WO2018014707A1 - 触摸显示屏及其制备方法、显示装置和驱动方法 - Google Patents

触摸显示屏及其制备方法、显示装置和驱动方法 Download PDF

Info

Publication number
WO2018014707A1
WO2018014707A1 PCT/CN2017/090530 CN2017090530W WO2018014707A1 WO 2018014707 A1 WO2018014707 A1 WO 2018014707A1 CN 2017090530 W CN2017090530 W CN 2017090530W WO 2018014707 A1 WO2018014707 A1 WO 2018014707A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
touch
liquid crystal
display screen
Prior art date
Application number
PCT/CN2017/090530
Other languages
English (en)
French (fr)
Inventor
程鸿飞
李鑫
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/760,501 priority Critical patent/US10564781B2/en
Priority to EP17830341.8A priority patent/EP3486756A4/en
Publication of WO2018014707A1 publication Critical patent/WO2018014707A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/22Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and nitrogen atoms as chain links, e.g. Schiff bases
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/24Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing nitrogen-to-nitrogen bonds
    • C09K19/26Azoxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K19/544Macromolecular compounds as dispersing or encapsulating medium around the liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/125Ph-Ph-Ph-Ph-Ph or more Ph rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2078Ph-COO-Ph-COO-Ph
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13347Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals working in reverse mode, i.e. clear in the off-state and scattering in the on-state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13706Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering the liquid crystal having positive dielectric anisotropy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/021Materials and properties organic material low molecular weight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable

Definitions

  • Embodiments of the present invention relate to a touch display screen, a method of fabricating the same, a display device, and a driving method.
  • Liquid crystal displays are widely used in applications such as window displays and vehicles.
  • most of the current liquid crystal displays are provided with double-layer polarizers, and the presence of the polarizers brings technical problems such as low light transmittance to the liquid crystal display.
  • the touch screen is the latest information input device, which has the advantages of sensitive touch response, multi-touch support and the like. It can realize human-computer interaction simply, conveniently and naturally, and provides a new multimedia human-computer interaction method for people.
  • the touch screen can be divided into: an add on Mode Touch Panel, an On Cell Touch Panel, and an inline touch panel (In Cell Touch Panel). ).
  • the structure of the touch screen there are various solutions for the design of the touch screen.
  • the display screen of the liquid crystal display device and the touch screen are relatively separately formed, and may also be inside or on the surface of the display screen of the liquid crystal display device or
  • the sensing electrode and the driving electrode are externally fabricated, and the corresponding sensing signal line and driving signal line are connected. Adding a touch screen to a current LCD display results in lower light transmission.
  • At least one embodiment of the present invention provides a touch display screen comprising: a first substrate and a second substrate disposed opposite to each other; a first electrode and a second electrode disposed between the first substrate and the second substrate, And generating a horizontal electric field in a powered state; filling a liquid crystal between the first substrate and the second substrate, the liquid crystal comprising a nematic liquid crystal and being dispersed in the nematic liquid crystal The nematic liquid crystal forms a long-chain compound in a scattering state; and a touch sensing electrode disposed outside or inside the second substrate.
  • the long chain compound The long chain is perpendicular to the first substrate.
  • the long-chain compound includes a plurality of monomers, and the monomers include any one or combination of the following:
  • the long-chain compound includes any one or combination of the following:
  • the nematic liquid crystal is a forward liquid crystal.
  • the nematic liquid crystal includes any one or combination of the following liquid crystal molecules:
  • materials of the first electrode, the second electrode, and the touch sensing electrode are all transparent conductive materials.
  • the first electrode is in a slit shape
  • the second electrode is in a slit shape or a plate shape.
  • the touch display panel when the first electrode and the second electrode are disposed on the same substrate, insulation between the first electrode and the second electrode is provided.
  • Floor when the first electrode and the second electrode are disposed on the same substrate, insulation between the first electrode and the second electrode is provided.
  • the first electrode and the second electrode are both disposed on an upper surface of the first substrate.
  • the first electrode is disposed on an upper surface of the first substrate, and the second electrode is disposed on a lower surface of the second substrate.
  • the touch display screen provided by at least one embodiment of the present invention further includes a display driving circuit and a touch driving circuit, wherein the first electrode is electrically connected to the display driving circuit for performing the display function in the first period of time, and is electrically generated in the second period of time. Connect the touch drive circuit to implement the touch function.
  • the front projection of the first electrode and the touch sensing electrode on the second substrate at least partially overlaps.
  • the first electrode and the touch sensing electrode are disposed perpendicular to each other.
  • the touch display screen provided by at least one embodiment of the present invention further includes a third electrode, wherein the third electrode is a driving electrode for touch, and the third electrode and the touch sensing electrode are in the The orthographic projections on a substrate at least partially overlap.
  • At least one embodiment of the present invention also provides a display device including any of the above touch display screens.
  • At least one embodiment of the present invention provides a method of fabricating a touch display screen, including: providing a first substrate and a second substrate; forming first electrodes and second electrodes on the first substrate and/or the second substrate An electrode; the first substrate and the second substrate are oppositely disposed to form a liquid crystal cell, and the liquid crystal cell is filled with liquid crystal, the liquid crystal comprising a nematic liquid crystal and a single dispersion in the nematic liquid crystal
  • the medium is irradiated with ultraviolet rays, and the monomer is polymerized to form a long-chain compound.
  • a touch sensing electrode is formed on the outer side or the inner side of the second substrate.
  • the long chain of the long chain compound is perpendicular to the first substrate.
  • the preparation method provided by at least one embodiment of the present invention further includes: forming a third electrode on a lower surface of the second substrate, wherein the third electrode is a driving electrode for touch control, The third electrode and the orthographic projection of the touch sensing electrode on the second substrate at least partially overlap.
  • At least one embodiment of the present invention further provides a driving method of a touch display screen, comprising dividing a display time of a frame of the touch display screen into a display time period and a touch time period, wherein the first electrode is time-sharing
  • the common electrode for the display period and the driving electrode for the touch period are used.
  • a common electrode signal is applied to the first electrode during the display time period; and a touch scan signal is applied to the first electrode during the touch time period.
  • the touch sensing electrode couples the voltage signal of the touch scan signal and outputs the voltage signal.
  • FIG. 1 is a schematic cross-sectional structural view of a touch display screen according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional structural view of a touch display screen according to still another embodiment of the present invention.
  • FIG. 3 is a schematic plan view of a common electrode and a touch sensing electrode according to an embodiment of the invention.
  • FIG. 4 is a schematic cross-sectional structural view of a touch display screen according to another embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a touch display screen according to another embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for preparing a touch display screen according to an embodiment of the present invention.
  • a polarizer is disposed in the display panel, and light emitted by the backlight is incident on the display panel through the polarizer, and then emitted through the polarizer to the display panel.
  • the polarizer converts the natural light into linearly polarized light, but the presence of the polarizer may cause The transmittance of light is greatly reduced, thereby affecting the display effect of the display panel. If the touch sensing electrode is further disposed on the display panel provided with the polarizer, the transmittance of the light is further lowered, and the current demand for the touch display cannot be satisfied.
  • At least one embodiment of the present invention provides a touch display screen including: a first substrate and a second substrate disposed opposite to each other; disposed between the first substrate and the second substrate and capable of generating a level in a powered state a first electrode and a second electrode of the electric field; a liquid crystal filled between the first substrate and the second substrate; and a touch sensing electrode disposed outside or inside the second substrate.
  • the liquid crystal includes a nematic liquid crystal and a long-chain compound dispersed in a nematic liquid crystal to form a scattering state of the nematic liquid crystal.
  • Embodiments of the present disclosure utilize the structural characteristics of an optical waveguide to apply an optical waveguide structure to display technology.
  • the liquid crystal cell is irradiated with a light source incident from the side of the liquid crystal cell, and the light is incident and emitted in a direction parallel to the first substrate and the second substrate.
  • the optical waveguide is a structure that transmits a light wave composed of a transparent medium. At the interface of a medium having a different refractive index, the total reflection phenomenon causes the light wave to be confined to a limited area in the optical waveguide to propagate.
  • the optical waveguide structure in the present disclosure is composed of a liquid crystal layer having a different refractive index and a transparent substrate (for example, a glass substrate, a plastic substrate), wherein the refractive index of the liquid crystal layer is greater than the refractive index of the transparent substrate.
  • the optical waveguide structure enables light to propagate in a predetermined direction.
  • the touch display screen in the embodiment of the present invention increases the transmittance of light based on the structure of the optical waveguide, and uses a long-chain compound to arrange a portion of the liquid crystal molecules in a scattered state in a charged state, thereby changing the optical waveguide.
  • the size of the incident angle of the transmitted light thereby destroying the total reflection condition between the liquid crystal and the substrate, so that the light is emitted from the corresponding position, thereby realizing the display function, and the display function eliminates the need for a polarizer, thereby allowing the touch display to be omitted.
  • the structure of the polarizer is removed, thereby increasing the transmittance of light and the utilization efficiency of light.
  • the sensing electrode can have both a display function and a touch function.
  • FIG. 1 is a schematic cross-sectional structural view of a touch display screen.
  • the touch display screen 100 includes: a first substrate 101 and a second substrate 102 disposed opposite to each other, and a first electrode 103 and a second electrode 104 disposed between the first substrate 101 and the second substrate 102,
  • the liquid crystal 106 filled between the first substrate 101 and the second substrate 102 is provided on the touch sensing electrode 107 outside or inside the second substrate 101.
  • a horizontal electric field can be generated between the first electrode 103 and the second electrode 104 in the powered state, and thus can be used to drive the liquid crystal 106.
  • the liquid crystal 106 includes a nematic liquid crystal and a long-chain compound 105 which is dispersed in the nematic liquid crystal to form a scattering state of the nematic liquid crystal.
  • the first substrate 101 and the second substrate 102 are transparent glass substrates, plastic substrates, and the like, and circuits or the like for controlling or driving the first electrodes 103 and the second electrodes 104 may be formed thereon.
  • the glass substrate and the plastic substrate have a refractive index of 1.0 to 1.2.
  • the first electrode 103 has a slit shape
  • the second electrode 104 has a slit shape or a plate shape, wherein the slit electrode includes a plurality of sub-electrodes spaced apart from each other and arranged in parallel.
  • the first electrode 103 and the second electrode 104 are connected to a control circuit which can apply a positive voltage on the first electrode 103, a negative voltage on the second electrode 104 or ground it, thereby being at the first electrode 103
  • An electric field is formed in a region corresponding to the second electrode 104, for example, a horizontal electric field is formed to drive the liquid crystal molecules to rotate in the horizontal direction.
  • the plurality of sub-electrodes in the slit-shaped electrodes may be uniformly applied with a voltage, or may be individually applied with a voltage, for example, gradually rising or falling, thereby forming a gradually changing electric field.
  • an alignment layer may be formed on the first substrate 101 and the second substrate 102, and the alignment layer is in contact with the liquid crystal 106. Therefore, the liquid crystal molecules may be aligned through the alignment layer, and the material of the alignment layer may be, for example, polyimide ( PI).
  • the alignment layers disposed on the first substrate 101 and the second substrate 102 are oriented in opposite directions to form an anti-parallel oriented configuration.
  • the formation process of the alignment layer includes: respectively coating an alignment liquid on the first substrate 101 and the second substrate 102, performing a rubbing alignment process after the alignment liquid is cured, or performing a photocuring and orientation process.
  • the alignment layer helps the liquid crystal molecules to deflect under the action of an electric field.
  • the liquid crystal display panel can be divided into: Twisted Nematic (TN) type, In Plane Switching (IPS) type, and Advanced Super Dimension Switch (ADS) type.
  • TN Twisted Nematic
  • IPS In Plane Switching
  • ADS Advanced Super Dimension Switch
  • a common type electrode and a pixel electrode for providing voltage-driven liquid crystal deflection in ADS type and IPS type liquid crystal displays are disposed on On the first substrate, it is generally referred to as a horizontal electric field type.
  • the pixel electrode is disposed on the first substrate
  • the common electrode is disposed on the second substrate, which is generally referred to as a vertical electric field type.
  • the first electrode 103 is a common electrode
  • the second electrode 104 is a pixel electrode
  • the deflection of the liquid crystal molecules is controlled by an electric field generated between the common electrode and the pixel electrode.
  • a multi-dimensional electric field is formed by an electric field generated by the edge of the slit electrode in the same plane and an electric field generated between the slit electrode layer and the plate-shaped electrode layer, so that the slit in the liquid crystal cell All the aligned liquid crystal molecules between the electrodes and directly above the electrodes can be rotated, thereby improving the working efficiency of the liquid crystal and increasing the light transmission efficiency.
  • Advanced super-dimensional field switching technology can improve the picture quality of liquid crystal display devices. Advanced super-dimensional field switching technology has the advantages of high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, and low chromatic aberration.
  • the long chain of the long-chain compound 105 is perpendicular to the first substrate 101, that is, the direction of the long chain in the long-chain compound 105 and the uncharged condition.
  • the arrangement direction of the liquid crystals 106 is uniform.
  • the liquid crystal molecules do not emit light themselves, and the light source 110 incident from the side is disposed in a direction close to the liquid crystal molecules and parallel to the first substrate, and the light source includes, for example, a plurality of The light bar of a light emitting diode (LED) is either a cold cathode fluorescent lamp (CCFL).
  • LED light emitting diode
  • CCFL cold cathode fluorescent lamp
  • the liquid crystal molecules Under the condition of power-on, due to the presence of long-chain compounds, the liquid crystal molecules exhibit a scattering state, changing the incident angle of light incident from the liquid crystal layer to the first substrate or the second substrate, destroying the condition of total reflection of light, and applying A portion of the light of the corresponding portion of the electric field is emitted at an angle to the first substrate or the second substrate, thereby enabling a display function with high transparency.
  • the display function is realized without the use of two polarizers used in a conventional liquid crystal display device, thereby avoiding the problem of a decrease in light transmittance caused by using the polarizer, thereby improving display brightness and reducing Energy consumption.
  • the first substrate 101 and the second substrate 102 are connected to each other by a sealant to constitute a liquid crystal cell.
  • the sealant is formed of a transparent material, and light can be incident on the liquid crystal layer through the sealant.
  • a monomer and a photoinitiator required for forming a long-chain compound may be mixed in a liquid crystal, and a long-chain compound is polymerized by a plurality of corresponding monomers under irradiation of ultraviolet rays and under the action of a photoinitiator. form.
  • the monomer required to form a long-chain compound includes any one or combination of the following: 4,4'-bis[6-(acryloyloxy)hexyloxy]biphenyl, 2-methyl-1 ,4-bis[4-(3-acryloyloxyhexyloxy)benzoic acid] hydroquinone, 2-methyl-1,4-bis[4-(3-acryloyloxypropoxy) ) benzoic acid] hydroquinone, the corresponding chemical formula is:
  • the corresponding long-chain compound formed from the above monomer includes any one or combination of the following: poly 4,4'-bis[6-(acryloyloxy)hexyloxy]biphenyl, poly 2- Methyl-1,4-bis[4-(3-acryloyloxyhexyloxy)benzoic acid] hydroquinone, poly-2-methyl-1,4-bis[4-(3-acryloyl)
  • poly 4,4'-bis[6-(acryloyloxy)hexyloxy]biphenyl poly 2- Methyl-1,4-bis[4-(3-acryloyloxyhexyloxy)benzoic acid] hydroquinone
  • poly-2-methyl-1,4-bis[4-(3-acryloyl) The corresponding chemical formulas of oxypropoxy)benzoic acid] hydroquinone are:
  • the degree of polymerization n in the above long chain compound is 10-18.
  • the nematic liquid crystal refers to the liquid crystal in the nematic phase.
  • the nematic liquid crystal molecules are rod-shaped, can move in a three-dimensional range, and have an electrical anisotropy in electrical, and an external electric field can be used to change the alignment orientation of the molecules, thereby changing the optical properties of the liquid crystal.
  • twisted nematic (TN) liquid crystals are distorted in a natural state. When current is applied to such liquid crystals, they will be reversely twisted by a corresponding angle depending on the magnitude of the applied voltage.
  • the nematic liquid crystal used is, for example, a positive liquid crystal ( ⁇ >0) and a refractive index of 1.6-1.8 (for example, 1.7).
  • the nematic liquid crystal includes any one or combination of the following liquid crystal molecules:
  • the monomer has a mass percentage of 1% to 5%
  • the photoinitiator has a mass percentage of 0.5% to 3%.
  • the first electrode 103, the second electrode 104, and the touch sensing electrode 107 may be formed by photolithography, and the materials of the electrodes are all transparent conductive materials, such as indium tin oxide. (ITO), indium zinc oxide (IZO), and the like.
  • ITO indium tin oxide.
  • IZO indium zinc oxide
  • the first electrode 103 and the second electrode 104 are both disposed on the upper surface of the first substrate 101, and the upper surface of the first substrate 101 refers to the surface of the first substrate 101 near the liquid crystal side.
  • An insulating layer 108 is disposed between the first electrode 103 and the second electrode 104 to electrically isolate the first electrode 103 from the second electrode 104.
  • the material of the insulating layer 108 is a transparent insulating material, such as silicon oxide, silicon nitride, tantalum oxide, silicon oxynitride or aluminum oxide.
  • a transparent insulating material such as silicon oxide, silicon nitride, tantalum oxide, silicon oxynitride or aluminum oxide.
  • FIG. 2 is a schematic cross-sectional view of a touch display screen according to another embodiment of the present invention.
  • the first electrode 103 and the second electrode 104 are disposed on the first substrate 101 and the second substrate 102.
  • the first electrode 103 is disposed on the upper surface of the first substrate 101
  • the second electrode 104 is disposed on the first substrate.
  • the upper surface of the first substrate 101 refers to the surface of the first substrate 101 near the liquid crystal side
  • the lower surface of the second substrate 102 refers to the surface of the second substrate 102 near the liquid crystal side.
  • the first electrode 103 has a slit shape
  • the second electrode 104 has a slit shape or a plate shape, wherein the slit electrode includes a plurality of sub-electrodes spaced apart from each other and arranged in parallel.
  • the touch display screen includes a display driving circuit and a touch driving circuit.
  • the external touch screen adds a touch driving electrode and a touch sensing electrode to the upper surface of the upper substrate of the display panel to implement the touch function.
  • the fabrication on the surface of the thin film transistor array substrate is different Strip-shaped Indium Tin Oxide (ITO) electrodes on the layers and intersecting each other, and the two strip-shaped ITO electrodes serve as touch driving electrodes and touch sensing electrodes for realizing touch functions, respectively. For example, as shown in FIGS.
  • ITO Indium Tin Oxide
  • the first electrode 103 may be used as a touch driving electrode, and the first electrode 103 is electrically connected in the first period of time, and the display driving circuit is used as a common electrode to realize a display function, at the second time.
  • the segment first electrode 103 is electrically connected to the touch driving circuit and is used as a touch driving electrode to implement a touch function. This can reduce process steps, save electrode materials, and reduce production costs.
  • 1 and 2 are cross-sectional views along the extending direction of the electrode strip of the touch sensing electrode 107, and thus the touch sensing electrode 107 is shown in an elongated shape.
  • the orthographic projection of the first electrode 103 and the touch sensing electrode 107 on the first substrate 101 at least partially overlaps, thereby extending the electrode strip of the first electrode 103 and the electrode of the touch sensing electrode 107.
  • the strips extend in different directions, forming an intersection area with each other and forming a capacitance in the intersection area.
  • the first electrode (touch drive electrode) and the touch sensing electrode are laterally and vertically distributed, and the first electrode 103 and the touch sensing electrode 107 are disposed perpendicular to each other, so that the size of each intersection region is nearly uniform,
  • the capacitances formed by the intersection regions are also approximately the same, such that a capacitance matrix is formed at the intersection.
  • the touch scan signals are respectively applied to the first electrodes (touch drive electrodes) of the respective rows, and the output signals of the touch sensing electrodes corresponding to the touch drive electrodes of each row are sequentially detected, thereby detecting the change of the capacitance in the capacitance matrix to determine the touch position. .
  • a driving signal line and an inductive signal line are further disposed on the first substrate or the second substrate, and the touch sensing electrode is connected to the sensing signal line, and the first electrode is connected as a touch driving electrode to the driving signal line.
  • the sensing signal line is in a different layer or the same layer as the touch sensing electrode. When the sensing signal line and the touch sensing electrode are in different layers, the touch sensing electrode and the sensing signal line are connected through a via hole located on the insulating layer therebetween; When the sensing signal line is on the same layer as the touch sensing electrode, the two are directly connected.
  • the touch sensing electrode 107 is disposed on the upper surface of the second substrate 102. As shown in FIG. 4, the touch sensing electrode 107 may also be disposed on the lower surface of the second substrate 102, thereby forming an in-cell touch display screen.
  • the embedded capacitive touch display screen can reduce the thickness of the module by embedding the touch electrode in the interior of the display screen, and can greatly reduce the manufacturing cost of the touch screen, and is widely used in the touch display technology.
  • the touch display screen further includes a third electrode 109, which is a driving electrode for touch.
  • Third electrode 109 A plurality of electrode strips are included, and the extending direction of the electrode strips of the third electrodes 109 is different from the extending direction of the electrode strips of the touch sensing electrodes 107 (for example, perpendicular to each other), and the orthographic projections of the electrodes on the first substrate 101 at least partially overlap.
  • a transparent electrode is added to serve as a touch driving electrode, so that the second electrode 104 is not time-multiplexed into a touch driving electrode for a touch period and a common electrode for a display period.
  • Embodiments of the present invention provide a display device including any of the above touch display screens.
  • the display device can be any product or component having a display function and a touch function, such as a mobile phone, a tablet computer, a notebook computer, a digital photo frame, a navigator, and the like.
  • the light source is a side-entry light source
  • the liquid crystal cell is irradiated with a light source incident from a side surface of the liquid crystal cell, and the light is incident and emitted in a direction parallel to the first substrate and the second substrate.
  • An embodiment of the present invention provides a method for preparing a touch display screen, as shown in FIG. 6 , which is a flowchart of a method for preparing a touch display screen of the embodiment, the process includes: providing a first substrate and a second substrate; Forming a first electrode and a second electrode on the first substrate and/or the second substrate; the first substrate and the second substrate are oppositely disposed to form a liquid crystal cell, and the liquid crystal cell is filled with liquid crystal, and the filled liquid crystal comprises nematic liquid crystal And a monomer dispersed in the nematic liquid crystal; the liquid crystal is irradiated with ultraviolet rays, and the monomer distributed therein is polymerized to form a long-chain compound.
  • the first electrode and the second electrode are both formed on the first substrate, and the two are formed on the same layer They are spaced apart from each other to be insulated, or both are formed on different layers and spaced apart from each other to insulate.
  • the first electrode and the second electrode are formed on the first substrate and the second substrate, respectively.
  • the first substrate and the second substrate are transparent glass substrates or plastic substrates, and circuits for controlling or driving the first electrode and the second electrode are respectively formed on the first substrate or the second substrate.
  • the refractive index n 1 is greater than the refractive index of the liquid crystal glass substrate or a transparent plastic substrate, n 2, when the light incident angle is greater than or equal to arcsin (n 2 / n 1) , the light in the first substrate and the liquid crystal molecules Total reflection occurs between the second substrates.
  • the refractive index n 1 of the liquid crystal is 1.6 to 1.8
  • the refractive index n 2 of the glass substrate or the plastic substrate is 1.0 to 1.2.
  • an alignment layer may be formed on the surface of the first substrate and the second substrate facing the liquid crystal layer to orient the liquid crystal molecules, and the material of the alignment layer may be, for example, polyimide (PI), disposed on the first substrate and the second substrate.
  • PI polyimide
  • the formation process of the alignment layer includes: respectively coating an alignment liquid on the first substrate and the second substrate, performing a rubbing alignment process after the alignment liquid is cured, or performing a photocuring and orientation process.
  • the alignment layer contributes to the deflection operation of the liquid crystal molecules of the liquid crystal layer under the action of an electric field.
  • the method of fabricating the touch display screen further includes forming a touch sensing electrode on the outside or inside of the second substrate.
  • the touch sensing electrode may be disposed on the upper surface of the second substrate or on the lower surface of the second substrate, thereby forming an in-cell touch display screen.
  • the embedded capacitive touch display screen can reduce the thickness of the module by embedding the touch electrode in the interior of the display screen, and can greatly reduce the manufacturing cost of the touch screen, and is widely used in the touch display technology.
  • the long chain of the long chain compound may be perpendicular to the first substrate, that is, the direction of the long chain in the long chain compound coincides with the direction in which the liquid crystal molecules are arranged under the uncharged condition.
  • the liquid crystal molecules are sealed in a region defined by the first substrate and the second substrate, and the sealant used is formed of a transparent material, and the light can be incident on the liquid crystal layer through the sealant.
  • the process of sealing the liquid crystal in the regions defined by the first substrate and the second substrate is performed under vacuum conditions.
  • the first substrate and the second substrate are first sealed with a transparent frame sealant, and a certain area is reserved for injecting a mixture of the liquid crystal, the monomer and the photoinitiator, and injecting the mixture into the mixture.
  • the reserved region is sealed, and the mixture is irradiated with ultraviolet rays, and the monomer is polymerized under the action of the photoinitiator under ultraviolet irradiation to form a long-chain compound, a long-chain compound.
  • the long chain is perpendicular to the first substrate.
  • a liquid crystal cell filled with a liquid crystal material is obtained.
  • the monomer required to form a long-chain compound includes any one or combination of the following: 4,4'-bis[6-(acryloyloxy)hexyloxy]biphenyl, 2-methyl-1 ,4-bis[4-(3-acryloyloxyhexyloxy)benzoic acid] hydroquinone, 2-methyl-1,4-bis[4-(3-acryloyloxypropoxy) ) benzoic acid] hydroquinone, the corresponding chemical formula is:
  • the corresponding long-chain compound formed from the above monomer includes any one or combination of the following: poly 4,4'-bis[6-(acryloyloxy)hexyloxy]biphenyl, poly 2- Methyl-1,4-bis[4-(3-acryloyloxyhexyloxy)benzoic acid] hydroquinone, poly-2-methyl-1,4-bis[4-(3-acryloyl)
  • poly 4,4'-bis[6-(acryloyloxy)hexyloxy]biphenyl poly 2- Methyl-1,4-bis[4-(3-acryloyloxyhexyloxy)benzoic acid] hydroquinone
  • poly-2-methyl-1,4-bis[4-(3-acryloyl) The corresponding chemical formulas of oxypropoxy)benzoic acid] hydroquinone are:
  • the degree of polymerization n in the above long chain compound may be from 10 to 18.
  • liquid crystal molecules include any one or combination of the following liquid crystal molecules:
  • the monomer has a mass percentage of 1% to 5%
  • the photoinitiator has a mass percentage of 0.5% to 3%.
  • the first electrode, the second electrode, and the touch sensing electrode may be formed by photolithography, and the materials of the electrodes are all transparent conductive materials, such as indium tin oxide (ITO), indium zinc oxide (IZO), or the like.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the first electrode, the insulating layer, and the second electrode are sequentially formed on the upper surface of the first substrate, and the insulating layer electrically isolates the first electrode from the second electrode, and the first electrode is time-multiplexed into a display.
  • the common electrode for the period and the touch driving electrode for the touch period are formed on the outer side or the inner side of the second substrate.
  • the material of the insulating layer is a transparent insulating material such as silicon oxide, silicon nitride, tantalum oxide, silicon oxynitride or aluminum oxide.
  • a first electrode is formed on an upper surface of the first substrate, and a second electrode is formed on a lower surface of the second substrate.
  • the first electrode is slit-shaped
  • the second electrode is slit-shaped Or a plate shape, wherein the slit electrode includes a plurality of sub-electrodes spaced apart from each other and arranged in parallel.
  • the first electrode is time-multiplexed into a common electrode for the display period and a touch driving electrode for the touch period, and the touch sensing electrode is formed on the outer side or the inner side of the second substrate.
  • the method further includes forming a third electrode on the lower surface of the second substrate, the third electrode is a driving electrode for touch, the third electrode and the touch sensing
  • the orthographic projections of the electrodes on the first substrate at least partially overlap.
  • An additional electrode is added to act as a touch drive electrode, such that the first electrode is not time-multiplexed into a touch drive electrode.
  • Embodiments of the present invention provide a driving method of a touch display screen, which is directed to a touch display screen in which the first electrode is time-multiplexed.
  • the driving method includes dividing the display time of one frame of the touch display screen into a display time period and a touch time period, wherein the first electrode is time-multiplexed into a common electrode for displaying the time period and a driving electrode for the touch time period. .
  • a common electrode signal is applied to the first electrode during the display period, and a non-operation signal is applied to the touch sensing electrode, or grounded or suspended; a touch scan signal is applied to the first electrode during the touch period, and the touch sensing electrode is coupled The voltage signal of the touch scan signal is output and output.
  • the display and touch functions are implemented by time-division driving the first electrode, the first electrode (eg, the common electrode) is charged during the display period, and the second electrode (eg, the pixel electrode) is maintained with the DC/AC voltage,
  • the touch sensing electrode applies a low level signal, and a storage capacitor is disposed between the first electrode and the second electrode to keep the voltage difference constant; during the touch period, the first electrode functions as a touch driving electrode, and the touch scan signal is applied to the first electrode.
  • the touch sensing electrode couples the voltage signal of the touch scan signal and outputs it.
  • the voltage on the first electrode changes, and the voltage on the second electrode also changes accordingly, thereby maintaining the first electrode and The voltage difference between the second electrodes.
  • a voltage is applied to the first electrode and the second electrode to drive the liquid crystal molecules to deflect for display; when the finger, the stylus, etc. touch the touch display screen, the first electrode and the first electrode
  • the electric field formed between the two electrodes changes, thereby causing an inductive touch, thereby achieving the purpose of touch control, and determining the touch position according to the change of the mutual capacitance formed by the touch sensing electrode and the first electrode (for example, the touch driving electrode) .
  • a first electrode for example, a touch driving electrode
  • a touch sensing electrode are laterally and vertically distributed, and a capacitance matrix is formed at the intersection, and then a touch scan signal is applied to each row of the first electrode (touch driving electrode), and sequentially detected.
  • Touch sensing electrode corresponding to each row of touch driving electrodes The output signal, thereby detecting the change in capacitance in the capacitance matrix, to determine the touch position.
  • Embodiments of the present invention provide a touch display screen, a method of fabricating the same, a display device, and a driving method, which have at least one of the following beneficial effects:
  • the first electrode is time-multiplexed into a common electrode for display and a driving electrode for touch, which can save electrode material.
  • a touch sensing electrode is provided on a display screen having high transmittance, so that the touch display screen realizes a display function and a touch function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种触摸显示屏(100)及其制备方法、显示装置和驱动方法,触摸显示屏(100)包括:相对设置的第一基板(101)和第二基板(102);设置在第一基板(101)和第二基板(102)之间,且在加电状态下可产生水平电场的第一电极(103)和第二电极(104);填充在第一基板(101)和第二基板(102)之间的液晶(106);设置在第二基板(102)外侧或内侧的触摸感应电极(107)。液晶(106)包括向列相液晶以及分散在向列相液晶中的可以使向列相液晶形成散射态的长链化合物(105)。触摸显示屏(100)以光波导结构为基础,提高了光线的透过率;通过长链化合物(105)破坏光线全反射的条件使液晶分子呈散射态,由此实现显示功能。

Description

触摸显示屏及其制备方法、显示装置和驱动方法 技术领域
本发明的实施例涉及一种触摸显示屏及其制备方法、显示装置和驱动方法。
背景技术
液晶显示器(liquid crystal display,LCD)广泛地应用于橱窗、车辆等应用场景。但是,目前大多数的液晶显示器内设置有双层偏光片,偏光片的存在会给液晶显示器带来光线透过率低等技术问题。
触摸屏是最新的信息输入设备,其具有触摸反应灵敏、支持多点触摸等优点。它能简单、方便、自然地实现人机交互,为人们提供了一种全新的多媒体人机交互方法。按照组成结构的不同,触控屏可以分为:外挂式触控屏(Add on Mode Touch Panel)、覆盖表面式触控屏(On Cell Touch Panel)以及内嵌式触控屏(In Cell Touch Panel)。根据触控屏结构的不同,触控屏设计的方案也有多种,比较常见的是将液晶显示装置的显示屏和触控屏分开制作,也可以在液晶显示装置的显示屏的内部、表面或外部制作感应电极、驱动电极,并连接相应的感应信号线和驱动信号线。如果在目前的液晶显示器上增加触摸屏会导致光线的透过率更低。
因此,设计一种具有高透过率、同时具有触控功能和显示功能的触摸显示屏,越来越成为现阶段人们对液晶显示屏的需求。
发明内容
本发明至少一实施例提供一种触摸显示屏,包括:相对设置的第一基板和第二基板;第一电极和第二电极,设置在所述第一基板和所述第二基板之间,且在加电状态下可产生水平电场;填充在所述第一基板和所述第二基板之间的液晶,所述液晶包括向列相液晶和分散在所述向列相液晶中的可以使所述向列相液晶形成散射态的长链化合物;设置在所述第二基板外侧或内侧的触摸感应电极。
例如,在本发明至少一实施例提供的触摸显示屏中,所述长链化合物 的长链垂直于所述第一基板。
例如,在本发明至少一实施例提供的触摸显示屏中,所述长链化合物包括多个单体,所述单体包括下述中的任意一种或组合:
Figure PCTCN2017090530-appb-000001
例如,在本发明至少一实施例提供的触摸显示屏中,所述长链化合物包括下述中的任意一种或组合:
Figure PCTCN2017090530-appb-000002
例如,在本发明至少一实施例提供的触摸显示屏中,所述向列相液晶为正向液晶。
例如,在本发明至少一实施例提供的触摸显示屏中,所述向列相液晶包括下述液晶分子中的任意一种或组合:
Figure PCTCN2017090530-appb-000003
例如,在本发明至少一实施例提供的触摸显示屏中,所述第一电极、所述第二电极和所述触摸感应电极的材料均为透明导电材料。
例如,在本发明至少一实施例提供的触摸显示屏中,所述第一电极为狭缝状,所述第二电极为狭缝状或板状。
例如,在本发明至少一实施例提供的触摸显示屏中,所述第一电极与所述第二电极设置在同一基板上时,所述第一电极与所述第二电极之间设置有绝缘层。
例如,在本发明至少一实施例提供的触摸显示屏中,所述第一电极和所述第二电极均设置于所述第一基板的上表面上。
例如,在本发明至少一实施例提供的触摸显示屏中,所述第一电极设置在所述第一基板的上表面上,所述第二电极设置在所述第二基板的下表面上。
例如,本发明至少一实施例提供的触摸显示屏,还包括显示驱动电路和触控驱动电路,第一电极在第一时间段电连接显示驱动电路以实现显示的功能、在第二时间段电连接触控驱动电路以实现触控功能。
例如,在本发明至少一实施例提供的触摸显示屏中,所述第一电极与所述触摸感应电极在所述第二基板上的正投影至少部分重叠。
例如,在本发明至少一实施例提供的触摸显示屏中,所述第一电极和所述触摸感应电极相互垂直设置。
例如,本发明至少一实施例提供的触摸显示屏,还包括第三电极,其中,所述第三电极为触控用的驱动电极,所述第三电极与所述触摸感应电极在所述第一基板上的正投影至少部分重叠。
本发明至少一实施例还提供一种显示装置,包括上述任一触摸显示屏。
本发明至少一实施例还提供一种触摸显示屏的制备方法,包括:提供第一基板和第二基板;在所述第一基板和/或所述第二基板上形成第一电极和第二电极;所述第一基板和所述第二基板相对设置以形成液晶盒,并且在所述液晶盒中填充液晶,所述液晶包括向列相液晶和分散在所述向列相液晶中的单体;照射紫外线,所述单体进行聚合反应形成长链化合物。
例如,在本发明至少一实施例提供的制备方法中,在所述第二基板的外侧或内侧形成有触摸感应电极。
例如,在本发明至少一实施例提供的制备方法中,所述长链化合物的长链垂直于所述第一基板。
例如,本发明至少一实施例提供的制备方法,还包括:在所述第二基板的下表面上形成第三电极,其中,所述第三电极为触控用的驱动电极, 所述第三电极与所述触摸感应电极在所述第二基板上的正投影至少部分重叠。
本发明至少一实施例还提供一种触摸显示屏的驱动方法,包括将所述触摸显示屏一帧画面的显示时间分成显示时间段和触控时间段,其中,所述第一电极分时复用为所述显示时间段用的公共电极与所述触控时间段用的驱动电极。
例如,在本发明至少一实施例提供的驱动方法中,在所述显示时间段对所述第一电极施加公共电极信号;在所述触控时间段对所述第一电极施加触控扫描信号,触摸感应电极耦合所述触控扫描信号的电压信号并输出。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明一实施例提供的一种触摸显示屏的截面结构示意图;
图2为本发明再一实施例提供的一种触摸显示屏的截面结构示意图;
图3为本发明一实施例提供的公共电极和触摸感应电极的平面示意图;
图4为本发明又一实施例提供的一种触摸显示屏的截面结构示意图;
图5为本发明又一实施例提供的一种触摸显示屏的截面结构示意图;
图6为本发明一实施例提供的一种触摸显示屏的制备方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用 来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
通常,在显示面板中设置有偏光片,背光源发出的光通过偏光片射入显示面板,再通过偏光片射出显示面板,偏光片将自然光变成线偏振光,但是,偏光片的存在会使光线的透过率大大降低,从而影响显示面板的显示效果。如果在设置有偏光片的显示面板上再设置触摸感应电极,也会因为光线的透过率的进一步降低,而满足不了目前对触摸显示的需求。
本发明至少一实施例提供一种触摸显示屏,该触摸显示屏包括:相对设置的第一基板和第二基板;设置在第一基板和第二基板之间且在加电状态下可产生水平电场的第一电极和第二电极;填充在第一基板和第二基板之间的液晶;设置在第二基板外侧或内侧的触摸感应电极。该液晶包括向列相液晶和分散在向列相液晶中的可以使向列相液晶形成散射态的长链化合物。
本公开的实施例利用了光波导的结构特性,将光波导结构应用于显示技术中。采用从液晶盒的侧面入射的光源照射液晶盒,让光线沿着平行于第一基板和第二基板的方向入射和出射。光波导是由透明介质构成的传输光波的结构,在具有不同折射率的介质的界面上,全反射现象使光波局限在光波导内有限的区域内传播。
本公开中的光波导结构由折射率不相同的液晶层和透明基板(例如,玻璃基板、塑料基板)组成,其中,液晶层的折射率大于透明基板的折射率。该光波导结构能够使光线沿着预定的方向传播。
本发明实施例中的触摸显示屏基于光波导的结构来提高光线的透过率,同时利用长链化合物来使部分液晶分子在加电状态下呈散射态排布,由此改变了光波导中传播的光线的入射角的大小,从而破坏了液晶和基板之间的全反射条件,使得光线从相应位置出射,从而实现显示功能,实现该显示功能不再需要偏光片,从而允许触摸显示屏省去偏光片这一结构,由此提高光的透射率和光的利用效率。并在第二基板的外侧或内侧设置触 摸感应电极,可同时具有显示功能和触控功能。
本发明的实施例提供一种触摸显示屏,图1为一种触摸显示屏的截面结构示意图。如图1所示,该触摸显示屏100包括:相对设置的第一基板101和第二基板102,设置在第一基板101和第二基板102之间的第一电极103和第二电极104,填充在第一基板101和第二基板102之间的液晶106,设置在第二基板101外侧或内侧的触摸感应电极107。在加电状态下第一电极103和第二电极104之间可产生水平电场,从而可用于驱动液晶106。液晶106包括向列相液晶和分散在向列相液晶中的可以使向列相液晶形成散射态的长链化合物105。
例如,第一基板101和第二基板102是透明的玻璃基板、塑料基板等,在其上可以分别形成控制或驱动第一电极103和第二电极104的电路等。例如,玻璃基板和塑料基板的折射率为1.0-1.2。
例如,在本实施例中,第一电极103为狭缝状,第二电极104为狭缝状或板状,其中,狭缝状电极包括多个彼此间隔且平行排列的子电极。第一电极103和第二电极104连接至控制电路,控制电路可以在第一电极103上施加一正电压,在第二电极104上施加一负电压或者将其接地,由此在第一电极103和第二电极104对应的区域内形成电场,例如,形成水平电场,以驱动液晶分子在水平方向上旋转。根据不同的设计,狭缝状电极中的多个子电极可以被统一地施加电压,也可以被单独地施加电压,例如逐渐升高或降低,由此形成逐渐变化的电场。
例如,在第一基板101和第二基板102上还可以形成取向层,该取向层与液晶106接触,因此可通过取向层对液晶分子进行取向,取向层的材料例如可以是聚酰亚胺(PI)。例如,设置在第一基板101和第二基板102上的取向层的取向方向相反,从而形成反平行取向的构造。
例如,取向层的形成过程包括:在第一基板101和第二基板102上分别涂覆取向液,待取向液固化后进行摩擦取向工艺,或者进行光固化与取向工艺。取向层有助于液晶分子在电场作用下偏转。
液晶显示面板按照显示模式可以分为:扭曲向列(Twisted Nematic,简称TN)型、平面转换(In Plane Switching,简称IPS)型和高级超维场开关(Advanced Super Dimension Switch,简称ADS)型等。ADS型和IPS型模式的液晶显示器中提供电压驱动液晶偏转的公共电极和像素电极都设置于 第一基板上,通常被称为水平电场型。在TN模式的液晶显示器中,像素电极设置在第一基板上,公共电极设置在第二基板上,通常被称为垂直电场型。如图1所示,第一电极103为公共电极,第二电极104为像素电极,通过公共电极和像素电极之间产生的电场来控制液晶分子的偏转。
本实施例以高级超维场转换(ADS)模式的液晶显示装置为例进行详细说明。在高级超维场转换模式的液晶触摸显示屏中,通过同一平面内狭缝电极边缘所产生的电场以及狭缝电极层与板状电极层间产生的电场形成多维电场,使液晶盒内狭缝电极间、电极正上方所有取向液晶分子都能够产生旋转,从而提高了液晶的工作效率并增大了透光效率。高级超维场开关技术可以提高液晶显示装置的画面品质,高级超维场开关技术具有高分辨率、高透过率、低功耗、宽视角、高开口率、低色差等优点。
例如,如图1所示,在本实施例提供的触摸显示屏100中,长链化合物105的长链垂直于第一基板101,即长链化合物105中长链的方向与不加电条件下液晶106的排布方向一致。
需要说明的是,如图1所示,液晶分子本身不发光,在该触摸显示屏靠近液晶分子且平行于第一基板的方向上设置有从侧面入射的光源110,该光源例如为包括多个发光二极管(LED)的灯条或者为冷阴极荧光灯(CCFL)。在不对第一电极103、第二电极104加电而形成电场的条件下,液晶层本身为透明态,在液晶层中传播的光线的透过率能达到90%以上,但是由于全反射,这些光线并不会从第一基板和第二基板的表面出射。在加电的条件下,由于长链化合物的存在,液晶分子呈现出散射态,改变了光线从液晶层入射至第一基板或第二基板的入射角,破坏了光线全反射的条件,在施加电场的相应区域部分光线会与第一基板或第二基板成一定的角度射出,从而可用于实现具有高透明度的显示功能。并且,该显示功能的实现没有借助传统的液晶显示装置中使用的两个偏光片,由此避免了使用偏光片导致的光透光率的下降的问题,由此提升了显示亮度,而且减少了能量的消耗。
例如,第一基板101和第二基板102通过封框胶彼此连接以构成液晶盒。封框胶由透明材料形成,光线能够透过封框胶入射至液晶层。
例如,在液晶中可以混入形成长链化合物所需的单体和光引发剂,长链化合物由多个相应的单体在紫外线的照射下并在光引发剂的作用下聚合 形成。
例如,形成长链化合物所需的单体包括下述中的任意一种或组合:4,4’-二[6-(丙烯酰氧基)己氧基]联苯、2-甲基-1,4-二[4-(3-丙烯酰氧基己氧基)苯甲酸基]对苯二酚、2-甲基-1,4-二[4-(3-丙烯酰氧基丙氧基)苯甲酸基]对苯二酚,对应的化学式依次为:
Figure PCTCN2017090530-appb-000004
例如,由上述单体形成的相应的长链化合物包括下述中的任意一种或组合:聚4,4’-二[6-(丙烯酰氧基)己氧基]联苯、聚2-甲基-1,4-二[4-(3-丙烯酰氧基己氧基)苯甲酸基]对苯二酚、聚2-甲基-1,4-二[4-(3-丙烯酰氧基丙氧基)苯甲酸基]对苯二酚,对应的化学式依次为:
Figure PCTCN2017090530-appb-000005
例如,上述长链化合物中的聚合度n值为10-18。
例如,在本实施例中,向列相液晶指处在向列相的液晶。向列相液晶分子为棒形,可在三维范围内移动,并且在电学上具有明显的各向异性,可以利用外电场改变其分子的排列取向,由此可改变液晶的光学性能。例如,扭曲向列相(TN)液晶在自然状态下是扭曲的,当给这种液晶加上电流后,它们将依所加电压的大小反向扭曲相应的角度。在本实施例中,所使用的向列液晶例如为正性液晶(△ε>0)且折射率为1.6-1.8(例如1.7)。例如,向列相液晶包括下述液晶分子中的任意一种或组合:
Figure PCTCN2017090530-appb-000006
例如,在由液晶分子、单体和光引发剂组成的混合物中,单体的质量百分比含量为1%-5%,光引发剂的质量百分比含量为0.5%-3%。
例如,在本实施例提供的触摸显示屏中,第一电极103、第二电极104和触摸感应电极107可以通过光刻法形成,上述电极的材料均为透明导电材料,例如为铟锡氧化物(ITO)、铟锌氧化物(IZO)等。
例如,如图1所示,第一电极103与第二电极104均设置于第一基板101的上表面,第一基板101的上表面是指第一基板101的靠近液晶一侧的表面。第一电极103与第二电极104之间设置有绝缘层108,使第一电极103与第二电极104电性隔离。
例如,绝缘层108的材料为透明绝缘材料,例如硅氧化物、硅氮化物、铪氧化物、硅氮氧化物或铝氧化物等,绝缘层的结构与形成工艺可参考常规设计和工艺,在此不再赘述。
第一电极和第二电极还可以分设于不同的基板上,例如,图2为本发明再一实施例提供的一种触摸显示屏的截面结构示意图。如图2所示,第一电极103和第二电极104分设在第一基板101和第二基板102上,第一电极103设置于第一基板101的上表面上,第二电极104设置于第二基板102的下表面上,第一基板101的上表面是指第一基板101的靠近液晶一侧的表面,第二基板102的下表面是指第二基板102的靠近液晶一侧的表面。同样地,第一电极103为狭缝状,第二电极104为狭缝状或板状,其中,狭缝状电极包括多个彼此间隔且平行排列的子电极。
例如,该触摸显示屏包括显示驱动电路和触控驱动电路,通常外挂触摸屏会在显示面板的上基板的上表面另外增加触摸驱动电极和触摸感应电极来实现触控功能。例如,在薄膜晶体管阵列基板的表面上制作位于不同 层上且彼此相交的条状氧化铟锡(Indium Tin Oxide,ITO)电极,这两层条状ITO电极分别作为实现触摸功能的触摸驱动电极和触摸感应电极。例如,如图1和图2所示,第一电极103可以被用作触摸驱动电极,在第一时间段第一电极103电连接显示驱动电路被用作公共电极实现显示功能、在第二时间段第一电极103电连接触控驱动电路被用作触摸驱动电极实现触控功能。这样可以减少工艺步骤,节约电极材料,降低生产成本。图1和图2为沿着触摸感应电极107的电极条的延伸方向的剖面图,因此其中触摸感应电极107显示为长条形状。
例如,如图3所示,第一电极103与触摸感应电极107在第一基板101上的正投影至少部分重叠,由此在第一电极103的电极条的延伸方向与触摸感应电极107的电极条的延伸方向不同,彼此之间形成交叉区域,并在交叉区域形成电容。
进一步地,如图3所示,第一电极(触摸驱动电极)和触摸感应电极横纵交叉分布,第一电极103和触摸感应电极107相互垂直设置,这样每个交叉区域的大小接近一致,在交叉区域形成的电容的大小也大致相同,这样在交叉处形成了电容矩阵。然后分别向各行第一电极(触摸驱动电极)施加触控扫描信号,并依次检测与每行触摸驱动电极对应的触摸感应电极的输出信号,从而检测出电容矩阵中电容的变化,来判断触摸位置。
例如,在第一基板或第二基板上还设置有驱动信号线和感应信号线,触摸感应电极与感应信号线连接,第一电极作为触摸驱动电极与驱动信号线连接。感应信号线与触摸感应电极处于不同层或者同一层,当感应信号线与触摸感应电极处于不同层时,触摸感应电极与感应信号线通过位于两者之间的绝缘层上的过孔相连接;当感应信号线与触摸感应电极处于同一层时,两者直接相连。
例如,如图1和图2所示,触摸感应电极107设置于第二基板102的上表面。如图4所示,触摸感应电极107也可以设置于第二基板102的下表面,由此形成内嵌式触摸显示屏。内嵌电容式触摸显示屏通过将触控电极内嵌在显示屏的内部,可以减薄模组的厚度,又可以大大降低触摸屏的制造成本,其在触摸显示技术中的应用越来越广泛。
本发明的实施例提供一种触摸显示屏,如图5所示,该触摸显示屏还包括第三电极109,该第三电极109为触控用的驱动电极。第三电极109 包括多个电极条,第三电极109的电极条的延伸方向与触摸感应电极107的电极条的延伸方向不同(例如,彼此垂直),二者在第一基板101上的正投影至少部分重叠。
本实施例通过增设一个透明电极来充当触摸驱动电极,这样第二电极104不用分时复用为触控时间段用的触摸驱动电极和显示时间段用的公共电极。
本发明的实施例提供一种显示装置,该显示装置包括上述任一触摸显示屏。该显示装置可以为手机、平板电脑、笔记本电脑、数码相框、导航仪等任何具有显示功能和触控功能的产品或部件。
例如,在该显示装置中,光源为侧入式光源,采用从液晶盒的侧面入射的光源照射液晶盒,让光线沿着平行于第一基板和第二基板的方向入射和出射。
本发明的实施例提供一种触摸显示屏的制备方法,如图6所示,为该实施例的触摸显示屏的制备方法的流程图,该过程包括:提供第一基板和第二基板;在第一基板和/或第二基板上形成第一电极和第二电极;第一基板和第二基板相对设置以形成液晶盒,并且在液晶盒中填充液晶,所填充的液晶包括向列相液晶和分散在向列相液晶中的单体;采用紫外线照射液晶,分布在其中的单体进行聚合反应形成长链化合物。
对在第一基板和/或第二基板上形成第一电极和第二电极的操作,在一个示例中,第一电极和第二电极均形成在第一基板上,二者形成在同一层上但彼此间隔开以绝缘,或者二者形成在不同层上并彼此间隔开以绝缘。在另一个示例中,分别在第一基板和第二基板上形成第一电极和第二电极。
例如,第一基板和第二基板是透明的玻璃基板或塑料基板,在第一基板或第二基板上分别形成有控制或驱动第一电极和第二电极的电路。
例如,液晶的折射率n1大于透明的玻璃基板或塑料基板的折射率n2,当光线的入射角度大于或等于arcsin(n2/n1)时,光线在液晶分子中于第一基板和第二基板之间发生全反射。例如,液晶的折射率n1为1.6-1.8,玻璃基板或塑料基板的折射率n2为1.0-1.2。
例如,还可以在第一基板与第二基板面向液晶层的表面上形成取向层对液晶分子进行取向,取向层的材料例如可以是聚酰亚胺(PI),设置在第一基板和第二基板上的取向层的取向方向相反,从而形成反平行取向的构 造。
例如,取向层的形成过程包括:在第一基板和第二基板上分别涂覆取向液,待取向液固化后进行摩擦取向工艺,或者进行光固化与取向工艺。取向层有助于液晶层的液晶分子在电场作用下的偏转动作。
例如,触摸显示屏的制备方法还包括在第二基板的外侧或内侧形成触摸感应电极。例如,触摸感应电极可以设置于第二基板的上表面,也可以设置于第二基板的下表面,由此形成内嵌式触摸显示屏。内嵌电容式触摸显示屏通过将触控电极内嵌在显示屏的内部,可以减薄模组的厚度,又可以大大降低触摸屏的制造成本,其在触摸显示技术中的应用越来越广泛。
例如,长链化合物的长链可垂直于第一基板,即长链化合物中长链的方向与不加电条件下液晶分子的排布方向一致。
例如,将液晶分子密封于第一基板和第二基板限定的区域中,所用的封框胶由透明材料形成,光线能够透过封框胶入射至液晶层。将液晶密封于第一基板和第二基板限定的区域中的过程是在真空条件下完成的。
在形成液晶盒的操作中,例如,先将第一基板和第二基板用透明的封框胶密封,预留一定的区域用于注入液晶、单体和光引发剂形成的混合物,将混合物注射至第一基板和第二基板限定的区域后,将预留区域密封,再经紫外线照射混合物,在紫外线的照射下并在光引发剂的作用下单体发生聚合反应形成长链化合物,长链化合物的长链垂直于第一基板。或者,先在第一基板或第二基板上涂覆封框胶以限定容纳液晶的区域,然后滴加液晶材料,再将第二基板或第一基板覆盖在涂覆有封框胶的第一基板或第二基板上,得到填充有液晶材料的液晶盒。
例如,形成长链化合物所需的单体包括下述中的任意一种或组合:4,4’-二[6-(丙烯酰氧基)己氧基]联苯、2-甲基-1,4-二[4-(3-丙烯酰氧基己氧基)苯甲酸基]对苯二酚、2-甲基-1,4-二[4-(3-丙烯酰氧基丙氧基)苯甲酸基]对苯二酚,对应的化学式依次为:
Figure PCTCN2017090530-appb-000007
例如,由上述单体形成的相应的长链化合物包括下述中的任意一种或组合:聚4,4’-二[6-(丙烯酰氧基)己氧基]联苯、聚2-甲基-1,4-二[4-(3-丙烯酰氧基己氧基)苯甲酸基]对苯二酚、聚2-甲基-1,4-二[4-(3-丙烯酰氧基丙氧基)苯甲酸基]对苯二酚,对应的化学式依次为:
Figure PCTCN2017090530-appb-000008
例如,上述长链化合物中的聚合度n值可以为10-18。
例如,液晶分子包括下述液晶分子中的任意一种或组合:
Figure PCTCN2017090530-appb-000009
例如,在由液晶分子、单体和光引发剂组成的混合物中,单体的质量百分比含量为1%-5%,光引发剂的质量百分比含量为0.5%-3%。
例如,第一电极、第二电极和触摸感应电极可以通过光刻法形成,上述电极的材料均为透明导电材料,例如为铟锡氧化物(ITO)、铟锌氧化物(IZO)等。
例如,在一个示例中,第一电极、绝缘层和第二电极依次形成于第一基板的上表面,绝缘层使第一电极与第二电极电性隔离,第一电极分时复用为显示时段用的公共电极和触控时段用的触摸驱动电极,触摸感应电极形成在第二基板的外侧或内侧。
例如,绝缘层的材料为透明绝缘材料,例如硅氧化物、硅氮化物、铪氧化物、硅氮氧化物或铝氧化物等。
例如,在另一个示例中,在第一基板的上表面上形成第一电极,在第二基板的下表面上形成第二电极。第一电极为狭缝状,第二电极为狭缝状 或板状,其中,狭缝状电极包括多个彼此间隔且平行排列的子电极。同样地,第一电极分时复用为显示时段用的公共电极和触控时段用的触摸驱动电极,触摸感应电极形成在第二基板的外侧或内侧。
例如,在上述两个示例描述的基板和电极结构的基础上,还包括在第二基板的下表面上形成第三电极,该第三电极为触控用的驱动电极,第三电极与触摸感应电极在第一基板上的正投影至少部分重叠。增设了一个电极充当触摸驱动电极,这样第一电极不用分时复用为触摸驱动电极。
本发明的实施例提供一种触摸显示屏的驱动方法,针对于上述第一电极分时复用的触摸显示屏。该驱动方法包括将触摸显示屏一帧画面的显示时间分成显示时间段和触控时间段,其中,第一电极分时复用为显示时间段用的公共电极与触控时间段用的驱动电极。
例如,在显示时间段对第一电极施加公共电极信号,同时对触摸感应电极施加非工作信号,或者接地或悬空;在触控时间段对第一电极施加触控扫描信号,触摸感应电极耦合所述触控扫描信号的电压信号并输出。
例如,通过分时驱动第一电极来实现显示和触摸功能,在显示时间段,对第一电极(例如,公共电极)进行充电,第二电极(例如,像素电极)保持直流/交流电压,对触摸感应电极施加低电平信号,第一电极和第二电极之间具有存储电容,可保持电压差恒定;在触摸时间段,第一电极作为触摸驱动电极,对第一电极施加触控扫描信号,触摸感应电极耦合触控扫描信号的电压信号并输出。
需要说明的是,对第一电极进行不同于显示时段频率和电压的高频扫描时,第一电极上的电压发生变化,第二电极上的电压也会相应的变化,从而保持第一电极和第二电极之间的电压差。
在触摸显示屏工作的过程中,对第一电极和第二电极施加电压,驱动液晶分子发生偏转,以进行画面显示;当手指、触控笔等触碰触摸显示屏时,第一电极与第二电极之间形成的电场发生变化,由此发生了感应触碰,进而达到触摸控制的目的,根据触摸感应电极和第一电极(例如,触摸驱动电极)形成的互电容的变化,确定触摸位置。
例如,第一电极(例如,触摸驱动电极)和触摸感应电极横纵交叉分布,并在交叉处形成电容矩阵,然后分别向各行第一电极(触摸驱动电极)施加触控扫描信号,并依次检测与每行触摸驱动电极对应的触摸感应电极 的输出信号,从而检测出电容矩阵中的电容变化,来判断触摸位置。
本发明的实施例提供一种触摸显示屏及其制备方法、显示装置和驱动方法,具有以下至少一项有益效果:
(1)以光波导结构为基础,减少了偏振片的使用,提高了光线的透过率。
(2)通过长链化合物破坏光线全反射的条件,使液晶分子成散射态实现显示功能。
(3)第一电极分时复用为显示用的公共电极和触控用的驱动电极可以节省电极材料。
(4)在具有高透过率的显示屏上设置触摸感应电极,使触摸显示屏实现显示功能和触控功能。
有以下几点需要说明:
(1)本发明实施例附图只涉及到与本发明实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本发明的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以所述权利要求的保护范围为准。
本申请要求于2016年7月18日递交的中国专利申请第201610565811.5号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (22)

  1. 一种触摸显示屏,包括:
    相对设置的第一基板和第二基板;
    第一电极和第二电极,设置在所述第一基板和所述第二基板之间,且在加电状态下可产生水平电场;
    填充在所述第一基板和所述第二基板之间的液晶,包括向列相液晶以及分散在所述向列相液晶中的可以使所述向列相液晶形成散射态的长链化合物;
    设置在所述第二基板外侧或内侧的触摸感应电极。
  2. 根据权利要求1所述的触摸显示屏,其中,所述长链化合物的长链垂直于所述第一基板。
  3. 根据权利要求2所述的触摸显示屏,其中,所述长链化合物包括多个单体,所述单体包括下述中的任意一种或组合:
    Figure PCTCN2017090530-appb-100001
  4. 根据权利要求3所述的触摸显示屏,其中,所述长链化合物包括下述中的任意一种或组合:
    Figure PCTCN2017090530-appb-100002
  5. 根据权利要求3所述的触摸显示屏,其中,所述向列相液晶为正向液晶。
  6. 根据权利要求5所述的触摸显示屏,其中,所述向列相液晶包括下述液晶分子中的任意一种或组合:
    Figure PCTCN2017090530-appb-100003
  7. 根据权利要求1所述的触摸显示屏,其中,所述第一电极、所述第二电极和所述触摸感应电极的材料均为透明导电材料。
  8. 根据权利要求7所述的触摸显示屏,其中,所述第一电极为狭缝状,所述第二电极为狭缝状或板状。
  9. 根据权利要求7所述的触摸显示屏,其中,所述第一电极与所述第二电极设置在同一基板上时,所述第一电极与所述第二电极之间设置有绝缘层。
  10. 根据权利要求9所述的触摸显示屏,其中,所述第一电极和所述第二电极均设置于所述第一基板的上表面上。
  11. 根据权利要求8所述的触摸显示屏,其中,所述第一电极设置在所述第一基板的上表面上,所述第二电极设置在所述第二基板的下表面上。
  12. 根据权利要求1-11中任一项所述的触摸显示屏,还包括显示驱动电路和触控驱动电路,所述第一电极在第一时间段电连接所述显示驱动电路、在第二时间段电连接所述触控驱动电路。
  13. 根据权利要求12所述的触摸显示屏,其中,所述第一电极与所述触摸感应电极在所述第二基板上的正投影至少部分重叠。
  14. 根据权利要求13所述的触摸显示屏,其中,所述第一电极和所述触摸感应电极相互垂直设置。
  15. 根据权利要求1-11中任一项所述的触摸显示屏,还包括第三电极,其中,所述第三电极为触控用的驱动电极,所述第三电极与所述触摸感应电极在所述第一基板上的正投影至少部分重叠。
  16. 一种显示装置,包括权利要求1-15中任一项所述的触摸显示屏。
  17. 一种触摸显示屏的制备方法,包括:
    提供第一基板和第二基板;
    在所述第一基板和/或所述第二基板上形成第一电极和第二电极;
    所述第一基板和所述第二基板相对对置以形成液晶盒,并且在所述液晶盒中填充液晶,所述液晶包括向列相液晶和分散在所述向列相液晶中的单体;
    照射紫外线,所述单体进行聚合反应形成长链化合物。
  18. 根据权利要求17所述的制备方法,其中,在所述第二基板的外侧或内侧形成有触摸感应电极。
  19. 根据权利要求17或18所述的制备方法,其中,所述长链化合物的长链垂直于所述第一基板。
  20. 根据权利要求17或18所述的制备方法,还包括:在所述第二基板的下表面上形成第三电极,其中,所述第三电极为触控用的驱动电极,所述第三电极与所述触摸感应电极在所述第二基板上的正投影至少部分重叠。
  21. 一种如权利要求1-14中任一项所述的触摸显示屏的驱动方法,包括将所述触摸显示屏一帧画面的显示时间分成显示时间段和触控时间段,其中,所述第一电极分时复用为所述显示时间段用的公共电极与所述触控时间段用的驱动电极。
  22. 根据权利要求21所述的驱动方法,其中,在所述显示时间段对所述第一电极施加公共电极信号;在所述触控时间段对所述第一电极施加触控扫描信号,触摸感应电极耦合所述触控扫描信号的电压信号并输出。
PCT/CN2017/090530 2016-07-18 2017-06-28 触摸显示屏及其制备方法、显示装置和驱动方法 WO2018014707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/760,501 US10564781B2 (en) 2016-07-18 2017-06-28 Touch display screen and preparation method, display apparatus and drive method therefor
EP17830341.8A EP3486756A4 (en) 2016-07-18 2017-06-28 TOUCH DISPLAY SCREEN AND MANUFACTURING METHOD, DISPLAY DEVICE AND CONTROL METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610565811.5A CN107632727B (zh) 2016-07-18 2016-07-18 触摸显示屏及其制备方法、显示装置和驱动方法
CN201610565811.5 2016-07-18

Publications (1)

Publication Number Publication Date
WO2018014707A1 true WO2018014707A1 (zh) 2018-01-25

Family

ID=60991892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090530 WO2018014707A1 (zh) 2016-07-18 2017-06-28 触摸显示屏及其制备方法、显示装置和驱动方法

Country Status (4)

Country Link
US (1) US10564781B2 (zh)
EP (1) EP3486756A4 (zh)
CN (1) CN107632727B (zh)
WO (1) WO2018014707A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110350310B (zh) * 2018-04-08 2024-04-23 京东方科技集团股份有限公司 天线结构及其调制方法
CN108873457B (zh) * 2018-07-16 2021-01-26 京东方科技集团股份有限公司 反射式液晶显示面板、显示装置及其驱动方法
CN110737138B (zh) * 2018-07-20 2021-04-30 京东方科技集团股份有限公司 一种显示面板、显示装置及其控制方法
CN115843353A (zh) * 2019-10-14 2023-03-24 瑞态公司 光学透明压力传感器
TWI729858B (zh) * 2020-06-19 2021-06-01 國立中山大學 透明發光裝置
CN116261709A (zh) * 2020-08-01 2023-06-13 超聚变数字技术有限公司 电容式感应装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182228A (ja) * 2000-12-13 2002-06-26 Seiko Epson Corp 液晶表示装置および電子機器
CN101424820A (zh) * 2006-08-01 2009-05-06 友达光电股份有限公司 半穿透半反射式液晶显示面板
CN102464983A (zh) * 2010-11-12 2012-05-23 京东方科技集团股份有限公司 显示器、聚合物分散液晶膜及其制造方法和驱动方法
CN102937852A (zh) * 2012-10-19 2013-02-20 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN102955635A (zh) * 2012-10-15 2013-03-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN105223725A (zh) * 2015-10-13 2016-01-06 京东方科技集团股份有限公司 显示面板及其制备方法
CN205983428U (zh) * 2016-07-18 2017-02-22 京东方科技集团股份有限公司 触摸显示屏和显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031545A1 (fr) * 1997-12-17 1999-06-24 Matsushita Electric Industrial Co., Ltd. Panneau d'affichage a cristaux liquides de type dispersion de polymere et son procede de fabrication
TW591249B (en) * 2000-12-28 2004-06-11 Hayashi Telempu Kk Retardation film and process for producing the same
JP2006163127A (ja) * 2004-12-09 2006-06-22 Sony Corp 光散乱型表示素子
CN101010269B (zh) * 2004-12-11 2011-12-07 Lg化学株式会社 无取向膜的垂直排列液晶膜及其制备方法
US20070085838A1 (en) * 2005-10-17 2007-04-19 Ricks Theodore K Method for making a display with integrated touchscreen
JP5403553B2 (ja) * 2010-01-05 2014-01-29 株式会社ジャパンディスプレイ 液晶表示装置及びその駆動方法
JP5253461B2 (ja) * 2010-07-26 2013-07-31 株式会社東芝 表示装置
CN102236472B (zh) * 2011-07-21 2013-04-17 北京三五九投资有限公司 基于压容效应的印刷型柔性触摸显示屏
CN103631045A (zh) * 2012-08-28 2014-03-12 北京京东方光电科技有限公司 一种液晶显示面板及其制作方法
JP5992047B2 (ja) * 2012-09-04 2016-09-14 Jxエネルギー株式会社 配向性フィルムの製造方法
EP2916166B1 (en) * 2012-11-02 2019-05-15 Ortus Technology Co., Ltd. Liquid crystal display device
JP2014174851A (ja) * 2013-03-11 2014-09-22 Japan Display Inc タッチセンサ装置、表示装置、及び電子機器
EP3029519B1 (en) * 2014-12-02 2018-03-07 LG Display Co., Ltd. Light controlling apparatus and method of fabricating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182228A (ja) * 2000-12-13 2002-06-26 Seiko Epson Corp 液晶表示装置および電子機器
CN101424820A (zh) * 2006-08-01 2009-05-06 友达光电股份有限公司 半穿透半反射式液晶显示面板
CN102464983A (zh) * 2010-11-12 2012-05-23 京东方科技集团股份有限公司 显示器、聚合物分散液晶膜及其制造方法和驱动方法
CN102955635A (zh) * 2012-10-15 2013-03-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN102937852A (zh) * 2012-10-19 2013-02-20 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN105223725A (zh) * 2015-10-13 2016-01-06 京东方科技集团股份有限公司 显示面板及其制备方法
CN205983428U (zh) * 2016-07-18 2017-02-22 京东方科技集团股份有限公司 触摸显示屏和显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3486756A4 *

Also Published As

Publication number Publication date
US20180275791A1 (en) 2018-09-27
EP3486756A1 (en) 2019-05-22
CN107632727B (zh) 2024-04-12
US10564781B2 (en) 2020-02-18
CN107632727A (zh) 2018-01-26
EP3486756A4 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
WO2018014707A1 (zh) 触摸显示屏及其制备方法、显示装置和驱动方法
JP6317582B2 (ja) 液晶ディスプレイおよびその製造方法
CN101387798B (zh) 液晶显示面板和使用其的lcd装置
US20120206683A1 (en) Pixel electrode and its associated lcd panel
KR20130037600A (ko) 스마트 윈도우 디스플레이
US9329431B2 (en) Transflective liquid crystal display panel and transflective liquid crystal display
US20150055057A1 (en) Touch sensitive display
TW200538791A (en) Liquid crystal display device
WO2020042431A1 (en) Display panel, display apparatus and anti-peeping method
US11137656B1 (en) Flexible bistable light modulating device
CN110673366B (zh) 显示面板及显示装置
US20160246085A1 (en) Liquid crystal panel and manufacturing method thereof
WO2013177893A1 (zh) 反式高分子分散液晶膜、液晶面板及液晶显示器
WO2014059809A1 (zh) 液晶显示装置及其控制方法
WO2016074253A1 (zh) 液晶显示装置及其液晶显示面板
CN106990589B (zh) 液晶面板及液晶显示装置
US20130009883A1 (en) Display device
TW554223B (en) Structure for improving diffraction effect in periodic electrode arrangements and liquid crystal device including same
KR20060115427A (ko) 액정 표시 장치
TWI537612B (zh) 具有對稱擴散膜的顯示裝置
CN106125441B (zh) 一种窄视角模式的低驱动电压蓝相液晶显示器
WO2014153874A1 (zh) 半透半反液晶显示面板及液晶显示装置
KR20070046354A (ko) 액정 표시 장치 및 그 구동 방법
KR20120046626A (ko) 액정표시장치
CN105372868A (zh) 显示装置及其反射式显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15760501

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE