13aを有する光路変更機能層13を形成することができる。無機フィラー混合樹脂の硬化は選択した樹脂材料に合った方法により行われる。例えば、樹脂材料が紫外線硬化型樹脂である場合には、紫外線の照射により凹凸13aを転写した無機フィラー混合樹脂を硬化させて光路変更機能層13を形成することができる。
<Optical path changing functional layer forming process>
The optical path changing function layer 13 is formed. First, an inorganic filler mixed resin containing a transparent resin material is applied on the barrier layer 12. Subsequently, the optical path changing functional layer 13 is formed by transferring the unevenness 13a to the inorganic filler mixed resin and curing it. For example, after applying the inorganic filler mixed resin directly on the barrier layer 12 (or the flat layer), the unevenness shape is transferred to the inorganic filler mixed resin by a roll-to-roll method, whereby the optical path changing function layer 13 having the unevenness 13a is formed. Can be formed. Curing of the inorganic filler mixed resin is performed by a method suitable for the selected resin material. For example, when the resin material is an ultraviolet curable resin, the optical path changing functional layer 13 can be formed by curing the inorganic filler mixed resin to which the unevenness 13a is transferred by irradiation with ultraviolet rays.
<陽極形成工程>
 陽極14を形成する。光路変更機能層13上に、CVD法やスパッタリング法、イオンプレーティング法、蒸着法等により、光透過性を有する、仕事関数の大きな導電性材料の膜が成膜されて陽極14が形成される。
<Anode formation process>
An anode 14 is formed. On the optical path changing functional layer 13, a film of a conductive material having light transmittance and a large work function is formed by a CVD method, a sputtering method, an ion plating method, a vapor deposition method or the like, and the anode 14 is formed. .
<有機EL層形成工程>
 発光層を含む有機EL層15を形成する。有機EL層15は、例えば、陽極14側から、バッファ層/正孔輸送層/白色発光層/電子輸送層/バッファ層を順に形成することにより形成される。
 白色発光層は、例えば、蒸着法や印刷法、インクジェット法、スピンコート法、キャスティング法、ディッピング法、バーコート法、ブレードコート法、ロールコート法、グラビアコート法、フレキソ印刷法、スプレーコート法、自己組織化法(交互吸着法、自己組織化単分子膜法)等により形成される。特に、蒸着法、スピンコート法、又はインクジェット法を用いることが好ましい。
<Organic EL layer formation process>
An organic EL layer 15 including a light emitting layer is formed. The organic EL layer 15 is formed, for example, by sequentially forming a buffer layer / hole transport layer / white light emitting layer / electron transport layer / buffer layer from the anode 14 side.
The white light emitting layer is, for example, a vapor deposition method, a printing method, an inkjet method, a spin coating method, a casting method, a dipping method, a bar coating method, a blade coating method, a roll coating method, a gravure coating method, a flexographic printing method, a spray coating method, It is formed by a self-assembly method (alternate adsorption method, self-assembled monolayer method) or the like. In particular, it is preferable to use a vapor deposition method, a spin coating method, or an inkjet method.
 正孔輸送層は、正孔輸送層に用いる材料に応じて、例えば、スピンコート法やバーコート法、ワイヤーコート法、スリットコート法、ダイコート法、スプレーコート法、カーテンコート法、フローコート法、凸版印刷法、凸版反転オフセット印刷法、インクジェット法、ノズルプリント法等の湿式法、又は抵抗加熱蒸着法や電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法等の蒸着法を用いることができる。
 電子輸送層の形成方法としては、用いる材料に応じて、抵抗加熱蒸着法や電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法等の真空蒸着法を用いることができる。
Depending on the material used for the hole transport layer, the hole transport layer is, for example, a spin coating method, a bar coating method, a wire coating method, a slit coating method, a die coating method, a spray coating method, a curtain coating method, a flow coating method, Wet printing methods such as letterpress printing, letterpress reverse offset printing, ink jet printing, nozzle printing, etc., or vapor deposition methods such as resistance heating vapor deposition, electron beam vapor deposition, reactive vapor deposition, ion plating, and sputtering are used. be able to.
As a method for forming the electron transport layer, a vacuum evaporation method such as a resistance heating evaporation method, an electron beam evaporation method, a reactive evaporation method, an ion plating method, or a sputtering method can be used depending on the material to be used.
<陰極形成工程>
 陰極16を形成する。有機EL層15上に、CVD法やスパッタリング法、イオンプレーティング法、蒸着法等により、反射率が良好であり、仕事関数が小さな導電性材料の膜が成膜されて陰極16が形成される。
<Cathode formation process>
A cathode 16 is formed. On the organic EL layer 15, a cathode 16 is formed by depositing a film of a conductive material having a good reflectivity and a small work function by a CVD method, a sputtering method, an ion plating method, a vapor deposition method, or the like. .
(1-3)変形例
 有機EL素子10は、バリア層12の少なくとも一方の面と接するように、すなわち透明基材11とバリア層12との間又はバリア層12と光路変更機能層13との間に、平坦層(図示せず)を備えていてもよい。平坦層は、有機EL素子10を平坦化して品質を向上させるとともに、無機層であるバリア層12と、有機層である透明基材11又は光路変更機能層13との間の密着性を向上させるため好ましい。
(1-3) Modification The organic EL element 10 is in contact with at least one surface of the barrier layer 12, that is, between the transparent substrate 11 and the barrier layer 12, or between the barrier layer 12 and the optical path changing functional layer 13. A flat layer (not shown) may be provided therebetween. The flat layer improves the quality by flattening the organic EL element 10 and improves the adhesion between the barrier layer 12 that is an inorganic layer and the transparent substrate 11 or the optical path changing functional layer 13 that is an organic layer. Therefore, it is preferable.
 平坦層を構成する材料としては、例えば、ポリエチレンやポリプロピレン、変性ポリエチレン、変性ポリプロピレン等のポリオレフィン樹脂により構成されている。なかでも、無機層と有機層との密着性が向上する観点から、ポリプロピレン、変性ポリエチレン又は変性ポリプロピレンの変性樹脂を用いることが好ましい。 The material constituting the flat layer is made of, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene. Among these, from the viewpoint of improving the adhesion between the inorganic layer and the organic layer, it is preferable to use polypropylene, modified polyethylene, or a modified resin of modified polypropylene.
 平坦層をバリア層12の少なくとも一方の面と接するように設ける場合には、バリア層形成工程の前後の少なくとも一方において、平坦層形成工程を設ける。すなわち、透明基材11の他方の面上に平坦層を形成した後、平坦層上にバリア層12を形成してもよく、また、透明基材11の他方の面上にバリア層12を形成した後、バリア層12上に平坦層を形成してもよい。
 このようにして作製した有機EL素子10を用いて、有機EL照明装置及び有機EL表示装置を得ることができる。以下、その有機EL照明装置及び有機EL表示装置の構成について、簡単に説明する。
When the flat layer is provided so as to be in contact with at least one surface of the barrier layer 12, the flat layer forming step is provided at least before and after the barrier layer forming step. That is, after forming a flat layer on the other surface of the transparent substrate 11, the barrier layer 12 may be formed on the flat layer, and the barrier layer 12 is formed on the other surface of the transparent substrate 11. After that, a flat layer may be formed on the barrier layer 12.
An organic EL lighting device and an organic EL display device can be obtained by using the organic EL element 10 thus manufactured. Hereinafter, the configurations of the organic EL lighting device and the organic EL display device will be briefly described.
(1-4)有機EL照明装置の構成
 図3に示すように、本実施形態に係る有機EL照明装置40は、有機EL素子10、即ち透明基材11と、光取出しレンズ17と、バリア層12と、光路変更機能層13と、陽極14と、有機EL層15と、陰極16と、を備えている。さらに、有機EL照明装置40は、有機EL層15を封止する封止基板32を備えている。また、陽極14と陰極16には、各電極に電圧を印可するための端子(図示せず)がそれぞれ設けられている。ここで、図3では、透明基材11と、光取出しレンズ17と、バリア層12と、光路変更機能層13と、陽極14とを含む基板を、光取出し基板34として表記している。
(1-4) Configuration of Organic EL Lighting Device As shown in FIG. 3, the organic EL lighting device 40 according to this embodiment includes an organic EL element 10, that is, a transparent substrate 11, a light extraction lens 17, and a barrier layer. 12, an optical path changing functional layer 13, an anode 14, an organic EL layer 15, and a cathode 16. Furthermore, the organic EL lighting device 40 includes a sealing substrate 32 that seals the organic EL layer 15. The anode 14 and the cathode 16 are each provided with a terminal (not shown) for applying a voltage to each electrode. Here, in FIG. 3, a substrate including the transparent base material 11, the light extraction lens 17, the barrier layer 12, the optical path changing function layer 13, and the anode 14 is represented as a light extraction substrate 34.
 このような構成の照明装置であれば、上記端子を介して陽極14及び陰極16の少なくとも一方に電圧を印可することができるので、光取出しレンズ17側から光を取り出すことができる。
 なお、封止基板32は、図3に示すように、例えば、陽極14と陰極16に接着層30を用いて固定されていてもよい。また、封止基板32の内壁に、乾燥剤31を取り付けてもよい。
In the lighting device having such a configuration, a voltage can be applied to at least one of the anode 14 and the cathode 16 through the terminal, so that light can be extracted from the light extraction lens 17 side.
As shown in FIG. 3, the sealing substrate 32 may be fixed to the anode 14 and the cathode 16 using an adhesive layer 30, for example. Further, the desiccant 31 may be attached to the inner wall of the sealing substrate 32.
(1-5)有機EL表示装置の構成
 図4は、封止基板32によって封止された有機EL素子10の構成を示している。本実施形態に係る有機EL表示装置50は、封止基板32によって封止された有機EL素子10、即ち透明基材11と、光取出しレンズ17と、バリア層12と、光路変更機能層13と、陽極14と、有機EL層15と、陰極16と、有機EL素子10全体を封止する封止基板32とを備えている。さらに、有機EL表示装置50は、図5に示すように、TFT35、ガラス基板36及び偏光板基板37をそれぞれ備えている。ここで、本実施形態に係る有機EL素子10は、画素を形成するための隔壁33を複数備えている。
(1-5) Configuration of Organic EL Display Device FIG. 4 shows the configuration of the organic EL element 10 sealed by the sealing substrate 32. The organic EL display device 50 according to this embodiment includes the organic EL element 10 sealed by the sealing substrate 32, that is, the transparent base material 11, the light extraction lens 17, the barrier layer 12, and the optical path changing functional layer 13. , An anode 14, an organic EL layer 15, a cathode 16, and a sealing substrate 32 that seals the entire organic EL element 10. Furthermore, as shown in FIG. 5, the organic EL display device 50 includes a TFT 35, a glass substrate 36, and a polarizing plate substrate 37, respectively. Here, the organic EL element 10 according to the present embodiment includes a plurality of partition walls 33 for forming pixels.
 このような構成の表示装置であれば、画素ごとに光取出しレンズ17側から光を取り出すことができる。
 なお、封止基板32は、図4及び図5に示すように、例えば、有機EL素子10全体を覆うように接着層30を用いて固定されていてもよい。また、封止基板32の内壁に、乾燥剤31を取り付けてもよい。
With the display device having such a configuration, light can be extracted from the light extraction lens 17 side for each pixel.
As shown in FIGS. 4 and 5, the sealing substrate 32 may be fixed using an adhesive layer 30 so as to cover the entire organic EL element 10, for example. Further, the desiccant 31 may be attached to the inner wall of the sealing substrate 32.
<効果>
 第一の実施形態に係る有機EL素子10は、以下の効果を得ることができる。
(1)曲げ剛性が0.02N・m以下の透明基材を用いることにより、有機EL素子において曲げ部分の曲率半径R=15mm程度以下を実現することができ、フレキシブルな有機EL素子を得ることができる。
<Effect>
The organic EL element 10 according to the first embodiment can obtain the following effects.
(1) By using a transparent base material having a bending stiffness of 0.02 N · m 2 or less, a curvature radius R of the bent portion of the organic EL element can be about 15 mm or less, and a flexible organic EL element is obtained. be able to.
(2)光路変更機能層の陽極側の面に凹凸が形成されることにより、光路変更機能層と陽極との界面での光吸収を抑制してプラズモン損失を抑制することができる。
(3)透明基材を樹脂材料により形成することにより、有機EL素子のフレキシブル性を高めることができる。
(4)バリア層を設けることにより、樹脂材料で形成された透明基材を備える有機EL素子において内部への水分浸入を抑制し、有機EL素子の耐久性を向上させる。
(2) By forming irregularities on the anode side surface of the optical path changing function layer, light absorption at the interface between the optical path changing function layer and the anode can be suppressed, and plasmon loss can be suppressed.
(3) By forming the transparent substrate with a resin material, the flexibility of the organic EL element can be enhanced.
(4) By providing a barrier layer, in an organic EL element provided with a transparent substrate formed of a resin material, moisture intrusion is suppressed, and durability of the organic EL element is improved.
(5)透明基材をポリエチレンテレフタレート(PET)により厚さ0.35mm以下で形成することにより、耐熱性や耐寒性、強度に優れ、透明度が高く、かつ耐薬品性に優れたフレキシブルな有機EL素子を得ることができる。
(6)光取出しレンズ及び光路変更機能層を、有機物と無機物との混合層とすることにより、光の散乱性を高めて、高い光路変更機能を実現することができる。
(7)規則的又は不規則に配列された第一の凹凸が光取出しレンズに形成されることにより、透光性基板と空気との界面での全反射光量を低減させることができる。一方で、本発明に関わる有機EL素子は、透明基材の光射出面に第一の凹凸を有する光取出しレンズが設けられている為、光の射出方向を任意に制御することが可能であり、射出光全体を、明るさとして有効に活用することが可能である。
(5) By forming the transparent substrate with polyethylene terephthalate (PET) with a thickness of 0.35 mm or less, a flexible organic EL having excellent heat resistance, cold resistance and strength, high transparency and excellent chemical resistance. An element can be obtained.
(6) By making the light extraction lens and the optical path changing functional layer a mixed layer of an organic substance and an inorganic substance, it is possible to improve light scattering and realize a high optical path changing function.
(7) The first unevenness arranged regularly or irregularly is formed on the light extraction lens, whereby the total amount of light reflected at the interface between the translucent substrate and air can be reduced. On the other hand, since the organic EL element according to the present invention is provided with the light extraction lens having the first unevenness on the light emission surface of the transparent substrate, it is possible to arbitrarily control the light emission direction. The entire emitted light can be effectively utilized as the brightness.
(8)規則的又は不規則に配列された第二の凹凸が光路変更機能層に形成されることにより、金属電極表面での光吸収を抑制して金属表面の自由電子との結合を回避し、プラズモン損失を抑制することができる。
(9)透明基材に対して、材料の塗布・硬化やCVD法等で直接各層を形成して有機EL素子を製造するため、各層の界面に接着層及び粘着層が介在せず、有機EL素子の厚さを薄くしてフレキシブル性を高めることができる。
(8) The second unevenness arranged regularly or irregularly is formed in the optical path changing functional layer, thereby suppressing light absorption on the surface of the metal electrode and avoiding binding with free electrons on the metal surface. , Plasmon loss can be suppressed.
(9) An organic EL element is produced by directly forming each layer on a transparent base material by applying / curing the material or by CVD, etc., and therefore there is no adhesive layer and adhesive layer at the interface of each layer, so that the organic EL The thickness of the element can be reduced to increase flexibility.
2.第二の実施形態
 以下、第二の実施形態に係る有機EL素子20について説明する。なお、第二の実施形態に係る有機EL素子20の形状について図面を元に説明するが、第一の実施形態に記載の有機EL素子10と同様又は類似した機能を発揮する構成要素には第一の実施形態で用いた参照符号と同一の参照符号を付し、重複する説明は省略する。また、第二の実施形態で説明する有機EL素子20の形状はあくまで一構成例であり、図示した形状に限ったものではなく、所望の用途・性能に応じて適宜選択することが可能である。更に、各図面は第二の実施形態に係る有機EL素子の模式図であり、各部位の縮尺は実際の本実施形態に係る有機EL素子の構成とは一致しない。
2. Second Embodiment Hereinafter, an organic EL element 20 according to a second embodiment will be described. In addition, although the shape of the organic EL element 20 according to the second embodiment will be described with reference to the drawings, the component that exhibits the same or similar function as the organic EL element 10 described in the first embodiment is the first. The same reference numerals as those used in one embodiment are attached, and the duplicate description is omitted. In addition, the shape of the organic EL element 20 described in the second embodiment is merely an example configuration, and is not limited to the illustrated shape, and can be appropriately selected according to a desired application and performance. . Furthermore, each drawing is a schematic view of the organic EL element according to the second embodiment, and the scale of each part does not match the actual configuration of the organic EL element according to this embodiment.
(2-1)有機EL素子の構成
 図2に示すように、本実施形態に係る有機EL素子20は、透明基材11と、光取出しレンズ17と、バリア層12と、光路変更機能層13と、陽極24と、有機EL層25と、陰極26と、を備えている。透明基材11、光取出しレンズ17、バリア層12及び光路変更機能層13については、第一の実施形態に係る有機EL素子10の透明基材11、光取出しレンズ17、バリア層12及び光路変更機能層13と同様の構成であるため、説明を省略する。また、有機EL素子20を有機ELパネルとして完成させ、大気中で使用するためには、第一の実施形態に係る有機EL素子10の封止に用いた封止基材と同様の封止基材(図示せず)を陰極26の上面に設ける必要がある。
 第二の実施形態に係る有機EL素子20は、光路変更機能層13に設けられた凹凸13aの形状に対応する形状の凹凸が、陽極24、有機EL層25及び陰極26にそれぞれ設けられている点で、第一の実施形態の有機EL素子10と異なる。
(2-1) Configuration of Organic EL Element As shown in FIG. 2, the organic EL element 20 according to this embodiment includes a transparent substrate 11, a light extraction lens 17, a barrier layer 12, and an optical path changing functional layer 13. An anode 24, an organic EL layer 25, and a cathode 26. About the transparent base material 11, the light extraction lens 17, the barrier layer 12, and the optical path changing functional layer 13, the transparent base material 11, the light extraction lens 17, the barrier layer 12, and the optical path change of the organic EL element 10 according to the first embodiment. Since it is the same structure as the functional layer 13, description is abbreviate | omitted. Further, in order to complete the organic EL element 20 as an organic EL panel and use it in the air, the same sealing substrate as the sealing substrate used for sealing the organic EL element 10 according to the first embodiment is used. A material (not shown) needs to be provided on the upper surface of the cathode 26.
In the organic EL element 20 according to the second embodiment, the anode 24, the organic EL layer 25, and the cathode 26 are provided with irregularities having shapes corresponding to the shapes of the irregularities 13 a provided in the optical path changing function layer 13. In this respect, it differs from the organic EL element 10 of the first embodiment.
<陽極>
 陽極24は、有機EL層25側の面に、光路変更機能層13に設けられた凹凸13aに対応する形状の凹凸24aを有している。ここで、「凹凸13aに対応する形状」とは、光路変更機能層13の凹凸13aの形状が陽極24の有機EL層25側の面に波及して形成された、光路変更機能層13に設けられた凹凸13aに倣った形状をいう。すなわち、凹凸13aの凸部と凹凸24aの凸部の少なくとも一部が、有機EL素子20の縦断面視で重なることをいう。
<Anode>
The anode 24 has unevenness 24 a having a shape corresponding to the unevenness 13 a provided in the optical path changing function layer 13 on the surface on the organic EL layer 25 side. Here, the “shape corresponding to the unevenness 13a” is provided in the optical path changing function layer 13 in which the shape of the unevenness 13a of the optical path changing function layer 13 spills over the surface of the anode 24 on the organic EL layer 25 side. It refers to a shape following the unevenness 13a. That is, it means that at least a part of the projections of the projections and depressions 13a and the projections of the projections and depressions 24a overlap in the longitudinal sectional view of the organic EL element 20.
 また、陽極24は、光路変更機能層13側の面に、凹凸13aと密着することにより形成された凹凸24bを有している。凹凸24bは、凹凸13aを転写した形状となっている。
 陽極24のその他の構成については、陽極14と同様であるため、説明を省略する。
Moreover, the anode 24 has the unevenness | corrugation 24b formed by closely_contact | adhering with the unevenness | corrugation 13a in the surface at the side of the optical path change functional layer 13 side. The unevenness 24b has a shape obtained by transferring the unevenness 13a.
Since the other configuration of the anode 24 is the same as that of the anode 14, the description thereof is omitted.
<有機EL層>
 有機EL層25は、陰極26側の面に、光路変更機能層13に設けられた凹凸13aに対応する形状の凹凸25aを有している。ここで、「凹凸13aに対応する形状」とは、光路変更機能層13の凹凸13aの形状が陽極24を介して有機EL層25の陰極26側の面に波及して形成された、光路変更機能層13に設けられた凹凸13aに倣った形状をいう。すなわち、凹凸13aの凸部と凹凸25aの凸部の少なくとも一部が、有機EL素子20の縦断面視で重なることをいう。
<Organic EL layer>
The organic EL layer 25 has unevenness 25a having a shape corresponding to the unevenness 13a provided in the optical path changing function layer 13 on the surface on the cathode 26 side. Here, “the shape corresponding to the unevenness 13 a” means an optical path change formed by the shape of the unevenness 13 a of the optical path changing functional layer 13 spreading through the anode 24 to the surface of the organic EL layer 25 on the cathode 26 side. It refers to the shape following the irregularities 13a provided in the functional layer 13. That is, it means that at least a part of the projections of the projections and depressions 13 a and the projections of the projections and depressions 25 a overlap in the vertical cross-sectional view of the organic EL element 20.
 また、有機EL層25は、陽極24側の面に、凹凸24aと密着することにより形成された凹凸25bを有している。凹凸25bは、凹凸24aを転写した形状となっている。
 有機EL層25のその他の構成については、有機EL層15と同様であるため、説明を省略する。
The organic EL layer 25 has unevenness 25b formed on the surface on the anode 24 side by being in close contact with the unevenness 24a. The unevenness 25b has a shape obtained by transferring the unevenness 24a.
The other configuration of the organic EL layer 25 is the same as that of the organic EL layer 15, and thus the description thereof is omitted.
<陰極>
 陰極26は、有機EL層25側の面に、凹凸25aと密着することにより形成された凹凸26bを有している。凹凸26bは、凹凸25aを転写した形状となっている。また、陰極26の有機EL層25とは逆側の面は、略平坦な形状となっている。
 陰極26のその他の構成については、陰極16と同様であるため、説明を省略する。
<Cathode>
The cathode 26 has unevenness 26b formed on the surface on the organic EL layer 25 side by being in close contact with the unevenness 25a. The unevenness 26b has a shape obtained by transferring the unevenness 25a. Further, the surface of the cathode 26 opposite to the organic EL layer 25 has a substantially flat shape.
The other configuration of the cathode 26 is the same as that of the cathode 16, and thus the description thereof is omitted.
<効果>
 第二の実施形態に係る有機EL素子20は、第一の実施形態に記載の効果に加えて、以下の効果を得ることができる。
(10)陽極、有機EL層及び陰極の各層に凹凸構造を設けることにより、陽極、有機EL層及び陰極の各層表面での光吸収を抑制し、金属表面の自由電子との結合を回避することができる。このため、金属電極の表面におけるプラズモン損失を抑止することができる。
<Effect>
In addition to the effects described in the first embodiment, the organic EL element 20 according to the second embodiment can obtain the following effects.
(10) By providing a concavo-convex structure in each layer of the anode, the organic EL layer, and the cathode, light absorption on the surface of each layer of the anode, the organic EL layer, and the cathode is suppressed, and binding with free electrons on the metal surface is avoided. Can do. For this reason, the plasmon loss in the surface of a metal electrode can be suppressed.
 以下、本実施形態に係る有機EL素子について、具体的な実施例及び比較例を挙げて説明する。なお、本実施形態は以下の実施例及び比較例によって制限されるものではない。<実施例1>
 厚さ0.3mmのポリエチレンテレフタレート(PET)フィルムからなる透明基材を準備した。透明基材は、R=15mmまで透明基材を折り曲げる屈曲試験において100回の折り曲げに耐えられる、可撓性を有する基板であり、曲げ剛性が0.0126N・mであった。
Hereinafter, the organic EL device according to this embodiment will be described with specific examples and comparative examples. In addition, this embodiment is not restrict | limited by the following examples and comparative examples. <Example 1>
A transparent substrate made of a polyethylene terephthalate (PET) film having a thickness of 0.3 mm was prepared. The transparent base material is a flexible substrate that can withstand 100 times of bending in a bending test in which the transparent base material is bent to R = 15 mm, and has a bending rigidity of 0.0126 N · m 2 .
 このような透明基材の一方の面(光出射面)に、シリコンフィラー含有アクリル系紫外線硬化型樹脂を塗布した。このあと、ロール鏡面に形成された規則的に配列された第一の凹凸の形状をシリコンフィラー含有アクリル系紫外線硬化型樹脂に転写した。続いて、第一の凹凸の形状の転写を行いながら透明基材側から紫外線を照射してシリコンフィラー含有アクリル系紫外線硬化型樹脂を硬化させることにより、規則的に配列された第一の凹凸を有する光取出しレンズを形成した。 A silicone filler-containing acrylic ultraviolet curable resin was applied to one surface (light emitting surface) of such a transparent substrate. Thereafter, the regularly arranged first irregularities formed on the roll mirror surface were transferred to a silicon filler-containing acrylic ultraviolet curable resin. Subsequently, the first irregularities regularly arranged are cured by irradiating ultraviolet rays from the transparent substrate side while transferring the shape of the first irregularities to cure the acrylic ultraviolet curable resin containing silicon filler. A light extraction lens was formed.
 次に、光取出しレンズを形成した透明基材の他方の面(光出射面とは逆側の面)に、CVD法によりアルミナ及び酸化ケイ素の混合膜を成膜してバリア層を形成した。
 続いて、酸化チタン(TiO)粒子含有アクリル系紫外線硬化型樹脂をバリア層上に塗布した後、ロール鏡面に形成された規則的に配列された第二の凹凸の形状を酸化チタン(TiO)粒子含有アクリル系紫外線硬化型樹脂に転写した。この後、第二の凹凸の形状の転写を行いながら透明基材側から紫外線を照射して酸化チタン(TiO)粒子含有アクリル系紫外線硬化型樹脂を硬化させることにより、表面に規則的に配列された第二の凹凸を有する光路変更機能層を形成した。
 光路変更機能層の表面(バリア層と反対側の面)に、ITOをターゲットとした反応性スパッタリング法にてITOを堆積させることにより、ITO膜である陽極を形成した。
Next, a mixed layer of alumina and silicon oxide was formed by CVD on the other surface (surface opposite to the light exit surface) of the transparent substrate on which the light extraction lens was formed, thereby forming a barrier layer.
Subsequently, after an acrylic ultraviolet curable resin containing titanium oxide (TiO 2 ) particles is applied on the barrier layer, the shape of the second irregularities regularly arranged on the roll mirror surface is changed to titanium oxide (TiO 2). ) Transferred to particle-containing acrylic UV-curable resin. Thereafter, the ultraviolet rays are irradiated from the transparent substrate side while transferring the shape of the second unevenness to cure the titanium-containing (TiO 2 ) particle-containing acrylic ultraviolet curable resin, thereby regularly arranging on the surface. The optical path changing functional layer having the second unevenness was formed.
An anode that is an ITO film was formed by depositing ITO on the surface of the optical path changing functional layer (surface opposite to the barrier layer) by reactive sputtering using ITO as a target.
 陽極の表面に、正孔輸送層、有機発光層及び電子輸送層をこの順に積層して白色発光層を形成した。なお、陽極と白色発光層との間、及び陰極と白色発光層との間には、それぞれバッファ層を設けた。すなわち、陽極であるITO膜上に、バッファ層/正孔輸送層/有機発光層/電子輸送層/バッファ層を順に積層した。陽極と正孔輸送層間に設けられるバッファ層は、銅フタロシアニン(CuPc)を用いて形成した。正孔輸送層は、ジフェニルナフチルジアミン(α-NPD)にルブレンを1%ドープした材料により形成した。有機発光層は、ジナフチルアントラセンにペリレンを1%ドープした材料により形成した。電子輸送層は、キノリノールアルミ錯体(Alq)を用いて形成した。電子輸送層上に設けられるバッファ層は、フッ化リチウム(LiF)を用いて形成した。これにより、白色発光層を含む有機EL層を形成した。
 最後に、有機EL層上に、アルミニウム(Al)及び銀(Ag)をターゲットとした反応性スパッタリング法にてAl及びAgを堆積させることにより、Al及びAg混合膜である陰極を形成した。以上により、実施例1の有機EL素子を作製した。
On the surface of the anode, a hole emitting layer, an organic light emitting layer and an electron transporting layer were laminated in this order to form a white light emitting layer. A buffer layer was provided between the anode and the white light emitting layer, and between the cathode and the white light emitting layer. That is, a buffer layer / hole transport layer / organic light emitting layer / electron transport layer / buffer layer were sequentially laminated on the ITO film as an anode. The buffer layer provided between the anode and the hole transport layer was formed using copper phthalocyanine (CuPc). The hole transport layer was formed of a material obtained by doping 1% rubrene into diphenylnaphthyldiamine (α-NPD). The organic light emitting layer was formed of a material obtained by doping 1% perylene with dinaphthylanthracene. The electron transport layer was formed using a quinolinol aluminum complex (Alq 3 ). The buffer layer provided on the electron transport layer was formed using lithium fluoride (LiF). This formed the organic EL layer containing a white light emitting layer.
Finally, Al and Ag were deposited on the organic EL layer by a reactive sputtering method using aluminum (Al) and silver (Ag) as targets, thereby forming a cathode which was an Al and Ag mixed film. Thus, the organic EL element of Example 1 was produced.
<実施例2>
 光取出しレンズを、第一の凹凸が不規則に配列されるように形成するとともに、光路変更機能層を、第二の凹凸が不規則に配列されるように形成した以外は、実施例1と同様にして実施例2の有機EL素子を作製した。
<実施例3>
 光路変更機能層を、第二の凹凸が不規則に配列されるように形成した以外は、実施例1と同様にして実施例3の有機EL素子を作製した。
<Example 2>
Example 1 except that the light extraction lens is formed so that the first unevenness is irregularly arranged and the optical path changing functional layer is formed so that the second unevenness is irregularly arranged. Similarly, an organic EL device of Example 2 was produced.
<Example 3>
An organic EL device of Example 3 was produced in the same manner as in Example 1 except that the optical path changing functional layer was formed so that the second unevenness was irregularly arranged.
<実施例4>
 光取出しレンズを、第一の凹凸が不規則に配列されるように形成した以外は、実施例1と同様にして実施例4の有機EL素子を作製した。
<実施例5>
 光路変更機能層に形成された第二の凹凸の形状に対応する凹凸形状を、光路変更機能層上に形成された陽極、有機EL層及び陰極まで波及させて、陽極と有機EL層との界面及び有機EL層と陰極との界面に凹凸形状を形成させた。これ以外は、実施例1と同様にして実施例5の有機EL素子を作製した。
<Example 4>
An organic EL element of Example 4 was produced in the same manner as in Example 1 except that the light extraction lens was formed so that the first unevenness was irregularly arranged.
<Example 5>
An uneven shape corresponding to the shape of the second unevenness formed on the optical path changing functional layer is propagated to the anode, the organic EL layer and the cathode formed on the optical path changing functional layer, and the interface between the anode and the organic EL layer And the uneven | corrugated shape was formed in the interface of an organic electroluminescent layer and a cathode. Except for this, the organic EL element of Example 5 was produced in the same manner as Example 1.
<比較例1>
 光取出しレンズに第一の凹凸を設けなかった以外は、実施例1と同様にして比較例1の有機EL素子を作製した。
<比較例2>
 バリア層を形成しなかった以外は、実施例1と同様にして比較例2の有機EL素子を作製した。
<Comparative Example 1>
An organic EL device of Comparative Example 1 was produced in the same manner as in Example 1 except that the light extraction lens was not provided with the first unevenness.
<Comparative example 2>
An organic EL element of Comparative Example 2 was produced in the same manner as in Example 1 except that the barrier layer was not formed.
<比較例3>
 光路変更機能層に第二の凹凸を設けなかった以外は、実施例1と同様にして比較例1の有機EL素子を作製した。
<比較例4>
 透明基材の光出射面に粘着層を介してマイクロレンズシートを貼りあわせることにより光取出しレンズを形成した以外は、実施例1と同様にして比較例4の有機EL素子を作製した。
<Comparative Example 3>
An organic EL device of Comparative Example 1 was produced in the same manner as in Example 1 except that the second unevenness was not provided on the optical path changing functional layer.
<Comparative example 4>
An organic EL device of Comparative Example 4 was produced in the same manner as in Example 1 except that the light extraction lens was formed by bonding a microlens sheet to the light emission surface of the transparent substrate via an adhesive layer.
<比較例5>
 透明基材として厚さ0.7mmのガラス基板を用い、バリア層を設けなかった以外は、実施例1と同様にして比較例5の有機EL素子を作製した。なお、比較例5の透明基材は、R=15mmまで透明基材を折り曲げる屈曲試験において100回の折り曲げに耐えられない、可撓性のない基板であり、曲げ剛性が2.16N・mであった。
<Comparative Example 5>
An organic EL device of Comparative Example 5 was produced in the same manner as in Example 1 except that a 0.7 mm thick glass substrate was used as the transparent substrate and no barrier layer was provided. In addition, the transparent base material of the comparative example 5 is a non-flexible board | substrate which cannot endure the bending of 100 times in the bending test which bends a transparent base material to R = 15mm, and bending rigidity is 2.16N * m < 2 >. Met.
<参考例>
 評価の基準となる参考例として、以下の有機EL素子を作製した。
 透明基材として厚さ0.7mmのガラス基板を用い、ガラス基板の光出射面に粘着層を介してマイクロレンズシートを貼りあわせることにより光取出しレンズを形成した。また、ガラス基板の光出射面と逆側の面にはバリア層を設けず、第二の凹凸を設けない光路変更機能層を直接形成した。これ以外は、実施例1と同様にして参考例の有機EL素子を作製した。
<Reference example>
The following organic EL elements were prepared as reference examples serving as evaluation criteria.
A glass substrate having a thickness of 0.7 mm was used as a transparent substrate, and a light extraction lens was formed by attaching a microlens sheet to the light emitting surface of the glass substrate via an adhesive layer. Moreover, the barrier layer was not provided in the surface on the opposite side to the light-projection surface of a glass substrate, and the optical path change functional layer which does not provide a 2nd unevenness | corrugation was formed directly. Other than this, an organic EL element of a reference example was produced in the same manner as in Example 1.
<有機EL素子の性能評価>
 各実施例、比較例の有機EL素子に対して光取出し効率、用途範囲、加工性、寿命、コストの面から評価した。評価基準は、以下のとおりとした。
(光取出し効率)
 積分球を用いた全光束量の測定を行い、全光束量が参考例の有機EL素子の全光束量の1.5倍以上であれば「◎」、全光束量が参考例の有機EL素子の全光束量の1.1倍以上であれば「○」、参考例の有機EL素子の全光束量以下であれば「×」とした。
<Performance evaluation of organic EL elements>
The organic EL elements of the examples and comparative examples were evaluated in terms of light extraction efficiency, application range, workability, life, and cost. The evaluation criteria were as follows.
(Light extraction efficiency)
If the total luminous flux is measured using an integrating sphere and the total luminous flux is 1.5 times or more than the total luminous flux of the organic EL element of the reference example, “◎”, the total luminous flux is the organic EL element of the reference example If it was 1.1 times or more of the total luminous flux, “◯”, and if it was less than the total luminous flux of the organic EL element of the reference example, “x”.
(用途範囲)
 参考例の有機EL素子よりも広い用途に使用可能であれば「○」、同等以下の用途に使用可能であれば「×」とした。
(加工性)
 参考例の有機EL素子よりも少ない工程または少ないライン数で作製可能であれば「○」、参考例の有機EL素子と同等か多い工程または同等か多いライン数で作製可能であれば「×」とした。
(Application range)
If it can be used for a wider application than the organic EL element of the reference example, it is “◯”, and if it can be used for an equivalent or lower application, it is “X”.
(Processability)
"○" if it can be produced with fewer steps or fewer lines than the organic EL element of the reference example, "X" if it can be produced with the same or more processes or the same number of lines as the organic EL element of the reference example. It was.
(寿命)
 有機EL素子の輝度が半減するまでの期間を測定し、輝度半減期間が参考例の有機EL素子の輝度半減期間よりも長ければ「○」、同等以下であれば「×」とした。
(コスト)
 参考例の有機EL素子よりも低コストで作製可能であれば「○」、同等以上のコストで作製可能であれば「×」とした。
 以下の表1に、各評価の結果を示す。
(lifespan)
The period until the luminance of the organic EL element was halved was measured. If the luminance half-life was longer than the luminance half-life of the organic EL element of the reference example, “◯” was indicated.
(cost)
If it can be produced at a lower cost than the organic EL element of the reference example, it is “◯”, and if it can be produced at an equivalent or higher cost, it is “x”.
Table 1 below shows the results of each evaluation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、可撓性を有する透明基材と、光出射面に凹凸を有する光取出しレンズと、バリア層と、バリア層と反対側の面に凹凸を有する光路変更機能層と、陽極と、有機EL層と、陰極とを備えた有機EL素子は、光取出し効率に優れ、用途範囲、加工性、寿命及び製造時のコストの点でも参考例の有機EL素子よりも高い評価が得られた。なかでも、光路変更機能層のバリア層と反対側の面形成された凹凸の形状が陽極、有機EL層及び陰極に波及して、当該凹凸に対応する形状の凹凸が陽極、有機EL層及び陰極に形成された実施例5では、光取出し効率がより向上した。 As shown in Table 1, a transparent base material having flexibility, a light extraction lens having irregularities on the light exit surface, a barrier layer, and an optical path changing functional layer having irregularities on the surface opposite to the barrier layer, An organic EL device having an anode, an organic EL layer, and a cathode is excellent in light extraction efficiency, and has a higher evaluation than the organic EL device of the reference example in terms of application range, workability, life and manufacturing cost. Obtained. In particular, the shape of the irregularities formed on the surface opposite to the barrier layer of the optical path changing functional layer affects the anode, the organic EL layer and the cathode, and the irregularities corresponding to the irregularities are the anode, the organic EL layer and the cathode. In Example 5 formed in the above, the light extraction efficiency was further improved.
 これに対して、光出射面に凹凸が設けられていない比較例1の有機EL素子では、用途範囲、加工性、寿命及び製造時のコストの点では良好であるものの、光取出し効率が低下した。これは、有機EL素子の光出射面に凹凸が設けられていないことにより、透明基材と空気との界面において、有機EL層からの光の全反射光量が低減されないためであると考えられる。 On the other hand, in the organic EL element of Comparative Example 1 in which the light exit surface is not provided with unevenness, although the application range, workability, life, and manufacturing cost are good, the light extraction efficiency is reduced. . This is considered to be because the total light quantity of light from the organic EL layer is not reduced at the interface between the transparent substrate and air because the light emitting surface of the organic EL element is not provided with irregularities.
 また、透明基材としてPETフィルムを用い、かつバリア層を備えない比較例2の有機EL素子では、寿命が低下した。これは、有機EL素子に水分が浸入して、有機EL素子が劣化するためであると考えられる。
 光路変更機能層の陽極側面に凹凸が設けられていない比較例3の有機EL素子では、光取出し効率が低下した。これは、光路変更機能層の陽極側面に凹凸が設けられていないことで電極表面でのプラズモン損失を抑制できないためであると考えられる。
In addition, the lifetime of the organic EL element of Comparative Example 2 using a PET film as a transparent substrate and not having a barrier layer was reduced. This is considered to be because moisture permeates the organic EL element and the organic EL element deteriorates.
In the organic EL element of Comparative Example 3 in which the unevenness was not provided on the anode side surface of the optical path changing functional layer, the light extraction efficiency was lowered. This is considered to be because the plasmon loss on the electrode surface cannot be suppressed because the unevenness is not provided on the anode side surface of the optical path changing functional layer.
 透明基材と光取出しレンズとの間に粘着層を設けた比較例4の有機EL素子では、光取出し効率の低下、加工性の低下とともに、コストが増加した。これは、粘着層での光吸収によって光取出し効率が低下するとともに光取出しフィルムの製造ラインや光取出しフィルムの貼着ライン等の加工ラインの増加が必要となり、かつ粘着剤が余分に必要となるためである。 In the organic EL device of Comparative Example 4 in which an adhesive layer was provided between the transparent base material and the light extraction lens, the cost increased with a decrease in light extraction efficiency and a decrease in workability. This is because light extraction efficiency decreases due to light absorption in the adhesive layer, and it is necessary to increase the number of processing lines such as a light extraction film production line and a light extraction film sticking line, and an additional adhesive is required. Because.
 透明基材としてガラス基板を用いた比較例5は、用途範囲、加工性が低下し、コストが増加した。これは、ガラス基板を用いることによりフレキシブル性が低下し、形状が限定されるとともに、ロールtoロールでの加工が困難となるためであると考えられる。
 以上の結果から、透明基材と、透明基材の一方の面に設けられた透明基材側の面と逆側の面に第一の凹凸を有する光取出しレンズと、透明基材の他方の面に設けられたバリア層と、バリア層上に設けられた光路変更機能層と、光路変更機能層上に設けられた陽極と、陽極上に設けられた有機EL層と、有機EL層上に設けられた陰極と、を備え、透明基材は、曲げ剛性が0.02N・m以下であり、光路変更機能層は、陽極側の面に第二の凹凸を有し、各層の界面に接着層及び粘着層が介在しない有機EL素子は、光取出し効率に優れることがわかった。また、このような有機EL素子は、用途範囲、加工性、寿命及び製造時のコストも優れることがわかった。
In Comparative Example 5 using a glass substrate as the transparent substrate, the application range and workability were reduced, and the cost was increased. This is considered to be because use of a glass substrate reduces flexibility, limits the shape, and makes it difficult to process with a roll-to-roll.
From the above results, the transparent substrate, the light extraction lens having the first unevenness on the surface opposite to the surface of the transparent substrate provided on one surface of the transparent substrate, and the other of the transparent substrate A barrier layer provided on the surface, an optical path changing functional layer provided on the barrier layer, an anode provided on the optical path changing functional layer, an organic EL layer provided on the anode, and an organic EL layer A transparent substrate having a flexural rigidity of 0.02 N · m 2 or less, and the optical path changing functional layer has second irregularities on the surface on the anode side, and at the interface of each layer It was found that the organic EL element in which the adhesive layer and the adhesive layer are not interposed is excellent in light extraction efficiency. Moreover, it turned out that such an organic electroluminescent element is excellent also in the use range, workability, lifetime, and the cost at the time of manufacture.
 以上、各実施形態により本発明を説明したが、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本発明の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。 Although the present invention has been described above by the embodiments, the scope of the present invention is not limited to the illustrated and described exemplary embodiments, and brings about effects equivalent to those intended by the present invention. All embodiments are also included. Further, the scope of the invention is not limited to the combinations of features of the invention defined by the claims, but can be defined by any desired combination of specific features among all the disclosed features.
10,20 有機EL素子
11 透明基材
12 バリア層
13 光路変更機能層
13a 凹凸
14,24 陽極
15,25 有機EL層
16,26 陰極
17 光取出しレンズ
17a 凹凸
30 接着層
31 乾燥剤
32 封止基板
33 隔壁
34 光取出し基板
35 TFT
36 ガラス基板
37 偏光板基板
40 有機EL照明装置
50 有機EL表示装置
DESCRIPTION OF SYMBOLS 10,20 Organic EL element 11 Transparent base material 12 Barrier layer 13 Optical path changing functional layer 13a Concavity and convexity 14, 24 Anode 15, 25 Organic EL layer 16, 26 Cathode 17 Light extraction lens 17a Concavity and convexity 30 Adhesive layer 31 Desiccant 32 Sealing substrate 33 Partition 34 Light extraction substrate 35 TFT
36 glass substrate 37 polarizing plate substrate 40 organic EL lighting device 50 organic EL display device

Claims (11)

  1.  透明基材と、
     前記透明基材の一方の面に設けられた、前記透明基材側の面と逆側の面に第一の凹凸を有する光取出しレンズと、
     前記透明基材の他方の面に設けられたバリア層と、
     前記バリア層上に設けられた光路変更機能層と、
     前記光路変更機能層上に設けられた陽極と、
     前記陽極上に設けられた有機EL層と、
     前記有機EL層上に設けられた陰極と、
    を備え、
     前記透明基材は、曲げ剛性が0.02N・m以下であり、
     前記光路変更機能層は、前記陽極側の面に第二の凹凸を有し、
     各層の界面に接着層及び粘着層が介在しないことを特徴とする有機EL素子。
    A transparent substrate;
    A light extraction lens provided on one surface of the transparent substrate, having a first unevenness on the surface opposite to the surface on the transparent substrate side;
    A barrier layer provided on the other surface of the transparent substrate;
    An optical path changing functional layer provided on the barrier layer;
    An anode provided on the optical path changing functional layer;
    An organic EL layer provided on the anode;
    A cathode provided on the organic EL layer;
    With
    The transparent substrate has a flexural rigidity of 0.02 N · m 2 or less,
    The optical path changing functional layer has a second unevenness on the anode side surface,
    An organic EL device characterized in that an adhesive layer and an adhesive layer are not interposed at the interface between the layers.
  2.  前記透明基材は、樹脂材料により形成されていることを特徴とする請求項1に記載の有機EL素子。 2. The organic EL element according to claim 1, wherein the transparent substrate is made of a resin material.
  3.  前記樹脂材料は、ポリエチレンテレフタレート(PET)であり、前記透明基材の厚さは0.35mm以下である請求項2に記載の有機EL素子。 3. The organic EL element according to claim 2, wherein the resin material is polyethylene terephthalate (PET), and the thickness of the transparent substrate is 0.35 mm or less.
  4.  前記光取出しレンズ及び前記光路変更機能層は、有機物と無機物との混合層であることを特徴とする請求項1から3のいずれか1項に記載の有機EL素子。 4. The organic EL element according to claim 1, wherein the light extraction lens and the optical path changing functional layer are a mixed layer of an organic substance and an inorganic substance.
  5.  前記有機EL層は、前記陰極側の面に、前記第二の凹凸に対応する形状の第三の凹凸を有していることを特徴とする請求項1から4のいずれか1項に記載の有機EL素子。 The said organic EL layer has the 3rd unevenness | corrugation of the shape corresponding to said 2nd unevenness | corrugation in the surface by the side of the said cathode, The any one of Claim 1 to 4 characterized by the above-mentioned. Organic EL element.
  6.  前記第一の凹凸及び前記第二の凹凸が、規則的に配列されていることを特徴とする請求項1から5のいずれか1項に記載の有機EL素子。 6. The organic EL element according to claim 1, wherein the first unevenness and the second unevenness are regularly arranged.
  7.  前記第一の凹凸及び前記第二の凹凸が、不規則に配列されていることを特徴とする請求項1から5のいずれか1項に記載の有機EL素子。 The organic EL element according to any one of claims 1 to 5, wherein the first unevenness and the second unevenness are irregularly arranged.
  8.  前記第一の凹凸及び前記第二の凹凸のうち、いずれか一方が規則的に配列され、他方が不規則に配列されていることを特徴とする請求項1から5のいずれか1項に記載の有機EL素子。 6. The device according to claim 1, wherein one of the first unevenness and the second unevenness is regularly arranged, and the other is irregularly arranged. Organic EL element.
  9.  曲げ剛性が0.02N・m以下の透明基材の一方の面に、透明の樹脂材料を含む無機フィラー混合樹脂を塗布し、前記無機フィラー混合樹脂に第一の凹凸を転写して硬化させることにより光取出しレンズを形成する光取出しレンズ形成工程と、
     前記透明基材の他方の面に、無機材料により形成された無機材料膜を少なくとも有するバリア層を形成するバリア層形成工程と、
     前記バリア層上に、透明の樹脂材料を含む無機フィラー混合樹脂を塗布し、前記無機フィラー混合樹脂に第二の凹凸を転写して硬化させることにより光路変更機能層を形成する光路変更機能層形成工程と、
     前記光路変更機能層上に陽極を形成する陽極形成工程と、
     前記陽極上に発光層を含む有機EL層を形成する有機EL層形成工程と、
     前記有機EL層上に陰極を形成する陰極形成工程と、
    を有することを特徴とする有機EL素子の製造方法。
    An inorganic filler mixed resin containing a transparent resin material is applied to one surface of a transparent substrate having a flexural rigidity of 0.02 N · m 2 or less, and the first unevenness is transferred to the inorganic filler mixed resin and cured. A light extraction lens forming step for forming a light extraction lens by,
    A barrier layer forming step of forming a barrier layer having at least an inorganic material film formed of an inorganic material on the other surface of the transparent substrate;
    Optical path changing functional layer formation that forms an optical path changing functional layer by applying an inorganic filler mixed resin containing a transparent resin material on the barrier layer, and transferring and curing second irregularities on the inorganic filler mixed resin. Process,
    An anode forming step of forming an anode on the optical path changing functional layer;
    An organic EL layer forming step of forming an organic EL layer including a light emitting layer on the anode;
    A cathode forming step of forming a cathode on the organic EL layer;
    The manufacturing method of the organic EL element characterized by having.
  10.  請求項1から8のいずれか1項に記載の有機EL素子を用いた有機EL照明装置。 An organic EL lighting device using the organic EL element according to any one of claims 1 to 8.
  11.  請求項1から8のいずれか1項に記載の有機EL素子を用いた有機EL表示装置。 An organic EL display device using the organic EL element according to any one of claims 1 to 8.
PCT/JP2017/025158 2016-07-19 2017-07-10 Organic electroluminescent element, method for manufacturing organic electroluminescent element, organic electroluminescent lighting device, and organic electroluminescent display device WO2018016370A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-141567 2016-07-19
JP2016141567 2016-07-19

Publications (1)

Publication Number Publication Date
WO2018016370A1 true WO2018016370A1 (en) 2018-01-25

Family

ID=60993144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025158 WO2018016370A1 (en) 2016-07-19 2017-07-10 Organic electroluminescent element, method for manufacturing organic electroluminescent element, organic electroluminescent lighting device, and organic electroluminescent display device

Country Status (1)

Country Link
WO (1) WO2018016370A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411513A (en) * 2018-09-28 2019-03-01 云谷(固安)科技有限公司 Flexible display panels and flexible display apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010634A1 (en) * 2008-07-25 2010-01-28 国立大学法人東京工業大学 Organic el element and process for producing the organic el element
JP2011086527A (en) * 2009-10-16 2011-04-28 Toppan Printing Co Ltd El element, lighting device, and display device
US20120286649A1 (en) * 2011-05-12 2012-11-15 Universal Display Corporation Three Dimensional OLED Lamps
JP2013250413A (en) * 2012-05-31 2013-12-12 Toppan Printing Co Ltd Optical sheet and production method of the same, el element using optical sheet, and illumination device having the el element
JP2015219972A (en) * 2014-05-14 2015-12-07 Jx日鉱日石エネルギー株式会社 Film member having uneven structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010634A1 (en) * 2008-07-25 2010-01-28 国立大学法人東京工業大学 Organic el element and process for producing the organic el element
JP2011086527A (en) * 2009-10-16 2011-04-28 Toppan Printing Co Ltd El element, lighting device, and display device
US20120286649A1 (en) * 2011-05-12 2012-11-15 Universal Display Corporation Three Dimensional OLED Lamps
JP2013250413A (en) * 2012-05-31 2013-12-12 Toppan Printing Co Ltd Optical sheet and production method of the same, el element using optical sheet, and illumination device having the el element
JP2015219972A (en) * 2014-05-14 2015-12-07 Jx日鉱日石エネルギー株式会社 Film member having uneven structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411513A (en) * 2018-09-28 2019-03-01 云谷(固安)科技有限公司 Flexible display panels and flexible display apparatus

Similar Documents

Publication Publication Date Title
JP5676867B2 (en) Organic electroluminescence device
JP2008047340A (en) Organic electroluminescence device
JP2007207656A (en) Organic el-display
JP2012238544A (en) Display element, display device, and electronic apparatus
US9608229B2 (en) Organic EL lighting panel substrate, organic EL lighting panel, and organic EL lighting device
WO2012161004A1 (en) Organic electroluminescence element
TWI466286B (en) Planar light emitting device
JP2007207655A (en) Organic el display
WO2012160925A1 (en) Organic electroluminescence element
WO2018016370A1 (en) Organic electroluminescent element, method for manufacturing organic electroluminescent element, organic electroluminescent lighting device, and organic electroluminescent display device
JP5249075B2 (en) Organic electroluminescence device
JP2010153091A (en) Organic electroluminescent element
JP2008140621A (en) Organic el display and its manufacturing method
CN103597911A (en) Organic electroluminescent element
JP5991627B2 (en) Organic electroluminescence device
JP2010146893A (en) Organic electroluminescent element, and its manufacturing method
JP2010146894A (en) Organic electroluminescence element
JP5314410B2 (en) Organic electroluminescence device
CN105514137B (en) Organic light emitting diode display
JP2004146121A (en) Organic electroluminescent element
JP2019102299A (en) Organic el element, organic el lighting device, organic el element light source and organic el display device
JP5390306B2 (en) Organic electroluminescent display device and manufacturing method thereof
JP6711105B2 (en) Organic electroluminescent device
WO2017213262A1 (en) Organic el element, illumination device using organic el element, planar light source and display device
JP2019186171A (en) Organic el element, organic el illumination device, organic el light source, organic el display device, and uneven formation design method of light transmissivity uneven layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP