WO2018012242A1 - オゾン発生装置 - Google Patents

オゾン発生装置 Download PDF

Info

Publication number
WO2018012242A1
WO2018012242A1 PCT/JP2017/023069 JP2017023069W WO2018012242A1 WO 2018012242 A1 WO2018012242 A1 WO 2018012242A1 JP 2017023069 W JP2017023069 W JP 2017023069W WO 2018012242 A1 WO2018012242 A1 WO 2018012242A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
discharge
voltage
discharge electrode
ozone generator
Prior art date
Application number
PCT/JP2017/023069
Other languages
English (en)
French (fr)
Inventor
圭助 西本
今村 宣明
加藤 慎滋
敏彦 山名
三千男 宮崎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018527482A priority Critical patent/JP6504317B2/ja
Priority to EP17827372.8A priority patent/EP3470367B1/en
Priority to CN201780041203.7A priority patent/CN109415206B/zh
Publication of WO2018012242A1 publication Critical patent/WO2018012242A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • C01B13/115Preparation of ozone by electric discharge characterised by the electrical circuits producing the electrical discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/20Electrodes used for obtaining electrical discharge
    • C01B2201/22Constructional details of the electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/30Dielectrics used in the electrical dischargers
    • C01B2201/32Constructional details of the dielectrics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/90Control of the process

Definitions

  • the present invention relates to an ozone generator that generates ozone by applying an electric field, and more particularly to an ozone generator with a heater.
  • the ozone generator described in Patent Document 1 includes a substrate, an insulating layer, an induction electrode, a discharge electrode, and a chip resistor.
  • the dielectric electrode is disposed on the surface of the substrate.
  • the insulating layer is disposed on the surface of the substrate so as to cover the dielectric electrode.
  • Discharge electrodes are arranged on the surface of the insulating layer (the surface opposite to the substrate). With this configuration, a configuration in which the discharge electrode and the dielectric electrode face each other through the insulating layer is realized.
  • the discharge electrode and the dielectric electrode are connected to a high-voltage high-frequency power source. By applying a discharge voltage from the high-voltage and high-frequency power source, discharge is generated between the discharge electrode and the dielectric electrode, and ozone is generated.
  • a chip resistor is arranged on the back side of the substrate.
  • the chip resistor is connected to the heater power supply.
  • the chip resistor generates heat when a heater voltage is applied from the heater power source. With this heat, the discharge electrode and the dielectric electrode are heated.
  • an object of the present invention is to provide a small ozone generator that can generate ozone and heat an electrode that generates ozone.
  • the ozone generator includes a first discharge electrode and a second discharge electrode that generate ozone by discharge, and a heater electrode.
  • the first end of the heater electrode is connected to the first discharge electrode, and the second end of the heater electrode is connected to the second discharge electrode.
  • the current path connecting the first end and the second end via the first discharge electrode and the second discharge electrode is defined as the first path, and the ratio of the voltage to the current in the first path is defined as the first resistance value.
  • a current path connecting the first end and the second end via the heater electrode is defined as a second path, and a ratio of voltage to current in the second path is defined as a second resistance value.
  • the second resistance value is higher than the first resistance value in a voltage range higher than a discharge start voltage at which discharge occurs between the first discharge electrode and the second discharge electrode. Note that in this specification and the like, the connection includes a case of being electrically connected.
  • the current of the first discharge electrode and the second discharge electrode is higher than the current of the heater electrode in a state where discharge is occurring. Therefore, a high voltage equal to or higher than the discharge start voltage is applied from one power source to the first discharge electrode, the second discharge electrode, and the heater electrode, so that discharge and heating can be performed stably and simultaneously.
  • the second resistance value is preferably lower than the first resistance value in a voltage range lower than the discharge start voltage.
  • the ozone generator in one embodiment of the present invention preferably has the following configuration.
  • Each of the first discharge electrode and the second discharge electrode includes a plurality of electrode fingers.
  • the plurality of electrode fingers of the first discharge electrode and the plurality of electrode fingers of the second discharge electrode are arranged alternately and opposed to each other along a predetermined direction.
  • the facing area between the first discharge electrode and the second discharge electrode can be increased, and the discharge start voltage is lowered. Thereby, the resistance of the heater electrode can be reduced, and the heater electrode can be easily formed.
  • the ozone generator in one embodiment of the present invention preferably has the following configuration.
  • the ozone generator includes a housing and a dielectric layer.
  • the housing is formed with a first discharge electrode, a second discharge electrode, and a heater electrode, and is insulative.
  • the dielectric is disposed on the surface of the housing.
  • the first discharge electrode and the second discharge electrode are arranged on the surface of the housing in a shape covered with a dielectric layer.
  • the heater electrode is constituted by a positive temperature coefficient thermistor.
  • the heater electrode preferably has a plurality of bent portions.
  • the resistance value can be increased without reducing the thickness of the heater electrode.
  • the ozone generator in one embodiment of the present invention preferably has the following configuration.
  • the ozone generator includes one power source that applies a voltage between the first end and the second end.
  • the power supply applies a voltage higher than the discharge start voltage.
  • the ozone generator including the power source is miniaturized.
  • the ozone generator in one embodiment of the present invention preferably has the following configuration.
  • the power supply alternately has a first period in which a voltage higher than the discharge start voltage is applied and a second period in which a voltage lower than the discharge start voltage is applied.
  • an ozone generator that can generate ozone and heat an electrode that generates ozone can be realized in a small size.
  • FIG. 1A is a cross-sectional view of the ozone generator according to the first embodiment of the present invention in FIG. 1A
  • FIG. 1B is a cross-sectional view of the first embodiment of the present invention in FIG.
  • It is a figure of the BB cross section of the ozone generator which concerns on this embodiment.
  • It is a graph showing the current-voltage characteristic of each component of the ozone generator which concerns on the 1st Embodiment of this invention, ie, the characteristic of resistance value.
  • FIG. 1 It is a functional block diagram of the ozone generator which concerns on the 2nd Embodiment of this invention.
  • (A) is a surface view of the ozone generator which concerns on the 3rd Embodiment of this invention
  • (B) is side sectional drawing of the ozone generator 10 which concerns on the 3rd Embodiment of this invention.
  • FIG. 1A is a front view of the ozone generator according to the first embodiment of the present invention
  • FIG. 1B is a back view of the ozone generator according to the first embodiment of the present invention. is there.
  • FIG. 1A is a surface view in a state where an insulator layer and a dielectric layer are omitted.
  • FIG. 2A is a cross-sectional view taken along the line AA of the ozone generator according to the first embodiment of the present invention in FIG.
  • FIG. 2B is a cross-sectional view taken along the line BB of the ozone generator according to the first embodiment of the present invention in FIG.
  • the ozone generator 10 includes an insulating casing 20, a first discharge electrode 30, A second discharge electrode 40, a heater electrode 50, external connection electrodes 61 and 62, a dielectric layer 70, and interlayer connection electrodes 81 and 82 are provided.
  • the housing 20 has a substantially rectangular parallelepiped shape.
  • the housing 20 is formed by laminating a plurality of insulator layers 201, 202, 203, and 204.
  • the housing 20 is made of, for example, a low-temperature sintered ceramic.
  • the first discharge electrode 30 and the second discharge electrode 40 are formed on the surface of the housing 20.
  • the first discharge electrode 30 and the second discharge electrode 40 are made of a highly conductive material (for example, RuO 2 , Ag, Cu, Pd, etc.).
  • the first discharge electrode 30 includes a plurality of electrode fingers 31 and a plurality of routing electrodes 32.
  • the plurality of electrode fingers 31 are arranged in the central region in the first direction and the second direction on the surface of the housing 20.
  • the electrode finger 31 is an electrode pattern having a predetermined width.
  • the electrode finger 31 has a first partial electrode extending in the first direction and a second partial electrode extending in the second direction.
  • the number of the first partial electrodes is two, and they are arranged with an interval in the second direction.
  • One end of the two first partial electrodes is connected by the second partial electrode. That is, the first discharge electrode 30 has a plurality of bent portions in the extending direction.
  • the plurality of electrode fingers 31 are arranged at intervals along the second direction.
  • the plurality of electrode fingers 31 are connected by electrodes extending in the second direction. At this time, the plurality of electrode fingers 31 are connected so as to be connected as a single line. With this configuration, the plurality of electrode fingers 31 are connected so as to have a substantially meander shape as a whole in plan view.
  • Each of the plurality of routing electrodes 32 is individually connected to the electrode fingers 31 at both ends of the plurality of electrode fingers 31 in the second direction.
  • the routing electrode 32 is disposed on one end side with respect to the formation region of the plurality of electrode fingers 31 in the second direction when the surface of the housing 20 is viewed in plan.
  • the second discharge electrode 40 includes a plurality of electrode fingers 41 and a plurality of routing electrodes 42.
  • the plurality of electrode fingers 41 are arranged in the central region in the first direction and the second direction on the surface of the housing 20. That is, in the first direction and the second direction of the surface of the housing 20, the formation region of the plurality of electrode fingers 41 and the formation region of the plurality of electrode fingers 31 partially overlap.
  • the electrode finger 41 is an electrode pattern having a predetermined width.
  • the electrode finger 41 is preferably the same width and the same thickness as the electrode finger 31.
  • the electrode finger 41 has a third partial electrode extending in the first direction and a fourth partial electrode extending in the second direction.
  • the number of the third partial electrodes is two, and they are arranged with an interval in the second direction.
  • One end of the two third partial electrodes is connected by the fourth partial electrode. That is, the second discharge electrode 40 has a plurality of bent portions in the extending direction.
  • the plurality of electrode fingers 41 are arranged at intervals along the second direction.
  • the plurality of electrode fingers 41 are connected by electrodes extending in the second direction. At this time, the plurality of electrode fingers 41 are connected so as to be connected as a single line. With this configuration, the plurality of electrode fingers 41 are connected so as to have a substantially meander shape as a whole in plan view.
  • Each of the plurality of routing electrodes 42 is individually connected to the electrode fingers 41 at both ends of the plurality of electrode fingers 41 in the second direction.
  • the routing electrode 42 is disposed on the other end side in the second direction with respect to the formation region of the plurality of electrode fingers 41 in a plan view of the surface of the housing 20.
  • the plurality of electrode fingers 41 and the plurality of electrode fingers 31 are alternately arranged along the second direction (corresponding to the “predetermined direction” of the present invention).
  • the plurality of electrode fingers 41 and the plurality of electrode fingers 31 include a plurality of facing portions having a predetermined length along the first direction along the second direction.
  • the heater electrode 50 is formed on the back surface of the housing 20.
  • the heater electrode 50 is made of a material having a desired resistivity (for example, nichrome, W, RuO 2 or the like).
  • a desired resistivity for example, nichrome, W, RuO 2 or the like.
  • the formation region of the heater electrode 50 overlaps the formation region of the first discharge electrode 30 and the second discharge electrode 40.
  • the formation region of the heater electrode 50 preferably overlaps the formation region of the first discharge electrode 30 and the second discharge electrode 40, but this is not restrictive. Since the formation region of the heater electrode 50 overlaps the formation region of the first discharge electrode 30 and the second discharge electrode 40, the first discharge electrode 30 and the second discharge electrode 40 are connected by the heater electrode 50. It can be heated efficiently.
  • the heater electrode 50 has a shape that bends a plurality of times at an intermediate position in the extending direction.
  • the heater electrode 50 has a meander shape. With this configuration, the heater electrode 50 can be lengthened, and the resistance value can be increased while suppressing an increase in size of the heater electrode 50.
  • the first end in the extending direction of the heater electrode 50 is connected to the routing electrode 32 of the first discharge electrode 30 via the interlayer connection electrode 81.
  • a second end in the extending direction of the heater electrode 50 is connected to the lead-out electrode 42 of the second discharge electrode 40 via the interlayer connection electrode 82.
  • the interlayer connection electrodes 81 and 82 are made of a material having a predetermined conductivity, for example, a solidified conductive paste containing silver.
  • the dielectric layer 70 has a predetermined relative dielectric constant.
  • the dielectric layer 70 covers the surface of the housing 20. At this time, the dielectric layer 70 is formed so as to cover at least a formation region of the first discharge electrode 30 and the second discharge electrode 40 (a central region in the second direction of the housing 20). By providing such a dielectric layer 70, the discharge start voltage can be further reduced.
  • the external connection electrodes 61 and 62 are formed on the back surface of the housing 20 and are rectangular electrodes in plan view.
  • the external connection electrode 61 is formed near one end of the housing 20 in the first direction.
  • the external connection electrode 61 is connected to the first end of the heater electrode 50.
  • the external connection electrode 62 is formed near the other end of the housing 20 in the first direction.
  • the external connection electrode 62 is connected to the second end of the heater electrode 50.
  • the external connection electrode 61 and the external connection electrode 62 are divided into a current path (first path) via the first discharge electrode 30 and the second discharge electrode 40 and a current path (second path) via the heater electrode 50. Path).
  • a power supply 90 (see FIG. 4) described later is connected to the external connection electrode 61 and the external connection electrode 62. That is, the power supply 90 has only one power supply (common to the current path (first path) via the first discharge electrode 30 and the second discharge electrode 40 and the current path (second path) via the heater electrode 50. Power).
  • an ozone generator that can generate ozone and heat an electrode that generates ozone can be reduced in size.
  • FIG. 3 is a graph showing the current-voltage characteristics of each component of the ozone generator according to the first embodiment of the present invention, that is, the resistance characteristics.
  • the horizontal axis is the current I
  • the vertical axis is the voltage V.
  • the broken line indicates the ratio of voltage to the current in the first path (on the first discharge electrode 30 and second discharge electrode 40 side) (first resistance value)
  • the alternate long and short dash line indicates the second path (heater electrode 50).
  • Side of the voltage to the current
  • the solid line represents the ratio of the voltage to the current of the parallel connection path of the first path and the second path (the configuration itself of the ozone generator 10) (third resistance). Value).
  • the second resistance value is higher than the first resistance value in a voltage region higher than the discharge start voltage Vdch1 in only the first path.
  • the discharge start voltage Vdch1 in only the first path and the discharge start voltage Vdch0 in the parallel connection path of the first path and the second path are substantially the same, although there is a slight difference. Therefore, the second resistance value may be set higher than the first resistance value in a voltage region higher than the discharge start voltage Vdch1.
  • the second resistance value is preferably lower than the first resistance value.
  • the discharge start voltage is lowered due to the opposing arrangement shape of the first discharge electrode 30 and the second discharge electrode 40 and the arrangement of the dielectric layer 70. Yes. Therefore, the voltage applied to the first discharge electrode 30 and the second discharge electrode 40 can be set low. This eliminates the need for the heater electrode 50 to have a significantly high resistance value.
  • the heater electrode 50 since the heater electrode 50 has the above-described shape, the withstand voltage is higher than that of a chip resistor or the like, and a high resistance can be easily realized.
  • the heater electrode 50 can also be arrange
  • FIG. 1 the lamination direction of the some insulator layers 201, 202, 203, 204 other than the back surface of the housing
  • FIG. 4 is a functional block diagram of an ozone generator according to the second embodiment of the present invention.
  • the ozone generator 100 is different from the ozone generator 10 according to the first embodiment in that a power supply 90 is added.
  • the same symbols are attached to the same portions as the ozone generator 10 according to the first embodiment.
  • the ozone generating part (including the heating unit) of the ozone generator 100 employs the structure of the ozone generator 10 according to the first embodiment.
  • the power supply 90 includes a DC power supply 901, a voltage switching circuit 902, a reference voltage generation circuit 903, a comparison circuit 904, an oscillation circuit 905, an oscillation transistor 906, a transformer 907, a DC constant voltage power supply 908, and an output voltage detection circuit 909. .
  • the DC power supply 901 supplies a predetermined DC power supply voltage (for example, 12 V) to the voltage switching circuit 902.
  • the voltage switching circuit 902 performs voltage conversion of the DC power supply voltage and outputs either the first DC voltage or the second DC voltage.
  • the first DC voltage is higher than the second DC voltage.
  • the first DC voltage is 5V
  • the second DC voltage is 3V.
  • the voltage switching circuit 902 outputs the first DC voltage or the second DC voltage to the reference voltage generation circuit 903.
  • the reference voltage generation circuit 903 generates a reference voltage corresponding to the first DC voltage or the second DC voltage, and outputs the reference voltage to the comparison circuit 904.
  • the detection coil 973 of the transformer 907 generates a voltage proportional to the output voltage, and the output voltage detection circuit 909 detects this voltage.
  • the output voltage detection circuit 909 outputs this detection voltage to the comparison circuit 904.
  • the comparison circuit 904 compares the detection voltage of the output voltage detection circuit 909 with the reference voltage and outputs the result to the oscillation circuit 905. If the reference voltage of the comparison circuit 904 is set high, the output voltage (voltage generated in the secondary coil 972 of the transformer 907) can be adjusted low, and if the reference voltage of the comparison circuit 904 is set low, the output voltage (transformer 907). The voltage generated in the secondary side coil 972 can be adjusted high. Thereby, a stable output voltage can be obtained.
  • the oscillation circuit 905 outputs a base voltage corresponding to the comparison result to the oscillation transistor 906.
  • the collector of the oscillation transistor 906 is connected to one end of the primary coil 971.
  • the emitter of the oscillation transistor is connected to the ground, and the other end of the primary coil 971 is connected to the ground via a DC constant voltage power supply 908.
  • the oscillation transistor 906 supplies a current to the primary coil 971 of the transformer 907 according to the base voltage.
  • this oscillation uses LC oscillation due to the inductance due to the transformer 907, the distributed capacitance of the transformer, and the capacitance due to the structure of the ozone generation portion (the structure of the ozone generator 10 according to the first embodiment).
  • the voltage value of the output voltage is controlled by the base voltage supplied from the oscillation circuit 905 to the oscillation transistor 906.
  • the secondary side coil 972 of the transformer 907 is connected to the external connection electrodes 61 and 62 of the ozone generation portion (the ozone generation apparatus 10 having the structure according to the first embodiment).
  • the external connection electrode 62 is connected to the ground.
  • the voltage switching circuit 902 outputs the first DC voltage during the discharge period.
  • a voltage (V1 in FIG. 3) higher than the discharge start voltage is output to the secondary coil 972 of the transformer 907 and applied to the external connection electrodes 61 and 62.
  • the voltage switching circuit 902 outputs the second DC voltage during a period in which no discharge is performed.
  • a voltage (V2 in FIG. 3) lower than the discharge start voltage is output to the secondary coil 972 of the transformer 907 and applied to the external connection electrodes 61 and 62.
  • no discharge occurs between the first discharge electrode 30 and the second discharge electrode 40, and only heating by the heater electrode 50 is performed.
  • the ozone generator 100 can implement
  • the mode of switching the reference voltage is shown, but the detection sensitivity of the output voltage of the output voltage detection circuit 909 may be switched.
  • FIG. 5 (A) is a surface view of an ozone generator according to the third embodiment of the present invention
  • FIG. 5 (B) is a side cross-sectional view of the ozone generator 10 according to the third embodiment of the present invention.
  • FIG. FIG. 5B shows a CC cross section of FIG.
  • the ozone generator 10A according to the present embodiment is different from the ozone generator 10 according to the first embodiment in the first discharge electrode 30A and the first discharge electrode 30A.
  • the shape and arrangement of the two discharge electrodes 40A are different.
  • the other structure of the ozone generator 10A is the same as that of the ozone generator 10, and the description of the same part is omitted.
  • the first discharge electrode 30 ⁇ / b> A is formed on the surface of the housing 20.
  • the first discharge electrode 30A includes a main electrode 31A and a lead electrode 32A.
  • the main electrode 31A has a U shape in plan view.
  • the routing electrode 32A is disposed on the one end side of the housing 20A of the main electrode 31A in the first direction, and is connected to the main electrode 31A.
  • the routing electrode 32A is connected to the external connection electrode 61 via an interlayer connection electrode (not shown).
  • the second discharge electrode 40A is formed inside the housing 20. More specifically, the second discharge electrode 40 ⁇ / b> A is an interface between an insulator layer (insulator layer forming the surface of the casing 20) 201 constituting the casing 20 and an insulator layer 202 in contact therewith. Is formed.
  • the second discharge electrode 40A includes a main electrode 41A and a routing electrode 42A.
  • the main electrode 41A has a U shape in plan view.
  • the main electrode 41A has a portion that overlaps the main electrode 31A and a portion that does not overlap in plan view.
  • the routing electrode 42A is disposed on the other end side of the housing 20A of the main electrode 41A in the first direction, and is connected to the main electrode 41A.
  • the routing electrode 42A is connected to the external connection electrode 62 via an interlayer connection electrode (not shown).
  • the heater electrode 50 may be configured with a positive temperature coefficient thermistor. Accordingly, the second resistance value is likely to be higher than the first resistance value in a voltage range higher than the discharge start voltage, and the second resistance value is likely to be lower than the first resistance value in a voltage range lower than the discharge start voltage. . Furthermore, heating more than necessary can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

オゾンの発生と、オゾンを発生する電極の加熱とを行える小型のオゾン発生装置を提供する。オゾン発生装置(10)は、第1放電用電極(30)および第2放電用電極(40)と、ヒータ電極(50)とを備える。ヒータ電極(50)の第1端は、第1放電用電極(30)に接続され、ヒータ電極(50)の第2端は、第2放電用電極(40)に接続されている。第1放電用電極(30)と第2放電用電極(40)とを介して第1端と第2端とを接続する第1経路の電流に対する電圧の比を第1抵抗値とする。ヒータ電極(50)を介して第1端と第2端を接続する第2経路の電流に対する電圧の比を第2抵抗値とする。放電開始電圧より高い電圧範囲において、第2抵抗値は、第1抵抗値よりも高い。

Description

オゾン発生装置
 本発明は、電界印加によってオゾンを発生するオゾン発生装置、特に、ヒータ付きのオゾン発生装置に関する。
 従来、各種のオゾン発生装置が考案、実用化されている。例えば、特許文献1に記載のオゾン発生装置は、基板、絶縁層、誘導電極、放電用電極、チップ抵抗を備える。誘電電極は、基板の表面に配置されている。絶縁層は、基板の表面に、誘電電極を覆って配置されている。絶縁層の表面(基板と反対側の面)には、放電用電極が配置されている。この構成によって、放電用電極と誘電電極とが絶縁層を介して対向する構成が実現される。放電用電極と誘電電極とは、高圧高周波電源に接続されている。高圧高周波電源から放電用の電圧を印加することによって、放電用電極と誘電電極との間で放電が生じ、オゾンが発生する。
 基板の裏面には、チップ抵抗が配置されている。チップ抵抗は、ヒータ電源に接続されている。チップ抵抗は、ヒータ電源からヒータ用電圧が印加されることによって、発熱する。この熱によって、放電用電極および誘電電極は、加熱される。
特開平8-217411号公報
 しかしながら、上述の構成では、オゾン発生用の電源(高圧高周波電源)と加熱用の電源(ヒータ電源)とを個別に設けなければならない。このため、オゾン発生装置は、大型化してしまう。
 したがって、本発明の目的は、オゾンの発生と、オゾンを発生する電極の加熱とを行える小型のオゾン発生装置を提供することにある。
 本発明の一態様におけるオゾン発生装置は、放電によってオゾンを発生させる第1放電用電極および第2放電用電極と、ヒータ電極とを備える。ヒータ電極の第1端は、第1放電用電極に接続され、ヒータ電極の第2端は、第2放電用電極に接続されている。第1放電用電極と第2放電用電極とを介して第1端と第2端とを接続する電流経路を第1経路とし、第1経路の電流に対する電圧の比を第1抵抗値とする。ヒータ電極を介して第1端と第2端を接続する電流経路を第2経路とし、第2経路の電流に対する電圧の比を第2抵抗値とする。第1放電用電極と第2放電用電極との間で放電が生じる放電開始電圧より高い電圧範囲において、第2抵抗値は、第1抵抗値よりも高い。なお、本明細書等において、接続とは、電気的に接続される場合を含むものとする。
 この構成では、放電が生じている状態において、ヒータ電極の電流よりも、第1放電用電極および第2放電用電極の電流が高くなる。したがって、1つの電源から放電開始電圧以上の高電圧を第1放電用電極および第2放電用電極とヒータ電極とに印加して、放電と加熱とを安定して同時に行える。
 また、本発明の一態様におけるオゾン発生装置では、放電開始電圧よりも低い電圧範囲において、第2抵抗値は、第1抵抗値よりも低いことが好ましい。
 この構成では、放電が生じていない状態において、ヒータ電極に効率的に電流供給ができ、ヒータ電極による加熱が効率的に行われる。
 また、本発明の一態様におけるオゾン発生装置では、次の構成であることが好ましい。第1放電用電極と第2放電用電極とは、それぞれに複数の電極指を備える。第1放電用電極の複数の電極指と、第2放電用電極の複数の電極指とは、所定方向に沿って、交互に且つ互いに対向して、配置されている。
 この構成では、第1放電用電極と第2放電用電極との対向面積を大きくでき、放電開始電圧が低下する。これにより、ヒータ電極の低抵抗化が可能になり、ヒータ電極の形成が容易になる。
 また、本発明の一態様におけるオゾン発生装置では、次の構成であることが好ましい。オゾン発生装置は、筐体と誘電体層とを備える。筐体は、第1放電用電極、第2放電用電極、および、ヒータ電極が形成されており、絶縁性である。誘電体は、筐体の表面に配置されている。第1放電用電極および第2放電用電極は、筐体の表面に、誘電体層に覆われる形状で配置されている。
 この構成では、誘電体層の誘電率を適宜選択することによって、放電開始電圧の低下等の放電開始電圧の制御が可能になる。
 また、本発明の一態様におけるオゾン発生措置では、ヒータ電極は、正特性サーミスタによって構成されていることが好ましい。
 この構成では、放電開始電圧よりも高い電圧範囲において抵抗値を高くし、放電開始電圧よりも低い電圧範囲において抵抗値を低くすることが容易になる。また、放電開始電圧よりも高い電圧範囲における抵抗値と、放電開始電圧よりも低い電圧範囲における抵抗値との差を大きくし易い。
 また、本発明の一態様におけるオゾン発生措置では、ヒータ電極は、複数の屈曲部を有することが好ましい。
 この構成では、ヒータ電極の厚みを薄くすることなく、抵抗値を高くできる。
 また、本発明の一態様におけるオゾン発生装置では、次の構成であることが好ましい。オゾン発生装置は、第1端と第2端との間に電圧を印加する1つの電源、を備える。電源は、放電開始電圧よりも高い電圧を印加する。
 この構成では、電源が1つであり、電源を含むオゾン発生装置が小型化される。
 また、本発明の一態様におけるオゾン発生装置は、次の構成であることが好ましい。電源は、放電開始電圧よりも高い電圧を印加する第1期間と、放電開始電圧よりも低い電圧を印加する第2期間と、を交互に有する。
 この構成では、放電の必要な期間は、放電と加熱とを同時に行い、放電の必要でない期間は、加熱のみを効率的に行える。
 この発明によれば、オゾンの発生と、オゾンを発生する電極の加熱とを行えるオゾン発生装置を小型に実現できる。
(A)は、本発明の第1の実施形態に係るオゾン発生装置の表面図であり、(B)は、本発明の第1の実施形態に係るオゾン発生装置の裏面図である。 (A)は、図1(A)における本発明の第1の実施形態に係るオゾン発生装置のA-A断面の図であり、(B)は、図1(A)における本発明の第1の実施形態に係るオゾン発生装置のB-B断面の図である。 本発明の第1の実施形態に係るオゾン発生装置の各構成要素の電流電圧特性、すなわち、抵抗値の特性を表すグラフである。 本発明の第2の実施形態に係るオゾン発生装置の機能ブロック図である。 (A)は、本発明の第3の実施形態に係るオゾン発生装置の表面図であり、(B)は、本発明の第3の実施形態に係るオゾン発生装置10の側面断面図である。
 図1(A)は、本発明の第1の実施形態に係るオゾン発生装置の表面図であり、図1(B)は、本発明の第1の実施形態に係るオゾン発生装置の裏面図である。図1(A)は、絶縁体層および誘電体層を省略した状態での表面図である。図2(A)は、図1(A)における本発明の第1の実施形態に係るオゾン発生装置のA-A断面の図である。図2(B)は、図1(A)における本発明の第1の実施形態に係るオゾン発生装置のB-B断面の図である。
 図1(A)、図1(B)、図2(A)、および、図2(B)に示すように、オゾン発生装置10は、絶縁性の筐体20、第1放電用電極30、第2放電用電極40、ヒータ電極50、外部接続電極61、62、誘電体層70、層間接続電極81、82を備える。
 筐体20は、略直方体形状である。筐体20は、複数の絶縁体層201、202、203、204を積層してなる。筐体20は、例えば、低温焼結セラミック等からなる。
 第1放電用電極30と第2放電用電極40とは、筐体20の表面に形成されている。第1放電用電極30と第2放電用電極40とは、導電性の高い材料(例えば、RuO、Ag、Cu、Pd等)からなる。
 第1放電用電極30は、複数の電極指31と複数の引き回し電極32とを備える。複数の電極指31は、筐体20の表面における第1方向および第2方向の中央領域に配置されている。
 電極指31は、所定幅を有する電極パターンである。電極指31は、第1方向に延びる第1部分電極と、第2方向に延びる第2部分電極とを有する。第1部分電極は、2つであり、第2方向において間隔を空けて配置されている。2つの第1部分電極の一方の端部は、第2部分電極によって接続されている。すなわち、第1放電用電極30は、延びる方向の途中に複数の屈曲部を有する。複数の電極指31は、第2方向に沿って間隔を空けて配置されている。複数の電極指31は、第2方向に延びる電極によって接続されている。この際、複数の電極指31は、一本の線として繋がるように接続されている。この構成により、複数の電極指31は、平面視して、全体として略ミアンダ形状となるように接続される。
 複数の引き回し電極32のそれぞれは、複数の電極指31における第2方向の両端の電極指31にそれぞれ個別に接続されている。引き回し電極32は、筐体20の表面を平面視して、第2方向において複数の電極指31の形成領域よりも一方端側に配置されている。
 第2放電用電極40は、複数の電極指41と複数の引き回し電極42とを備える。複数の電極指41は、筐体20の表面における第1方向および第2方向の中央領域に配置されている。すなわち、筐体20の表面の第1方向および第2方向において、複数の電極指41の形成領域と、複数の電極指31の形成領域とは、部分的に重なっている。
 電極指41は、所定幅を有する電極パターンである。電極指41は、電極指31と同じ幅で同じ厚みであることが好ましい。電極指41は、第1方向に延びる第3部分電極と、第2方向に延びる第4部分電極とを有する。第3部分電極は、2つであり、第2方向において間隔を空けて配置されている。2つの第3部分電極の一方の端部は、第4部分電極によって接続されている。すなわち、第2放電用電極40は、延びる方向の途中に複数の屈曲部を有する。複数の電極指41は、第2方向に沿って間隔を空けて配置されている。複数の電極指41は、第2方向に延びる電極によって接続されている。この際、複数の電極指41は、一本の線として繋がるように接続されている。この構成により、複数の電極指41は、平面視して、全体として略ミアンダ形状となるように接続される。
 複数の引き回し電極42のそれぞれは、複数の電極指41における第2方向の両端の電極指41にそれぞれ個別に接続されている。引き回し電極42は、筐体20の表面を平面視して、第2方向において複数の電極指41の形成領域よりも他方端側に配置されている。
 ここで、複数の電極指41と複数の電極指31とは、第2方向(本発明の「所定方向」に対応する。)に沿って、交互に配置されている。これにより、複数の電極指41と複数の電極指31とは、第1方向に沿って所定の長さを有する対向部を、第2方向に沿って複数備える。これにより、第1放電用電極30と第2放電用電極40とによる放電開始電圧を低くできる。
 ヒータ電極50は、筐体20の裏面に形成されている。ヒータ電極50は、所望の抵抗率を有する材料(例えば、ニクロム、W、RuO等)からなる。ヒータ電極50に電流が流れることによって、ヒータ電極50が発熱し、第1放電用電極30と第2放電用電極40とを加熱する。これにより、第1放電用電極30と第2放電用電極40との腐食を抑制できる。
 オゾン発生装置10(筐体20)を平面視して、ヒータ電極50の形成領域は、第1放電用電極30と第2放電用電極40との形成領域に重なっている。なお、ヒータ電極50の形成領域は、第1放電用電極30と第2放電用電極40との形成領域に重なっていることが好ましいが、この限りではない。ヒータ電極50の形成領域が第1放電用電極30と第2放電用電極40との形成領域に重なっていることによって、第1放電用電極30と第2放電用電極40とをヒータ電極50によって効率的に加熱できる。
 ヒータ電極50は、延びる方向の途中位置で複数回屈曲する形状である。例えば、ヒータ電極50は、ミアンダ形状である。この構成によって、ヒータ電極50を長くでき、ヒータ電極50の大型化を抑制しながら、抵抗値を高くできる。
 ヒータ電極50の延びる方向の第1端は、層間接続電極81を介して、第1放電用電極30の引き回し電極32に接続されている。ヒータ電極50の延びる方向の第2端は、層間接続電極82を介して、第2放電用電極40の引き回し電極42に接続されている。なお、層間接続電極81、82は、所定の導電率を有する材料からなり、例えば、銀を含む導電ペーストを固化してなる。
 誘電体層70は、所定の比誘電率を有する。誘電体層70は、筐体20の表面を覆っている。この際、誘電体層70は、第1放電用電極30と第2放電用電極40の形成領域(筐体20の第2方向の中央領域)を少なくとも覆うように形成されている。このような誘電体層70を備えることによって、放電開始電圧をさらに低下できる。
 外部接続電極61、62は、筐体20の裏面に形成されており、平面視して矩形の電極である。外部接続電極61は、筐体20の第1方向の一方端付近に形成されている。外部接続電極61は、ヒータ電極50の第1端に接続されている。外部接続電極62は、筐体20の第1方向の他方端付近に形成されている。外部接続電極62は、ヒータ電極50の第2端に接続されている。
 このように、外部接続電極61と外部接続電極62とは、第1放電用電極30および第2放電用電極40を介する電流経路(第1経路)と、ヒータ電極50を介する電流経路(第2経路)との共通の端部である。
 外部接続電極61と外部接続電極62とは、後述する電源90(図4参照)が接続される。すなわち、電源90は、第1放電用電極30および第2放電用電極40を介する電流経路(第1経路)と、ヒータ電極50を介する電流経路(第2経路)とに対するただ1つ電源(共通の電源)である。
 このような構成とすることによって、放電用電源と加熱用電源とを個別に用意しなくてもよい。したがって、オゾンの発生とオゾンを発生する電極の加熱とを行えるオゾン発生装置を小型化できる。
 図3は、本発明の第1の実施形態に係るオゾン発生装置の各構成要素の電流電圧特性、すなわち、抵抗値の特性を表すグラフである。図3において、横軸は電流Iであり、縦軸は電圧Vである。図3において、破線は第1経路(第1放電用電極30および第2放電用電極40側)の電流に対する電圧の比(第1抵抗値)を示し、一点鎖線は第2経路(ヒータ電極50側)の電流に対する電圧の比(第2抵抗値)を示し、実線は、第1経路と第2経路の並列接続経路(オゾン発生装置10の構成そのもの)の電流に対する電圧の比(第3抵抗値)を示す。
 図3に示すように、第1経路のみにおける放電開始電圧Vdch1よりも高い電圧領域において、第2抵抗値は、第1抵抗値よりも高い。このような構成とすることによって、第1経路と第2経路との同じ電圧を印加した場合に、放電開始電圧Vdch1よりも高い電圧領域では、第2経路よりも第1経路に電流が流れ易い。したがって、第1経路と第2経路とに1つの電源90から電圧を供給しても、放電を安定して継続的に実現できる。さらに、第2経路にも所定の電流を流すことができ、第1経路と第2経路とに1つの電源90から電圧を供給しても、ヒータ電極50による加熱も確実に実現できる。
 なお、第1経路のみにおける放電開始電圧Vdch1と第1経路と第2経路の並列接続経路における放電開始電圧Vdch0とは、若干の差があるが略同じである。したがって、放電開始電圧Vdch1よりも高い電圧領域において、第2抵抗値を、第1抵抗値よりも高く設定してもよい。
 また、図3に示すように、放電開始電圧Vdch1よりも低い電圧領域において、第2抵抗値は、第1抵抗値よりも低いことが好ましい。これにより、放電を行っていない時に、ヒータ電極50に効率的に電流を供給でき、ヒータ電極50よる加熱が効率的になる。
 また、ヒータ電極50による加熱を継続的に行うことによって、第1放電用電極30と第2放電用電極40との腐食を効果的に抑制できる。この際、ヒータ電極50の加熱が効率的に行えることによって、効率的な腐食の抑制を実現できる。
 さらに、上述のように、オゾン発生装置10の構成では、第1放電用電極30と第2放電用電極40との対向配置形状と、誘電体層70の配置とによって放電開始電圧が低くなっている。したがって、第1放電用電極30と第2放電用電極40とに印加する電圧を低く設定できる。これにより、ヒータ電極50を大幅に高い抵抗値にする必要が無い。一方で、ヒータ電極50が上述の形状であることによって、チップ抵抗等と比較して、耐電圧が高く、高抵抗を容易に実現できる。
 したがって、本実施形態に係るオゾン発生装置10の構成を用いることによって、上述のように1つの電源90を用いる態様であっても、放電と加熱とを安定的に実現させ、高い信頼性を実現できる。
 なお、ヒータ電極50は、筐体20の裏面以外に、筐体20の厚み方向、すなわち、複数の絶縁体層201、202、203、204の積層方向の途中位置に配置することもできる。
 次に、第2の実施形態に係るオゾン発生装置について、図を参照して説明する。図4は、本発明の第2の実施形態に係るオゾン発生装置の機能ブロック図である。
 図4に示すように、オゾン発生装置100は、第1の実施形態に係るオゾン発生装置10に対して、電源90を追加した点で異なる。図4において、第1の実施形態に係るオゾン発生装置10と同じ箇所には同じ記号を付している。
 オゾン発生装置100のオゾン発生部分(加熱部を含む)は、第1の実施形態に係るオゾン発生装置10の構造を採用している。
 電源90は、DC電源901、電圧切替回路902、基準電圧生成回路903、比較回路904、発振回路905、発振用トランジスタ906、トランス907、直流定電圧電源908、および、出力電圧検出回路909を備える。
 DC電源901は、所定の直流電源電圧(例えば12V)を電圧切替回路902に供給する。電圧切替回路902は、直流電源電圧の電圧変換を行って、第1直流電圧と第2の直流電圧とのいずれかを出力する。第1直流電圧は、第2直流電圧よりも高電圧であり、例えば、第1直流電圧は5V、第2直流電圧は3Vである。電圧切替回路902は、第1直流電圧または第2直流電圧を基準電圧生成回路903に出力する。基準電圧生成回路903は、第1直流電圧または第2直流電圧に応じた基準電圧を発生し、比較回路904に出力する。
 トランス907の検出用コイル973は、出力電圧に比例する電圧を発生し、出力電圧検出回路909は、この電圧を検出する。出力電圧検出回路909は、この検出電圧を、比較回路904に出力する。
 比較回路904は、出力電圧検出回路909の検出電圧と基準電圧とを比較して、発振回路905に出力する。比較回路904の基準電圧を高く設定すれば、出力電圧(トランス907の二次側コイル972に発生する電圧)を低く調整でき、比較回路904の基準電圧を低く設定すれば、出力電圧(トランス907の二次側コイル972に発生する電圧)を高く調整できる。これにより、安定した出力電圧が得られる。
 発振回路905は、比較結果に応じたベース電圧を、発振用トランジスタ906に出力する。
 発振用トランジスタ906のコレクタは、一次側コイル971の一方端に接続されている。発振用トランジスタのエミッタは、グランドに接続されており、グランドには、直流定電圧電源908を介して一次側コイル971の他方端が接続されている。発振用トランジスタ906は、このベース電圧に応じて、トランス907の一次側コイル971に電流を供給する。すなわち、この発振は、トランス907のインダクタンスと、トランスの分布キャパシタンスおよびオゾン発生部分の構造(第1の実施形態に係るオゾン発生装置10の構造)に起因するキャパシタンスによるLC発振を利用している。そして、発振回路905から発振用トランジスタ906に与えられるベース電圧によって、出力電圧の電圧値を制御している。
 トランス907の二次側コイル972は、オゾン発生部分(第1の実施形態に係る構造のオゾン発生装置10)の外部接続電極61、62に接続されている。外部接続電極62は、グランドに接続されている。
 このような構成において、放電を行う期間には、電圧切替回路902は、第1直流電圧を出力する。これにより、トランス907の二次側コイル972には、放電開始電圧よりも高い電圧(図3のV1)が出力され、外部接続電極61、62に印加される。これにより、第1放電用電極30と第2放電用電極40との間で放電が生じるとともに、ヒータ電極50による加熱が行われる。一方、放電を行わない期間には、電圧切替回路902は、第2直流電圧を出力する。これにより、トランス907の二次側コイル972には、放電開始電圧よりも低い電圧(図3のV2)が出力され、外部接続電極61、62に印加される。これにより、第1放電用電極30と第2放電用電極40との間で放電が生じず、ヒータ電極50による加熱のみが行われる。
 このように、本実施形態に係るオゾン発生装置100の構成を用いることによって、必要な期間だけ放電を行い、放電の有無に関係なく加熱を継続的に行うことができる。また、オゾン発生装置100は、放電を行う期間と放電を行わない期間とを交互に実行でき、この切り替えを容易に実現できる。このように、オゾン発生装置100は、状況に応じて効率的な放電および加熱を実現できる。
 なお、上述の説明では、基準電圧を切り替える態様を示したが、出力電圧検出回路909の出力電圧の検出感度を切り替えてもよい。
 次に、第3の実施形態に係るオゾン発生装置について、図を参照して説明する。図5(A)は、本発明の第3の実施形態に係るオゾン発生装置の表面図であり、図5(B)は、本発明の第3の実施形態に係るオゾン発生装置10の側面断面図である。図5(B)は、図5(A)のC-C断面を示している。
 図5(A)、図5(B)に示すように、本実施形態に係るオゾン発生装置10Aは、第1の実施形態に係るオゾン発生装置10に対して、第1放電用電極30Aと第2放電用電極40Aの形状および配置において異なる。オゾン発生装置10Aの他の構成は、オゾン発生装置10と同様であり、同様の箇所の説明は省略する。
 第1放電用電極30Aは、筐体20の表面に形成されている。第1放電用電極30Aは、主電極31Aと引き回し電極32Aとを備える。主電極31Aは、平面視して、U字形状である。引き回し電極32Aは、第1方向において、主電極31Aの筐体20Aの一方端側に配置されており、主電極31Aに接続されている。引き回し電極32Aは、図示していない層間接続電極を介して、外部接続電極61に接続されている。
 第2放電用電極40Aは、筐体20の内部に形成されている。より具体的には、第2放電用電極40Aは、筐体20を構成する絶縁体層(筐体20の表面を形成する絶縁体層)201と、これに当接する絶縁体層202との界面に形成されている。第2放電用電極40Aは、主電極41Aと引き回し電極42Aとを備える。主電極41Aは、平面視して、U字形状である。主電極41Aは、平面視して、主電極31Aに重なる部分と重ならない部分とを有する。引き回し電極42Aは、第1方向において、主電極41Aの筐体20Aの他方端側に配置されており、主電極41Aに接続されている。引き回し電極42Aは、図示していない層間接続電極を介して、外部接続電極62に接続されている。
 このような構成であっても、第1の実施形態と同様の作用効果が得られる。また、この実施形態に係るオゾン発生装置10Aに対しても、第2の実施形態に係る電源90を利用でき、第2の実施形態と同様の作用効果が得られる。
 なお、上述の各実施形態において、ヒータ電極50を正特性サーミスタで構成してもよい。これにより、放電開始電圧よりも高い電圧範囲で第2抵抗値を第1抵抗値よりも高くし易く、放電開始電圧よりも低い電圧範囲で第2抵抗値を第1抵抗値よりも低くし易い。さらに、必要以上の加熱を抑制できる。
10、10A:オゾン発生装置
20、20A:筐体
30、30A:第1放電用電極
31:電極指
31A:主電極
32:引き回し電極
32A:電極
40、40A:第2放電用電極
41:電極指
41A:主電極
42:引き回し電極
50:ヒータ電極
61:外部接続電極
62:外部接続電極
70:誘電体層
81、82:層間接続電極
90:電源
100:オゾン発生装置
201-204:絶縁体層
901:DC電源
902:電圧切替回路
903:基準電圧生成回路
904:比較回路
905:発振回路
906:発振用トランジスタ
907:トランス
908:直流定電圧電源
909:出力電圧検出回路
971:一次側コイル
972:二次側コイル
973:検出用コイル
Vdch0:放電開始電圧
Vdch1:放電開始電圧

Claims (8)

  1.  放電によってオゾンを発生させる第1放電用電極および第2放電用電極と、
     第1端が前記第1放電用電極に接続され、第2端が前記第2放電用電極に接続されたヒータ電極と、を備え、
     前記第1放電用電極と前記第2放電用電極とを介して前記第1端と前記第2端を接続する電流経路を第1経路とし、前記第1経路の電流に対する電圧の比を第1抵抗値として、
     前記ヒータ電極を介して前記第1端と前記第2端を接続する電流経路を第2経路とし、前記第2経路の電流に対する電圧の比を第2抵抗値として、
     前記第1放電用電極と前記第2放電用電極との間で放電が生じる放電開始電圧より高い電圧範囲において、前記第2抵抗値は、前記第1抵抗値よりも高い、
     オゾン発生装置。
  2.  前記放電開始電圧よりも低い電圧範囲において、前記第2抵抗値は、前記第1抵抗値よりも低い、
     請求項1に記載のオゾン発生装置。
  3.  前記第1放電用電極と前記第2放電用電極とは、それぞれに複数の電極指を備え、
     前記第1放電用電極の複数の電極指と、前記第2放電用電極の複数の電極指とは、所定方向に沿って、交互に且つ互いに対向して、配置されている、
     請求項1または請求項2に記載のオゾン発生装置。
  4.  前記第1放電用電極、前記第2放電用電極、および、前記ヒータ電極が形成される絶縁性の筐体と、
     該筐体の表面に配置された誘電体層と、を備え、
     前記第1放電用電極および前記第2放電用電極は、前記筐体の表面に、前記誘電体層に覆われる形状で配置されている、
     請求項1乃至請求項3のいずれかに記載のオゾン発生装置。
  5.  前記ヒータ電極は、正特性サーミスタによって構成されている、
     請求項1乃至請求項4のいずれかに記載のオゾン発生装置。
  6.  前記ヒータ電極は、複数の屈曲部を有する、
     請求項1乃至請求項5のいずれかに記載のオゾン発生装置。
  7.  前記第1端と前記第2端との間に電圧を印加する1つの電源と、を備え、
     前記電源は、前記放電開始電圧よりも高い電圧を印加する、
     請求項1乃至請求項6のいずれかに記載のオゾン発生装置。
  8.  前記電源は、
     前記放電開始電圧よりも高い電圧を印加する第1期間と、
     前記放電開始電圧よりも低い電圧を印加する第2期間と、
     を交互に有する、
     請求項7に記載のオゾン発生装置。
PCT/JP2017/023069 2016-07-14 2017-06-22 オゾン発生装置 WO2018012242A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018527482A JP6504317B2 (ja) 2016-07-14 2017-06-22 オゾン発生装置
EP17827372.8A EP3470367B1 (en) 2016-07-14 2017-06-22 Ozone generation device
CN201780041203.7A CN109415206B (zh) 2016-07-14 2017-06-22 臭氧产生装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-139747 2016-07-14
JP2016139747 2016-07-14

Publications (1)

Publication Number Publication Date
WO2018012242A1 true WO2018012242A1 (ja) 2018-01-18

Family

ID=60952902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023069 WO2018012242A1 (ja) 2016-07-14 2017-06-22 オゾン発生装置

Country Status (4)

Country Link
EP (1) EP3470367B1 (ja)
JP (1) JP6504317B2 (ja)
CN (1) CN109415206B (ja)
WO (1) WO2018012242A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200105211A (ko) * 2019-02-28 2020-09-07 한국산업기술대학교산학협력단 히터 일체형 하이브리드 플라즈마 방전소자의 제조방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594152B (zh) * 2021-07-09 2024-07-09 财团法人工业技术研究院 臭氧产生装置以及臭氧产生方法
CN114940481A (zh) * 2022-03-27 2022-08-26 中国船舶重工集团公司第七一八研究所 一种抗凝露和结霜的臭氧产生装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217411A (ja) 1995-02-16 1996-08-27 Toto Ltd オゾン発生装置
JPH10259004A (ja) * 1997-03-19 1998-09-29 Yaskawa Electric Corp オゾン発生素子およびオゾン発生装置
JP2008251516A (ja) * 2007-03-05 2008-10-16 Kyocera Corp プラズマ発生体、プラズマ発生装置、オゾン発生装置、排ガス処理装置
JP2011063512A (ja) * 2004-02-25 2011-03-31 Toshiba Mitsubishi-Electric Industrial System Corp 窒素抑制オゾン発生装置および窒素抑制オゾン発生方法
WO2012108260A1 (ja) * 2011-02-08 2012-08-16 パナソニック株式会社 プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および小型電器機器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198004A (ja) * 1990-11-28 1992-07-17 Narumi China Corp ヒーター内蔵オゾン発生体
TW407648U (en) * 1997-02-04 2000-10-01 Ind Tech Res Inst Ozone generating device
JPH11343104A (ja) * 1998-05-28 1999-12-14 Ngk Spark Plug Co Ltd オゾン発生装置
JP2004159753A (ja) * 2002-11-11 2004-06-10 Sharp Corp イオン発生装置
CN1513562A (zh) * 2003-06-12 2004-07-21 大连理工大学 放电电极加热式负离子空气净化器
WO2007091366A1 (ja) * 2006-02-09 2007-08-16 Murata Manufacturing Co., Ltd. イオン発生器
CN100411974C (zh) * 2006-08-10 2008-08-20 中国科学技术大学 一种臭氧产生方法和臭氧发生装置
JP4536087B2 (ja) * 2007-06-29 2010-09-01 シャープ株式会社 イオン発生素子、帯電装置および画像形成装置
TWI476145B (zh) * 2009-06-02 2015-03-11 Hon Hai Prec Ind Co Ltd 臭氧發生裝置
JP5983529B2 (ja) * 2013-05-16 2016-08-31 株式会社村田製作所 放電素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08217411A (ja) 1995-02-16 1996-08-27 Toto Ltd オゾン発生装置
JPH10259004A (ja) * 1997-03-19 1998-09-29 Yaskawa Electric Corp オゾン発生素子およびオゾン発生装置
JP2011063512A (ja) * 2004-02-25 2011-03-31 Toshiba Mitsubishi-Electric Industrial System Corp 窒素抑制オゾン発生装置および窒素抑制オゾン発生方法
JP2008251516A (ja) * 2007-03-05 2008-10-16 Kyocera Corp プラズマ発生体、プラズマ発生装置、オゾン発生装置、排ガス処理装置
WO2012108260A1 (ja) * 2011-02-08 2012-08-16 パナソニック株式会社 プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および小型電器機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3470367A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200105211A (ko) * 2019-02-28 2020-09-07 한국산업기술대학교산학협력단 히터 일체형 하이브리드 플라즈마 방전소자의 제조방법
KR102196676B1 (ko) * 2019-02-28 2020-12-30 한국산업기술대학교산학협력단 히터 일체형 하이브리드 플라즈마 방전소자의 제조방법

Also Published As

Publication number Publication date
JP6504317B2 (ja) 2019-04-24
JPWO2018012242A1 (ja) 2019-04-18
EP3470367A4 (en) 2020-01-08
EP3470367B1 (en) 2021-03-03
CN109415206A (zh) 2019-03-01
EP3470367A1 (en) 2019-04-17
CN109415206B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2018012242A1 (ja) オゾン発生装置
US9472347B2 (en) Variable vacuum capacitor
CN110959918A (zh) 一种发热组件及电子雾化装置
KR20220080724A (ko) 에어러졸 발생장치 및 그 가열 어셈블리
TWI527499B (zh) 無線電激發光裝置
JP2002538606A5 (ja)
TWI313472B (en) Multilayer capacitor
JP6945642B2 (ja) ヒータ及びヒータシステム
KR20120014000A (ko) 저항성 상호 접속층을 갖는 세그먼트 전계 발광 소자
JP2012221993A (ja) 貫通型積層コンデンサ
US11758944B2 (en) Heating wire and electronic atomizing device having the same
US7974070B2 (en) Multilayer ceramic device and mounting structure therefor
US7706121B2 (en) Ion generator
JP2013026222A (ja) 加熱システム、ヒーター、および部品を加熱する方法
CN1969435B (zh) 离子发生单元及离子发生装置
JP5090909B2 (ja) 圧電トランス
JP2015211580A (ja) 超電導ケーブルの端末構造
JP2018074485A (ja) ローパスフィルタ
JP6814807B2 (ja) 横方向フラックスコンデンサを備える集積回路
JP6673102B2 (ja) コンデンサモジュール
JP6906321B2 (ja) 電気抵抗器
US9770386B2 (en) Sauna heating apparatus and methods
JP5910894B2 (ja) 交流電位治療器
JP2013120894A (ja) 電子部品の実装構造
TW473747B (en) Inductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018527482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017827372

Country of ref document: EP

Effective date: 20190114