WO2018014713A1 - 一种空间复用传输的方法及装置 - Google Patents

一种空间复用传输的方法及装置 Download PDF

Info

Publication number
WO2018014713A1
WO2018014713A1 PCT/CN2017/091174 CN2017091174W WO2018014713A1 WO 2018014713 A1 WO2018014713 A1 WO 2018014713A1 CN 2017091174 W CN2017091174 W CN 2017091174W WO 2018014713 A1 WO2018014713 A1 WO 2018014713A1
Authority
WO
WIPO (PCT)
Prior art keywords
spatial multiplexing
duration
wireless signal
station
backoff
Prior art date
Application number
PCT/CN2017/091174
Other languages
English (en)
French (fr)
Inventor
李瑞梅
吕开颖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018014713A1 publication Critical patent/WO2018014713A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the present application relates to, but is not limited to, Wireless Local Area Network (WLAN) technology, and in particular, to a method and apparatus for spatial multiplexing transmission.
  • WLAN Wireless Local Area Network
  • the dynamic channel detection threshold is an alternative technology for improving the channel multiplexing rate and solving the network efficiency, which has attracted extensive attention and research.
  • a basic service set In a WLAN, a basic service set (BSS) consists of an access point site (AP, Access Point) and a plurality of non-AP STAs (non-AP STAs) associated therewith. composition. When two BSSs use the same channel and the coverage overlaps, the two BSSs are each other's overlapping BSS (OBSS, Overlapping BSS).
  • OBSS Overlapping BSS
  • the 802.11 protocol supports two methods for detecting the busy and idle state of the channel, namely physical carrier detection and virtual carrier detection.
  • the physical carrier detection refers to a clear channel assessment (CCA) channel detection technology, that is, the associated station detects whether the channel is busy or idle by detecting the signal strength on the medium and comparing with the CCA threshold.
  • CCA clear channel assessment
  • the CCA threshold is usually fixed at the receiving sensitivity at the lowest modulation coding rate to ensure maximum reception coverage.
  • the virtual carrier detection refers to a third-party associated station other than the communication parties.
  • the local network allocation vector When receiving a radio frame whose receiving address is not its own, the local network allocation vector is set according to the value of the duration field in the radio frame (NAV, Network).
  • the value of Allocation Vector), NAV is a counter. When the NAV is not zero, the channel is considered busy and no contention is sent.
  • the transmitting and receiving parties can reserve a transmission opportunity for a period of time. (TXOP, Transmission Opportunity) for signal transmission.
  • SR Spatial Reuse
  • the station When receiving a radio frame from the OBSS, the station raises the threshold by using the conventional fixed channel detection threshold, that is, according to the dynamic channel detection threshold. If the received OBSS Received Signal Strength Indication (RSSI) is lower than the dynamic channel detection threshold, the channel is considered to be idle, and the contention channel is started to perform radio frame transmission, thereby performing spatial multiplexing transmission with the OBSS, thereby improving system spectrum utilization. .
  • RSSI Received Signal Strength Indication
  • the spatial multiplexing transmission time of the station exceeds the transmission time of the OBSS radio frame, it may affect the subsequent transmission of the OBSS.
  • STA2 in BSS 2 multiplexes the transmission between AP1 and STA1 in BSS1. If the multiplexed transmission time of STA2 exceeds the duration of the trigger frame of AP1, the channel detection of STA1 may be displayed. The channel is busy, so that the UpLink Presentation Protocol Data Unit (UL PPDU) to be responded cannot be transmitted.
  • the transmission time of the SR is limited to the transmission time of the OBSS radio frame, that is, the SR transmission time of the STA2 cannot exceed the transmission time of the trigger frame.
  • Embodiments of the present invention provide a method and apparatus for spatial multiplexing transmission.
  • the first station When the first station has data to be sent, when the local NAV is zero, the corresponding backoff process is performed according to the duration of the local spatial multiplexing state; when the backoff process ends and the duration of the spatial multiplexing state is not Zero time, the first station starts spatial multiplexing transmission, wherein the transmission duration of the spatial multiplexing transmission is less than or equal to the duration of the spatial multiplexing state.
  • the corresponding backoff process is performed according to the duration of the local spatial multiplexing state, which may include:
  • the first station determines the duration of the local spatial multiplexing state when the local NAV is zero:
  • the first station starts a first backoff process, where the first backoff process uses a contention parameter of the data to be sent corresponding to the access policy, and uses a fixed Channel detection threshold for physical channel detection;
  • the first station starts or resumes the second backoff procedure, or restores the first backoff procedure, where the second backoff procedure or the first backoff procedure uses the dynamic channel
  • the detection threshold is used for physical channel detection.
  • the method may further include:
  • the first station detects a wireless signal of the second station; when the wireless signal satisfies the spatial multiplexing transmission condition, comparing at least one of a remaining duration of the wireless signal and a transmission opportunity duration carried by the wireless signal And a duration of a spatial multiplexing state with the first site; updating a duration of the spatial multiplexing state of the first site or maintaining a spatial multiplexing state of the first site according to a comparison result The duration does not change.
  • the method may further include:
  • the method may further include:
  • the duration of the spatial multiplexing state of a station is the sum of the remaining duration of the wireless signal and the duration of the transmission opportunity indicated by the wireless signal or the duration of maintaining the spatial multiplexing state of the first station.
  • the wireless signal satisfies a spatial multiplexing transmission condition, and may include:
  • the physical signaling domain of the wireless signal indicates that the wireless signal is an OBSS signal, and a physical signaling domain of the wireless signal indicates that the wireless signal allows spatial multiplexing transmission, and a signal strength of the wireless signal is lower than
  • the dynamic channel detection threshold of the first station is used; when the physical signaling domain further carries other spatial multiplexing restriction condition information, the first station satisfies the spatial multiplexing restriction condition involved.
  • the method may further include:
  • the signaling domain obtains the remaining duration of the wireless signal by calculation.
  • the method may further include:
  • the first station indicates, by using a spatial multiplexing timer, a duration of the spatial multiplexing state of the first station;
  • the current value of the spatial multiplexing timer indicates a duration of the spatial multiplexing state, the spatial multiplexing timer is decremented with time until zero, and can be updated; when the spatial multiplexing timer is The non-zero value indicates that the first station is in a spatial multiplexing state, and the duration of the spatial multiplexing state is a current non-zero value of the spatial multiplexing timer.
  • the updating the duration of the spatial multiplexing state of the first site or maintaining the duration of the spatial multiplexing state of the first site according to the comparison result may include:
  • the duration of the spatial multiplexing state of the station is at least one of a remaining duration of the wireless signal and a transmission opportunity duration indicated by the wireless signal
  • the updating the duration of the spatial multiplexing state of the first station is the remaining duration of the wireless signal, and may include:
  • Updating the value of the spatial multiplexing timer of the first station is a remaining duration of the wireless signal.
  • the first station starts the first backoff process, and may further include:
  • the first station suspends the first backoff process, including: saving a value of the first backoff timer;
  • the first site starts a new second backoff process, where the second backoff process uses the contention parameter of the access policy corresponding to the data to be sent, or uses the contention parameter of the specified access policy. Or using spatially multiplexing the contention parameter of the corresponding access policy; the second backoff process uses the dynamic channel detection threshold to perform physical channel detection;
  • the first station starts to perform a frame exchange process that does not exceed the current value of the spatial multiplexing timer.
  • the first station starts the first backoff process, and may include:
  • the first station suspends the first backoff process, including: saving a value of the first backoff timer;
  • the first station Determining, by the first station, that the wireless signal satisfies a spatial multiplexing condition and updates the space with a sum of a duration of the wireless signal or a remaining duration of the wireless signal and a transmission opportunity duration of the wireless signal
  • the first station recovers a second backoff procedure, and the second backoff procedure uses a dynamic channel detection threshold to perform physical channel detection;
  • the first a frame exchange process in which the execution time of the station does not exceed the current value of the spatial multiplexing timer
  • the first A station relinquishes the time indicated by the current value of the spatial multiplexing timer or the first station starts a new second backoff procedure, and suspends the second backoff when the spatial multiplexing timer is reduced to zero process.
  • the first station starts the first backoff process, and may include:
  • the first station suspends the first backoff process, including: saving a value of the first backoff timer;
  • the first station Determining, by the first station, that the wireless signal satisfies a spatial multiplexing condition and updates the space with a sum of a duration of the wireless signal or a remaining duration of the wireless signal and a transmission opportunity duration of the wireless signal
  • the first station recovers the suspended first idle procedure, and the first backoff procedure uses a dynamic channel detection threshold to perform physical channel detection;
  • the first station When the first backoff process ends and the current value of the spatial multiplexing timer is not zero, the first station starts to perform a frame exchange process that does not exceed the current value of the spatial multiplexing timer;
  • the suspension After the frame exchange process ends, if the current value of the spatial multiplexing timer is not zero, and the current value of the spatial multiplexing timer does not satisfy the condition of the frame exchange duration of the first station, Determining, by the first station, the time indicated by the current value of the spatial multiplexing timer or the first station starting a new first backoff procedure, and when the spatial multiplexing timer is reduced to zero, the suspension The first backoff process described.
  • the first station starts or restores the second backoff process, or restores the first backoff process, and may include:
  • the first station suspends the backoff process; if the wireless signal does not satisfy the multiplexing condition, remains in the channel busy state until the wireless signal ends Or the end time of the duration indicated by the wireless signal signaling domain;
  • the first station resumes the previously suspended backoff procedure or resets The second backoff process.
  • the first station when the current value of the spatial multiplexing timer is decremented to zero and the backoff process is not ended, the first station suspends the backoff process, and the value of the corresponding backoff timer does not change with time. Performing down counting; at the same time, the first station uses a fixed channel detection threshold for channel detection, and resumes the suspended first backoff process when the channel detection result is idle, and uses a fixed channel detection threshold to perform physical channel detection; At the end of the first backoff process, the first station begins to perform the transmission process.
  • the first station starts spatial multiplexing transmission, where the transmission duration of the spatial multiplexing transmission is less than or equal to the duration of the spatial multiplexing state, and may include:
  • the first station performs multiple backoff processes and transmission processes during the duration of the spatial multiplexing state, wherein the last transmission process ends before the duration of the spatial multiplexing state is zero;
  • the first station After the first station completes the first radio frame exchange in the duration of the spatial multiplexing state, obtains a length of time that can send multiple radio frame exchanges without performing a backoff process; within the length of time, The first station pre-defines a time interval to send a next radio frame exchange; wherein the time length is a predefined length, or access to an access policy corresponding to the data frame to be sent by the first station The minimum of the duration and the duration of the spatial multiplexing state.
  • An embodiment of the present invention further provides a device for spatial multiplexing transmission, which is applied to a first site, where the device includes:
  • the backoff unit is configured to perform a corresponding backoff process according to the duration of the local space multiplexing state when the local NAV is zero when the first station has data to be sent;
  • a transmission unit configured to start spatial multiplexing transmission when the backoff process ends and the duration of the spatial multiplexing state is not zero, wherein a transmission duration of the spatial multiplexing transmission is less than or equal to the spatial complex Use the duration of the state.
  • the backoff unit may be further configured to determine, when the first station has data to be sent, the duration of the local spatial multiplexing state when the local NAV is zero: If the duration of the spatial multiplexing state is zero, the first backoff process is started, where the first backoff process uses the contention parameter of the access policy corresponding to the data to be sent, and uses a fixed channel detection threshold to perform physical channel detection; If the duration of the spatial multiplexing state is non-zero, the second backoff process is started or resumed, or the first backoff process is resumed, where The second backoff procedure or the first backoff procedure uses dynamic channel detection thresholds for physical channel detection.
  • the apparatus may further include:
  • a detecting unit configured to detect a wireless signal of the second station
  • a determining unit configured to determine whether the wireless signal meets a spatial multiplexing transmission condition
  • a comparing unit configured to compare at least one of a remaining duration of the wireless signal and a transmission opportunity duration of the wireless signal when the wireless signal satisfies a spatial multiplexing transmission condition, with the first station The duration of the spatial multiplexing state, the comparison result is obtained;
  • control unit configured to update a duration of the spatial multiplexing state of the first site or maintain a duration of the spatial multiplexing state of the first site according to the comparison result.
  • the comparing unit may be further configured to compare a remaining duration of the wireless signal with a duration of a spatial multiplexing state of the first station;
  • the control unit may be further configured to update, according to the comparison result, a duration of the spatial multiplexing state of the first station to be a remaining duration of the wireless signal or maintain a spatial multiplexing state of the first station The duration of the change is unchanged.
  • the comparing unit may be further configured to compare a remaining duration of the wireless signal with a sum of transmission opportunity durations indicated by the wireless signal, and a spatial multiplexing state of the first station The size of the duration;
  • the control unit may be further configured to update, according to the comparison result, a duration of the spatial multiplexing state of the first station to be a sum of a remaining duration of the wireless signal and a transmission opportunity duration indicated by the wireless signal The value or duration of the spatial multiplexing state of the first station is maintained.
  • the determining unit may be configured to determine that the wireless signal satisfies the spatial multiplexing transmission condition by:
  • the physical signaling domain of the wireless signal indicates that the wireless signal is an OBSS signal, and a physical signaling domain of the wireless signal indicates that the wireless signal allows spatial multiplexing transmission, and a signal strength of the wireless signal is lower than
  • the dynamic channel detection threshold of the first station is used; when the physical signaling domain further carries other spatial multiplexing restriction condition information, the first station satisfies the spatial multiplexing restriction condition involved.
  • the apparatus may further include:
  • An acquiring unit configured to obtain a remaining duration of the wireless signal according to a physical signaling domain of the wireless signal of the second station, or calculate according to a physical signaling domain of the wireless signal of the second station The remaining duration of the wireless signal is obtained.
  • the apparatus may further include:
  • the indicating unit is configured to indicate, by using a spatial multiplexing timer, a duration of the spatial multiplexing state of the first station;
  • the current value of the spatial multiplexing timer indicates a duration of the spatial multiplexing state, the spatial multiplexing timer is decremented with time until zero, and can be updated; when the spatial multiplexing timer is The non-zero value indicates that the first station is in a spatial multiplexing state, and the duration of the spatial multiplexing state is a current non-zero value of the spatial multiplexing timer.
  • control unit may be further configured to: when at least one of a remaining duration of the wireless signal and a transmission opportunity duration indicated by the wireless signal is greater than a spatial multiplexing of the first station Updating the duration of the spatial multiplexing state of the first station to at least one of a remaining duration of the wireless signal and a transmission opportunity duration indicated by the wireless signal when the duration of the state; Maintaining the continuation of the spatial multiplexing state of the first station when at least one of the remaining duration and the duration of the transmission opportunity indicated by the wireless signal is less than or equal to the duration of the spatial multiplexing state of the first station The time is unchanged.
  • control unit may be further configured to update a value of the spatial multiplexing timer of the first station as a remaining duration of the wireless signal.
  • the backoff unit may be further configured to suspend the first backoff process if a wireless signal is received in the first backoff process, where the value of the first backoff timer is saved Updating the spatial multiplexing timer by determining that the wireless signal satisfies the spatial multiplexing condition and uses the sum of the remaining duration of the wireless signal or the remaining duration of the wireless signal and the transmission opportunity duration of the wireless signal Initiating a new second backoff process, where the second backoff process uses the contention parameter of the access policy corresponding to the data to be sent, or uses the contention parameter of the specified access policy, or uses the access corresponding to the spatial multiplexing a competition parameter of the policy; the second backoff process uses a dynamic channel detection threshold to perform physical channel detection; when the second backoff is over and the current value of the spatial multiplexing timer is not zero, the execution duration does not exceed Spatial multiplexing timing The frame exchange process of the current value of the device.
  • the backoff unit may be further configured to suspend the first backoff process if a wireless signal is received in the first backoff process, where the value of the first backoff timer is saved Updating the spatial multiplexing timer by determining that the wireless signal satisfies the spatial multiplexing condition and uses the sum of the remaining duration of the wireless signal or the remaining duration of the wireless signal and the transmission opportunity duration of the wireless signal Recovering the second backoff process, where the second backoff process uses the dynamic channel detection threshold to perform physical channel detection; when the second backoff is over and the current value of the spatial multiplexing timer is not zero, the execution time is started.
  • the backoff unit may be further configured to suspend the first backoff process if a wireless signal is received in the first backoff process, where the value of the first backoff timer is saved Updating the spatial multiplexing timer by determining that the wireless signal satisfies the spatial multiplexing condition and uses the sum of the remaining duration of the wireless signal or the remaining duration of the wireless signal and the transmission opportunity duration of the wireless signal Recovering the suspended first idle process, the first backoff process uses a dynamic channel detection threshold to perform physical channel detection; when the first backoff process ends and the current value of the spatial multiplexing timer is not Zero time, starting to perform a frame exchange process that does not exceed the current value of the spatial multiplexing timer; after the frame exchange process ends, if the current value of the spatial multiplexing timer is not zero, and the space is complex If the current value of the timer does not satisfy the condition of the frame exchange duration of the first station, the time indicated by the current value of the spatial multiplexing timer is discarded or a new one
  • the backoff unit may be further configured to suspend the backoff process if the first station receives a wireless signal during the backoff process; if the wireless signal does not satisfy the multiplexing condition Keeping the channel busy state until the end of the wireless signal or the end time indicated by the wireless signal signaling domain; when the wireless signal ends or the duration indicated by the wireless signal signaling domain ends, if the spatial multiplexing timing The current value of the device is not zero, then the previous hook is restored. The backoff process or reset the second backoff process.
  • the backoff unit may be further configured to suspend the backoff process when the current multiplexing timer current value is decremented to zero and the backoff process is not ended, and the corresponding backoff timer The value is not counted down with time; the channel detection is performed using a fixed channel detection threshold, and the suspended first backoff process is resumed when the channel detection result is idle, and the physical channel detection is performed using a fixed channel detection threshold; the transmission unit may Configured to begin the transfer process at the end of the first backoff process.
  • the transmission unit may be further configured to perform multiple backoff processes and transmission processes during a duration of the spatial multiplexing state, wherein a last transmission process is in a duration of the spatial multiplexing state Ending before zero; or, after completing the first radio frame exchange within the duration of the spatial multiplexing state, obtaining a length of time capable of transmitting multiple radio frame exchanges without performing a backoff procedure; Pre-defining a time interval to send a next radio frame exchange; wherein the length of time is a predefined length, or an access duration and space of an access policy corresponding to the data frame to be sent by the first station. The minimum of the duration of the reuse state.
  • an embodiment of the present invention further provides a machine readable medium storing a program for spatial multiplexing transmission, the step of implementing the spatial multiplexing transmission method when the spatial multiplexing transmission program is executed by a processor.
  • the first station when the first station has data to be sent, when the local NAV is zero, the corresponding backoff process is performed according to the duration of the local spatial multiplexing state; when the backoff process ends and the When the duration of the spatial multiplexing state is not zero, the first station starts spatial multiplexing transmission, wherein the transmission duration of the spatial multiplexing transmission is less than or equal to the duration of the spatial multiplexing state.
  • 1 is a schematic diagram of interference of an SR transmission duration exceeding an OBSS trigger frame for OBSS channel detection
  • FIG. 2 is a schematic diagram of interference of an OBSS trigger frame when the SR transmission duration does not exceed an OBSS trigger frame, but the NAV is not updated after the SR transmission ends;
  • FIG. 3 is a schematic flowchart 1 of a method for spatial multiplexing transmission according to an embodiment of the present invention
  • FIG. 4 is a second schematic flowchart of a method for spatial multiplexing transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a device for spatial multiplexing transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a scenario of an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart 1 of a method for spatial multiplexing transmission according to an embodiment of the present invention. As shown in FIG. 3, the method for spatial multiplexing transmission includes the following steps:
  • Step 301 When the first station has data to be sent, when the local network allocation vector (NAV) is zero, the corresponding backoff process is performed according to the duration of the local spatial multiplexing state;
  • NAV network allocation vector
  • Step 302 When the backoff process ends and the duration of the spatial multiplexing state is not zero, the first station starts spatial multiplexing transmission, where the transmission duration of the spatial multiplexing transmission is less than or equal to The duration of the spatial multiplexing state.
  • the corresponding backoff process is performed according to the duration of the local spatial multiplexing state, which may include:
  • the first station determines the duration of the local spatial multiplexing state when the local NAV is zero:
  • the first station starts a first backoff process, where the first backoff process uses a contention parameter of the data to be sent corresponding to the access policy, and uses a fixed Channel detection threshold for physical channel detection;
  • the first station starts or resumes the second backoff procedure, or restores the first backoff procedure, where the second backoff procedure or the first backoff procedure uses the dynamic channel
  • the detection threshold is used for physical channel detection.
  • the method may further include:
  • the first station detects a wireless signal of the second station; when the wireless signal satisfies the spatial multiplexing transmission condition, comparing at least one of a remaining duration of the wireless signal and a transmission opportunity duration carried by the wireless signal And a duration of a spatial multiplexing state with the first site; updating a duration of the spatial multiplexing state of the first site or maintaining a spatial multiplexing state of the first site according to a comparison result The duration does not change.
  • the method may further include:
  • the method may further include:
  • the duration of the spatial multiplexing state of a station is the sum of the remaining duration of the wireless signal and the duration of the transmission opportunity indicated by the wireless signal or the duration of maintaining the spatial multiplexing state of the first station.
  • the wireless signal satisfies the spatial multiplexing transmission condition, and may include:
  • the physical signaling domain of the wireless signal indicates that the wireless signal is an Overlay Basic Service Set (OBSS) signal, and a physical signaling domain of the wireless signal indicates that the wireless signal allows spatial multiplexing transmission, and the wireless
  • OBSS Overlay Basic Service Set
  • the signal strength of the signal is lower than the dynamic channel detection threshold of the first station; when the physical signaling domain further carries other spatial multiplexing restriction information, the first station satisfies the The spatial multiplexing constraints involved.
  • the method may further include:
  • the signaling domain obtains the remaining duration of the wireless signal by calculation.
  • the method may further include:
  • the first station indicates, by using a spatial multiplexing timer, a duration of the spatial multiplexing state of the first station;
  • the current value of the spatial multiplexing timer indicates a duration of the spatial multiplexing state, the spatial multiplexing timer is decremented with time until zero, and can be updated; when the spatial multiplexing timer is The non-zero value indicates that the first station is in a spatial multiplexing state, and the duration of the spatial multiplexing state is a current non-zero value of the spatial multiplexing timer.
  • the updating the duration of the spatial multiplexing state of the first site or maintaining the duration of the spatial multiplexing state of the first site according to the comparison result may include:
  • the duration of the state is at least one of a remaining duration of the wireless signal and a transmission opportunity duration indicated by the wireless signal;
  • the updating the duration of the spatial multiplexing state of the first station is the remaining duration of the wireless signal, and may include:
  • Updating the value of the spatial multiplexing timer of the first station is a remaining duration of the wireless signal.
  • the first site starts the first backoff process, and may further include:
  • the first station suspends the first backoff process, including: saving a value of the first backoff timer;
  • the first site starts a new second backoff process, where the second backoff process uses the contention parameter of the access policy corresponding to the data to be sent, or uses the contention parameter of the specified access policy. Or using spatially multiplexing the contention parameter of the corresponding access policy; the second backoff process uses the dynamic channel detection threshold to perform physical channel detection;
  • the first station starts to perform a frame exchange process that does not exceed the current value of the spatial multiplexing timer.
  • the first site starts the first backoff process, and may include:
  • the first station suspends the first backoff process, including: saving a value of the first backoff timer;
  • the first station Determining, by the first station, that the wireless signal satisfies a spatial multiplexing condition and updates the space with a sum of a duration of the wireless signal or a remaining duration of the wireless signal and a transmission opportunity duration of the wireless signal
  • the first station recovers a second backoff procedure, and the second backoff procedure uses a dynamic channel detection threshold to perform physical channel detection;
  • the first station starts to perform a frame exchange process that does not exceed the current value of the spatial multiplexing timer
  • the first A station relinquishes the time indicated by the current value of the spatial multiplexing timer or the first station starts a new second backoff procedure, and suspends the second backoff when the spatial multiplexing timer is reduced to zero process.
  • the first site starts the first backoff process, and may include:
  • the first station suspends the first backoff process, including: saving a value of the first backoff timer;
  • the first station determines that the wireless signal satisfies a spatial multiplexing condition and uses the wireless signal
  • the first station resumes the suspended first suspension process when the remaining duration of the number or the sum of the remaining duration of the wireless signal and the transmission opportunity duration of the wireless signal updates the spatial multiplexing timer
  • the first backoff process uses a dynamic channel detection threshold to perform physical channel detection
  • the first station When the first backoff process ends and the current value of the spatial multiplexing timer is not zero, the first station starts to perform a frame exchange process that does not exceed the current value of the spatial multiplexing timer;
  • the suspension After the frame exchange process ends, if the current value of the spatial multiplexing timer is not zero, and the current value of the spatial multiplexing timer does not satisfy the condition of the frame exchange duration of the first station, Determining, by the first station, the time indicated by the current value of the spatial multiplexing timer or the first station starting a new first backoff procedure, and when the spatial multiplexing timer is reduced to zero, the suspension The first backoff process described.
  • the first station starts or restores the second backoff process, or restores the first backoff process, which may include:
  • the first station suspends the backoff process; if the wireless signal does not satisfy the multiplexing condition, remains in the channel busy state until the wireless signal ends Or the end time of the duration indicated by the wireless signal signaling domain;
  • the first station resumes the previously suspended backoff procedure or resets The second backoff process.
  • the first station when the current value of the spatial multiplexing timer is decremented to zero and the backoff process is not completed, the first station suspends the backoff process, and the value of the corresponding backoff timer does not follow the time.
  • the first station uses a fixed channel detection threshold for channel detection, and resumes the suspended first backoff process when the channel detection result is idle, and uses a fixed channel detection threshold for physical channel detection;
  • the first station At the end of a backoff process, the first station begins performing the transmission process.
  • the first station starts spatial multiplexing transmission, where the transmission duration of the spatial multiplexing transmission is less than or equal to the duration of the spatial multiplexing state, and may include:
  • the first station performs multiple backoff processes and transmission processes during the duration of the spatial multiplexing state, wherein the last transmission process ends before the duration of the spatial multiplexing state is zero; or,
  • the first station After the first station completes the first radio frame exchange in the duration of the spatial multiplexing state, obtains a length of time that can send multiple radio frame exchanges without performing a backoff process; within the length of time, The first station pre-defines a time interval to send a next radio frame exchange; wherein the time length is a predefined length, or access to an access policy corresponding to the data frame to be sent by the first station The minimum of the duration and the duration of the spatial multiplexing state.
  • This embodiment is used to describe the process of determining the spatial multiplexing of the station when receiving the OBSS radio frame, and the process of the station updating or maintaining the spatial multiplexing timer according to the remaining duration of the OBSS radio frame.
  • AP1 and STA1 are in one Basic Service Set (BSS) 1.
  • STA2 is in another Basic Service Set (BSS) 2.
  • STA2 maintains a spatial multiplexing timer (SR Timer).
  • SR Timer spatial multiplexing timer
  • STA2 determines that the OBSS radio frame can be multiplexed
  • the value of the above SR Timer is updated or maintained according to the remaining duration of the OBSS radio frame.
  • the SR Timer is a timer whose value is decremented over time until zero and can be updated.
  • the value of the SR Timer can be used to indicate whether the site is in a spatially multiplexed state and the duration of the spatial multiplexing state.
  • the SR Timer is non-zero, the station is in a spatial multiplexing state, and the duration of the spatial multiplexing state is a non-zero value of the current SR Timer.
  • STA1 sends radio frame 1 to AP1.
  • STA2 detects the physical frame header of the radio frame 1, determines that the radio frame 1 is an OBSS frame through the signaling domain of the radio frame 1 physical frame header, and determines that the radio frame 1 can be multiplexed by the signaling domain, and then STA2 uses the dynamic CCA threshold to judge Whether the channel is idle.
  • the received power RSSI of the physical frame header is lower than the dynamic CCA threshold of STA2.
  • STA2 learns or calculates the remaining duration of the radio frame 1 through the signaling domain of the physical frame header.
  • STA2 terminates receiving radio frame 1, and sets the physical layer channel detection result as channel idle (idle).
  • STA2 compares the remaining duration of radio frame 1 with the value of SR Timer, and the remaining duration of radio frame 1 is greater than the value of SR Timer. , the value of the SR Timer is updated to the remaining duration of the radio frame 1, otherwise the current value of the SR Timer is maintained.
  • virtual channel detection is performed. If the virtual channel detection result shows that the channel is idle, that is, when there is only one network allocation vector (NAV) and the NAV is 0, or if there are two network allocation vectors, respectively, BSS NAV, OBSS NAV, and both NAVs are 0, and When the current value of STA2's SR Timer is zero, STA2 performs physical channel detection using the conventional fixed CCA threshold. When the physical channel detection result also indicates that the channel is idle, STA2 initiates a traditional transmission backoff procedure, also called a first backoff procedure, and performs physical layer channel detection using a fixed CCA threshold.
  • NAV network allocation vector
  • the channel starts detecting channels in each backoff slot after a certain interframe space, such as DIFS, or PIFS, or idle in AIFs. If the backoff slot is idle, the traditional transmission backoff counter performs a subtraction and continues to A backoff slot performs channel detection.
  • DIFS interframe space
  • PIFS PIFS
  • STA2 receives a physical frame header signal, and STA2 suspends the current conventional transmission backoff procedure.
  • STA2 determines, by way of Embodiment 1, that the radio frame is an OBSS frame and can be spatially multiplexed, and updates the SR Timer with the remaining duration of the OBSS radio frame.
  • STA2 starts a new multiplexed transmission backoff procedure, also called the second backoff procedure, using the dynamic CCA threshold for physical layer channel detection: the channel starts after a certain interframe space, such as DIFS, or PIFS, or idle in AIFs.
  • Each backoff slot detection channel if the backoff slot is idle, the multiplexed transmission backoff counter performs a subtraction and continues channel detection in the next backoff slot.
  • the initial value of the multiplexed transmission backoff counter is a random value between 0 and the contention window, and the maximum and minimum value of the contention window corresponds to an access policy or an access policy for the STA to transmit data, or corresponds to spatial multiplexing.
  • a dedicated access policy for transmission is a dedicated access policy for transmission.
  • the current value of the SR Timer of STA2 is non-zero, and STA2 sends the radio frame 2 and the frame exchange process duration corresponding to the radio frame 2 is not greater than the current value of the SR Timer.
  • STA2 has data to transmit and suspends the traditional transmission backoff process and starts a new multiplexing transmission backoff process when receiving the physical frame header of the OBSS radio frame 1 in the traditional transmission backoff process, and uses a new multiplexing transmission backoff procedure.
  • the dynamic CCA threshold performs physical layer channel detection. Before the end of the multiplexed transmission backoff process, the SR Timer of STA2 is reduced to a value of 0, and STA2 suspends the multiplexed transmission backoff process, that is, the spatial multiplexing backoff counter is no longer counted down. At the same time STA2 resumes before hangs
  • the traditional transmission backoff process uses the traditional CCA threshold for physical layer channel detection. When the conventional transmission backoff counter is backed to 0, STA2 starts the transmission process of the radio frame 2. STA2 can recover or reset the previously multiplexed transmission backoff procedure.
  • STA2 has data to transmit and suspends the traditional transmission backoff process and resumes the multiplexing transmission backoff process when receiving the physical frame header of the OBSS radio frame 1 in the traditional transmission backoff process, using the dynamic CCA threshold. Perform physical layer channel detection.
  • the multiplexed transmission backoff slot is reduced to 0, the current value of the SR Timer of STA2 is a non-zero value, and STA2 transmits the radio frame 2 and satisfies the frame exchange process duration corresponding to the radio frame 2 is not greater than the current value of the SR Timer.
  • STA2 has data to transmit and suspends the traditional transmission backoff process and resumes the multiplexing transmission backoff process when receiving the physical frame header of the OBSS radio frame 1 in the traditional transmission backoff process, and uses the dynamic CCA threshold to perform physical Layer channel detection.
  • the multiplexed transmission backoff slot is reduced to 0, the current value of the SR Timer of STA2 is a non-zero value, and STA2 transmits the radio frame 2 and satisfies the frame exchange process duration corresponding to the radio frame 2 is not greater than the current value of the SR Timer.
  • STA2 may send a second radio frame for a predetermined period of time, such as SIFS, and satisfy the radio frame exchange duration that does not exceed the current value of the SR Timer.
  • a predetermined period of time such as SIFS
  • STA2 has data to transmit and suspends the traditional transmission backoff process and resumes the multiplexing transmission backoff process when receiving the physical frame header of the OBSS radio frame 1 in the traditional transmission backoff process, and uses the dynamic CCA threshold to perform physical Layer channel detection.
  • the multiplexed transmission backoff slot is reduced to 0, the current value of the SR Timer of STA2 is a non-zero value, and STA2 transmits the radio frame 2 and satisfies the frame exchange process duration corresponding to the radio frame 2 is not greater than the current value of the SR Timer.
  • STA2 After the transmission is completed, STA2 has new data to send, but STA2's new frame exchange process exceeds the current value of the SR Timer, STA2 abandons the multiplex transmission opportunity, that is, if the SR Timer is not updated before it expires. STA2 no longer sends any radio frames.
  • STA2 has data to send and is received in the traditional transmission backoff process.
  • the physical frame header of the OBSS radio frame 1 suspends the traditional transmission backoff process and restores the multiplexed transmission backoff process, and uses the dynamic CCA threshold to perform physical layer channel detection.
  • the multiplexed transmission backoff slot is reduced to 0, the current value of the SR Timer of STA2 is a non-zero value, and STA2 transmits the radio frame 2 and satisfies the frame exchange process duration corresponding to the radio frame 2 is not greater than the current value of the SR Timer.
  • STA2 After the transmission is complete, STA2 has new data to send. However, STA2's new frame exchange process exceeds the current value of the SR Timer. STA2 starts a new multiplex transmission backoff procedure and uses the dynamic CCA threshold to perform physical layer channel detection. In the new multiplexed transmission backoff process, the value of the SR Timer is reduced to 0, that is, STA2 is no longer in the spatial multiplexing state, and STA2 suspends the multiplexed transmission backoff process, keeping the multiplexed transmission backoff counter no longer counting down, and simultaneously STA2 resumes the normal transmission backoff procedure before suspending, and uses the traditional CCA threshold for physical channel detection.
  • STA2 has data to transmit and suspends the traditional transmission backoff process when receiving the physical frame header of the OBSS radio frame 1 in the traditional transmission backoff process, and determines that the OBSS radio frame 1 can be multiplexed and transmitted. After updating the SR Timer to the remaining duration of the OBSS radio frame 1, STA2 resumes the traditional transmission backoff procedure and performs physical layer channel detection using the dynamic CCA threshold.
  • STA2 transmits radio frame 2 and satisfies the frame exchange process duration corresponding to radio frame 2 is not greater than the SR Timer current value.
  • STA2 has data to transmit and suspends the normal transmission backoff process when receiving the physical frame header of the OBSS radio frame 1 in the normal transmission backoff process, and determines that the OBSS radio frame 1 can be multiplexed and transmitted. After updating the SR Timer to the remaining duration of the OBSS radio frame 1, the STA2 resumes the traditional transmission backoff procedure and uses the dynamic CCA threshold to perform physical layer channel detection.
  • STA2 suspends the traditional transmission backoff procedure.
  • STA2 performs virtual channel detection and physical channel detection, wherein the physical channel detection threshold is a conventional CCA threshold.
  • the channel detection result shows that the channel is idle, STA2 resumes the traditional transmission backoff procedure that was suspended before, using the traditional CCA threshold. Line physical channel detection.
  • STA2 starts a new multiplexed transmission backoff process, and uses the dynamic CCA threshold to perform physical layer channel detection: the channel starts at each specific frame interval, such as DIFS, or PIFS, or after idle in AIFs.
  • the backoff slot detection channel if the backoff slot is idle, the multiplexed transmission backoff counter performs a subtraction and continues channel detection in the next backoff slot.
  • STA2 Before the multiplexed transmission is backed off to 0, STA2 detects a valid physical frame header and judges that this is a BSS radio frame, and STA2 suspends the current multiplexing backoff procedure until the BSS radio frame transmission is completed. STA2 can restore or reset the above multiplexed transmission backoff procedure.
  • STA2 has data to transmit and suspends the traditional transmission backoff process and starts a new multiplexing transmission backoff process when receiving the physical frame header of the OBSS radio frame 1 in the traditional transmission backoff process, and uses dynamic The CCA threshold performs physical layer channel detection.
  • the multiplexed transmission backoff slot is reduced to 0, the current value of the SR Timer of STA2 is a non-zero value, and STA2 transmits the radio frame 2 and satisfies the frame exchange process duration corresponding to the radio frame 2 is not greater than the current value of the SR Timer.
  • the STA2 After completing the frame exchange process corresponding to the radio frame 2, the STA2 obtains a length of time during which the multiple radio frame exchange can be sent without performing the multiplexing backoff process.
  • the STA2 can be at a predefined time interval, such as SIFS. , send the next radio frame exchange.
  • the length of the time may be a predetermined length, or the minimum value between the TXOP_limit and the SR Timer of the access policy corresponding to the first data radio frame sent by the STA2.
  • the duration of the spatial multiplexing state of the station may also be updated by using the remaining transmission opportunity duration of the OBSS radio frame.
  • the remaining transmission opportunity duration of the OBSS radio frame is the sum of the remaining duration of the OBSS radio frame and the transmission opportunity duration indicated by the OBSS radio frame signaling domain.
  • FIG. 4 is a schematic flowchart 2 of a method for spatial multiplexing transmission according to an embodiment of the present invention. As shown in FIG. 4, the method for spatial multiplexing transmission includes the following steps:
  • Step 401 The first station has data to be sent, and the local NAV of the first station is zero.
  • Step 402 The first station determines whether the value of the spatial multiplexing timer is zero, and when yes, executes In step 403, in the case of no, step 406 is performed.
  • Step 403 The first station starts a traditional transmission backoff process.
  • Step 404 The first station receives the OBSS radio frame that can be multiplexed and updates the spatial multiplexing timer with the remaining duration of the OBSS radio frame.
  • the first station receives the physical frame header; the physical frame header determines that the OBSS radio frame satisfies the spatial multiplexing transmission condition; the first station stops receiving the physical frame header, the channel is in an idle state, and the update spatial multiplexing timer is the current OBSS radio frame. The remaining duration or the maintenance spatial multiplexing timer remains unchanged.
  • Step 405 The first station suspends the traditional transmission backoff process.
  • Step 406 The first station starts or restores the spatial multiplexing backoff process, or the traditional transmission backoff process, and uses the dynamic channel detection threshold.
  • Step 407 If the backoff process ends and the duration of the spatial multiplexing state is not zero, the multiplex transmission is started, and the time of the multiplex transmission does not exceed the duration of the spatial multiplexing state.
  • FIG. 5 is a schematic structural diagram of a device for spatial multiplexing transmission according to an embodiment of the present invention.
  • the device is applied to a first station. As shown in FIG. 5, the device includes:
  • the backoff unit 55 is configured to perform a corresponding backoff process according to the duration of the local spatial multiplexing state when the local NAV is zero when the first station has data to be sent;
  • the transmitting unit 56 is configured to start spatial multiplexing transmission when the backoff process ends and the duration of the spatial multiplexing state is not zero, wherein the transmission duration of the spatial multiplexing transmission is less than or equal to the space The duration of the reuse state.
  • the backoff unit 55 may be further configured to: when the first station has data to be sent, determine the duration of the local spatial multiplexing state when the local NAV is zero: if the spatial multiplexing state continues If the time is zero, the first backoff process is started, where the first backoff process uses the contention parameter of the data to be sent corresponding to the access policy, and uses a fixed channel detection threshold to perform physical channel detection; if the spatial multiplexing If the duration of the state is non-zero, the second backoff procedure is started or resumed, or the first backoff procedure is resumed, wherein the second backoff procedure or the first backoff procedure uses the dynamic channel detection threshold to perform physical channel detection.
  • the device may further include:
  • the detecting unit 51 is configured to detect a wireless signal of the second station
  • the determining unit 52 is configured to determine whether the wireless signal satisfies a spatial multiplexing transmission condition
  • the comparing unit 53 is configured to compare at least one of a remaining duration of the wireless signal and a transmission opportunity duration carried by the wireless signal when the wireless signal satisfies a spatial multiplexing transmission condition, with the first station The duration of the spatial multiplexing state, and the comparison result is obtained;
  • the control unit 54 is configured to update the duration of the spatial multiplexing state of the first station or maintain the duration of the spatial multiplexing state of the first station according to the comparison result.
  • the comparing unit 53 may be further configured to compare a remaining duration of the wireless signal with a duration of a spatial multiplexing state of the first station;
  • the control unit 54 may be further configured to update, according to the comparison result, a duration of the spatial multiplexing state of the first station to be a remaining duration of the wireless signal or maintain spatial multiplexing of the first station The duration of the state does not change.
  • the comparing unit 53 may be further configured to compare a sum of a remaining duration of the wireless signal and a duration of a transmission opportunity indicated by the wireless signal, and a spatial multiplexing state of the first station. The size of the duration;
  • the control unit 54 may be further configured to update, according to the comparison result, a duration of the spatial multiplexing state of the first station to be a remaining duration of the wireless signal and a transmission opportunity duration indicated by the wireless signal The sum value or the duration of the spatial multiplexing state of the first station is maintained.
  • the determining unit 52 may be configured to determine that the wireless signal satisfies the spatial multiplexing transmission condition by:
  • the physical signaling domain of the wireless signal indicates that the wireless signal is an OBSS signal, and a physical signaling domain of the wireless signal indicates that the wireless signal allows spatial multiplexing transmission, and a signal strength of the wireless signal is lower than
  • the dynamic channel detection threshold of the first station is used; when the physical signaling domain further carries other spatial multiplexing restriction condition information, the first station satisfies the spatial multiplexing restriction condition involved.
  • the device may further include:
  • the obtaining unit 57 is configured to obtain, according to the physical signaling domain of the wireless signal of the second station The remaining duration of the wireless signal is obtained, or the remaining duration of the wireless signal is obtained by calculation according to a physical signaling domain of the wireless signal of the second station.
  • the device may further include:
  • the indicating unit 58 is configured to indicate, by using a spatial multiplexing timer, a duration of the spatial multiplexing state of the first station;
  • the current value of the spatial multiplexing timer indicates a duration of the spatial multiplexing state, the spatial multiplexing timer is decremented with time until zero, and can be updated; when the spatial multiplexing timer is The non-zero value indicates that the first station is in a spatial multiplexing state, and the duration of the spatial multiplexing state is a current non-zero value of the spatial multiplexing timer.
  • control unit 54 may be further configured to: when at least one of a remaining duration of the wireless signal and a transmission opportunity duration indicated by the wireless signal is greater than a spatial multiplexing of the first station Updating the duration of the spatial multiplexing state of the first station to at least one of a remaining duration of the wireless signal and a transmission opportunity duration indicated by the wireless signal when the duration of the state; Maintaining the continuation of the spatial multiplexing state of the first station when at least one of the remaining duration and the duration of the transmission opportunity indicated by the wireless signal is less than or equal to the duration of the spatial multiplexing state of the first station The time is unchanged.
  • control unit 54 may be further configured to update the value of the spatial multiplexing timer of the first station as a remaining duration of the wireless signal.
  • the backoff unit 55 may be further configured to suspend the first backoff process if a wireless signal is received in the first backoff process, where the value of the first backoff timer is saved. Updating the spatial multiplexing timer by determining that the wireless signal satisfies the spatial multiplexing condition and uses the sum of the remaining duration of the wireless signal or the remaining duration of the wireless signal and the transmission opportunity duration of the wireless signal Initiating a new second backoff process, where the second backoff process uses the contention parameter of the access policy corresponding to the data to be sent, or uses the contention parameter of the specified access policy, or uses the access corresponding to the spatial multiplexing a competition parameter of the policy; the second backoff process uses a dynamic channel detection threshold to perform physical channel detection; when the second backoff is over and the current value of the spatial multiplexing timer is not zero, the execution duration does not exceed The frame exchange process of the current value of the spatial multiplexing timer.
  • the backoff unit 55 may be further configured if the first backoff Receiving the wireless signal during the process, suspending the first backoff process, wherein the value of the first backoff timer is saved; determining that the wireless signal satisfies the spatial multiplexing condition and using the remaining duration of the wireless signal And when the spatial multiplexing timer is updated by the sum of the remaining duration of the wireless signal and the transmission opportunity duration of the wireless signal, the second backoff procedure is resumed, and the second backoff procedure uses the dynamic channel detection threshold to perform the physical channel Detecting; when the second backoff ends and the current value of the spatial multiplexing timer is not zero, starting a frame exchange process in which the execution duration does not exceed the current value of the spatial multiplexing timer; at the end of the frame exchange process After the current value of the spatial multiplexing timer is not zero, and the current value of the spatial multiplexing timer is lower than the frame exchange duration of the first station, the current value of the spatial multiplexing timer is discarded.
  • the backoff unit 55 may be further configured to suspend the first backoff process if a wireless signal is received in the first backoff process, where the value of the first backoff timer is saved. Updating the spatial multiplexing timer by determining that the wireless signal satisfies the spatial multiplexing condition and uses the sum of the remaining duration of the wireless signal or the remaining duration of the wireless signal and the transmission opportunity duration of the wireless signal Recovering the suspended first idle process, the first backoff process uses a dynamic channel detection threshold to perform physical channel detection; when the first backoff process ends and the current value of the spatial multiplexing timer is not Zero time, starting to perform a frame exchange process that does not exceed the current value of the spatial multiplexing timer; after the frame exchange process ends, if the current value of the spatial multiplexing timer is not zero, and the space is complex If the current value of the timer does not satisfy the condition of the frame exchange duration of the first station, the time indicated by the current value of the spatial multiplexing timer is discarded or
  • the backoff unit 55 may be further configured to suspend the backoff process if the first station receives a wireless signal during the backoff process; if the wireless signal does not satisfy the multiplexing condition Keeping the channel busy state until the end of the wireless signal or the end time indicated by the wireless signal signaling domain; when the wireless signal ends or the duration indicated by the wireless signal signaling domain ends, if the spatial multiplexing timing If the current value of the device is not zero, the previously suspended backoff process is resumed or the second backoff process is reset.
  • the backoff unit 55 may also be configured to be when the space multiplexing timer When the current value is decremented to zero and the backoff process is not completed, the backoff process is suspended, and the value of the corresponding backoff timer is not counted down with time; the channel detection is performed using a fixed channel detection threshold, and the channel detection result is When the idle state resumes the suspended first backoff process, the fixed channel detection threshold is used for physical channel detection; the transmission unit 56 may be configured to start performing the transmission process when the first backoff process ends.
  • the transmission unit 56 may be further configured to perform multiple backoff processes and transmission processes during the duration of the spatial multiplexing state, where the last transmission process is in the duration of the spatial multiplexing state. Ending before zero; or, after completing the first radio frame exchange within the duration of the spatial multiplexing state, obtaining a length of time capable of transmitting multiple radio frame exchanges without performing a backoff procedure; Pre-defining a time interval to send a next radio frame exchange; wherein the length of time is a predefined length, or an access duration and space of an access policy corresponding to the data frame to be sent by the first station. The minimum of the duration of the reuse state.
  • An embodiment of the present invention further provides a station, where the station includes the apparatus for spatial multiplexing transmission shown in FIG. 5.
  • an embodiment of the present invention further provides an apparatus, including: a memory, a processor, and a program for spatial multiplexing transmission stored on the memory and operable on the processor, where the program is implemented by the processor to implement the space. The steps of the method of multiplexing transmission.
  • Embodiments of the present invention further provide a machine readable medium storing a program for spatial multiplexing transmission, the step of implementing the spatial multiplexing transmission method when the spatial multiplexing transmission program is executed by a processor.
  • embodiments of the invention may be provided as a method, system, or computer program product. Accordingly, the application can take the form of a hardware embodiment, a software embodiment, or an embodiment in combination with software and hardware. Moreover, the application may employ computer usable storage media (including but not limited to disk storage and light) in one or more of the computer usable program code embodied therein. Learning the form of a computer program product implemented on a memory, etc.).
  • computer usable storage media including but not limited to disk storage and light
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • Such software may be distributed on a machine-readable medium, such as a computer-readable medium, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • a machine-readable medium such as a computer-readable medium, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) Or other optical disc storage, magnetic box, magnetic tape, magnetic disk storage or other magnetic storage device, or any other medium that can be used to store the desired information and can be accessed by a computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the embodiments of the present invention provide a method and an apparatus for spatial multiplexing transmission, which avoids the problem of transmission interference caused by not setting NAV during SR transmission and avoids the unfair problem caused by the spatial multiplexing backoff process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种空间复用传输的方法及装置,上述方法包括:当第一站点有数据待发送时,在本地NAV为零时依据本地空间复用状态的持续时间,执行相应的退避过程;当所述退避过程结束且所述空间复用状态的持续时间不为零时,所述第一站点开始空间复用传输,其中,所述空间复用传输的传输时长小于或等于所述空间复用状态的持续时间。

Description

一种空间复用传输的方法及装置 技术领域
本申请涉及但不限于无线局域网(WLAN,Wireless Local Area Network)技术,尤其涉及一种空间复用传输的方法及装置。
背景技术
随着WLAN网络的爆发性应用,一方面,WLAN网络的部署不断密集化,网络负载也随之不断加重。另一方面,随着网络的增多,WLAN网络覆盖重叠的情况也更加严重。WLAN网络的效率会出现明显下降的趋势,单纯提高速率并不能解决该问题。因此,IEEE标准组织成立了相关的任务小组致力于解决WLAN网络的效率问题。其中,动态信道检测门限作为提高信道复用率和解决网络效率的一种备选技术,引起了广泛关注和研究。
在WLAN中,一个基本服务集(BSS,Basic Service Set)由一个接入点站点(AP,Access Point)以及与其相关联的多个非接入点站点(non-AP STA,non-AP Station)组成。当两个BSS使用相同的信道且覆盖范围存在重叠(Overlapping)时,这两个BSS互相为对方的重叠BSS(OBSS,Overlapping BSS)。
802.11协议支持两种判定信道忙闲状态的检测方法,即物理载波检测和虚拟载波检测。当这两种检测方法的检测结果都指示信道空闲后,关联站点才能够进行竞争发送。其中,物理载波检测,是指空闲信道估计(CCA,Clear Channel Assessment)信道检测技术,即关联站点通过对媒介上的信号强度进行检测,并与CCA门限值比较,判定信道是忙碌还是空闲。该CCA门限值通常是按照最低调制编码速率下的接收灵敏度固定设置的,以保证最大接收覆盖范围。虚拟载波检测,是指除了通信双方之外的第三方关联站点,在收到接收地址不是自己的无线帧时,根据无线帧中连续时间(Duration)域的值设置本地网络分配矢量(NAV,Network Allocation Vector)的值,NAV是一个计数器,当NAV不为零时,认为信道繁忙,不进行竞争发送。为了进行多次帧交换且避免发生碰撞,收发双方可以预约一段时间传输机会 (TXOP,Transmission Opportunity)进行信号发送。
空间复用(SR,Spatial Reuse)技术由于可以增加密集场景中信道的介入机会而被广泛关注。当收到一个来自OBSS的无线帧时,站点通过抬升传统的固定的信道检测门限,即按照动态信道检测门限来判断信道忙闲。若接收到的OBSS无线信号能量(RSSI,Received Signal Strength Indication)低于动态信道检测门限,则认为信道空闲,开始竞争信道进行无线帧发送,从而与OBSS进行空间复用传输,提高***频谱利用率。
如果站点的空间复用传输时间超过OBSS无线帧的传输时间,那么可能对OBSS的后续传输造成影响。如图1所示,BSS 2中的STA2复用BSS1中AP1和STA1之间的传输,如果STA2的复用传输时间超过了AP1发送触发(trigger)帧的时长,那么STA1的信道检测将可能显示信道忙,从而无法传输要响应的上行协议数据单元(UL PPDU,UpLink Presentation Protocol Data Unit)。为此,将SR的传输时间限制在OBSS无线帧的传输时间内,即STA2的SR传输时间不能超过trigger帧的传输时间。但这并没有解决问题,因为即使SR在OBSS trigger帧的传输时间内结束,此时NAV为0,没有被更新,如图2所示,并且此时STA2使用能量检测门限来进行信道的物理检测显示信道空闲,那么站点STA 2认为信道空闲,从而发起正常传输,这样还是会对STA1的信道检测造成干扰而引起STA1无法发送UL PPDU。另外,空间复用过程中的退避过程也没有明确的解决方案,如果采用传统的退避过程,那么复用站点相比传统站点有更多的接入机会,从而存在不公平性等问题。
针对相关技术中,如何避免SR传输时没有设置NAV而引起的传输干扰问题以及如何避免空间复用退避过程引起的不公平问题,目前还没有有效的解决方案。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种空间复用传输的方法及装置。
本发明实施例提供的空间复用传输的方法,包括:
当第一站点有数据待发送时,在本地NAV为零时依据本地空间复用状态的持续时间,执行相应的退避过程;当所述退避过程结束且所述空间复用状态的持续时间不为零时,所述第一站点开始空间复用传输,其中,所述空间复用传输的传输时长小于或等于所述空间复用状态的持续时间。
在示例性实施方式中,所述当所述第一站点有数据待发送时,在本地NAV为零时依据本地空间复用状态的持续时间,执行相应的退避过程,可以包括:
当所述第一站点有数据待发送时,所述第一站点在本地NAV为零时对本地空间复用状态的持续时间进行如下判定:
如果所述空间复用状态的持续时间为零值,则所述第一站点开启第一退避过程,其中,所述第一退避过程使用待发送数据对应接入策略的竞争参数,且使用固定的信道检测门限进行物理信道检测;
如果所述空间复用状态的持续时间为非零值,则所述第一站点开启或恢复第二退避过程,或者恢复第一退避过程,其中,第二退避过程或第一退避过程使用动态信道检测门限进行物理信道检测。
在示例性实施方式中,所述方法还可以包括:
所述第一站点检测到第二站点的无线信号;当所述无线信号满足空间复用传输条件时,比较所述无线信号的剩余持续时间和所述无线信号携带的传输机会时长中的至少一项,与所述第一站点的空间复用状态的持续时间的大小;根据比较结果,更新所述第一站点的空间复用状态的持续时间或维持所述第一站点的空间复用状态的持续时间不变。
在示例性实施方式中,所述方法还可以包括:
比较所述无线信号的剩余持续时间与所述第一站点的空间复用状态的持续时间的大小;根据所述比较结果,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间或维持所述第一站点的空间复用状态的持续时间不变。
在示例性实施方式中,所述方法还可以包括:
比较所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长的和值,与所述第一站点的空间复用状态的持续时间的大小;根据所述比较结果,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长的和值或维持所述第一站点的空间复用状态的持续时间不变。
在示例性实施方式中,所述无线信号满足空间复用传输条件,可以包括:
所述无线信号的物理信令域指示所述无线信号为OBSS信号,且所述无线信号的物理信令域指示所述无线信号允许空间复用传输,且所述无线信号的信号强度低于所述第一站点的动态信道检测门限;当所述物理信令域还携带其他空间复用限制条件信息时,所述第一站点满足所述所涉及的空间复用限制条件。
在示例性实施方式中,所述更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间之前,所述方法还可以包括:
所述第一站点根据所述第二站点的所述无线信号的物理信令域获得所述无线信号的剩余持续时间,或者所述第一站点根据所述第二站点的所述无线信号的物理信令域通过计算得到所述无线信号的剩余持续时间。
在示例性实施方式中,所述方法还可以包括:
所述第一站点将所述第一站点的空间复用状态的持续时间通过空间复用定时器来指示;
其中,所述空间复用定时器的当前值指示所述空间复用状态的持续时间,所述空间复用定时器随时间递减直到零,且能够被更新;当所述空间复用定时器为非零值时表示所述第一站点处于空间复用状态,且空间复用状态的持续时间为所述空间复用定时器的当前非零值。
在示例性实施方式中,所述根据所述比较结果,更新所述第一站点的空间复用状态的持续时间或维持所述第一站点的空间复用状态的持续时间不变,可以包括:
当所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项大于所述第一站点的空间复用状态的持续时间时,更新所述第一 站点的空间复用状态的持续时间为所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项;
当所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项小于或等于所述第一站点的空间复用状态的持续时间时,维持所述第一站点的空间复用状态的持续时间不变。
在示例性实施方式中,所述更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间,可以包括:
更新所述第一站点的所述空间复用定时器的值为所述无线信号的剩余持续时间。
在示例性实施方式中,所述第一站点开启第一退避过程,还可以包括:
如果在所述第一退避过程中收到无线信号,则所述第一站点挂起所述第一退避过程,其中包括:保存第一退避计时器的值;
所述第一站点在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,所述第一站点启动新的第二退避过程;其中,所述第二退避过程中使用待发送数据对应接入策略的竞争参数,或者使用指定接入策略的竞争参数,或者使用空间复用对应的接入策略的竞争参数;所述第二退避过程使用动态信道检测门限来进行物理信道检测;
当所述第二退避结束且所述空间复用定时器当前值不为零时,所述第一站点开始执行时长不超过所述空间复用定时器当前值的帧交换过程。
在示例性实施方式中,所述第一站点开启第一退避过程,可以包括:
如果在所述第一退避过程中收到无线信号,则所述第一站点挂起所述第一退避过程,包括:保存第一退避计时器的值;
所述第一站点在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,所述第一站点恢复第二退避过程,所述第二退避过程使用动态信道检测门限来进行物理信道检测;
当所述第二退避结束且所述空间复用定时器当前值不为零时,所述第一 站点开始执行时长不超过所述空间复用定时器当前值的帧交换过程;
在所述帧交换过程结束后,如果所述空间复用定时器当前值不为零,且所述空间复用定时器当前值低于所述第一站点后续的帧交换时长,则所述第一站点放弃所述空间复用定时器当前值所指示的时间或者所述第一站点开启新的第二退避过程,并在所述空间复用定时器减到零时挂起所述第二退避过程。
在示例性实施方式中,所述第一站点开启第一退避过程,可以包括:
如果在所述第一退避过程中收到无线信号,则所述第一站点挂起所述第一退避过程,其中包括:保存第一退避计时器的值;
所述第一站点在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,所述第一站点恢复所挂起的所述第一退避过程,所述第一退避过程使用动态信道检测门限进行物理信道检测;
当所述第一退避过程结束且所述空间复用定时器当前值不为零时,所述第一站点开始执行时长不超过所述空间复用定时器当前值的帧交换过程;
在所述帧交换过程结束后,如果所述空间复用定时器当前值不为零,且所述空间复用定时器当前值不满足所述第一站点后续的帧交换时长的条件,则所述第一站点放弃所述空间复用定时器当前值所指示的时间或者所述第一站点开启新的第一退避过程,并在所述空间复用定时器减到零时所述挂起所述的第一退避过程。
在示例性实施方式中,所述第一站点开启或恢复第二退避过程,或者恢复第一退避过程,可以包括:
如果所述第一站点在所述退避过程中,收到无线信号时,所述第一站点挂起所述退避过程;如果无线信号不满足复用条件,保持处于信道忙状态直到无线信号结束时刻或者无线信号信令域所指示时长的结束时刻;
当所述无线信号结束时或者无线信号信令域所指示时长结束时,如果所述空间复用定时器的当前值不为零,则所述第一站点恢复先前挂起的退避过程或重置第二退避过程。
在示例性实施方式中,当所述空间复用定时器当前值递减到零且所述退避过程未结束时,所述第一站点挂起所述退避过程,对应的退避计时器的值不随时间进行减计数;同时,所述第一站点使用固定的信道检测门限进行信道检测,并在信道检测结果为空闲时恢复挂起的第一退避过程,使用固定的信道检测门限进行物理信道检测;在第一退避过程结束时,所述第一站点开始执行传输过程。
在示例性实施方式中,所述第一站点开始空间复用传输,其中,所述空间复用传输的传输时长小于等于所述空间复用状态的持续时间,可以包括:
所述第一站点在所述空间复用状态的持续时间内进行多次退避过程和传输过程,其中,最后一次传输过程在空间复用状态的持续时间为零之前结束;或者,
所述第一站点在所述空间复用状态的持续时间内完成第一次无线帧交换后,获得一个能够发送多个无线帧交换而不用进行退避过程的时间长度;在所述时间长度内,所述第一站点预定义一个时间间隔来发送下一个无线帧交换;其中,所述时间长度为预定义的长度,或者为所述第一站点待发送数据无线帧对应的接入策略的接入时长和空间复用状态的持续时间中的最小值。
本发明实施例还提供一种空间复用传输的装置,应用于第一站点,所述装置包括:
退避单元,配置为当第一站点有数据待发送时,在本地NAV为零时依据本地空间复用状态的持续时间,执行相应的退避过程;
传输单元,配置为当所述退避过程结束且所述空间复用状态的持续时间不为零时,开始空间复用传输,其中,所述空间复用传输的传输时长小于或等于所述空间复用状态的持续时间。
在示例性实施方式中,所述退避单元,还可以配置为当所述第一站点有数据待发送时,在本地NAV为零时对本地空间复用状态的持续时间进行如下判定:如果所述空间复用状态的持续时间为零值,则开启第一退避过程,其中,所述第一退避过程使用待发送数据对应接入策略的竞争参数,且使用固定的信道检测门限进行物理信道检测;如果所述空间复用状态的持续时间为非零值,则开启或恢复第二退避过程,或者恢复第一退避过程,其中,第 二退避过程或第一退避过程使用动态信道检测门限进行物理信道检测。
在示例性实施方式中,所述装置还可以包括:
检测单元,配置为检测第二站点的无线信号;
判断单元,配置为判断所述无线信号是否满足空间复用传输条件;
比较单元,配置为当所述无线信号满足空间复用传输条件时,比较所述无线信号的剩余持续时间和所述无线信号携带的传输机会时长中的至少一项,与所述第一站点的空间复用状态的持续时间的大小,得到比较结果;
控制单元,配置为根据比较结果,更新所述第一站点的空间复用状态的持续时间或维持所述第一站点的空间复用状态的持续时间不变。
在示例性实施方式中,所述比较单元,还可以配置为比较所述无线信号的剩余持续时间与所述第一站点的空间复用状态的持续时间的大小;
所述控制单元,还可以配置为根据所述比较结果,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间或维持所述第一站点的空间复用状态的持续时间不变。
在示例性实施方式中,所述比较单元,还可以配置为比较所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长的和值,与所述第一站点的空间复用状态的持续时间的大小;
所述控制单元,还可以配置为根据所述比较结果,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长的和值或维持所述第一站点的空间复用状态的持续时间不变。
在示例性实施方式中,所述判断单元可以配置为通过以下方式确定无线信号满足空间复用传输条件:
所述无线信号的物理信令域指示所述无线信号为OBSS信号,且所述无线信号的物理信令域指示所述无线信号允许空间复用传输,且所述无线信号的信号强度低于所述第一站点的动态信道检测门限;当所述物理信令域还携带其他空间复用限制条件信息时,所述第一站点满足所述所涉及的空间复用限制条件。
在示例性实施方式中,所述装置还可以包括:
获取单元,配置为根据所述第二站点的所述无线信号的物理信令域获得所述无线信号的剩余持续时间,或者根据所述第二站点的所述无线信号的物理信令域通过计算得到所述无线信号的剩余持续时间。
在示例性实施方式中,所述装置还可以包括:
指示单元,配置为将所述第一站点的空间复用状态的持续时间通过空间复用定时器来指示;
其中,所述空间复用定时器的当前值指示所述空间复用状态的持续时间,所述空间复用定时器随时间递减直到零,且能够被更新;当所述空间复用定时器为非零值时表示所述第一站点处于空间复用状态,且空间复用状态的持续时间为所述空间复用定时器的当前非零值。
在示例性实施方式中,所述控制单元,还可以配置为当所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项大于所述第一站点的空间复用状态的持续时间时,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项;当所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项小于或等于所述第一站点的空间复用状态的持续时间时,维持所述第一站点的空间复用状态的持续时间不变。
在示例性实施方式中,所述控制单元,还可以配置为更新所述第一站点的所述空间复用定时器的值为所述无线信号的剩余持续时间。
在示例性实施方式中,所述退避单元,还可以配置为如果在所述第一退避过程中收到无线信号,则挂起所述第一退避过程,其中,保存第一退避计时器的值;在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,启动新的第二退避过程;其中,所述第二退避过程中使用待发送数据对应接入策略的竞争参数,或者使用指定接入策略的竞争参数,或者使用空间复用对应的接入策略的竞争参数;所述第二退避过程使用动态信道检测门限来进行物理信道检测;当所述第二退避结束且所述空间复用定时器当前值不为零时,开始执行时长不超过所述空间复用定时 器当前值的帧交换过程。
在示例性实施方式中,所述退避单元,还可以配置为如果在所述第一退避过程中收到无线信号,则挂起所述第一退避过程,其中,保存第一退避计时器的值;在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,恢复第二退避过程,所述第二退避过程使用动态信道检测门限来进行物理信道检测;当所述第二退避结束且所述空间复用定时器当前值不为零时,开始执行时长不超过所述空间复用定时器当前值的帧交换过程;在所述帧交换过程结束后,如果所述空间复用定时器当前值不为零,且所述空间复用定时器当前值低于所述第一站点后续的帧交换时长,则放弃所述空间复用定时器当前值所指示的时间或者开启新的第二退避过程,并在所述空间复用定时器减到零时挂起所述第二退避过程。
在示例性实施方式中,所述退避单元,还可以配置为如果在所述第一退避过程中收到无线信号,则挂起所述第一退避过程,其中,保存第一退避计时器的值;在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,恢复所挂起的所述第一退避过程,所述第一退避过程使用动态信道检测门限进行物理信道检测;当所述第一退避过程结束且所述空间复用定时器当前值不为零时,开始执行时长不超过所述空间复用定时器当前值的帧交换过程;在所述帧交换过程结束后,如果所述空间复用定时器当前值不为零,且所述空间复用定时器当前值不满足所述第一站点后续的帧交换时长的条件,则放弃所述空间复用定时器当前值所指示的时间或者开启新的第一退避过程,并在所述空间复用定时器减到零时所述挂起所述的第一退避过程。
在示例性实施方式中,所述退避单元,还可以配置为如果所述第一站点在所述退避过程中,收到无线信号时,挂起所述退避过程;如果无线信号不满足复用条件,保持处于信道忙状态直到无线信号结束时刻或者无线信号信令域所指示时长的结束时刻;当所述无线信号结束时或者无线信号信令域所指示时长结束时,如果所述空间复用定时器的当前值不为零,则恢复先前挂 起的退避过程或重置第二退避过程。
在示例性实施方式中,所述退避单元还可以配置为当所述空间复用定时器当前值递减到零且所述退避过程未结束时,挂起所述退避过程,对应的退避计时器的值不随时间进行减计数;使用固定的信道检测门限进行信道检测,并在信道检测结果为空闲时恢复挂起的第一退避过程,使用固定的信道检测门限进行物理信道检测;所述传输单元可以配置为在第一退避过程结束时,开始执行传输过程。
在示例性实施方式中,所述传输单元,还可以配置为在所述空间复用状态的持续时间内进行多次退避过程和传输过程,其中,最后一次传输过程在空间复用状态的持续时间为零之前结束;或者,在所述空间复用状态的持续时间内完成第一次无线帧交换后,获得一个能够发送多个无线帧交换而不用进行退避过程的时间长度;在所述时间长度内,预定义一个时间间隔来发送下一个无线帧交换;其中,所述时间长度为预定义的长度,或者为所述第一站点待发送数据无线帧对应的接入策略的接入时长和空间复用状态的持续时间中的最小值。
此外,本发明实施例还提供一种机器可读介质,存储有空间复用传输的程序,所述空间复用传输的程序被处理器执行时实现上述空间复用传输的方法的步骤。
本发明实施例的技术方案中,当第一站点有数据待发送时,在本地NAV为零时依据本地空间复用状态的持续时间,执行相应的退避过程;当所述退避过程结束且所述空间复用状态的持续时间不为零时,所述第一站点开始空间复用传输,其中,所述空间复用传输的传输时长小于或等于所述空间复用状态的持续时间。通过对本发明实施例的实施,避免了SR传输时没有设置NAV而引起的传输干扰问题以及避免了空间复用退避过程引起的不公平问题。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
在附图(其不一定是按比例绘制的)中,相似的附图标记可在不同的视 图中描述相似的部件。具有不同字母后缀的相似附图标记可表示相似部件的不同示例。附图以示例而非限制的方式大体示出了本文中所讨论的各个实施例。
图1是SR传输时长超过OBSS trigger帧对OBSS信道检测的干扰示意图;
图2是SR传输时长不超过OBSS trigger帧,但是SR传输结束后不更新NAV而对OBSS信道检测的干扰示意图;
图3是本发明实施例的空间复用传输的方法的流程示意图一;
图4是本发明实施例的空间复用传输的方法的流程示意图二;
图5是本发明实施例的空间复用传输的装置的结构组成示意图;
图6是本发明实施例的场景示意图。
详述
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
图3是本发明实施例的空间复用传输的方法的流程示意图一,如图3所示,所述空间复用传输的方法包括以下步骤:
步骤301:当第一站点有数据待发送时,在本地网络分配矢量(NAV)为零时依据本地空间复用状态的持续时间,执行相应的退避过程;
步骤302:当所述退避过程结束且所述空间复用状态的持续时间不为零时,所述第一站点开始空间复用传输,其中,所述空间复用传输的传输时长小于或等于所述空间复用状态的持续时间。
本发明实施例中,所述当所述第一站点有数据待发送时,在本地NAV为零时依据本地空间复用状态的持续时间,执行相应的退避过程,可以包括:
当所述第一站点有数据待发送时,所述第一站点在本地NAV为零时对本地空间复用状态的持续时间进行如下判定:
如果所述空间复用状态的持续时间为零值,则所述第一站点开启第一退避过程,其中,所述第一退避过程使用待发送数据对应接入策略的竞争参数,且使用固定的信道检测门限进行物理信道检测;
如果所述空间复用状态的持续时间为非零值,则所述第一站点开启或恢复第二退避过程,或者恢复第一退避过程,其中,第二退避过程或第一退避过程使用动态信道检测门限进行物理信道检测。
本发明实施例中,所述方法还可以包括:
所述第一站点检测到第二站点的无线信号;当所述无线信号满足空间复用传输条件时,比较所述无线信号的剩余持续时间和所述无线信号携带的传输机会时长中的至少一项,与所述第一站点的空间复用状态的持续时间的大小;根据比较结果,更新所述第一站点的空间复用状态的持续时间或维持所述第一站点的空间复用状态的持续时间不变。
本发明实施例中,所述方法还可以包括:
比较所述无线信号的剩余持续时间与所述第一站点的空间复用状态的持续时间的大小;根据所述比较结果,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间或维持所述第一站点的空间复用状态的持续时间不变。
本发明实施例中,所述方法还可以包括:
比较所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长的和值,与所述第一站点的空间复用状态的持续时间的大小;根据所述比较结果,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长的和值或维持所述第一站点的空间复用状态的持续时间不变。
本发明实施例中,所述无线信号满足空间复用传输条件,可以包括:
所述无线信号的物理信令域指示所述无线信号为交叠基本服务集(OBSS)信号,且所述无线信号的物理信令域指示所述无线信号允许空间复用传输,且所述无线信号的信号强度低于所述第一站点的动态信道检测门限;当所述物理信令域还携带其他空间复用限制条件信息时,所述第一站点满足所述所 涉及的空间复用限制条件。
本发明实施例中,所述更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间之前,所述方法还可以包括:
所述第一站点根据所述第二站点的所述无线信号的物理信令域获得所述无线信号的剩余持续时间,或者所述第一站点根据所述第二站点的所述无线信号的物理信令域通过计算得到所述无线信号的剩余持续时间。
本发明实施例中,所述方法还可以包括:
所述第一站点将所述第一站点的空间复用状态的持续时间通过空间复用定时器来指示;
其中,所述空间复用定时器的当前值指示所述空间复用状态的持续时间,所述空间复用定时器随时间递减直到零,且能够被更新;当所述空间复用定时器为非零值时表示所述第一站点处于空间复用状态,且空间复用状态的持续时间为所述空间复用定时器的当前非零值。
本发明实施例中,所述根据所述比较结果,更新所述第一站点的空间复用状态的持续时间或维持所述第一站点的空间复用状态的持续时间不变,可以包括:
当所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项大于所述第一站点的空间复用状态的持续时间时,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项;
当所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项小于或等于所述第一站点的空间复用状态的持续时间时,维持所述第一站点的空间复用状态的持续时间不变。
本发明实施例中,所述更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间,可以包括:
更新所述第一站点的所述空间复用定时器的值为所述无线信号的剩余持续时间。
本发明实施例中,所述第一站点开启第一退避过程,还可以包括:
如果在所述第一退避过程中收到无线信号,则所述第一站点挂起所述第一退避过程,其中包括:保存第一退避计时器的值;
所述第一站点在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,所述第一站点启动新的第二退避过程;其中,所述第二退避过程中使用待发送数据对应接入策略的竞争参数,或者使用指定接入策略的竞争参数,或者使用空间复用对应的接入策略的竞争参数;所述第二退避过程使用动态信道检测门限来进行物理信道检测;
当所述第二退避结束且所述空间复用定时器当前值不为零时,所述第一站点开始执行时长不超过所述空间复用定时器当前值的帧交换过程。
本发明实施例中,所述第一站点开启第一退避过程,可以包括:
如果在所述第一退避过程中收到无线信号,则所述第一站点挂起所述第一退避过程,其中包括:保存第一退避计时器的值;
所述第一站点在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,所述第一站点恢复第二退避过程,所述第二退避过程使用动态信道检测门限来进行物理信道检测;
当所述第二退避结束且所述空间复用定时器当前值不为零时,所述第一站点开始执行时长不超过所述空间复用定时器当前值的帧交换过程;
在所述帧交换过程结束后,如果所述空间复用定时器当前值不为零,且所述空间复用定时器当前值低于所述第一站点后续的帧交换时长,则所述第一站点放弃所述空间复用定时器当前值所指示的时间或者所述第一站点开启新的第二退避过程,并在所述空间复用定时器减到零时挂起所述第二退避过程。
本发明实施例中,所述第一站点开启第一退避过程,可以包括:
如果在所述第一退避过程中收到无线信号,则所述第一站点挂起所述第一退避过程,其中包括:保存第一退避计时器的值;
所述第一站点在判断出所述无线信号满足空间复用条件且用所述无线信 号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,所述第一站点恢复所挂起的所述第一退避过程,所述第一退避过程使用动态信道检测门限进行物理信道检测;
当所述第一退避过程结束且所述空间复用定时器当前值不为零时,所述第一站点开始执行时长不超过所述空间复用定时器当前值的帧交换过程;
在所述帧交换过程结束后,如果所述空间复用定时器当前值不为零,且所述空间复用定时器当前值不满足所述第一站点后续的帧交换时长的条件,则所述第一站点放弃所述空间复用定时器当前值所指示的时间或者所述第一站点开启新的第一退避过程,并在所述空间复用定时器减到零时所述挂起所述的第一退避过程。
本发明实施例中,所述第一站点开启或恢复第二退避过程,或者恢复第一退避过程,可以包括:
如果所述第一站点在所述退避过程中,收到无线信号时,所述第一站点挂起所述退避过程;如果无线信号不满足复用条件,保持处于信道忙状态直到无线信号结束时刻或者无线信号信令域所指示时长的结束时刻;
当所述无线信号结束时或者无线信号信令域所指示时长结束时,如果所述空间复用定时器的当前值不为零,则所述第一站点恢复先前挂起的退避过程或重置第二退避过程。
本发明实施例中,当所述空间复用定时器当前值递减到零且所述退避过程未结束时,所述第一站点挂起所述退避过程,对应的退避计时器的值不随时间进行减计数;同时,所述第一站点使用固定的信道检测门限进行信道检测,并在信道检测结果为空闲时恢复挂起的第一退避过程,使用固定的信道检测门限进行物理信道检测;在第一退避过程结束时,所述第一站点开始执行传输过程。
本发明实施例中,所述第一站点开始空间复用传输,其中,所述空间复用传输的传输时长小于或等于所述空间复用状态的持续时间,可以包括:
所述第一站点在所述空间复用状态的持续时间内进行多次退避过程和传输过程,其中,最后一次传输过程在空间复用状态的持续时间为零之前结束; 或者,
所述第一站点在所述空间复用状态的持续时间内完成第一次无线帧交换后,获得一个能够发送多个无线帧交换而不用进行退避过程的时间长度;在所述时间长度内,所述第一站点预定义一个时间间隔来发送下一个无线帧交换;其中,所述时间长度为预定义的长度,或者为所述第一站点待发送数据无线帧对应的接入策略的接入时长和空间复用状态的持续时间中的最小值。
下面结合应用场景对本发明实施例的空间复用传输的方法再做进一步描述。
实施例一
本实施例用于描述收到OBSS无线帧时站点判断空间复用的过程,以及站点根据OBSS无线帧的剩余持续时间更新或维持空间复用定时器的过程。
如图6所示,AP1和STA1在一个基本服务集(BSS)1内。STA2在另一个基本服务集(BSS)2内。STA2维护一个空间复用定时器(SR Timer),当STA2判断OBSS无线帧可以复用的条件下,根据OBSS无线帧的剩余持续时间来更新或维持上述SR Timer的值。SR Timer是一个定时器,其值随时间递减直到零,且可以被更新。SR Timer的值可以用来指示站点是否处于空间复用状态以及空间复用状态的持续时间。SR Timer为非零值时表示站点处于空间复用状态,且空间复用状态的持续时间为当前SR Timer的非零值。
STA1向AP1发送无线帧1。STA2检测到无线帧1的物理帧头,通过无线帧1物理帧头的信令域确定无线帧1是OBSS帧,并由信令域确定无线帧1可以复用,那么STA2使用动态CCA门限判断信道是否空闲。此实施例中物理帧头的接收功率RSSI低于STA2的动态CCA门限。同时STA2通过物理帧头的信令域获知或通过计算得到无线帧1的剩余持续时间。STA2终止接收无线帧1,将物理层信道检测结果置为信道空闲(idle),STA2将无线帧1的剩余持续时间与SR Timer的值进行比较,无线帧1的剩余持续时间大于SR Timer的值,则将SR Timer的值更新为无线帧1的剩余持续时间,否则维持SR Timer的当前值不变。
实施例二
基于实施例一,STA2有数据要发送时,进行虚拟信道检测。如果虚拟信道检测结果显示信道空闲,即当只有一个网络分配矢量(NAV)且NAV为0,或者如果有两个网络分配矢量,分别为BSS NAV、OBSS NAV,且两个NAV都为0,并且STA2的SR Timer当前值为零时,STA2用传统的固定CCA门限进行物理信道检测。当物理信道检测结果也显示信道空闲,则STA2启动传统的传输退避过程,也叫第一退避过程,并使用固定的CCA门限进行物理层信道检测。信道在一段特定帧间间隔,比如DIFS,或PIFS,或AIFs内空闲后,开始在每个退避时隙检测信道,若退避时隙空闲,则传统的传输退避计数器进行一次减数,并继续在下一个退避时隙进行信道检测。
在传统的传输退避过程中,STA2收到一个物理帧头信号,则STA2挂起当前的传统的传输退避过程。STA2通过实施例一描述的方式确定该无线帧为OBSS帧且可以进行空间复用,并用该OBSS无线帧的剩余持续时间更新了SR Timer。
STA2开启一个新的复用传输退避过程,也叫第二退避过程,使用动态CCA门限进行物理层信道检测:信道在一段特定帧间间隔,比如DIFS,或PIFS,或AIFs内空闲后,开始在每个退避时隙检测信道,若退避时隙空闲,则复用传输退避计数器进行一次减数,继续在下一个退避时隙进行信道检测。复用传输退避计数器的初始值取值为0到竞争窗之间的随机值,竞争窗的最大最小值对应于某一个接入策略或STA所要发送数据的接入策略,或者对应于空间复用传输的专用接入策略。
当退避时隙减到0时,STA2的SR Timer的当前值为非零值,则STA2发送无线帧2并且满足无线帧2对应的帧交换过程时长不大于SR Timer当前值。
实施例三
基于实施例一和二,STA2有数据要发送且在传统的传输退避过程中收到OBSS无线帧1的物理帧头时挂起传统的传输退避过程并开启一个新的复用传输退避过程,使用动态CCA门限进行物理层信道检测。在复用传输退避过程结束之前,STA2的SR Timer减到0值,则STA2挂起复用传输退避过程,即空间复用退避计数器不再进行减计数。同时STA2恢复之前挂起的 传统的传输退避过程,使用传统的CCA门限进行物理层信道检测。当传统的传输退避计数器退避到0时,STA2开始无线帧2的传输过程。STA2可以恢复或者重置之前挂起的复用传输退避过程。
实施例四
基于实施例一和二,STA2有数据要发送且在传统的传输退避过程中收到OBSS无线帧1的物理帧头时挂起传统的传输退避过程并恢复复用传输退避过程,使用动态CCA门限进行物理层信道检测。当复用传输退避时隙减到0时,STA2的SR Timer的当前值为非零值,则STA2发送无线帧2并且满足无线帧2对应的帧交换过程时长不大于SR Timer当前值。
实施例五
基于实施例四,STA2有数据要发送且在传统的传输退避过程中收到OBSS无线帧1的物理帧头时挂起传统的传输退避过程并恢复复用传输退避过程,使用动态CCA门限进行物理层信道检测。当复用传输退避时隙减到0时,STA2的SR Timer的当前值为非零值,则STA2发送无线帧2并且满足无线帧2对应的帧交换过程时长不大于SR Timer当前值。
发送完成后,STA2可以在预定时长,如SIFS后,发送第二个无线帧,并满足其无线帧交换时长不超过SR Timer当前值。
实施例六
基于实施例四,STA2有数据要发送且在传统的传输退避过程中收到OBSS无线帧1的物理帧头时挂起传统的传输退避过程并恢复复用传输退避过程,使用动态CCA门限进行物理层信道检测。当复用传输退避时隙减到0时,STA2的SR Timer的当前值为非零值,则STA2发送无线帧2并且满足无线帧2对应的帧交换过程时长不大于SR Timer当前值。
发送完成后,STA2又有新的数据需要发送,但STA2的新的帧交换过程超过了SR Timer的当前值,则STA2放弃该复用传输机会,即SR Timer在到期之前如果没有被更新则STA2不再发任何无线帧。
实施例七
基于实施例四,STA2有数据要发送且在传统的传输退避过程中收到 OBSS无线帧1的物理帧头时挂起传统的传输退避过程并恢复复用传输退避过程,使用动态CCA门限进行物理层信道检测。当复用传输退避时隙减到0时,STA2的SR Timer的当前值为非零值,则STA2发送无线帧2并且满足无线帧2对应的帧交换过程时长不大于SR Timer当前值。
发送完成后,STA2又有新的数据需要发送,但STA2的新的帧交换过程超过了SR Timer的当前值,则STA2开启新的复用传输退避过程,使用动态CCA门限进行物理层信道检测。在新的复用传输退避过程中,SR Timer的值减为0,即STA2不再处于空间复用状态,则STA2挂起复用传输退避过程,保持复用传输退避计数器不再减计数,同时STA2恢复之前挂起的正常传输退避过程,使用传统的CCA门限进行物理信道检测。
实施例八
基于实施例一,STA2有数据要发送且在传统的传输退避过程中收到OBSS无线帧1的物理帧头时挂起传统的传输退避过程,在确定可以对该OBSS无线帧1进行复用传输且更新SR Timer为该OBSS无线帧1的剩余持续时间后,STA2恢复传统的传输退避过程,并使用动态CCA门限进行物理层信道检测。
当传统的传输退避时隙减到0,并且STA2的SR Timer的当前值为非零值,则STA2发送无线帧2并且满足无线帧2对应的帧交换过程时长不大于SR Timer当前值。
实施例九
基于实施例一和八,STA2有数据要发送且在正常传输退避过程中收到OBSS无线帧1的物理帧头时挂起正常传输退避过程,在确定可以对该OBSS无线帧1进行复用传输且更新SR Timer为该OBSS无线帧1的剩余持续时间后,STA2恢复传统的传输退避过程,使用动态CCA门限进行物理层信道检测。
当传统的传输退避时隙减到0之前,STA2的SR Timer的值减到0,则STA2挂起传统的传输退避过程。STA2进行虚拟信道检测和物理信道检测,其中,物理信道检测门限为传统的CCA门限。当信道检测结果显示信道空闲时,STA2恢复之前挂起的传统的传输退避过程,使用传统的CCA门限进 行物理信道检测。
实施例十
基于实施例二,STA2开启一个新的复用传输退避过程,使用动态CCA门限进行物理层信道检测:信道在一段特定帧间间隔,比如DIFS,或PIFS,或AIFs内空闲后,开始在每个退避时隙检测信道,若退避时隙空闲,则复用传输退避计数器进行一次减数,继续在下一个退避时隙进行信道检测。
在复用传输退避到0之前,STA2检测到一个有效物理帧头并判断这是一个BSS无线帧,则STA2挂起当前的复用退避过程直至上述BSS无线帧传输完成。STA2可以恢复或者重置上述挂起的复用传输退避过程。
实施例十一
基于实施例一和二,STA2有数据要发送且在传统的传输退避过程中收到OBSS无线帧1的物理帧头时挂起传统的传输退避过程并开启新的复用传输退避过程,使用动态CCA门限进行物理层信道检测。当复用传输退避时隙减到0时,STA2的SR Timer的当前值为非零值,则STA2发送无线帧2并且满足无线帧2对应的帧交换过程时长不大于SR Timer当前值。
STA2在完成无线帧2对应的帧交换过程后,获得一个可以发送多个无线帧交换而不用进行复用退避过程的时间长度,在该时间长度内,STA2可以以预定义的时间间隔,比如SIFS,发送下一个无线帧交换。该时间长度可以是一个预定长度,或者是STA2发送的第一个数据无线帧对应的接入策略的TXOP_limit和SR Timer间的最小值。
以上所有实施例中,站点收到OBSS无线帧并判断可以复用时,也可以使用OBSS无线帧的剩余传输机会时长来更新站点的空间复用状态的持续时间。OBSS无线帧的剩余传输机会时长是OBSS无线帧的剩余持续时间以及OBSS无线帧信令域所指示的传输机会时长的总和。
图4为本发明实施例的空间复用传输的方法的流程示意图二,如图4所示,所述空间复用传输的方法包括以下步骤:
步骤401:第一站点有数据待发送,且所述第一站点的本地NAV为零。
步骤402:第一站点判断空间复用定时器的值是否为零,在是时,执行 步骤403,在否时,执行步骤406。
步骤403:第一站点开启传统的传输退避过程。
步骤404:第一站点收到能够复用的OBSS无线帧并用所述OBSS无线帧的剩余持续时间更新空间复用定时器。
其中,第一站点接收物理帧头;通过物理帧头判断OBSS无线帧满足空间复用传输条件;第一站点中止接收物理帧头,信道处于闲置状态,更新空间复用定时器为当前OBSS无线帧的剩余持续时间或维持空间复用定时器保持不变。
步骤405:第一站点挂起传统的传输退避过程。
步骤406:第一站点开启或恢复空间复用退避过程,或者传统的传输退避过程,使用动态信道检测门限。
步骤407:如果退避过程结束且空间复用状态的持续时间不为零,则开始复用传输,所述复用传输的时间不超过空间复用状态的持续时间。
图5是本发明实施例的空间复用传输的装置的结构组成示意图,该装置应用于第一站点,如图5所示,所述装置包括:
退避单元55,配置为当第一站点有数据待发送时,在本地NAV为零时依据本地空间复用状态的持续时间,执行相应的退避过程;
传输单元56,配置为当所述退避过程结束且所述空间复用状态的持续时间不为零时,开始空间复用传输,其中,所述空间复用传输的传输时长小于或等于所述空间复用状态的持续时间。
所述退避单元55,还可以配置为当所述第一站点有数据待发送时,在本地NAV为零时对本地空间复用状态的持续时间进行如下判定:如果所述空间复用状态的持续时间为零值,则开启第一退避过程,其中,所述第一退避过程使用待发送数据对应接入策略的竞争参数,且使用固定的信道检测门限进行物理信道检测;如果所述空间复用状态的持续时间为非零值,则开启或恢复第二退避过程,或者恢复第一退避过程,其中,第二退避过程或第一退避过程使用动态信道检测门限进行物理信道检测。
所述装置还可以包括:
检测单元51,配置为检测第二站点的无线信号;
判断单元52,配置为判断所述无线信号是否满足空间复用传输条件;
比较单元53,配置为当所述无线信号满足空间复用传输条件时,比较所述无线信号的剩余持续时间和所述无线信号携带的传输机会时长中的至少一项,与所述第一站点的空间复用状态的持续时间的大小,得到比较结果;
控制单元54,配置为根据比较结果,更新所述第一站点的空间复用状态的持续时间或维持所述第一站点的空间复用状态的持续时间不变。
本发明实施例中,所述比较单元53,还可以配置为比较所述无线信号的剩余持续时间与所述第一站点的空间复用状态的持续时间的大小;
所述控制单元54,还可以配置为根据所述比较结果,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间或维持所述第一站点的空间复用状态的持续时间不变。
本发明实施例中,所述比较单元53,还可以配置为比较所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长的和值,与所述第一站点的空间复用状态的持续时间的大小;
所述控制单元54,还可以配置为根据所述比较结果,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长的和值或维持所述第一站点的空间复用状态的持续时间不变。
本发明实施例中,所述判断单元52可以配置为通过以下方式确定无线信号满足空间复用传输条件:
所述无线信号的物理信令域指示所述无线信号为OBSS信号,且所述无线信号的物理信令域指示所述无线信号允许空间复用传输,且所述无线信号的信号强度低于所述第一站点的动态信道检测门限;当所述物理信令域还携带其他空间复用限制条件信息时,所述第一站点满足所述所涉及的空间复用限制条件。
本发明实施例中,所述装置还可以包括:
获取单元57,配置为根据所述第二站点的所述无线信号的物理信令域获 得所述无线信号的剩余持续时间,或者根据所述第二站点的所述无线信号的物理信令域通过计算得到所述无线信号的剩余持续时间。
本发明实施例中,所述装置还可以包括:
指示单元58,配置为将所述第一站点的空间复用状态的持续时间通过空间复用定时器来指示;
其中,所述空间复用定时器的当前值指示所述空间复用状态的持续时间,所述空间复用定时器随时间递减直到零,且能够被更新;当所述空间复用定时器为非零值时表示所述第一站点处于空间复用状态,且空间复用状态的持续时间为所述空间复用定时器的当前非零值。
本发明实施例中,所述控制单元54,还可以配置为当所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项大于所述第一站点的空间复用状态的持续时间时,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项;当所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项小于或等于所述第一站点的空间复用状态的持续时间时,维持所述第一站点的空间复用状态的持续时间不变。
本发明实施例中,所述控制单元54,还可以配置为更新所述第一站点的所述空间复用定时器的值为所述无线信号的剩余持续时间。
本发明实施例中,所述退避单元55,还可以配置为如果在所述第一退避过程中收到无线信号,则挂起所述第一退避过程,其中,保存第一退避计时器的值;在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,启动新的第二退避过程;其中,所述第二退避过程中使用待发送数据对应接入策略的竞争参数,或者使用指定接入策略的竞争参数,或者使用空间复用对应的接入策略的竞争参数;所述第二退避过程使用动态信道检测门限来进行物理信道检测;当所述第二退避结束且所述空间复用定时器当前值不为零时,开始执行时长不超过所述空间复用定时器当前值的帧交换过程。
本发明实施例中,所述退避单元55,还可以配置为如果在所述第一退避 过程中收到无线信号,则挂起所述第一退避过程,其中,保存第一退避计时器的值;在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,恢复第二退避过程,所述第二退避过程使用动态信道检测门限来进行物理信道检测;当所述第二退避结束且所述空间复用定时器当前值不为零时,开始执行时长不超过所述空间复用定时器当前值的帧交换过程;在所述帧交换过程结束后,如果所述空间复用定时器当前值不为零,且所述空间复用定时器当前值低于所述第一站点后续的帧交换时长,则放弃所述空间复用定时器当前值所指示的时间或者开启新的第二退避过程,并在所述空间复用定时器减到零时挂起所述第二退避过程。
本发明实施例中,所述退避单元55,还可以配置为如果在所述第一退避过程中收到无线信号,则挂起所述第一退避过程,其中,保存第一退避计时器的值;在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,恢复所挂起的所述第一退避过程,所述第一退避过程使用动态信道检测门限进行物理信道检测;当所述第一退避过程结束且所述空间复用定时器当前值不为零时,开始执行时长不超过所述空间复用定时器当前值的帧交换过程;在所述帧交换过程结束后,如果所述空间复用定时器当前值不为零,且所述空间复用定时器当前值不满足所述第一站点后续的帧交换时长的条件,则放弃所述空间复用定时器当前值所指示的时间或者开启新的第一退避过程,并在所述空间复用定时器减到零时所述挂起所述的第一退避过程。
本发明实施例中,所述退避单元55,还可以配置为如果所述第一站点在所述退避过程中,收到无线信号时,挂起所述退避过程;如果无线信号不满足复用条件,保持处于信道忙状态直到无线信号结束时刻或者无线信号信令域所指示时长的结束时刻;当所述无线信号结束时或者无线信号信令域所指示时长结束时,如果所述空间复用定时器的当前值不为零,则恢复先前挂起的退避过程或重置第二退避过程。
本发明实施例中,所述退避单元55还可以配置为当所述空间复用定时器 当前值递减到零且所述退避过程未结束时,挂起所述退避过程,对应的退避计时器的值不随时间进行减计数;使用固定的信道检测门限进行信道检测,并在信道检测结果为空闲时恢复挂起的第一退避过程,使用固定的信道检测门限进行物理信道检测;所述传输单元56可以配置为在第一退避过程结束时,开始执行传输过程。
本发明实施例中,所述传输单元56,还可以配置为在所述空间复用状态的持续时间内进行多次退避过程和传输过程,其中,最后一次传输过程在空间复用状态的持续时间为零之前结束;或者,在所述空间复用状态的持续时间内完成第一次无线帧交换后,获得一个能够发送多个无线帧交换而不用进行退避过程的时间长度;在所述时间长度内,预定义一个时间间隔来发送下一个无线帧交换;其中,所述时间长度为预定义的长度,或者为所述第一站点待发送数据无线帧对应的接入策略的接入时长和空间复用状态的持续时间中的最小值。
本领域技术人员应当理解,图5所示的空间复用传输的装置中的一个或多个单元的实现功能可参照前述空间复用传输的方法的相关描述而理解。图5所示的空间复用传输的装置中的一个或多个单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
本发明实施例还提供了一种站点,所述站点包括图5所示的空间复用传输的装置。
此外,本发明实施例还提供一种设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的空间复用传输的程序,所述程序被处理器执行时实现上述的空间复用传输的方法的步骤。
本发明实施例还提供一种机器可读介质,存储有空间复用传输的程序,所述空间复用传输的程序被处理器执行时实现上述空间复用传输的方法的步骤。
本领域内的技术人员应明白,本发明实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光 学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本发明实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在机器可读介质(比如,计算机可读介质)上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD) 或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。
工业实用性
本申请实施例提供一种空间复用传输的方法及装置,避免了SR传输时没有设置NAV而引起的传输干扰问题以及避免了空间复用退避过程引起的不公平问题。

Claims (32)

  1. 一种空间复用传输的方法,包括:
    当第一站点有数据待发送时,在本地网络分配矢量NAV为零时依据本地空间复用状态的持续时间,执行相应的退避过程;
    当所述退避过程结束且所述空间复用状态的持续时间不为零时,所述第一站点开始空间复用传输,其中,所述空间复用传输的传输时长小于或等于所述空间复用状态的持续时间。
  2. 根据权利要求1所述的空间复用传输的方法,其中,所述当所述第一站点有数据待发送时,在本地NAV为零时依据本地空间复用状态的持续时间,执行相应的退避过程,包括:
    当所述第一站点有数据待发送时,所述第一站点在本地NAV为零时对本地空间复用状态的持续时间进行如下判定:
    如果所述空间复用状态的持续时间为零值,则所述第一站点开启第一退避过程,其中,所述第一退避过程使用待发送数据对应接入策略的竞争参数,且使用固定的信道检测门限进行物理信道检测;
    如果所述空间复用状态的持续时间为非零值,则所述第一站点开启或恢复第二退避过程,或者恢复第一退避过程,其中,第二退避过程或第一退避过程使用动态信道检测门限进行物理信道检测。
  3. 根据权利要求1所述的空间复用传输的方法,所述方法还包括:
    所述第一站点检测到第二站点的无线信号;
    当所述无线信号满足空间复用传输条件时,比较所述无线信号的剩余持续时间和所述无线信号携带的传输机会时长中的至少一项,与所述第一站点的空间复用状态的持续时间的大小;根据比较结果,更新所述第一站点的空间复用状态的持续时间或维持所述第一站点的空间复用状态的持续时间不变。
  4. 根据权利要求3所述的空间复用传输的方法,所述方法还包括:
    比较所述无线信号的剩余持续时间与所述第一站点的空间复用状态的持续时间的大小;根据所述比较结果,更新所述第一站点的空间复用状态的 持续时间为所述无线信号的剩余持续时间或维持所述第一站点的空间复用状态的持续时间不变。
  5. 根据权利要求3所述的空间复用传输的方法,所述方法还包括:
    比较所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长的和值,与所述第一站点的空间复用状态的持续时间的大小;根据所述比较结果,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长的和值或维持所述第一站点的空间复用状态的持续时间不变。
  6. 根据权利要求3所述的空间复用传输的方法,其中,所述无线信号满足空间复用传输条件,包括:
    所述无线信号的物理信令域指示所述无线信号为交叠基本服务集OBSS信号,且所述无线信号的物理信令域指示所述无线信号允许空间复用传输,且所述无线信号的信号强度低于所述第一站点的动态信道检测门限;当所述物理信令域还携带其他空间复用限制条件信息时,所述第一站点满足所述所涉及的空间复用限制条件。
  7. 根据权利要求3所述的空间复用传输的方法,所述更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间之前,所述方法还包括:
    所述第一站点根据所述第二站点的所述无线信号的物理信令域获得所述无线信号的剩余持续时间,或者所述第一站点根据所述第二站点的所述无线信号的物理信令域通过计算得到所述无线信号的剩余持续时间。
  8. 根据权利要求3所述的空间复用传输的方法,所述方法还包括:
    所述第一站点将所述第一站点的空间复用状态的持续时间通过空间复用定时器来指示;
    其中,所述空间复用定时器的当前值指示所述空间复用状态的持续时间,所述空间复用定时器随时间递减直到零,且能够被更新;当所述空间复用定时器为非零值时表示所述第一站点处于空间复用状态,且所述空间复用状态的持续时间为所述空间复用定时器的当前非零值。
  9. 根据权利要求3所述的空间复用传输的方法,其中,所述根据所述比较结果,更新所述第一站点的空间复用状态的持续时间或维持所述第一站点的空间复用状态的持续时间不变,包括:
    当所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项大于所述第一站点的空间复用状态的持续时间时,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项;
    当所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项小于或等于所述第一站点的空间复用状态的持续时间时,维持所述第一站点的空间复用状态的持续时间不变。
  10. 根据权利要求8所述的空间复用传输的方法,其中,所述更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间,包括:
    更新所述第一站点的所述空间复用定时器的值为所述无线信号的剩余持续时间。
  11. 根据权利要求2所述的空间复用传输的方法,其中,所述第一站点开启第一退避过程,还包括:
    如果在所述第一退避过程中收到无线信号,则所述第一站点挂起所述第一退避过程,其中包括:保存第一退避计时器的值;
    所述第一站点在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,所述第一站点启动新的第二退避过程;其中,所述第二退避过程中使用待发送数据对应接入策略的竞争参数,或者使用指定接入策略的竞争参数,或者使用空间复用对应的接入策略的竞争参数;所述第二退避过程使用动态信道检测门限来进行物理信道检测;
    当所述第二退避结束且所述空间复用定时器当前值不为零时,所述第一站点开始执行时长不超过所述空间复用定时器当前值的帧交换过程。
  12. 根据权利要求2所述的空间复用传输的方法,其中,所述第一站点开启第一退避过程,包括:
    如果在所述第一退避过程中收到无线信号,则所述第一站点挂起所述第一退避过程,其中包括:保存第一退避计时器的值;
    所述第一站点在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,所述第一站点恢复第二退避过程,所述第二退避过程使用动态信道检测门限来进行物理信道检测;
    当所述第二退避结束且所述空间复用定时器当前值不为零时,所述第一站点开始执行时长不超过所述空间复用定时器当前值的帧交换过程;
    在所述帧交换过程结束后,如果所述空间复用定时器当前值不为零,且所述空间复用定时器当前值低于所述第一站点后续的帧交换时长,则所述第一站点放弃所述空间复用定时器当前值所指示的时间或者所述第一站点开启新的第二退避过程,并在所述空间复用定时器减到零时挂起所述第二退避过程。
  13. 根据权利要求2所述的空间复用传输的方法,其中,所述第一站点开启第一退避过程,包括:
    如果在所述第一退避过程中收到无线信号,则所述第一站点挂起所述第一退避过程,其中包括:保存第一退避计时器的值;
    所述第一站点在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,所述第一站点恢复所挂起的所述第一退避过程,所述第一退避过程使用动态信道检测门限进行物理信道检测;
    当所述第一退避过程结束且所述空间复用定时器当前值不为零时,所述第一站点开始执行时长不超过所述空间复用定时器当前值的帧交换过程;
    在所述帧交换过程结束后,如果所述空间复用定时器当前值不为零,且所述空间复用定时器当前值不满足所述第一站点后续的帧交换时长的条件,则所述第一站点放弃所述空间复用定时器当前值所指示的时间或者所述第一站点开启新的第一退避过程,并在所述空间复用定时器减到零时所述挂起所述的第一退避过程。
  14. 根据权利要求2所述的空间复用传输的方法,其中,所述第一站点开启或恢复第二退避过程,或者恢复第一退避过程,包括:
    如果所述第一站点在所述退避过程中,收到无线信号时,所述第一站点挂起所述退避过程;如果无线信号不满足复用条件,保持处于信道忙状态直到无线信号结束时刻或者无线信号信令域所指示时长的结束时刻;
    当所述无线信号结束时或者无线信号信令域所指示时长结束时,如果所述空间复用定时器的当前值不为零,则所述第一站点恢复先前挂起的退避过程或重置第二退避过程。
  15. 根据权利要求11至14中任一项所述的空间复用传输的方法,其中,当所述空间复用定时器当前值递减到零且所述退避过程未结束时,所述第一站点挂起所述退避过程,对应的退避计时器的值不随时间进行减计数;所述第一站点使用固定的信道检测门限进行信道检测,并在信道检测结果为空闲时恢复挂起的第一退避过程,使用固定的信道检测门限进行物理信道检测;在第一退避过程结束时,所述第一站点开始执行传输过程。
  16. 根据权利要求1所述的空间复用传输的方法,其中,所述第一站点开始空间复用传输,其中,所述空间复用传输的传输时长小于或等于所述空间复用状态的持续时间,包括:
    所述第一站点在所述空间复用状态的持续时间内进行多次退避过程和传输过程,其中,最后一次传输过程在空间复用状态的持续时间为零之前结束;或者,
    所述第一站点在所述空间复用状态的持续时间内完成第一次无线帧交换后,获得一个能够发送多个无线帧交换而不用进行退避过程的时间长度;在所述时间长度内,所述第一站点预定义一个时间间隔来发送下一个无线帧交换;其中,所述时间长度为预定义的长度,或者为所述第一站点待发送数据无线帧对应的接入策略的接入时长和空间复用状态的持续时间中的最小值。
  17. 一种空间复用传输的装置,应用于第一站点,所述装置包括:
    退避单元,配置为当第一站点有数据待发送时,在本地网络分配矢量NAV为零时依据本地空间复用状态的持续时间,执行相应的退避过程;
    传输单元,配置为当所述退避过程结束且所述空间复用状态的持续时间不为零时,开始空间复用传输,其中,所述空间复用传输的传输时长小于或等于所述空间复用状态的持续时间。
  18. 根据权利要求17所述的空间复用传输的装置,其中,所述退避单元,还配置为当所述第一站点有数据待发送时,在本地NAV为零时对本地空间复用状态的持续时间进行如下判定:如果所述空间复用状态的持续时间为零值,则开启第一退避过程,其中,所述第一退避过程使用待发送数据对应接入策略的竞争参数,且使用固定的信道检测门限进行物理信道检测;如果所述空间复用状态的持续时间为非零值,则开启或恢复第二退避过程,或者恢复第一退避过程,其中,第二退避过程或第一退避过程使用动态信道检测门限进行物理信道检测。
  19. 根据权利要求17所述的空间复用传输的装置,所述装置还包括:
    检测单元,配置为检测第二站点的无线信号;
    判断单元,配置为判断所述无线信号是否满足空间复用传输条件;
    比较单元,配置为当所述无线信号满足空间复用传输条件时,比较所述无线信号的剩余持续时间和所述无线信号携带的传输机会时长中的至少一项,与所述第一站点的空间复用状态的持续时间的大小,得到比较结果;
    控制单元,配置为根据比较结果,更新所述第一站点的空间复用状态的持续时间或维持所述第一站点的空间复用状态的持续时间不变。
  20. 根据权利要求19所述的空间复用传输的装置,其中,所述比较单元,还配置为比较所述无线信号的剩余持续时间与所述第一站点的空间复用状态的持续时间的大小;
    所述控制单元,还配置为根据所述比较结果,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间或维持所述第一站点的空间复用状态的持续时间不变。
  21. 根据权利要求19所述的空间复用传输的装置,其中,所述比较单元,还配置为比较所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长的和值,与所述第一站点的空间复用状态的持续时间的大小;
    所述控制单元,还配置为根据所述比较结果,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长的和值或维持所述第一站点的空间复用状态的持续时间不变。
  22. 根据权利要求19所述的空间复用传输的装置,其中,所述判断单元配置为通过以下方式确定无线信号满足空间复用传输条件:
    所述无线信号的物理信令域指示所述无线信号为交叠基本服务集OBSS信号,且所述无线信号的物理信令域指示所述无线信号允许空间复用传输,且所述无线信号的信号强度低于所述第一站点的动态信道检测门限;当所述物理信令域还携带其他空间复用限制条件信息时,所述第一站点满足所述所涉及的空间复用限制条件。
  23. 根据权利要求19所述的空间复用传输的装置,所述装置还包括:
    获取单元,配置为根据所述第二站点的所述无线信号的物理信令域获得所述无线信号的剩余持续时间,或者根据所述第二站点的所述无线信号的物理信令域通过计算得到所述无线信号的剩余持续时间。
  24. 根据权利要求19所述的空间复用传输的装置,所述装置还包括:
    指示单元,配置为将所述第一站点的空间复用状态的持续时间通过空间复用定时器来指示;
    其中,所述空间复用定时器的当前值指示所述空间复用状态的持续时间,所述空间复用定时器随时间递减直到零,且能够被更新;当所述空间复用定时器为非零值时表示所述第一站点处于空间复用状态,且空间复用状态的持续时间为所述空间复用定时器的当前非零值。
  25. 根据权利要求19所述的空间复用传输的装置,其中,所述控制单元,还配置为当所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项大于所述第一站点的空间复用状态的持续时间时,更新所述第一站点的空间复用状态的持续时间为所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项;当所述无线信号的剩余持续时间和所述无线信号指示的传输机会时长中的至少一项小于或等于所述第一站点的空间复用状态的持续时间时,维持所述第一站点的空间复用状态的 持续时间不变。
  26. 根据权利要求24所述的空间复用传输的装置,其中,所述控制单元,还配置为更新所述第一站点的所述空间复用定时器的值为所述无线信号的剩余持续时间。
  27. 根据权利要求18所述的空间复用传输的装置,其中,所述退避单元,还配置为如果在所述第一退避过程中收到无线信号,则挂起所述第一退避过程,其中,保存第一退避计时器的值;在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,启动新的第二退避过程;其中,所述第二退避过程中使用待发送数据对应接入策略的竞争参数,或者使用指定接入策略的竞争参数,或者使用空间复用对应的接入策略的竞争参数;所述第二退避过程使用动态信道检测门限来进行物理信道检测;当所述第二退避结束且所述空间复用定时器当前值不为零时,开始执行时长不超过所述空间复用定时器当前值的帧交换过程。
  28. 根据权利要求18所述的空间复用传输的装置,其中,所述退避单元,还配置为如果在所述第一退避过程中收到无线信号,则挂起所述第一退避过程,其中,保存第一退避计时器的值;在判断出所述无线信号满足空间复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,恢复第二退避过程,所述第二退避过程使用动态信道检测门限来进行物理信道检测;当所述第二退避结束且所述空间复用定时器当前值不为零时,开始执行时长不超过所述空间复用定时器当前值的帧交换过程;在所述帧交换过程结束后,如果所述空间复用定时器当前值不为零,且所述空间复用定时器当前值低于所述第一站点后续的帧交换时长,则放弃所述空间复用定时器当前值所指示的时间或者开启新的第二退避过程,并在所述空间复用定时器减到零时挂起所述第二退避过程。
  29. 根据权利要求18所述的空间复用传输的装置,其中,所述退避单元,还配置为如果在所述第一退避过程中收到无线信号,则挂起所述第一退避过程,其中,保存第一退避计时器的值;在判断出所述无线信号满足空间 复用条件且用所述无线信号的剩余持续时间或所述无线信号的剩余持续时间与所述无线信号的传输机会时长的和值更新空间复用定时器时,恢复所挂起的所述第一退避过程,所述第一退避过程使用动态信道检测门限进行物理信道检测;当所述第一退避过程结束且所述空间复用定时器当前值不为零时,开始执行时长不超过所述空间复用定时器当前值的帧交换过程;在所述帧交换过程结束后,如果所述空间复用定时器当前值不为零,且所述空间复用定时器当前值不满足所述第一站点后续的帧交换时长的条件,则放弃所述空间复用定时器当前值所指示的时间或者开启新的第一退避过程,并在所述空间复用定时器减到零时所述挂起所述的第一退避过程。
  30. 根据权利要求18所述的空间复用传输的装置,其中,所述退避单元,还配置为如果所述第一站点在所述退避过程中,收到无线信号时,挂起所述退避过程;如果无线信号不满足复用条件,保持处于信道忙状态直到无线信号结束时刻或者无线信号信令域所指示时长的结束时刻;当所述无线信号结束时或者无线信号信令域所指示时长结束时,如果所述空间复用定时器的当前值不为零,则恢复先前挂起的退避过程或重置第二退避过程。
  31. 根据权利要求27至30中任一项所述的空间复用传输的装置,其中,所述退避单元还配置为当所述空间复用定时器当前值递减到零且所述退避过程未结束时,挂起所述退避过程,对应的退避计时器的值不随时间进行减计数;使用固定的信道检测门限进行信道检测,并在信道检测结果为空闲时恢复挂起的第一退避过程,使用固定的信道检测门限进行物理信道检测;所述传输单元配置为在第一退避过程结束时,开始执行传输过程。
  32. 根据权利要求17所述的空间复用传输的装置,其中,所述传输单元,还配置为在所述空间复用状态的持续时间内进行多次退避过程和传输过程,其中,最后一次传输过程在空间复用状态的持续时间为零之前结束;或者,在所述空间复用状态的持续时间内完成第一次无线帧交换后,获得一个能够发送多个无线帧交换而不用进行退避过程的时间长度;在所述时间长度内,预定义一个时间间隔来发送下一个无线帧交换;其中,所述时间长度为预定义的长度,或者为所述第一站点待发送数据无线帧对应的接入策略的接入时长和空间复用状态的持续时间中的最小值。
PCT/CN2017/091174 2016-07-22 2017-06-30 一种空间复用传输的方法及装置 WO2018014713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610592311.0 2016-07-22
CN201610592311.0A CN107645788A (zh) 2016-07-22 2016-07-22 一种空间复用传输的方法及装置

Publications (1)

Publication Number Publication Date
WO2018014713A1 true WO2018014713A1 (zh) 2018-01-25

Family

ID=60991912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091174 WO2018014713A1 (zh) 2016-07-22 2017-06-30 一种空间复用传输的方法及装置

Country Status (2)

Country Link
CN (1) CN107645788A (zh)
WO (1) WO2018014713A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11963224B2 (en) 2021-03-31 2024-04-16 Sony Group Corporation Non-zero random backoff procedure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167145B (zh) 2018-02-12 2024-04-09 华为技术有限公司 一种空间复用的方法和装置
WO2021026897A1 (zh) * 2019-08-15 2021-02-18 北京小米移动软件有限公司 网络分配向量设置方法和装置
EP4164156A4 (en) * 2020-06-05 2024-03-06 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR DETERMINING THE VALUE OF A PERMANENT FIELD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780240A (zh) * 2004-11-25 2006-05-31 都科摩(北京)通信技术研究中心有限公司 基于网络分配矢量表的分布式无线接入方法和设备
CN102694633A (zh) * 2011-03-21 2012-09-26 中兴通讯股份有限公司 动态带宽数据帧传输方法及***
CN104284441A (zh) * 2013-07-12 2015-01-14 中兴通讯股份有限公司 一种空间复用下的信道接入方法及站点
CN105592476A (zh) * 2014-10-23 2016-05-18 中兴通讯股份有限公司 一种数据传输方法及站点

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1780240A (zh) * 2004-11-25 2006-05-31 都科摩(北京)通信技术研究中心有限公司 基于网络分配矢量表的分布式无线接入方法和设备
CN102694633A (zh) * 2011-03-21 2012-09-26 中兴通讯股份有限公司 动态带宽数据帧传输方法及***
CN104284441A (zh) * 2013-07-12 2015-01-14 中兴通讯股份有限公司 一种空间复用下的信道接入方法及站点
CN105592476A (zh) * 2014-10-23 2016-05-18 中兴通讯股份有限公司 一种数据传输方法及站点

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11963224B2 (en) 2021-03-31 2024-04-16 Sony Group Corporation Non-zero random backoff procedure

Also Published As

Publication number Publication date
CN107645788A (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
WO2016062263A1 (zh) 一种数据传输方法及站点
AU2020314490B2 (en) Multilink communication method and apparatus
EP3139680B1 (en) Channel access method, system and computer readable storage medium
EP2966924B1 (en) Service data transmission processing, transmission method and device
EP3007510B1 (en) Method for accessing channel under spatial multiplexing and station
EP2993857B1 (en) Method and device for data transmission
WO2018014713A1 (zh) 一种空间复用传输的方法及装置
US10645724B2 (en) Parallel data transmission method and apparatus
US10917848B2 (en) Wake-up frame transmission method and device
CA2943828C (en) Retransmission method at time of sharing transmission opportunity in wireless lan system, and device therefor
US10506637B2 (en) Method and apparatus for setting network allocation vector of multi-user transmission
EP3089541B1 (en) Channel resource allocation method and communications device
CN106937403B (zh) 一种基于空间重用的退避方法及设备
US20160286499A1 (en) Method for transmitting and receiving interference control signals based on power information, and apparatus therefor
WO2013037324A1 (zh) 一种对节点进行nav控制的方法、装置、***及节点
KR102148315B1 (ko) 웨이크업 프레임 전송 방법, 및 노드 웨이크업 후에 제1 프레임을 전송하기 위한 방법, 디바이스 및 장비
US9936522B2 (en) Method, device and computer readable storage medium for processing channel access
WO2016192510A1 (zh) 一种信道接入方法、站点和***
KR101981681B1 (ko) 복수의 채널 액세스 방법 및 장치
WO2016107358A1 (zh) 数据传输方法和站点
WO2018121177A1 (zh) 空间复用的方法及装置
WO2017152599A1 (zh) 网络分配矢量的处理方法及装置
US20220095167A1 (en) Methods and devices for multi-link contention based admission control in a wireless network
CN111787626B (zh) 一种数据传输保护方法及其装置
JP6440076B2 (ja) 無線通信システムおよび無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17830347

Country of ref document: EP

Kind code of ref document: A1