WO2018011841A1 - Refrigerating and air-conditioning apparatus - Google Patents

Refrigerating and air-conditioning apparatus Download PDF

Info

Publication number
WO2018011841A1
WO2018011841A1 PCT/JP2016/070375 JP2016070375W WO2018011841A1 WO 2018011841 A1 WO2018011841 A1 WO 2018011841A1 JP 2016070375 W JP2016070375 W JP 2016070375W WO 2018011841 A1 WO2018011841 A1 WO 2018011841A1
Authority
WO
WIPO (PCT)
Prior art keywords
solenoid valve
compressor
expansion mechanism
refrigerant
refrigerating
Prior art date
Application number
PCT/JP2016/070375
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 浅井
光史 新海
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/070375 priority Critical patent/WO2018011841A1/en
Publication of WO2018011841A1 publication Critical patent/WO2018011841A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a refrigeration air conditioner that suppresses the liquid hammer phenomenon that occurs when the compressor is restarted after the pump is stopped.
  • the refrigeration air conditioner includes a refrigeration cycle circuit in which a compressor, a condenser, an expansion mechanism, and an evaporator are sequentially connected by piping, and the refrigerant flows in this order.
  • a conventional refrigeration air conditioner is known in which an electromagnetic valve is provided on the upstream side of the expansion mechanism.
  • a conventional refrigeration air conditioner equipped with such a solenoid valve is pump-down when stopping the compressor, such as when stopping the operation of the apparatus, or when stopping the circulation of the refrigerant in the refrigeration cycle circuit during the operation. Do the driving.
  • the pump-down operation means that the electromagnetic valve is closed before the compressor is stopped, and the refrigerant pressure from the downstream side of the electromagnetic valve to the compressor in the refrigeration cycle circuit becomes a predetermined pressure (for example, about atmospheric pressure).
  • the operation of the compressor is stopped. That is, in the pump down operation, the refrigerant from the downstream side of the solenoid valve in the refrigeration cycle circuit to the compressor is sent to the range from the compressor in the refrigeration cycle circuit to the upstream side of the solenoid valve, and then the compressor is Stop. Thereby, effects such as prevention of liquid back to the compressor when the compressor is restarted can be obtained.
  • the conventional refrigeration and air-conditioning apparatus is provided with a downstream side of the condenser for the purpose of improving the performance and suppressing the discharge superheat degree of the compressor, and the like.
  • a cooler and an injection circuit for injecting the liquid refrigerant flowing out of the supercooler into the compression chamber of the compressor are provided.
  • the injection circuit includes an injection pipe that connects the downstream side of the subcooler and the compression chamber of the compressor, and an expansion mechanism that is provided in the injection pipe and adjusts the amount of refrigerant flowing through the injection pipe (that is, the injection amount). And comprising.
  • the conventional refrigerating and air-conditioning apparatus having a supercooler and an injection circuit and performing a pump-down operation opens the liquid hammer even in the expansion mechanism of the injection circuit when the electromagnetic valve of the injection circuit is opened when the compressor is restarted.
  • the phenomenon occurs.
  • the refrigerant that has flowed out of the supercooler has a high degree of supercooling and a high liquid density. For this reason, the impact force to the expansion mechanism of the injection circuit is further increased.
  • a conventional refrigeration / air-conditioning apparatus has not been proposed that includes means for suppressing the liquid hammer phenomenon in the expansion mechanism of the injection circuit. For this reason, the conventional refrigerating and air-conditioning apparatus has a problem that the liquid hammer phenomenon in the expansion mechanism of the injection circuit cannot be suppressed, and the expansion mechanism of the injection circuit may be damaged.
  • the present invention has been made to solve the above-described problems, and provides a refrigeration air conditioner that can suppress the liquid hammer phenomenon with an expansion mechanism of an injection circuit and prevent damage to the expansion mechanism of the injection circuit. With the goal.
  • a refrigerating and air-conditioning apparatus is provided in a refrigeration cycle circuit in which a compressor, a condenser, a first expansion mechanism and an evaporator are connected by piping, and a pipe between the condenser and the first expansion mechanism.
  • An injection pipe connected between the other end and communicating with the compression chamber of the compressor; a second electromagnetic valve provided in the injection pipe; and the second electromagnetic valve and the compressor in the injection pipe
  • a second expansion mechanism provided at an intermediate position, a first end connected between the condenser and the second electromagnetic valve, and a second end connected to the second electromagnetic valve and the second expansion.
  • Bypass piping connected between the mechanism and the bypass piping And when the third solenoid valve is opened with the second solenoid valve closed, the second solenoid valve flows into the second expansion mechanism when the second solenoid valve is opened.
  • a smaller amount of liquid refrigerant than the liquid refrigerant that flows is configured to flow into the second expansion mechanism.
  • the refrigerating and air-conditioning apparatus opens the third solenoid valve before opening the second solenoid valve, which is the solenoid valve of the injection circuit, when the compressor is restarted after the pump down operation.
  • the amount of the liquid refrigerant flowing into the second expansion mechanism can be reduced. For this reason, the refrigerating and air-conditioning apparatus according to the present invention can suppress the liquid hammer phenomenon in the second expansion mechanism, and can prevent the second expansion mechanism from being damaged.
  • FIG. 2 is a ph diagram showing a refrigeration cycle of the refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the refrigerating air conditioner concerning Embodiment 1 of this invention, it is explanatory drawing for demonstrating the operation
  • FIG. 1 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • a refrigerating and air-conditioning apparatus 100 according to Embodiment 1 includes a refrigerating cycle circuit 1 in which a compressor 2 and a condenser 3, for example, an expansion mechanism 6 that is an expansion valve and an evaporator 4 are connected by piping.
  • the refrigerant in the refrigeration cycle circuit 1 flows in the order of the compressor 2, the condenser 3, the expansion mechanism 6 and the evaporator 4, and circulates in the refrigeration cycle circuit 1.
  • the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 performs a pump-down operation when the compressor 2 is stopped.
  • the refrigerating and air-conditioning apparatus 100 includes an electromagnetic valve 7 in a pipe between the condenser 3 and the expansion mechanism 6.
  • the expansion mechanism 6 corresponds to the first expansion mechanism of the present invention.
  • the solenoid valve 7 corresponds to the first solenoid valve of the present invention.
  • the refrigeration air conditioner 100 flows out of the supercooler 5 and the supercooler 5 for the purpose of improving the performance and suppressing the discharge superheat degree of the compressor 2.
  • an injection circuit 8 for injecting the liquid refrigerant into the compressor 2.
  • the subcooler 5 is provided on the downstream side of the condenser 3, that is, between the condenser 3 and the electromagnetic valve 7.
  • the subcooler 5 cools the refrigerant that has flowed out of the condenser 3 and puts the refrigerant into a supercooled state.
  • the refrigerant that has flowed out of the condenser 3 is cooled by the refrigerant that flows through the injection circuit 8.
  • the injection circuit 8 includes an injection pipe 11, for example, an expansion mechanism 9 that is an expansion valve, and an electromagnetic valve 10.
  • One end of the injection pipe 11 is connected between the subcooler 5 and the electromagnetic valve 7, and the other end communicates with the compression chamber of the compressor 2.
  • the solenoid valve 10 is provided in the injection pipe 11 and is closed during the pump-down operation, and closes the flow path in the injection pipe 11.
  • the expansion mechanism 9 is provided at a position between the electromagnetic valve 10 and the compressor 2 in the injection pipe 11.
  • the expansion mechanism 9 adjusts the amount of refrigerant flowing through the injection pipe 11, that is, the amount of refrigerant injected into the compression chamber of the compressor 2 (injection amount).
  • a portion of the injection pipe 11 on the downstream side of the expansion mechanism 9 passes through the supercooler 5.
  • the solenoid valve 10 corresponds to a second solenoid valve of the present invention.
  • the expansion mechanism 9 corresponds to the second expansion mechanism of the present invention.
  • the refrigerating and air-conditioning apparatus 100 includes a bypass circuit 12 in order to suppress the liquid hammer phenomenon in the expansion mechanism 9.
  • the bypass circuit 12 includes a bypass pipe 16 and an electromagnetic valve 13 provided in the bypass pipe 16.
  • the bypass pipe 16 has a first end 16 a connected between the condenser 3 and the electromagnetic valve 10. More specifically, the first end 16 a of the bypass pipe 16 is connected between the supercooler 5 and the electromagnetic valve 10. In FIG. 1, the first end 16 a of the bypass pipe 16 is connected to the injection pipe 11. However, even if the first end 16 a is connected to the pipe connecting the subcooler 5 and the electromagnetic valve 7. Good.
  • the second end portion 16 b of the bypass pipe 16 is connected to the injection pipe 11 portion between the electromagnetic valve 10 and the expansion mechanism 9.
  • the electromagnetic valve 13 is closed during the pump-down operation and closes the flow path in the bypass pipe 16.
  • the solenoid valve 13 corresponds to a third solenoid valve of the present invention.
  • the compressor 2 when the compressor 2 is restarted after the pump-down operation, the refrigerant flowing through the bypass pipe 16 is supplied to the upstream side of the expansion mechanism 9 of the injection circuit 8 with the solenoid valve 10 of the injection circuit 8 closed. Then, the liquid hammer phenomenon in the expansion mechanism 9 is suppressed.
  • the electromagnetic valve 13 when the electromagnetic valve 13 is opened with the electromagnetic valve 10 closed, a smaller amount of liquid refrigerant flows into the expansion mechanism 9 than the liquid refrigerant that flows into the expansion mechanism 9 when the electromagnetic valve 10 is opened. There is a need. Thereby, the impact force when the liquid refrigerant flows into the expansion mechanism 9 can be suppressed, and the liquid hammer phenomenon in the expansion mechanism 9 can be suppressed.
  • the inner diameter of the bypass pipe 16 is made smaller than the inner diameter of the portion of the injection pipe 11 closer to the electromagnetic valve 10 than the expansion mechanism 9.
  • the refrigerating and air-conditioning apparatus 100 includes a plurality of sensors and a control device 50 that controls each component of the refrigerating and air-conditioning apparatus 100 based on detection values of these sensors.
  • the injection pipe 11 is provided with a pressure sensor 14 on the upstream side of the electromagnetic valve 10.
  • the pressure sensor 14 detects the refrigerant pressure between the subcooler 5 and the electromagnetic valve 10. For this reason, you may provide the pressure sensor 14 in piping which connects the subcooler 5 and the solenoid valve 7.
  • FIG. The injection pipe 11 is provided with a pressure sensor 15 between the electromagnetic valve 10 and the expansion mechanism 9.
  • the pressure sensor 15 detects the pressure of the refrigerant flowing between the electromagnetic valve 10 and the expansion mechanism 9, in other words, the pressure of the refrigerant flowing into the expansion mechanism 9.
  • the pressure sensor 15 is provided in the injection piping 11 part upstream from the connection location with the 2nd end part 16b of the bypass piping 16, with the 2nd end part 16b of the bypass piping 16 You may provide the pressure sensor 15 in the injection piping 11 part downstream from a connection location.
  • the pressure sensor 14 corresponds to the first pressure sensor of the present invention
  • the pressure sensor 15 corresponds to the second pressure sensor of the present invention.
  • the control device 50 is configured by dedicated hardware or a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor) that executes a program stored in a memory. .
  • a CPU Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor
  • control device 50 When the control device 50 is dedicated hardware, the control device 50 may be, for example, a single circuit, a composite circuit, an ASIC (application specific integrated circuit), an FPGA (field-programmable gate array), or a combination of these. Applicable. Each functional unit realized by the control device 50 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • each function executed by the control device 50 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in a memory.
  • the CPU implements each function of the control device 50 by reading and executing a program stored in the memory.
  • the memory is a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
  • control device 50 may be realized by dedicated hardware, and a part may be realized by software or firmware.
  • the control device 50 includes a time measuring unit 51, a comparison unit 52, and a control unit 53 as functional units.
  • the timer 51 measures the time since the compressor 2 was started.
  • the comparison unit 52 serves as an index as to whether or not to open the electromagnetic valve 10 of the injection circuit 8, so that the value of the pressure sensor 14, 15 or the timing unit is compared with the comparison value Are compared.
  • the control unit 53 controls the start, operation, and stop of the compressor 2.
  • the control unit 53 controls opening / closing of the electromagnetic valves 7, 10, 13, opening degrees of the expansion mechanisms 6, 9, and the like.
  • the control unit 53 of the control device 50 opens the electromagnetic valves 7 and 10 and continues the operation of the compressor 2.
  • the control unit 53 controls the expansion mechanisms 6 and 9 to an arbitrary opening degree.
  • the electromagnetic valve 13 of the bypass circuit 12 may be in a closed state or an open state.
  • the solenoid valve 13 of the bypass circuit 12 is opened and operated so as to ensure a large amount of refrigerant to be injected.
  • the gaseous refrigerant sucked into the compressor 2 is compressed to a high-temperature and high-pressure gaseous refrigerant.
  • This high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 2, flows into the condenser 3, condenses by exchanging heat and dissipating heat, and flows out as a gas-liquid two-phase or liquid refrigerant.
  • This refrigerant flows into the supercooler 5 and is cooled to the supercooled state by the refrigerant flowing through the injection pipe 11.
  • the refrigerant flowing out of the supercooler 5 in the supercooled state is branched into the evaporator 4 side and the injection circuit 8.
  • the liquid refrigerant on the evaporator 4 side is decompressed and expanded by the expansion mechanism 6, flows into the evaporator 4, evaporates by exchanging heat and absorbing heat, and becomes superheated gas and is sucked into the compressor 2.
  • the liquid refrigerant in the injection circuit 8 is decompressed and expanded by the expansion mechanism 9, cools the refrigerant flowing through the subcooler 5, and is then injected into the compression chamber of the compressor 2.
  • control method of the opening degree of the expansion mechanisms 6 and 9 by the control unit 53 is arbitrary, and various known methods may be used.
  • the opening degree of the expansion mechanism 6 may be controlled so that the degree of superheat of the refrigerant flowing out of the evaporator 4 becomes a specified value.
  • the opening degree of the expansion mechanism 9 may be controlled so that the degree of superheat of the gaseous refrigerant flowing through the injection pipe 11 after flowing out of the supercooler 5 becomes a specified value.
  • the opening degree of the expansion mechanism 9 may be controlled based on the discharge temperature of the compressor 2.
  • the control unit 53 of the control device 50 closes the electromagnetic valves 7, 10, and 13. And the control part 53 stops the compressor 2 after continuing the driving
  • the operation of the compressor 2 is continued until, for example, the pressure on the upstream side (that is, the suction side) of the compressor 2 is reduced to a predetermined pressure.
  • the operation of the compressor 2 is continued for a specified time. Thereby, the refrigerant existing on the upstream side (that is, the suction side) of the compressor 2 is sent out to the downstream side (that is, the discharge side) of the compressor 2 by the compressor 2.
  • the refrigerant existing on the upstream side (that is, the suction side) of the compressor 2 is the refrigerant existing from the solenoid valve 7 to the suction side of the compressor 2 and the injection pipe 11 between the solenoid valve 10 and the compressor 2.
  • the downstream side (that is, the discharge side) of the compressor 2 is the refrigeration cycle circuit 1 part from the discharge side of the compressor 2 to the electromagnetic valve 7, the injection pipe 11 part upstream of the electromagnetic valve 10, and the first This is a bypass pipe 16 portion from the end portion 16 a to the electromagnetic valve 13.
  • FIG. 2 is a ph diagram showing a refrigeration cycle of the refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is explanatory drawing for demonstrating the operation
  • FIG. 2A shows a state in which an impact liquid hammer phenomenon that can damage the expansion mechanism 9 may occur after the compressor 2 is restarted.
  • FIG. 2B shows a state after the state of FIG. 2A, in which the liquid hammer phenomenon of impact that causes the expansion mechanism 9 to break is not generated. That is, FIG. 2B shows a state where the electromagnetic valve 10 of the injection circuit 8 may be opened after the compressor 2 is restarted.
  • the control unit 53 of the control device 50 opens the electromagnetic valve 7 and starts the compressor 2. Moreover, the control part 53 controls the expansion mechanisms 6 and 9 to arbitrary opening.
  • the electromagnetic valve 10 of the injection circuit 8 is opened, an amount of refrigerant corresponding to the pressure difference before and after the electromagnetic valve 10 flows into the expansion mechanism 9 of the injection circuit 8. For this reason, if the pressure difference between the front and rear of the solenoid valve 10 is larger than a specified pressure value, a large amount of liquid refrigerant tries to flow into the expansion mechanism 9 and collides with the expansion mechanism 9, and the liquid hammer phenomenon occurs in the expansion mechanism 9. Will occur.
  • the refrigerating and air-conditioning apparatus 100 includes the supercooler 5
  • the degree of supercooling of the refrigerant flowing into the expansion mechanism 9 is large. That is, since the liquid density of the refrigerant flowing into the expansion mechanism 9 increases, more liquid refrigerant tends to flow into the expansion mechanism 9, and the impact force on the expansion mechanism 9 is further increased and the expansion mechanism 9. There is concern about damage.
  • the solenoid valve 10 is opened with ⁇ P2 being smaller than ⁇ P0. In this case, the expansion mechanism 9 can be prevented from being damaged. Therefore, in the first embodiment, when ⁇ P2 becomes equal to or less than a specified value ⁇ P ⁇ obtained by multiplying ⁇ P0 by a coefficient ⁇ (less than 1) set as a safety factor, the electromagnetic valve 10 is opened to prevent the expansion mechanism 9 from being damaged. ing.
  • the pressure of the refrigerant on the upstream side of the electromagnetic valve 10 of the injection circuit 8 is equal to that of the refrigeration cycle shown in FIG. 2 (A).
  • High pressure Pa that is, the pressure of the refrigerant on the upstream side of the electromagnetic valve 10 of the injection circuit 8 becomes a high pressure equivalent to the pressure from the discharge side of the compressor 2 to the outlet side of the subcooler 5 in the refrigeration cycle circuit 1.
  • the pressure of the refrigerant on the downstream side of the electromagnetic valve 10 of the injection circuit 8 becomes the low pressure Pb of the refrigeration cycle shown in FIG.
  • ⁇ P2 Pa ⁇ Pb is larger than ⁇ P0.
  • the inner diameter of the bypass pipe 16 is made smaller than the inner diameter of the portion of the injection pipe 11 closer to the electromagnetic valve 10 than the expansion mechanism 9. For this reason, the amount of the liquid refrigerant flowing from the bypass pipe 16 to the downstream side of the electromagnetic valve 10 is an amount that does not damage the expansion mechanism 9.
  • the pressure Pc shown in FIG. 2A is the pressure of the liquid refrigerant flowing from the bypass pipe 16 to the downstream side of the solenoid valve 10.
  • the inner diameter of the portion of the injection pipe 11 closer to the electromagnetic valve 10 than the expansion mechanism 9 is larger than the inner diameter of the bypass pipe 16. For this reason, when the solenoid valve 10 of the injection circuit 8 is opened, as shown in FIG. 2 (B), the downstream side of the solenoid valve 10 (the injection pipe 11 portion between the solenoid valve 10 and the expansion mechanism 9). A refrigerant having a pressure Pd slightly higher than the refrigerant pressure Pe flows from the solenoid valve 10 to the downstream side.
  • FIG. 4 is an example of a control flow for controlling the opening / closing of the solenoid valve of the injection circuit when the compressor is restarted in the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the control unit 53 closes the electromagnetic valve 10 of the injection circuit 8, opens the electromagnetic valve 13 of the bypass circuit 12, and starts the compressor 2 (step S2).
  • the pressure sensors 14 and 15 detect the refrigerant pressures P14 and P15 at the respective sensor positions.
  • the comparison unit 52 calculates P14-P15, which is a comparison value, that is, calculates ⁇ P2, and compares the comparison value with the specified value ⁇ P ⁇ .
  • the control unit 53 When the comparison value P14-P15 is larger than the specified value ⁇ P ⁇ , the control unit 53 returns to Step S2. That is, the control unit 53 continues the operation of the compressor 2 with the electromagnetic valve 10 of the injection circuit 8 closed and the electromagnetic valve 13 of the bypass circuit 12 opened. On the other hand, when the comparison value P14-P15 becomes equal to or less than the specified value ⁇ P ⁇ , the control unit 53 opens the electromagnetic valve 10 of the injection circuit 8 (step S4), and ends the opening / closing control of the electromagnetic valve 10 (step S5). ).
  • FIG. 5 is another example of a control flow for controlling the opening and closing of the solenoid valve of the injection circuit when the compressor is restarted in the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the control unit 53 closes the electromagnetic valve 10 of the injection circuit 8, opens the electromagnetic valve 13 of the bypass circuit 12, and starts the compressor 2 (step S12).
  • step S ⁇ b> 13 the timer unit 51 measures the operation time T after the compressor 2 is started.
  • step S13 the comparison unit 52 compares T, which is the detection time of the time measuring unit 51, with the specified time T1.
  • the control unit 53 When the time T, which is the detection time of the time measuring unit 51, is shorter than the specified time T1, the control unit 53 returns to step S12. That is, the control unit 53 continues the operation of the compressor 2 with the electromagnetic valve 10 of the injection circuit 8 closed and the electromagnetic valve 13 of the bypass circuit 12 opened.
  • T which is the detection time of the time measuring unit 51
  • the control unit 53 opens the electromagnetic valve 10 of the injection circuit 8 (step S14) and ends the opening / closing control of the electromagnetic valve 10 ( Step S15).
  • the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 restarts the compressor 2 after the pump-down operation, by opening the electromagnetic valve 13 of the bypass circuit before opening the electromagnetic valve 10 of the injection circuit 8, The amount of liquid refrigerant flowing into the expansion mechanism 9 of the injection circuit 8 can be reduced. For this reason, the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 can suppress the liquid hammer phenomenon in the expansion mechanism 9 of the injection circuit 8 and can prevent the expansion mechanism 9 from being damaged.
  • the refrigerating and air-conditioning apparatus 100 according to the first embodiment can suppress the liquid hammer phenomenon in the expansion mechanism 9 of the injection circuit 8 without reducing the inner diameter of the injection pipe 11 of the injection circuit 8. For this reason, the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 does not have a shortage of refrigerant amount to be injected into the compression chamber of the compressor 2 when entering the stable state.
  • the bypass pipe 16 can also function as an injection pipe. For this reason, the amount of refrigerant injected into the compression chamber of the compressor 2 can be further increased.
  • Embodiment 2 the first end portion 16 a of the bypass pipe 16 is connected between the subcooler 5 and the electromagnetic valve 10. However, if the first end 16a of the bypass pipe 16 is connected between the condenser 3 and the electromagnetic valve 10, the present invention can be implemented. Therefore, you may comprise the refrigerating and air-conditioning apparatus 100 as follows, for example.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 6 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the refrigerating and air-conditioning apparatus 100 according to the second embodiment is different from the refrigerating and air-conditioning apparatus 100 shown in the first embodiment in the connection location of the first end portion 16a of the bypass pipe 16.
  • the first end 16 a of the bypass pipe 16 is connected between the condenser 3 and the subcooler 5.
  • the refrigerant flowing out of the condenser 3 is a gas-liquid two-phase refrigerant in which a gaseous refrigerant and a liquid refrigerant are mixed, or a liquid refrigerant having a small degree of supercooling. For this reason, this gas-liquid two-phase state or a liquid refrigerant with a small degree of supercooling flows into the bypass pipe 16.
  • this gas-liquid two-phase state or a liquid refrigerant with a small degree of supercooling flows into the bypass pipe 16.
  • the liquid flowing into the expansion mechanism 9 when the electromagnetic valve 10 is opened when the electromagnetic valve 13 is opened when the electromagnetic valve 10 is closed, the liquid flowing into the expansion mechanism 9 when the electromagnetic valve 10 is opened.
  • a smaller amount of liquid refrigerant than the refrigerant needs to flow into the expansion mechanism 9.
  • the refrigerant flowing out of the bypass pipe 16, that is, the refrigerant flowing into the expansion mechanism 9 is made into a gas-liquid two-phase state, thereby reducing the amount of the liquid refrigerant that flows into the expansion mechanism 9. ing.
  • the controller 53 of the control device 50 injects liquid refrigerant having a large degree of supercooling into the compressor 2 during operation of the refrigeration air conditioner 100 in a stable state after the compressor 2 is activated.
  • the electromagnetic valve 13 of the bypass circuit 12 is closed.
  • the pump-down operation in the refrigeration air conditioning apparatus 100 according to the second embodiment is the same as that of the first embodiment. For this reason, below, operation
  • FIG. 7 is a ph diagram showing the refrigeration cycle of the refrigeration air-conditioning apparatus according to Embodiment 2 of the present invention.
  • FIG. 8 is explanatory drawing for demonstrating the operation
  • FIG. 7A shows a state in which an impact liquid hammer phenomenon that can damage the expansion mechanism 9 may occur after the compressor 2 is restarted.
  • FIG. 7B shows a state after the state of FIG. 7A, in which a shocking liquid hammer phenomenon that causes damage to the expansion mechanism 9 does not occur. That is, FIG. 7B shows a state where the electromagnetic valve 10 of the injection circuit 8 may be opened after the compressor 2 is restarted.
  • the control unit 53 of the control device 50 opens the electromagnetic valve 7 and starts the compressor 2. Moreover, the control part 53 controls the expansion mechanisms 6 and 9 to arbitrary opening. As described above, when the pressure difference ⁇ P2 before and after the electromagnetic valve 10 is larger than ⁇ P0, an impact liquid hammer phenomenon that causes the expansion mechanism 9 to break occurs. Therefore, if the solenoid valve 10 is opened in a state where ⁇ P2 is smaller than ⁇ P0, the expansion mechanism 9 can be prevented from being damaged.
  • the pressure of the refrigerant on the upstream side of the electromagnetic valve 10 of the injection circuit 8 is equal to that of the refrigeration cycle shown in FIG. High pressure Pa. That is, the pressure of the refrigerant on the upstream side of the electromagnetic valve 10 of the injection circuit 8 becomes a high pressure equivalent to the pressure from the discharge side of the compressor 2 to the outlet side of the subcooler 5 in the refrigeration cycle circuit 1.
  • the refrigerant pressure on the downstream side of the electromagnetic valve 10 of the injection circuit 8 is the low pressure Pb of the refrigeration cycle shown in FIG.
  • ⁇ P2 Pa ⁇ Pb is larger than ⁇ P0.
  • the control unit 53 of the control device 50 restarts the compressor 2 with the electromagnetic valve 10 closed. Further, the control unit 53 restarts the compressor 2 with the electromagnetic valve 13 of the bypass circuit 12 opened. Thereby, when the compressor 2 is started, the refrigerant flowing out of the condenser 3 passes through the bypass pipe 16 and becomes a refrigerant in a gas-liquid two-phase state downstream of the solenoid valve 10 (the solenoid valve 10 and the expansion mechanism 9). It flows into the injection pipe 11 part) between.
  • the amount of the liquid refrigerant flowing from the bypass pipe 16 to the downstream side of the electromagnetic valve 10 is an amount that does not damage the expansion mechanism 9.
  • the pressure of the liquid refrigerant flowing from the bypass pipe 16 to the downstream side of the solenoid valve 10 is represented as Pf.
  • the opening / closing of the electromagnetic valve 10 can be controlled by the control flow described in FIG. 4 of the first embodiment. Further, for example, the opening and closing of the electromagnetic valve 10 can be controlled by the flow shown in FIG.
  • FIG. 9 is an example of a control flow for controlling the opening and closing of the solenoid valve of the injection circuit when the compressor is restarted in the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the control unit 53 closes the electromagnetic valve 10 of the injection circuit 8, opens the electromagnetic valve 13 of the bypass circuit 12, and starts the compressor 2 (step S22).
  • step S ⁇ b> 23 the timer unit 51 measures the operation time T after the compressor 2 is started.
  • step S23 the comparison unit 52 compares T, which is the detection time of the time measuring unit 51, with the specified time T2.
  • the controller 53 If the time T, which is the detection time of the timer 51, is shorter than the specified time T2, the controller 53 returns to step S22. That is, the control unit 53 continues the operation of the compressor 2 with the electromagnetic valve 10 of the injection circuit 8 closed and the electromagnetic valve 13 of the bypass circuit 12 opened. On the other hand, when T, which is the detection time of the time measuring unit 51, is equal to or longer than the specified time T2, the control unit 53 opens the electromagnetic valve 10 of the injection circuit 8 (step S24) and ends the opening / closing control of the electromagnetic valve 10 ( Step S25).
  • the refrigerating and air-conditioning apparatus 100 has a bypass circuit before opening the solenoid valve 10 of the injection circuit 8 when the compressor 2 is restarted after the pump-down operation, as in the first embodiment.
  • the electromagnetic valve 13 By opening the electromagnetic valve 13, the amount of liquid refrigerant flowing into the expansion mechanism 9 of the injection circuit 8 can be reduced.
  • the refrigerating and air-conditioning apparatus 100 according to the second embodiment can suppress the liquid hammer phenomenon in the expansion mechanism 9 of the injection circuit 8 and damage the expansion mechanism 9 as in the first embodiment. Can be prevented.
  • the refrigerating and air-conditioning apparatus 100 according to the second embodiment has a liquid hammer phenomenon in the expansion mechanism 9 of the injection circuit 8 without reducing the inner diameter of the injection pipe 11 of the injection circuit 8 as in the first embodiment. Can be suppressed. For this reason, the refrigerating and air-conditioning apparatus 100 according to the second embodiment does not have a shortage of the amount of refrigerant injected into the compression chamber of the compressor 2 when entering the stable state, as in the first embodiment.
  • the refrigerating and air-conditioning apparatus 100 according to the second embodiment causes the refrigerant in the gas-liquid two-phase state to flow into the downstream side of the electromagnetic valve 10 of the injection circuit 8 from the bypass pipe 16, and the expansion mechanism 9 of the injection circuit 8 The liquid hammer phenomenon is suppressed.
  • the refrigerating and air-conditioning apparatus 100 according to the second embodiment does not need to reduce the inner diameter of the bypass pipe 16.
  • the refrigerating and air-conditioning apparatus 100 according to the second embodiment stabilizes the time T2 from when the compressor 2 is restarted until it becomes stable after the compressor 2 according to the first embodiment is restarted. It can be made shorter than the time T1 until the state is reached.

Abstract

A refrigerating and air conditioning apparatus according to the present invention is provided with: a refrigeration cycle circuit in which a compressor, a condenser, a first expansion mechanism, and an evaporator are connected by piping; a first solenoid valve provided to the piping between the condenser and the first expansion mechanism; a supercooler provided between the condenser and the first solenoid valve; injection piping, one end of which is connected between the supercooler and the first solenoid valve, and the other end of which is in communication with a compression chamber of the compressor; a second solenoid valve provided to the injection piping; a second expansion mechanism provided in a position between the compressor and the second solenoid valve in the injection piping; bypass piping, a first end part of which is connected between the condenser and the second solenoid valve, and a second end part of which is connected between the second solenoid valve and the second expansion mechanism; and a third solenoid valve provided to the bypass piping, the apparatus being configured such that when the third solenoid valve is opened when the second solenoid valve is closed, a smaller amount of liquid refrigerant flows into the second expansion mechanism than the amount of liquid refrigerant that flows into the second expansion mechanism when the second solenoid valve is opened.

Description

冷凍空調装置Refrigeration air conditioner
 本発明は、ポンプダウン停止後の圧縮機再起動時に発生する液ハンマー現象の抑制を図った冷凍空調装置に関するものである。 The present invention relates to a refrigeration air conditioner that suppresses the liquid hammer phenomenon that occurs when the compressor is restarted after the pump is stopped.
 冷凍空調装置は、圧縮機、凝縮器、膨張機構及び蒸発器が順次配管接続され、この順に冷媒が流れる冷凍サイクル回路を備えている。また、従来の冷凍空調装置には、膨張機構の上流側に電磁弁を設けたものも知られている。このような電磁弁を備えた従来の冷凍空調装置は、装置の運転を停止する際や、運転中に冷凍サイクル回路内において冷媒の循環を停止する際等、圧縮機を停止させる際、ポンプダウン運転を行う。ポンプダウン運転とは、圧縮機を停止させる前に上記電磁弁を閉じ、冷凍サイクル回路内における該電磁弁の下流側から圧縮機までの冷媒の圧力が所定圧力(例えば大気圧程度)になった後に、圧縮機の運転を停止するものである。つまり、ポンプダウン運転では、冷凍サイクル回路内における該電磁弁の下流側から圧縮機までの冷媒を、冷凍サイクル回路内における圧縮機から電磁弁の上流側の範囲に送出し、その後に圧縮機を停止させる。これにより、圧縮機の再起動時に該圧縮機へ液バックすることを防止できる等の効果が得られる。 The refrigeration air conditioner includes a refrigeration cycle circuit in which a compressor, a condenser, an expansion mechanism, and an evaporator are sequentially connected by piping, and the refrigerant flows in this order. Also, a conventional refrigeration air conditioner is known in which an electromagnetic valve is provided on the upstream side of the expansion mechanism. A conventional refrigeration air conditioner equipped with such a solenoid valve is pump-down when stopping the compressor, such as when stopping the operation of the apparatus, or when stopping the circulation of the refrigerant in the refrigeration cycle circuit during the operation. Do the driving. The pump-down operation means that the electromagnetic valve is closed before the compressor is stopped, and the refrigerant pressure from the downstream side of the electromagnetic valve to the compressor in the refrigeration cycle circuit becomes a predetermined pressure (for example, about atmospheric pressure). Later, the operation of the compressor is stopped. That is, in the pump down operation, the refrigerant from the downstream side of the solenoid valve in the refrigeration cycle circuit to the compressor is sent to the range from the compressor in the refrigeration cycle circuit to the upstream side of the solenoid valve, and then the compressor is Stop. Thereby, effects such as prevention of liquid back to the compressor when the compressor is restarted can be obtained.
 上述のようにポンプダウン運転を行う従来の冷凍空調装置においては、圧縮機を再起動させる際、膨張弁の上流側に設けられた電磁弁を開けることとなる。この際、液冷媒が低圧状態の電磁弁の下流に一気に流れ込み、膨張弁に衝突する所謂液ハンマー現象が発生する。この液ハンマー現象は、衝撃音の発生や、膨張弁の破損といった不具合を生じさせる。このため、ポンプダウン運転を行う従来の冷凍空調装置には、圧縮機再起動時に当該液ハンマー現象の抑制を図ったものも提案されている(例えば、特許文献1参照)。 In the conventional refrigerating and air-conditioning apparatus that performs the pump-down operation as described above, when the compressor is restarted, the electromagnetic valve provided on the upstream side of the expansion valve is opened. At this time, a so-called liquid hammer phenomenon occurs in which the liquid refrigerant flows all at once downstream of the low-pressure electromagnetic valve and collides with the expansion valve. This liquid hammer phenomenon causes problems such as generation of impact sound and breakage of the expansion valve. For this reason, as a conventional refrigerating and air-conditioning apparatus that performs the pump-down operation, there has been proposed one that suppresses the liquid hammer phenomenon when the compressor is restarted (see, for example, Patent Document 1).
特開平11-325654号公報Japanese Patent Laid-Open No. 11-325654
 従来の冷凍空調装置には、性能を向上させること及び圧縮機の吐出過熱度を抑制すること等を目的として、凝縮器の下流側に設けられて該凝縮器から流出した冷媒を過冷却する過冷却器と、該過冷却器から流出した液冷媒を圧縮機の圧縮室にインジェクションするインジェクション回路と、を備える場合がある。インジェクション回路は、過冷却器の下流側と圧縮機の圧縮室とを接続するインジェクション配管と、該インジェクション配管に設けられ、該インジェクション配管を流れる冷媒量(つまりインジェクション量)を調節するための膨張機構と、を備える。 The conventional refrigeration and air-conditioning apparatus is provided with a downstream side of the condenser for the purpose of improving the performance and suppressing the discharge superheat degree of the compressor, and the like. There are cases where a cooler and an injection circuit for injecting the liquid refrigerant flowing out of the supercooler into the compression chamber of the compressor are provided. The injection circuit includes an injection pipe that connects the downstream side of the subcooler and the compression chamber of the compressor, and an expansion mechanism that is provided in the injection pipe and adjusts the amount of refrigerant flowing through the injection pipe (that is, the injection amount). And comprising.
 このような過冷却器及びインジェクション回路を有する冷凍空調装置においてポンプダウン運転を行おうとする場合、冷凍サイクル回路内における電磁弁の下流側から圧縮機までの冷媒を圧縮機の吐出側へ送り出すためには、インジェクション回路の冷媒の流れを止める必要がある。つまり、インジェクション配管にも電磁弁を設ける必要があり、該電磁弁は、インジェクション配管におけるインジェクション回路の膨張機構よりも上流側に設けられる。 In a refrigeration air conditioner having such a supercooler and an injection circuit, when pump down operation is to be performed, in order to send the refrigerant from the downstream side of the solenoid valve to the compressor in the refrigeration cycle circuit to the discharge side of the compressor It is necessary to stop the flow of refrigerant in the injection circuit. That is, it is necessary to provide an electromagnetic valve also on the injection pipe, and the electromagnetic valve is provided on the upstream side of the expansion mechanism of the injection circuit in the injection pipe.
 したがって、過冷却器及びインジェクション回路を有し、ポンプダウン運転を行う従来の冷凍空調装置は、圧縮機を再起動する際にインジェクション回路の電磁弁を開くと、インジェクション回路の膨張機構においても液ハンマー現象が発生する。また、過冷却器を設置した場合、過冷却器から流出した冷媒は、過冷却度が大きくなって、液密度が高くなる。このため、インジェクション回路の膨張機構への衝撃力はさらに大きくなる。しかしながら、従来の冷凍空調装置には、インジェクション回路の膨張機構での液ハンマー現象を抑制する手段を備えたものが提案されていない。このため、従来の冷凍空調装置は、インジェクション回路の膨張機構での液ハンマー現象を抑制することができず、インジェクション回路の膨張機構が破損してしまうかもしれないという課題があった。 Therefore, the conventional refrigerating and air-conditioning apparatus having a supercooler and an injection circuit and performing a pump-down operation opens the liquid hammer even in the expansion mechanism of the injection circuit when the electromagnetic valve of the injection circuit is opened when the compressor is restarted. The phenomenon occurs. Further, when a supercooler is installed, the refrigerant that has flowed out of the supercooler has a high degree of supercooling and a high liquid density. For this reason, the impact force to the expansion mechanism of the injection circuit is further increased. However, a conventional refrigeration / air-conditioning apparatus has not been proposed that includes means for suppressing the liquid hammer phenomenon in the expansion mechanism of the injection circuit. For this reason, the conventional refrigerating and air-conditioning apparatus has a problem that the liquid hammer phenomenon in the expansion mechanism of the injection circuit cannot be suppressed, and the expansion mechanism of the injection circuit may be damaged.
 本発明は、上述の課題を解決するためになされたものであり、インジェクション回路の膨張機構で液ハンマー現象を抑制し、インジェクション回路の膨張機構の破損を防止することができる冷凍空調装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and provides a refrigeration air conditioner that can suppress the liquid hammer phenomenon with an expansion mechanism of an injection circuit and prevent damage to the expansion mechanism of the injection circuit. With the goal.
 本発明に係る冷凍空調装置は、圧縮機、凝縮器、第1膨張機構及び蒸発器が配管接続された冷凍サイクル回路と、前記凝縮器と前記第1膨張機構との間の配管に設けられた第1電磁弁と、前記凝縮器と前記第1電磁弁との間に設けられ、前記凝縮器から流出した冷媒を冷却する過冷却器と、一端が前記過冷却器と前記第1電磁弁との間に接続され、他端が前記圧縮機の圧縮室に連通するインジェクション配管と、該インジェクション配管に設けられた第2電磁弁と、前記インジェクション配管における前記第2電磁弁と前記圧縮機との間となる位置に設けられた第2膨張機構と、第1端部が前記凝縮器と前記第2電磁弁との間に接続され、第2端部が前記第2電磁弁と前記第2膨張機構との間に接続されたバイパス配管と、該バイパス配管に設けられた第3電磁弁と、を備え、前記第2電磁弁を閉じた状態において前記第3電磁弁が開かれた際、前記第2電磁弁が開いたときに前記第2膨張機構に流入する液状冷媒よりも少量の液状冷媒が、前記第2膨張機構に流入する構成となっている。 A refrigerating and air-conditioning apparatus according to the present invention is provided in a refrigeration cycle circuit in which a compressor, a condenser, a first expansion mechanism and an evaporator are connected by piping, and a pipe between the condenser and the first expansion mechanism. A first electromagnetic valve, a subcooler provided between the condenser and the first electromagnetic valve, for cooling the refrigerant flowing out of the condenser, and one end of the subcooler and the first electromagnetic valve; An injection pipe connected between the other end and communicating with the compression chamber of the compressor; a second electromagnetic valve provided in the injection pipe; and the second electromagnetic valve and the compressor in the injection pipe A second expansion mechanism provided at an intermediate position, a first end connected between the condenser and the second electromagnetic valve, and a second end connected to the second electromagnetic valve and the second expansion. Bypass piping connected between the mechanism and the bypass piping And when the third solenoid valve is opened with the second solenoid valve closed, the second solenoid valve flows into the second expansion mechanism when the second solenoid valve is opened. A smaller amount of liquid refrigerant than the liquid refrigerant that flows is configured to flow into the second expansion mechanism.
 本発明に係る冷凍空調装置は、ポンプダウン運転後に圧縮機を再起動する際、インジェクション回路の電磁弁である第2電磁弁を開く前に第3電磁弁を開くことにより、インジェクション回路の膨張機構である第2膨張機構に流入する液状冷媒の量を低減できる。このため、本発明に係る冷凍空調装置は、第2膨張機構での液ハンマー現象を抑制することができ、第2膨張機構が破損することを防止できる。 The refrigerating and air-conditioning apparatus according to the present invention opens the third solenoid valve before opening the second solenoid valve, which is the solenoid valve of the injection circuit, when the compressor is restarted after the pump down operation. The amount of the liquid refrigerant flowing into the second expansion mechanism can be reduced. For this reason, the refrigerating and air-conditioning apparatus according to the present invention can suppress the liquid hammer phenomenon in the second expansion mechanism, and can prevent the second expansion mechanism from being damaged.
本発明の実施の形態1に係る冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍空調装置の冷凍サイクルを示すp-h線図である。FIG. 2 is a ph diagram showing a refrigeration cycle of the refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍空調装置において、ポンプダウン運転後に圧縮機を再起動させる際の動作を説明するための説明図である。In the refrigerating air conditioner concerning Embodiment 1 of this invention, it is explanatory drawing for demonstrating the operation | movement at the time of restarting a compressor after pump down driving | operation. 本発明の実施の形態1に係る冷凍空調装置において、圧縮機再起動時にインジェクション回路の電磁弁の開閉を制御する際の制御フローの一例である。In the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention, it is an example of a control flow for controlling opening / closing of an electromagnetic valve of an injection circuit when the compressor is restarted. 本発明の実施の形態1に係る冷凍空調装置において、圧縮機再起動時にインジェクション回路の電磁弁の開閉を制御する際の制御フローの別の一例である。In the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention, it is another example of a control flow for controlling the opening and closing of the electromagnetic valve of the injection circuit when the compressor is restarted. 本発明の実施の形態2に係る冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention. 本発明の実施の形態2に係る冷凍空調装置の冷凍サイクルを示すp-h線図である。It is a ph diagram which shows the refrigerating cycle of the refrigerating and air-conditioning apparatus concerning Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍空調装置において、ポンプダウン運転後に圧縮機を再起動させる際の動作を説明するための説明図である。In the refrigerating air conditioner concerning Embodiment 2 of this invention, it is explanatory drawing for demonstrating the operation | movement at the time of restarting a compressor after a pump down driving | operation. 本発明の実施の形態2に係る冷凍空調装置において、圧縮機再起動時にインジェクション回路の電磁弁の開閉を制御する際の制御フローの一例である。In the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention, it is an example of a control flow for controlling opening and closing of the electromagnetic valve of the injection circuit when the compressor is restarted.
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍空調装置の冷媒回路図である。
 本実施の形態1に係る冷凍空調装置100は、圧縮機2、凝縮器3、例えば膨張弁である膨張機構6及び蒸発器4が配管接続された冷凍サイクル回路1を備える。冷凍サイクル回路1内の冷媒は、圧縮機2、凝縮器3、膨張機構6及び蒸発器4の順に流れ、冷凍サイクル回路1内を循環する。また、本実施の形態1に係る冷凍空調装置100は、圧縮機2を停止させる際、ポンプダウン運転を行う。このため、冷凍空調装置100は、凝縮器3と膨張機構6との間の配管に、電磁弁7を備えている。
 ここで、膨張機構6が、本発明の第1膨張機構に相当する。電磁弁7が、本発明の第1電磁弁に相当する。
Embodiment 1 FIG.
1 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
A refrigerating and air-conditioning apparatus 100 according to Embodiment 1 includes a refrigerating cycle circuit 1 in which a compressor 2 and a condenser 3, for example, an expansion mechanism 6 that is an expansion valve and an evaporator 4 are connected by piping. The refrigerant in the refrigeration cycle circuit 1 flows in the order of the compressor 2, the condenser 3, the expansion mechanism 6 and the evaporator 4, and circulates in the refrigeration cycle circuit 1. Moreover, the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 performs a pump-down operation when the compressor 2 is stopped. For this reason, the refrigerating and air-conditioning apparatus 100 includes an electromagnetic valve 7 in a pipe between the condenser 3 and the expansion mechanism 6.
Here, the expansion mechanism 6 corresponds to the first expansion mechanism of the present invention. The solenoid valve 7 corresponds to the first solenoid valve of the present invention.
 また、本実施の形態1に係る冷凍空調装置100は、性能を向上させること及び圧縮機2の吐出過熱度を抑制すること等を目的として、過冷却器5と、該過冷却器5から流出した液冷媒を圧縮機2にインジェクションするインジェクション回路8と、を備える。過冷却器5は、凝縮器3の下流側、つまり凝縮器3と電磁弁7との間に設けられる。過冷却器5は、凝縮器3から流出した冷媒を冷却し、該冷媒を過冷却状態にするものである。なお、本実施の形態1では、凝縮器3から流出した冷媒を、インジェクション回路8を流れる冷媒で冷却する構成となっている。 Further, the refrigeration air conditioner 100 according to the first embodiment flows out of the supercooler 5 and the supercooler 5 for the purpose of improving the performance and suppressing the discharge superheat degree of the compressor 2. And an injection circuit 8 for injecting the liquid refrigerant into the compressor 2. The subcooler 5 is provided on the downstream side of the condenser 3, that is, between the condenser 3 and the electromagnetic valve 7. The subcooler 5 cools the refrigerant that has flowed out of the condenser 3 and puts the refrigerant into a supercooled state. In the first embodiment, the refrigerant that has flowed out of the condenser 3 is cooled by the refrigerant that flows through the injection circuit 8.
 インジェクション回路8は、インジェクション配管11、例えば膨張弁である膨張機構9、及び電磁弁10を備える。インジェクション配管11は、一端が過冷却器5と電磁弁7との間に接続され、他端が圧縮機2の圧縮室に連通するものである。電磁弁10は、インジェクション配管11に設けられ、ポンプダウン運転時に閉状態となって、インジェクション配管11内の流路を閉塞するものである。膨張機構9は、インジェクション配管11における電磁弁10と圧縮機2との間となる位置に設けられている。この膨張機構9は、インジェクション配管11を流れる冷媒の量、つまり、圧縮機2の圧縮室にインジェクションする冷媒の量(インジェクション量)を調節するものである。なお、インジェクション配管11における膨張機構9よりも下流側の部分は、過冷却器5を通っている。そしてこの部分を流れる冷媒により、凝縮器3から流出した冷媒を冷却する。
 ここで、電磁弁10が、本発明の第2電磁弁に相当する。膨張機構9が、本発明の第2膨張機構に相当する。
The injection circuit 8 includes an injection pipe 11, for example, an expansion mechanism 9 that is an expansion valve, and an electromagnetic valve 10. One end of the injection pipe 11 is connected between the subcooler 5 and the electromagnetic valve 7, and the other end communicates with the compression chamber of the compressor 2. The solenoid valve 10 is provided in the injection pipe 11 and is closed during the pump-down operation, and closes the flow path in the injection pipe 11. The expansion mechanism 9 is provided at a position between the electromagnetic valve 10 and the compressor 2 in the injection pipe 11. The expansion mechanism 9 adjusts the amount of refrigerant flowing through the injection pipe 11, that is, the amount of refrigerant injected into the compression chamber of the compressor 2 (injection amount). A portion of the injection pipe 11 on the downstream side of the expansion mechanism 9 passes through the supercooler 5. And the refrigerant | coolant which flowed out from the condenser 3 is cooled with the refrigerant | coolant which flows through this part.
Here, the solenoid valve 10 corresponds to a second solenoid valve of the present invention. The expansion mechanism 9 corresponds to the second expansion mechanism of the present invention.
 さらに、本実施の形態1に係る冷凍空調装置100は、膨張機構9での液ハンマー現象を抑制するため、バイパス回路12を備えている。このバイパス回路12は、バイパス配管16と、該バイパス配管16に設けられた電磁弁13とを備える。バイパス配管16は、第1端部16aが凝縮器3と電磁弁10との間に接続されている。より詳しくは、バイパス配管16の第1端部16aは、過冷却器5と電磁弁10との間に接続されている。なお、図1では、バイパス配管16の第1端部16aがインジェクション配管11に接続されているが、過冷却器5と電磁弁7とを接続する配管に第1端部16aを接続してもよい。またバイパス配管16の第2端部16bは、電磁弁10と膨張機構9との間となるインジェクション配管11部分に接続されている。電磁弁13は、ポンプダウン運転時に閉状態となって、バイパス配管16内の流路を閉塞するものである。
 ここで、電磁弁13が、本発明の第3電磁弁に相当する。
Furthermore, the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 includes a bypass circuit 12 in order to suppress the liquid hammer phenomenon in the expansion mechanism 9. The bypass circuit 12 includes a bypass pipe 16 and an electromagnetic valve 13 provided in the bypass pipe 16. The bypass pipe 16 has a first end 16 a connected between the condenser 3 and the electromagnetic valve 10. More specifically, the first end 16 a of the bypass pipe 16 is connected between the supercooler 5 and the electromagnetic valve 10. In FIG. 1, the first end 16 a of the bypass pipe 16 is connected to the injection pipe 11. However, even if the first end 16 a is connected to the pipe connecting the subcooler 5 and the electromagnetic valve 7. Good. The second end portion 16 b of the bypass pipe 16 is connected to the injection pipe 11 portion between the electromagnetic valve 10 and the expansion mechanism 9. The electromagnetic valve 13 is closed during the pump-down operation and closes the flow path in the bypass pipe 16.
Here, the solenoid valve 13 corresponds to a third solenoid valve of the present invention.
 後述のように、ポンプダウン運転後に圧縮機2を再起動する際、インジェクション回路8の電磁弁10を閉じた状態で、バイパス配管16を流れる冷媒をインジェクション回路8の膨張機構9の上流側に供給し、膨張機構9での液ハンマー現象を抑制する。このためには、電磁弁10を閉じた状態において電磁弁13開いた際、電磁弁10が開いたときに膨張機構9に流入する液状冷媒よりも少量の液状冷媒が、膨張機構9に流入する必要がある。これにより、膨張機構9へ液状冷媒が流入する際の衝撃力を抑制でき、膨張機構9での液ハンマー現象を抑制できる。本実施の形態1では、バイパス配管16の内径を、インジェクション配管11における膨張機構9よりも電磁弁10側の部分の内径よりも小さくしている。これにより、電磁弁10を閉じた状態において電磁弁13開いた際、電磁弁10が開いたときに膨張機構9に流入する液状冷媒よりも少量の液状冷媒が、膨張機構9に流入する。 As will be described later, when the compressor 2 is restarted after the pump-down operation, the refrigerant flowing through the bypass pipe 16 is supplied to the upstream side of the expansion mechanism 9 of the injection circuit 8 with the solenoid valve 10 of the injection circuit 8 closed. Then, the liquid hammer phenomenon in the expansion mechanism 9 is suppressed. For this purpose, when the electromagnetic valve 13 is opened with the electromagnetic valve 10 closed, a smaller amount of liquid refrigerant flows into the expansion mechanism 9 than the liquid refrigerant that flows into the expansion mechanism 9 when the electromagnetic valve 10 is opened. There is a need. Thereby, the impact force when the liquid refrigerant flows into the expansion mechanism 9 can be suppressed, and the liquid hammer phenomenon in the expansion mechanism 9 can be suppressed. In the first embodiment, the inner diameter of the bypass pipe 16 is made smaller than the inner diameter of the portion of the injection pipe 11 closer to the electromagnetic valve 10 than the expansion mechanism 9. Thereby, when the solenoid valve 13 is opened with the solenoid valve 10 closed, a smaller amount of liquid refrigerant flows into the expansion mechanism 9 than the liquid refrigerant that flows into the expansion mechanism 9 when the solenoid valve 10 is opened.
 また、冷凍空調装置100は、複数のセンサー、及び、これらのセンサーの検出値に基づいて冷凍空調装置100の各構成を制御する制御装置50を備えている。 The refrigerating and air-conditioning apparatus 100 includes a plurality of sensors and a control device 50 that controls each component of the refrigerating and air-conditioning apparatus 100 based on detection values of these sensors.
 具体的には、インジェクション配管11には、電磁弁10の上流側に、圧力センサー14が設けられている。この圧力センサー14は、過冷却器5と電磁弁10との間の冷媒の圧力を検出するものである。このため、過冷却器5と電磁弁7とを接続する配管に圧力センサー14を設けてもよい。また、インジェクション配管11には、電磁弁10と膨張機構9との間に、圧力センサー15が設けられている。この圧力センサー15は、電磁弁10と膨張機構9との間を流れる冷媒の圧力、換言すると膨張機構9に流入する冷媒の圧力を検出するものである。なお、図1では、バイパス配管16の第2端部16bとの接続箇所よりも上流側となるインジェクション配管11部分に圧力センサー15を設けているが、バイパス配管16の第2端部16bとの接続箇所よりも下流側となるインジェクション配管11部分に圧力センサー15を設けてもよい。
 ここで、圧力センサー14が本発明の第1圧力センサーに相当し、圧力センサー15が本発明の第2圧力センサーに相当する。
Specifically, the injection pipe 11 is provided with a pressure sensor 14 on the upstream side of the electromagnetic valve 10. The pressure sensor 14 detects the refrigerant pressure between the subcooler 5 and the electromagnetic valve 10. For this reason, you may provide the pressure sensor 14 in piping which connects the subcooler 5 and the solenoid valve 7. FIG. The injection pipe 11 is provided with a pressure sensor 15 between the electromagnetic valve 10 and the expansion mechanism 9. The pressure sensor 15 detects the pressure of the refrigerant flowing between the electromagnetic valve 10 and the expansion mechanism 9, in other words, the pressure of the refrigerant flowing into the expansion mechanism 9. In addition, in FIG. 1, although the pressure sensor 15 is provided in the injection piping 11 part upstream from the connection location with the 2nd end part 16b of the bypass piping 16, with the 2nd end part 16b of the bypass piping 16 You may provide the pressure sensor 15 in the injection piping 11 part downstream from a connection location.
Here, the pressure sensor 14 corresponds to the first pressure sensor of the present invention, and the pressure sensor 15 corresponds to the second pressure sensor of the present invention.
 制御装置50は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサともいう)で構成される。 The control device 50 is configured by dedicated hardware or a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor) that executes a program stored in a memory. .
 制御装置50が専用のハードウェアである場合、制御装置50は、例えば、単一回路、複合回路、ASIC(application specific integrated circuit)、FPGA(field-programmable gate array)、又はこれらを組み合わせたものが該当する。制御装置50が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 When the control device 50 is dedicated hardware, the control device 50 may be, for example, a single circuit, a composite circuit, an ASIC (application specific integrated circuit), an FPGA (field-programmable gate array), or a combination of these. Applicable. Each functional unit realized by the control device 50 may be realized by individual hardware, or each functional unit may be realized by one piece of hardware.
 制御装置50がCPUの場合、制御装置50が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアやファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置50の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリである。 When the control device 50 is a CPU, each function executed by the control device 50 is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in a memory. The CPU implements each function of the control device 50 by reading and executing a program stored in the memory. Here, the memory is a nonvolatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
 なお、制御装置50の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。 Note that a part of the function of the control device 50 may be realized by dedicated hardware, and a part may be realized by software or firmware.
 本実施の形態1に係る制御装置50は、機能部として、計時部51、比較部52及び制御部53を備えている。計時部51は、圧縮機2が起動してからの時間を計測するものである。比較部52は、ポンプダウン運転後に圧縮機2を再起動した際、インジェクション回路8の電磁弁10を開くか否かの指標とするため、圧力センサー14,15又は計時部の値と、比較値とを比較するものである。制御部53は、圧縮機2の起動、運転及び停止を制御するものである。また、制御部53は、電磁弁7,10,13の開閉、膨張機構6,9の開度等を制御するものである。 The control device 50 according to the first embodiment includes a time measuring unit 51, a comparison unit 52, and a control unit 53 as functional units. The timer 51 measures the time since the compressor 2 was started. When the compressor 2 is restarted after the pump-down operation, the comparison unit 52 serves as an index as to whether or not to open the electromagnetic valve 10 of the injection circuit 8, so that the value of the pressure sensor 14, 15 or the timing unit is compared with the comparison value Are compared. The control unit 53 controls the start, operation, and stop of the compressor 2. The control unit 53 controls opening / closing of the electromagnetic valves 7, 10, 13, opening degrees of the expansion mechanisms 6, 9, and the like.
[動作説明]
 続いて、本実施の形態1に係る冷凍空調装置100の動作について説明する。以下では、まず、圧縮機2を起動後、液ハンマー現象が発生しなくなった安定状態の動作について、説明する。その後、冷凍空調装置100において圧縮機2を停止させる際の、ポンプダウン運転について説明する。そして、最後に、ポンプダウン運転後に圧縮機2を再起動させる際の動作について説明する。
[Description of operation]
Subsequently, the operation of the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 will be described. Below, the operation | movement of the stable state which the liquid hammer phenomenon no longer generate | occur | produces first after starting the compressor 2 is demonstrated. Thereafter, the pump-down operation when the compressor 2 is stopped in the refrigeration air conditioner 100 will be described. And finally, the operation | movement at the time of restarting the compressor 2 after a pump down driving | operation is demonstrated.
(安定状態の動作)
 圧縮機2起動後の安定状態においては、制御装置50の制御部53は、電磁弁7,10を開き、圧縮機2の運転を継続している。また、制御部53は、膨張機構6,9を任意の開度に制御している。この際、バイパス回路12の電磁弁13は、閉じた状態でもよいし、開いた状態でもよい。本実施の形態1では、インジェクションする冷媒量を多く確保できるよう、バイパス回路12の電磁弁13を開いて運転している。
(Stable operation)
In the stable state after starting up the compressor 2, the control unit 53 of the control device 50 opens the electromagnetic valves 7 and 10 and continues the operation of the compressor 2. The control unit 53 controls the expansion mechanisms 6 and 9 to an arbitrary opening degree. At this time, the electromagnetic valve 13 of the bypass circuit 12 may be in a closed state or an open state. In Embodiment 1, the solenoid valve 13 of the bypass circuit 12 is opened and operated so as to ensure a large amount of refrigerant to be injected.
 このような状態においては、圧縮機2に吸入されたガス状冷媒は、高温高圧のガス状冷媒にまで圧縮される。この高温高圧のガス状冷媒は、圧縮機2から吐出され、凝縮器3に流入して熱交換し放熱することで凝縮し、気液二相状態又は液状の冷媒となって流出する。この冷媒は、過冷却器5に流入し、インジェクション配管11を流れる冷媒によって過冷却状態まで冷却される。過冷却状態となって過冷却器5を流出した冷媒は、蒸発器4側とインジェクション回路8に分岐される。蒸発器4側の液冷媒は、膨張機構6にて減圧膨張し、蒸発器4へ流入して熱交換し吸熱することで蒸発し、過熱ガスとなって圧縮機2へ吸込まれる。インジェクション回路8の液状冷媒は、膨張機構9で減圧膨張し、過冷却器5を流れる冷媒を冷却した後、圧縮機2の圧縮室へインジェクションされる。 In such a state, the gaseous refrigerant sucked into the compressor 2 is compressed to a high-temperature and high-pressure gaseous refrigerant. This high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 2, flows into the condenser 3, condenses by exchanging heat and dissipating heat, and flows out as a gas-liquid two-phase or liquid refrigerant. This refrigerant flows into the supercooler 5 and is cooled to the supercooled state by the refrigerant flowing through the injection pipe 11. The refrigerant flowing out of the supercooler 5 in the supercooled state is branched into the evaporator 4 side and the injection circuit 8. The liquid refrigerant on the evaporator 4 side is decompressed and expanded by the expansion mechanism 6, flows into the evaporator 4, evaporates by exchanging heat and absorbing heat, and becomes superheated gas and is sucked into the compressor 2. The liquid refrigerant in the injection circuit 8 is decompressed and expanded by the expansion mechanism 9, cools the refrigerant flowing through the subcooler 5, and is then injected into the compression chamber of the compressor 2.
 なお、制御部53による膨張機構6,9の開度の制御方法は任意であり、種々の公知の方法を用いればよい。例えば、蒸発器4から流出する冷媒の過熱度が規定値となるように、膨張機構6の開度を制御してもよい。また例えば、過冷却器5を流出した後のインジェクション配管11部分を流れるガス状冷媒の過熱度が規定値となるように、膨張機構9の開度を制御してもよい。また例えば、圧縮機2の吐出温度に基づいて、膨張機構9の開度を制御してもよい。 In addition, the control method of the opening degree of the expansion mechanisms 6 and 9 by the control unit 53 is arbitrary, and various known methods may be used. For example, the opening degree of the expansion mechanism 6 may be controlled so that the degree of superheat of the refrigerant flowing out of the evaporator 4 becomes a specified value. For example, the opening degree of the expansion mechanism 9 may be controlled so that the degree of superheat of the gaseous refrigerant flowing through the injection pipe 11 after flowing out of the supercooler 5 becomes a specified value. Further, for example, the opening degree of the expansion mechanism 9 may be controlled based on the discharge temperature of the compressor 2.
(ポンプダウン運転)
 ポンプダウン運転を行う際、制御装置50の制御部53は、電磁弁7,10,13を閉じる。そして、制御部53は、圧縮機2の運転を一定の間継続した後、圧縮機2を停止させる。この圧縮機2の運転は、例えば、圧縮機2の上流側(つまり吸入側)の圧力が所定の圧力に低下するまで継続される。また例えば、この圧縮機2の運転は、規定時間継続される。これにより、圧縮機2の上流側(つまり吸入側)に存在する冷媒が、圧縮機2により、圧縮機2の下流側(つまり吐出側)へと送出される。圧縮機2の上流側(つまり吸入側)に存在する冷媒とは、電磁弁7から圧縮機2の吸入側にかけて存在している冷媒、電磁弁10と圧縮機2との間となるインジェクション配管11部分に存在している冷媒、及び、電磁弁13から第2端部16bの間となるバイパス配管16部分に存在している冷媒である。圧縮機2の下流側(つまり吐出側)とは、圧縮機2の吐出側から電磁弁7までの冷凍サイクル回路1部分、電磁弁10よりも上流側となるインジェクション配管11部分、及び、第1端部16aから電磁弁13までのバイパス配管16部分である。
(Pump down operation)
When performing the pump-down operation, the control unit 53 of the control device 50 closes the electromagnetic valves 7, 10, and 13. And the control part 53 stops the compressor 2 after continuing the driving | operation of the compressor 2 for a fixed period. The operation of the compressor 2 is continued until, for example, the pressure on the upstream side (that is, the suction side) of the compressor 2 is reduced to a predetermined pressure. For example, the operation of the compressor 2 is continued for a specified time. Thereby, the refrigerant existing on the upstream side (that is, the suction side) of the compressor 2 is sent out to the downstream side (that is, the discharge side) of the compressor 2 by the compressor 2. The refrigerant existing on the upstream side (that is, the suction side) of the compressor 2 is the refrigerant existing from the solenoid valve 7 to the suction side of the compressor 2 and the injection pipe 11 between the solenoid valve 10 and the compressor 2. The refrigerant present in the portion and the refrigerant present in the bypass pipe 16 portion between the electromagnetic valve 13 and the second end portion 16b. The downstream side (that is, the discharge side) of the compressor 2 is the refrigeration cycle circuit 1 part from the discharge side of the compressor 2 to the electromagnetic valve 7, the injection pipe 11 part upstream of the electromagnetic valve 10, and the first This is a bypass pipe 16 portion from the end portion 16 a to the electromagnetic valve 13.
(圧縮機2の起動動作)
 図2は、本発明の実施の形態1に係る冷凍空調装置の冷凍サイクルを示すp-h線図である。また、図3は、本発明の実施の形態1に係る冷凍空調装置において、ポンプダウン運転後に圧縮機を再起動させる際の動作を説明するための説明図である。なお、図2(A)は、圧縮機2の再起動後、膨張機構9が破損するような衝撃の液ハンマー現象が発生し得る状態を示している。また、図2(B)は、図2(A)の状態の後の状態であり、膨張機構9が破損するような衝撃の液ハンマー現象が発生しなくなった状態を示している。つまり、図2(B)は、圧縮機2の再起動後に、インジェクション回路8の電磁弁10を開いてもよい状態を示している。
(Startup operation of compressor 2)
FIG. 2 is a ph diagram showing a refrigeration cycle of the refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention. Moreover, FIG. 3 is explanatory drawing for demonstrating the operation | movement at the time of restarting a compressor after pump down driving | operation in the refrigerating air conditioning apparatus which concerns on Embodiment 1 of this invention. FIG. 2A shows a state in which an impact liquid hammer phenomenon that can damage the expansion mechanism 9 may occur after the compressor 2 is restarted. FIG. 2B shows a state after the state of FIG. 2A, in which the liquid hammer phenomenon of impact that causes the expansion mechanism 9 to break is not generated. That is, FIG. 2B shows a state where the electromagnetic valve 10 of the injection circuit 8 may be opened after the compressor 2 is restarted.
 圧縮機2を再起動させる際、制御装置50の制御部53は、電磁弁7を開き、圧縮機2を起動させる。また、制御部53は、膨張機構6,9を任意の開度に制御する。ここで、インジェクション回路8の電磁弁10を開いた際、電磁弁10の前後の圧力差に応じた量の冷媒が、インジェクション回路8の膨張機構9に流入する。このため、電磁弁10の前後の圧力差がある規定圧力値よりも大きいと、多量の液状冷媒が膨張機構9に流入しようとして、該膨張機構9に衝突し、膨張機構9において液ハンマー現象が発生してしまう。特に、冷凍空調装置100は、過冷却器5を設けているので、膨張機構9に流入する冷媒の過冷却度が大きくなっている。つまり、膨張機構9に流入する冷媒の液密度が高くなるため、さらに多くの液状冷媒が膨張機構9へ流入しようとすることとなり、膨張機構9への衝撃力はさらに大きくって該膨張機構9の破損が懸念される。 When the compressor 2 is restarted, the control unit 53 of the control device 50 opens the electromagnetic valve 7 and starts the compressor 2. Moreover, the control part 53 controls the expansion mechanisms 6 and 9 to arbitrary opening. Here, when the electromagnetic valve 10 of the injection circuit 8 is opened, an amount of refrigerant corresponding to the pressure difference before and after the electromagnetic valve 10 flows into the expansion mechanism 9 of the injection circuit 8. For this reason, if the pressure difference between the front and rear of the solenoid valve 10 is larger than a specified pressure value, a large amount of liquid refrigerant tries to flow into the expansion mechanism 9 and collides with the expansion mechanism 9, and the liquid hammer phenomenon occurs in the expansion mechanism 9. Will occur. In particular, since the refrigerating and air-conditioning apparatus 100 includes the supercooler 5, the degree of supercooling of the refrigerant flowing into the expansion mechanism 9 is large. That is, since the liquid density of the refrigerant flowing into the expansion mechanism 9 increases, more liquid refrigerant tends to flow into the expansion mechanism 9, and the impact force on the expansion mechanism 9 is further increased and the expansion mechanism 9. There is concern about damage.
 上述した電磁弁10の前後の圧力差は、圧力センサー14,15の検出値から求めることができる。すなわち、電磁弁10の上流側の冷媒の圧力値は、圧力センサー14の検出値P14となる。また、電磁弁10の下流側の冷媒の圧力値は、圧力センサー15の検出値となる。このため、電磁弁10の前後の圧力差ΔP2は、次式(1)で求めることができる。
 ΔP2=P14-P15…(1)
The pressure difference before and after the electromagnetic valve 10 described above can be obtained from the detection values of the pressure sensors 14 and 15. That is, the pressure value of the refrigerant on the upstream side of the electromagnetic valve 10 becomes the detection value P14 of the pressure sensor 14. Further, the pressure value of the refrigerant on the downstream side of the electromagnetic valve 10 becomes a detection value of the pressure sensor 15. For this reason, the pressure difference ΔP2 before and after the electromagnetic valve 10 can be obtained by the following equation (1).
ΔP2 = P14−P15 (1)
 したがって、膨張機構9が破損するような衝撃の液ハンマー現象が発生する電磁弁10の前後の圧力差の最小値をΔP0とした場合、ΔP2がΔP0よりも小さくなった状態で電磁弁10を開けば、膨張機構9の破損を防止できる。そこで、本実施の形態1では、ΔP0に安全率として設定した係数α(1未満)を乗じた規定値ΔPα以下にΔP2がなったとき、電磁弁10を開き、膨張機構9の破損を防止している。 Therefore, when the minimum value of the pressure difference before and after the solenoid valve 10 in which the shocking liquid hammer phenomenon that causes the expansion mechanism 9 to be broken occurs is ΔP0, the solenoid valve 10 is opened with ΔP2 being smaller than ΔP0. In this case, the expansion mechanism 9 can be prevented from being damaged. Therefore, in the first embodiment, when ΔP2 becomes equal to or less than a specified value ΔPα obtained by multiplying ΔP0 by a coefficient α (less than 1) set as a safety factor, the electromagnetic valve 10 is opened to prevent the expansion mechanism 9 from being damaged. ing.
 詳しくは、図2(A)に示すように、圧縮機2を起動させた直後においては、インジェクション回路8の電磁弁10の上流側における冷媒の圧力は、図2(A)に示す冷凍サイクルの高圧Paとなる。すなわち、インジェクション回路8の電磁弁10の上流側における冷媒の圧力は、冷凍サイクル回路1内における圧縮機2の吐出側から過冷却器5の出口側までの圧力と同等の高圧となる。これに対して、インジェクション回路8の電磁弁10の下流側における冷媒の圧力は、図2に示す冷凍サイクルの低圧Pbとなる。すなわち、インジェクション回路8の電磁弁10の下流側における冷媒の圧力は、冷凍サイクル回路1内における膨張機構6の出口側から圧縮機2の吸入側までの圧力と同等の低圧となる。したがって、図2(A)及び図3に示すように、ΔP2=Pa-Pbは、ΔP0よりも大きくなる。 Specifically, as shown in FIG. 2 (A), immediately after the compressor 2 is started, the pressure of the refrigerant on the upstream side of the electromagnetic valve 10 of the injection circuit 8 is equal to that of the refrigeration cycle shown in FIG. 2 (A). High pressure Pa. That is, the pressure of the refrigerant on the upstream side of the electromagnetic valve 10 of the injection circuit 8 becomes a high pressure equivalent to the pressure from the discharge side of the compressor 2 to the outlet side of the subcooler 5 in the refrigeration cycle circuit 1. On the other hand, the pressure of the refrigerant on the downstream side of the electromagnetic valve 10 of the injection circuit 8 becomes the low pressure Pb of the refrigeration cycle shown in FIG. That is, the pressure of the refrigerant on the downstream side of the electromagnetic valve 10 of the injection circuit 8 becomes a low pressure equivalent to the pressure from the outlet side of the expansion mechanism 6 to the suction side of the compressor 2 in the refrigeration cycle circuit 1. Therefore, as shown in FIGS. 2A and 3, ΔP2 = Pa−Pb is larger than ΔP0.
 この状態でインジェクション回路8の電磁弁10を開くと、膨張機構9が破損するような衝撃の液ハンマー現象が発生する。このため、図3に示すように、本実施の形態1に係る冷凍空調装置100においては、制御装置50の制御部53は、電磁弁10を閉じた状態で圧縮機2を再起動させる。また、制御部53は、バイパス回路12の電磁弁13を開いた状態で圧縮機2を再起動させる。これにより、圧縮機2を起動させた際、過冷却器5で冷却された液状冷媒がバイパス配管16を通り、電磁弁10の下流側(電磁弁10と膨張機構9との間となるインジェクション配管11部分)に流入する。この際、上述のように、バイパス配管16の内径を、インジェクション配管11における膨張機構9よりも電磁弁10側の部分の内径よりも小さくしている。このため、バイパス配管16から電磁弁10の下流側に流入する液状冷媒の量は、膨張機構9が破損しない程度の量となる。なお、図2(A)に示す圧力Pcが、バイパス配管16から電磁弁10の下流側に流入する液状冷媒の圧力である。 If the solenoid valve 10 of the injection circuit 8 is opened in this state, a shocking liquid hammer phenomenon that causes the expansion mechanism 9 to break occurs. For this reason, as shown in FIG. 3, in the refrigerating and air-conditioning apparatus 100 according to Embodiment 1, the control unit 53 of the control device 50 restarts the compressor 2 with the electromagnetic valve 10 closed. Further, the control unit 53 restarts the compressor 2 with the electromagnetic valve 13 of the bypass circuit 12 opened. Thereby, when the compressor 2 is started, the liquid refrigerant cooled by the supercooler 5 passes through the bypass pipe 16 and is downstream of the solenoid valve 10 (injection pipe between the solenoid valve 10 and the expansion mechanism 9). 11 part). At this time, as described above, the inner diameter of the bypass pipe 16 is made smaller than the inner diameter of the portion of the injection pipe 11 closer to the electromagnetic valve 10 than the expansion mechanism 9. For this reason, the amount of the liquid refrigerant flowing from the bypass pipe 16 to the downstream side of the electromagnetic valve 10 is an amount that does not damage the expansion mechanism 9. Note that the pressure Pc shown in FIG. 2A is the pressure of the liquid refrigerant flowing from the bypass pipe 16 to the downstream side of the solenoid valve 10.
 電磁弁10を閉じ、電磁弁13を開いた状態で圧縮機2の運転を継続すると、図2(B)に示すように、電磁弁10の下流側(電磁弁10と膨張機構9との間となるインジェクション配管11部分)の冷媒の圧力Peが上昇し、圧力Pcに近づいてくる。そして、図3に示すように、規定時間T1後、ΔP2=Pa-Peが規定値ΔPα以下となる。この状態になると、インジェクション回路8の電磁弁10を開いても、膨張機構9が破損するような衝撃の液ハンマー現象は発生しない。このため、制御部53は、インジェクション回路8の電磁弁10を開き、上述の安定動作を行う。 When the operation of the compressor 2 is continued with the solenoid valve 10 closed and the solenoid valve 13 opened, as shown in FIG. 2B, the downstream side of the solenoid valve 10 (between the solenoid valve 10 and the expansion mechanism 9). The pressure Pe of the refrigerant in the injection pipe 11 portion) becomes higher and approaches the pressure Pc. Then, as shown in FIG. 3, after a specified time T1, ΔP2 = Pa−Pe becomes equal to or less than a specified value ΔPα. In this state, even if the solenoid valve 10 of the injection circuit 8 is opened, a shocking liquid hammer phenomenon that damages the expansion mechanism 9 does not occur. For this reason, the control part 53 opens the solenoid valve 10 of the injection circuit 8, and performs the above-mentioned stable operation.
 なお、上述のように、インジェクション配管11における膨張機構9よりも電磁弁10側の部分の内径は、バイパス配管16の内径よりも大きくなっている。このため、インジェクション回路8の電磁弁10を開いた際、図2(B)に示すように、電磁弁10の下流側(電磁弁10と膨張機構9との間となるインジェクション配管11部分)の冷媒の圧力Peよりも若干圧力が高い、圧力Pdの冷媒が、電磁弁10から下流側に流れ込む。 As described above, the inner diameter of the portion of the injection pipe 11 closer to the electromagnetic valve 10 than the expansion mechanism 9 is larger than the inner diameter of the bypass pipe 16. For this reason, when the solenoid valve 10 of the injection circuit 8 is opened, as shown in FIG. 2 (B), the downstream side of the solenoid valve 10 (the injection pipe 11 portion between the solenoid valve 10 and the expansion mechanism 9). A refrigerant having a pressure Pd slightly higher than the refrigerant pressure Pe flows from the solenoid valve 10 to the downstream side.
 最後に、図4及び図5を用いて、圧縮機2を再起動する際における電磁弁10の開閉制御の制御フローの一例について説明する。 Finally, an example of the control flow of the opening / closing control of the electromagnetic valve 10 when the compressor 2 is restarted will be described with reference to FIGS. 4 and 5.
 図4は、本発明の実施の形態1に係る冷凍空調装置において、圧縮機再起動時にインジェクション回路の電磁弁の開閉を制御する際の制御フローの一例である。
 制御部53は、圧縮機2を再起動する際(ステップS1)、インジェクション回路8の電磁弁10を閉じ、バイパス回路12の電磁弁13を開き、圧縮機2を起動させる(ステップS2)。その後、ステップS3において、圧力センサー14,15は、各センサー位置の冷媒の圧力P14,P15を検出する。また、ステップS3において、比較部52は、比較値であるP14-P15を算出し、つまりΔP2を算出し、該比較値と規定値ΔPαとを比較する。
FIG. 4 is an example of a control flow for controlling the opening / closing of the solenoid valve of the injection circuit when the compressor is restarted in the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
When restarting the compressor 2 (step S1), the control unit 53 closes the electromagnetic valve 10 of the injection circuit 8, opens the electromagnetic valve 13 of the bypass circuit 12, and starts the compressor 2 (step S2). Thereafter, in step S3, the pressure sensors 14 and 15 detect the refrigerant pressures P14 and P15 at the respective sensor positions. In step S3, the comparison unit 52 calculates P14-P15, which is a comparison value, that is, calculates ΔP2, and compares the comparison value with the specified value ΔPα.
 比較値であるP14-P15が規定値ΔPαよりも大きい場合、制御部53は、ステップS2に戻る。すなわち、制御部53は、インジェクション回路8の電磁弁10を閉じ、バイパス回路12の電磁弁13を開いた状態で、圧縮機2の運転を継続する。一方、比較値であるP14-P15が規定値ΔPα以下となった場合、制御部53は、インジェクション回路8の電磁弁10を開き(ステップS4)、電磁弁10の開閉制御を終了する(ステップS5)。 When the comparison value P14-P15 is larger than the specified value ΔPα, the control unit 53 returns to Step S2. That is, the control unit 53 continues the operation of the compressor 2 with the electromagnetic valve 10 of the injection circuit 8 closed and the electromagnetic valve 13 of the bypass circuit 12 opened. On the other hand, when the comparison value P14-P15 becomes equal to or less than the specified value ΔPα, the control unit 53 opens the electromagnetic valve 10 of the injection circuit 8 (step S4), and ends the opening / closing control of the electromagnetic valve 10 (step S5). ).
 図5は、本発明の実施の形態1に係る冷凍空調装置において、圧縮機再起動時にインジェクション回路の電磁弁の開閉を制御する際の制御フローの別の一例である。
 制御部53は、圧縮機2を再起動する際(ステップS11)、インジェクション回路8の電磁弁10を閉じ、バイパス回路12の電磁弁13を開き、圧縮機2を起動させる(ステップS12)。
FIG. 5 is another example of a control flow for controlling the opening and closing of the solenoid valve of the injection circuit when the compressor is restarted in the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
When restarting the compressor 2 (step S11), the control unit 53 closes the electromagnetic valve 10 of the injection circuit 8, opens the electromagnetic valve 13 of the bypass circuit 12, and starts the compressor 2 (step S12).
 図3で上述したように、圧縮機2を起動してから規定時間T1後、ΔP2が規定値ΔPα以下となる。このため、規定時間T1をあらかじめ求めておくことにより、圧縮機2が起動してからの時間に基づいて、電磁弁10を開くことも可能である。したがって、図5で示す制御フローでは、ステップS13において、計時部51は、圧縮機2が起動してからの運転時間Tを計測する。そして、ステップS13において、比較部52は、計時部51の検出時間であるTと規定時間T1とを比較する。 As described above with reference to FIG. 3, ΔP2 becomes equal to or less than the specified value ΔPα after the specified time T1 from the start of the compressor 2. For this reason, it is also possible to open the solenoid valve 10 based on the time after the compressor 2 is started by obtaining the specified time T1 in advance. Therefore, in the control flow shown in FIG. 5, in step S <b> 13, the timer unit 51 measures the operation time T after the compressor 2 is started. In step S13, the comparison unit 52 compares T, which is the detection time of the time measuring unit 51, with the specified time T1.
 計時部51の検出時間であるTが規定時間T1よりも短い場合、制御部53は、ステップS12に戻る。すなわち、制御部53は、インジェクション回路8の電磁弁10を閉じ、バイパス回路12の電磁弁13を開いた状態で、圧縮機2の運転を継続する。一方、計時部51の検出時間であるTが規定時間T1以上となった場合、制御部53は、インジェクション回路8の電磁弁10を開き(ステップS14)、電磁弁10の開閉制御を終了する(ステップS15)。 When the time T, which is the detection time of the time measuring unit 51, is shorter than the specified time T1, the control unit 53 returns to step S12. That is, the control unit 53 continues the operation of the compressor 2 with the electromagnetic valve 10 of the injection circuit 8 closed and the electromagnetic valve 13 of the bypass circuit 12 opened. On the other hand, when T, which is the detection time of the time measuring unit 51, is equal to or longer than the specified time T1, the control unit 53 opens the electromagnetic valve 10 of the injection circuit 8 (step S14) and ends the opening / closing control of the electromagnetic valve 10 ( Step S15).
 なお、図5で示した制御フローでは、圧力センサー14,15の値は用いていない。このため、図5の制御フローで電磁弁10の開閉を制御する場合には、圧力センサー14,15は不要である。一方、図4で示した制御フローでは、圧縮機2が起動してからの時間を用いていない。このため、図4の制御フローで電磁弁10の開閉を制御する場合には、計時部51は不要である。 In the control flow shown in FIG. 5, the values of the pressure sensors 14 and 15 are not used. For this reason, when the opening and closing of the solenoid valve 10 is controlled by the control flow of FIG. On the other hand, in the control flow shown in FIG. 4, the time since the compressor 2 was started is not used. For this reason, when the opening and closing of the solenoid valve 10 is controlled by the control flow of FIG.
 以上、本実施の形態1に係る冷凍空調装置100は、ポンプダウン運転後に圧縮機2を再起動する際、インジェクション回路8の電磁弁10を開く前にバイパス回路の電磁弁13を開くことにより、インジェクション回路8の膨張機構9に流入する液状冷媒の量を低減できる。このため、本実施の形態1に係る冷凍空調装置100は、インジェクション回路8の膨張機構9での液ハンマー現象を抑制することができ、膨張機構9が破損することを防止できる。 As described above, when the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 restarts the compressor 2 after the pump-down operation, by opening the electromagnetic valve 13 of the bypass circuit before opening the electromagnetic valve 10 of the injection circuit 8, The amount of liquid refrigerant flowing into the expansion mechanism 9 of the injection circuit 8 can be reduced. For this reason, the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 can suppress the liquid hammer phenomenon in the expansion mechanism 9 of the injection circuit 8 and can prevent the expansion mechanism 9 from being damaged.
 また、本実施の形態1に係る冷凍空調装置100は、インジェクション回路8のインジェクション配管11の内径を小さくすることなく、インジェクション回路8の膨張機構9での液ハンマー現象を抑制できる。このため、本実施の形態1に係る冷凍空調装置100は、安定状態に入った際、圧縮機2の圧縮室へインジェクションする冷媒量が不足することもない。 Further, the refrigerating and air-conditioning apparatus 100 according to the first embodiment can suppress the liquid hammer phenomenon in the expansion mechanism 9 of the injection circuit 8 without reducing the inner diameter of the injection pipe 11 of the injection circuit 8. For this reason, the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 does not have a shortage of refrigerant amount to be injected into the compression chamber of the compressor 2 when entering the stable state.
 また、本実施の形態1に係る冷凍空調装置100は、安定状態に入った際、バイパス配管16もインジェクション配管として機能させることができる。このため、圧縮機2の圧縮室へインジェクションする冷媒量をさらに増大させることもできる。 Moreover, when the refrigerating and air-conditioning apparatus 100 according to Embodiment 1 enters the stable state, the bypass pipe 16 can also function as an injection pipe. For this reason, the amount of refrigerant injected into the compression chamber of the compressor 2 can be further increased.
実施の形態2.
 実施の形態1においては、バイパス配管16の第1端部16aが、過冷却器5と電磁弁10との間に接続されていた。しかしながら、バイパス配管16の第1端部16aが凝縮器3と電磁弁10との間に接続されていれば、本発明を実施することができる。したがって、冷凍空調装置100を例えば以下のように構成してもよい。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
In the first embodiment, the first end portion 16 a of the bypass pipe 16 is connected between the subcooler 5 and the electromagnetic valve 10. However, if the first end 16a of the bypass pipe 16 is connected between the condenser 3 and the electromagnetic valve 10, the present invention can be implemented. Therefore, you may comprise the refrigerating and air-conditioning apparatus 100 as follows, for example. In the second embodiment, items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
 図6は、本発明の実施の形態2に係る冷凍空調装置の冷媒回路図である。
 本実施の形態2に係る冷凍空調装置100において、実施の形態1で示した冷凍空調装置100と異なる点は、バイパス配管16の第1端部16aの接続箇所である。本実施の形態2に係る冷凍空調装置100においては、バイパス配管16の第1端部16aは、凝縮器3と過冷却器5との間に接続されている。凝縮器3から流出する冷媒は、ガス状冷媒と液状冷媒とが混在する気液二相状態の冷媒、又は過冷却度の小さい液状冷媒となっている。このため、バイパス配管16へは、この気液二相状態又は過冷却度の小さい液状冷媒が流入する。気液二相状態の冷媒がバイパス配管16へ流入した場合、当然の如く、気液二相状態の冷媒としてバイパス配管16から流出する。また、過冷却度の小さい液状冷媒がバイパス配管16へ流入した場合、バイパス配管16に設けられた電磁弁13での圧力損失によって該液状冷媒が減圧膨張し、気液二相状態の冷媒としてバイパス配管16から流出する。
FIG. 6 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
The refrigerating and air-conditioning apparatus 100 according to the second embodiment is different from the refrigerating and air-conditioning apparatus 100 shown in the first embodiment in the connection location of the first end portion 16a of the bypass pipe 16. In the refrigerating and air-conditioning apparatus 100 according to Embodiment 2, the first end 16 a of the bypass pipe 16 is connected between the condenser 3 and the subcooler 5. The refrigerant flowing out of the condenser 3 is a gas-liquid two-phase refrigerant in which a gaseous refrigerant and a liquid refrigerant are mixed, or a liquid refrigerant having a small degree of supercooling. For this reason, this gas-liquid two-phase state or a liquid refrigerant with a small degree of supercooling flows into the bypass pipe 16. When the gas-liquid two-phase refrigerant flows into the bypass pipe 16, it naturally flows out of the bypass pipe 16 as a gas-liquid two-phase refrigerant. Further, when a liquid refrigerant having a small degree of supercooling flows into the bypass pipe 16, the liquid refrigerant is decompressed and expanded by a pressure loss in the electromagnetic valve 13 provided in the bypass pipe 16, and is bypassed as a gas-liquid two-phase refrigerant It flows out of the pipe 16.
 上述のように、膨張機構9での液ハンマー現象を抑制するためには、電磁弁10を閉じた状態において電磁弁13開いた際、電磁弁10が開いたときに膨張機構9に流入する液状冷媒よりも少量の液状冷媒が、膨張機構9に流入する必要がある。本実施の形態2では、バイパス配管16から流出する冷媒を、つまり膨張機構9に流入する冷媒を気液二相状態とすることにより、膨張機構9に流入しようとする液状冷媒の量を少なくしている。 As described above, in order to suppress the liquid hammer phenomenon in the expansion mechanism 9, when the electromagnetic valve 13 is opened when the electromagnetic valve 10 is closed, the liquid flowing into the expansion mechanism 9 when the electromagnetic valve 10 is opened. A smaller amount of liquid refrigerant than the refrigerant needs to flow into the expansion mechanism 9. In the second embodiment, the refrigerant flowing out of the bypass pipe 16, that is, the refrigerant flowing into the expansion mechanism 9 is made into a gas-liquid two-phase state, thereby reducing the amount of the liquid refrigerant that flows into the expansion mechanism 9. ing.
[動作説明]
 続いて、本実施の形態2に係る冷凍空調装置100の動作について説明する。
 本実施の形態2においては、圧縮機2起動後の安定状態における冷凍空調装置100の運転時、制御装置50の制御部53は、過冷却度が大きい液状冷媒を圧縮機2にインジェクションするため、バイパス回路12の電磁弁13を閉じる。この点が、圧縮機2起動後の安定状態における冷凍空調装置100の運転において、実施の形態1と異なる点である。本実施の形態2に係る冷凍空調装置100における安定状態の運転においては、その他の動作は、実施の形態1と同様である。また、本実施の形態2に係る冷凍空調装置100におけるポンプダウン運転は、実施の形態1と同様である。このため、以下では、ポンプダウン運転後に圧縮機2を再起動させる際の動作について説明する。
[Description of operation]
Subsequently, the operation of the refrigerating and air-conditioning apparatus 100 according to Embodiment 2 will be described.
In the second embodiment, the controller 53 of the control device 50 injects liquid refrigerant having a large degree of supercooling into the compressor 2 during operation of the refrigeration air conditioner 100 in a stable state after the compressor 2 is activated. The electromagnetic valve 13 of the bypass circuit 12 is closed. This point is different from the first embodiment in the operation of the refrigeration air conditioner 100 in a stable state after the compressor 2 is started. In the operation in the stable state in the refrigerating and air-conditioning apparatus 100 according to Embodiment 2, other operations are the same as those in Embodiment 1. Moreover, the pump-down operation in the refrigeration air conditioning apparatus 100 according to the second embodiment is the same as that of the first embodiment. For this reason, below, operation | movement at the time of restarting the compressor 2 after a pump down driving | operation is demonstrated.
 図7は、本発明の実施の形態2に係る冷凍空調装置の冷凍サイクルを示すp-h線図である。また、図8は、本発明の実施の形態2に係る冷凍空調装置において、ポンプダウン運転後に圧縮機を再起動させる際の動作を説明するための説明図である。なお、図7(A)は、圧縮機2の再起動後、膨張機構9が破損するような衝撃の液ハンマー現象が発生し得る状態を示している。また、図7(B)は、図7(A)の状態の後の状態であり、膨張機構9が破損するような衝撃の液ハンマー現象が発生しなくなった状態を示している。つまり、図7(B)は、圧縮機2の再起動後に、インジェクション回路8の電磁弁10を開いてもよい状態を示している。 FIG. 7 is a ph diagram showing the refrigeration cycle of the refrigeration air-conditioning apparatus according to Embodiment 2 of the present invention. Moreover, FIG. 8 is explanatory drawing for demonstrating the operation | movement at the time of restarting a compressor after pump down driving | operation in the refrigeration air conditioning apparatus which concerns on Embodiment 2 of this invention. FIG. 7A shows a state in which an impact liquid hammer phenomenon that can damage the expansion mechanism 9 may occur after the compressor 2 is restarted. FIG. 7B shows a state after the state of FIG. 7A, in which a shocking liquid hammer phenomenon that causes damage to the expansion mechanism 9 does not occur. That is, FIG. 7B shows a state where the electromagnetic valve 10 of the injection circuit 8 may be opened after the compressor 2 is restarted.
 圧縮機2を再起動させる際、制御装置50の制御部53は、電磁弁7を開き、圧縮機2を起動させる。また、制御部53は、膨張機構6,9を任意の開度に制御する。上述のように、電磁弁10の前後の圧力差ΔP2がΔP0よりも大きいと、膨張機構9が破損するような衝撃の液ハンマー現象が発生する。したがって、ΔP2がΔP0よりも小さくなった状態で電磁弁10を開けば、膨張機構9の破損を防止できる。そこで、本実施の形態2では、実施の形態1と同様に、ΔP0に安全率として設定した係数α(1未満)を乗じた規定値ΔPα以下にΔP2がなったとき、電磁弁10を開き、膨張機構9の破損を防止している。 When the compressor 2 is restarted, the control unit 53 of the control device 50 opens the electromagnetic valve 7 and starts the compressor 2. Moreover, the control part 53 controls the expansion mechanisms 6 and 9 to arbitrary opening. As described above, when the pressure difference ΔP2 before and after the electromagnetic valve 10 is larger than ΔP0, an impact liquid hammer phenomenon that causes the expansion mechanism 9 to break occurs. Therefore, if the solenoid valve 10 is opened in a state where ΔP2 is smaller than ΔP0, the expansion mechanism 9 can be prevented from being damaged. Therefore, in the second embodiment, similarly to the first embodiment, when ΔP2 becomes equal to or less than a predetermined value ΔPα obtained by multiplying ΔP0 by a coefficient α (less than 1) set as a safety factor, the solenoid valve 10 is opened, Damage to the expansion mechanism 9 is prevented.
 詳しくは、図7(A)に示すように、圧縮機2を起動させた直後においては、インジェクション回路8の電磁弁10の上流側における冷媒の圧力は、図7(A)に示す冷凍サイクルの高圧Paとなる。すなわち、インジェクション回路8の電磁弁10の上流側における冷媒の圧力は、冷凍サイクル回路1内における圧縮機2の吐出側から過冷却器5の出口側までの圧力と同等の高圧となる。これに対して、インジェクション回路8の電磁弁10の下流側における冷媒の圧力は、図7に示す冷凍サイクルの低圧Pbとなる。すなわち、インジェクション回路8の電磁弁10の下流側における冷媒の圧力は、冷凍サイクル回路1内における膨張機構6の出口側から圧縮機2の吸入側までの圧力と同等の低圧となる。したがって、図7(A)及び図8に示すように、ΔP2=Pa-Pbは、ΔP0よりも大きくなる。 Specifically, as shown in FIG. 7A, immediately after the compressor 2 is started, the pressure of the refrigerant on the upstream side of the electromagnetic valve 10 of the injection circuit 8 is equal to that of the refrigeration cycle shown in FIG. High pressure Pa. That is, the pressure of the refrigerant on the upstream side of the electromagnetic valve 10 of the injection circuit 8 becomes a high pressure equivalent to the pressure from the discharge side of the compressor 2 to the outlet side of the subcooler 5 in the refrigeration cycle circuit 1. On the other hand, the refrigerant pressure on the downstream side of the electromagnetic valve 10 of the injection circuit 8 is the low pressure Pb of the refrigeration cycle shown in FIG. That is, the pressure of the refrigerant on the downstream side of the electromagnetic valve 10 of the injection circuit 8 becomes a low pressure equivalent to the pressure from the outlet side of the expansion mechanism 6 to the suction side of the compressor 2 in the refrigeration cycle circuit 1. Therefore, as shown in FIGS. 7A and 8, ΔP2 = Pa−Pb is larger than ΔP0.
 この状態でインジェクション回路8の電磁弁10を開くと、膨張機構9が破損するような衝撃の液ハンマー現象が発生する。このため、図8に示すように、本実施の形態2に係る冷凍空調装置100においては、制御装置50の制御部53は、電磁弁10を閉じた状態で圧縮機2を再起動させる。また、制御部53は、バイパス回路12の電磁弁13を開いた状態で圧縮機2を再起動させる。これにより、圧縮機2を起動させた際、凝縮器3から流出した冷媒がバイパス配管16を通り、気液二相状態の冷媒となって電磁弁10の下流側(電磁弁10と膨張機構9との間となるインジェクション配管11部分)に流入する。このため、バイパス配管16から電磁弁10の下流側に流入する液状冷媒の量は、膨張機構9が破損しない程度の量となる。なお、図7(A)に示すように、バイパス配管16から電磁弁10の下流側に流入する液状冷媒の圧力をPfと表すこととする。 If the solenoid valve 10 of the injection circuit 8 is opened in this state, a shocking liquid hammer phenomenon that causes the expansion mechanism 9 to break occurs. For this reason, as shown in FIG. 8, in the refrigerating and air-conditioning apparatus 100 according to the second embodiment, the control unit 53 of the control device 50 restarts the compressor 2 with the electromagnetic valve 10 closed. Further, the control unit 53 restarts the compressor 2 with the electromagnetic valve 13 of the bypass circuit 12 opened. Thereby, when the compressor 2 is started, the refrigerant flowing out of the condenser 3 passes through the bypass pipe 16 and becomes a refrigerant in a gas-liquid two-phase state downstream of the solenoid valve 10 (the solenoid valve 10 and the expansion mechanism 9). It flows into the injection pipe 11 part) between. For this reason, the amount of the liquid refrigerant flowing from the bypass pipe 16 to the downstream side of the electromagnetic valve 10 is an amount that does not damage the expansion mechanism 9. As shown in FIG. 7A, the pressure of the liquid refrigerant flowing from the bypass pipe 16 to the downstream side of the solenoid valve 10 is represented as Pf.
 電磁弁10を閉じ、電磁弁13を開いた状態で圧縮機2の運転を継続すると、図7(B)に示すように、電磁弁10の下流側(電磁弁10と膨張機構9との間となるインジェクション配管11部分)の冷媒の圧力Phが上昇し、圧力Pfに近づいてくる。そして、図8に示すように、規定時間T2後、ΔP2=Pa-Phが規定値ΔPα以下となる。この状態になると、インジェクション回路8の電磁弁10を開いても、膨張機構9が破損するような衝撃の液ハンマー現象は発生しない。このため、制御部53は、インジェクション回路8の電磁弁10を開き、上述の安定動作を行う。
 なお、インジェクション回路8の電磁弁10を開いた際、図7(B)に示すように、電磁弁10の下流側(電磁弁10と膨張機構9との間となるインジェクション配管11部分)の冷媒の圧力Phよりも若干圧力が高い、圧力Pgの冷媒が、電磁弁10から下流側に流れ込む。
When the operation of the compressor 2 is continued with the solenoid valve 10 closed and the solenoid valve 13 opened, as shown in FIG. 7B, the downstream side of the solenoid valve 10 (between the solenoid valve 10 and the expansion mechanism 9). The pressure Ph of the refrigerant in the injection pipe 11 part) increases and approaches the pressure Pf. As shown in FIG. 8, after a specified time T2, ΔP2 = Pa−Ph becomes equal to or less than a specified value ΔPα. In this state, even if the solenoid valve 10 of the injection circuit 8 is opened, a shocking liquid hammer phenomenon that damages the expansion mechanism 9 does not occur. For this reason, the control part 53 opens the solenoid valve 10 of the injection circuit 8, and performs the above-mentioned stable operation.
When the solenoid valve 10 of the injection circuit 8 is opened, as shown in FIG. 7B, the refrigerant on the downstream side of the solenoid valve 10 (the injection pipe 11 portion between the solenoid valve 10 and the expansion mechanism 9). The refrigerant having the pressure Pg, which is slightly higher than the pressure Ph, flows from the solenoid valve 10 to the downstream side.
 最後に、圧縮機2を再起動する際における電磁弁10の開閉制御の制御フローの一例について説明する。例えば、本実施の形態2に係る冷凍空調装置100においても、実施の形態1の図4で説明した制御フローで電磁弁10の開閉を制御することができる。また例えば、図9に示すフローによって電磁弁10の開閉を制御することもできる。 Finally, an example of the control flow of the opening / closing control of the solenoid valve 10 when the compressor 2 is restarted will be described. For example, also in the refrigerating and air-conditioning apparatus 100 according to the second embodiment, the opening / closing of the electromagnetic valve 10 can be controlled by the control flow described in FIG. 4 of the first embodiment. Further, for example, the opening and closing of the electromagnetic valve 10 can be controlled by the flow shown in FIG.
 図9は、本発明の実施の形態2に係る冷凍空調装置において、圧縮機再起動時にインジェクション回路の電磁弁の開閉を制御する際の制御フローの一例である。
 制御部53は、圧縮機2を再起動する際(ステップS21)、インジェクション回路8の電磁弁10を閉じ、バイパス回路12の電磁弁13を開き、圧縮機2を起動させる(ステップS22)。
FIG. 9 is an example of a control flow for controlling the opening and closing of the solenoid valve of the injection circuit when the compressor is restarted in the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
When restarting the compressor 2 (step S21), the control unit 53 closes the electromagnetic valve 10 of the injection circuit 8, opens the electromagnetic valve 13 of the bypass circuit 12, and starts the compressor 2 (step S22).
 図8で上述したように、圧縮機2を起動してから規定時間T2後、ΔP2が規定値ΔPα以下となる。このため、規定時間T2をあらかじめ求めておくことにより、圧縮機2が起動してからの時間に基づいて、電磁弁10を開くことも可能である。したがって、図9で示す制御フローでは、ステップS23において、計時部51は、圧縮機2が起動してからの運転時間Tを計測する。そして、ステップS23において、比較部52は、計時部51の検出時間であるTと規定時間T2とを比較する。 As described above with reference to FIG. 8, ΔP2 becomes equal to or less than the specified value ΔPα after the specified time T2 after the compressor 2 is started. For this reason, it is also possible to open the solenoid valve 10 based on the time after the compressor 2 is started by obtaining the specified time T2 in advance. Therefore, in the control flow shown in FIG. 9, in step S <b> 23, the timer unit 51 measures the operation time T after the compressor 2 is started. In step S23, the comparison unit 52 compares T, which is the detection time of the time measuring unit 51, with the specified time T2.
 計時部51の検出時間であるTが規定時間T2よりも短い場合、制御部53は、ステップS22に戻る。すなわち、制御部53は、インジェクション回路8の電磁弁10を閉じ、バイパス回路12の電磁弁13を開いた状態で、圧縮機2の運転を継続する。一方、計時部51の検出時間であるTが規定時間T2以上となった場合、制御部53は、インジェクション回路8の電磁弁10を開き(ステップS24)、電磁弁10の開閉制御を終了する(ステップS25)。 If the time T, which is the detection time of the timer 51, is shorter than the specified time T2, the controller 53 returns to step S22. That is, the control unit 53 continues the operation of the compressor 2 with the electromagnetic valve 10 of the injection circuit 8 closed and the electromagnetic valve 13 of the bypass circuit 12 opened. On the other hand, when T, which is the detection time of the time measuring unit 51, is equal to or longer than the specified time T2, the control unit 53 opens the electromagnetic valve 10 of the injection circuit 8 (step S24) and ends the opening / closing control of the electromagnetic valve 10 ( Step S25).
 なお、図9で示した制御フローでは、圧力センサー14,15の値は用いていない。このため、図9の制御フローで電磁弁10の開閉を制御する場合には、圧力センサー14,15は不要である。 In the control flow shown in FIG. 9, the values of the pressure sensors 14 and 15 are not used. For this reason, when the opening and closing of the solenoid valve 10 is controlled by the control flow of FIG. 9, the pressure sensors 14 and 15 are unnecessary.
 以上、本実施の形態2に係る冷凍空調装置100は、実施の形態1と同様に、ポンプダウン運転後に圧縮機2を再起動する際、インジェクション回路8の電磁弁10を開く前にバイパス回路の電磁弁13を開くことにより、インジェクション回路8の膨張機構9に流入する液状冷媒の量を低減できる。このため、本実施の形態2に係る冷凍空調装置100は、実施の形態1と同様に、インジェクション回路8の膨張機構9での液ハンマー現象を抑制することができ、膨張機構9が破損することを防止できる。 As described above, the refrigerating and air-conditioning apparatus 100 according to the second embodiment has a bypass circuit before opening the solenoid valve 10 of the injection circuit 8 when the compressor 2 is restarted after the pump-down operation, as in the first embodiment. By opening the electromagnetic valve 13, the amount of liquid refrigerant flowing into the expansion mechanism 9 of the injection circuit 8 can be reduced. For this reason, the refrigerating and air-conditioning apparatus 100 according to the second embodiment can suppress the liquid hammer phenomenon in the expansion mechanism 9 of the injection circuit 8 and damage the expansion mechanism 9 as in the first embodiment. Can be prevented.
 また、本実施の形態2に係る冷凍空調装置100は、実施の形態1と同様に、インジェクション回路8のインジェクション配管11の内径を小さくすることなく、インジェクション回路8の膨張機構9での液ハンマー現象を抑制できる。このため、本実施の形態2に係る冷凍空調装置100は、実施の形態1と同様に、安定状態に入った際、圧縮機2の圧縮室へインジェクションする冷媒量が不足することもない。 Further, the refrigerating and air-conditioning apparatus 100 according to the second embodiment has a liquid hammer phenomenon in the expansion mechanism 9 of the injection circuit 8 without reducing the inner diameter of the injection pipe 11 of the injection circuit 8 as in the first embodiment. Can be suppressed. For this reason, the refrigerating and air-conditioning apparatus 100 according to the second embodiment does not have a shortage of the amount of refrigerant injected into the compression chamber of the compressor 2 when entering the stable state, as in the first embodiment.
 また、本実施の形態2に係る冷凍空調装置100は、バイパス配管16から気液二相状態の冷媒をインジェクション回路8の電磁弁10の下流側に流入させ、インジェクション回路8の膨張機構9での液ハンマー現象を抑制している。このため、本実施の形態2に係る冷凍空調装置100は、実施の形態1と異なり、バイパス配管16の内径を小さくする必要がない。このため、本実施の形態2に係る冷凍空調装置100は、圧縮機2が再起動してから安定状態になるまでの時間T2を、実施の形態1における圧縮機2が再起動してから安定状態になるまでの時間T1よりも短くすることができる。 Further, the refrigerating and air-conditioning apparatus 100 according to the second embodiment causes the refrigerant in the gas-liquid two-phase state to flow into the downstream side of the electromagnetic valve 10 of the injection circuit 8 from the bypass pipe 16, and the expansion mechanism 9 of the injection circuit 8 The liquid hammer phenomenon is suppressed. For this reason, unlike the first embodiment, the refrigerating and air-conditioning apparatus 100 according to the second embodiment does not need to reduce the inner diameter of the bypass pipe 16. For this reason, the refrigerating and air-conditioning apparatus 100 according to the second embodiment stabilizes the time T2 from when the compressor 2 is restarted until it becomes stable after the compressor 2 according to the first embodiment is restarted. It can be made shorter than the time T1 until the state is reached.
 1 冷凍サイクル回路、2 圧縮機、3 凝縮器、4 蒸発器、5 過冷却器、6 膨張機構、7 電磁弁、8 インジェクション回路、9 膨張機構、10 電磁弁、11 インジェクション配管、12 バイパス回路、13 電磁弁、14 圧力センサー、15 圧力センサー、16 バイパス配管、16a 第1端部、16b 第2端部、50 制御装置、51 計時部、52 比較部、53 制御部、100 冷凍空調装置。 1 refrigeration cycle circuit, 2 compressor, 3 condenser, 4 evaporator, 5 supercooler, 6 expansion mechanism, 7 solenoid valve, 8 injection circuit, 9 expansion mechanism, 10 solenoid valve, 11 injection piping, 12 bypass circuit, 13 solenoid valve, 14 pressure sensor, 15 pressure sensor, 16 bypass piping, 16a first end, 16b second end, 50 control device, 51 timing unit, 52 comparison unit, 53 control unit, 100 refrigeration air conditioner.

Claims (7)

  1.  圧縮機、凝縮器、第1膨張機構及び蒸発器が配管接続された冷凍サイクル回路と、
     前記凝縮器と前記第1膨張機構との間の配管に設けられた第1電磁弁と、
     前記凝縮器と前記第1電磁弁との間に設けられ、前記凝縮器から流出した冷媒を冷却する過冷却器と、
     一端が前記過冷却器と前記第1電磁弁との間に接続され、他端が前記圧縮機の圧縮室に連通するインジェクション配管と、
     該インジェクション配管に設けられた第2電磁弁と、
     前記インジェクション配管における前記第2電磁弁と前記圧縮機との間となる位置に設けられた第2膨張機構と、
     第1端部が前記凝縮器と前記第2電磁弁との間に接続され、第2端部が前記第2電磁弁と前記第2膨張機構との間に接続されたバイパス配管と、
     該バイパス配管に設けられた第3電磁弁と、
     を備え、
     前記第2電磁弁を閉じた状態において前記第3電磁弁が開かれた際、前記第2電磁弁が開いたときに前記第2膨張機構に流入する液状冷媒よりも少量の液状冷媒が、前記第2膨張機構に流入する構成である冷凍空調装置。
    A refrigeration cycle circuit in which a compressor, a condenser, a first expansion mechanism, and an evaporator are connected by piping;
    A first solenoid valve provided in a pipe between the condenser and the first expansion mechanism;
    A subcooler provided between the condenser and the first solenoid valve for cooling the refrigerant flowing out of the condenser;
    One end is connected between the subcooler and the first solenoid valve, and the other end communicates with a compression chamber of the compressor;
    A second solenoid valve provided in the injection pipe;
    A second expansion mechanism provided at a position between the second solenoid valve and the compressor in the injection pipe;
    A bypass pipe having a first end connected between the condenser and the second solenoid valve, and a second end connected between the second solenoid valve and the second expansion mechanism;
    A third solenoid valve provided in the bypass pipe;
    With
    When the third solenoid valve is opened with the second solenoid valve closed, a smaller amount of liquid refrigerant flows into the second expansion mechanism when the second solenoid valve is opened. A refrigeration air conditioner configured to flow into the second expansion mechanism.
  2.  前記バイパス配管の前記第1端部は、前記過冷却器と前記第2電磁弁との間に接続されている請求項1に記載の冷凍空調装置。 The refrigerating and air-conditioning apparatus according to claim 1, wherein the first end of the bypass pipe is connected between the supercooler and the second electromagnetic valve.
  3.  前記バイパス配管の内径が、前記インジェクション配管における前記第2膨張機構よりも前記第2電磁弁側の部分の内径よりも小さい請求項2に記載の冷凍空調装置。 The refrigerating and air-conditioning apparatus according to claim 2, wherein an inner diameter of the bypass pipe is smaller than an inner diameter of a portion on the second solenoid valve side than the second expansion mechanism in the injection pipe.
  4.  前記バイパス配管の前記第1端部は、前記凝縮器と前記過冷却器との間に接続されている請求項1に記載の冷凍空調装置。 The refrigerating and air-conditioning apparatus according to claim 1, wherein the first end of the bypass pipe is connected between the condenser and the supercooler.
  5.  前記バイパス配管に流入した冷媒は、気液二相状態の冷媒として流出する構成である請求項4に記載の冷凍空調装置。 The refrigerating and air-conditioning apparatus according to claim 4, wherein the refrigerant that has flowed into the bypass pipe flows out as a gas-liquid two-phase refrigerant.
  6.  前記過冷却器と前記第2電磁弁との間の冷媒の圧力を検出する第1圧力センサーと、
     前記第2電磁弁と前記第2膨張機構との間の冷媒の圧力を検出する第2圧力センサーと、
     前記第1圧力センサーの検出値と前記第2圧力センサーの検出値との差である比較値と、規定値とを比較する比較部と、
     前記圧縮機が起動されるときには前記第2電磁弁を閉状態にすると共に前記第3電磁弁を開状態にしておき、前記圧縮機の起動後に前記比較部において前記比較値が前記規定値以下になった際、前記第2電磁弁を開く制御部と、
     を備えた請求項1~請求項5に記載の冷凍空調装置。
    A first pressure sensor for detecting a pressure of the refrigerant between the subcooler and the second electromagnetic valve;
    A second pressure sensor for detecting a pressure of the refrigerant between the second electromagnetic valve and the second expansion mechanism;
    A comparison unit that compares a comparison value that is a difference between a detection value of the first pressure sensor and a detection value of the second pressure sensor with a specified value;
    When the compressor is started, the second solenoid valve is closed and the third solenoid valve is opened. After the compressor is started, the comparison value is less than the specified value in the comparison unit. A control unit that opens the second solenoid valve,
    The refrigerating and air-conditioning apparatus according to claim 1, further comprising:
  7.  前記圧縮機が起動してからの時間を計測する計時部と、
     前記計時部の検出時間と規定時間とを比較する比較部と、
     前記圧縮機が起動されるときには前記第2電磁弁を閉状態にすると共に前記第3電磁弁を開状態にしておき、前記比較部において前記計時部の検出時間が前記規定時間以上になった際、前記第2電磁弁を開く制御部と、
     を備えた請求項1~請求項5に記載の冷凍空調装置。
    A time measuring unit for measuring the time since the compressor was started,
    A comparison unit for comparing the detection time of the timekeeping unit with a specified time;
    When the compressor is started, the second solenoid valve is closed and the third solenoid valve is opened, and when the detection time of the time measuring unit is equal to or longer than the specified time in the comparison unit A control unit for opening the second solenoid valve;
    The refrigerating and air-conditioning apparatus according to claim 1, further comprising:
PCT/JP2016/070375 2016-07-11 2016-07-11 Refrigerating and air-conditioning apparatus WO2018011841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070375 WO2018011841A1 (en) 2016-07-11 2016-07-11 Refrigerating and air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/070375 WO2018011841A1 (en) 2016-07-11 2016-07-11 Refrigerating and air-conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2018011841A1 true WO2018011841A1 (en) 2018-01-18

Family

ID=60952398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070375 WO2018011841A1 (en) 2016-07-11 2016-07-11 Refrigerating and air-conditioning apparatus

Country Status (1)

Country Link
WO (1) WO2018011841A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110425112A (en) * 2019-08-12 2019-11-08 郑州海尔空调器有限公司 The control method of the air-conditioning of anti-compressor liquid hammer and anti-compressor liquid hammer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148566U (en) * 1984-03-13 1985-10-02 株式会社小松製作所 heat pump
JPH02187567A (en) * 1989-01-13 1990-07-23 Mitsubishi Electric Corp Freezing device
JPH05164413A (en) * 1991-12-13 1993-06-29 Daikin Ind Ltd Refrigerator
JPH08233379A (en) * 1995-02-24 1996-09-13 Mitsubishi Heavy Ind Ltd Refrigerator
US20020021972A1 (en) * 2000-03-16 2002-02-21 Igor Vaisman Capacity control of refrigeration systems
WO2013001688A1 (en) * 2011-06-29 2013-01-03 三菱電機株式会社 Refrigeration-cycle device
WO2015136706A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigerating device
EP3023711A1 (en) * 2014-11-20 2016-05-25 Vaillant GmbH Energy control for vapour injection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148566U (en) * 1984-03-13 1985-10-02 株式会社小松製作所 heat pump
JPH02187567A (en) * 1989-01-13 1990-07-23 Mitsubishi Electric Corp Freezing device
JPH05164413A (en) * 1991-12-13 1993-06-29 Daikin Ind Ltd Refrigerator
JPH08233379A (en) * 1995-02-24 1996-09-13 Mitsubishi Heavy Ind Ltd Refrigerator
US20020021972A1 (en) * 2000-03-16 2002-02-21 Igor Vaisman Capacity control of refrigeration systems
WO2013001688A1 (en) * 2011-06-29 2013-01-03 三菱電機株式会社 Refrigeration-cycle device
WO2015136706A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Refrigerating device
EP3023711A1 (en) * 2014-11-20 2016-05-25 Vaillant GmbH Energy control for vapour injection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110425112A (en) * 2019-08-12 2019-11-08 郑州海尔空调器有限公司 The control method of the air-conditioning of anti-compressor liquid hammer and anti-compressor liquid hammer
CN110425112B (en) * 2019-08-12 2022-09-06 郑州海尔空调器有限公司 Compressor liquid impact prevention air conditioner and compressor liquid impact prevention control method

Similar Documents

Publication Publication Date Title
US8733118B2 (en) Heat pump water heater outdoor unit and heat pump water heater
US10788256B2 (en) Cooling device
KR102242776B1 (en) Air Conditioner and Controlling method for the same
US10330350B2 (en) Air conditioning system, compression system with gas secondary injection and judgment and control method thereof
US8181480B2 (en) Refrigeration device
US9651288B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
EP2015004B1 (en) Air conditioner
US20150135752A1 (en) Refrigerating apparatus
EP2752628A1 (en) Supercritical cycle and heat pump hot-water supplier using same
EP2873934A1 (en) Heat-pump-type heating device
JP2008096033A (en) Refrigerating device
US20120167604A1 (en) Refrigeration cycle apparatus
WO2016139783A1 (en) Refrigeration cycle device
JP5730074B2 (en) Hot water system
WO2018011841A1 (en) Refrigerating and air-conditioning apparatus
KR102240070B1 (en) Air Conditioner and Controlling method for the same
JP6076583B2 (en) heat pump
JP2012052736A (en) Hot water supply system and method of controlling heat pump device
KR20090068972A (en) Air conditioning system
WO2020179005A1 (en) Refrigeration cycle device
JP2007147274A (en) Refrigerating device
JP2017067397A (en) Refrigerator
JP6819186B2 (en) Refrigeration equipment
JP2757689B2 (en) Refrigeration equipment
JPH11237126A (en) Refrigerating device coping with hfc series refrigerant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP