WO2018008197A1 - Photosemiconductor element with reflection layer and phosphor layer - Google Patents

Photosemiconductor element with reflection layer and phosphor layer Download PDF

Info

Publication number
WO2018008197A1
WO2018008197A1 PCT/JP2017/010725 JP2017010725W WO2018008197A1 WO 2018008197 A1 WO2018008197 A1 WO 2018008197A1 JP 2017010725 W JP2017010725 W JP 2017010725W WO 2018008197 A1 WO2018008197 A1 WO 2018008197A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
semiconductor element
layer
phosphor layer
reflective layer
Prior art date
Application number
PCT/JP2017/010725
Other languages
French (fr)
Japanese (ja)
Inventor
誠 常
広和 松田
広希 河野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017046042A external-priority patent/JP2018014480A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2018008197A1 publication Critical patent/WO2018008197A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to an optical semiconductor element with a reflective layer and a phosphor layer.
  • a white light emitting device (white light semiconductor device) is known as a light emitting device capable of emitting high energy light.
  • the white light emitting device includes, for example, a diode substrate that supplies power to the LED, an LED (light emitting diode) that is mounted thereon and emits blue light, and a phosphor layer that can convert blue light into yellow light and covers the LED And a sealing layer that seals the LED and a reflective layer that is provided around the LED and reflects light forward.
  • a white light emitting device has high energy by mixing color of blue light emitted from the LED and transmitted through the sealing layer and the phosphor layer, and yellow light in which part of the blue light is wavelength-converted in the phosphor layer. Of white light.
  • a phosphor layer formed so that the lower surface has the same shape as the upper surface of the light emitting diode element and the upper surface is wide is disposed on the upper surface (light emitting surface) of the light emitting diode element.
  • the reflective resin layer is disposed on the side surface of the light emitting diode element.
  • FIG. 7 (e) of JP2012-222315A is a diagrammatic representation of JP2012-222315A.
  • the light emitting device of Patent Document 1 in the phosphor layer, the upper surface of the light emitting diode element and the lower surface of the phosphor layer are formed in the same pattern. Therefore, when the phosphor layer is disposed on the upper surface of the light emitting diode element, if the position of the phosphor layer is shifted in the width direction, there is a portion where the phosphor layer is not disposed on the upper surface of the light emitting diode element. There arises a problem that desired optical characteristics cannot be exhibited. For this reason, the light emitting device of Patent Document 1 requires high positional accuracy in the width direction, and improvement thereof is desired.
  • An object of the present invention is to provide a reflection layer and an optical semiconductor element with a phosphor layer, which can manufacture an optical semiconductor device having good directivity and front illuminance and improved positional accuracy. .
  • the present invention [1] includes an optical semiconductor element having a light emitting surface and an opposing surface arranged to face the light emitting surface at an interval in the vertical direction, a phosphor layer covering at least the light emitting surface, and the light A reflection layer disposed on the outer side in the orthogonal direction perpendicular to the vertical direction with respect to both the semiconductor element and the phosphor layer, and the phosphor layer is an inner portion disposed on the upper side of the optical semiconductor element And a reflecting layer and a phosphor layer-attached optical semiconductor element having an outer portion disposed on or including a virtual surface extending outside the optical semiconductor element along the light emitting surface. Yes.
  • the reflective layer is arranged on the outer side in the orthogonal direction with respect to both the optical semiconductor element and the phosphor layer. For this reason, the light emitted or reflected from the side surfaces of the phosphor layer and the optical semiconductor element can be reflected upward. Therefore, directivity and front illuminance are good.
  • the phosphor layer has an outer portion disposed on a virtual surface extending outside the optical semiconductor element or an outer portion disposed so as to include the virtual surface. For this reason, the lower surface of the phosphor layer is wider than the light emitting surface of the optical semiconductor element. Therefore, when the phosphor layer is disposed on the light emitting surface of the light emitting diode element, even if the position of the phosphor layer is shifted in a direction orthogonal to the desired position, the outer portion of the phosphor layer is The light emitting surface can be reliably coated. As a result, the positional accuracy of the phosphor layer with respect to the optical semiconductor element is improved in the orthogonal direction.
  • the present invention [2] includes the optical semiconductor element with a reflective layer and a phosphor layer according to [1], which satisfies the following formulas (1) and (2).
  • A represents the vertical distance between the light emitting surface and the top surface of the phosphor layer.
  • Y represents the vertical distance between the light emitting surface and the inner edge of the upper edge of the reflective layer.
  • An attached optical semiconductor element is included.
  • Such an optical semiconductor element with a reflective layer and a phosphor layer has a better front illuminance.
  • the present invention [4] includes the optical semiconductor element with a reflective layer and a phosphor layer according to any one of the above [1] to [3], which satisfies the following formula (3).
  • B represents the distance between the edge of the facing surface of the optical semiconductor element and the inner edge of the lower edge of the reflective layer.
  • X represents the edge of the light emitting surface of the optical semiconductor element. And the distance in the orthogonal direction between the phosphor layer and the outer edge on the virtual plane.
  • the invention [5] is any one of the above [1] to [4], wherein the reflective layer is in contact with the entire side surface between the light emitting surface and the facing surface of the optical semiconductor element.
  • the optical semiconductor element with a reflecting layer and fluorescent substance layer of description is included.
  • Such an optical semiconductor element with a reflective layer and a phosphor layer has better directivity and front illuminance.
  • the present invention [6] is any one of the above [1] to [3], wherein the phosphor layer is in contact with the entire side surface between the light emitting surface and the facing surface of the optical semiconductor element. And an optical semiconductor element with a phosphor layer and a phosphor layer.
  • Such an optical semiconductor element with a reflective layer and a phosphor layer has good light extraction efficiency.
  • the invention [7] includes the reflective layer and the optical semiconductor element with a phosphor layer according to any one of the above [1] to [6], further comprising a diffusion layer disposed on the phosphor layer. Contains.
  • Such an optical semiconductor element with a reflective layer and a phosphor layer has better directivity and front illuminance.
  • the present invention [8] includes the optical semiconductor element with a reflective layer and a phosphor layer according to the above [7], which satisfies the following formula (4).
  • Such an optical semiconductor element with a reflective layer and a phosphor layer has a better front illuminance.
  • the optical semiconductor element with the reflective layer and the phosphor layer of the present invention it is possible to manufacture an optical semiconductor device having good directivity and front illuminance while improving the positional accuracy of the phosphor layer with respect to the optical semiconductor element. it can.
  • FIG. 1A to 1B show a first embodiment of an optical semiconductor element with a reflective layer and a phosphor layer according to the present invention
  • FIG. 1A is a plan view
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A.
  • . 2A to 2G are process diagrams of the manufacturing method of the optical semiconductor element with the reflective layer and the phosphor layer in FIG. 1.
  • FIG. 2A is a temporary fixing sheet preparation process
  • FIG. 2B is a temporary fixing process
  • FIG. 2D shows a phosphor layer removing process
  • FIG. 2E shows a reflective layer forming process
  • FIG. 2F shows a cutting process
  • FIG. 2G shows a mounting process.
  • FIG. 2A is a temporary fixing sheet preparation process
  • FIG. 2B is a temporary fixing process
  • FIG. 2D shows a phosphor layer removing process
  • FIG. 2E shows a reflective layer forming process
  • FIG. 2F shows a cutting process
  • FIG. 3 shows a modified example of the first embodiment, in which the upper surface of the phosphor layer is positioned below the upper end of the reflective layer.
  • FIG. 4 shows a modification of the first embodiment, in which the upper surface of the phosphor layer is positioned above the upper end of the reflective layer.
  • FIG. 5 is a modification of the first embodiment, and shows a mode in which a diffusion layer is provided on the upper surface of the phosphor layer.
  • 6A to 6B show a second embodiment of an optical semiconductor element with a reflective layer and a phosphor layer according to the present invention, FIG. 6A is a plan view, and FIG. 6B is a cross-sectional view taken along line BB of FIG. 6A. .
  • FIG. 7A to 7E are process diagrams of the method of manufacturing the optical semiconductor element with the reflective layer and the phosphor layer in FIG. 6, in which FIG. 7A is a fluorescent layer preparation process, FIG. 7B is an element arrangement process, and FIG. The fluorescent layer removing step, FIG. 7D shows the reflective layer forming step, and FIG. 7E shows the cutting step.
  • FIG. 8 shows a modification of the second embodiment, in which the side surface of the phosphor layer is formed so as to become wider toward the upper side.
  • FIG. 9 is a modified example of the second embodiment and shows a mode in which a diffusion layer is provided on the upper surface of the phosphor layer.
  • FIG. 10A to 10B show a third embodiment of the optical semiconductor element with a reflective layer and a phosphor layer according to the present invention
  • FIG. 10A is a plan view
  • FIG. 10B is a cross-sectional view taken along line AA in FIG. 10A.
  • . 11A to 11G are process diagrams of the method of manufacturing the optical semiconductor element with the reflective layer and the phosphor layer in FIG. 10.
  • FIG. 11A is a provisional fixing sheet preparation process
  • FIG. 11B is a provisional fixing process
  • FIG. 11D shows a phosphor layer removing process
  • FIG. 11E shows a reflective layer forming process (before the reflective layer is formed)
  • FIG. 11F shows a reflective layer forming process (after the reflective layer is formed)
  • FIG. The cutting process is shown.
  • FIG. 12 shows an optical semiconductor element with a reflective layer and a phosphor layer of a comparative example, in which a reflective layer is not provided on the side of the phosphor layer.
  • FIG. 13 shows an optical semiconductor element with a reflective layer and a phosphor layer of a comparative example, in which the phosphor layer does not include an outer portion extending outside the optical semiconductor element.
  • the vertical direction of the paper is the vertical direction (first direction, thickness direction)
  • the upper side of the paper is the upper side (one side in the first direction, the one side in the thickness direction)
  • the lower side of the paper is the lower side (the other side in the first direction).
  • the other side in the thickness direction The left-right direction on the paper surface is the left-right direction (second direction orthogonal to the first direction, an example of the orthogonal direction to the up-down direction)
  • the left side of the paper is the left side (second side in the second direction)
  • the right side of the paper is the right side (the other in the second direction).
  • the paper thickness direction is the front-rear direction (the third direction orthogonal to the first direction and the second direction, an example of the orthogonal direction to the vertical direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (The other side in the third direction). Specifically, it conforms to the direction arrow in each figure.
  • the element with two layers is not an optical semiconductor device (light emitting device), that is, does not include a substrate (electrode substrate) provided in the optical semiconductor device.
  • the element with two layers includes an optical semiconductor element, a phosphor layer, and a reflective layer (reflective member), and optionally includes a diffusion layer.
  • the element with two layers is preferably composed of an optical semiconductor element, a phosphor layer and a reflective layer, or is composed of an optical semiconductor element, a phosphor layer, a reflective layer and a diffusion layer. That is, the element with two layers is configured so as not to be electrically connected to the electrode provided on the substrate of the optical semiconductor device.
  • the two-layered element is a part of an optical semiconductor device, that is, a part for producing the optical semiconductor device, and is a device that is distributed by itself and is industrially usable.
  • the element with two layers 1 includes an optical semiconductor element 2, a phosphor layer 3, and a reflective layer 4.
  • the optical semiconductor element 2 is, for example, an LED (light emitting diode element) or LD (semiconductor laser element) that converts electrical energy into optical energy.
  • the optical semiconductor element 2 is a blue LED that emits blue light.
  • the optical semiconductor element 2 does not include a rectifier (semiconductor element) such as a transistor having a technical field different from that of the optical semiconductor element.
  • the optical semiconductor element 2 has a substantially flat plate shape along the left-right direction and the front-rear direction.
  • the optical semiconductor element 2 has a substantially rectangular shape in plan view (preferably, a substantially square shape in plan view).
  • the optical semiconductor element 2 includes a light emitting surface 21, a facing surface 22, and a side surface 23.
  • the light emitting surface 21 is the upper surface of the optical semiconductor element 2.
  • the light emitting surface 21 has a flat shape.
  • a phosphor layer 3 (described later) is provided on the light emitting surface 21.
  • the facing surface 22 is a lower surface of the optical semiconductor element 2 and is a surface on which the electrode 24 is formed.
  • the facing surface 22 is disposed to face the light emitting surface 21 with a space on the lower side.
  • a plurality (two) of the electrodes 24 are provided and have a shape that slightly protrudes downward from the facing surface 22.
  • the side surface 23 connects the peripheral edge of the light emitting surface 21 and the peripheral edge of the facing surface 22.
  • the thickness is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, more preferably 10 ⁇ m or more. And, for example, 500 ⁇ m or less, preferably 200 ⁇ m or less.
  • the length in the left-right direction and / or the front-rear direction of the optical semiconductor element 2 is, for example, 200 ⁇ m or more, preferably 500 ⁇ m or more, and for example, 3000 ⁇ m or less, preferably 2000 ⁇ m or less.
  • the phosphor layer 3 is disposed on the upper side and the side of the optical semiconductor element 2 so as to cover the light emitting surface 21 and the side surface 23 of the optical semiconductor element 2.
  • the phosphor layer 3 has a substantially rectangular shape in plan view (preferably, a substantially square shape in plan view), and is formed so as to include the optical semiconductor element 2 when projected in the vertical direction.
  • the phosphor layer 3 includes an inner portion 31 disposed above the optical semiconductor element 2 and an outer portion 32 disposed outside the inner portion 31.
  • the inner portion 31 has a substantially flat plate shape along the left-right direction and the front-rear direction, and is formed to have the same shape as the optical semiconductor element 2 in plan view. That is, the entire lower surface of the inner portion 31 is in contact with and covers the entire light emitting surface 21 of the optical semiconductor element 2.
  • the outer portion 32 has a substantially rectangular frame shape in plan view extending in the vertical direction.
  • the outer portion 32 includes an upper portion 32a and a lower portion 32b.
  • the outer portion 32 includes a virtual surface 6 that extends outward in the left-right direction and the front-rear direction of the optical semiconductor element 2 along the light-emitting surface 21 between the upper portion 32 a and the lower portion 32 b. That is, the outer portion 32 is partitioned by the virtual surface 6 into an upper portion 32 a and a lower portion 32 b in the vertical direction.
  • the upper part 32a of the outer part 32 is disposed outside the inner part 31, and the peripheral edge of the inner part 31 and the inner peripheral edge of the upper part 32a are integrally continuous.
  • the lower part 32b of the outer part 32 is arranged outside the optical semiconductor element 2 so as to be in contact with and cover the side surface 23 of the optical semiconductor element 2. That is, the inner peripheral end surface of the lower portion 32 b is in contact with the entire side surface 23 of the optical semiconductor element 2.
  • the thickness of the inner portion 31 of the phosphor layer 3, that is, the vertical distance between the light emitting surface 21 and the upper surface of the phosphor layer 3 (A shown in FIG. 1B) is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more. For example, it is 300 micrometers or less, Preferably, it is 150 micrometers or less.
  • the ratio between the vertical distance A and the length of the light emitting surface 21 in the horizontal direction or the longitudinal direction (distance in the orthogonal direction) is, for example, 1: 100 to 30: 100, preferably 5: 100 to 15: 100. is there.
  • the distance in the left-right direction or the front-rear direction with respect to (point k) is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 70 ⁇ m or more, and, for example, 2000 ⁇ m or less, preferably Is 1500 ⁇ m or less, more preferably 500 ⁇ m or less, and even more preferably 150 ⁇ m or less.
  • the ratio between the distance X and the length of the light emitting surface 21 in the left-right direction or the front-rear direction is, for example, 1: 100 to 150: 100, preferably 5: 100 to 100: 100, more preferably 7: 100 to 50: 100.
  • the phosphor layer 3 is formed of, for example, a phosphor composition containing a phosphor and a resin.
  • the phosphor converts the wavelength of the light emitted from the optical semiconductor element 2.
  • Examples of the phosphor include a yellow phosphor that can convert blue light into yellow light, and a red phosphor that can convert blue light into red light.
  • yellow phosphor examples include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca- ⁇ -SiAlON.
  • silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)
  • Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce
  • red phosphor examples include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape.
  • the average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less. But there is.
  • Fluorescent substances can be used alone or in combination of two or more.
  • the blending ratio of the phosphor is, for example, 10% by mass or more, preferably 20% by mass or more, and for example, 80% by mass or less, preferably 70% by mass or less with respect to the phosphor composition.
  • the resin is a matrix in which the phosphor is uniformly dispersed in the phosphor composition
  • examples of the resin include a curable resin and a thermoplastic resin.
  • a curable resin is used.
  • the curable resin include thermosetting resins such as a two-stage reaction curable resin and a one-stage reaction curable resin.
  • the two-stage reaction curable resin has two reaction mechanisms.
  • the A stage state is changed to the B stage (semi-cured), and then in the second stage reaction, the B stage state is obtained.
  • C-stage complete curing
  • the two-stage reaction curable resin is a thermosetting resin that can be in a B-stage state under appropriate heating conditions.
  • the B stage state is a state between the A stage state where the thermosetting resin is in a liquid state and the fully cured C stage state, and curing and gelation proceed slightly, and the compression elastic modulus is C stage.
  • the first-stage reaction curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state by the first-stage reaction.
  • a one-stage reaction curable resin can stop the reaction in the middle of the first-stage reaction and change from the A-stage state to the B-stage state.
  • the reaction is restarted, and the thermosetting resin that can be C-staged (completely cured) from the B-stage state is included. That is, the thermosetting resin includes a thermosetting resin that can be in a B-stage state.
  • the one-stage reaction curable resin cannot be controlled to stop in the middle of the one-stage reaction, that is, cannot enter the B stage state, and is changed from the A stage state to the C stage (completely cured). ) Can be included.
  • thermosetting resin includes a thermosetting resin that can be in a B-stage state.
  • thermosetting resin examples include silicone resin, epoxy resin, urethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin.
  • the thermosetting resin that can be in the B-stage state preferably includes a silicone resin and an epoxy resin, and more preferably includes a silicone resin.
  • silicone resin examples include a phenyl silicone resin containing a phenyl group in the molecule, for example, a methyl silicone resin containing a methyl group in the molecule.
  • Thermosetting resins can be used alone or in combination of two or more.
  • the blending ratio of the resin is the remainder of the blending ratio of the phosphor (and additive), and is, for example, 20% by mass or more, preferably 30% by mass or more, and, for example, 90% by mass with respect to the phosphor composition. It is not more than mass%, preferably not more than 80 mass%.
  • the fluorescent composition may contain known additives (described later) such as light diffusing particles (described later), fillers (described later), thixotropic particles (described later) in an appropriate ratio.
  • the mixing ratio of the light diffusing particles is, for example, 1% by mass or more, preferably 10% by mass or more, and, for example, 60% by mass or less with respect to the fluorescent composition. Preferably, it is 50 mass% or less.
  • the blending ratio of the filler is, for example, 1% by mass or more, preferably 10% by mass or more, and, for example, 60% by mass or less, preferably, with respect to the fluorescent composition. It is 50 mass% or less.
  • the mixing ratio of the thixotropy-imparting particles is, for example, 0.1% by mass or more, preferably 0.5% by mass or more with respect to the fluorescent composition. It is 10 mass% or less, Preferably, it is 3 mass% or less.
  • the reflection layer 4 is disposed on the outer side in the left-right direction and on the outer side in the front-rear direction with respect to both the optical semiconductor element 2 and the phosphor layer 3.
  • the reflective layer 4 has a substantially rectangular frame shape in plan view extending in the vertical direction.
  • the inner peripheral edge (surface) of the reflective layer 4 is in contact with and covers the entire side surface of the phosphor layer 3.
  • the reflective layer 4 is disposed so as to include the optical semiconductor element 2 and the phosphor layer 3 when projected in the left-right direction or the front-rear direction.
  • the upper edge of the reflective layer 4 coincides with the upper surface of the phosphor layer 3 in the vertical direction
  • the lower edge of the reflective layer 4 is the lower surface of the phosphor layer 3 and the opposite surface of the optical semiconductor element 2 in the vertical direction.
  • Matches 22 That is, the reflective layer 4 is formed such that its upper surface is flush with the upper surface of the phosphor layer 3 and its lower surface is flush with the lower surface of the phosphor layer 3 and the opposing surface 22 of the optical semiconductor element 2. Has been.
  • the reflective layer 4 preferably satisfies the following formula (1), more preferably the following formula (1 ′), and still more preferably the following formula (1 ′′).
  • 100 ° ⁇ 1 ⁇ 160 ° (1 ′) 100 ° ⁇ 1 ⁇ 150 ° ( 1 ′′) ⁇ 1 is a straight line L 1 connecting the edge (point m) of the light emitting surface 21 of the optical semiconductor element 2 and the inner edge (point n) of the upper edge of the reflective layer 4 along the left-right direction or the front-rear direction in plan view. An angle formed by the light emitting surface 21 (see FIG. 1B) is shown.
  • the vertical distance Y between the light emitting surface 21 of the optical semiconductor element 2 and the inner edge (point n) of the upper edge of the reflective layer 4 (that is, the intersection of the inner edge of the reflective layer 4 and the virtual surface 6 (
  • the distance Y) between the point k) and the inner edge (point n) of the upper end edge of the reflective layer 4 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, more preferably 150 ⁇ m or more. It is 800 ⁇ m or less, preferably 500 ⁇ m or less, and more preferably 250 ⁇ m or less.
  • the reflective layer 4 extends in the vertical direction so as to be substantially perpendicular to the facing surface 22 of the optical semiconductor element 2. That is, the angle ⁇ 2 formed by the inner edge surface of the reflective layer 4 and the lowermost surface of the phosphor layer 3 is, for example, 88 ° or more and 92 ° or less from the viewpoint of manufacturability, directivity, and illuminance. The angle is preferably 90 °.
  • the length of the reflective layer 4 in the left-right direction or the front-rear direction exceeds, for example, 0 ⁇ m from the viewpoint of directivity,
  • the thickness is 50 ⁇ m or more, more preferably 100 ⁇ m or more, and for example, 500 ⁇ m or less, preferably 300 ⁇ m or less.
  • the distance in the left-right direction or the front-rear direction from the inner edge of the lower end edge of the reflective layer 4 to the edge of the facing surface 22 of the optical semiconductor element 2 exceeds, for example, 0 ⁇ m, preferably It is 10 ⁇ m or more, more preferably 50 ⁇ m or more, still more preferably 70 ⁇ m or more, and for example, 2000 ⁇ m or less, preferably 1500 ⁇ m or less, more preferably 500 ⁇ m or less, and further preferably 150 ⁇ m or less.
  • the reflective layer 4 has a reflectance of 70% or more, preferably 80% or more, more preferably 90% or more, for example, 100% when irradiated with light having a wavelength of 450 nm with a thickness of 100 ⁇ m. It is as follows. By setting the reflectance within the above range, the front illuminance can be further improved.
  • the method for measuring the reflectance can be obtained by measuring the reflectance at a wavelength of 450 nm using an ultraviolet-visible near-infrared spectrophotometer with an optical path confirmation method using an integrating sphere.
  • the reflective layer 4 has a light transmittance of, for example, 20% or less, preferably 10% or less when irradiated with light having a wavelength of 450 nm with a thickness of 100 ⁇ m.
  • the method for measuring the light transmittance will be described in detail in Examples.
  • the reflective layer 4 is formed of, for example, a reflective composition containing a light reflection component and a resin.
  • the light reflecting component is a particle that reflects without transmitting light, and examples thereof include white particles such as white inorganic particles and white organic particles.
  • white inorganic particles are used from the viewpoint of illuminance and durability.
  • Examples of the material constituting the white inorganic particles include oxides such as titanium oxide, zinc oxide, zirconium oxide, and aluminum oxide, such as carbonates such as lead white (basic lead carbonate) and calcium carbonate, such as kaolin. Clay minerals. From the viewpoint of illuminance, an oxide is preferable, and titanium oxide is more preferable.
  • the average particle diameter of the light reflection component is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, and for example, 10 ⁇ m or less, preferably 2.0 ⁇ m or less.
  • the average particle diameter of the particles is calculated as a D50 value, and specifically measured by a laser diffraction particle size distribution meter.
  • the content ratio of the light reflection component is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and, for example, 50% by mass or less with respect to the reflective composition. Preferably, it is 30 mass% or less.
  • Resin is a matrix that uniformly disperses the light reflecting component in the reflective composition.
  • the resin is the same as the resin contained in the fluorescent composition.
  • the blending ratio of the resin is the balance of the blending ratio of the light reflection component (and additive), and for example, 10% by mass or more, preferably 20% by mass or more, more preferably, with respect to the reflective composition, For example, it is 99% by mass or less, preferably 75% by mass or less, and more preferably less than 50% by mass.
  • the reflective composition can also contain additives such as light diffusing particles, fillers, and thixotropic particles at an appropriate ratio.
  • the light diffusing particles are transparent particles that diffuse light and include, for example, particles having a high refractive index difference from the resin.
  • the refractive index difference between the light diffusing particles and the resin is, for example, 0.04 or more, preferably 0.10 or more, and, for example, 0.50 or less.
  • Specific examples include light diffusing inorganic particles and light diffusing organic particles.
  • Examples of the light diffusing inorganic particles include silica particles and composite inorganic oxide particles (such as glass particles).
  • the composite inorganic oxide particles are preferably glass particles, specifically containing silica or silica and boron oxide as main components, and also containing aluminum oxide, calcium oxide, zinc oxide, strontium oxide, Magnesium oxide, zirconium oxide, barium oxide, antimony oxide and the like are contained as accessory components.
  • the content ratio of the main component in the composite inorganic oxide particles is, for example, 40% by mass or more, preferably 50% by mass or more, and for example, 90% by mass or less, preferably with respect to the composite inorganic oxide particles. 80% by mass or less.
  • the content ratio of the subcomponent is the remainder of the content ratio of the main component described above.
  • Examples of the light diffusing organic particles include acrylic resin particles, styrene resins, acrylic-styrene resin particles, silicone resin particles, polycarbonate resin particles, benzoguanamine resin particles, polyolefin resin particles, and polyester resin particles. , Polyamide resin particles, polyimide resin particles, and the like.
  • the refractive index of the light diffusing particles is, for example, 1.40 or more and 1.60 or less.
  • the refractive index difference between the light diffusing particles and the resin is, for example, 0.04 or more, preferably 0.10 or more, and, for example, 0.50 or less.
  • the refractive index is measured by, for example, an Abbe refractometer.
  • the light diffusing particles are preferably light diffusing inorganic particles, and more preferably silica particles and composite inorganic oxide particles, from the viewpoint of light diffusibility and durability.
  • the average particle diameter of the light diffusing particles is, for example, 1.0 ⁇ m or more, preferably 5.0 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the content ratio of the light diffusing particles is, for example, 1% by mass or more, preferably 10% by mass or more, more preferably 20% by mass with respect to the reflective composition. %, For example, 50% by mass or less, preferably 40% by mass or less.
  • the filler is a transparent particle having a low refractive index difference from the resin. Specifically, particles having a refractive index difference with the resin of 0.03 or less, preferably 0.01 or less. Thereby, the rigidity of the reflective layer 4 can be improved while ensuring the transparency of the reflective layer 4.
  • the refractive index of the filler is, for example, 1.40 or more, preferably 1.45 or more, and for example, 1.60 or less, preferably 1.55 or less.
  • Such a filler examples include particles of the same material as the light diffusing particles, preferably inorganic particles, and more preferably silica particles and composite inorganic oxide particles (such as glass particles).
  • the average particle diameter of the filler is, for example, 1.0 ⁇ m or more, preferably 5.0 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • light diffusing particles or fillers are appropriately distinguished according to the difference in refractive index of the resin even if the materials are the same.
  • the content ratio of the filler is, for example, 1% by mass or more, preferably 10% by mass or more, more preferably more than 20% by mass with respect to the reflective composition. For example, it is 50 mass% or less, Preferably, it is 40 mass% or less.
  • the thixotropy-imparting particles are particles for imparting or improving the thixotropy of the reflective composition, and preferably include nano silica such as fumed silica (fumed silica) from the viewpoint of reflectivity.
  • the fumed silica may be, for example, either hydrophobic fumed silica whose surface is hydrophobized by a surface treating agent such as dimethyldichlorosilane or silicone oil, or hydrophilic fumed silica that is not surface-treated.
  • the average particle diameter of nano silica is, for example, 1 nm or more, preferably 5 nm or more, and for example, 200 nm or less, preferably 50 nm or less.
  • the specific surface area of nanosilica (particularly fumed silica) (BET method), for example, 50 m 2 / g or more, preferably not 200 meters 2 / g or more, and is, for example, at most 500m 2 / g.
  • the content ratio of the thixotropic particles in the reflective composition is, for example, 0.1% by mass or more, preferably 0.5% by mass or more. 10% by mass or less, preferably 3% by mass or less.
  • the half-value angle of light emitted from the element with two layers 1 is, for example, 130 degrees or less, preferably 125 degrees or less, more preferably 120 degrees or less, and for example, 90 degrees or more, preferably 100 degrees. More than degrees.
  • the method for measuring the half-value angle will be described in detail in Examples.
  • the orientation angle (COA) of light emitted from the element with two layers 1 is, for example, 0.10 degrees or less, preferably 0.05 degrees or less, more preferably 0.03 degrees or less, , 0.01 degrees or more.
  • the method for measuring the orientation angle will be described in detail in Examples.
  • the front illuminance of the light emitted from the two-layered element 1 is, for example, more than 60%, preferably 100% or more, more preferably 110% or more, and further preferably 120% or more. For example, it is 130% or less.
  • the method for measuring the front illuminance will be described in detail in Examples.
  • the manufacturing method of the element 1 with two layers 1 of the first embodiment is equipped with a temporary fixing sheet preparation process, a temporary fixing process, a fluorescent substance layer formation process, a fluorescent substance layer removal process, a reflective layer formation process, and a cutting process, for example.
  • a temporarily fixing sheet is prepared.
  • the temporary fixing sheet 40 can be a known or commercially available sheet, and includes, for example, a support base 41 and a pressure-sensitive adhesive layer 42 disposed on the support base 41.
  • Examples of the support substrate 41 include polymer films such as polyethylene films and polyester films (PET), for example, ceramic sheets, and metal foils.
  • PET polyester films
  • the pressure sensitive adhesive layer 42 is disposed on the entire upper surface of the support base material 41.
  • the pressure-sensitive adhesive layer 42 has a sheet shape on the upper surface of the support substrate 41.
  • the pressure-sensitive adhesive layer 42 is formed from a pressure-sensitive adhesive whose pressure-sensitive adhesive force is reduced by, for example, treatment (for example, irradiation of ultraviolet rays or heating).
  • the thickness of the pressure-sensitive adhesive layer 42 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the plurality of optical semiconductor elements 2 are temporarily fixed on the temporary fixing sheet 40 at intervals in the left-right direction and the front-rear direction.
  • the opposing surfaces 22 of the plurality of optical semiconductor elements 2 are pressure-sensitive bonded to the upper surface of the pressure-sensitive adhesive layer 42.
  • the optical semiconductor element 2 is pressed against the pressure-sensitive adhesive layer 42 so that the plurality of electrodes 24 are buried in the pressure-sensitive adhesive layer 42.
  • the phosphor layer 3 is disposed on the temporary fixing sheet 40 so as to cover the optical semiconductor element 2.
  • a phosphor transfer sheet in which the phosphor layer 3 is disposed on the release sheet is prepared, and then the optical semiconductor element 2 is disposed so that the optical semiconductor element 2 is buried in the phosphor layer 3.
  • the phosphor transfer sheet is pressed and laminated against the temporarily fixed sheet 40, and then the release sheet is peeled from the phosphor layer 3.
  • a phosphor composition and a solvent are blended to prepare a varnish of the phosphor composition, and the varnish is applied to the surface of the release sheet and dried. Thereafter, when the fluorescent composition contains a thermosetting resin that can be in a B-stage state, the fluorescent composition is B-staged (semi-cured). Specifically, the fluorescent composition is heated. Thereby, the phosphor layer 3 is formed on the release sheet.
  • the light emitting surface 21 and the side surface 23 of the optical semiconductor element 2 and the upper surface of the temporary fixing sheet 40 (the upper surface exposed from the optical semiconductor element 2) are covered with the phosphor layer 3. That is, the optical semiconductor element assembly 9 with a phosphor layer is obtained.
  • the phosphor layer 3 between the adjacent optical semiconductor elements 2 is removed so that the phosphor layer 3 has a desired size.
  • the phosphor layer 3 is cut into a substantially grid shape in plan view.
  • a gap 44 is formed in a portion where the phosphor layer 3 is removed.
  • the reflective layer 4 is formed in the gap 44 in the reflective layer forming step.
  • a reflection layer transfer sheet in which a reflection layer 4 having a desired pattern is arranged on a release sheet is prepared, and subsequently, the optical semiconductor with a phosphor layer is filled so that the gap 44 is filled with the reflection layer 4.
  • the reflective layer transfer sheet is pressed against the element assembly 9 and laminated, and then the release sheet is peeled from the reflective layer 4.
  • the reflective layer transfer sheet for example, a reflective composition and a solvent are blended to prepare a varnish of the reflective composition, and the varnish is applied to the surface of the release sheet and dried. Thereafter, when the reflective composition contains a thermosetting resin that can be in a B-stage state, the reflective composition is made into a B-stage (semi-cured). Specifically, the reflective composition is heated. Thereby, the reflective layer 4 is formed. Thereafter, the reflective layer 4 is patterned by a known method so as to have a pattern corresponding to the gap 44.
  • the varnish can be heated and dried by directly potting the varnish of the reflective composition into the gap 44 without using the reflective layer transfer sheet.
  • the phosphor layer 3 and / or the reflective layer 4 contains a thermosetting resin and is in the B-stage state or the A-stage state
  • the phosphor layer is further heated by, for example, an oven. 3 and / or the reflective layer 4 is cured (completely cured, C-staged).
  • the plurality of optical semiconductor elements 2, the phosphor layer 3, and the reflective layer 4 are laminated on the temporarily fixing sheet 40. That is, the optical semiconductor element assembly 10 with a reflective layer and a phosphor layer is obtained.
  • the optical semiconductor element assembly 10 with the reflective layer and the phosphor layer is cut (separated).
  • the reflective layer 4 is cut between the optical semiconductor elements 2 adjacent to each other as indicated by the phantom lines in FIG. 2E. As a result, the plurality of optical semiconductor elements 2 are separated into pieces.
  • a dicing apparatus using a narrow disk-shaped dicing saw for example, a cutting apparatus using a cutter, for example, a cutting apparatus such as a laser irradiation apparatus is used.
  • the temporary fixing sheet 40 is peeled from the optical semiconductor element 2 as indicated by a virtual line in FIG. 2F.
  • an optical semiconductor device 8 such as a light emitting diode device can be obtained by flip-chip mounting the element with two layers 1 on an electrode substrate 7 such as a diode substrate.
  • the electrode substrate 7 has a substantially flat plate shape. Specifically, the electrode substrate 7 is formed of a laminated plate in which a conductor layer is laminated as a circuit pattern on the upper surface of an insulating substrate.
  • the insulating substrate is made of, for example, a silicon substrate, a ceramic substrate, a plastic substrate (for example, a polyimide resin substrate), or the like.
  • the conductor layer is made of a conductor such as gold, copper, silver, or nickel.
  • the conductor layer includes an electrode (not shown) for electrical connection with the single optical semiconductor element 2.
  • the thickness of the electrode substrate 7 is, for example, 25 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the reflective layer 4 is disposed on the outer side in the left-right direction and the front-rear direction with respect to both the optical semiconductor element 2 and the phosphor layer 3. For this reason, the light emitted or reflected from the phosphor layer 3 and the side surface 23 of the optical semiconductor element 2 can be reflected upward. Therefore, directivity and front illuminance are good.
  • the phosphor layer 3 is in contact with the entire side surface 23 of the optical semiconductor element 2. For this reason, the light extraction efficiency is improved.
  • the phosphor layer 3 has an outer portion 32 arranged so as to include the virtual surface 6 extending to the outside of the optical semiconductor element 2. Therefore, when the phosphor layer 3 is disposed on the light emitting surface 21 of the optical semiconductor element 2 (see, for example, FIG. 2C and FIG. 2D), the phosphor layer 3 is assumed to be laterally moved from the light emitting surface 21 of the optical semiconductor element 2. Or even if it deviates in the front-rear direction, it is possible to suppress the occurrence of an uncoated portion where the phosphor layer 3 is not coated on the light emitting surface 21 of the optical semiconductor element 2. That is, the outer portion 32 of the phosphor layer 3 can reliably cover the light emitting surface 21 of the optical semiconductor element 2. As a result, the positional accuracy of the phosphor layer 3 with respect to the optical semiconductor element 2 is improved in the left-right direction and the front-rear direction.
  • the two-layered element 1 is a component for manufacturing an optical semiconductor device 8 such as a light-emitting diode device by being mounted on an electrode substrate 7 such as a diode substrate.
  • an optical semiconductor device 8 such as a light-emitting diode device
  • an electrode substrate 7 such as a diode substrate.
  • the element with two layers 1 can be checked for light emitting performance (directivity, illuminance, color, etc.) by connecting to a test device before being mounted on the electrode substrate 7. Therefore, when the optical semiconductor device 8 incompatible with the desired performance is generated, the recovery operation of the electrode substrate 7 incorporated in the optical semiconductor device 8 can be prevented in advance. This is useful as a manufacturing part.
  • the optical semiconductor element 2, the phosphor layer 3, and the reflective layer 4 are formed in a substantially square shape in plan view.
  • a part or all of these are formed in a substantially rectangular shape in plan view. You can also.
  • the point X is such that the distance X between the edge (point m) of the light emitting surface 21 of the optical semiconductor element 2 and the outer edge (point k) on the light emitting surface 21 of the phosphor layer 3 is the shortest.
  • Select m and point k are determined based on the selected point m, point k, and side sectional view at that time.
  • it is preferable that the expressions (1) to (2 ′) are satisfied under the condition that the point m and the point k are selected so that at least X is the shortest.
  • the equations (1) to (2 ′) are satisfied even when the above ⁇ 1 or the like is determined in the side sectional view orthogonal to the selected side sectional view.
  • the phosphor layer 3 is formed so that the upper surface thereof is flush with the upper surface of the reflective layer 4.
  • the upper surface is located below the upper surface of the reflective layer 4.
  • the phosphor layer 3 is formed so that the upper surface thereof is flush with the upper surface of the reflective layer 4.
  • the upper surface of the reflective layer 4 may be positioned above the upper surface.
  • the vertical distance (YA) from the inner edge (point n) of the upper edge of the reflective layer 4 to the upper surface of the phosphor layer 3 is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less, and for example, 0 ⁇ m or more.
  • the upper surface of the phosphor layer 3 is exposed, but for example, as shown in FIG. 5, a diffusion layer 5 can be disposed on the upper surface of the phosphor layer 3.
  • the diffusion layer 5 has a substantially flat plate shape along the left-right direction and the front-rear direction, and is formed to have the same shape as the inner portion 31 of the phosphor layer 3 in plan view. Further, the upper surface of the diffusion layer 5 coincides with the upper end edge of the reflection layer 4 in the vertical direction. That is, the diffusion layer 5 is formed so that the upper surface thereof is flush with the upper surface of the reflection layer 4.
  • the thickness (length in the vertical direction, C shown in FIG. 5) of the diffusion layer 5 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 240 ⁇ m or less, preferably 150 ⁇ m or less.
  • the diffusion layer 5 has a light transmittance of 60% or more, preferably 80% or more, for example, 100% or less, when irradiated with light having a wavelength of 450 nm with a thickness of 100 ⁇ m.
  • the diffusion layer 5 is made of, for example, a diffusion transparent composition containing a transparent resin and light diffusing particles.
  • the transparent resin the same resin as that described above in the reflective layer 4 can be used, and a silicone resin is preferable.
  • the blending ratio of the transparent resin is, for example, 5% by mass or more, preferably 10% by mass or more, more preferably 25% by mass or more, for example, 99% by mass with respect to the diffusing transparent composition.
  • it is preferably 80% by mass or less, and more preferably less than 50% by mass.
  • the light diffusing particles may be the same as the light diffusing particles described above in the reflective layer 4.
  • light diffusing inorganic particles having a high refractive index difference from a transparent resin for example, silicone resin
  • silicon oxide particles are more preferable.
  • the content ratio of the light diffusing particles is, for example, 1% by mass or more, preferably 20% by mass or more, more preferably more than 50% by mass with respect to the diffusing transparent composition, and for example, 95% by mass.
  • it is preferably 90% by mass or less, more preferably 75% by mass or less, and further preferably 40% by mass or less.
  • the diffusive transparent composition can also contain known additives such as fillers and thixotropic particles at an appropriate ratio.
  • the filler may be the same as the filler described above in the reflective layer 4, and preferably silica particles and composite inorganic oxide particles (such as glass particles).
  • the blending ratio of the filler is, for example, 1% by mass or more, preferably 10% by mass or more, more preferably more than 20% by mass with respect to the diffusing transparent composition. For example, it is 50% by mass or less, preferably 40% by mass or less.
  • the thixotropic property-imparting particles may be the same as the thixotropic property-imparting particles described above in the reflective layer 4, and preferably nanosilica.
  • the blending ratio of the thixotropic particles is, for example, 0.1% by mass or more, preferably 0.5% by mass or more with respect to the diffusive transparent composition. 10% by mass or less, preferably 3% by mass or less.
  • the embodiment of FIG. 5 is also included in the present invention, and has the same effects as the embodiment of FIG. 1B. From the viewpoint of further improving the directivity and the front illuminance, the embodiment of FIG. 5 is preferable.
  • the diffusion layer 5 is formed so that the upper surface thereof is flush with the upper surface of the reflection layer 4.
  • the diffusion layer 5 is reflective on the upper surface. It may be formed so as to be located above or below the upper surface of the layer 4.
  • the vertical distance ⁇ Y ⁇ (A + C) ⁇ between the inner edge (point n) of the upper end edge of the reflective layer 4 and the upper surface of the diffusion layer 5 is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less. For example, it is 0 ⁇ m or more.
  • Second Embodiment A second embodiment of the device with two layers 1 of the present invention will be described with reference to FIGS. 6A to 6B.
  • the element with two layers 1 includes an optical semiconductor element 2, a phosphor layer 3, and a reflective layer 4.
  • the phosphor layer 3 is disposed on the upper side of the optical semiconductor element 2 so as to cover the light emitting surface 21 of the optical semiconductor element 2.
  • the phosphor layer 3 has a substantially flat plate shape along the left-right direction and the front-rear direction.
  • the phosphor layer 3 has a substantially rectangular shape in plan view, and is formed so as to include the optical semiconductor element 2 when projected in the vertical direction.
  • the phosphor layer 3 includes an inner portion 31 disposed above the optical semiconductor element 2 and an outer portion 32 disposed outside the inner portion 31.
  • the inner portion 31 has a substantially flat plate shape along the left-right direction and the front-rear direction, and is formed to have the same shape as the optical semiconductor element 2 in plan view. That is, the entire lower surface of the inner portion 31 covers the entire light emitting surface 21 of the optical semiconductor element 2.
  • the outer part 32 is disposed outside the inner part 31, and the peripheral edge of the inner part 31 and the inner peripheral edge of the outer part 32 are integrally continuous.
  • the outer portion 32 has a substantially flat plate shape having a substantially rectangular frame shape in plan view, and has the same thickness (length in the vertical direction) as the inner portion 31.
  • the outer portion 32 is disposed on the virtual surface 6. That is, the lower surface of the outer portion 32 coincides with the virtual surface 6.
  • the ratio of the length in the left-right direction or the front-rear direction of the outer portion 32 and the inner portion 31 is, for example, 1: 100 to 50: 100, preferably 7: 100 to 25: 100.
  • the reflection layer 4 is disposed on the outer side in the left-right direction and on the outer side in the front-rear direction with respect to both the optical semiconductor element 2 and the phosphor layer 3.
  • the reflective layer 4 has a substantially rectangular frame shape in plan view extending in the vertical direction.
  • the reflective layer 4 has an upper part 4a and a lower part 4b disposed below the upper part 4a.
  • the upper part 4a is arranged on the outer side in the left-right direction and the outer side in the front-rear direction of the phosphor layer 3, and is in contact with and covers the entire side surface of the phosphor layer 3. That is, the inner peripheral end surface of the upper portion 4 a is in contact with the entire side surface of the phosphor layer 3.
  • the upper portion 4a is formed so as to include the phosphor layer 3 when projected in the left-right direction or the front-rear direction. Specifically, in the vertical direction, the upper end edge of the upper portion 4 a (the upper end edge of the reflective layer 4) coincides with the upper surface of the phosphor layer 3, and the lower end edge of the lower portion 4 b coincides with the lower surface of the phosphor layer 3. .
  • the lower portion 4b has an upper end that is integrally continuous with a lower end of the upper portion 4a, and is formed to be wider than the upper portion 4a toward the inner side in the left-right direction and the inner side in the front-rear direction.
  • the lower portion 4b is disposed on the outer side in the left-right direction and the outer side in the front-rear direction of the optical semiconductor element 2, and is in contact with and covers the entire side surface 23 of the optical semiconductor element 2. That is, the inner peripheral end surface of the lower portion 4 b is in contact with the entire side surface 23 of the optical semiconductor element 2.
  • the lower part 4b is formed so as to include the optical semiconductor element 2 when projected in the left-right direction or the front-rear direction. Specifically, in the vertical direction, the upper end edge of the lower part 4 b coincides with the light emitting surface 21 of the optical semiconductor element 2, and the lower end edge of the lower part 4 b (lower end edge of the reflective layer 4) is the facing surface of the optical semiconductor element 2. Matches 22. That is, the reflective layer 4 is formed such that its upper surface is flush with the upper surface of the phosphor layer 3 and its lower surface is flush with the lower surface of the phosphor layer 3 and the opposing surface 22 of the optical semiconductor element 2. Has been.
  • the reflective layer 4 preferably satisfies the above formula (1), more preferably the above formula (1 ′), and still more preferably the above formula (1 ′′).
  • the angle ⁇ 2 formed by the inner edge surface of the reflective layer 4 and the lowermost surface of the phosphor layer 3 and the length of the reflective layer 4 in the left-right direction or the front-rear direction (particularly the length in the left-right direction or front-rear direction at the upper edge D) D is the same as in the first embodiment.
  • the distance B in the left-right direction or the front-rear direction from the inner edge of the lower end edge of the reflective layer 4 to the edge of the facing surface 22 of the optical semiconductor element 2 is 0 ⁇ m.
  • the distance X is the same as in the first embodiment.
  • the distance B in the left-right direction or the front-rear direction satisfies the relational expression (3) of B ⁇ X.
  • the manufacturing method of the element 1 with two layers of 2nd Embodiment is equipped with a fluorescent substance layer preparation process, an optical semiconductor element arrangement
  • the phosphor layer 3 is prepared in the phosphor layer preparation step.
  • the phosphor layer transfer sheet in the phosphor layer forming step described above in the first embodiment is used.
  • a plurality of optical semiconductor elements 2 are arranged on the phosphor layer 3 with a space in the left-right direction and the front-rear direction.
  • a plurality of optical semiconductor elements 2 are arranged on the phosphor layer 3 so that the upper surface of the phosphor layer 3 and the light emitting surface 21 of the optical semiconductor element 2 are in contact with each other. Thereby, the optical semiconductor element assembly 9 with a phosphor layer is obtained.
  • the phosphor layer 3 is cut into a substantially grid shape in plan view using a wide dicing saw (dicing blade) 43 (see FIG. 7B). .
  • a gap 44 is formed in a portion where the phosphor layer 3 is removed.
  • the reflective layer 4 is formed between the gap 44 and a plurality of adjacent optical semiconductor elements 2.
  • transfer by a reflective layer transfer sheet or potting by a varnish of a reflective composition is performed. Thereafter, when the phosphor layer 3 and / or the reflective layer 4 contains a thermosetting resin and is in the B-stage state or the A-stage state, the phosphor layer is further heated by, for example, an oven. 3 and / or the reflective layer 4 is cured (completely cured, C-staged).
  • the optical semiconductor element assembly 10 with the reflective layer and the phosphor layer is cut (separated).
  • the reflective layer 4 is disposed so as to be in contact with both the optical semiconductor element 2 and the phosphor layer 3 on the outer side in the left-right direction and the outer side in the front-rear direction. . For this reason, the light emitted or reflected from the phosphor layer 3 and the side surface 23 of the optical semiconductor element 2 can be reflected upward. Therefore, directivity and front illuminance are good.
  • the reflective layer 4 is in contact with the entire side surface 23 of the optical semiconductor element 2. For this reason, directivity and front illuminance are even better.
  • the phosphor layer 3 has an outer portion 32 disposed on the virtual surface 6 extending to the outside of the optical semiconductor element 2. For this reason, the lower surface of the phosphor layer 3 is wider than the light emitting surface 21 of the optical semiconductor element 2. Therefore, when the phosphor layer 3 is disposed on the light emitting surface 21 of the optical semiconductor element 2 (see, for example, FIG. 7B), the phosphor layer 3 is assumed to be laterally or longitudinally from the light emitting surface 21 of the optical semiconductor element 2. Even if it deviates, generation
  • the outer portion 32 of the phosphor layer 3 can reliably cover the light emitting surface 21 of the optical semiconductor element 2. As a result, the positional accuracy of the phosphor layer 3 with respect to the optical semiconductor element 2 is improved in the left-right direction and the front-rear direction.
  • the two-layered element 1 is a component for manufacturing an optical semiconductor device 8 such as a light-emitting diode device by being mounted on an electrode substrate 7 such as a diode substrate.
  • an optical semiconductor device 8 such as a light-emitting diode device
  • an electrode substrate 7 such as a diode substrate.
  • the element with two layers 1 can be checked for light emitting performance (directivity, illuminance, color, etc.) by connecting to a test device before being mounted on the electrode substrate 7. Therefore, when the optical semiconductor device 8 incompatible with the desired performance is generated, the recovery operation of the electrode substrate 7 incorporated in the optical semiconductor device 8 can be prevented in advance. This is useful as a manufacturing part.
  • the side surface of the outer portion 32 of the phosphor layer 3 is formed so as to be vertical along the vertical direction.
  • the side surface of the portion 32, and thus the inner end surface of the upper portion 4 a of the reflective layer 4, can also be formed in a tapered shape that widens upward.
  • FIG. 8 is also included in the present invention, and has the same effects as the embodiment of FIG. 1B.
  • the phosphor layer 3 is formed so that the upper surface thereof is flush with the upper surface of the reflective layer 4.
  • the upper surface of the phosphor layer 3 is higher than the upper surface of the reflective layer 4.
  • This embodiment also has the same effect as the embodiment of FIG. 1B.
  • the upper surface of the phosphor layer 3 is exposed, but for example, as shown in FIG. 9, the diffusion layer 5 may be disposed on the upper surface of the phosphor layer 3.
  • the embodiment of FIG. 9 is also included in the present invention, and has the same effects as the embodiment of FIG. 6B. From the viewpoint of further improving the directivity and the front illuminance, the embodiment of FIG. 9 is preferable.
  • the diffusion layer 5 is formed so that the upper surface thereof is flush with the upper surface of the reflection layer 4.
  • the diffusion layer 5 is reflected on the upper surface. It may be formed so as to be located above or below the upper surface of the layer 4.
  • the element with two layers 1 includes an optical semiconductor element 2, a phosphor layer 3, and a reflective layer 4.
  • the phosphor layer 3 is disposed on the upper side and the side of the optical semiconductor element 2 so as to cover the entire light emitting surface 21 of the optical semiconductor element 2 and a part of the side surface 23.
  • the phosphor layer 3 integrally includes an inner portion 31 disposed on the upper side of the optical semiconductor element 2 and an outer portion 32 disposed on the outer side of the inner portion 31.
  • the outer portion 32 has a substantially rectangular frame shape in plan view extending in the vertical direction.
  • the outer portion 32 includes an upper portion 32a and a lower portion 32b.
  • the outer portion 32 includes a virtual surface 6 that extends outward in the left-right direction and the front-rear direction of the optical semiconductor element 2 along the light-emitting surface 21 between the upper portion 32 a and the lower portion 32 b.
  • the lower part 32b of the outer part 32 is arranged outside the optical semiconductor element 2 so as to be in contact with and cover the upper part of the side surface 23 of the optical semiconductor element 2. That is, the inner peripheral end surface of the lower portion 32 b is in contact with the upper portion of the side surface 23 of the optical semiconductor element 2.
  • the upper portion 32a is formed so that the lower end thereof is integrally connected to the upper end of the lower portion 32b and is directed upward.
  • the reflection layer 4 is disposed on the outer side in the left-right direction and on the outer side in the front-rear direction with respect to both the optical semiconductor element 2 and the phosphor layer 3.
  • the reflective layer 4 has a substantially rectangular frame shape in plan view extending in the vertical direction.
  • the reflective layer 4 has an upper part 4a and a lower part 4b disposed below the upper part 4a.
  • the upper part 4a is arranged on the outer side in the left-right direction and the outer side in the front-rear direction of the phosphor layer 3, and is in contact with and covers the entire side surface of the phosphor layer 3.
  • the lower portion 4b has an upper end that is integrally continuous with a lower end of the upper portion 4a, and is formed to be wider than the upper portion 4a toward the inner side in the left-right direction and the inner side in the front-rear direction.
  • the lower part 4 b is disposed on the outer side in the left-right direction and the outer side in the front-rear direction of the optical semiconductor element 2, and contacts and covers the lower part of the side surface 23 of the optical semiconductor element 2.
  • the manufacturing method of the element 1 with two layers of 3rd Embodiment is equipped with a temporary fixing sheet preparation process, a temporary fixing process, a fluorescent substance layer formation process, a fluorescent substance layer removal process, a reflective layer formation process, and a cutting process, for example.
  • a temporary fixing sheet 40 is prepared in the same manner as in FIG. 2A.
  • the plurality of optical semiconductor elements 2 are temporarily fixed on the temporary fixing sheet 40 at intervals in the left-right direction and the front-rear direction, as in FIG. 2B. To do.
  • the phosphor layer 3 is disposed on the spacer 45 so as to cover the upper portion of the optical semiconductor element 2.
  • the spacer 45 is disposed on the temporarily fixing sheet 40.
  • a phosphor transfer sheet in which the phosphor layer 3 is disposed on the release sheet is prepared, and then the phosphor is placed on the spacer 45 so that the upper portion of the optical semiconductor element 2 is buried in the phosphor layer 3.
  • the transfer sheet is pressed and laminated, and then the release sheet is released from the phosphor layer 3.
  • the phosphor layer of the phosphor transfer sheet in the third embodiment is preferably harder than the phosphor layer in the B stage state of the phosphor transfer sheet used in the first embodiment.
  • the phosphor layer in the B-stage state with advanced is used. That is, the storage shear elastic force of the phosphor layer of the third embodiment is preferably adjusted to be higher than the storage shear elastic force of the phosphor layer of the first embodiment.
  • FIG. 11C only the upper part of the optical semiconductor element 2 can be covered with the phosphor layer 3, and the phosphor layer 3 is not required to support the temporary fixing sheet 40. The shape can be maintained flat.
  • the entire light emitting surface 21 and the upper part of the side surface 23 of the optical semiconductor element 2 are covered with the phosphor layer 3. That is, the optical semiconductor element assembly 9 with a phosphor layer is obtained.
  • a part of the phosphor layer 3 of the photosemiconductor layer-attached optical semiconductor element assembly 9 is removed in the same manner as in FIG. 2D. Thereby, in the optical semiconductor element assembly 9 with a phosphor layer, a gap 44 is formed in a portion where the phosphor layer 3 is removed.
  • the reflective layer 4 is formed in the gap 44 and the interval 46 between the adjacent optical semiconductor elements 2.
  • a protective sheet 47 is disposed on the upper surface of the optical semiconductor element assembly 9 with a phosphor layer, and then, in a vacuum sealed space 49 such as the inside of the vacuum chamber 48, An optical semiconductor element assembly 9 with a body layer is disposed, and subsequently, the varnish 4a of the reflective composition is disposed on the temporary fixing sheet 40 so as to surround the optical semiconductor element assembly 9 with a phosphor layer, Then, the vacuum state of the vacuum sealed space 49 is released and returned to atmospheric pressure. Thereby, the varnish 4a of the reflective composition flows into the gap 44 and the interval 46 due to the atmospheric pressure, and is filled.
  • the protective sheet 47 is peeled off, and then the varnish 4a of the reflective composition is heated and dried to form the reflective layer 4.
  • the phosphor layer 3 and / or the reflective layer 4 contains a thermosetting resin and is in the B-stage state or the A-stage state
  • the phosphor layer is further heated by, for example, an oven. 3 and / or the reflective layer 4 is cured (completely cured, C-staged).
  • the plurality of optical semiconductor elements 2, the phosphor layer 3, and the reflective layer 4 are laminated on the temporarily fixing sheet 40. That is, the optical semiconductor element assembly 10 with a reflective layer and a phosphor layer is obtained.
  • the optical semiconductor element assembly 10 with the reflective layer and the phosphor layer is cut (individualized) in the same manner as in FIG. 2F.
  • the temporary fixing sheet 40 is peeled from the optical semiconductor element 2 as indicated by a virtual line in FIG. 11G.
  • the element with two layers 1 of the third embodiment also has the same effects as the element 1 with two layers of the first embodiment.
  • the two-layered element 1 of the first embodiment in which the phosphor layer 3 is in contact with the entire side surface 23 of the optical semiconductor element 2 is preferable.
  • the phosphor layer 3 is formed so that the upper surface thereof is flush with the upper surface of the reflective layer 4.
  • the upper surface of the phosphor layer 3 is higher than the upper surface of the reflective layer 4.
  • the diffusion layer 5 may be provided on the phosphor layer 3.
  • Reflective composition B by mixing 39 parts by mass of silicone resin (same as above), 30 parts by mass of glass (same as above), 30 parts by mass of titanium oxide (same as above), and 1 part by mass of nanosilica (same as above) was prepared.
  • the diffusion transparent composition was applied on a polyester film and heated at 90 ° C. for 30 minutes to produce a semi-cured diffusion layer.
  • Examples 1 to 10 and Comparative Examples 1 to 3 As the optical semiconductor element, an LED element having a length in the left-right direction and a length in the front-rear direction (light emitting surface) of 1143 ⁇ m and a length in the vertical direction of 150 ⁇ m was used. Using the above-described fluorescent composition and reflective compositions A and B, according to FIGS. 2A to 2F, FIGS. 7A to 7E, or FIGS. 12 to 13, the shapes and dimensions described in Table 1 are obtained. Optical semiconductor elements with reflective layers and phosphor layers of Examples and Comparative Examples were manufactured. 7A to 7E except that after preparing the phosphor layer in FIG.
  • a semi-cured diffusion layer was disposed on the lower surface of the phosphor layer and the diffusion layer was also cured in FIG. 7D.
  • an optical semiconductor element with a reflective layer and a phosphor layer was produced.
  • an optical semiconductor element with a phosphor layer was manufactured without providing a reflective layer.
  • the thicknesses of the phosphor layer and the diffusion layer were measured with a measuring meter (linear gauge, manufactured by Citizen).
  • the diffusion transparent composition was applied and cured to prepare a diffusion layer having a thickness of 100 ⁇ m for measurement.
  • the light transmittance (%) at a wavelength of 450 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Tech).
  • the light transmittance of the reflective layers A and B was 20% or less, and the light transmittance of the diffusion layer was 60% or more.
  • the chromaticity (CIE, y) was measured with an instantaneous multi-photometry system (“MCPD-9800”, manufactured by Otsuka Electronics Co., Ltd.) under the following measurement conditions.
  • the optical semiconductor element with a reflective layer and a phosphor layer of the present invention can be applied to various industrial products, and can be used for optical applications such as a white light semiconductor device.

Abstract

A photosemiconductor element with a reflection layer and a phosphor layer provided with: a photosemiconductor element having a light-emitting surface and a counterface surface arranged facing the light-emitting surface with an interval therebetween in the vertical direction; a phosphor layer that covers at least the light-emitting surface; and a reflection layer arranged, for both the photosemiconductor element and the phosphor layer, on the orthogonally outer side that is orthogonal to the vertical direction. The phosphor layer has an inside portion arranged on the upper side of the photosemiconductor element and an outside portion arranged on, or so as to include, a virtual plane extending along the light-emitting surface to the outside of the photosemiconductor element.

Description

反射層および蛍光体層付光半導体素子Optical semiconductor element with reflective layer and phosphor layer
 本発明は、反射層および蛍光体層付光半導体素子に関する。 The present invention relates to an optical semiconductor element with a reflective layer and a phosphor layer.
 従来から、高エネルギーの光を発光できる発光装置として、白色発光装置(白色光半導体装置)が知られている。白色発光装置には、例えば、電力をLEDに供給するダイオード基板と、それに実装され、青色光を発光するLED(発光ダイオード)と、青色光を黄色光に変換でき、LEDを被覆する蛍光体層と、LEDを封止する封止層と、LEDの周囲に設けられ、光を前方に反射させる反射層とが設けられている。そのような白色発光装置は、LEDから発光されて封止層および蛍光体層を透過した青色光と、蛍光体層において青色光の一部が波長変換された黄色光との混色によって、高エネルギーの白色光を発光する。 Conventionally, a white light emitting device (white light semiconductor device) is known as a light emitting device capable of emitting high energy light. The white light emitting device includes, for example, a diode substrate that supplies power to the LED, an LED (light emitting diode) that is mounted thereon and emits blue light, and a phosphor layer that can convert blue light into yellow light and covers the LED And a sealing layer that seals the LED and a reflective layer that is provided around the LED and reflects light forward. Such a white light emitting device has high energy by mixing color of blue light emitted from the LED and transmitted through the sealing layer and the phosphor layer, and yellow light in which part of the blue light is wavelength-converted in the phosphor layer. Of white light.
 そして、近年、投光照明や天井照明のように、指向性が高く、照度が良好な白色発光装置が求められている。そのような発光装置としては、例えば、特許文献1の発光装置が提案されている。 In recent years, white light emitting devices with high directivity and good illuminance, such as floodlighting and ceiling lighting, have been demanded. As such a light emitting device, for example, a light emitting device disclosed in Patent Document 1 has been proposed.
 特許文献1の発光装置では、発光ダイオード素子の上面(発光面)に、下面が発光ダイオード素子の上面と同一形状のパターンであり上面が広幅となるように形成された蛍光体層が配置されており、発光ダイオード素子の側面に、反射樹脂層が配置されている。 In the light emitting device of Patent Document 1, a phosphor layer formed so that the lower surface has the same shape as the upper surface of the light emitting diode element and the upper surface is wide is disposed on the upper surface (light emitting surface) of the light emitting diode element. The reflective resin layer is disposed on the side surface of the light emitting diode element.
特開2012-222315号公報の図7(e)FIG. 7 (e) of JP2012-222315A.
 しかし、特許文献1の発光装置では、蛍光体層は、発光ダイオード素子の上面と、蛍光体層の下面とが同一のパターンに形成されている。したがって、蛍光体層を発光ダイオード素子の上面に配置する際に、蛍光体層の位置が幅方向にずれると、発光ダイオード素子の上面に、蛍光体層が配置されない箇所が存在し、その結果、所望の光学特性を発揮できないという不具合が生じる。そのため、特許文献1の発光装置は、幅方向において、高い位置精度が必要となり、その改善が望まれている。 However, in the light emitting device of Patent Document 1, in the phosphor layer, the upper surface of the light emitting diode element and the lower surface of the phosphor layer are formed in the same pattern. Therefore, when the phosphor layer is disposed on the upper surface of the light emitting diode element, if the position of the phosphor layer is shifted in the width direction, there is a portion where the phosphor layer is not disposed on the upper surface of the light emitting diode element. There arises a problem that desired optical characteristics cannot be exhibited. For this reason, the light emitting device of Patent Document 1 requires high positional accuracy in the width direction, and improvement thereof is desired.
 本発明の目的は、良好な指向性および正面照度を有し、位置精度の向上が図られた光半導体装置を製造することができる反射層および蛍光体層付光半導体素子を提供することにある。 An object of the present invention is to provide a reflection layer and an optical semiconductor element with a phosphor layer, which can manufacture an optical semiconductor device having good directivity and front illuminance and improved positional accuracy. .
 本発明[1]は、発光面および前記発光面に対して上下方向に間隔を隔てて対向配置される対向面を有する光半導体素子と、前記発光面を少なくとも被覆する蛍光体層と、前記光半導体素子および前記蛍光体層の両方に対して、前記上下方向に直交する直交方向外側に配置される反射層とを備え、前記蛍光体層は、前記光半導体素子の上側に配置される内側部分と、前記発光面に沿って前記光半導体素子の外側に延びる仮想面上にまたは前記仮想面を含むように配置される外側部分とを有する、反射層および蛍光体層付光半導体素子を含んでいる。 The present invention [1] includes an optical semiconductor element having a light emitting surface and an opposing surface arranged to face the light emitting surface at an interval in the vertical direction, a phosphor layer covering at least the light emitting surface, and the light A reflection layer disposed on the outer side in the orthogonal direction perpendicular to the vertical direction with respect to both the semiconductor element and the phosphor layer, and the phosphor layer is an inner portion disposed on the upper side of the optical semiconductor element And a reflecting layer and a phosphor layer-attached optical semiconductor element having an outer portion disposed on or including a virtual surface extending outside the optical semiconductor element along the light emitting surface. Yes.
 このような反射層および蛍光体層付光半導体素子によれば、反射層が、光半導体素子および蛍光体層の両方に対して、これらの直交方向外側に配置されている。このため、蛍光体層および光半導体素子の側面から放射または反射される光を上側に反射することができる。よって、指向性および正面照度が良好である。 According to such an optical semiconductor element with a reflective layer and a phosphor layer, the reflective layer is arranged on the outer side in the orthogonal direction with respect to both the optical semiconductor element and the phosphor layer. For this reason, the light emitted or reflected from the side surfaces of the phosphor layer and the optical semiconductor element can be reflected upward. Therefore, directivity and front illuminance are good.
 また、蛍光体層が、光半導体素子の外側に延びる仮想面上に配置される外側部分、または、仮想面を含むように配置される外側部分を有する。このため、蛍光体層の下面は、光半導体素子の発光面に対して広くなっている。よって、蛍光体層を発光ダイオード素子の発光面に配置する際に、仮に蛍光体層の位置が所望の位置に対して直交方向にずれたとしても、蛍光体層の外側部分が光半導体素子の発光面を確実に被覆することができる。その結果、直交方向において、光半導体素子に対する蛍光体層の位置精度の向上が図られている。 Further, the phosphor layer has an outer portion disposed on a virtual surface extending outside the optical semiconductor element or an outer portion disposed so as to include the virtual surface. For this reason, the lower surface of the phosphor layer is wider than the light emitting surface of the optical semiconductor element. Therefore, when the phosphor layer is disposed on the light emitting surface of the light emitting diode element, even if the position of the phosphor layer is shifted in a direction orthogonal to the desired position, the outer portion of the phosphor layer is The light emitting surface can be reliably coated. As a result, the positional accuracy of the phosphor layer with respect to the optical semiconductor element is improved in the orthogonal direction.
 本発明[2]は、下記式(1)および(2)を満たす、上記[1]に記載の反射層および蛍光体層付光半導体素子を含んでいる。 The present invention [2] includes the optical semiconductor element with a reflective layer and a phosphor layer according to [1], which satisfies the following formulas (1) and (2).
 90° < θ < 160°    (1)
 A   ≦ Y           (2)
(式中、θは、前記光半導体素子の前記発光面の端縁と前記反射層の上端縁の内端縁とを結ぶ直線と、前記発光面とがなす角度を示す。
90 ° <θ 1 <160 ° (1)
A ≤ Y (2)
(In formula, (theta) 1 shows the angle which the straight line which connects the edge of the said light emission surface of the said optical semiconductor element and the inner edge of the upper end edge of the said reflection layer, and the said light emission surface makes.).
 Aは、前記発光面と、前記蛍光体層の上面との上下方向距離を示す。 A represents the vertical distance between the light emitting surface and the top surface of the phosphor layer.
 Yは、前記発光面と、前記反射層の上端縁の内端縁との上下方向距離を示す。)
 このような反射層および蛍光体層付光半導体素子は、反射層および蛍光体層付光半導体素子から照射される光の配向角が良好となるため、指向性がより一層良好となる。
Y represents the vertical distance between the light emitting surface and the inner edge of the upper edge of the reflective layer. )
In such an optical semiconductor element with a reflective layer and a phosphor layer, the orientation angle of light emitted from the optical semiconductor element with a reflective layer and a phosphor layer is improved, and thus the directivity is further improved.
 本発明[3]は、前記反射層が、100μm厚みにおける450nm波長の光で照射したときの反射率が80%以上である、上記[1]または[2]に記載の反射層および蛍光体層付光半導体素子を含んでいる。 The reflective layer and phosphor layer according to the above [1] or [2], wherein the reflective layer has a reflectance of 80% or more when the reflective layer is irradiated with light having a wavelength of 450 nm at a thickness of 100 μm. An attached optical semiconductor element is included.
 このような反射層および蛍光体層付光半導体素子は、正面照度がより一層良好となる。 Such an optical semiconductor element with a reflective layer and a phosphor layer has a better front illuminance.
 本発明[4]は、下記式(3)を満たす、上記[1]~[3]のいずれか一項に記載の反射層および蛍光体層付光半導体素子を含んでいる。 The present invention [4] includes the optical semiconductor element with a reflective layer and a phosphor layer according to any one of the above [1] to [3], which satisfies the following formula (3).
 B < X      (3)
(式中、Bは、前記光半導体素子の前記対向面の端縁と、前記反射層の下端縁の内端縁との距離を示す。Xは、前記光半導体素子の前記発光面の端縁と、前記蛍光体層の前記仮想面上における外端縁との前記直交方向距離を示す。)
 このような反射層および蛍光体層付光半導体素子は、指向性および正面照度がより一層良好となる。
B <X (3)
(Wherein, B represents the distance between the edge of the facing surface of the optical semiconductor element and the inner edge of the lower edge of the reflective layer. X represents the edge of the light emitting surface of the optical semiconductor element. And the distance in the orthogonal direction between the phosphor layer and the outer edge on the virtual plane.)
Such an optical semiconductor element with a reflective layer and a phosphor layer has better directivity and front illuminance.
 本発明[5]は、前記反射層が、前記光半導体素子における前記発光面と前記対向面との間の側面全面に接触している、上記[1]~[4]のいずれか一項に記載の反射層および蛍光体層付光半導体素子を含んでいる。 The invention [5] is any one of the above [1] to [4], wherein the reflective layer is in contact with the entire side surface between the light emitting surface and the facing surface of the optical semiconductor element. The optical semiconductor element with a reflecting layer and fluorescent substance layer of description is included.
 このような反射層および蛍光体層付光半導体素子は、指向性および正面照度がより一層良好となる。 Such an optical semiconductor element with a reflective layer and a phosphor layer has better directivity and front illuminance.
 本発明[6]は、前記蛍光体層が、前記光半導体素子における前記発光面と前記対向面との間の側面全面に接触している、上記[1]~[3]のいずれか一項に記載の反射層および蛍光体層付光半導体素子を含んでいる。 The present invention [6] is any one of the above [1] to [3], wherein the phosphor layer is in contact with the entire side surface between the light emitting surface and the facing surface of the optical semiconductor element. And an optical semiconductor element with a phosphor layer and a phosphor layer.
 このような反射層および蛍光体層付光半導体素子は、光の取り出し効率が良好となる。 Such an optical semiconductor element with a reflective layer and a phosphor layer has good light extraction efficiency.
 本発明[7]は、前記蛍光体層の上側に配置される拡散層をさらに備える、上記[1]~[6]のいずれか一項に記載の反射層および蛍光体層付光半導体素子を含んでいる。 The invention [7] includes the reflective layer and the optical semiconductor element with a phosphor layer according to any one of the above [1] to [6], further comprising a diffusion layer disposed on the phosphor layer. Contains.
 このような反射層および蛍光体層付光半導体素子は、指向性および正面照度がより一層良好となる。  Such an optical semiconductor element with a reflective layer and a phosphor layer has better directivity and front illuminance. *
 本発明[8]は、下記式(4)を満たす、上記[7]に記載の反射層および蛍光体層付光半導体素子を含んでいる。 The present invention [8] includes the optical semiconductor element with a reflective layer and a phosphor layer according to the above [7], which satisfies the following formula (4).
 A + C ≦ Y       (4)
(式中、Cは、前記拡散層の上下方向長さを示す。)
A + C ≦ Y (4)
(In the formula, C represents the vertical length of the diffusion layer.)
 このような反射層および蛍光体層付光半導体素子は、正面照度がより一層良好となる。 Such an optical semiconductor element with a reflective layer and a phosphor layer has a better front illuminance.
 本発明の反射層および蛍光体層付光半導体素子によれば、光半導体素子に対する蛍光体層の位置精度の向上を図りつつ、良好な指向性および正面照度を有する光半導体装置を製造することができる。 According to the optical semiconductor element with the reflective layer and the phosphor layer of the present invention, it is possible to manufacture an optical semiconductor device having good directivity and front illuminance while improving the positional accuracy of the phosphor layer with respect to the optical semiconductor element. it can.
図1A-図1Bは、本発明の反射層および蛍光体層付光半導体素子の第1実施形態であり、図1Aは、平面図、図1Bは、図1AのA-Aにおける断面図を示す。1A to 1B show a first embodiment of an optical semiconductor element with a reflective layer and a phosphor layer according to the present invention, FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A. . 図2A~図2Gは、図1の反射層および蛍光体層付光半導体素子の製造方法の工程図であり、図2Aは、仮固定シート用意工程、図2Bは、仮固定工程、図2Cは、蛍光体層形成工程、図2Dは、蛍光体層除去工程、図2Eは、反射層形成工程、図2Fは、切断工程、図2Gは、実装工程を示す。2A to 2G are process diagrams of the manufacturing method of the optical semiconductor element with the reflective layer and the phosphor layer in FIG. 1. FIG. 2A is a temporary fixing sheet preparation process, FIG. 2B is a temporary fixing process, and FIG. 2D shows a phosphor layer removing process, FIG. 2E shows a reflective layer forming process, FIG. 2F shows a cutting process, and FIG. 2G shows a mounting process. 図3は、第1実施形態の変形例であって、蛍光体層の上面が、反射層の上端よりも下側に位置する形態を示す。FIG. 3 shows a modified example of the first embodiment, in which the upper surface of the phosphor layer is positioned below the upper end of the reflective layer. 図4は、第1実施形態の変形例であって、蛍光体層の上面が、反射層の上端よりも上側に位置する形態を示す。FIG. 4 shows a modification of the first embodiment, in which the upper surface of the phosphor layer is positioned above the upper end of the reflective layer. 図5は、第1実施形態の変形例であって、蛍光体層の上面に拡散層を備える形態を示す。FIG. 5 is a modification of the first embodiment, and shows a mode in which a diffusion layer is provided on the upper surface of the phosphor layer. 図6A-図6Bは、本発明の反射層および蛍光体層付光半導体素子の第2実施形態であり、図6Aは、平面図、図6Bは、図6AのB-Bにおける断面図を示す。6A to 6B show a second embodiment of an optical semiconductor element with a reflective layer and a phosphor layer according to the present invention, FIG. 6A is a plan view, and FIG. 6B is a cross-sectional view taken along line BB of FIG. 6A. . 図7A~図7Eは、図6の反射層および蛍光体層付光半導体素子の製造方法の工程図であり、図7Aは、蛍光層用意工程、図7Bは、素子配置工程、図7Cは、蛍光層除去工程、図7Dは、反射層形成工程、図7Eは、切断工程を示す。7A to 7E are process diagrams of the method of manufacturing the optical semiconductor element with the reflective layer and the phosphor layer in FIG. 6, in which FIG. 7A is a fluorescent layer preparation process, FIG. 7B is an element arrangement process, and FIG. The fluorescent layer removing step, FIG. 7D shows the reflective layer forming step, and FIG. 7E shows the cutting step. 図8は、第2実施形態の変形例であって、蛍光体層の側面が、上側に向かうに従って広幅となるように形成されている形態を示す。FIG. 8 shows a modification of the second embodiment, in which the side surface of the phosphor layer is formed so as to become wider toward the upper side. 図9は、第2実施形態の変形例であって、蛍光体層の上面に拡散層を備える形態を示す。FIG. 9 is a modified example of the second embodiment and shows a mode in which a diffusion layer is provided on the upper surface of the phosphor layer. 図10A-図10Bは、本発明の反射層および蛍光体層付光半導体素子の第3実施形態であり、図10Aは、平面図、図10Bは、図10AのA-Aにおける断面図を示す。10A to 10B show a third embodiment of the optical semiconductor element with a reflective layer and a phosphor layer according to the present invention, FIG. 10A is a plan view, and FIG. 10B is a cross-sectional view taken along line AA in FIG. 10A. . 図11A~図11Gは、図10の反射層および蛍光体層付光半導体素子の製造方法の工程図であり、図11Aは、仮固定シート用意工程、図11Bは、仮固定工程、図11Cは、蛍光体層形成工程、図11Dは、蛍光体層除去工程、図11Eは、反射層形成工程(反射層形成前)、図11Fは、反射層形成工程(反射層形成後)、図11Gは、切断工程を示す。11A to 11G are process diagrams of the method of manufacturing the optical semiconductor element with the reflective layer and the phosphor layer in FIG. 10. FIG. 11A is a provisional fixing sheet preparation process, FIG. 11B is a provisional fixing process, and FIG. 11D shows a phosphor layer removing process, FIG. 11E shows a reflective layer forming process (before the reflective layer is formed), FIG. 11F shows a reflective layer forming process (after the reflective layer is formed), and FIG. The cutting process is shown. 図12は、比較例の反射層および蛍光体層付光半導体素子であって、蛍光体層の側方に、反射層が設けられていない形態を示す。FIG. 12 shows an optical semiconductor element with a reflective layer and a phosphor layer of a comparative example, in which a reflective layer is not provided on the side of the phosphor layer. 図13は、比較例の反射層および蛍光体層付光半導体素子であって、蛍光体層が、光半導体素子の外側に延びる外側部分を備えていない形態を示す。FIG. 13 shows an optical semiconductor element with a reflective layer and a phosphor layer of a comparative example, in which the phosphor layer does not include an outer portion extending outside the optical semiconductor element.
  <第1実施形態>
 図1Bにおいて、紙面上下方向は、上下方向(第1方向、厚み方向)であり、紙面上側が上側(第1方向一方側、厚み方向一方側)、紙面下側が下側(第1方向他方側、厚み方向他方側)である。紙面左右方向は、左右方向(第1方向に直交する第2方向、上下方向に対する直交方向の一例)であり、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。紙厚方向は、前後方向(第1方向および第2方向に直交する第3方向、上下方向に対する直交方向の一例)であり、紙面手前側が前側(第3方向一方側)、紙面奥側が後側(第3方向他方側)である。具体的には、各図の方向矢印に準拠する。
<First Embodiment>
In FIG. 1B, the vertical direction of the paper is the vertical direction (first direction, thickness direction), the upper side of the paper is the upper side (one side in the first direction, the one side in the thickness direction), and the lower side of the paper is the lower side (the other side in the first direction). , The other side in the thickness direction). The left-right direction on the paper surface is the left-right direction (second direction orthogonal to the first direction, an example of the orthogonal direction to the up-down direction), the left side of the paper is the left side (second side in the second direction), and the right side of the paper is the right side (the other in the second direction). Side). The paper thickness direction is the front-rear direction (the third direction orthogonal to the first direction and the second direction, an example of the orthogonal direction to the vertical direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (The other side in the third direction). Specifically, it conforms to the direction arrow in each figure.
 図1A-図1Bを参照して、本発明の反射層および蛍光体層付き光半導体素子(以下単に、二層付素子ともいう。)の第1実施形態について説明する。 1A to 1B, a first embodiment of an optical semiconductor element with a reflective layer and a phosphor layer according to the present invention (hereinafter also simply referred to as an element with two layers) will be described.
 なお、二層付素子は、光半導体装置(発光装置)ではなく、つまり、光半導体装置に備えられる基板(電極基板)を含んでいない。具体的には、二層付素子は、光半導体素子と、蛍光体層と、反射層(反射部材)とを備え、必要により、拡散層を備える。二層付素子は、好ましくは、光半導体素子、蛍光体層および反射層からなるか、光半導体素子、蛍光体層、反射層および拡散層からなる。つまり、二層付素子は、光半導体装置の基板に備えられる電極とまだ電気的に接続されないように、構成されている。また、二層付素子は、光半導体装置の一部品、すなわち、光半導体装置を作製するための部品であり、部品単独で流通し、産業上利用可能なデバイスである。 The element with two layers is not an optical semiconductor device (light emitting device), that is, does not include a substrate (electrode substrate) provided in the optical semiconductor device. Specifically, the element with two layers includes an optical semiconductor element, a phosphor layer, and a reflective layer (reflective member), and optionally includes a diffusion layer. The element with two layers is preferably composed of an optical semiconductor element, a phosphor layer and a reflective layer, or is composed of an optical semiconductor element, a phosphor layer, a reflective layer and a diffusion layer. That is, the element with two layers is configured so as not to be electrically connected to the electrode provided on the substrate of the optical semiconductor device. The two-layered element is a part of an optical semiconductor device, that is, a part for producing the optical semiconductor device, and is a device that is distributed by itself and is industrially usable.
 図1A-図1Bに示すように、二層付素子1は、光半導体素子2と、蛍光体層3と、反射層4とを備えている。 As shown in FIGS. 1A to 1B, the element with two layers 1 includes an optical semiconductor element 2, a phosphor layer 3, and a reflective layer 4.
 光半導体素子2は、例えば、電気エネルギーを光エネルギーに変換するLED(発光ダイオード素子)やLD(半導体レーザー素子)である。好ましくは、光半導体素子2は、青色光を発光する青色LEDである。一方、光半導体素子2は、光半導体素子とは技術分野が異なるトランジスタなどの整流器(半導体素子)を含まない。 The optical semiconductor element 2 is, for example, an LED (light emitting diode element) or LD (semiconductor laser element) that converts electrical energy into optical energy. Preferably, the optical semiconductor element 2 is a blue LED that emits blue light. On the other hand, the optical semiconductor element 2 does not include a rectifier (semiconductor element) such as a transistor having a technical field different from that of the optical semiconductor element.
 光半導体素子2は、左右方向および前後方向に沿う略平板形状を有している。また、光半導体素子2は、平面視略矩形状(好ましくは、平面視略正方形状)を有している。光半導体素子2は、発光面21と、対向面22と、側面23とを備えている。 The optical semiconductor element 2 has a substantially flat plate shape along the left-right direction and the front-rear direction. The optical semiconductor element 2 has a substantially rectangular shape in plan view (preferably, a substantially square shape in plan view). The optical semiconductor element 2 includes a light emitting surface 21, a facing surface 22, and a side surface 23.
 発光面21は、光半導体素子2における上面である。発光面21は、平坦な形状を有している。発光面21には、蛍光体層3(後述)が設けられている。 The light emitting surface 21 is the upper surface of the optical semiconductor element 2. The light emitting surface 21 has a flat shape. A phosphor layer 3 (described later) is provided on the light emitting surface 21.
 対向面22は、光半導体素子2における下面であって、電極24が形成されている面である。対向面22は、発光面21に対して下側に間隔を隔てて対向配置されている。電極24は、複数(2個)設けられており、対向面22から下側に向かってわずかに突出する形状を有している。 The facing surface 22 is a lower surface of the optical semiconductor element 2 and is a surface on which the electrode 24 is formed. The facing surface 22 is disposed to face the light emitting surface 21 with a space on the lower side. A plurality (two) of the electrodes 24 are provided and have a shape that slightly protrudes downward from the facing surface 22.
 側面23は、発光面21の周端縁と、対向面22の周端縁とを連結している。 The side surface 23 connects the peripheral edge of the light emitting surface 21 and the peripheral edge of the facing surface 22.
 光半導体素子2の寸法は、適宜設定されており、具体的には、厚み(上下方向長さ)が、例えば、0.1μm以上、好ましくは、0.2μm以上、より好ましくは、10μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。光半導体素子2の左右方向および/または前後方向における長さは、それぞれ、例えば、200μm以上、好ましくは、500μm以上であり、また、例えば、3000μm以下、好ましくは、2000μm以下である。 The dimensions of the optical semiconductor element 2 are appropriately set. Specifically, the thickness (vertical length) is, for example, 0.1 μm or more, preferably 0.2 μm or more, more preferably 10 μm or more. And, for example, 500 μm or less, preferably 200 μm or less. The length in the left-right direction and / or the front-rear direction of the optical semiconductor element 2 is, for example, 200 μm or more, preferably 500 μm or more, and for example, 3000 μm or less, preferably 2000 μm or less.
 蛍光体層3は、光半導体素子2の発光面21および側面23を被覆するように、光半導体素子2の上側および側方に配置されている。蛍光体層3は、平面視略矩形状(好ましくは、平面視略正方形状)を有しており、上下方向に投影したときに、光半導体素子2を含むように形成されている。蛍光体層3は、光半導体素子2の上側に配置される内側部分31と、内側部分31の外側に配置される外側部分32とを備えている。 The phosphor layer 3 is disposed on the upper side and the side of the optical semiconductor element 2 so as to cover the light emitting surface 21 and the side surface 23 of the optical semiconductor element 2. The phosphor layer 3 has a substantially rectangular shape in plan view (preferably, a substantially square shape in plan view), and is formed so as to include the optical semiconductor element 2 when projected in the vertical direction. The phosphor layer 3 includes an inner portion 31 disposed above the optical semiconductor element 2 and an outer portion 32 disposed outside the inner portion 31.
 内側部分31は、左右方向および前後方向に沿う略平板形状を有しており、平面視において、光半導体素子2と同一形状となるように形成されている。すなわち、内側部分31の下面全面は、光半導体素子2の発光面21全面と接触し、それを被覆している。 The inner portion 31 has a substantially flat plate shape along the left-right direction and the front-rear direction, and is formed to have the same shape as the optical semiconductor element 2 in plan view. That is, the entire lower surface of the inner portion 31 is in contact with and covers the entire light emitting surface 21 of the optical semiconductor element 2.
 外側部分32は、上下方向に延びる平面視略矩形枠状を有している。外側部分32は、上側部分32aと下側部分32bとを備えている。また、外側部分32は、上側部分32aおよび下側部分32bとの間において、発光面21に沿って光半導体素子2の左右方向および前後方向の外側に延びる仮想面6を含む。すなわち、外側部分32は、仮想面6によって、上側部分32aと下側部分32bとに上下方向に区画される。 The outer portion 32 has a substantially rectangular frame shape in plan view extending in the vertical direction. The outer portion 32 includes an upper portion 32a and a lower portion 32b. The outer portion 32 includes a virtual surface 6 that extends outward in the left-right direction and the front-rear direction of the optical semiconductor element 2 along the light-emitting surface 21 between the upper portion 32 a and the lower portion 32 b. That is, the outer portion 32 is partitioned by the virtual surface 6 into an upper portion 32 a and a lower portion 32 b in the vertical direction.
 外側部分32の上側部分32aは、内側部分31の外側に配置されており、内側部分31の周端縁と上側部分32aの内周端縁とが一体的に連続している。 The upper part 32a of the outer part 32 is disposed outside the inner part 31, and the peripheral edge of the inner part 31 and the inner peripheral edge of the upper part 32a are integrally continuous.
 外側部分32の下側部分32bは、光半導体素子2の側面23と接触し、それを被覆するように、光半導体素子2の外側に配置されている。すなわち、下側部分32bの内周端面は、光半導体素子2の側面23全面に接触している。 The lower part 32b of the outer part 32 is arranged outside the optical semiconductor element 2 so as to be in contact with and cover the side surface 23 of the optical semiconductor element 2. That is, the inner peripheral end surface of the lower portion 32 b is in contact with the entire side surface 23 of the optical semiconductor element 2.
 蛍光体層3の内側部分31の厚み、すなわち、発光面21と蛍光体層3の上面との上下方向距離(図1Bで示すA)は、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、300μm以下、好ましくは、150μm以下である。 The thickness of the inner portion 31 of the phosphor layer 3, that is, the vertical distance between the light emitting surface 21 and the upper surface of the phosphor layer 3 (A shown in FIG. 1B) is, for example, 10 μm or more, preferably 50 μm or more. For example, it is 300 micrometers or less, Preferably, it is 150 micrometers or less.
 上記上下方向距離Aと、発光面21の左右方向または前後方向の長さ(直交方向距離)との比は、例えば、1:100~30:100、好ましくは、5:100~15:100である。 The ratio between the vertical distance A and the length of the light emitting surface 21 in the horizontal direction or the longitudinal direction (distance in the orthogonal direction) is, for example, 1: 100 to 30: 100, preferably 5: 100 to 15: 100. is there.
 蛍光体層3の外側部分32の左右方向または前後方向の長さ、すなわち、光半導体素子2の発光面21の端縁(点m)と、蛍光体層3の仮想面6上における外端縁(点k)との左右方向または前後方向の距離(図1Bで示すX)は、例えば、10μm以上、好ましくは、50μm以上、より好ましくは、70μm以上であり、また、例えば、2000μm以下、好ましくは、1500μm以下、より好ましくは、500μm以下、さらに好ましくは、150μm以下である。 The length of the outer portion 32 of the phosphor layer 3 in the left-right direction or the front-rear direction, that is, the edge (point m) of the light emitting surface 21 of the optical semiconductor element 2 and the outer edge on the virtual surface 6 of the phosphor layer 3 The distance in the left-right direction or the front-rear direction with respect to (point k) (X shown in FIG. 1B) is, for example, 10 μm or more, preferably 50 μm or more, more preferably 70 μm or more, and, for example, 2000 μm or less, preferably Is 1500 μm or less, more preferably 500 μm or less, and even more preferably 150 μm or less.
 上記距離Xと、発光面21の左右方向または前後方向の長さとの比は、例えば、1:100~150:100、好ましくは、5:100~100:100、より好ましくは、7:100~50:100である。 The ratio between the distance X and the length of the light emitting surface 21 in the left-right direction or the front-rear direction is, for example, 1: 100 to 150: 100, preferably 5: 100 to 100: 100, more preferably 7: 100 to 50: 100.
 蛍光体層3は、例えば、蛍光体および樹脂を含有する蛍光組成物から形成されている。 The phosphor layer 3 is formed of, for example, a phosphor composition containing a phosphor and a resin.
 蛍光体は、光半導体素子2から発光される光を波長変換する。蛍光体としては、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などが挙げられる。 The phosphor converts the wavelength of the light emitted from the optical semiconductor element 2. Examples of the phosphor include a yellow phosphor that can convert blue light into yellow light, and a red phosphor that can convert blue light into red light.
 黄色蛍光体としては、例えば、(Ba,Sr,Ca)SiO;Eu、(Sr,Ba)SiO:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、YAl12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。 Examples of the yellow phosphor include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca-α-SiAlON.
 赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。 Examples of the red phosphor include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
 蛍光体の形状としては、例えば、球状、板状、針状などが挙げられる。 Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape.
 蛍光体の最大長さの平均値(球状である場合には、平均粒子径)は、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下でもある。 The average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 μm or more, preferably 1 μm or more, and for example, 200 μm or less, preferably 100 μm or less. But there is.
 蛍光体は、単独で使用または2種以上を併用することができる。 Fluorescent substances can be used alone or in combination of two or more.
 蛍光体の配合割合は、蛍光組成物に対して、例えば、10質量%以上、好ましくは、20質量%以上であり、また、例えば、80質量%以下、好ましくは、70質量%以下である。 The blending ratio of the phosphor is, for example, 10% by mass or more, preferably 20% by mass or more, and for example, 80% by mass or less, preferably 70% by mass or less with respect to the phosphor composition.
 樹脂は、蛍光組成物において蛍光体を均一に分散させるマトリクスであって、例えば、樹脂としては、例えば、硬化性樹脂、熱可塑性樹脂が挙げられる。好ましくは、硬化性樹脂が挙げられる。硬化性樹脂としては、2段反応硬化性樹脂、1段反応硬化性樹脂などの熱硬化性樹脂が挙げられる。 The resin is a matrix in which the phosphor is uniformly dispersed in the phosphor composition, and examples of the resin include a curable resin and a thermoplastic resin. Preferably, a curable resin is used. Examples of the curable resin include thermosetting resins such as a two-stage reaction curable resin and a one-stage reaction curable resin.
 2段反応硬化性樹脂は、2つの反応機構を有しており、第1段の反応で、Aステージ状態からBステージ化(半硬化)し、次いで、第2段の反応で、Bステージ状態からCステージ化(完全硬化)することができる。つまり、2段反応硬化性樹脂は、適度の加熱条件によりBステージ状態となることができる熱硬化性樹脂である。Bステージ状態は、熱硬化性樹脂が、液状であるAステージ状態と、完全硬化したCステージ状態との間の状態であって、硬化およびゲル化がわずかに進行し、圧縮弾性率がCステージ状態の圧縮弾性率よりも小さい半固体状態または固体状態である。 The two-stage reaction curable resin has two reaction mechanisms. In the first stage reaction, the A stage state is changed to the B stage (semi-cured), and then in the second stage reaction, the B stage state is obtained. To C-stage (complete curing). That is, the two-stage reaction curable resin is a thermosetting resin that can be in a B-stage state under appropriate heating conditions. The B stage state is a state between the A stage state where the thermosetting resin is in a liquid state and the fully cured C stage state, and curing and gelation proceed slightly, and the compression elastic modulus is C stage. A semi-solid state or a solid state smaller than the compression elastic modulus of the state.
 1段反応硬化性樹脂は、1つの反応機構を有しており、第1段の反応で、Aステージ状態からCステージ化(完全硬化)することができる。このような1段反応硬化性樹脂は、第1段の反応の途中で、その反応が停止して、Aステージ状態からBステージ状態となることができ、その後のさらなる加熱によって、第1段の反応が再開されて、Bステージ状態からCステージ化(完全硬化)することができる熱硬化性樹脂を含む。つまり、かかる熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂を含む。また、1段反応硬化性樹脂は、1段の反応の途中で停止するように制御できず、つまり、Bステージ状態となることができず、一度に、Aステージ状態からCステージ化(完全硬化)する熱硬化性樹脂を含むこともできる。 The first-stage reaction curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state by the first-stage reaction. Such a one-stage reaction curable resin can stop the reaction in the middle of the first-stage reaction and change from the A-stage state to the B-stage state. The reaction is restarted, and the thermosetting resin that can be C-staged (completely cured) from the B-stage state is included. That is, the thermosetting resin includes a thermosetting resin that can be in a B-stage state. In addition, the one-stage reaction curable resin cannot be controlled to stop in the middle of the one-stage reaction, that is, cannot enter the B stage state, and is changed from the A stage state to the C stage (completely cured). ) Can be included.
 好ましくは、熱硬化性樹脂としては、Bステージ状態となることができる熱硬化性樹脂が挙げられる。 Preferably, the thermosetting resin includes a thermosetting resin that can be in a B-stage state.
 Bステージ状態となることができる熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが挙げられる。Bステージ状態となることができる熱硬化性樹脂としては、好ましくは、シリコーン樹脂、エポキシ樹脂が挙げられ、より好ましくは、シリコーン樹脂が挙げられる。 Examples of the thermosetting resin that can be in the B stage state include silicone resin, epoxy resin, urethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin. The thermosetting resin that can be in the B-stage state preferably includes a silicone resin and an epoxy resin, and more preferably includes a silicone resin.
 シリコーン樹脂としては、例えば、フェニル基を分子内に含むフェニル系シリコーン樹脂、例えば、メチル基を分子内に含むメチル系シリコーン樹脂などが挙げられる。 Examples of the silicone resin include a phenyl silicone resin containing a phenyl group in the molecule, for example, a methyl silicone resin containing a methyl group in the molecule.
 熱硬化性樹脂は、単独で使用または2種以上を併用することができる。 Thermosetting resins can be used alone or in combination of two or more.
 樹脂の配合割合は、蛍光体(および添加剤)の配合割合の残部であり、蛍光組成物に対して、例えば、20質量%以上、好ましくは、30質量%以上であり、また、例えば、90質量%以下、好ましくは、80質量%以下である。 The blending ratio of the resin is the remainder of the blending ratio of the phosphor (and additive), and is, for example, 20% by mass or more, preferably 30% by mass or more, and, for example, 90% by mass with respect to the phosphor composition. It is not more than mass%, preferably not more than 80 mass%.
 蛍光組成物には、光拡散性粒子(後述)、充填材(後述)、チクソ性付与粒子(後述)などの公知の添加剤(後述)を、適宜の割合で含有することもできる。 The fluorescent composition may contain known additives (described later) such as light diffusing particles (described later), fillers (described later), thixotropic particles (described later) in an appropriate ratio.
 光拡散性粒子を含有する場合、光拡散性粒子の配合割合は、蛍光組成物に対して、例えば、1質量%以上、好ましくは、10質量%以上であり、また、例えば、60質量%以下、好ましくは、50質量%以下である。 When the light diffusing particles are contained, the mixing ratio of the light diffusing particles is, for example, 1% by mass or more, preferably 10% by mass or more, and, for example, 60% by mass or less with respect to the fluorescent composition. Preferably, it is 50 mass% or less.
 充填材を含有する場合、充填材の配合割合は、蛍光組成物に対して、例えば、1質量%以上、好ましくは、10質量%以上であり、また、例えば、60質量%以下、好ましくは、50質量%以下である。 When the filler is contained, the blending ratio of the filler is, for example, 1% by mass or more, preferably 10% by mass or more, and, for example, 60% by mass or less, preferably, with respect to the fluorescent composition. It is 50 mass% or less.
 チクソ性付与粒子を含有する場合、チクソ性付与粒子の配合割合は、蛍光組成物に対して、例えば、0.1質量%以上、好ましくは、0.5質量%以上であり、また、例えば、10質量%以下、好ましくは、3質量%以下である。 When the thixotropy-imparting particles are contained, the mixing ratio of the thixotropy-imparting particles is, for example, 0.1% by mass or more, preferably 0.5% by mass or more with respect to the fluorescent composition. It is 10 mass% or less, Preferably, it is 3 mass% or less.
 反射層4は、光半導体素子2および蛍光体層3の両方に対して、左右方向外側および前後方向外側に配置されている。反射層4は、上下方向に延びる平面視略矩形枠状を有している。 The reflection layer 4 is disposed on the outer side in the left-right direction and on the outer side in the front-rear direction with respect to both the optical semiconductor element 2 and the phosphor layer 3. The reflective layer 4 has a substantially rectangular frame shape in plan view extending in the vertical direction.
 反射層4の内周端縁(面)は、蛍光体層3の側面の全面と接触し、それを被覆している。また、反射層4は、左右方向または前後方向に投影したときに、光半導体素子2および蛍光体層3を含むように配置されている。また、反射層4の上端縁は、上下方向において、蛍光体層3の上面と一致し、反射層4の下端縁は、上下方向において、蛍光体層3の下面および光半導体素子2の対向面22と一致する。すなわち、反射層4は、その上面が蛍光体層3の上面と面一となり、かつ、その下面が蛍光体層3の下面および光半導体素子2の対向面22と面一となるように、形成されている。 The inner peripheral edge (surface) of the reflective layer 4 is in contact with and covers the entire side surface of the phosphor layer 3. The reflective layer 4 is disposed so as to include the optical semiconductor element 2 and the phosphor layer 3 when projected in the left-right direction or the front-rear direction. The upper edge of the reflective layer 4 coincides with the upper surface of the phosphor layer 3 in the vertical direction, and the lower edge of the reflective layer 4 is the lower surface of the phosphor layer 3 and the opposite surface of the optical semiconductor element 2 in the vertical direction. Matches 22. That is, the reflective layer 4 is formed such that its upper surface is flush with the upper surface of the phosphor layer 3 and its lower surface is flush with the lower surface of the phosphor layer 3 and the opposing surface 22 of the optical semiconductor element 2. Has been.
 また、反射層4は、好ましくは、下記式(1)、より好ましくは、下記式(1´)、さらに好ましくは、下記式(1´´)を満たす。 The reflective layer 4 preferably satisfies the following formula (1), more preferably the following formula (1 ′), and still more preferably the following formula (1 ″).
 90°  < θ < 160°   (1)
 100° < θ < 160°   (1´)
 100° < θ < 150°   (1´´)
 θは、光半導体素子2の発光面21の端縁(点m)と反射層4の上端縁の内端縁(点n)とを平面視において左右方向または前後方向に沿って結ぶ直線L1(図1B参照)と、発光面21とがなす角度を示す。
90 ° <θ 1 <160 ° (1)
100 ° <θ 1 <160 ° (1 ′)
100 ° <θ 1 <150 ° ( 1 ″)
θ 1 is a straight line L 1 connecting the edge (point m) of the light emitting surface 21 of the optical semiconductor element 2 and the inner edge (point n) of the upper edge of the reflective layer 4 along the left-right direction or the front-rear direction in plan view. An angle formed by the light emitting surface 21 (see FIG. 1B) is shown.
 また、光半導体素子2の発光面21と、反射層4の上端縁の内端縁(点n)との上下方向距離Y(すなわち、反射層4の内端縁と仮想面6との交点(点k)と、反射層4の上端縁の内端縁(点n)との距離Y)は、例えば、10μm以上、好ましくは、50μm以上、より好ましくは、150μm以上であり、また、例えば、800μm以下、好ましくは、500μm以下、より好ましくは、250μm以下である。距離Yを上記下限以上とすることにより、色味を良好にし、かつ、色のばらつきを低減することができる。一方、距離Yを上記上限以下とすることにより、放熱性を良好にし、かつ、二層付素子1の信頼性を向上させることができる。 Further, the vertical distance Y between the light emitting surface 21 of the optical semiconductor element 2 and the inner edge (point n) of the upper edge of the reflective layer 4 (that is, the intersection of the inner edge of the reflective layer 4 and the virtual surface 6 ( The distance Y) between the point k) and the inner edge (point n) of the upper end edge of the reflective layer 4 is, for example, 10 μm or more, preferably 50 μm or more, more preferably 150 μm or more. It is 800 μm or less, preferably 500 μm or less, and more preferably 250 μm or less. By setting the distance Y to be equal to or more than the lower limit, it is possible to improve the color tone and reduce the color variation. On the other hand, by setting the distance Y to the upper limit or less, it is possible to improve heat dissipation and improve the reliability of the element with two layers 1.
 なお、第1実施形態では、A = Y の関係式(2´)を満たす。 In the first embodiment, the relational expression (2 ′) of A = Y is satisfied.
 また、反射層4は、光半導体素子2の対向面22に対して略直角をなすように、上下方向に延びている。すなわち、反射層4の内端縁の面と、蛍光体層3の最下面とがなす角度θは、製造容易性、指向性および照度の観点から、例えば、88°以上92°以下であり、好ましくは、90°である。 The reflective layer 4 extends in the vertical direction so as to be substantially perpendicular to the facing surface 22 of the optical semiconductor element 2. That is, the angle θ 2 formed by the inner edge surface of the reflective layer 4 and the lowermost surface of the phosphor layer 3 is, for example, 88 ° or more and 92 ° or less from the viewpoint of manufacturability, directivity, and illuminance. The angle is preferably 90 °.
 反射層4の左右方向または前後方向の長さ(特に、上端縁における左右方向または前後方向長さ、図1Bで示すD)は、指向性の観点から、例えば、0μmを超過し、好ましくは、50μm以上、より好ましくは、100μm以上であり、また、例えば、500μm以下、好ましくは、300μm以下である。 The length of the reflective layer 4 in the left-right direction or the front-rear direction (particularly the left-right direction or the front-rear direction length at the upper edge, D shown in FIG. 1B) exceeds, for example, 0 μm from the viewpoint of directivity, The thickness is 50 μm or more, more preferably 100 μm or more, and for example, 500 μm or less, preferably 300 μm or less.
 反射層4の下端縁の内端縁から、光半導体素子2の対向面22の端縁までの左右方向または前後方向の距離(図1Bで示すB)は、例えば、0μmを超過し、好ましくは、10μm以上、より好ましくは、50μm以上、さらに好ましくは、70μm以上であり、また、例えば、2000μm以下、好ましくは、1500μm以下、より好ましくは、500μm以下、さらに好ましくは、150μm以下である。 The distance in the left-right direction or the front-rear direction from the inner edge of the lower end edge of the reflective layer 4 to the edge of the facing surface 22 of the optical semiconductor element 2 (B shown in FIG. 1B) exceeds, for example, 0 μm, preferably It is 10 μm or more, more preferably 50 μm or more, still more preferably 70 μm or more, and for example, 2000 μm or less, preferably 1500 μm or less, more preferably 500 μm or less, and further preferably 150 μm or less.
 反射層4は、100μm厚みとして450nm波長の光で照射したときの反射率が、例えば、70%以上、好ましくは、80%以上、より好ましくは、90%以上であり、また、例えば、100%以下である。反射率を上記範囲内とすることにより、正面照度をより一層良好にすることができる。反射率の測定方法は、紫外可視近赤外分光光度計を用いて、積分球における光路確認方法にて、450nm波長での反射率を測定することにより求めることができる。 The reflective layer 4 has a reflectance of 70% or more, preferably 80% or more, more preferably 90% or more, for example, 100% when irradiated with light having a wavelength of 450 nm with a thickness of 100 μm. It is as follows. By setting the reflectance within the above range, the front illuminance can be further improved. The method for measuring the reflectance can be obtained by measuring the reflectance at a wavelength of 450 nm using an ultraviolet-visible near-infrared spectrophotometer with an optical path confirmation method using an integrating sphere.
 反射層4は、100μm厚みとして450nm波長の光で照射したときの光透過率が、例えば、20%以下、好ましくは、10%以下である。光透過率の測定方法は、実施例にて詳述する。 The reflective layer 4 has a light transmittance of, for example, 20% or less, preferably 10% or less when irradiated with light having a wavelength of 450 nm with a thickness of 100 μm. The method for measuring the light transmittance will be described in detail in Examples.
 反射層4は、例えば、光反射成分および樹脂を含有する反射組成物から形成されている。 The reflective layer 4 is formed of, for example, a reflective composition containing a light reflection component and a resin.
 光反射成分は、光を透過せずに反射する粒子であって、例えば、白色無機粒子、白色有機粒子などの白色粒子などが挙げられる。好ましくは、照度、耐久性の観点から、白色無機粒子が挙げられる。 The light reflecting component is a particle that reflects without transmitting light, and examples thereof include white particles such as white inorganic particles and white organic particles. Preferably, white inorganic particles are used from the viewpoint of illuminance and durability.
 白色無機粒子を構成する材料としては、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムなどの酸化物、例えば、鉛白(塩基性炭酸鉛)、炭酸カルシウムなどの炭酸塩、例えば、カオリンなどの粘土鉱物などが挙げられる。照度の観点から、好ましくは、酸化物が挙げられ、より好ましくは、酸化チタンが挙げられる。 Examples of the material constituting the white inorganic particles include oxides such as titanium oxide, zinc oxide, zirconium oxide, and aluminum oxide, such as carbonates such as lead white (basic lead carbonate) and calcium carbonate, such as kaolin. Clay minerals. From the viewpoint of illuminance, an oxide is preferable, and titanium oxide is more preferable.
 光反射成分の平均粒子径は、例えば、0.1μm以上、好ましくは、0.2μm以上であり、また、例えば、10μm以下、好ましくは、2.0μm以下である。 The average particle diameter of the light reflection component is, for example, 0.1 μm or more, preferably 0.2 μm or more, and for example, 10 μm or less, preferably 2.0 μm or less.
 本発明において、粒子の平均粒子径は、D50値として算出され、具体的には、レーザー回折式粒度分布計により測定される。 In the present invention, the average particle diameter of the particles is calculated as a D50 value, and specifically measured by a laser diffraction particle size distribution meter.
 光反射成分の含有割合は、反射組成物に対して、例えば、1質量%以上、好ましくは、5質量%以上、より好ましくは、10質量%以上であり、また、例えば、50質量%以下、好ましくは、30質量%以下である。 The content ratio of the light reflection component is, for example, 1% by mass or more, preferably 5% by mass or more, more preferably 10% by mass or more, and, for example, 50% by mass or less with respect to the reflective composition. Preferably, it is 30 mass% or less.
 樹脂は、反射組成物において光反射成分を均一に分散させるマトリクスであって、例えば、樹脂は、蛍光組成物に含まれる樹脂と同一である。 Resin is a matrix that uniformly disperses the light reflecting component in the reflective composition. For example, the resin is the same as the resin contained in the fluorescent composition.
 樹脂の配合割合は、光反射成分(および添加剤)の配合割合の残部であり、例えば、反射組成物に対して、例えば、10質量%以上、好ましくは、20質量%以上、より好ましくは、25質量%以上であり、また、例えば、99質量%以下、好ましくは、75質量%以下、より好ましくは、50質量%未満である。 The blending ratio of the resin is the balance of the blending ratio of the light reflection component (and additive), and for example, 10% by mass or more, preferably 20% by mass or more, more preferably, with respect to the reflective composition, For example, it is 99% by mass or less, preferably 75% by mass or less, and more preferably less than 50% by mass.
 反射組成物には、光拡散性粒子、充填材、チクソ性付与粒子などの添加剤を適宜の割合で含有することもできる。 The reflective composition can also contain additives such as light diffusing particles, fillers, and thixotropic particles at an appropriate ratio.
 光拡散性粒子は、光を拡散する透明性の粒子であって、例えば、樹脂との屈折率差が高い粒子が挙げられる。光拡散性粒子と樹脂との屈折率差は、例えば、0.04以上、好ましくは、0.10以上であり、また、例えば、0.50以下である。これにより、反射層4内における光の拡散を向上させて、反射率をより一層向上させることができる。 The light diffusing particles are transparent particles that diffuse light and include, for example, particles having a high refractive index difference from the resin. The refractive index difference between the light diffusing particles and the resin is, for example, 0.04 or more, preferably 0.10 or more, and, for example, 0.50 or less. Thereby, the diffusion of light in the reflective layer 4 can be improved, and the reflectance can be further improved.
 具体的には、光拡散性無機粒子、光拡散性有機粒子などが挙げられる。 Specific examples include light diffusing inorganic particles and light diffusing organic particles.
 光拡散性無機粒子としては、例えば、シリカ粒子、複合無機酸化物粒子(ガラス粒子など)が挙げられる。 Examples of the light diffusing inorganic particles include silica particles and composite inorganic oxide particles (such as glass particles).
 複合無機酸化物粒子は、好ましくは、ガラス粒子であって、具体的には、シリカ、あるいは、シリカおよび酸化ホウ素を主成分として含有し、また、酸化アルミニウム、酸化カルシウム、酸化亜鉛、酸化ストロンチウム、酸化マグネシウム、酸化ジルコニウム、酸化バリウム、酸化アンチモンなどを副成分として含有する。複合無機酸化物粒子における主成分の含有割合は、複合無機酸化物粒子に対して、例えば、40質量%以上、好ましくは、50質量%以上であり、また、例えば、90質量%以下、好ましくは、80質量%以下である。副成分の含有割合は、上記した主成分の含有割合の残部である。 The composite inorganic oxide particles are preferably glass particles, specifically containing silica or silica and boron oxide as main components, and also containing aluminum oxide, calcium oxide, zinc oxide, strontium oxide, Magnesium oxide, zirconium oxide, barium oxide, antimony oxide and the like are contained as accessory components. The content ratio of the main component in the composite inorganic oxide particles is, for example, 40% by mass or more, preferably 50% by mass or more, and for example, 90% by mass or less, preferably with respect to the composite inorganic oxide particles. 80% by mass or less. The content ratio of the subcomponent is the remainder of the content ratio of the main component described above.
 光拡散性有機粒子としては、例えば、アクリル系樹脂粒子、スチレン系樹脂、アクリル-スチレン系樹脂粒子、シリコーン系樹脂粒子、ポリカーボネート系樹脂粒子、ベンゾグアナミン系樹脂粒子、ポリオレフィン系樹脂粒子、ポリエステル系樹脂粒子、ポリアミド系樹脂粒子、ポリイミド系樹脂粒子などが挙げられる。 Examples of the light diffusing organic particles include acrylic resin particles, styrene resins, acrylic-styrene resin particles, silicone resin particles, polycarbonate resin particles, benzoguanamine resin particles, polyolefin resin particles, and polyester resin particles. , Polyamide resin particles, polyimide resin particles, and the like.
 光拡散性粒子の屈折率は、例えば、1.40以上1.60以下である。光拡散性粒子と樹脂との屈折率差は、例えば、0.04以上、好ましくは、0.10以上であり、また、例えば、0.50以下である。屈折率は、例えば、アッベ屈折計によって測定される。 The refractive index of the light diffusing particles is, for example, 1.40 or more and 1.60 or less. The refractive index difference between the light diffusing particles and the resin is, for example, 0.04 or more, preferably 0.10 or more, and, for example, 0.50 or less. The refractive index is measured by, for example, an Abbe refractometer.
 光拡散性粒子としては、光拡散性、耐久性の観点から、好ましくは、光拡散性無機粒子が挙げられ、より好ましくは、シリカ粒子、複合無機酸化物粒子が挙げられる。 The light diffusing particles are preferably light diffusing inorganic particles, and more preferably silica particles and composite inorganic oxide particles, from the viewpoint of light diffusibility and durability.
 光拡散性粒子の平均粒子径は、例えば、1.0μm以上、好ましくは、5.0μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。 The average particle diameter of the light diffusing particles is, for example, 1.0 μm or more, preferably 5.0 μm or more, and for example, 100 μm or less, preferably 50 μm or less.
 反射組成物が光拡散性粒子を含有する場合、光拡散性粒子の含有割合は、反射組成物に対して、例えば、1質量%以上、好ましくは、10質量%以上、より好ましくは、20質量%を超過し、また、例えば、50質量%以下、好ましくは、40質量%以下である。 When the reflective composition contains light diffusing particles, the content ratio of the light diffusing particles is, for example, 1% by mass or more, preferably 10% by mass or more, more preferably 20% by mass with respect to the reflective composition. %, For example, 50% by mass or less, preferably 40% by mass or less.
 充填材は、透明性の粒子であって、樹脂との屈折率差が低い粒子である。具体的には、樹脂との屈折率差が、0.03以下、好ましくは、0.01以下である粒子である。これにより、反射層4の透明性を確保しつつ、反射層4の剛性を向上することができる。 The filler is a transparent particle having a low refractive index difference from the resin. Specifically, particles having a refractive index difference with the resin of 0.03 or less, preferably 0.01 or less. Thereby, the rigidity of the reflective layer 4 can be improved while ensuring the transparency of the reflective layer 4.
 充填材の屈折率は、例えば、1.40以上、好ましくは、1.45以上であり、また、例えば、1.60以下、好ましくは、1.55以下である。 The refractive index of the filler is, for example, 1.40 or more, preferably 1.45 or more, and for example, 1.60 or less, preferably 1.55 or less.
 このような充填材としては、光拡散性粒子と同様の材料の粒子が挙げられ、好ましくは、無機粒子、より好ましくは、シリカ粒子、複合無機酸化物粒子(ガラス粒子など)が挙げられる。 Examples of such a filler include particles of the same material as the light diffusing particles, preferably inorganic particles, and more preferably silica particles and composite inorganic oxide particles (such as glass particles).
 充填材の平均粒子径は、例えば、1.0μm以上、好ましくは、5.0μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。 The average particle diameter of the filler is, for example, 1.0 μm or more, preferably 5.0 μm or more, and for example, 100 μm or less, preferably 50 μm or less.
 なお、本発明に用いる粒子において、光拡散性粒子か充填材かは、たとえ材料が同一であったとしても、樹脂の屈折率差に応じて適宜区別される。 In the particles used in the present invention, light diffusing particles or fillers are appropriately distinguished according to the difference in refractive index of the resin even if the materials are the same.
 反射組成物が充填材を含有する場合、充填材の含有割合は、反射組成物に対して、例えば、1質量%以上、好ましくは、10質量%以上、より好ましくは、20質量%を超過し、また、例えば、50質量%以下、好ましくは、40質量%以下である。 When the reflective composition contains a filler, the content ratio of the filler is, for example, 1% by mass or more, preferably 10% by mass or more, more preferably more than 20% by mass with respect to the reflective composition. For example, it is 50 mass% or less, Preferably, it is 40 mass% or less.
 チクソ性付与粒子は、反射組成物にチクソ性を付与または向上させるための粒子であって、好ましくは、反射性の観点から、ヒュームドシリカ(煙霧シリカ)などのナノシリカなどが挙げられる。 The thixotropy-imparting particles are particles for imparting or improving the thixotropy of the reflective composition, and preferably include nano silica such as fumed silica (fumed silica) from the viewpoint of reflectivity.
 ヒュームドシリカとしては、例えば、ジメチルジクロロシラン、シリコーンオイルなどの表面処理剤により表面が疎水化された疎水性煙霧シリカ、および、表面処理されていない親水性煙霧シリカのいずれであってもよい。 The fumed silica may be, for example, either hydrophobic fumed silica whose surface is hydrophobized by a surface treating agent such as dimethyldichlorosilane or silicone oil, or hydrophilic fumed silica that is not surface-treated.
 ナノシリカ(特にヒュームドシリカ)の平均粒子径は、例えば、1nm以上、好ましくは、5nm以上であり、また、例えば、200nm以下、好ましくは、50nm以下である。また、ナノシリカ(特にヒュームドシリカ)の比表面積(BET法)は、例えば、50m/g以上、好ましくは、200m/g以上であり、また、例えば、500m/g以下である。 The average particle diameter of nano silica (particularly fumed silica) is, for example, 1 nm or more, preferably 5 nm or more, and for example, 200 nm or less, preferably 50 nm or less. The specific surface area of nanosilica (particularly fumed silica) (BET method), for example, 50 m 2 / g or more, preferably not 200 meters 2 / g or more, and is, for example, at most 500m 2 / g.
 反射組成物がチクソ性付与粒子を含有する場合、反射組成物におけるチクソ性付与粒子の含有割合は、例えば、0.1質量%以上、好ましくは、0.5質量%以上であり、また、例えば、10質量%以下、好ましくは、3質量%以下である。 When the reflective composition contains thixotropic particles, the content ratio of the thixotropic particles in the reflective composition is, for example, 0.1% by mass or more, preferably 0.5% by mass or more. 10% by mass or less, preferably 3% by mass or less.
 二層付素子1から放出される光の半値角は、例えば、130度以下、好ましくは、125度以下、より好ましくは、120度以下であり、また、例えば、90度以上、好ましくは、100度以上である。半値角の測定方法は、実施例にて詳述する。 The half-value angle of light emitted from the element with two layers 1 is, for example, 130 degrees or less, preferably 125 degrees or less, more preferably 120 degrees or less, and for example, 90 degrees or more, preferably 100 degrees. More than degrees. The method for measuring the half-value angle will be described in detail in Examples.
 二層付素子1から放出される光の配向角(COA)は、例えば、0.10度以下、好ましくは、0.05度以下、より好ましくは、0.03度以下であり、また、例えば、0.01度以上である。配向角の測定方法は、実施例にて詳述する。 The orientation angle (COA) of light emitted from the element with two layers 1 is, for example, 0.10 degrees or less, preferably 0.05 degrees or less, more preferably 0.03 degrees or less, , 0.01 degrees or more. The method for measuring the orientation angle will be described in detail in Examples.
 二層付素子1から放出される光の正面照度は、例えば、60%を超過し、好ましくは、100%以上、より好ましくは、110%以上、さらに好ましくは、120%以上であり、また、例えば、130%以下である。正面照度の測定方法は、実施例にて詳述する。 The front illuminance of the light emitted from the two-layered element 1 is, for example, more than 60%, preferably 100% or more, more preferably 110% or more, and further preferably 120% or more. For example, it is 130% or less. The method for measuring the front illuminance will be described in detail in Examples.
 <第1実施形態の製造方法>
 図2A~図2Gを参照して、第1実施形態の二層付素子1の製造方法を説明する。第1実施形態の二層付素子1の製造方法は、例えば、仮固定シート用意工程、仮固定工程、蛍光体層形成工程、蛍光体層除去工程、反射層形成工程、切断工程を備える。
<The manufacturing method of 1st Embodiment>
With reference to FIGS. 2A to 2G, a method of manufacturing the element with two layers 1 of the first embodiment will be described. The manufacturing method of the element 1 with two layers of 1st Embodiment is equipped with a temporary fixing sheet preparation process, a temporary fixing process, a fluorescent substance layer formation process, a fluorescent substance layer removal process, a reflective layer formation process, and a cutting process, for example.
 まず、図2Aに示すように仮固定シート用意工程では、仮固定シートを用意する。 First, as shown in FIG. 2A, in the temporarily fixing sheet preparation step, a temporarily fixing sheet is prepared.
 仮固定シート40は、公知または市販のものを用意でき、例えば、支持基材41と、支持基材41の上に配置される感圧接着剤層42とを備えている。 The temporary fixing sheet 40 can be a known or commercially available sheet, and includes, for example, a support base 41 and a pressure-sensitive adhesive layer 42 disposed on the support base 41.
 支持基材41としては、例えば、ポリエチレンフィルム、ポリエステルフィルム(PETなど)などのポリマーフィルム、例えば、セラミックスシート、例えば、金属箔などが挙げられる。 Examples of the support substrate 41 include polymer films such as polyethylene films and polyester films (PET), for example, ceramic sheets, and metal foils.
 感圧接着剤層42は、支持基材41の上面全面に配置されている。感圧接着剤層42は、支持基材41の上面において、シート形状を有している。感圧接着剤層42は、例えば、処理(例えば、紫外線の照射や加熱など)によって感圧接着力が低減するような感圧接着剤から形成されている。感圧接着剤層42の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、1000μm以下、好ましくは、500μm以下である。 The pressure sensitive adhesive layer 42 is disposed on the entire upper surface of the support base material 41. The pressure-sensitive adhesive layer 42 has a sheet shape on the upper surface of the support substrate 41. The pressure-sensitive adhesive layer 42 is formed from a pressure-sensitive adhesive whose pressure-sensitive adhesive force is reduced by, for example, treatment (for example, irradiation of ultraviolet rays or heating). The thickness of the pressure-sensitive adhesive layer 42 is, for example, 1 μm or more, preferably 10 μm or more, and for example, 1000 μm or less, preferably 500 μm or less.
 次いで、図2Bに示すように、仮固定工程では、複数の光半導体素子2を、左右方向および前後方向に互いに間隔を隔てて、仮固定シート40の上に仮固定する。 Next, as shown in FIG. 2B, in the temporary fixing step, the plurality of optical semiconductor elements 2 are temporarily fixed on the temporary fixing sheet 40 at intervals in the left-right direction and the front-rear direction.
 具体的には、複数の光半導体素子2の対向面22を、感圧接着剤層42の上面に感圧接着する。この際、複数の電極24が感圧接着剤層42に埋没するように、光半導体素子2を感圧接着剤層42に対して押圧する。 Specifically, the opposing surfaces 22 of the plurality of optical semiconductor elements 2 are pressure-sensitive bonded to the upper surface of the pressure-sensitive adhesive layer 42. At this time, the optical semiconductor element 2 is pressed against the pressure-sensitive adhesive layer 42 so that the plurality of electrodes 24 are buried in the pressure-sensitive adhesive layer 42.
 次いで、図2Cが示すように、蛍光体層形成工程では、蛍光体層3を、光半導体素子2を被覆するように仮固定シート40の上に配置する。 Next, as shown in FIG. 2C, in the phosphor layer forming step, the phosphor layer 3 is disposed on the temporary fixing sheet 40 so as to cover the optical semiconductor element 2.
 具体的には、蛍光体層3が剥離シートの上に配置された蛍光体転写シートを用意し、続いて、蛍光体層3に光半導体素子2が埋没するように、光半導体素子2が配置された仮固定シート40に対して蛍光体転写シートを押圧して積層し、続いて、剥離シートを蛍光体層3から剥離する。 Specifically, a phosphor transfer sheet in which the phosphor layer 3 is disposed on the release sheet is prepared, and then the optical semiconductor element 2 is disposed so that the optical semiconductor element 2 is buried in the phosphor layer 3. The phosphor transfer sheet is pressed and laminated against the temporarily fixed sheet 40, and then the release sheet is peeled from the phosphor layer 3.
 蛍光体転写シートの作製については、例えば、蛍光組成物と溶媒とを配合し、蛍光組成物のワニスを調製し、ワニスを、剥離シートの表面に塗布し、乾燥させる。その後、蛍光組成物が、Bステージ状態となることができる熱硬化性樹脂を含有する場合には、蛍光組成物を、Bステージ化する(半硬化させる)。具体的には、蛍光組成物を、加熱する。これにより、剥離シートの上に、蛍光体層3が形成される。 For preparing the phosphor transfer sheet, for example, a phosphor composition and a solvent are blended to prepare a varnish of the phosphor composition, and the varnish is applied to the surface of the release sheet and dried. Thereafter, when the fluorescent composition contains a thermosetting resin that can be in a B-stage state, the fluorescent composition is B-staged (semi-cured). Specifically, the fluorescent composition is heated. Thereby, the phosphor layer 3 is formed on the release sheet.
 このようにして、光半導体素子2の発光面21および側面23、ならびに、仮固定シート40の上面(光半導体素子2から露出している上面)が蛍光体層3によって被覆される。すなわち、蛍光体層付光半導体素子集合体9が得られる。 Thus, the light emitting surface 21 and the side surface 23 of the optical semiconductor element 2 and the upper surface of the temporary fixing sheet 40 (the upper surface exposed from the optical semiconductor element 2) are covered with the phosphor layer 3. That is, the optical semiconductor element assembly 9 with a phosphor layer is obtained.
 次いで、図2Dに示すように、蛍光体層除去工程では、蛍光体層付光半導体素子集合体9の蛍光体層3の一部を除去する。 Next, as shown in FIG. 2D, in the phosphor layer removing step, a part of the phosphor layer 3 of the optical semiconductor element assembly 9 with a phosphor layer is removed.
 具体的には、蛍光体層3を所望の寸法となるように、互いに隣接する光半導体素子2の間における蛍光体層3を除去する。例えば、広幅のダイシングソー(ダイシングブレード)43(図2D参照)を用いて、蛍光体層3を平面視略碁盤目形状に切削する。 Specifically, the phosphor layer 3 between the adjacent optical semiconductor elements 2 is removed so that the phosphor layer 3 has a desired size. For example, using a wide dicing saw (dicing blade) 43 (see FIG. 2D), the phosphor layer 3 is cut into a substantially grid shape in plan view.
 これにより、蛍光体層付光半導体素子集合体9において、蛍光体層3が除去された部分に隙間44が形成される。 Thereby, in the optical semiconductor element assembly 9 with a phosphor layer, a gap 44 is formed in a portion where the phosphor layer 3 is removed.
 次いで、図2Eに示すように、反射層形成工程では、隙間44に反射層4を形成する。 Next, as shown in FIG. 2E, the reflective layer 4 is formed in the gap 44 in the reflective layer forming step.
 具体的には、所望パターンの反射層4が剥離シートの上に配置された反射層転写シートを用意し、続いて、隙間44に反射層4が充填されるように、蛍光体層付光半導体素子集合体9に対して反射層転写シートを押圧して積層し、続いて、剥離シートを反射層4から剥離する。 Specifically, a reflection layer transfer sheet in which a reflection layer 4 having a desired pattern is arranged on a release sheet is prepared, and subsequently, the optical semiconductor with a phosphor layer is filled so that the gap 44 is filled with the reflection layer 4. The reflective layer transfer sheet is pressed against the element assembly 9 and laminated, and then the release sheet is peeled from the reflective layer 4.
 反射層転写シートについては、例えば、反射組成物と溶媒とを配合し、反射組成物のワニスを調製し、ワニスを、剥離シートの表面に塗布し、乾燥させる。その後、反射組成物が、Bステージ状態となることができる熱硬化性樹脂を含有する場合には、反射組成物を、Bステージ化する(半硬化させる)。具体的には、反射組成物を、加熱する。これにより、反射層4を形成する。その後、公知の方法によって、反射層4を隙間44に対応したパターンとなるように、パターニングする。 For the reflective layer transfer sheet, for example, a reflective composition and a solvent are blended to prepare a varnish of the reflective composition, and the varnish is applied to the surface of the release sheet and dried. Thereafter, when the reflective composition contains a thermosetting resin that can be in a B-stage state, the reflective composition is made into a B-stage (semi-cured). Specifically, the reflective composition is heated. Thereby, the reflective layer 4 is formed. Thereafter, the reflective layer 4 is patterned by a known method so as to have a pattern corresponding to the gap 44.
 なお、反射層転写シートを使用せずに、反射組成物のワニスを隙間44に直接ポッティングして、ワニスを加熱乾燥することもできる。 Note that the varnish can be heated and dried by directly potting the varnish of the reflective composition into the gap 44 without using the reflective layer transfer sheet.
 その後、蛍光体層3および/または反射層4が、熱硬化性樹脂を含有し、Bステージ状態またはAステージ状態である場合は、例えば、オーブンなどによって、さらなる加熱を実施して、蛍光体層3および/または反射層4を硬化(完全硬化、Cステージ化)する。 Thereafter, when the phosphor layer 3 and / or the reflective layer 4 contains a thermosetting resin and is in the B-stage state or the A-stage state, the phosphor layer is further heated by, for example, an oven. 3 and / or the reflective layer 4 is cured (completely cured, C-staged).
 これにより、仮固定シート40の上に、複数の光半導体素子2と、蛍光体層3と、反射層4とが積層される。すなわち、反射層および蛍光体層付光半導体素子集合体10が得られる。 Thereby, the plurality of optical semiconductor elements 2, the phosphor layer 3, and the reflective layer 4 are laminated on the temporarily fixing sheet 40. That is, the optical semiconductor element assembly 10 with a reflective layer and a phosphor layer is obtained.
 次いで、図2Fに示すように、切断工程では、反射層および蛍光体層付光半導体素子集合体10を切断(個片化)する。 Next, as shown in FIG. 2F, in the cutting step, the optical semiconductor element assembly 10 with the reflective layer and the phosphor layer is cut (separated).
 具体的には、互いに隣接する光半導体素子2の間において、図2Eの仮想線が示すように、反射層4を切断する。これにより、複数の光半導体素子2ごとに個片化される。 Specifically, the reflective layer 4 is cut between the optical semiconductor elements 2 adjacent to each other as indicated by the phantom lines in FIG. 2E. As a result, the plurality of optical semiconductor elements 2 are separated into pieces.
 反射層4を切断するには、例えば、幅狭の円盤状のダイシングソーを用いるダイシング装置、例えば、カッターを用いるカッティング装置、例えば、レーザー照射装置などの切断装置が用いられる。 In order to cut the reflective layer 4, for example, a dicing apparatus using a narrow disk-shaped dicing saw, for example, a cutting apparatus using a cutter, for example, a cutting apparatus such as a laser irradiation apparatus is used.
 続いて、図2Fの仮想線が示すように、仮固定シート40を光半導体素子2から剥離する。 Subsequently, the temporary fixing sheet 40 is peeled from the optical semiconductor element 2 as indicated by a virtual line in FIG. 2F.
 これにより、二層付素子1が得られる。 Thereby, the element 1 with two layers is obtained.
 なお、図2Gが参照されるように、二層付素子1を、ダイオード基板などの電極基板7にフリップチップ実装することにより、発光ダイオード装置などの光半導体装置8が得られる。 As shown in FIG. 2G, an optical semiconductor device 8 such as a light emitting diode device can be obtained by flip-chip mounting the element with two layers 1 on an electrode substrate 7 such as a diode substrate.
 電極基板7は、略平板形状を有し、具体的には、絶縁基板の上面に、導体層が回路パターンとして積層された積層板から形成されている。絶縁基板は、例えば、シリコン基板、セラミックス基板、プラスチック基板(例えば、ポリイミド樹脂基板)などからなる。導体層は、例えば、金、銅、銀、ニッケルなどの導体から形成されている。導体層は、単数の光半導体素子2と電気的に接続するための電極(図示せず)を備えている。電極基板7の厚みは、例えば、25μm以上、好ましくは、50μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。 The electrode substrate 7 has a substantially flat plate shape. Specifically, the electrode substrate 7 is formed of a laminated plate in which a conductor layer is laminated as a circuit pattern on the upper surface of an insulating substrate. The insulating substrate is made of, for example, a silicon substrate, a ceramic substrate, a plastic substrate (for example, a polyimide resin substrate), or the like. The conductor layer is made of a conductor such as gold, copper, silver, or nickel. The conductor layer includes an electrode (not shown) for electrical connection with the single optical semiconductor element 2. The thickness of the electrode substrate 7 is, for example, 25 μm or more, preferably 50 μm or more, and, for example, 2000 μm or less, preferably 1000 μm or less.
 <作用効果>
 第1実施形態の二層付素子1では、反射層4が、光半導体素子2および蛍光体層3の両方に対して、これらの左右方向および前後方向の外側に配置されている。このため、蛍光体層3および光半導体素子2の側面23から放射または反射される光を上側に反射することができる。よって、指向性および正面照度が良好である。
<Effect>
In the element with two layers 1 of the first embodiment, the reflective layer 4 is disposed on the outer side in the left-right direction and the front-rear direction with respect to both the optical semiconductor element 2 and the phosphor layer 3. For this reason, the light emitted or reflected from the phosphor layer 3 and the side surface 23 of the optical semiconductor element 2 can be reflected upward. Therefore, directivity and front illuminance are good.
 また、蛍光体層3が、光半導体素子2の側面23の全面に接触している。このため、光の取り出し効率が良好となる。 The phosphor layer 3 is in contact with the entire side surface 23 of the optical semiconductor element 2. For this reason, the light extraction efficiency is improved.
 また、蛍光体層3が、光半導体素子2の外側に延びる仮想面6を含むように配置される外側部分32を有する。このため、蛍光体層3を光半導体素子2の発光面21に配置する際に(例えば図2Cや図2Dを参照)、仮に、蛍光体層3が光半導体素子2の発光面21から左右方向または前後方向にずれたとしても、光半導体素子2の発光面21に蛍光体層3が被覆されない非被覆部分が発生することを抑制することができる。すなわち、蛍光体層3の外側部分32が光半導体素子2の発光面21を確実に被覆することができる。その結果、左右方向および前後方向において、光半導体素子2に対する蛍光体層3の位置精度の向上が図られている。 Further, the phosphor layer 3 has an outer portion 32 arranged so as to include the virtual surface 6 extending to the outside of the optical semiconductor element 2. Therefore, when the phosphor layer 3 is disposed on the light emitting surface 21 of the optical semiconductor element 2 (see, for example, FIG. 2C and FIG. 2D), the phosphor layer 3 is assumed to be laterally moved from the light emitting surface 21 of the optical semiconductor element 2. Or even if it deviates in the front-rear direction, it is possible to suppress the occurrence of an uncoated portion where the phosphor layer 3 is not coated on the light emitting surface 21 of the optical semiconductor element 2. That is, the outer portion 32 of the phosphor layer 3 can reliably cover the light emitting surface 21 of the optical semiconductor element 2. As a result, the positional accuracy of the phosphor layer 3 with respect to the optical semiconductor element 2 is improved in the left-right direction and the front-rear direction.
 そして、二層付素子1は、ダイオード基板などの電極基板7に対して実装することにより発光ダイオード装置などの光半導体装置8を製造するための部品であって、この二層付素子1によれば、位置精度の向上を図りつつ、良好な指向性および正面照度を有する光半導体装置8を製造することができる。 The two-layered element 1 is a component for manufacturing an optical semiconductor device 8 such as a light-emitting diode device by being mounted on an electrode substrate 7 such as a diode substrate. Thus, it is possible to manufacture the optical semiconductor device 8 having good directivity and front illuminance while improving the positional accuracy.
 また、二層付素子1は、電極基板7に実装する前に、テスト用機器に接続するなどして発光性能(指向性、照度、色味など)の確認が可能である。そのため、所望の性能に不適合な光半導体装置8が発生した際において、その光半導体装置8に組み込まれた電極基板7の回収作業などを予め防止できるため、二層付素子1は、光半導体装置8の製造用の部品として有用である。 Further, the element with two layers 1 can be checked for light emitting performance (directivity, illuminance, color, etc.) by connecting to a test device before being mounted on the electrode substrate 7. Therefore, when the optical semiconductor device 8 incompatible with the desired performance is generated, the recovery operation of the electrode substrate 7 incorporated in the optical semiconductor device 8 can be prevented in advance. This is useful as a manufacturing part.
  <第1実施形態の変形例>
 第1実施形態の変形例において、第1実施形態と同じ部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
<Modification of First Embodiment>
In the modification of the first embodiment, the same members and steps as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図1Bの実施形態では、光半導体素子2、蛍光体層3および反射層4が平面視略正方形状に形成されているが、例えば、これらの一部または全部を平面視略長方形状に形成することもできる。 In the embodiment of FIG. 1B, the optical semiconductor element 2, the phosphor layer 3, and the reflective layer 4 are formed in a substantially square shape in plan view. For example, a part or all of these are formed in a substantially rectangular shape in plan view. You can also.
 この場合、光半導体素子2の発光面21の端縁(点m)と、蛍光体層3の発光面21上における外端縁(点k)との距離Xが、最も短くなるように、点mおよび点kを選択する。そして、その選択した点m、点kおよびその際における側断面図に基づいて、θ、θ、A、B、D、X、Y、L1などを決定する。そして、少なくともXが最も短くなるように点mおよび点kを選択した条件において、式(1)~(2´)を満たすことが好ましい。さらには、その選択した側断面図と直交する側断面図において上記θなどを決定した場合でも、式(1)~(2´)を満たすことがより好ましい。 In this case, the point X is such that the distance X between the edge (point m) of the light emitting surface 21 of the optical semiconductor element 2 and the outer edge (point k) on the light emitting surface 21 of the phosphor layer 3 is the shortest. Select m and point k. Then, θ 1 , θ 2 , A, B, D, X, Y, L1, etc. are determined based on the selected point m, point k, and side sectional view at that time. Then, it is preferable that the expressions (1) to (2 ′) are satisfied under the condition that the point m and the point k are selected so that at least X is the shortest. Furthermore, it is more preferable that the equations (1) to (2 ′) are satisfied even when the above θ 1 or the like is determined in the side sectional view orthogonal to the selected side sectional view.
 図1Bの実施形態では、蛍光体層3は、その上面が反射層4の上面と面一となるように形成されているが、例えば、図3に示すように、蛍光体層3は、その上面が反射層4の上面よりも下側に位置するように形成することもできる。 In the embodiment of FIG. 1B, the phosphor layer 3 is formed so that the upper surface thereof is flush with the upper surface of the reflective layer 4. For example, as shown in FIG. It can also be formed so that the upper surface is located below the upper surface of the reflective layer 4.
 図3の実施形態では、A < Y の関係式(2´´)を満たす。 In the embodiment of FIG. 3, A <Y satisfies the relational expression (2 ″).
 また、図1Bの実施形態では、蛍光体層3は、その上面が反射層4の上面と面一となるように形成されているが、例えば、図4に示すように、蛍光体層3は、その上面が反射層4の上面よりも上側に位置するように形成することもできる。 In the embodiment of FIG. 1B, the phosphor layer 3 is formed so that the upper surface thereof is flush with the upper surface of the reflective layer 4. For example, as shown in FIG. The upper surface of the reflective layer 4 may be positioned above the upper surface.
 図4の実施形態では、Y < A の関係式を満たす。 In the embodiment of FIG. 4, the relational expression Y <A is satisfied.
 図3および図4の実施形態も本発明に含まれ、図1Bの実施形態と同様の作用効果を奏する。 3 and 4 are also included in the present invention, and have the same effects as the embodiment of FIG. 1B.
 本発明では、指向性の観点から、好ましくは、図1B(A=Y)、図3の実施形態(A<Y)が挙げられる。すなわち、A ≦ Y の関係式(2)を満たす実施形態が好ましい。 In the present invention, from the viewpoint of directivity, the embodiment of FIG. 1B (A = Y) and FIG. 3 (A <Y) are preferable. That is, an embodiment that satisfies the relational expression (2) of A ≦ Y is preferable.
 また、A ≦ Y の関係式(2)を満たすとき、反射層4の上端縁の内端縁(点n)から蛍光体層3の上面までの上下方向距離(Y-A)は、例えば、100μm以下、好ましくは、50μm以下であり、また、例えば、0μm以上である。上記距離を上記範囲内とすることにより、ハンドリング性を良好にすることができる。また、搬送コレットなどの搬送器具を用いた把持および運搬を容易にすることができる。 Moreover, when satisfying the relational expression (2) of A ≦ Y, the vertical distance (YA) from the inner edge (point n) of the upper edge of the reflective layer 4 to the upper surface of the phosphor layer 3 is, for example, 100 μm or less, preferably 50 μm or less, and for example, 0 μm or more. By making the distance within the above range, handling properties can be improved. In addition, gripping and transport using a transport tool such as a transport collet can be facilitated.
 図1Bの実施形態では、蛍光体層3の上面は露出しているが、例えば、図5に示すように、蛍光体層3の上面に拡散層5を配置することもできる。 In the embodiment of FIG. 1B, the upper surface of the phosphor layer 3 is exposed, but for example, as shown in FIG. 5, a diffusion layer 5 can be disposed on the upper surface of the phosphor layer 3.
 拡散層5は、左右方向および前後方向に沿う略平板形状を有しており、平面視において、蛍光体層3の内側部分31と同一形状となるように形成されている。また、拡散層5の上面が、上下方向において、反射層4の上端縁と一致する。すなわち、拡散層5は、その上面が反射層4の上面と面一となるように、形成されている。 The diffusion layer 5 has a substantially flat plate shape along the left-right direction and the front-rear direction, and is formed to have the same shape as the inner portion 31 of the phosphor layer 3 in plan view. Further, the upper surface of the diffusion layer 5 coincides with the upper end edge of the reflection layer 4 in the vertical direction. That is, the diffusion layer 5 is formed so that the upper surface thereof is flush with the upper surface of the reflection layer 4.
 拡散層5の厚み(上下方向長さ、図5で示すC)は、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、240μm以下、好ましくは、150μm以下である。 The thickness (length in the vertical direction, C shown in FIG. 5) of the diffusion layer 5 is, for example, 10 μm or more, preferably 50 μm or more, and, for example, 240 μm or less, preferably 150 μm or less.
 拡散層5は、100μm厚みとして450nm波長の光で照射したときの光透過率が、例えば、60%以上、好ましくは、80%以上であり、また、例えば、100%以下である。 The diffusion layer 5 has a light transmittance of 60% or more, preferably 80% or more, for example, 100% or less, when irradiated with light having a wavelength of 450 nm with a thickness of 100 μm.
 拡散層5は、例えば、透明樹脂および光拡散性粒子を含有する拡散透明組成物から形成されている。 The diffusion layer 5 is made of, for example, a diffusion transparent composition containing a transparent resin and light diffusing particles.
 透明樹脂は、反射層4で上記した樹脂と同一のものが挙げられ、好ましくは、シリコーン樹脂が挙げられる。 As the transparent resin, the same resin as that described above in the reflective layer 4 can be used, and a silicone resin is preferable.
 透明樹脂の配合割合は、例えば、拡散透明組成物に対して、例えば、5質量%以上、好ましくは、10質量%以上、より好ましくは、25質量%以上であり、また、例えば、99質量%以下、好ましくは、80質量%以下、より好ましくは、50質量%未満である。 The blending ratio of the transparent resin is, for example, 5% by mass or more, preferably 10% by mass or more, more preferably 25% by mass or more, for example, 99% by mass with respect to the diffusing transparent composition. Hereinafter, it is preferably 80% by mass or less, and more preferably less than 50% by mass.
 光拡散性粒子は、反射層4で上記した光拡散性粒子と同一のものが挙げられる。この中でも、良好な光透過率および前方拡散性の観点から、好ましくは、透明樹脂(例えば、シリコーン樹脂)との屈折率差が高い光拡散性無機粒子が挙げられ、より好ましくは、酸化ケイ素粒子、複合無機酸化物粒子が挙げられ、さらに好ましくは、酸化ケイ素粒子および複合無機酸化物粒子の組み合わせが挙げられる。 The light diffusing particles may be the same as the light diffusing particles described above in the reflective layer 4. Among these, from the viewpoint of good light transmittance and forward diffusibility, preferably, light diffusing inorganic particles having a high refractive index difference from a transparent resin (for example, silicone resin) are mentioned, and silicon oxide particles are more preferable. And composite inorganic oxide particles, and more preferably a combination of silicon oxide particles and composite inorganic oxide particles.
 光拡散性粒子の含有割合は、拡散透明組成物に対して、例えば、1質量%以上、好ましくは、20質量%以上、より好ましくは、50質量%を超過し、また、例えば、95質量%以下、好ましくは、90質量%以下、より好ましくは、75質量%以下、さらに好ましくは、40質量%以下である。 The content ratio of the light diffusing particles is, for example, 1% by mass or more, preferably 20% by mass or more, more preferably more than 50% by mass with respect to the diffusing transparent composition, and for example, 95% by mass. Hereinafter, it is preferably 90% by mass or less, more preferably 75% by mass or less, and further preferably 40% by mass or less.
 また、拡散透明組成物は、充填材、チクソ性付与粒子などの公知の添加剤を、適宜の割合で含有することもできる。 Further, the diffusive transparent composition can also contain known additives such as fillers and thixotropic particles at an appropriate ratio.
 充填材は、反射層4で上記した充填材と同一のものが挙げられ、好ましくは、シリカ粒子、複合無機酸化物粒子(ガラス粒子など)が挙げられる。 The filler may be the same as the filler described above in the reflective layer 4, and preferably silica particles and composite inorganic oxide particles (such as glass particles).
 充填材を含有する場合、充填材の配合割合は、拡散透明組成物に対して、例えば、1質量%以上、好ましくは、10質量%以上、より好ましくは、20質量%を超過し、また、例えば、50質量%以下、好ましくは、40質量%以下である。 When the filler is contained, the blending ratio of the filler is, for example, 1% by mass or more, preferably 10% by mass or more, more preferably more than 20% by mass with respect to the diffusing transparent composition. For example, it is 50% by mass or less, preferably 40% by mass or less.
 チクソ性付与粒子は、反射層4で上記したチクソ性付与粒子と同一のものが挙げられ、好ましくは、ナノシリカが挙げられる。 The thixotropic property-imparting particles may be the same as the thixotropic property-imparting particles described above in the reflective layer 4, and preferably nanosilica.
 チクソ性付与粒子を含有する場合、チクソ性付与粒子の配合割合は、拡散透明組成物に対して、例えば、0.1質量%以上、好ましくは、0.5質量%以上であり、また、例えば、10質量%以下、好ましくは、3質量%以下である。 When the thixotropic particles are contained, the blending ratio of the thixotropic particles is, for example, 0.1% by mass or more, preferably 0.5% by mass or more with respect to the diffusive transparent composition. 10% by mass or less, preferably 3% by mass or less.
 図5の実施形態も本発明に含まれ、図1Bの実施形態と同様の作用効果を奏する。指向性および正面照度がより一層良好となる観点から、好ましくは、図5の実施形態が挙げられる。 The embodiment of FIG. 5 is also included in the present invention, and has the same effects as the embodiment of FIG. 1B. From the viewpoint of further improving the directivity and the front illuminance, the embodiment of FIG. 5 is preferable.
 また、図5の実施形態では、拡散層5は、その上面が反射層4の上面と面一となるように形成されているが、例えば、図示しないが、拡散層5は、その上面が反射層4の上面よりも上側または下側に位置するように形成することもできる。 In the embodiment of FIG. 5, the diffusion layer 5 is formed so that the upper surface thereof is flush with the upper surface of the reflection layer 4. For example, although not shown, the diffusion layer 5 is reflective on the upper surface. It may be formed so as to be located above or below the upper surface of the layer 4.
 本発明では、指向性の観点から、好ましくは、図5の実施形態(A+C=Y)、拡散層5の上面が反射層4の上面よりも下側に位置する実施形態(A+C<Y))が挙げられる。すなわち、A + C ≦ Y の関係式(4)を満たす実施形態が好ましい。 In the present invention, from the viewpoint of directivity, the embodiment in FIG. 5 (A + C = Y), preferably the embodiment in which the upper surface of the diffusion layer 5 is located below the upper surface of the reflective layer 4 (A + C <Y)). Is mentioned. That is, an embodiment that satisfies the relational expression (4) of A + C ≦ Y is preferable.
 さらには、反射層4の上端縁の内端縁(点n)と、拡散層5の上面との上下方向距離{Y-(A+C)}は、例えば、100μm以下、好ましくは、50μm以下であり、また、例えば、0μm以上である。上記距離を上記範囲内とすることにより、ハンドリング性を良好にすることができる。また、搬送コレットなどの搬送器具を用いた把持および運搬を容易にすることができる。 Further, the vertical distance {Y− (A + C)} between the inner edge (point n) of the upper end edge of the reflective layer 4 and the upper surface of the diffusion layer 5 is, for example, 100 μm or less, preferably 50 μm or less. For example, it is 0 μm or more. By making the distance within the above range, handling properties can be improved. In addition, gripping and transport using a transport tool such as a transport collet can be facilitated.
 <第2実施形態>
 図6A-図6Bを参照して、本発明の二層付素子1の第2実施形態について説明する。
Second Embodiment
A second embodiment of the device with two layers 1 of the present invention will be described with reference to FIGS. 6A to 6B.
 第2実施形態において、第1実施形態と同じ部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。 In the second embodiment, the same members and steps as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図6A-図6Bに示すように、二層付素子1は、光半導体素子2と、蛍光体層3と、反射層4とを備えている。 As shown in FIGS. 6A to 6B, the element with two layers 1 includes an optical semiconductor element 2, a phosphor layer 3, and a reflective layer 4.
 蛍光体層3は、光半導体素子2の発光面21を被覆するように、光半導体素子2の上側に配置されている。蛍光体層3は、左右方向および前後方向に沿う略平板形状を有している。また、蛍光体層3は、平面視略矩形状を有し、上下方向に投影したときに、光半導体素子2を含むように形成されている。蛍光体層3は、光半導体素子2の上側に配置される内側部分31と、内側部分31の外側に配置される外側部分32とを備えている。 The phosphor layer 3 is disposed on the upper side of the optical semiconductor element 2 so as to cover the light emitting surface 21 of the optical semiconductor element 2. The phosphor layer 3 has a substantially flat plate shape along the left-right direction and the front-rear direction. The phosphor layer 3 has a substantially rectangular shape in plan view, and is formed so as to include the optical semiconductor element 2 when projected in the vertical direction. The phosphor layer 3 includes an inner portion 31 disposed above the optical semiconductor element 2 and an outer portion 32 disposed outside the inner portion 31.
 内側部分31は、左右方向および前後方向に沿う略平板形状を有しており、平面視において、光半導体素子2と同一形状となるように形成されている。すなわち、内側部分31の下面全面は、光半導体素子2の発光面21の全面を被覆している。 The inner portion 31 has a substantially flat plate shape along the left-right direction and the front-rear direction, and is formed to have the same shape as the optical semiconductor element 2 in plan view. That is, the entire lower surface of the inner portion 31 covers the entire light emitting surface 21 of the optical semiconductor element 2.
 外側部分32は、内側部分31の外側に配置されており、内側部分31の周端縁と外側部分32の内周端縁とが一体的に連続している。外側部分32は、平面視略矩形枠状の略平板状を有し、内側部分31と同一の厚み(上下方向長さ)を有する。また、外側部分32は、仮想面6の上に配置されている。すなわち、外側部分32の下面は、仮想面6と一致する。 The outer part 32 is disposed outside the inner part 31, and the peripheral edge of the inner part 31 and the inner peripheral edge of the outer part 32 are integrally continuous. The outer portion 32 has a substantially flat plate shape having a substantially rectangular frame shape in plan view, and has the same thickness (length in the vertical direction) as the inner portion 31. The outer portion 32 is disposed on the virtual surface 6. That is, the lower surface of the outer portion 32 coincides with the virtual surface 6.
 外側部分32と内側部分31との左右方向または前後方向の長さの比は、例えば、1:100~50:100、好ましくは、7:100~25:100である。 The ratio of the length in the left-right direction or the front-rear direction of the outer portion 32 and the inner portion 31 is, for example, 1: 100 to 50: 100, preferably 7: 100 to 25: 100.
 反射層4は、光半導体素子2および蛍光体層3の両方に対して、左右方向外側および前後方向外側に配置されている。反射層4は、上下方向に延びる平面視略矩形枠状を有している。 The reflection layer 4 is disposed on the outer side in the left-right direction and on the outer side in the front-rear direction with respect to both the optical semiconductor element 2 and the phosphor layer 3. The reflective layer 4 has a substantially rectangular frame shape in plan view extending in the vertical direction.
 反射層4は、上部4aと、上部4aの下側に配置される下部4bとを有している。 The reflective layer 4 has an upper part 4a and a lower part 4b disposed below the upper part 4a.
 上部4aは、蛍光体層3の左右方向外側および前後方向外側に配置され、蛍光体層3の側面の全面と接触し、それを被覆している。すなわち、上部4aの内周端面は、蛍光体層3の側面全面に接触している。 The upper part 4a is arranged on the outer side in the left-right direction and the outer side in the front-rear direction of the phosphor layer 3, and is in contact with and covers the entire side surface of the phosphor layer 3. That is, the inner peripheral end surface of the upper portion 4 a is in contact with the entire side surface of the phosphor layer 3.
 上部4aは、左右方向または前後方向に投影したときに、蛍光体層3を含むように形成されている。具体的には、上下方向において、上部4aの上端縁(反射層4の上端縁)は、蛍光体層3の上面と一致し、下部4bの下端縁は、蛍光体層3の下面と一致する。 The upper portion 4a is formed so as to include the phosphor layer 3 when projected in the left-right direction or the front-rear direction. Specifically, in the vertical direction, the upper end edge of the upper portion 4 a (the upper end edge of the reflective layer 4) coincides with the upper surface of the phosphor layer 3, and the lower end edge of the lower portion 4 b coincides with the lower surface of the phosphor layer 3. .
 下部4bは、その上端が上部4aの下端と一体的に連続しており、左右方向内側および前後方向内側に向かって、上部4aよりも広幅となるように、形成されている。下部4bは、光半導体素子2の左右方向外側および前後方向外側に配置され、光半導体素子2の側面23の全面と接触し、それを被覆している。すなわち、下部4bの内周端面は、光半導体素子2の側面23全面に接触している。 The lower portion 4b has an upper end that is integrally continuous with a lower end of the upper portion 4a, and is formed to be wider than the upper portion 4a toward the inner side in the left-right direction and the inner side in the front-rear direction. The lower portion 4b is disposed on the outer side in the left-right direction and the outer side in the front-rear direction of the optical semiconductor element 2, and is in contact with and covers the entire side surface 23 of the optical semiconductor element 2. That is, the inner peripheral end surface of the lower portion 4 b is in contact with the entire side surface 23 of the optical semiconductor element 2.
 下部4bは、左右方向または前後方向に投影したときに、光半導体素子2を含むように形成されている。具体的には、上下方向において、下部4bの上端縁は、光半導体素子2の発光面21と一致し、下部4bの下端縁(反射層4の下端縁)は、光半導体素子2の対向面22と一致する。すなわち、反射層4は、その上面が蛍光体層3の上面と面一となり、かつ、その下面が蛍光体層3の下面および光半導体素子2の対向面22と面一となるように、形成されている。 The lower part 4b is formed so as to include the optical semiconductor element 2 when projected in the left-right direction or the front-rear direction. Specifically, in the vertical direction, the upper end edge of the lower part 4 b coincides with the light emitting surface 21 of the optical semiconductor element 2, and the lower end edge of the lower part 4 b (lower end edge of the reflective layer 4) is the facing surface of the optical semiconductor element 2. Matches 22. That is, the reflective layer 4 is formed such that its upper surface is flush with the upper surface of the phosphor layer 3 and its lower surface is flush with the lower surface of the phosphor layer 3 and the opposing surface 22 of the optical semiconductor element 2. Has been.
 また、反射層4は、好ましくは、上記式(1)、より好ましくは、上記式(1´)、さらに好ましくは、上記式(1´´)を満たす。 The reflective layer 4 preferably satisfies the above formula (1), more preferably the above formula (1 ′), and still more preferably the above formula (1 ″).
 反射層4において、光半導体素子2の発光面21と、反射層4の上端縁の内端縁との上下方向距離Yは、第1実施形態と同様である。すなわち、第2実施形態では、A = Y の関係式(2´)を満たす。 In the reflective layer 4, the vertical distance Y between the light emitting surface 21 of the optical semiconductor element 2 and the inner edge of the upper edge of the reflective layer 4 is the same as in the first embodiment. That is, in the second embodiment, the relational expression (2 ′) of A = Y is satisfied.
 反射層4の内端縁の面と蛍光体層3の最下面とがなす角度θ、および、反射層4の左右方向または前後方向の長さ(特に上端縁における左右方向または前後方向の長さ)Dは、第1実施形態と同様である。 The angle θ 2 formed by the inner edge surface of the reflective layer 4 and the lowermost surface of the phosphor layer 3 and the length of the reflective layer 4 in the left-right direction or the front-rear direction (particularly the length in the left-right direction or front-rear direction at the upper edge D) D is the same as in the first embodiment.
 なお、反射層4の下端縁の内端縁から、光半導体素子2の対向面22の端縁までの左右方向または前後方向の距離Bは、0μmである。上記距離Xは、第1実施形態と同様である。左右方向または前後方向の距離Bについては、 B < X の関係式(3)を満たす。 The distance B in the left-right direction or the front-rear direction from the inner edge of the lower end edge of the reflective layer 4 to the edge of the facing surface 22 of the optical semiconductor element 2 is 0 μm. The distance X is the same as in the first embodiment. The distance B in the left-right direction or the front-rear direction satisfies the relational expression (3) of B <X.
 <第2実施形態の製造方法>
 図7A~図7Eを参照して、第2実施形態の二層付素子1の製造方法を説明する。第2実施形態の二層付素子1の製造方法は、例えば、蛍光体層用意工程、光半導体素子配置工程、蛍光体層除去工程、反射層形成工程、切断工程を備える。
<Manufacturing Method of Second Embodiment>
With reference to FIGS. 7A to 7E, a method of manufacturing the element with two layers 1 of the second embodiment will be described. The manufacturing method of the element 1 with two layers of 2nd Embodiment is equipped with a fluorescent substance layer preparation process, an optical semiconductor element arrangement | positioning process, a fluorescent substance layer removal process, a reflective layer formation process, and a cutting process, for example.
 まず、図7Aに示すように、蛍光体層用意工程では、蛍光体層3を用意する。 First, as shown in FIG. 7A, the phosphor layer 3 is prepared in the phosphor layer preparation step.
 例えば、第1実施形態で上記した蛍光体層形成工程における蛍光体層転写シートを用いる。 For example, the phosphor layer transfer sheet in the phosphor layer forming step described above in the first embodiment is used.
 次いで、図7Bに示すように、光半導体素子配置工程では、蛍光体層3の上に、左右方向および前後方向に互いに間隔を隔てて、複数の光半導体素子2を配置する。 Next, as shown in FIG. 7B, in the optical semiconductor element arrangement step, a plurality of optical semiconductor elements 2 are arranged on the phosphor layer 3 with a space in the left-right direction and the front-rear direction.
 具体的には、蛍光体層3の上面と、光半導体素子2の発光面21とが接触するように、複数の光半導体素子2を蛍光体層3の上に整列配置する。これにより、蛍光体層付光半導体素子集合体9が得られる。 Specifically, a plurality of optical semiconductor elements 2 are arranged on the phosphor layer 3 so that the upper surface of the phosphor layer 3 and the light emitting surface 21 of the optical semiconductor element 2 are in contact with each other. Thereby, the optical semiconductor element assembly 9 with a phosphor layer is obtained.
 次いで、図7Cに示すように、蛍光体層除去工程では、蛍光体層付光半導体素子集合体9の蛍光体層3の一部を除去する。 Next, as shown in FIG. 7C, in the phosphor layer removing step, a part of the phosphor layer 3 of the optical semiconductor element assembly 9 with a phosphor layer is removed.
 例えば、第1実施形態の蛍光体層除去工程で上記したように、広幅のダイシングソー(ダイシングブレード)43(図7B参照)を用いて、蛍光体層3を平面視略碁盤目形状に切削する。 For example, as described above in the phosphor layer removing step of the first embodiment, the phosphor layer 3 is cut into a substantially grid shape in plan view using a wide dicing saw (dicing blade) 43 (see FIG. 7B). .
 これにより、蛍光体層付光半導体素子集合体9において、蛍光体層3が除去された部分に隙間44が形成される。 Thereby, in the optical semiconductor element assembly 9 with a phosphor layer, a gap 44 is formed in a portion where the phosphor layer 3 is removed.
 次いで、図7Dに示すように、反射層形成工程では、隙間44、および、隣接する複数の光半導体素子2の間に反射層4を形成する。 Next, as shown in FIG. 7D, in the reflective layer forming step, the reflective layer 4 is formed between the gap 44 and a plurality of adjacent optical semiconductor elements 2.
 例えば、第1実施形態で上記したように、反射層転写シートによる転写、または、反射射組成物のワニスによるポッティングを実施する。その後、蛍光体層3および/または反射層4が、熱硬化性樹脂を含有し、Bステージ状態またはAステージ状態である場合は、例えば、オーブンなどによって、さらなる加熱を実施して、蛍光体層3および/または反射層4を硬化(完全硬化、Cステージ化)する。 For example, as described above in the first embodiment, transfer by a reflective layer transfer sheet or potting by a varnish of a reflective composition is performed. Thereafter, when the phosphor layer 3 and / or the reflective layer 4 contains a thermosetting resin and is in the B-stage state or the A-stage state, the phosphor layer is further heated by, for example, an oven. 3 and / or the reflective layer 4 is cured (completely cured, C-staged).
 これにより、反射層および蛍光体層付光半導体素子集合体10が得られる。 Thereby, an optical semiconductor element assembly 10 with a reflective layer and a phosphor layer is obtained.
 次いで、図7Fに示すように、切断工程では、反射層および蛍光体層付光半導体素子集合体10を切断(個片化)する。 Next, as shown in FIG. 7F, in the cutting step, the optical semiconductor element assembly 10 with the reflective layer and the phosphor layer is cut (separated).
 これにより、二層付素子1が得られる。 Thereby, the element 1 with two layers is obtained.
 <作用効果>
 第2実施形態の二層付素子1では、反射層4が、光半導体素子2および蛍光体層3の両方に対して、これらの左右方向外側および前後方向外側に接触するように配置されている。このため、蛍光体層3および光半導体素子2の側面23から放射または反射される光を上側に反射することができる。よって、指向性および正面照度が良好である。
<Effect>
In the two-layered element 1 of the second embodiment, the reflective layer 4 is disposed so as to be in contact with both the optical semiconductor element 2 and the phosphor layer 3 on the outer side in the left-right direction and the outer side in the front-rear direction. . For this reason, the light emitted or reflected from the phosphor layer 3 and the side surface 23 of the optical semiconductor element 2 can be reflected upward. Therefore, directivity and front illuminance are good.
 また、反射層4が、光半導体素子2の側面23の全面に接触している。このため、指向性および正面照度がより一層良好である。  Further, the reflective layer 4 is in contact with the entire side surface 23 of the optical semiconductor element 2. For this reason, directivity and front illuminance are even better. *
 また、二層付素子1は、 B < X の関係式(3)を満たしている。よって、正面照度がより一層良好である。  Further, the element with two layers 1 satisfies the relational expression (3) of B <X. Therefore, the front illuminance is even better. *
 また、蛍光体層3が、光半導体素子2の外側に延びる仮想面6上に配置される外側部分32を有する。このため、蛍光体層3の下面は、光半導体素子2の発光面21に対して広くなっている。よって、蛍光体層3を光半導体素子2の発光面21に配置する際に(例えば図7Bを参照)、仮に、蛍光体層3が光半導体素子2の発光面21から左右方向または前後方向にずれたとしても、光半導体素子2の発光面21に蛍光体層3が被覆されない非被覆部分の発生を抑制することができる。よって、蛍光体層3の外側部分32が光半導体素子2の発光面21を確実に被覆することができる。その結果、左右方向および前後方向において、光半導体素子2に対する蛍光体層3の位置精度の向上が図られている。 Further, the phosphor layer 3 has an outer portion 32 disposed on the virtual surface 6 extending to the outside of the optical semiconductor element 2. For this reason, the lower surface of the phosphor layer 3 is wider than the light emitting surface 21 of the optical semiconductor element 2. Therefore, when the phosphor layer 3 is disposed on the light emitting surface 21 of the optical semiconductor element 2 (see, for example, FIG. 7B), the phosphor layer 3 is assumed to be laterally or longitudinally from the light emitting surface 21 of the optical semiconductor element 2. Even if it deviates, generation | occurrence | production of the non-coating part by which the fluorescent substance layer 3 is not coat | covered by the light emission surface 21 of the optical semiconductor element 2 can be suppressed. Therefore, the outer portion 32 of the phosphor layer 3 can reliably cover the light emitting surface 21 of the optical semiconductor element 2. As a result, the positional accuracy of the phosphor layer 3 with respect to the optical semiconductor element 2 is improved in the left-right direction and the front-rear direction.
 そして、二層付素子1は、ダイオード基板などの電極基板7に対して実装することにより発光ダイオード装置などの光半導体装置8を製造するための部品であって、この二層付素子1によれば、位置精度の向上を図りつつ、良好な指向性および正面照度を有する光半導体装置8を製造することができる。 The two-layered element 1 is a component for manufacturing an optical semiconductor device 8 such as a light-emitting diode device by being mounted on an electrode substrate 7 such as a diode substrate. Thus, it is possible to manufacture the optical semiconductor device 8 having good directivity and front illuminance while improving the positional accuracy.
 また、二層付素子1は、電極基板7に実装する前に、テスト用機器に接続するなどして発光性能(指向性、照度、色味など)の確認が可能である。そのため、所望の性能に不適合な光半導体装置8が発生した際において、その光半導体装置8に組み込まれた電極基板7の回収作業などを予め防止できるため、二層付素子1は、光半導体装置8の製造用の部品として有用である。 Further, the element with two layers 1 can be checked for light emitting performance (directivity, illuminance, color, etc.) by connecting to a test device before being mounted on the electrode substrate 7. Therefore, when the optical semiconductor device 8 incompatible with the desired performance is generated, the recovery operation of the electrode substrate 7 incorporated in the optical semiconductor device 8 can be prevented in advance. This is useful as a manufacturing part.
  <第2実施形態の変形例>
 第2実施形態の変形例において、第2実施形態と同じ部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
<Modification of Second Embodiment>
In the modification of the second embodiment, the same members and steps as those of the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図6Bの実施形態では、蛍光体層3の外側部分32の側面は、上下方向に沿って垂直となるように形成されているが、例えば、図8に示すように、蛍光体層3の外側部分32の側面、ひいては、反射層4の上部4aの内端面は、上側に向かって広がるテーパ状に形成することもできる。 In the embodiment of FIG. 6B, the side surface of the outer portion 32 of the phosphor layer 3 is formed so as to be vertical along the vertical direction. For example, as shown in FIG. The side surface of the portion 32, and thus the inner end surface of the upper portion 4 a of the reflective layer 4, can also be formed in a tapered shape that widens upward.
 図8の実施形態も本発明に含まれ、図1Bの実施形態と同様の作用効果を奏する。 The embodiment of FIG. 8 is also included in the present invention, and has the same effects as the embodiment of FIG. 1B.
 また、蛍光体層3は、その上面が反射層4の上面と面一となるように形成されているが、例えば、図示しないが、蛍光体層3は、その上面が反射層4の上面よりも上側または下側に位置するように形成することもできる。 The phosphor layer 3 is formed so that the upper surface thereof is flush with the upper surface of the reflective layer 4. For example, although not shown, the upper surface of the phosphor layer 3 is higher than the upper surface of the reflective layer 4. Can also be formed so as to be located on the upper side or the lower side.
 この実施形態も、図1Bの実施形態と同様の作用効果を奏する。 This embodiment also has the same effect as the embodiment of FIG. 1B.
 本発明では、指向性の観点から、好ましくは、図6Bの実施形態(A=Y)、または、蛍光体層3の上面が反射層4の上面よりも下側である実施形態(A<Y)が挙げられる。すなわち、A ≦ Y の関係式(2)を満たす実施形態が好ましい。 In the present invention, from the viewpoint of directivity, the embodiment in FIG. 6B (A = Y) or the embodiment in which the upper surface of the phosphor layer 3 is below the upper surface of the reflective layer 4 (A <Y) is preferable. ). That is, an embodiment that satisfies the relational expression (2) of A ≦ Y is preferable.
 図6Bの実施形態では、蛍光体層3の上面は露出しているが、例えば、図9に示すように、蛍光体層3の上面に拡散層5を配置することもできる。 In the embodiment of FIG. 6B, the upper surface of the phosphor layer 3 is exposed, but for example, as shown in FIG. 9, the diffusion layer 5 may be disposed on the upper surface of the phosphor layer 3.
 図9の実施形態も本発明に含まれ、図6Bの実施形態と同様の作用効果を奏する。指向性および正面照度がより一層良好となる観点から、好ましくは、図9の実施形態が挙げられる。 The embodiment of FIG. 9 is also included in the present invention, and has the same effects as the embodiment of FIG. 6B. From the viewpoint of further improving the directivity and the front illuminance, the embodiment of FIG. 9 is preferable.
 また、図9の実施形態では、拡散層5は、その上面が反射層4の上面と面一となるように形成されているが、例えば、図示しないが、拡散層5は、その上面が反射層4の上面よりも上側または下側に位置するように形成することもできる。 In the embodiment of FIG. 9, the diffusion layer 5 is formed so that the upper surface thereof is flush with the upper surface of the reflection layer 4. For example, although not shown, the diffusion layer 5 is reflected on the upper surface. It may be formed so as to be located above or below the upper surface of the layer 4.
 本発明では、指向性の観点から、好ましくは、図9の実施形態(A+C=Y)、拡散層5の上面が反射層4の上面よりも下側に位置する実施形態(A+C<Y)が挙げられる。すなわち、A + C ≦ Y の関係式(4)を満たす実施形態が好ましい。 In the present invention, from the viewpoint of directivity, the embodiment in FIG. 9 (A + C = Y) is preferable, and the embodiment in which the upper surface of the diffusion layer 5 is located below the upper surface of the reflective layer 4 (A + C <Y). Can be mentioned. That is, an embodiment that satisfies the relational expression (4) of A + C ≦ Y is preferable.
 <第3実施形態>
 図10A-図10Bを参照して、本発明の二層付素子1の第3実施形態について説明する。
<Third Embodiment>
A third embodiment of the two-layer element 1 of the present invention will be described with reference to FIGS. 10A to 10B.
 第3実施形態において、第1実施形態および第2実施形態と同じ部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。 In the third embodiment, the same members and steps as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図10A-図10Bに示すように、二層付素子1は、光半導体素子2と、蛍光体層3と、反射層4とを備えている。 As shown in FIGS. 10A to 10B, the element with two layers 1 includes an optical semiconductor element 2, a phosphor layer 3, and a reflective layer 4.
 蛍光体層3は、光半導体素子2の発光面21の全部、および、側面23の一部を被覆するように、光半導体素子2の上側および側方に配置されている。蛍光体層3は、光半導体素子2の上側に配置される内側部分31と、内側部分31の外側に配置される外側部分32とを一体的に備えている。 The phosphor layer 3 is disposed on the upper side and the side of the optical semiconductor element 2 so as to cover the entire light emitting surface 21 of the optical semiconductor element 2 and a part of the side surface 23. The phosphor layer 3 integrally includes an inner portion 31 disposed on the upper side of the optical semiconductor element 2 and an outer portion 32 disposed on the outer side of the inner portion 31.
 外側部分32は、上下方向に延びる平面視略矩形枠状を有している。外側部分32は、上側部分32aと下側部分32bとを備えている。また、外側部分32は、上側部分32aおよび下側部分32bとの間において、発光面21に沿って光半導体素子2の左右方向および前後方向の外側に延びる仮想面6を含む。 The outer portion 32 has a substantially rectangular frame shape in plan view extending in the vertical direction. The outer portion 32 includes an upper portion 32a and a lower portion 32b. The outer portion 32 includes a virtual surface 6 that extends outward in the left-right direction and the front-rear direction of the optical semiconductor element 2 along the light-emitting surface 21 between the upper portion 32 a and the lower portion 32 b.
 外側部分32の下側部分32bは、光半導体素子2の側面23の上部と接触し、それを被覆するように、光半導体素子2の外側に配置されている。すなわち、下側部分32bの内周端面は、光半導体素子2の側面23の上部に接触している。上側部分32aは、その下端が、下側部分32bの上端と一体的に連結しており、上側に向かうように形成されている。 The lower part 32b of the outer part 32 is arranged outside the optical semiconductor element 2 so as to be in contact with and cover the upper part of the side surface 23 of the optical semiconductor element 2. That is, the inner peripheral end surface of the lower portion 32 b is in contact with the upper portion of the side surface 23 of the optical semiconductor element 2. The upper portion 32a is formed so that the lower end thereof is integrally connected to the upper end of the lower portion 32b and is directed upward.
 反射層4は、光半導体素子2および蛍光体層3の両方に対して、左右方向外側および前後方向外側に配置されている。反射層4は、上下方向に延びる平面視略矩形枠状を有している。 The reflection layer 4 is disposed on the outer side in the left-right direction and on the outer side in the front-rear direction with respect to both the optical semiconductor element 2 and the phosphor layer 3. The reflective layer 4 has a substantially rectangular frame shape in plan view extending in the vertical direction.
 反射層4は、上部4aと、上部4aの下側に配置される下部4bとを有している。 The reflective layer 4 has an upper part 4a and a lower part 4b disposed below the upper part 4a.
 上部4aは、蛍光体層3の左右方向外側および前後方向外側に配置され、蛍光体層3の側面の全面と接触し、それを被覆している。 The upper part 4a is arranged on the outer side in the left-right direction and the outer side in the front-rear direction of the phosphor layer 3, and is in contact with and covers the entire side surface of the phosphor layer 3.
 下部4bは、その上端が上部4aの下端と一体的に連続しており、左右方向内側および前後方向内側に向かって、上部4aよりも広幅となるように、形成されている。下部4bは、光半導体素子2の左右方向外側および前後方向外側に配置され、光半導体素子2の側面23の下部と接触し、それを被覆している。 The lower portion 4b has an upper end that is integrally continuous with a lower end of the upper portion 4a, and is formed to be wider than the upper portion 4a toward the inner side in the left-right direction and the inner side in the front-rear direction. The lower part 4 b is disposed on the outer side in the left-right direction and the outer side in the front-rear direction of the optical semiconductor element 2, and contacts and covers the lower part of the side surface 23 of the optical semiconductor element 2.
 <第3実施形態の製造方法>
 図11A~図11Gを参照して、第2実施形態の二層付素子1の製造方法を説明する。第3実施形態の二層付素子1の製造方法は、例えば、仮固定シート用意工程、仮固定工程、蛍光体層形成工程、蛍光体層除去工程、反射層形成工程、切断工程を備える。
<Manufacturing Method of Third Embodiment>
With reference to FIGS. 11A to 11G, a method of manufacturing the element with two layers 1 of the second embodiment will be described. The manufacturing method of the element 1 with two layers of 3rd Embodiment is equipped with a temporary fixing sheet preparation process, a temporary fixing process, a fluorescent substance layer formation process, a fluorescent substance layer removal process, a reflective layer formation process, and a cutting process, for example.
 まず、図11Aに示すように、仮固定シート用意工程では、図2Aと同様にして、仮固定シート40を用意する。 First, as shown in FIG. 11A, in the temporary fixing sheet preparation step, a temporary fixing sheet 40 is prepared in the same manner as in FIG. 2A.
 次いで、図11Bに示すように、仮固定工程では、図2Bと同様にして、複数の光半導体素子2を、左右方向および前後方向に互いに間隔を隔てて、仮固定シート40の上に仮固定する。 Next, as shown in FIG. 11B, in the temporary fixing step, the plurality of optical semiconductor elements 2 are temporarily fixed on the temporary fixing sheet 40 at intervals in the left-right direction and the front-rear direction, as in FIG. 2B. To do.
 次いで、図11Cが示すように、蛍光体層形成工程では、蛍光体層3を、光半導体素子2の上部を被覆するように、スペーサー45の上に配置する。 Next, as shown in FIG. 11C, in the phosphor layer forming step, the phosphor layer 3 is disposed on the spacer 45 so as to cover the upper portion of the optical semiconductor element 2.
 具体的には、まず、仮固定シート40の上に、スペーサー45を配置する。 Specifically, first, the spacer 45 is disposed on the temporarily fixing sheet 40.
 その後、蛍光体層3が剥離シートの上に配置された蛍光体転写シートを用意し、続いて、蛍光体層3に光半導体素子2の上部が埋没するように、スペーサー45に対して蛍光体転写シートを押圧して積層し、続いて、剥離シートを蛍光体層3から剥離する。 Thereafter, a phosphor transfer sheet in which the phosphor layer 3 is disposed on the release sheet is prepared, and then the phosphor is placed on the spacer 45 so that the upper portion of the optical semiconductor element 2 is buried in the phosphor layer 3. The transfer sheet is pressed and laminated, and then the release sheet is released from the phosphor layer 3.
 蛍光体転写シートの作製について、第3実施形態における蛍光体転写シートの蛍光体層として、好ましくは、第1実施形態で用いる蛍光体転写シートのBステージ状態の蛍光体層よりも、硬化の程度が進んだBステージ状態の蛍光体層を用いる。すなわち、第3実施形態の蛍光体層の貯蔵剪断弾性力を、第1実施形態の蛍光体層の貯蔵剪断弾性力よりも、好ましくは、高くなるように調節する。これにより、図11Cに示すように、光半導体素子2の上部のみを蛍光体層3によって被覆することができ、かつ、蛍光体層3は、仮固定シート40の支持を必要とせずに、その形状を平板状に維持することができる。 Regarding the production of the phosphor transfer sheet, the phosphor layer of the phosphor transfer sheet in the third embodiment is preferably harder than the phosphor layer in the B stage state of the phosphor transfer sheet used in the first embodiment. The phosphor layer in the B-stage state with advanced is used. That is, the storage shear elastic force of the phosphor layer of the third embodiment is preferably adjusted to be higher than the storage shear elastic force of the phosphor layer of the first embodiment. As a result, as shown in FIG. 11C, only the upper part of the optical semiconductor element 2 can be covered with the phosphor layer 3, and the phosphor layer 3 is not required to support the temporary fixing sheet 40. The shape can be maintained flat.
 このようにして、光半導体素子2の発光面21全面および側面23上部が、蛍光体層3によって被覆される。すなわち、蛍光体層付光半導体素子集合体9が得られる。 In this way, the entire light emitting surface 21 and the upper part of the side surface 23 of the optical semiconductor element 2 are covered with the phosphor layer 3. That is, the optical semiconductor element assembly 9 with a phosphor layer is obtained.
 次いで、図11Dに示すように、蛍光体層除去工程では、図2Dと同様にして、蛍光体層付光半導体素子集合体9の蛍光体層3の一部を除去する。これにより、蛍光体層付光半導体素子集合体9において、蛍光体層3が除去された部分に隙間44が形成される。 Next, as shown in FIG. 11D, in the phosphor layer removing step, a part of the phosphor layer 3 of the photosemiconductor layer-attached optical semiconductor element assembly 9 is removed in the same manner as in FIG. 2D. Thereby, in the optical semiconductor element assembly 9 with a phosphor layer, a gap 44 is formed in a portion where the phosphor layer 3 is removed.
 次いで、図11Eおよび図11Fに示すように、反射層形成工程では、隙間44、および、隣接する光半導体素子2間の間隔46に反射層4を形成する。 Next, as shown in FIGS. 11E and 11F, in the reflective layer forming step, the reflective layer 4 is formed in the gap 44 and the interval 46 between the adjacent optical semiconductor elements 2.
 具体的には、例えば、図11Eに示すように、蛍光体層付光半導体素子集合体9の上面に保護シート47を配置し、続いて、真空チャンバー48内部などの真空密閉空間49に、蛍光体層付光半導体素子集合体9を配置し、続いて、反射組成物のワニス4aを、蛍光体層付光半導体素子集合体9を取り囲むように、仮固定シート40の上に配置し、続いて、真空密閉空間49の真空状態を解除して大気圧下に戻す。これにより、反射組成物のワニス4aが、大気圧の圧力によって、隙間44および間隔46に流入し、充填される。 Specifically, for example, as shown in FIG. 11E, a protective sheet 47 is disposed on the upper surface of the optical semiconductor element assembly 9 with a phosphor layer, and then, in a vacuum sealed space 49 such as the inside of the vacuum chamber 48, An optical semiconductor element assembly 9 with a body layer is disposed, and subsequently, the varnish 4a of the reflective composition is disposed on the temporary fixing sheet 40 so as to surround the optical semiconductor element assembly 9 with a phosphor layer, Then, the vacuum state of the vacuum sealed space 49 is released and returned to atmospheric pressure. Thereby, the varnish 4a of the reflective composition flows into the gap 44 and the interval 46 due to the atmospheric pressure, and is filled.
 その後、保護シート47を剥がし、続いて、反射組成物のワニス4aを加熱乾燥して、反射層4を形成する。 Thereafter, the protective sheet 47 is peeled off, and then the varnish 4a of the reflective composition is heated and dried to form the reflective layer 4.
 その後、蛍光体層3および/または反射層4が、熱硬化性樹脂を含有し、Bステージ状態またはAステージ状態である場合は、例えば、オーブンなどによって、さらなる加熱を実施して、蛍光体層3および/または反射層4を硬化(完全硬化、Cステージ化)する。 Thereafter, when the phosphor layer 3 and / or the reflective layer 4 contains a thermosetting resin and is in the B-stage state or the A-stage state, the phosphor layer is further heated by, for example, an oven. 3 and / or the reflective layer 4 is cured (completely cured, C-staged).
 これにより、図11Fに示すように、仮固定シート40の上に、複数の光半導体素子2と、蛍光体層3と、反射層4とが積層される。すなわち、反射層および蛍光体層付光半導体素子集合体10が得られる。 Thereby, as shown in FIG. 11F, the plurality of optical semiconductor elements 2, the phosphor layer 3, and the reflective layer 4 are laminated on the temporarily fixing sheet 40. That is, the optical semiconductor element assembly 10 with a reflective layer and a phosphor layer is obtained.
 次いで、図11Gに示すように、切断工程では、図2Fと同様にして、反射層および蛍光体層付光半導体素子集合体10を切断(個片化)する。 Next, as shown in FIG. 11G, in the cutting step, the optical semiconductor element assembly 10 with the reflective layer and the phosphor layer is cut (individualized) in the same manner as in FIG. 2F.
 続いて、図11Gの仮想線が示すように、仮固定シート40を光半導体素子2から剥離する。 Subsequently, the temporary fixing sheet 40 is peeled from the optical semiconductor element 2 as indicated by a virtual line in FIG. 11G.
 これにより、二層付素子1が得られる。 Thereby, the element 1 with two layers is obtained.
 第3実施形態の二層付素子1も、第1実施形態の二層付素子1と同様の作用効果を奏する。なお、蛍光体層3が、光の取り出し効率が良好となる観点から、好ましくは、光半導体素子2の側面23全面に接触している第1実施形態の二層付素子1が挙げられる。 The element with two layers 1 of the third embodiment also has the same effects as the element 1 with two layers of the first embodiment. In addition, from the viewpoint of improving the light extraction efficiency, the two-layered element 1 of the first embodiment in which the phosphor layer 3 is in contact with the entire side surface 23 of the optical semiconductor element 2 is preferable.
 また、蛍光体層3は、その上面が反射層4の上面と面一となるように形成されているが、例えば、図示しないが、蛍光体層3は、その上面が反射層4の上面よりも上側または下側に位置するように形成することもできる。 The phosphor layer 3 is formed so that the upper surface thereof is flush with the upper surface of the reflective layer 4. For example, although not shown, the upper surface of the phosphor layer 3 is higher than the upper surface of the reflective layer 4. Can also be formed so as to be located on the upper side or the lower side.
 また、第3実施形態では、図示しないが、蛍光体層3の上に拡散層5を備えることもできる。 In the third embodiment, although not shown, the diffusion layer 5 may be provided on the phosphor layer 3.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明するが、本発明は、何ら実施例および比較例に限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the examples and comparative examples. Specific numerical values such as blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. The upper limit value (numerical value defined as “less than” or “less than”) or lower limit value (number defined as “greater than” or “exceeded”) may be substituted. it can.
 (蛍光組成物の調製)
 各実施例および各比較例の蛍光組成物において、同一の色度(CIE,y=0.31)となるように、シリコーン樹脂(商品名「OE6635A/B」、東レ・ダウコーニング社製、屈折率1.54)34~45質量部、蛍光体(商品名「YAG432」、ネモト・ルミマテリアル社製)8~30質量部、ガラス(SiO/Al/CaO/MgO=60/20/15/5(質量%)、平均粒子径20μm、屈折率1.55、充填材)35~46質量部、ナノシリカ(フュームドシリカ、平均粒子径20nm、商品名「R976S」、日本アエロジル社製)1質量部を、全量が100質量部となるように混合して、蛍光組成物を調製した。
(Preparation of fluorescent composition)
In the fluorescent compositions of each example and each comparative example, a silicone resin (trade name “OE6635A / B”, manufactured by Toray Dow Corning Co., Ltd., refraction so as to have the same chromaticity (CIE, y = 0.31). 1.54) 34 to 45 parts by mass, phosphor (trade name “YAG432”, manufactured by Nemoto Lumimaterial) 8 to 30 parts by mass, glass (SiO 2 / Al 2 O 3 / CaO / MgO = 60/20) / 15/5 (mass%), average particle diameter 20 μm, refractive index 1.55, filler 35 to 46 parts by mass, nano silica (fumed silica, average particle diameter 20 nm, trade name “R976S”, manufactured by Nippon Aerosil Co., Ltd. ) 1 mass part was mixed so that the whole quantity might be 100 mass parts, and the fluorescent composition was prepared.
 (反射組成物Aの調製)
 シリコーン樹脂(上記と同一)65質量部、ガラス(上記と同一)30質量部、酸化チタン(商品名「R706」、デュポン社製、平均粒子径0.36μm、光反射成分)4質量部、ナノシリカ(上記と同一)1質量部を混合して、反射組成物Aを調製した。
(Preparation of reflective composition A)
65 parts by mass of silicone resin (same as above), 30 parts by mass of glass (same as above), titanium oxide (trade name “R706”, manufactured by DuPont, average particle size 0.36 μm, light reflection component), 4 parts by mass, nano silica A reflective composition A was prepared by mixing 1 part by mass (same as above).
 (反射組成物Bの調製)
 シリコーン樹脂(上記と同一)39質量部、ガラス(上記と同一)30質量部、酸化チタン(上記と同一)30質量部、ナノシリカ(上記と同一)1質量部を混合して、反射組成物Bを調製した。
(Preparation of reflective composition B)
Reflective composition B by mixing 39 parts by mass of silicone resin (same as above), 30 parts by mass of glass (same as above), 30 parts by mass of titanium oxide (same as above), and 1 part by mass of nanosilica (same as above) Was prepared.
 (拡散層の作製)
 シリコーン樹脂(上記と同一)39質量部、ガラス(上記と同一)30質量部、シリカ(球状溶融シリカ、「FB-3SDC」、デンカ社製、平均粒子径3.4μm、屈折率1.45、光拡散性無機粒子)30質量部、ナノシリカ(上記と同一)1質量部を混合し、撹拌脱泡して、拡散透明組成物(ワニス)を調製した。
(Production of diffusion layer)
39 parts by mass of silicone resin (same as above), 30 parts by mass of glass (same as above), silica (spherical fused silica, “FB-3SDC”, manufactured by Denka Co., Ltd., average particle size 3.4 μm, refractive index 1.45, 30 parts by mass of light diffusing inorganic particles) and 1 part by mass of nanosilica (same as above) were mixed, stirred and degassed to prepare a diffusive transparent composition (varnish).
 拡散透明組成物をポリエステルフィルム上にて塗布して、90℃で30分間加熱することにより、半硬化状態の拡散層を製造した。 The diffusion transparent composition was applied on a polyester film and heated at 90 ° C. for 30 minutes to produce a semi-cured diffusion layer.
 (実施例1~10および比較例1~3)
 光半導体素子として、左右方向長さおよび前後方向長さ(発光面)がそれぞれ1143μm、上下方向長さが150μmであるLED素子を用いた。上記した蛍光組成物、および、反射組成物A、Bを用いて、図2A~図2F、図7A~図7Eまたは図12~図13に従って、表1に記載の形状および寸法となるように、実施例および比較例の反射層および蛍光体層付光半導体素子を製造した。なお、実施例10については、図7Aにおいて蛍光体層を用意した後に半硬化状態の拡散層を蛍光体層の下面に配置し、図7Dにおいて拡散層も硬化した以外は、図7A~図7Eに従って反射層および蛍光体層付光半導体素子を製造した。比較例3については、反射層を設けずに、蛍光体層付光半導体素子を製造した。
(Examples 1 to 10 and Comparative Examples 1 to 3)
As the optical semiconductor element, an LED element having a length in the left-right direction and a length in the front-rear direction (light emitting surface) of 1143 μm and a length in the vertical direction of 150 μm was used. Using the above-described fluorescent composition and reflective compositions A and B, according to FIGS. 2A to 2F, FIGS. 7A to 7E, or FIGS. 12 to 13, the shapes and dimensions described in Table 1 are obtained. Optical semiconductor elements with reflective layers and phosphor layers of Examples and Comparative Examples were manufactured. 7A to 7E except that after preparing the phosphor layer in FIG. 7A, a semi-cured diffusion layer was disposed on the lower surface of the phosphor layer and the diffusion layer was also cured in FIG. 7D. Thus, an optical semiconductor element with a reflective layer and a phosphor layer was produced. For Comparative Example 3, an optical semiconductor element with a phosphor layer was manufactured without providing a reflective layer.
 得られた各実施例および各比較例について、以下の項目を測定した。 The following items were measured for each of the obtained Examples and Comparative Examples.
 (厚みの測定)
 蛍光体層および拡散層の厚みは、測定計(リニアゲージ、シチズン社製)により測定した。
(Measurement of thickness)
The thicknesses of the phosphor layer and the diffusion layer were measured with a measuring meter (linear gauge, manufactured by Citizen).
 (反射層の反射率の測定)
 反射組成物AおよびBを塗布および硬化させて、測定用の厚み100μmの反射層AおよびBを作製した。この反射率測定用の反射層AおよびBにおいて、紫外可視近赤外分光光度計(UV-vis)(「V-670」、日本分光社製)を用いて、積分球における光路確認方法(波長範囲380~800nm)にて、450nm波長での反射率を測定した。結果を表1に示す。
(Measurement of reflectance of reflective layer)
Reflective compositions A and B were applied and cured to prepare reflective layers A and B having a thickness of 100 μm for measurement. In the reflection layers A and B for measuring the reflectance, an optical path confirmation method (wavelength) in an integrating sphere using an ultraviolet-visible near-infrared spectrophotometer (UV-vis) (“V-670”, manufactured by JASCO Corporation) The reflectivity at a wavelength of 450 nm was measured in the range of 380 to 800 nm. The results are shown in Table 1.
 (反射層および拡散層の光透過率の測定)
 拡散透明組成物を塗布および硬化させて、測定用の厚み100μmの拡散層を作製した。上記測定用の反射層AおよびBならびに測定用の拡散層において、 波長450nmにおける光透過率(%)を、分光光度計(U-4100、日立ハイテク社製)を用いて測定した。
(Measurement of light transmittance of reflection layer and diffusion layer)
The diffusion transparent composition was applied and cured to prepare a diffusion layer having a thickness of 100 μm for measurement. In the reflection layers A and B for measurement and the diffusion layer for measurement, the light transmittance (%) at a wavelength of 450 nm was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Tech).
 その結果、反射層AおよびBの光透過率は、20%以下であり、拡散層の光透過率は、60%以上であった。 As a result, the light transmittance of the reflective layers A and B was 20% or less, and the light transmittance of the diffusion layer was 60% or more.
 (色度の測定)
 瞬間マルチ測光システム(「MCPD-9800」、大塚電子社製)によって、下記の測定条件にて、色度(CIE、y)を測定した。
(Measurement of chromaticity)
The chromaticity (CIE, y) was measured with an instantaneous multi-photometry system (“MCPD-9800”, manufactured by Otsuka Electronics Co., Ltd.) under the following measurement conditions.
 電流値:300mA
 電圧:3.5V
 露光時間:19ms
 積算回数:16回 
 (半値角、配向角、正面照度の測定)
 瞬間マルチ測定システム(「MCPD-9800」、大塚電子社製)によって、下記の条件にて、半値角、配向角および正面照度を測定した。
Current value: 300 mA
Voltage: 3.5V
Exposure time: 19ms
Integration count: 16 times
(Measurement of half-value angle, orientation angle, and front illumination)
The half-value angle, the orientation angle, and the front illuminance were measured with an instantaneous multi-measurement system (“MCPD-9800”, manufactured by Otsuka Electronics Co., Ltd.) under the following conditions.
 電流値:300mA
 電圧:3.5V
 測定距離:316mm
 露光時間:300ms
 積算回数:1回 
 サンプルセッティングの水平角:90°
 垂直角:-90°~90°
Current value: 300 mA
Voltage: 3.5V
Measuring distance: 316mm
Exposure time: 300ms
Integration count: 1 time
Horizontal angle of sample setting: 90 °
Vertical angle: -90 ° ~ 90 °
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
 本発明の反射層および蛍光体層付光半導体素子は、各種の工業製品に適用することができ、例えば、白色光半導体装置などの光学用途などに用いることができる。 The optical semiconductor element with a reflective layer and a phosphor layer of the present invention can be applied to various industrial products, and can be used for optical applications such as a white light semiconductor device.
1 二層付素子
2 光半導体素子
3 蛍光体層
4 反射層
5 拡散層
6 仮想面
21 発光面
22 対向面
31 内側部分
32 外側部分
DESCRIPTION OF SYMBOLS 1 Element with two layers 2 Optical semiconductor element 3 Phosphor layer 4 Reflective layer 5 Diffusion layer 6 Virtual surface 21 Light emitting surface 22 Opposing surface 31 Inner part 32 Outer part

Claims (8)

  1.  発光面および前記発光面に対して上下方向に間隔を隔てて対向配置される対向面を有する光半導体素子と、
     前記発光面を少なくとも被覆する蛍光体層と、
     前記光半導体素子および前記蛍光体層の両方に対して、前記上下方向に直交する直交方向外側に配置される反射層とを備え、
     前記蛍光体層は、
      前記光半導体素子の上側に配置される内側部分と、
      前記発光面に沿って前記光半導体素子の外側に延びる仮想面上にまたは前記仮想面を含むように配置される外側部分と
     を有することを特徴とする、反射層および蛍光体層付光半導体素子。
    An optical semiconductor element having a light emitting surface and an opposing surface disposed to be opposed to the light emitting surface in the vertical direction;
    A phosphor layer covering at least the light emitting surface;
    A reflective layer disposed on the outer side in the orthogonal direction perpendicular to the vertical direction for both the optical semiconductor element and the phosphor layer;
    The phosphor layer is
    An inner portion disposed on the upper side of the optical semiconductor element;
    An optical semiconductor element with a reflective layer and a phosphor layer, wherein the optical semiconductor element includes: an outer portion disposed on or including a virtual surface extending outside the optical semiconductor element along the light emitting surface; .
  2.  下記式(1)および(2)を満たすことを特徴とする、請求項1に記載の反射層および蛍光体層付光半導体素子。
     90° < θ < 160°   (1)
     A   ≦ Y           (2)
    (式中、θは、前記光半導体素子の前記発光面の端縁と前記反射層の上端縁の内端縁とを結ぶ直線と、前記発光面とがなす角度を示す。
     Aは、前記発光面と、前記蛍光体層の上面との上下方向距離を示す。
     Yは、前記発光面と、前記反射層の上端縁の内端縁との上下方向距離を示す。)
    The optical semiconductor element with a reflective layer and phosphor layer according to claim 1, wherein the following formulas (1) and (2) are satisfied.
    90 ° <θ 1 <160 ° (1)
    A ≤ Y (2)
    (In formula, (theta) 1 shows the angle which the straight line which connects the edge of the said light emission surface of the said optical semiconductor element and the inner edge of the upper end edge of the said reflection layer, and the said light emission surface makes.).
    A represents the vertical distance between the light emitting surface and the top surface of the phosphor layer.
    Y represents the vertical distance between the light emitting surface and the inner edge of the upper edge of the reflective layer. )
  3.  前記反射層は、100μm厚みにおける450nm波長の光で照射したときの反射率が80%以上であることを特徴とする、請求項1に記載の反射層および蛍光体層付光半導体素子。 2. The optical semiconductor element with a reflective layer and a phosphor layer according to claim 1, wherein the reflective layer has a reflectance of 80% or more when irradiated with light having a wavelength of 450 nm at a thickness of 100 μm.
  4.  下記式(3)を満たすことを特徴とする、請求項1に記載の反射層および蛍光体層付光半導体素子。
      B < X      (3)
    (式中、Bは、前記光半導体素子の前記対向面の端縁と、前記反射層の下端縁の内端縁との距離を示す。
     Xは、前記光半導体素子の前記発光面の端縁と、前記蛍光体層の前記仮想面上における外端縁との前記直交方向距離を示す。)
    The optical semiconductor element with a reflective layer and a phosphor layer according to claim 1, wherein the following formula (3) is satisfied.
    B <X (3)
    (In formula, B shows the distance of the edge of the said opposing surface of the said optical semiconductor element, and the inner edge of the lower end edge of the said reflection layer).
    X represents the orthogonal distance between the edge of the light emitting surface of the optical semiconductor element and the outer edge of the phosphor layer on the virtual surface. )
  5.  前記反射層は、前記光半導体素子における前記発光面と前記対向面との間の側面全面に接触していることを特徴とする、請求項1に記載の反射層および蛍光体層付光半導体素子。 2. The optical semiconductor element with a reflective layer and a phosphor layer according to claim 1, wherein the reflective layer is in contact with the entire side surface between the light emitting surface and the opposing surface of the optical semiconductor element. .
  6.  前記蛍光体層は、前記光半導体素子における前記発光面と前記対向面との間の側面全面に接触していることを特徴とする、請求項1に記載の反射層および蛍光体層付光半導体素子。 The said fluorescent substance layer is contacting the whole side surface between the said light emission surface and the said opposing surface in the said optical semiconductor element, The reflection layer and optical semiconductor with a fluorescent substance layer of Claim 1 characterized by the above-mentioned. element.
  7.  前記蛍光体層の上側に配置される拡散層をさらに備えることを特徴とする、請求項1に記載の反射層および蛍光体層付光半導体素子。 The optical semiconductor element with a reflective layer and a phosphor layer according to claim 1, further comprising a diffusion layer disposed above the phosphor layer.
  8.  下記式(4)を満たすことを特徴とする、請求項7に記載の反射層および蛍光体層付光半導体素子。
     A + C ≦ Y         (4)
    (式中、Cは、前記拡散層の上下方向長さを示す。)
    The optical semiconductor element with a reflective layer and a phosphor layer according to claim 7, wherein the following formula (4) is satisfied.
    A + C ≦ Y (4)
    (In the formula, C represents the vertical length of the diffusion layer.)
PCT/JP2017/010725 2016-07-07 2017-03-16 Photosemiconductor element with reflection layer and phosphor layer WO2018008197A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016134688 2016-07-07
JP2016-134688 2016-07-07
JP2017046042A JP2018014480A (en) 2016-07-07 2017-03-10 Optical semiconductor element with reflective layer and phosphor layer
JP2017-046042 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018008197A1 true WO2018008197A1 (en) 2018-01-11

Family

ID=60912446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010725 WO2018008197A1 (en) 2016-07-07 2017-03-16 Photosemiconductor element with reflection layer and phosphor layer

Country Status (1)

Country Link
WO (1) WO2018008197A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018217808A1 (en) 2017-05-22 2018-11-29 Insmed Incorporated Lipo-glycopeptide cleavable derivatives and uses thereof
JP2020025063A (en) * 2018-08-06 2020-02-13 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
US11137123B2 (en) 2018-08-06 2021-10-05 Nichia Corporation Method of manufacturing light emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227470A (en) * 2011-04-22 2012-11-15 Citizen Holdings Co Ltd Semiconductor light emitting device and manufacturing method of the same
JP2013073983A (en) * 2011-09-27 2013-04-22 Toshiba Lighting & Technology Corp Light-emitting device and luminaire
JP2013251417A (en) * 2012-06-01 2013-12-12 Nichia Chem Ind Ltd Light-emitting device
WO2014091914A1 (en) * 2012-12-10 2014-06-19 シチズンホールディングス株式会社 Led device and manufacturing method thereof
US20140217436A1 (en) * 2013-02-05 2014-08-07 Cree, Inc. Submount-free light emitting diode (led) components and methods of fabricating same
WO2014122881A1 (en) * 2013-02-07 2014-08-14 パナソニック株式会社 Light-emitting device
JP2017050321A (en) * 2015-08-31 2017-03-09 日亜化学工業株式会社 Manufacturing method for light-emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227470A (en) * 2011-04-22 2012-11-15 Citizen Holdings Co Ltd Semiconductor light emitting device and manufacturing method of the same
JP2013073983A (en) * 2011-09-27 2013-04-22 Toshiba Lighting & Technology Corp Light-emitting device and luminaire
JP2013251417A (en) * 2012-06-01 2013-12-12 Nichia Chem Ind Ltd Light-emitting device
WO2014091914A1 (en) * 2012-12-10 2014-06-19 シチズンホールディングス株式会社 Led device and manufacturing method thereof
US20140217436A1 (en) * 2013-02-05 2014-08-07 Cree, Inc. Submount-free light emitting diode (led) components and methods of fabricating same
WO2014122881A1 (en) * 2013-02-07 2014-08-14 パナソニック株式会社 Light-emitting device
JP2017050321A (en) * 2015-08-31 2017-03-09 日亜化学工業株式会社 Manufacturing method for light-emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018217808A1 (en) 2017-05-22 2018-11-29 Insmed Incorporated Lipo-glycopeptide cleavable derivatives and uses thereof
JP2020025063A (en) * 2018-08-06 2020-02-13 日亜化学工業株式会社 Light-emitting device and manufacturing method thereof
US11137123B2 (en) 2018-08-06 2021-10-05 Nichia Corporation Method of manufacturing light emitting device
JP6989782B2 (en) 2018-08-06 2022-02-03 日亜化学工業株式会社 Light emitting device and its manufacturing method

Similar Documents

Publication Publication Date Title
US11038089B2 (en) Light emitting device
CN109690181B (en) Sheet for covering optical semiconductor element
JP6519311B2 (en) Light emitting device
EP3410497B1 (en) Light-emitting device and method of manufacturing same
JP5744386B2 (en) Optical semiconductor encapsulant
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
TWI695054B (en) Phosphor ceramic, sealed optical semiconductor element, circuit board, optical semiconductor device and light emitting device
KR20120117659A (en) Producing method of light emitting element transfer sheet, producing method of light emitting device, light emitting element transfer sheet, and light emitting device
JP6361645B2 (en) Light emitting device
JP2018014480A (en) Optical semiconductor element with reflective layer and phosphor layer
WO2018008197A1 (en) Photosemiconductor element with reflection layer and phosphor layer
WO2017221606A1 (en) Optical semiconductor element having phosphor layer, and method for manufacturing optical semiconductor element
TW201327933A (en) Encapsulating sheet, producing method of optical semiconductor device, optical semiconductor device, and lighting device
WO2014020897A1 (en) Wavelength conversion particle, wavelength conversion member, and light-emitting device
WO2017221608A1 (en) Phosphor layer sheet, and manufacturing method of optical semiconductor element with phosphor layer
JP2018041858A (en) Cover sheet, sheet covering element, and optical semiconductor device
WO2017221607A1 (en) Optical semiconductor device with phosphor layer
JP2010199454A (en) Circuit substrate for light-emitting element, light-emitting apparatus, and production methods thereof
JP2018041857A (en) Optical semiconductor element coated with phosphor layer and light diffusion layer
TWI824331B (en) Thin sheet for covering the optical semiconductor element
JP2018166197A (en) Led device, fluorescent material-containing sheet for led emission color conversion, and manufacturing method of led device
US20200295242A1 (en) Light-emitting device and production method therefor
JP2014131075A (en) Light-emitting device
JP2018006472A (en) Method of manufacturing reflective layer-phosphor layer coating semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823805

Country of ref document: EP

Kind code of ref document: A1