WO2021026897A1 - 网络分配向量设置方法和装置 - Google Patents

网络分配向量设置方法和装置 Download PDF

Info

Publication number
WO2021026897A1
WO2021026897A1 PCT/CN2019/100828 CN2019100828W WO2021026897A1 WO 2021026897 A1 WO2021026897 A1 WO 2021026897A1 CN 2019100828 W CN2019100828 W CN 2019100828W WO 2021026897 A1 WO2021026897 A1 WO 2021026897A1
Authority
WO
WIPO (PCT)
Prior art keywords
channels
network allocation
duration
allocation vector
busy
Prior art date
Application number
PCT/CN2019/100828
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2019/100828 priority Critical patent/WO2021026897A1/zh
Priority to US17/635,299 priority patent/US20220360543A1/en
Priority to CN201980001725.3A priority patent/CN112673708B/zh
Publication of WO2021026897A1 publication Critical patent/WO2021026897A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/76Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions
    • H04L47/762Admission control; Resource allocation using dynamic resource allocation, e.g. in-call renegotiation requested by the user or requested by the network in response to changing network conditions triggered by the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/78Architectures of resource allocation
    • H04L47/781Centralised allocation of resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/826Involving periods of time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method for setting a network distribution vector, a device for setting a network distribution vector, an electronic device, and a computer-readable storage medium.
  • the terminal can access channels in different frequency bands, but can only access one channel at the same time. Before accessing a channel, you need to check whether the channel is idle. If the channel is idle, you can access it. If the channel is busy, you need to wait for a period of time before trying to randomly access the channel by means of contention. .
  • the network allocation vector (Network Allocation Vector, NAV for short) is mainly set according to the detection result of the channel, and the waiting time for trying to access the channel again is determined according to the network allocation vector.
  • the current Wi-Fi technology allows the terminal to access multiple channels at the same time, but the terminal still only sets the network allocation vector for access to one channel, which is difficult to adapt to the terminal access to multiple channels at the same time. Scenes.
  • the embodiments of the present disclosure propose a network distribution vector setting method, a network distribution vector setting device, an electronic device, and a computer-readable storage medium, so as to solve the problem that the terminal in the related technology still only sets the network for accessing one channel.
  • the allocation vector is difficult to adapt to the technical problem of the terminal simultaneously accessing multiple channels.
  • a method for setting a network allocation vector which is suitable for a terminal, and the terminal is suitable for simultaneously accessing n channels, each of which has a different frequency band, and the method includes:
  • the terminal communicates asynchronously through the n channels.
  • the setting the network allocation vector for at least the m busy channels among the n channels according to the m lengths includes:
  • the network allocation vector of the i-th busy channel in the m busy channels is set according to the i-th time length among the m time lengths, 1 ⁇ i ⁇ m.
  • the terminal communicates synchronously through the n channels.
  • the setting the network allocation vector for at least the m busy channels among the n channels according to the m lengths includes:
  • the network allocation vector of each of the n channels is set according to the longest duration.
  • the setting the network allocation vector for at least the m busy channels among the n channels according to the m lengths includes:
  • the idle channel is occupied, and the network allocation vector of each busy channel in the m busy channels is set according to the longest duration.
  • the setting the network allocation vector for at least the m busy channels among the n channels according to the m durations further includes:
  • the network allocation vector of the idle channel is set according to the difference shown.
  • a device for setting a network allocation vector which is suitable for a terminal, and the terminal is suitable for simultaneously accessing n channels, each of which has a different frequency band, and the device includes:
  • a channel detection module configured to detect each of the n channels to determine the m busy channels occupied among the n channels and the length of time the busy channels are occupied;
  • the network allocation vector setting module is configured to set network allocation vectors of at least the m busy channels among the n channels according to the m lengths, where 1 ⁇ m ⁇ n.
  • the terminal communicates asynchronously through the n channels.
  • the network allocation vector setting module is configured to set the network allocation vector of the i-th busy channel in the m busy channels according to the i-th time length among the m time lengths, 1 ⁇ i ⁇ m.
  • the terminal communicates synchronously through the n channels.
  • the network allocation vector setting module includes:
  • a time length determining sub-module configured to determine the longest time length among the m time lengths
  • the setting sub-module is configured to set a network allocation vector of each of the n channels according to the longest duration.
  • the network allocation vector setting module includes:
  • a time length determining sub-module configured to determine the longest time length among the m time lengths
  • a duration comparison submodule configured to determine whether the duration of the idle channel occupied by the terminal is greater than the maximum duration when there are idle channels in the n channels;
  • a setting sub-module configured to set a network allocation vector for each of the n channels according to the longest time when the occupied time is greater than the longest time; and when the occupied time is not If it is greater than the longest time length, set a network allocation vector of each busy channel among the m busy channels according to the longest time length;
  • the channel occupation sub-module is configured to occupy the idle channel when the occupation duration is not greater than the maximum duration.
  • the network allocation vector setting module further includes:
  • a difference calculation sub-module configured to calculate the difference between the longest duration and the occupied duration when the occupied duration is not greater than the longest duration
  • the setting sub-module is configured to set the network allocation vector of the idle channel according to the difference.
  • an electronic device including:
  • a memory for storing processor executable instructions
  • processor is configured to implement the method described in any of the foregoing embodiments.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the method described in any of the foregoing embodiments are implemented.
  • each of the n channels can be detected to determine the m busy channels occupied among the n channels, and the busy channels occupied Time length, and then set the network allocation vector of at least m busy channels among the n channels according to the m time lengths.
  • the network allocation vector of at least m busy channels can be set according to the m duration, which is beneficial to ensure that the network allocation vector set for each busy channel is the same as the busy channel occupied time. Adaptation, thereby ensuring that the terminal tries to access the channel again according to the network allocation vector, can access each channel for communication in time, and ensure a high overall utilization rate for multiple channels.
  • Fig. 1 is a schematic flow chart of a method for setting a network allocation vector according to an embodiment of the present disclosure.
  • Fig. 2 is a schematic flowchart showing another method for setting a network allocation vector according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram showing the relationship between occupied duration and network allocation vector according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic flow chart showing another method for setting a network allocation vector according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram showing another relationship between occupied duration and network allocation vector according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic flow chart showing another method for setting a network allocation vector according to an embodiment of the present disclosure.
  • Fig. 7 is a schematic flow chart showing another method for setting a network allocation vector according to an embodiment of the present disclosure.
  • Fig. 8 is a schematic block diagram of a device for setting a network allocation vector according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic block diagram showing a network allocation vector setting module according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic block diagram showing another network allocation vector setting module according to an embodiment of the present disclosure.
  • Fig. 11 is a schematic block diagram showing yet another network allocation vector setting module according to an embodiment of the present disclosure.
  • Fig. 12 is a schematic block diagram showing a device for network allocation vector setting according to an embodiment of the present disclosure.
  • Fig. 1 is a schematic flow chart of a method for setting a network allocation vector according to an embodiment of the present disclosure.
  • the network allocation vector setting method shown in this embodiment can be applied to a terminal, and the terminal can be an electronic device such as a mobile phone, a tablet computer, a wearable device, etc., and the terminal can be based on Wi-Fi network communication.
  • the terminal may access n channels at the same time, or it may access only one channel at a time.
  • the following embodiment mainly applies when the terminal accesses n channels at the same time.
  • the frequency bands of each of the n channels may be different or the same.
  • the frequency bands of the three channels may be 2.4 GHz, 5.8 GHz, and 6-7 GHz, respectively.
  • the network allocation vector setting method may include the following steps:
  • step S1 each of the n channels is detected to determine the m busy channels occupied among the n channels and the length of time the busy channels are occupied;
  • step S2 the network allocation vectors of at least the m busy channels among the n channels are set according to the m lengths, where 1 ⁇ m ⁇ n.
  • the terminal can perform detection for each of the n channels that are simultaneously accessed.
  • the physical layer entity can be called by the MAC (Media Access Control) layer entity to perform each channel separately.
  • Detection For a certain channel, the Energy Detection (ED) value of the channel can be obtained through detection. If the energy detection value is greater than the energy threshold corresponding to the channel, it can be determined that the channel is being occupied by other devices, and the channel is Busy channel.
  • the unit of the energy detection value is dBm
  • the energy threshold can be different under different channel bandwidths and different frequency bands. For example, the energy threshold in the 20MHz channel bandwidth in the 2.4GHz frequency band is -82dBm, and the energy in the 40MHz frequency band The threshold is -79dBm.
  • n channels there can be m busy channels in n channels, and 1 ⁇ m ⁇ n, that is, for n channels, when there is one busy channel or multiple channels in n channels, it can be based on m
  • PHY physical layer
  • L-SIG legacy signal
  • each of the n channels can be detected to determine the m busy channels occupied among the n channels, and the busy channels occupied Time length, and then set the network allocation vector of at least m busy channels among the n channels according to the m time lengths.
  • the network allocation vector of at least m busy channels can be set according to the m duration, which is beneficial to ensure that the network allocation vector set for each busy channel is the same as the busy channel occupied time. Adaptation, thereby ensuring that the terminal tries to access the channel again according to the network allocation vector, can access each channel for communication in time, and ensure a high overall utilization rate for multiple channels.
  • the terminal communicates asynchronously through the n channels.
  • asynchronous communication means that the receiving end receives data at different time points under multiple channels.
  • the terminal in this embodiment can be used as a sending end to send data to one or more receiving ends, or as a receiving end to receive other transmissions. Data sent by the end.
  • the terminal acts as a transmitting end, the data is sent on each channel.
  • the operation can be performed asynchronously.
  • the terminal is the receiving end, the operation of receiving data on each channel can also be performed asynchronously.
  • Fig. 2 is a schematic flowchart showing another method for setting a network allocation vector according to an embodiment of the present disclosure.
  • the setting of network allocation vectors for at least the m busy channels among the n channels according to the m durations includes:
  • step S21 the network allocation vector of the i-th busy channel among the m busy channels is set according to the i-th time length among the m busy channels, and 1 ⁇ i ⁇ m.
  • the terminal when the terminal communicates asynchronously through n channels, the m busy channels in the n channels are also asynchronous communication, so the operation of receiving data or sending data on each busy channel does not need to be synchronized , So the terminal can not access each channel at the same time.
  • the network allocation vector of the i-th busy channel in the m busy channels can be set according to the i-th time in the m time lengths, that is, the occupation time of the i-th busy channel, that is, the i-th time length, is determined.
  • Set the network allocation vector of the i-th busy channel according to the i-th time length so that the network allocation vector of the i-th busy channel corresponds to the length of time it is occupied, which helps to ensure that the terminal can wait for an appropriate time based on the configured network allocation vector, for example Waiting for the i-th time, and then trying to access the i-th busy channel, the channel is not busy anymore, thereby ensuring timely access to the channel for communication.
  • Fig. 3 is a schematic diagram showing the relationship between occupied duration and network allocation vector according to an embodiment of the present disclosure.
  • the network allocation vector for channel 1 is NAVa
  • the network allocation vector for channel 2 is set to NAVb based on tb
  • the network allocation vector for channel 3 is set to NAVc based on tc.
  • the terminal can determine the waiting time for the next attempt to access the first channel according to the network allocation vector NAVa. For example, the waiting time is ta, then after waiting for ta, the first channel is not occupied, and the terminal tries to access (That is, monitor whether the channel is occupied)
  • the first channel can successfully access the first channel, thereby quickly occupying the first channel, and ensuring that the terminal occupies the first channel for communication in time. In the same way, it can also ensure that the terminal occupies the second channel and the third channel for communication in a timely manner, thereby ensuring that the overall utilization of the three channels is relatively high.
  • the terminal communicates synchronously through the n channels.
  • the terminal can be used as a transmitting end to send data on multiple channels at the same time, and the operation of receiving data on each channel can also be performed synchronously.
  • the terminal can be used as a receiving end to receive data on multiple channels at the same time, where, The start time of receiving data can be the same, and the end time of receiving data can also be the same.
  • Fig. 4 is a schematic flow chart showing another method for setting a network allocation vector according to an embodiment of the present disclosure.
  • the setting of network allocation vectors for at least the m busy channels among the n channels according to the m durations includes:
  • step S22 determine the longest duration among the m durations
  • step S23 the network allocation vector of each of the n channels is set according to the longest duration.
  • the terminal when the terminal communicates synchronously through n channels, and the m busy channels in the n channels are also synchronous communication, then the operation of receiving data or sending data on each busy channel needs to be synchronized. Ensure that the terminal simultaneously accesses each channel.
  • the longest duration of the m durations can be determined first, and then the network allocation vector of each of the n channels is set according to the longest duration, so that the network allocation vector of each of the n channels is equal to Corresponding to the longest duration, so as to ensure that the terminal waits for the longest duration for each channel, and then tries to access the channel, so as to determine that when it tries to access the channel again, the terminal has completed data transmission or reception on all busy channels.
  • all channels can be accessed at the same time, and data can be sent or received synchronously to ensure that the terminal communicates synchronously on n channels.
  • Fig. 5 is a schematic diagram showing another relationship between occupied duration and network allocation vector according to an embodiment of the present disclosure.
  • the network allocation vector for the first channel can be set to NAVa
  • the network allocation vector for the second channel is NAVb
  • the network allocation vector for the third channel is NAVc.
  • the terminal determines the waiting time for the next attempt to access the first channel as tb according to the network allocation vector NAVa, and determines the waiting time for the next attempt to access the second channel as tb according to the network allocation vector NAVb.
  • the network allocation vector NAVc determines that the waiting time for the next attempt to access the third channel is also tb.
  • Fig. 6 is a schematic flow chart showing another method for setting a network allocation vector according to an embodiment of the present disclosure.
  • the setting the network allocation vector of at least the m busy channels among the n channels according to the m lengths includes:
  • step S22 determine the longest duration among the m durations
  • step S24 if there are idle channels in the n channels, it is determined whether the occupancy duration of the idle channels by the terminal is greater than the maximum duration;
  • step S25 if the occupied duration is greater than the longest duration, a network allocation vector for each of the n channels is set according to the longest duration;
  • step S26 if the occupied duration is not greater than the longest duration, the idle channel is occupied, and the network allocation vector of each busy channel in the m busy channels is set according to the longest duration.
  • the terminal when the terminal communicates synchronously through n channels, and the m busy channels in the n channels are also synchronous communication, then the operation of receiving data or sending data on each busy channel needs to be synchronized. Ensure that the terminal simultaneously accesses each channel.
  • the longest duration among the m durations can be determined, and it can be determined whether the occupation duration of the idle channel is greater than the longest duration.
  • the occupied time is greater than the maximum time, after waiting for the maximum time, you can try to occupy m busy channels again, but if the terminal is still communicating through the idle channel, even if it can successfully occupy the m busy channels (for example, if the busy channel is not In the case of being occupied), it cannot guarantee synchronous communication on m busy channels and idle channels.
  • the network allocation vector for each of the n channels can be set according to the longest duration, that is, regardless of m busy channels or idle channels, the network allocation vector is set according to the longest duration, so that for hollow channels, the terminal will not Occupy the idle channel immediately, but after waiting for the longest time, when trying to occupy m busy channels again, occupy the idle channel again, then if m busy channels can be successfully occupied, m busy channels and idle channels can be occupied at the same time. That is, n channels are occupied at the same time, and the communication can be synchronized on the n channels.
  • the terminal If the occupied time is less than or equal to the longest time, even if the terminal communicates through the idle channel, after waiting the longest time, the terminal has completed the communication through the idle channel this time, so it can occupy the idle channel again while occupying other channels.
  • the idle channel can be occupied first, and the network allocation vector of each busy channel among the m busy channels can be set according to the longest duration, and the terminal can wait for the longest duration for each busy channel among the m busy channels. Then try to occupy again, which helps to ensure that m busy channels are occupied at the same time. Since the occupied time of the idle channel is less than or equal to the longest time, after waiting for the longest time, the terminal also completed the communication through the idle channel this time. Therefore, when m busy channels are occupied at the same time, the idle channel can also be occupied again at the same time. Channel, and then synchronize communication on n channels. Accordingly, it is possible to enable the terminal to occupy the idle channel for communication in time, reduce the communication delay of the service corresponding to the idle channel, and to a certain extent ensure that the terminal communicates synchronously on n channels.
  • Fig. 7 is a schematic flow chart showing another method for setting a network allocation vector according to an embodiment of the present disclosure. As shown in FIG. 7, if the occupied duration is not greater than the longest duration, the setting the network allocation vector of at least the m busy channels among the n channels according to the m durations further includes:
  • step S27 calculate the difference between the longest duration and the occupied duration
  • step S28 the network allocation vector of the idle channel is set according to the indicated difference.
  • the terminal may occupy an idle channel when the occupied duration is not greater than the maximum duration.
  • the network allocation vector NAV0 of the idle channel may be set according to the difference between the maximum duration and the occupied duration,
  • the time period for the terminal to try to occupy the idle channel again determined according to NAV0 may be equal to the difference between the longest time length and the occupied time length.
  • the longest duration is tb
  • the occupied duration is t0
  • the difference between the longest duration and the occupied duration is tb-t0
  • the present disclosure also provides an embodiment of the network allocation vector setting device.
  • Fig. 8 is a schematic block diagram of a device for setting a network allocation vector according to an embodiment of the present disclosure.
  • the device for setting a network distribution vector shown in this embodiment may be applied to a terminal, and the terminal may be an electronic device such as a mobile phone, a tablet computer, or a wearable device, and the terminal may be based on Wi-Fi network communication.
  • n channels in the Wi-Fi network there may be n channels in the Wi-Fi network, and the terminal can access n channels at the same time.
  • the frequency bands of each of the n channels are different.
  • the frequency bands of the 3 channels may be respectively 2.4GHz, 5.8GHz and 6GHz.
  • the network allocation vector setting device may include:
  • the channel detection module 1 is configured to detect each of the n channels to determine the m busy channels occupied among the n channels, and the length of time the busy channels are occupied;
  • the network allocation vector setting module 2 is configured to set network allocation vectors of at least the m busy channels among the n channels according to the m lengths, where 1 ⁇ m ⁇ n.
  • the channel detection module can correspond to structures such as radio frequency antennas or receivers in the terminal
  • the network allocation vector setting module can correspond to structures such as basebands and processors in the terminal.
  • the terminal communicates asynchronously through the n channels.
  • the network allocation vector setting module is configured to set the network allocation vector of the i-th busy channel in the m busy channels according to the i-th time length among the m time lengths, 1 ⁇ i ⁇ m.
  • the terminal communicates synchronously through the n channels.
  • Fig. 9 is a schematic block diagram showing a network allocation vector setting module according to an embodiment of the present disclosure.
  • the network allocation vector setting module 2 includes:
  • the duration determining submodule 21 is configured to determine the longest duration among the m durations
  • the setting submodule 22 is configured to set the network allocation vector of each of the n channels according to the longest duration.
  • Fig. 10 is a schematic block diagram showing another network allocation vector setting module according to an embodiment of the present disclosure. As shown in Figure 10, the network allocation vector setting module includes:
  • the duration determining submodule 21 is configured to determine the longest duration among the m durations
  • the duration comparison submodule 23 is configured to determine whether the duration of the idle channel occupied by the terminal is greater than the maximum duration when there are idle channels in the n channels;
  • the setting sub-module 22 is configured to set the network allocation vector of each of the n channels according to the longest time when the occupied time is greater than the longest time; and during the occupied time In the case of not greater than the longest time length, set a network allocation vector of each busy channel among the m busy channels according to the longest time length;
  • the channel occupation submodule 24 is configured to occupy the idle channel when the occupation time period is not greater than the maximum time period.
  • Fig. 11 is a schematic block diagram showing yet another network allocation vector setting module according to an embodiment of the present disclosure. As shown in FIG. 11, the network allocation vector setting module 2 further includes:
  • the difference calculation submodule 25 is configured to calculate the difference between the longest duration and the occupied duration when the occupied duration is not greater than the longest duration;
  • the setting submodule 22 is configured to set the network allocation vector of the idle channel according to the difference shown.
  • the relevant part can refer to the part of the description of the method embodiment.
  • the device embodiments described above are merely illustrative.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • the embodiment of the present disclosure also proposes an electronic device, including:
  • a memory for storing processor executable instructions
  • processor is configured to implement the method described in any of the foregoing embodiments.
  • the embodiment of the present disclosure also proposes a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the method described in any of the foregoing embodiments are implemented.
  • Fig. 12 is a schematic block diagram showing an apparatus 1200 for setting a network allocation vector according to an embodiment of the present disclosure.
  • the apparatus 1200 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 1200 may include one or more of the following components: a processing component 1202, a memory 1204, a power supply component 1206, a multimedia component 1208, an audio component 1210, an input/output (I/O) interface 1212, a sensor component 1214, And the communication component 1216.
  • a processing component 1202 a memory 1204, a power supply component 1206, a multimedia component 1208, an audio component 1210, an input/output (I/O) interface 1212, a sensor component 1214, And the communication component 1216.
  • the processing component 1202 generally controls the overall operations of the device 1200, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1202 may include one or more processors 1220 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 1202 may include one or more modules to facilitate the interaction between the processing component 1202 and other components.
  • the processing component 1202 may include a multimedia module to facilitate the interaction between the multimedia component 1208 and the processing component 1202.
  • the memory 1204 is configured to store various types of data to support the operation of the device 1200. Examples of these data include instructions for any application or method operating on the device 1200, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 1204 can be implemented by any type of volatile or non-volatile storage devices or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power supply component 1206 provides power for various components of the device 1200.
  • the power supply component 1206 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the device 1200.
  • the multimedia component 1208 includes a screen that provides an output interface between the device 1200 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 1208 includes a front camera and/or a rear camera. When the device 1200 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1210 is configured to output and/or input audio signals.
  • the audio component 1210 includes a microphone (MIC).
  • the microphone is configured to receive external audio signals.
  • the received audio signal may be further stored in the memory 1204 or transmitted via the communication component 1216.
  • the audio component 1210 further includes a speaker for outputting audio signals.
  • the I/O interface 1212 provides an interface between the processing component 1202 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 1214 includes one or more sensors for providing the device 1200 with various aspects of status assessment.
  • the sensor component 1214 can detect the open/close state of the device 1200 and the relative positioning of the components.
  • the component is the display and the keypad of the device 1200.
  • the sensor component 1214 can also detect the position change of the device 1200 or a component of the device 1200. , The presence or absence of contact between the user and the device 1200, the orientation or acceleration/deceleration of the device 1200, and the temperature change of the device 1200.
  • the sensor assembly 1214 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 1214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1214 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1216 is configured to facilitate wired or wireless communication between the apparatus 1200 and other devices.
  • the device 1200 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, 4G LTE, 5G NR, or a combination thereof.
  • the communication component 1216 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1216 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 1200 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing equipment (DSPD), programmable logic devices (PLD), field programmable Implemented by a gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components, and used to implement the method described in any of the foregoing embodiments.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing equipment
  • PLD programmable logic devices
  • FPGA field programmable Implemented by a gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components, and used to implement the method described in any of the foregoing embodiments.
  • non-transitory computer-readable storage medium including instructions, such as the memory 1204 including instructions, which may be executed by the processor 1220 of the device 1200 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及网络分配向量设置方法,包括:对n个信道中的每个信道进行检测,以确定n个信道中被占用的m个繁忙信道,以及繁忙信道被占用的时长;根据m个时长设置n个信道中至少m个繁忙信道的网络分配向量。根据本公开的实施例,在终端同时接入n个信道的场景下,可以根据m个时长设置至少m个繁忙信道的网络分配向量,有利于保证为每个繁忙信道设置的网络分配向量与繁忙信道被占用的时长相适应,进而保证终端可以及时地接入每个信道进行通信,保证对于多个信道整体具有较高的利用率。

Description

网络分配向量设置方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及网络分配向量设置方法、网络分配向量设置装置、电子设备和计算机可读存储介质。
背景技术
在现有的Wi-Fi网络中,终端可以接入不同频段下的信道,但是在同一时刻下只能接入一个信道。在接入某个信道之前,需要先检测该信道是否空闲,若该信道空闲,则可以接入,若该信道繁忙,则需要等待一段时间后,才能再次尝试以竞争的方式随机接入该信道。在相关技术中,主要根据对信道的检测结果来设置网络分配向量(Network Allocation Vector,简称NAV),并根据该网络分配向量确定再次尝试接入该信道所需等待的时长。
随着通信技术的发展,目前的Wi-Fi技术允许终端同时接入多个信道,但是终端仍然只是针对接入一个信道的情况来设置网络分配向量,这难以适应终端同时接入多个信道的场景。
发明内容
有鉴于此,本公开的实施例提出了网络分配向量设置方法、网络分配向量设置装置、电子设备和计算机可读存储介质,以解决相关技术中终端仍然只是针对接入一个信道的情况来设置网络分配向量,难以适应终端同时接入多个信道场景的技术问题。
根据本公开实施例的第一方面,提出一种网络分配向量设置方法,适用于终端,所述终端适用于同时接入n个信道,每个所述信道的频段不同,所述方法包括:
对所述n个信道中的每个信道进行检测,以确定所述n个信道中被占用的m个繁忙信道,以及所述繁忙信道被占用的时长;
根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向 量,其中,1≤m≤n。
可选地,所述终端通过所述n个信道异步通信。
可选地,所述根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量包括:
根据m个所述时长中第i个时长设置所述m个繁忙信道中第i个繁忙信道的网络分配向量,1≤i≤m。
可选地,所述终端通过所述n个信道同步通信。
可选地,所述根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量包括:
确定m个所述时长中的最长时长;
根据所述最长时长设置所述n个信道中每个信道的网络分配向量。
可选地,所述根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量包括:
确定m个所述时长中的最长时长;
若所述n个信道中存在空闲信道,确定所述终端对所述空闲信道的占用时长是否大于所述最长时长;
若所述占用时长大于所述最长时长,根据所述最长时长设置所述n个信道中每个信道的网络分配向量;
若所述占用时长不大于所述最长时长,占用所述空闲信道,并根据所述最长时长设置所述m个繁忙信道中每个繁忙信道的网络分配向量。
可选地,若所述占用时长不大于所述最长时长,所述根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量还包括:
计算所述最长时长与所述占用时长的差值;
根据所示差值设置所述空闲信道的网络分配向量。
根据本公开实施例的第二方面,提出一种网络分配向量设置装置,适用于终端,所述终端适用于同时接入n个信道,每个所述信道的频段不同,所述装置包括:
信道检测模块,被配置为对所述n个信道中的每个信道进行检测,以确定所述 n个信道中被占用的m个繁忙信道,以及所述繁忙信道被占用的时长;
网络分配向量设置模块,被配置为根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量,其中,1≤m≤n。
可选地,所述终端通过所述n个信道异步通信。
可选地,所述网络分配向量设置模块,被配置根据m个所述时长中第i个时长设置所述m个繁忙信道中第i个繁忙信道的网络分配向量,1≤i≤m。
可选地,所述终端通过所述n个信道同步通信。
可选地,所述网络分配向量设置模块包括:
时长确定子模块,被配置为确定m个所述时长中的最长时长;
设置子模块,被配置为根据所述最长时长设置所述n个信道中每个信道的网络分配向量。
可选地,所述网络分配向量设置模块包括:
时长确定子模块,被配置为确定m个所述时长中的最长时长;
时长比较子模块,被配置为在所述n个信道中存在空闲信道的情况下,确定所述终端对所述空闲信道的占用时长是否大于所述最长时长;
设置子模块,被配置为在所述占用时长大于所述最长时长的情况下,根据所述最长时长设置所述n个信道中每个信道的网络分配向量;以及在所述占用时长不大于所述最长时长的情况下,根据所述最长时长设置所述m个繁忙信道中每个繁忙信道的网络分配向量;
信道占用子模块,被配置为在所述占用时长不大于所述最长时长的情况下,占用所述空闲信道。
可选地,若所述占用时长不大于所述最长时长,所述网络分配向量设置模块还包括:
差值计算子模块,被配置为在所述占用时长不大于所述最长时长的情况下,计算所述最长时长与所述占用时长的差值;
其中,所述设置子模块,被配置为根据所示差值设置所述空闲信道的网络分配向量。
根据本公开实施例的第三方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的方法。
根据本公开实施例的第四方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述方法中的步骤。
根据本公开的实施例,针对能够同时接入n个信道终端,可以对n个信道中的每个信道进行检测,从而确定n个信道中被占用的m个繁忙信道,以及繁忙信道被占用的时长,进而根据m个时长设置n个信道中至少m个繁忙信道的网络分配向量。
从而在终端同时接入n个信道的场景下,可以根据m个时长设置至少m个繁忙信道的网络分配向量,有利于保证为每个繁忙信道设置的网络分配向量与繁忙信道被占用的时长相适应,进而保证终端根据网络分配向量再次尝试接入信道,可以及时地接入每个信道进行通信,保证对于多个信道整体具有较高的利用率。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种网络分配向量设置方法的示意流程图。
图2是根据本公开的实施例示出的另一种网络分配向量设置方法的示意流程图。
图3是根据本公开的实施例示出的一种被占用时长与网络分配向量的关系示意图。
图4是根据本公开的实施例示出的又一种网络分配向量设置方法的示意流程图。
图5是根据本公开的实施例示出的另一种被占用时长与网络分配向量的关系示 意图。
图6是根据本公开的实施例示出的又一种网络分配向量设置方法的示意流程图。
图7是根据本公开的实施例示出的又一种网络分配向量设置方法的示意流程图。
图8是根据本公开的实施例示出的一种网络分配向量设置装置的示意框图。
图9是根据本公开的实施例示出的一种网络分配向量设置模块的示意框图。
图10是根据本公开的实施例示出的另一种网络分配向量设置模块的示意框图。
图11是根据本公开的实施例示出的又一种网络分配向量设置模块的示意框图。
图12是根据本公开的实施例示出的一种用于网络分配向量设置的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是根据本公开的实施例示出的一种网络分配向量设置方法的示意流程图。本实施例所示的网络分配向量设置方法可以适用于终端,所述终端可以为手机、平板电脑、可穿戴设备等电子设备,所述终端可以基于Wi-Fi网络通信。
其中,在Wi-Fi网络中可以具有n信道,所述终端可以同时接入n个信道,也可以每次只接入一个信道,以下实施例主要在终端同时接入n个信道的情况下,对技术方案进行示例性描述。其中,n个信道中每个信道的频段可以是不同的,也可以是相同的,例如以n=为例,3个信道的频段可以分别为2.4GHz、5.8GHz和6-7GHz。
如图1所示,所述网络分配向量设置方法可以包括以下步骤:
在步骤S1中,对所述n个信道中的每个信道进行检测,以确定所述n个信道中被占用的m个繁忙信道,以及所述繁忙信道被占用的时长;
在步骤S2中,根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量,其中,1≤m≤n。
在一个实施例中,终端对于同时接入的n个信道中每个信道可以进行检测,例如可以通过MAC(Media Access Control,介质访问控制)层实体调用物理层实体,分别在每个信道下进行检测。针对某个信道而言,通过检测可以得到该信道的能量检测(Energy Detection,简称ED)值,若能量检测值大于该信道对应的能量阈值,可以确定该信道正在被其他设备占用,该信道为繁忙信道。一般来说能量检测值的单位是dBm,不同的信道带宽及不同的频段下能量阈值可以不同,例如在2.4GHz的频段下20MHz的信道带宽中能量阈值为-82dBm,而在40MHz的频段下能量阈值为-79dBm。
其中,n个信道中可以存在m个繁忙信道,1≤m≤n,也即对于n个信道而言,在n个信道中存在一个繁忙信道或多个信道的情况下,可以根据m个所述时长设置至少所述m个繁忙信道的网络分配向量。而若m=0,也即在n个信道中不存在繁忙信道的情况下,那么终端可以直接占用每个信道,也就无需设置网络分配向量。
对于繁忙信道,可以进一步获取繁忙信道传输的协议数据单元(physical layer(PHY)protocol data unit,简称PPDU),并解析协议数据单元遗留信号(Legacy Signal,简称L-SIG)部分,以确定数据帧发送长度,基于该数据帧发送长度,可以确定繁忙信道被占用的时长。
根据本公开的实施例,针对能够同时接入n个信道终端,可以对n个信道中的每个信道进行检测,从而确定n个信道中被占用的m个繁忙信道,以及繁忙信道被占用的时长,进而根据m个时长设置n个信道中至少m个繁忙信道的网络分配向量。
从而在终端同时接入n个信道的场景下,可以根据m个时长设置至少m个繁忙信道的网络分配向量,有利于保证为每个繁忙信道设置的网络分配向量与繁忙信道被占用的时长相适应,进而保证终端根据网络分配向量再次尝试接入信道,可以及时地接入每个信道进行通信,保证对于多个信道整体具有较高的利用率。
可选地,所述终端通过所述n个信道异步通信。其中,异步通信是指接收端在多个信道下接收数据的时间点不相同,本实施例中的终端可以作为发送端,向一个或多个接收端发送数据,也可以作为接收端接收其他发射端发送的数据。
在一个实施例中,终端可以通过n个信道异步通信,例如以n=3为例,那么终端可以同时接入这3个频段的信道,当终端作为发送端,在每个信道上发送数据的操 作可以不同步进行,当终端作为接收端,在每个信道上接收数据的操作也可以不同步进行。
图2是根据本公开的实施例示出的另一种网络分配向量设置方法的示意流程图。如图2所示,所述根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量包括:
在步骤S21中,根据m个所述时长中第i个时长设置所述m个繁忙信道中第i个繁忙信道的网络分配向量,1≤i≤m。
在一个实施例中,在终端通过n个信道异步通信的情况下,在n个信道中m个繁忙信道上也是异步通信,那么在每个繁忙信道上接收数据或者发送数据的操作并不需要同步,所以终端可以不同时接入每个信道。
因此,可以根据m个时长中第i个时长设置m个繁忙信道中第i个繁忙信道的网络分配向量,也即确定了第i个繁忙信道被占用的时长,即第i个时长,进而可以根据第i个时长设置第i个繁忙信道的网络分配向量,使得第i个繁忙信道的网络分配向量与其被占用的时长相对应,有利于保证终端基于配置的网络分配向量可以等待适当时长,例如等待第i时长,再尝试接入第i个繁忙信道时,该信道已经不繁忙,从而保证及时地接入该信道进行通信。
图3是根据本公开的实施例示出的一种被占用时长与网络分配向量的关系示意图。如图3所示,例如n=m=3,其中第1信道被占用的时长为ta,第2信道被占用的时长为tb,第3信道被占用的时长为tc,那么可以基于ta设置第1信道的网络分配向量为NAVa,基于tb设置第2信道的网络分配向量为NAVb,基于tc设置第3信道的网络分配向量为NAVc。
例如终端可以根据网络分配向量NAVa确定下次尝试接入第1信道所需等待的时长,例如所述等待时长为ta,那么可以在等待ta后,第1信道已经不被占用,终端尝试接入(也即监听该信道是否被占用)第1信道即可成功接入第1信道,从而快速占用第1信道,保证终端及时占用第1信道进行通信。同理,还可以保证终端及时地占用第2信道和第3信道进行通信,从而保证对于3个信道整体具有较高的利用率。
可选地,所述终端通过所述n个信道同步通信。
在一个实施例中,终端可以通过n个信道同步通信,例如以n=3为例,那么终端可以同时接入这3个频段的信道,并且在每个信道上发送数据的操作可以同步进行, 例如终端可以作为发送端在同一时刻在多个信道下发送数据,在每个信道上接收数据的操作也可以同步进行,例如终端可以作为接收端在同一时刻在多个信道下接收数据,其中,接收数据的起始时刻可以相同,接收数据的结束时刻也可以相同。
图4是根据本公开的实施例示出的又一种网络分配向量设置方法的示意流程图。如图4所示,所述根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量包括:
在步骤S22中,确定m个所述时长中的最长时长;
在步骤S23中,根据所述最长时长设置所述n个信道中每个信道的网络分配向量。
在一个实施例中,在终端通过n个信道同步通信的情况下,在n个信道中m个繁忙信道上也是同步通信,那么在每个繁忙信道上接收数据或者发送数据的操作需要同步,需要保证终端同时接入每个信道。
在这种情况下,可以先确定m个时长中的最长时长,然后根据最长时长设置n个信道中每个信道的网络分配向量,使得n个信道中每个信道的网络分配向量都与最长时长相对应,从而保证终端针对每个信道都等待最长时长,再尝试接入信道,以便确定再尝试接入信道时,终端在所有繁忙信道上已经完成了数据发送或接收,当再次接入信道时,可以同时接入所有信道,进而同步进行数据发送或接收,以保证终端在n个信道上同步通信。
图5是根据本公开的实施例示出的另一种被占用时长与网络分配向量的关系示意图。如图5所示,例如n=m=3,其中第1信道被占用的时长为ta,第2信道被占用的时长为tb,第3信道被占用的时长为tc,tb为最长时长。那么可以基于tb设置第1信道的网络分配向量为NAVa,第2信道的网络分配向量为NAVb,和第3信道的网络分配向量为NAVc。
那么终端根据网络分配向量NAVa确定下次尝试接入第1信道所需等待的时长为tb,根据网络分配向量NAVb确定下次尝试接入第2信道所需等待的时长为tb,根据网络分配向量NAVc确定下次尝试接入第3信道所需等待的时长也为tb,当终端等待tb后再次尝试接入3个信道时,终端刚好在被占用时长最长的第2信道上完成了通信,从而在接入3个信道后,可以确保下次在3个信道上的通信能够同步进行,并且所需等待的时长不会过长。
图6是根据本公开的实施例示出的又一种网络分配向量设置方法的示意流程图。如图6所示,所述根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量包括:
在步骤S22中,确定m个所述时长中的最长时长;
在步骤S24中,若所述n个信道中存在空闲信道,确定所述终端对所述空闲信道的占用时长是否大于所述最长时长;
在步骤S25中,若所述占用时长大于所述最长时长,根据所述最长时长设置所述n个信道中每个信道的网络分配向量;
在步骤S26中,若所述占用时长不大于所述最长时长,占用所述空闲信道,并根据所述最长时长设置所述m个繁忙信道中每个繁忙信道的网络分配向量。
在一个实施例中,在终端通过n个信道同步通信的情况下,在n个信道中m个繁忙信道上也是同步通信,那么在每个繁忙信道上接收数据或者发送数据的操作需要同步,需要保证终端同时接入每个信道。
而在n个信道中存在m个繁忙信道的情况下,n个信道中还可以存在空闲信道,也即未被其他设备占用的信道,那么终端可以占用该信道,以通过该空闲信道通信。在这种情况下,可以确定m个所述时长中的最长时长,并确定对该空闲信道的占用时长是否大于最长时长。
若占用时长大于最长时长,在当等待最大时长后,可以尝试再次占用m个繁忙信道,但是如果终端仍然在通过空闲信道通信,此时即使能够成功占用m个繁忙信道(例如确定繁忙信道未被占用的情况下),也并不能保证在m个繁忙信道与在空闲信道上同步通信。
本实施例可以根据最长时长设置n个信道中每个信道的网络分配向量,也即无论m个繁忙信道还是空闲信道,都根据最长时长设置网络分配向量,从而针对空心信道,终端不会立即占用空闲信道,而是等待最长时长后,当尝试再次占用m个繁忙信道时,再占用空闲信道,那么若能够成功占用m个繁忙信道,就可以同时占用m个繁忙信道和空闲信道,也即同时占用n个信道,进而可以在n个信道上同步通信。
若占用时长小于或等于最长时长,即使终端通过空闲信道通信,在等待最长时长后,终端也完成了本次通过空闲信道通,因此后续可以在占用其他信道时,同时再次占用该空闲信道,
本实施例可以先占用该空闲信道,并根据最长时长设置m个繁忙信道中每个繁忙信道的网络分配向量,进而终端针对m个繁忙信道中的每个繁忙信道,都可以等待最长时长后才再次尝试占用,有利于保证同时占用m个繁忙信道。而由于对空闲信道的占用时长小于或等于最长时长,所以在等待最长时长后,终端也完成了本次通过空闲信道通,因此同时占用m个繁忙信道时,也可以同时再次占用该空闲信道,进而在n个信道上同步通信。据此,可以使得终端能够及时地占用空闲信道进行通信,降低空闲信道对应业务的通信时延,并且能够在一定程度上保证终端在n个信道上同步通信。
图7是根据本公开的实施例示出的又一种网络分配向量设置方法的示意流程图。如图7所示,若所述占用时长不大于所述最长时长,所述根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量还包括:
在步骤S27中,计算所述最长时长与所述占用时长的差值;
在步骤S28中,根据所示差值设置所述空闲信道的网络分配向量。
在一个实施例中,在占用时长不大于最长时长的情况下,终端可以占用空闲信道,在本实施例中,可以根据最长时长与占用时长的差值设置空闲信道的网络分配向量NAV0,终端根据NAV0确定的再次尝试占用空闲信道的时长可以等于最长时长与占用时长的差值。
例如最长时长为tb,占用时长为t0,最长时长与占用时长的差值为tb-t0,那么终端在占用空闲信道t0后,可以等待tb-t0才再次尝试占用空闲信道,这使得终端从开始占用空闲信道到再次尝试占用空闲信道的时长为tb,也即最长时长,等于终端再次尝试占用m个繁忙信道等待的时长。
据此,可以保证终端再次尝试占用m个繁忙信道时,终端也再次尝试占用空闲信道,以便终端同时占用m个繁忙信道和空闲信道进行同步通信。
与前述的网络分配向量设置方法的实施例相对应,本公开还提供了网络分配向量设置装置的实施例。
图8是根据本公开的实施例示出的一种网络分配向量设置装置的示意框图。本实施例所示的网络分配向量设置装置可以适用于终端,所述终端可以为手机、平板电脑、可穿戴设备等电子设备,所述终端可以基于Wi-Fi网络通信。
其中,在Wi-Fi网络中可以具有n信道,所述终端可以同时接入n个信道,n 个信道中每个信道的频段不同,例如以n=为例,3个信道的频段可以分别为2.4GHz、5.8GHz和6GHz。
如图8所示,所述网络分配向量设置装置可以包括:
信道检测模块1,被配置为对所述n个信道中的每个信道进行检测,以确定所述n个信道中被占用的m个繁忙信道,以及所述繁忙信道被占用的时长;
网络分配向量设置模块2,被配置为根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量,其中,1≤m≤n。
其中,信道检测模块可以对应终端中的射频天线或接收机等结构,网络分配向量设置模块可以对应终端中基带、处理器等结构。
可选地,所述终端通过所述n个信道异步通信。
可选地,所述网络分配向量设置模块,被配置根据m个所述时长中第i个时长设置所述m个繁忙信道中第i个繁忙信道的网络分配向量,1≤i≤m。
可选地,所述终端通过所述n个信道同步通信。
图9是根据本公开的实施例示出的一种网络分配向量设置模块的示意框图。如图9所示,所述网络分配向量设置模块2包括:
时长确定子模块21,被配置为确定m个所述时长中的最长时长;
设置子模块22,被配置为根据所述最长时长设置所述n个信道中每个信道的网络分配向量。
图10是根据本公开的实施例示出的另一种网络分配向量设置模块的示意框图。如图10所示,所述网络分配向量设置模块包括:
时长确定子模块21,被配置为确定m个所述时长中的最长时长;
时长比较子模块23,被配置为在所述n个信道中存在空闲信道的情况下,确定所述终端对所述空闲信道的占用时长是否大于所述最长时长;
设置子模块22,被配置为在所述占用时长大于所述最长时长的情况下,根据所述最长时长设置所述n个信道中每个信道的网络分配向量;以及在所述占用时长不大于所述最长时长的情况下,根据所述最长时长设置所述m个繁忙信道中每个繁忙信道的网络分配向量;
信道占用子模块24,被配置为在所述占用时长不大于所述最长时长的情况下,占用所述空闲信道。
图11是根据本公开的实施例示出的又一种网络分配向量设置模块的示意框图。如图11所示,所述网络分配向量设置模块2还包括:
差值计算子模块25,被配置为在所述占用时长不大于所述最长时长的情况下,计算所述最长时长与所述占用时长的差值;
其中,所述设置子模块22,被配置为根据所示差值设置所述空闲信道的网络分配向量。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的方法。
本公开的实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述方法中的步骤。
图12是根据本公开的实施例示出的一种用于网络分配向量设置的装置1200的示意框图。例如,装置1200可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,装置1200可以包括以下一个或多个组件:处理组件1202,存储器1204,电源组件1206,多媒体组件1208,音频组件1210,输入/输出(I/O)的接口1212,传感器组件1214,以及通信组件1216。
处理组件1202通常控制装置1200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1202可以包括一个或多个处理器1220来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1202可以包括一个或多个模块,便于处理组件1202和其他组件之间的交互。例如,处理组件1202可以包括多媒体模块,以方便多媒体组件1208和处理组件1202之间的交互。
存储器1204被配置为存储各种类型的数据以支持在装置1200的操作。这些数据的示例包括用于在装置1200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1206为装置1200的各种组件提供电力。电源组件1206可以包括电源管理***,一个或多个电源,及其他与为装置1200生成、管理和分配电力相关联的组件。
多媒体组件1208包括在所述装置1200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1208包括一个前置摄像头和/或后置摄像头。当装置1200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜***或具有焦距和光学变焦能力。
音频组件1210被配置为输出和/或输入音频信号。例如,音频组件1210包括一个麦克风(MIC),当装置1200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1204或经由通信组件1216发送。在一些实施例中,音频组件1210还包括一个扬声器,用于输出音频信号。
I/O接口1212为处理组件1202和***接口模块之间提供接口,上述***接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、 启动按钮和锁定按钮。
传感器组件1214包括一个或多个传感器,用于为装置1200提供各个方面的状态评估。例如,传感器组件1214可以检测到装置1200的打开/关闭状态,组件的相对定位,例如所述组件为装置1200的显示器和小键盘,传感器组件1214还可以检测装置1200或装置1200一个组件的位置改变,用户与装置1200接触的存在或不存在,装置1200方位或加速/减速和装置1200的温度变化。传感器组件1214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1216被配置为便于装置1200和其他设备之间有线或无线方式的通信。装置1200可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件1216经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述任一实施例所述的方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1204,上述指令可由装置1200的处理器1220执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (16)

  1. 一种网络分配向量设置方法,其特征在于,适用于终端,所述终端适用于同时接入n个信道,每个所述信道的频段不同,所述方法包括:
    对所述n个信道中的每个信道进行检测,以确定所述n个信道中被占用的m个繁忙信道,以及所述繁忙信道被占用的时长;
    根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量,其中,1≤m≤n。
  2. 根据权利要求1所述的方法,其特征在于,所述终端通过所述n个信道异步通信。
  3. 根据权利要求2所述的方法,其特征在于,所述根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量包括:
    根据m个所述时长中第i个时长设置所述m个繁忙信道中第i个繁忙信道的网络分配向量,1≤i≤m。
  4. 根据权利要求1所述的方法,其特征在于,所述终端通过所述n个信道同步通信。
  5. 根据权利要求4所述的方法,其特征在于,所述根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量包括:
    确定m个所述时长中的最长时长;
    根据所述最长时长设置所述n个信道中每个信道的网络分配向量。
  6. 根据权利要求4所述的方法,其特征在于,所述根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量包括:
    确定m个所述时长中的最长时长;
    若所述n个信道中存在空闲信道,确定所述终端对所述空闲信道的占用时长是否大于所述最长时长;
    若所述占用时长大于所述最长时长,根据所述最长时长设置所述n个信道中每个信道的网络分配向量;
    若所述占用时长不大于所述最长时长,占用所述空闲信道,并根据所述最长时长设置所述m个繁忙信道中每个繁忙信道的网络分配向量。
  7. 根据权利要求6所述的方法,其特征在于,若所述占用时长不大于所述最长时长,所述根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量还包括:
    计算所述最长时长与所述占用时长的差值;
    根据所示差值设置所述空闲信道的网络分配向量。
  8. 一种网络分配向量设置装置,其特征在于,适用于终端,所述终端适用于同时接入n个信道,每个所述信道的频段不同,所述装置包括:
    信道检测模块,被配置为对所述n个信道中的每个信道进行检测,以确定所述n个信道中被占用的m个繁忙信道,以及所述繁忙信道被占用的时长;
    网络分配向量设置模块,被配置为根据m个所述时长设置所述n个信道中至少所述m个繁忙信道的网络分配向量,其中,1≤m≤n。
  9. 根据权利要求1所述的装置,其特征在于,所述终端通过所述n个信道异步通信。
  10. 根据权利要求9所述的装置,其特征在于,所述网络分配向量设置模块,被配置根据m个所述时长中第i个时长设置所述m个繁忙信道中第i个繁忙信道的网络分配向量,1≤i≤m。
  11. 根据权利要求8所述的装置,其特征在于,所述终端通过所述n个信道同步通信。
  12. 根据权利要求11所述的装置,其特征在于,所述网络分配向量设置模块包括:
    时长确定子模块,被配置为确定m个所述时长中的最长时长;
    设置子模块,被配置为根据所述最长时长设置所述n个信道中每个信道的网络分配向量。
  13. 根据权利要求11所述的装置,其特征在于,所述网络分配向量设置模块包括:
    时长确定子模块,被配置为确定m个所述时长中的最长时长;
    时长比较子模块,被配置为在所述n个信道中存在空闲信道的情况下,确定所述终端对所述空闲信道的占用时长是否大于所述最长时长;
    设置子模块,被配置为在所述占用时长大于所述最长时长的情况下,根据所述最长时长设置所述n个信道中每个信道的网络分配向量;以及在所述占用时长不大于所述最长时长的情况下,根据所述最长时长设置所述m个繁忙信道中每个繁忙信道的网络分配向量;
    信道占用子模块,被配置为在所述占用时长不大于所述最长时长的情况下,占用所述空闲信道。
  14. 根据权利要求13所述的装置,其特征在于,若所述占用时长不大于所述最长时长,所述网络分配向量设置模块还包括:
    差值计算子模块,被配置为在所述占用时长不大于所述最长时长的情况下,计算所述最长时长与所述占用时长的差值;
    其中,所述设置子模块,被配置为根据所示差值设置所述空闲信道的网络分配向量。
  15. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为实现权利要求1至7中任一项所述的方法。
  16. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至7中任一项所述方法中的步骤。
PCT/CN2019/100828 2019-08-15 2019-08-15 网络分配向量设置方法和装置 WO2021026897A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/100828 WO2021026897A1 (zh) 2019-08-15 2019-08-15 网络分配向量设置方法和装置
US17/635,299 US20220360543A1 (en) 2019-08-15 2019-08-15 Network allocation vector setting method and apparatus
CN201980001725.3A CN112673708B (zh) 2019-08-15 2019-08-15 网络分配向量设置方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/100828 WO2021026897A1 (zh) 2019-08-15 2019-08-15 网络分配向量设置方法和装置

Publications (1)

Publication Number Publication Date
WO2021026897A1 true WO2021026897A1 (zh) 2021-02-18

Family

ID=74570409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100828 WO2021026897A1 (zh) 2019-08-15 2019-08-15 网络分配向量设置方法和装置

Country Status (3)

Country Link
US (1) US20220360543A1 (zh)
CN (1) CN112673708B (zh)
WO (1) WO2021026897A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105025491A (zh) * 2014-07-04 2015-11-04 魅族科技(中国)有限公司 一种网络分配向量设置方法和设备
CN105230106A (zh) * 2013-11-11 2016-01-06 华为技术有限公司 信息发送方法及装置
CN107645788A (zh) * 2016-07-22 2018-01-30 中兴通讯股份有限公司 一种空间复用传输的方法及装置
US10244536B1 (en) * 2016-08-31 2019-03-26 Marvell International Ltd. Method and apparatus for determining whether a secondary channel is idle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9210652B2 (en) * 2012-07-06 2015-12-08 Futurewei Technologies, Inc. System and method for active scanning in multi-channel Wi-Fi system
US20150117366A1 (en) * 2013-10-29 2015-04-30 Qualcomm Incorporated Systems and methods for improved communication efficiency in high efficiency wireless networks
EP3135066B1 (en) * 2014-04-21 2021-02-17 Kabushiki Kaisha Toshiba Wireless communication device and wireless communication method
JP6454721B2 (ja) * 2014-04-21 2019-01-16 株式会社東芝 無線通信装置および無線通信方法
US10009922B2 (en) * 2014-07-15 2018-06-26 Marvell World Trade Ltd. Channel frame structures for high efficiency wireless LAN (HEW)
US20160128130A1 (en) * 2014-10-31 2016-05-05 Qualcomm Incorporated Mixed-mode medium access control (mac) on a shared communication medium
US20170041953A1 (en) * 2015-08-07 2017-02-09 Qualcomm Incorporated Bandwidth dependent carrier sensing for ofdma
JP6585739B2 (ja) * 2016-01-29 2019-10-02 日本電信電話株式会社 無線通信システム、無線通信端末および無線通信方法
WO2017213759A1 (en) * 2016-06-06 2017-12-14 Intel IP Corporation Devices and methods for band pause testing
CN106658751B (zh) * 2016-12-14 2020-06-02 北京佰才邦技术有限公司 多天线设备的信道接入方法及装置
US11818799B1 (en) * 2019-05-30 2023-11-14 Marvell Asia Pte Ltd Data unit aggregation in a wireless network with multiple channel segments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105230106A (zh) * 2013-11-11 2016-01-06 华为技术有限公司 信息发送方法及装置
CN105025491A (zh) * 2014-07-04 2015-11-04 魅族科技(中国)有限公司 一种网络分配向量设置方法和设备
CN107645788A (zh) * 2016-07-22 2018-01-30 中兴通讯股份有限公司 一种空间复用传输的方法及装置
US10244536B1 (en) * 2016-08-31 2019-03-26 Marvell International Ltd. Method and apparatus for determining whether a secondary channel is idle

Also Published As

Publication number Publication date
CN112673708B (zh) 2023-05-30
US20220360543A1 (en) 2022-11-10
CN112673708A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
US11350394B2 (en) Resource configuration method, apparatus, user equipment, and base station
WO2022041245A1 (zh) 寻呼原因发送方法和装置、寻呼原因获取方法和装置
US11909678B2 (en) Determination method and device for size of downlink control information format
US20230292269A1 (en) Method and apparatus for determining offset indication, and method and apparatus for determining offset
WO2020097757A1 (zh) 带宽部分的配置方法及装置
WO2021035411A1 (zh) 下行数据缓存指示方法及装置和下行数据获取方法及装置
US20220400504A1 (en) Method for indicating frequency band state, method for determining frequency band state, and terminal
US11310721B2 (en) Information broadcast method and device, service implementation method and device, and access point
US11937296B2 (en) Monitoring method and apparatus, device, and storage medium
WO2020087466A1 (zh) 传输信息的方法、装置、基站及终端
CN105163391B (zh) 数据传输方法、终端及无线访问接入点
US20210314996A1 (en) Method and apparatus for configuring and determining transmission block scheduling interval, and base station
WO2021000323A1 (zh) 缓存状态报告发送方法和装置
US11902965B2 (en) Uplink transmission method and apparatus
CN110506430B (zh) 信道占用时间的起始位置确定方法、装置、设备和介质
US20220346083A1 (en) Methods and apparatuses for determining network allocation vector, and storage media
US11553536B2 (en) Channel coordination method and apparatus
WO2021026897A1 (zh) 网络分配向量设置方法和装置
US12022513B2 (en) Method and device for random access
WO2019183939A1 (zh) 数据传输方法及装置
US20210152280A1 (en) Methods and apparatuses for determining number of times of blind decoding schedule signaling, user equipment and base station
US20200154407A1 (en) Downlink control channel receiving and transmitting method and device
CN113692781B (zh) 传输数据的方法、装置、通信设备及存储介质
CN113678547B (zh) 激活指示、频段激活方法和装置、通信装置和存储介质
WO2022178787A1 (zh) 信道传输方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941598

Country of ref document: EP

Kind code of ref document: A1