WO2018006416A1 - 一种用于对壳体表面进行光处理的方法和装置 - Google Patents

一种用于对壳体表面进行光处理的方法和装置 Download PDF

Info

Publication number
WO2018006416A1
WO2018006416A1 PCT/CN2016/089417 CN2016089417W WO2018006416A1 WO 2018006416 A1 WO2018006416 A1 WO 2018006416A1 CN 2016089417 W CN2016089417 W CN 2016089417W WO 2018006416 A1 WO2018006416 A1 WO 2018006416A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmitting
bonding surface
photomask
bonding
Prior art date
Application number
PCT/CN2016/089417
Other languages
English (en)
French (fr)
Inventor
郭仁炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/097,507 priority Critical patent/US20190151994A1/en
Priority to CN201680080726.8A priority patent/CN108602161B/zh
Priority to PCT/CN2016/089417 priority patent/WO2018006416A1/zh
Publication of WO2018006416A1 publication Critical patent/WO2018006416A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/355Texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Definitions

  • the present invention relates to the field of surface treatment of housings, and more particularly to a method and apparatus for surface treatment of housing surfaces in the field of surface treatment technology.
  • the falling off of the display screen is one of the common problems in the use of the terminal device with the display screen.
  • the adhesion between the surface device of the terminal device and the display screen is an important factor determining the quality of the terminal device.
  • the surface area of the terminal device housing is generally increased to increase the roughness and the specific surface area of the terminal device housing, thereby increasing the bonding area of the glue between the terminal device housing and the display screen, which enables The glue is more firmly bonded.
  • Laser engraving on the terminal device housing is a conventional method for surface treatment of the terminal device housing, but the light of the laser engraving machine used in the surface treatment of the terminal device housing is generally vertical. It is necessary to perform laser engraving on the bottom surface of the terminal device housing and the side surface perpendicular to the bottom surface, which is relatively difficult to achieve.
  • the present invention provides a method and apparatus for photo-processing a surface of a housing that enables simultaneous laser engraving of the bottom and sides of the housing of the terminal device.
  • the present invention provides a method for photoprocessing a surface of a housing, the method comprising:
  • the laser engraving machine emits a first beam and a second beam
  • the first light beam is transmitted to the first bonding surface of the housing through the first light transmissive area of the photomask to perform laser engraving on the first bonding surface;
  • the second light beam is transmitted to the light reflecting module through the second light transmitting region of the photomask;
  • the reflective module reflects the second light beam to the second bonding surface of the housing to perform laser engraving on the second bonding surface, wherein the first bonding surface and the second bonding surface exist Angle.
  • the first light beam emitted by the laser engraving machine is transmitted to the first bonding surface of the casing through the first light transmitting region of the photomask to A bonding surface for laser engraving can increase the bonding area of the first bonding surface and the glue, thereby improving the housing and the display The bond strength of the screen.
  • the second light beam emitted by the laser engraving machine is transmitted to the reflective module through the second transparent region of the photomask, and the reflective beam is used by the reflective module. Reflecting to a second bonding surface at an angle with the first bonding surface to perform laser engraving on the second bonding surface, and simultaneously performing radium on the first bonding surface and the second bonding surface of the housing Engraving, thereby further enhancing the bonding strength between the housing and the display screen.
  • the light reflecting module includes a first light reflecting sheet and a second light reflecting sheet, and the light reflecting module reflects the second light beam to the second stick of the housing
  • the surface of the second bonding surface is laser-engraved, comprising: the first reflecting sheet reflects the second light beam to the second reflecting sheet; and the second reflecting sheet reflects the second light beam to the second reflecting sheet Bonding surface.
  • the angle between the first reflector and the vertical direction is 15° to 45°; or The angle between the two reflecting sheets and the first reflecting sheet is 125° to 145°.
  • the invention provides a method for performing light treatment on a surface of a casing, and the second light beam transmitted through the photomask is reflected by the two reflective sheets to the second bonding surface of the casing, and the first reflecting sheet can be controlled by And the position and the angle of the second retroreflective sheeting, precisely controlling the incident angle when the second light beam is reflected to the second bonding surface, thereby further controlling the formation of the laser beam on the second bonding surface by the second light beam
  • the surface shape of the radium carved hole is a method for performing light treatment on a surface of a casing, and the second light beam transmitted through the photomask is reflected by the two reflective sheets to the second bonding surface of the casing, and the first reflecting sheet can be controlled by And the position and the angle of the second retroreflective sheeting, precisely controlling the incident angle when the second light beam is reflected to the second bonding surface, thereby further controlling the formation of the laser beam on the second bonding surface by the second light beam
  • the photomask is included in the first bonding surface and the N rows of light transmission holes in a direction parallel to the intersection line of the second bonding surface, wherein the second light transmission region includes light transmission holes in the front n rows, the first light transmission region including the remaining (Nn) The light-transmitting holes of the row, the N being an integer greater than or equal to 2, and the n is an integer greater than or equal to 1.
  • the photomask is included in the first bonding surface and the N rows of light transmission holes in a direction perpendicular to the intersection line of the second bonding surface, wherein the second light transmission region includes n rows of light transmission holes, and the first light transmission region includes (Nn) rows of light transmission holes, the N An integer greater than or equal to 2, the n being an integer greater than or equal to 1.
  • the method for light-treating the surface of the casing provided by the invention, the laser engraving of the casing through a plurality of differently arranged light-transmitting holes on the photomask, the first bonding surface of the casing and the The two bonding faces are obtained with different arrangement of laser engraving holes, which are suitable for the surface treatment scenes of different laser engraving holes.
  • the first transparent area The at least one light transmission hole having a hole diameter of 0.1 ⁇ m to 3 mm is included; or the second light transmission area includes at least one light transmission hole having a hole diameter of 0.1 ⁇ m to 3 mm.
  • the first transparent area The at least one light transmission hole having a surface shape of a circle, a triangle, a square or a parallelogram is included; or the second light transmission region includes at least one light transmission hole whose surface shape is a circle, a triangle, a square or a parallelogram.
  • the method for light-treating the surface of the casing provided by the invention can precisely control the aperture and surface of the radium-carved hole formed by laser engraving of the casing by controlling the aperture and the surface shape of the light-transmitting hole on the photomask. Shape, in addition, by controlling the beam energy emitted by the laser, the hole depth of the radium engraved hole formed by laser engraving of the casing can be precisely controlled. Therefore, the method for photo-processing the surface of the casing provided by the present invention is applicable to In the future, the terminal device will have a narrower display frame border and a thinner terminal device body.
  • the housing is a terminal device Surface shell.
  • the present invention provides an apparatus for photo-processing a surface of a housing, the apparatus comprising a photomask and a light reflecting module, the photomask comprising a first light transmissive area and a second light transmissive area, The reflective module is located below the photomask, wherein:
  • the first light transmissive area is configured to transmit the first light beam emitted by the laser to the first bonding surface of the casing to perform laser engraving on the first bonding surface;
  • the second light transmitting region is configured to transmit the second light beam emitted by the laser to the reflective module
  • the reflective module is configured to reflect the second light beam to the second bonding surface of the housing to perform laser engraving on the second bonding surface, wherein the first bonding surface and the second bonding surface There is an angle between them.
  • the surface of the junction is laser engraved on the first bonding surface, which can increase the bonding area of the first bonding surface and the glue, thereby improving the bonding strength between the housing and the display screen.
  • the device further includes a reflective module, the plurality of light transmissive regions of the photomask including the first transmissive region And a second light transmissive area, the reflective module is configured to reflect the second light beam transmitted through the second light transmitting area to a second bonding surface having an angle with the first bonding surface, to The two bonding faces are subjected to laser engraving, and the first bonding surface and the second bonding surface of the casing can be simultaneously laser-engraved, thereby further improving the bonding strength between the casing and the display screen.
  • the light reflecting module includes a first light reflecting sheet and a second light reflecting sheet, wherein the first light reflecting sheet is configured to reflect the second light beam to the second a retroreflective sheeting; the second retroreflective sheeting is configured to reflect the second light beam reflected by the first retroreflective sheeting to the second bonding surface.
  • the angle between the first reflector and the vertical direction is 15° to 45°; or The angle between the two reflecting sheets and the first reflecting sheet is 125° to 145°.
  • the light reflecting module includes two reflecting sheets for reflecting the second light beam transmitted through the second light transmitting region to the casing.
  • the two bonding faces can accurately control the incident angle when the second beam is reflected to the second bonding surface by the different positions and angles of the two reflecting sheets, so that the second beam can be further controlled by the second beam.
  • the photomask is included in the first bonding surface and the N rows of light transmission holes in a direction parallel to the intersection line of the second bonding surface, wherein the second light transmission region includes light transmission holes in the front n rows, the first light transmission region including the remaining (Nn) The light-transmitting holes of the row, the N being an integer greater than or equal to 2, and the n is an integer greater than or equal to 1.
  • the photomask is included in the first bonding surface and the N rows of light transmission holes in a direction perpendicular to the intersection line of the second bonding surface, wherein the second light transmission region includes n rows of light transmission holes, and the first light transmission region includes (Nn) rows of light transmission holes, the N An integer greater than or equal to 2, the n being an integer greater than or equal to 1.
  • the photomask includes a plurality of differently arranged light-transmissive holes for the shells through the photomask After the body is subjected to laser engraving, differently arranged laser engraving holes are obtained on the first bonding surface and the second bonding surface of the casing, which are suitable for surface treatment scenes required for different laser engraving holes.
  • the first light-transmitting region includes at least one light-transmitting hole having a diameter of 0.1 ⁇ m to 3 mm; or the second light-transmitting region includes an aperture At least one light transmission hole of 0.1 ⁇ m to 3 mm.
  • the first transparent area The at least one light transmission hole having a surface shape of a circle, a triangle, a square or a parallelogram is included; or the second light transmission region includes at least one light transmission hole whose surface shape is a circle, a triangle, a square or a parallelogram.
  • the photomask comprises a plurality of light transmission holes having a plurality of apertures and surface shapes for precisely controlling the radium engraving holes formed by laser engraving of the casing
  • the aperture and surface shape in addition, by controlling the beam energy emitted by the laser, the hole depth of the radium engraving hole formed by laser engraving of the casing can be precisely controlled. Therefore, the present invention provides for light treatment of the surface of the casing.
  • the device is suitable for laser engraving of the housing of a terminal device such as a narrower display frame frame and a thinner terminal device body.
  • the housing is a terminal device Surface shell.
  • Figure 1 is a schematic illustration of an apparatus for photoprocessing a surface of a housing in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic illustration of another apparatus for photoprocessing a surface of a housing in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic illustration of another apparatus for photoprocessing a surface of a housing in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic view of a light transmission hole according to an embodiment of the present invention.
  • Figure 5 is a schematic illustration of a photomask of an embodiment of the present invention.
  • FIG. 6 is a schematic illustration of another photomask in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a method for performing light processing on a surface of a casing according to an embodiment of the present invention.
  • Figure 8 is a schematic flow diagram of another method for photoprocessing a surface of a housing in accordance with an embodiment of the present invention.
  • FIG. 9 is a schematic flow chart of still another method for performing light processing on a surface of a casing according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a face shell of a terminal device according to an embodiment of the present invention.
  • the technical solution of the embodiment of the present invention can be applied to all terminal devices having a display screen, for example, the terminal device can be a mobile phone with a display screen, a Tablet Personal Computer, a media player, a smart TV, a notebook computer ( A computer such as a portable computer (PDA), a personal digital assistant (PDA), a personal computer (Personal Computer), a mobile Internet device (Mobile Internet Device), or a smart watch, etc.
  • the solution may also be applied to a display device having a display screen.
  • the display device may be a television, a display, or the like, which is not limited by the embodiment of the present invention.
  • Figure 1 shows a schematic view of an apparatus 100 for photoprocessing a surface of a housing in accordance with an embodiment of the present invention.
  • the apparatus for performing light treatment on the surface of the casing of the embodiment of the present invention is used for performing laser engraving processing on the bonding surface of the casing by laser beam emitted from the laser engraving machine, and forming on the bonding surface of the casing.
  • the laser engraving hole is added to facilitate dispensing on the surface to be bonded having the radium engraving hole, and is bonded to the display screen, but the embodiment of the invention is not limited thereto.
  • the housing in the embodiment of the present invention may be a terminal device cover, and the terminal device cover may include a bottom surface (first bonding surface) and a side surface (second bonding surface), the bottom surface and the side surface There is an angle between them.
  • the terminal device may be a mobile phone, and the terminal device may be a face shell of the mobile phone, and the bottom surface and the side surface of the mobile phone case are perpendicular, but the embodiment of the present invention is not limited thereto.
  • the device 100 includes a photomask 110 and a light reflecting module 120.
  • the photomask 110 includes a light transmissive region, and a region of the photomask 110 other than the light transmissive region is a light shielding region. 113.
  • the light transmissive area of the photomask 110 is used to transmit a partial light beam emitted by the laser to the first bonding surface of the housing to perform laser engraving on the first bonding surface, and the remaining light beams are shielded by the light shielding area. 113 occlusion.
  • the device for performing light processing on the surface of the casing of the embodiment of the invention comprises a photomask comprising a light transmissive region, wherein the light transmissive region of the photomask is used for transmitting the light beam emitted by the laser engraving machine to the shell
  • the first bonding surface of the body is laser engraved on the first bonding surface, which can increase the bonding area of the first bonding surface and the glue, thereby improving the bonding strength between the housing and the display screen.
  • the light reflecting module 120 is configured to reflect a light beam transmitted from the light transmitting region to a second bonding surface of the housing to perform laser engraving on the second bonding surface, wherein the first bonding layer There is an angle between the junction surface and the second bonding surface.
  • the device for performing light processing on the surface of the casing further includes a light reflecting module, and the reflecting module is configured to reflect the light beam transmitted through the light transmitting region to the first angle of the first bonding surface Two bonding faces for laser engraving the second bonding surface.
  • the photomask 110 and the light reflecting module 120 may be two separate devices, or may be integrated in the same device by a transparent medium, which is not limited in the embodiment of the present invention.
  • the device 100 may include a photomask 110 and a light reflecting module 120.
  • the photomask 110 includes a first light transmitting region and a second light transmitting region, and the first light transmitting region is used to emit the laser.
  • a light beam is transmitted to the first bonding surface of the housing to perform laser engraving on the first bonding surface;
  • the second light transmitting region is configured to transmit a second light beam emitted by the laser to the reflective module, the reflective module Reflecting the second light beam to the second bonding surface of the housing to perform laser engraving on the second bonding surface, wherein the first bonding surface and the second bonding surface are sandwiched angle.
  • the device for performing light treatment on the surface of the casing of the embodiment of the invention can simultaneously perform laser engraving on the first bonding surface and the second bonding surface of the casing, thereby further improving the bonding strength between the casing and the display screen. .
  • the first transparent region may include at least one light transmission hole (the light transmission hole 111 is shown in FIG. 1 ), and the second light transmission region may include at least one light transmission hole (shown in FIG. 1 )
  • the light-transmitting hole 112) is not limited in this embodiment of the present invention.
  • the light reflecting module 120 may include a first light reflecting sheet 121 and a second light reflecting sheet 122, wherein the first light reflecting sheet is configured to reflect a second light beam transmitted through the second light transmitting region to the second light reflecting sheet,
  • the second retroreflective sheeting is for reflecting the second light beam reflected by the first retroreflective sheeting to the second bonding surface of the housing.
  • the angle between the first reflector and the vertical direction may be 15° to 45°, and the angle between the second reflector and the first reflector may be 125° to 145°, but the present invention is implemented. This example does not limit this.
  • the first light reflecting sheet 121 and the second light reflecting sheet 122 may be respectively located under the light transmission holes of the second light transmitting region of the photomask (such as the light transmission shown in FIG. 2). a hole 112), and the first light reflecting sheet is between the photomask and the second light reflecting sheet to reflect the second light beam transmitted through the light transmitting hole 112 to the second bonding surface, but the invention is implemented This example does not limit this.
  • the first light reflecting sheet 121 may be located under the light transmission hole of the second light transmitting region (such as the light transmitting hole 112 shown in FIG. 3), and the second light reflecting sheet 122 (
  • the second retroreflective sheeting 122) shown by the solid line in FIG. 3 may be located below the photomask shielding area 113, or the second retroreflective sheeting 122 (such as the second retroreflective sheeting 122 shown by the dashed line in FIG. 3) may be
  • the second light beam that is transmitted through the light-transmitting hole 112 is reflected to the second adhesive surface, but is not limited by the embodiment of the present invention.
  • the photomask 110, the first retroreflective sheeting 121, and the second retroreflective sheeting 122 may be disposed as separate devices between the laser engraving machine and the housing of the terminal device, or may be adhered by a transparent medium.
  • the junction is integrated into a device disposed between the laser engraving machine and the housing of the terminal device, so that the laser engraving machine performs laser engraving on the housing of the terminal device.
  • the incident angle of the second light beam reflected to the second bonding surface can be accurately controlled by the different positions and angles of the two reflecting sheets. Therefore, the surface shape of the radium-forming hole formed by the laser engraving on the second bonding surface by the second light beam can be further controlled.
  • the first light-transmitting region of the photomask may include at least one light-transmitting hole having a diameter of 0.1 ⁇ m to 3 mm; or the second light-transmitting region of the photomask includes at least a hole having a diameter of 0.1 ⁇ m to 3 mm.
  • a light-transmitting hole is not limited in this embodiment of the present invention.
  • the first light-transmitting region of the photomask may include at least one light-transmissive hole having a square surface shape (as shown in FIG. 4(a)), and may include at least one surface shape.
  • a light-transmissive hole having a triangular shape (as shown in (b) of FIG. 4) may include at least one light-transmitting hole having a circular surface shape (as shown in (c) of FIG. 4), and may further include at least one surface shape It is a light-transmissive hole of a parallelogram (as shown in FIG. 4(d)), but is not limited by the embodiment of the present invention.
  • the second light-transmitting region of the photomask may include at least one light-transmissive hole having a square surface shape (as shown in FIG. 4(a)), and may include at least one surface shape.
  • a light-transmissive hole having a triangular shape (as shown in (b) of FIG. 4) may include at least one light-transmitting hole having a circular surface shape (as shown in (c) of FIG. 4), and may further include at least one surface shape It is a light-transmissive hole of a parallelogram (as shown in FIG. 4(d)), but is not limited by the embodiment of the present invention.
  • the photomask comprises a plurality of light-transmissive holes having a plurality of apertures and surface shapes for precisely controlling the laser engraving formed by laser engraving of the casing.
  • the aperture diameter and surface shape of the hole in addition, by controlling the beam energy emitted by the laser, the hole depth of the radium engraving hole formed by laser engraving of the casing can be precisely controlled. Therefore, the present invention provides for light on the surface of the casing.
  • the device being processed is suitable for laser engraving of a housing frame of a narrower display frame in the future and a thinner terminal device body.
  • the size and shape of the light-transmitting hole on the photomask can be finely controlled, because the laser beam emitted by the laser engraving machine has a very small divergence, so that the light beam transmitted through the light-transmitting hole is laser-engraved on the bonding surface.
  • the surface shape and size of the formed laser engraved hole are finer and more precise than the shape and size of the radium engraving hole formed by the existing laser engraving technique.
  • Figure 5 is a schematic view showing a photomask of an embodiment of the present invention, the photomask including N rows in a direction parallel to a line of intersection of the first bonding face and the second bonding face of the casing a light hole (such as a left-to-right N-column light-transmissive hole as shown in FIG. 5), wherein the second light-transmitting region includes a light-transmitting hole in the front n-row (for example, the light-transmitting hole 111 in FIG. 5 is located Column), the first light-transmitting region includes light-transmitting holes in the remaining (Nn) rows (for example, the column in which the light-transmitting holes 112 are located in FIG. 5), N ⁇ 2, n ⁇ 1.
  • the second light-transmitting region includes a light-transmitting hole in the front n-row (for example, the light-transmitting hole 111 in FIG. 5 is located Column)
  • the first light-transmitting region includes light-transmitting holes in the
  • the second bonding surface of the housing is located on the left side of the photomask as shown in FIG. 5, and the first area as shown in FIG. 5 includes a light transmission hole (FIG. 5).
  • the light transmission hole 112) shown is for transmitting the first light beam to the first bonding surface to perform laser engraving on the first bonding surface, and the second region includes the light transmission hole (as shown in FIG. 5)
  • the light transmission hole 111) is configured to transmit the second light beam to the light reflection module, and is reflected by the reflection module to the second bonding surface to perform laser engraving on the second bonding surface, so that the first light beam and the second light beam are When the space is transmitted, it does not interfere with each other, but the embodiment of the present invention does not limit this.
  • the second transparent region may have a plurality of rows of light-transmitting holes.
  • the second light-transmitting region includes a plurality of light-transmissive holes, the positions of the light-reflecting modules below each of the light-transmitting holes should be shifted from each other in the vertical direction to be different in the vertical direction of the second bonding surface.
  • the position of the radium-forming hole is formed, but the embodiment of the invention does not limit this.
  • FIG. 6 is a schematic view showing another photomask according to an embodiment of the present invention, the photomask being included N rows of light transmission holes in a direction perpendicular to the intersection line of the first bonding surface and the second bonding surface, wherein the second light transmission region includes n rows of light transmission holes, and the first light transmission region includes (Nn) Row of light-transparent holes, N ⁇ 2, n ⁇ 1.
  • the second bonding surface of the housing is located on the left side of the photomask as shown in FIG. 6, and the first area as shown in FIG. 6 includes a light transmission hole (FIG. 6).
  • the light transmission hole 111) shown is for transmitting the first light beam to the first bonding surface to perform laser engraving on the first bonding surface
  • the second region includes the light transmission hole (as shown in FIG. 6)
  • the light transmission hole 112) is configured to transmit the second light beam to the light reflection module, and is reflected by the reflection module to the second bonding surface to perform laser engraving on the second bonding surface, so that the first light beam and the second light beam are When the space is transmitted, it does not interfere with each other, but the embodiment of the present invention does not limit this.
  • the first light-transmitting region shown in FIG. 6 includes a light-transmitting hole (such as the light-transmitting hole 111 shown in FIG. 6) and a light-transmitting hole included in the second light-transmitting region (as shown in FIG. 6).
  • the light-transmitting holes 112) may also be located in the same column, and the light-transmissive holes in the first region of the same column and the light-transmitting holes in the second region are completely staggered, and there is no overlap, but the embodiment of the present invention does not limit this.
  • the second light-transmitting region may have a plurality of rows of light-transmissive holes.
  • the positions of the light-reflecting modules below each of the light-transmitting holes should be shifted from each other in the vertical direction to be different in the vertical direction of the second bonding surface.
  • the position of the radium-forming hole is formed, but the embodiment of the invention does not limit this.
  • the photomask comprises a plurality of differently arranged light-transmissive holes, and the plurality of differently arranged light-transmissive holes are used for passing through the photomask
  • differently arranged radium-envelope holes are obtained on the first bonding surface and the second bonding surface of the housing, which are suitable for surface treatment scenes required for different laser engraving holes.
  • the apparatus for performing light treatment on the surface of the casing of the embodiment of the present invention is described above with reference to FIGS. 1 to 6.
  • the embodiment of the present invention for performing light treatment on the surface of the casing will be described below with reference to FIGS. 7 to 10. The method is described in detail.
  • FIG. 7 is a schematic flow chart of a method for performing light processing on a surface of a casing according to an embodiment of the present invention, which may be used for laser engraving of a surface shell of a terminal device, and is performed by a laser engraving machine, but The embodiment of the invention is not limited thereto.
  • the laser engraving machine emits at least one light beam, and each of the at least one light beam is transmitted through the light transmission hole of the light transmitting region of the photomask 110 to the first bonding layer of the casing located under the photomask.
  • the surface forms a radium hole on the first bonding surface.
  • the laser engraving machine emits a first light beam 130 and a second light beam 140, and the first light beam 130 is transmitted to the housing through the light transmission hole 111 on the photomask.
  • An adhesive surface 150 is formed on the first bonding surface, and the second light beam 140 is transmitted through the light transmission hole 112 on the photomask to the first bonding surface 150 to form the first surface.
  • the first light beam emitted by the laser engraving machine is transmitted to the first bonding surface of the casing through the first light transmitting region of the photomask to
  • the first bonding surface is subjected to laser engraving, which can increase the bonding area of the first bonding surface and the glue, thereby improving the bonding strength between the housing and the display screen.
  • FIG. 8 is a schematic flow chart of another method for performing light processing on a surface of a housing according to an embodiment of the present invention, which may be used for performing laser engraving on a surface shell of a terminal device, and is performed by a laser engraving machine.
  • this embodiment of the present invention does not limit this.
  • the laser engraving machine emits a first light beam and a second light beam, and the first light beam is transmitted through the first light transmitting region of the photomask to the first bonding surface of the housing to form the first bonding surface.
  • the laser engraved hole, the second light beam is transmitted to the second bonding surface of the casing through the second light transmitting region of the photomask to form a radium carving hole on the second bonding surface.
  • the laser engraving machine emits a first light beam 130 and a second light beam 140, and the first light beam 130 is transmitted through the light transmission hole 111 on the photomask to the first of the housing.
  • the bonding surface 150 forms a radium engraving hole 151 on the first bonding surface
  • the second light beam 140 is transmitted to the light reflecting module 120 through the light transmission hole 112 on the photomask
  • the second light beam 140 passes through the reflective module 120 is reflected to the second bonding surface 160 of the housing to form a radium engraving hole 161 on the second bonding surface.
  • the second light beam emitted by the laser engraving machine is transmitted to the reflective module through the second transparent region of the photomask, and the reflective module reflects the second light beam And a second bonding surface having an angle with the first bonding surface to perform laser engraving on the second bonding surface, and simultaneously performing laser engraving on the first bonding surface and the second bonding surface of the housing , thereby further improving the bonding strength between the housing and the display screen.
  • the light reflecting module 120 may include a first light reflecting sheet 121 and a second light reflecting sheet 122.
  • the second light beam is transmitted through the light transmitting hole 112 to the first light reflecting sheet 121, and is reflected by the first light reflecting sheet 121 to
  • the second retroreflective sheeting 122 is reflected by the second retroreflective sheeting 122 to the second bonding surface 160 of the casing to form a radium engraved hole 161 on the second bonding surface, but this embodiment of the present invention does not limited.
  • the first light reflecting sheet 121 and the second light reflecting sheet 122 may be respectively located under the light transmission holes of the second light transmitting region of the photomask (such as the light transmission shown in FIG. 8). a hole 112), and the first reflector is between the photomask and the second reflector, to reflect the second light beam transmitted through the light transmission hole 112 to the second bonding surface for laser engraving, but
  • This embodiment of the present invention does not limit this.
  • the first light reflecting sheet 121 may be located under the light transmission hole of the second light transmitting region (such as the light transmitting hole 112 shown in FIG. 9 ), and the second light reflecting sheet 122 ( The second retroreflective sheeting 122) as shown in FIG. 3 may be located outside the photomask to reflect the second light beam transmitted through the transparent aperture 112 to the second bonding surface for laser engraving, but the present invention is implemented This example does not limit this.
  • the photomask 110, the first retroreflective sheeting 121, and the second retroreflective sheeting 122 may be disposed as separate devices between the laser engraving machine and the housing of the terminal device, or may be adhered by a transparent medium.
  • the junction is integrated into a device disposed between the laser engraving machine and the housing of the terminal device, so that the laser engraving machine performs laser engraving on the housing of the terminal device.
  • the angle between the first reflector and the vertical direction is 15° to 45°; or the angle between the second reflector and the first reflector is 125° to 145°.
  • the second light beam can be incident on the second bonding surface in a horizontally left direction by reflection of the first light reflecting sheet and the second light reflecting sheet.
  • the second light beam transmitted through the photomask is reflected by the two light reflecting sheets to the second bonding surface of the casing, and the first reflective light can be controlled
  • the position and the angle of the sheet and the second reflecting sheet precisely control the incident angle when the second light beam is reflected to the second bonding surface, thereby further controlling the laser engraving on the second bonding surface through the second light beam
  • the surface shape of the formed radium hole is a part of the formed radium hole.
  • the first light-transmitting region of the photomask may include at least one light-transmitting hole having a diameter of 0.1 ⁇ m to 3 mm; or the second light-transmitting region of the photomask includes at least a hole having a diameter of 0.1 ⁇ m to 3 mm.
  • a light-transmitting hole is not limited in this embodiment of the present invention.
  • the first light-transmitting region of the photomask may include at least one light-transmissive hole having a square shape of a surface (as shown in FIG. 4(a)), and may include at least one light-transmitting hole having a triangular shape (as shown in (b) of FIG. 4), may include at least one light-transmissive hole having a circular surface shape (as shown in (c) of FIG. 4), and may further include at least one light-transmitting surface having a parallelogram shape Hole FIG. 4(d)), but the embodiment of the present invention does not limit this.
  • the second light-transmitting region of the photomask may include at least one light-transmissive hole having a square shape of a surface (as shown in FIG. 4(a)), and may include at least one light-transmitting hole having a triangular shape (as shown in (b) of FIG. 4), may include at least one light-transmissive hole having a circular surface shape (as shown in (c) of FIG. 4), and may further include at least one light-transmitting surface having a parallelogram shape
  • the hole (as shown in FIG. 4(d)), but the embodiment of the present invention does not limit this.
  • the method for performing light treatment on the surface of the casing according to the embodiment of the present invention can accurately control the aperture of the radium engraving hole formed by laser engraving of the casing by controlling the aperture and surface shape of the light transmission hole on the photomask.
  • the shape of the surface in addition, by controlling the beam energy emitted by the laser, the hole depth of the radium engraved hole formed by laser engraving of the casing can be precisely controlled. Therefore, the method for photo-processing the surface of the casing provided by the present invention is applicable.
  • the terminal device has a narrower display frame border, and a thinner terminal device body and other development directions.
  • the size and shape of the light-transmitting hole on the photomask can be finely controlled, because the laser beam emitted by the laser engraving machine has a very small divergence, so that the light beam transmitted through the light-transmitting hole is laser-engraved on the bonding surface.
  • the surface shape and size of the formed laser engraved hole are finer and more precise than the shape and size of the radium engraving hole formed by the existing laser engraving technique.
  • the method for performing light processing on the surface of the casing of the embodiment of the present invention can provide a light-transmitting hole of a plurality of different arrangement manners as shown in FIGS. 5 and 6 in the photomask, and through the light-transmitting holes
  • the hole is laser-engraved to the shell, and differently arranged laser-engraved holes can be obtained on the first bonding surface and the second bonding surface of the housing, which are suitable for the surface treatment scenes required for different laser engraving holes.
  • FIG. 10 is a schematic diagram of a surface device of a terminal device according to an embodiment of the present invention.
  • the terminal device shell is exemplified by a mobile phone case, as shown in FIG. 10, and is used for a shell as shown in FIG. 2 or FIG.
  • the device for performing light treatment on the surface of the body, and the method for performing light treatment on the surface of the casing as shown in FIG. 8 or FIG. 9, after laser engraving the surface shell of the terminal device, can form a mobile phone surface as shown in FIG.
  • the radium engraved hole on the bottom surface 150 of the shell (the radium engraving hole 151 and the radium engraving hole 152 are shown in Fig.
  • the hole 161 and the radium engraving hole 162) can be bonded to the display screen 170 of the mobile phone after dispensing on the bottom surface and the side surface of the mobile phone case.
  • the method and the device for light-treating the surface of the casing provided by the invention can simultaneously perform laser engraving on the bottom surface and the side surface of the face shell of the mobile phone, and the surface shape and the aperture of the radium-carved hole formed by the laser engraving can be precisely controlled. Thereby increasing the bonding area of the mobile phone case and the glue, and increasing the surface of the mobile phone The bond strength of the glue to the display.
  • the photomask includes a plurality of differently arranged light-transmissive holes for the shells through the photomask After the body is subjected to laser engraving, differently arranged laser engraving holes are obtained on the bottom surface and the side surface of the mobile phone case, which are suitable for the surface treatment scenes required for different laser engraving holes.
  • the method for light processing the surface of the casing provided by the invention is suitable for the narrower display frame of the mobile phone in the future, and the development direction of the thinner fuselage.
  • the size and shape of the light transmission hole on the photomask can be finely controlled. Since the laser beam emitted by the laser engraving machine has a very small divergence, the light beam transmitted through the light transmission hole is laser-engraved on the surface of the mobile phone. The surface shape and size of the formed laser engraved hole are finer and more precise than the shape and size of the radium engraving hole formed by the existing laser engraving technique.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory, in combination with hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several instructions.
  • a computer device which may be a personal computer, server, or network device, etc.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (English: read-only memory, abbreviated as: ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk.
  • optical disk A medium that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

一种用于对壳体表面进行光处理的方法和装置(100),该方法包括:镭雕机发射第一光束(130)和第二光束(140);该第一光束(130)通过光掩膜(110)的第一透光区域透射至该壳体的第一粘结面(150),以对该第一粘结面(150)进行镭雕;该第二光束(140)通过该光掩膜(110)的第二透光区域透射至反光模块(120);该反光模块(120)将该第二光束(140)反射至该壳体的第二粘结面(160),以对该第二粘结面(160)进行镭雕,其中,该第一粘结面(150)和该第二粘结面(160)之间存在夹角。采用该用于对壳体表面进行光处理的方法和装置(100),能够对终端设备壳体的底面和侧面同时进行镭雕。

Description

一种用于对壳体表面进行光处理的方法和装置 技术领域
本发明涉及壳体的表面处理技术领域,尤其涉及表面处理技术领域中一种用于对壳体表面进行光处理的方法和装置。
背景技术
显示屏脱落现象是具有显示屏的终端设备在使用过程中常见的问题之一,终端设备面壳与显示屏之间的粘结力大小是决定终端设备品质的重要因素。在终端设备组装的工艺中,通常通过对终端设备壳体进行表面处理,增加终端设备壳体的粗糙度和比表面积,从而增加终端设备壳体与显示屏之间胶水的粘结面积,能够使得胶水粘结的更加牢固。
在终端设备壳体上进行镭雕,是现有的对终端设备壳体进行表面处理的惯用手段,但是在对终端设备壳体进行表面处理时使用的镭雕机的光线一般是竖直方向的,要对终端设备壳体的底面和与该底面垂直的侧面同时进行镭雕,实现的难度比较大。
发明内容
本发明提供了一种用于对壳体表面进行光处理的方法和装置,能够对终端设备壳体的底面和侧面同时进行镭雕。
第一方面,本发明提供了一种用于对壳体表面进行光处理的方法,该方法包括:
镭雕机发射第一光束和第二光束;
该第一光束通过光掩膜的第一透光区域透射至该壳体的第一粘结面,以对该第一粘结面进行镭雕;
该第二光束通过该光掩膜的第二透光区域透射至反光模块;
该反光模块将该第二光束反射至该壳体的第二粘结面,以对该第二粘结面进行镭雕,其中,该第一粘结面和该第二粘结面之间存在夹角。
本发明提供的用于对壳体表面进行光处理的方法中,镭雕机发射的第一光束通过光掩膜的第一透光区域透射至壳体的第一粘结面,以对该第一粘结面进行镭雕,能够增加该第一粘结面和胶水的粘结面积,从而提高壳体与显 示屏的粘结强度。
此外,本发明提供的用于对壳体表面进行光处理的方法中,镭雕机发射的第二光束通过光掩膜的第二透光区域透射至反光模块,该反光模块将该第二光束反射至与该第一粘结面存在夹角的第二粘结面,以对该第二粘结面进行镭雕,能够对壳体的第一粘结面和第二粘结面同时进行镭雕,从而进一步提高壳体与显示屏的粘结强度。
结合第一方面,在第一方面的第一种可能的实现方式中,该反光模块包括第一反光片和第二反光片,该反光模块将该第二光束反射至该壳体的第二粘结面,以对该第二粘结面进行镭雕,包括:该第一反光片将该第二光束反射至该第二反光片;该第二反光片将该第二光束反射至该第二粘结面。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,该第一反光片与竖直方向的夹角为15°~45°;或者,该第二反光片与该第一反光片的夹角为125°~145°。
本发明提供的用于对壳体表面进行光处理的方法,通过两个反光片将透射过光掩膜的第二光束反射至壳体的第二粘结面,能够通过控制该第一反光片与该第二反光片的位置和角度,精确控制该第二光束反射至该第二粘结面时的入射角,从而能够进一步控制通过该第二光束在该第二粘结面上镭雕形成的镭雕孔的表面形状。
结合第一方面、第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,该光掩膜包括在与该第一粘结面和该第二粘结面的相交线平行的方向上的N排透光孔,其中,该第二透光区域包括位于前n排的透光孔,该第一透光区域包括位于其余的(N-n)排的透光孔,该N为大于或等于2的整数,该n为大于或等于1的整数。
结合第一方面、第一方面的第一种或第二种可能的实现方式,在第一方面的第四种可能的实现方式中,该光掩膜包括在与该第一粘结面和该第二粘结面的相交线垂直的方向上的N排透光孔,其中,第二透光区域包括n排透光孔,该第一透光区域包括(N-n)排透光孔,该N大于等于2的整数,该n为大于等于1的整数。
本发明提供的用于对壳体表面进行光处理的方法,通过光掩膜上多个不同排布的透光孔对壳体进行镭雕,能够在该壳体的第一粘结面和第二粘结面上得到不同排布的镭雕孔,适用于不同镭雕孔排布需求的表面处理场景。
结合第一方面、第一方面的第一种至第四种可能的实现方式中的任一种可能的实现方式,在第一方面的第五种可能的实现方式中,该第一透光区域包括孔径为0.1μm~3mm的至少一个透光孔;或者,该第二透光区域包括孔径为0.1μm~3mm的至少一个透光孔。
结合第一方面、第一方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,该第一透光区域包括表面形状为圆形、三角形、正方形或平行四边形的至少一个透光孔;或者,该第二透光区域包括表面形状为圆形、三角形、正方形或平行四边形的至少一个透光孔。
本发明提供的用于对壳体表面进行光处理的方法,通过控制光掩膜上的透光孔的孔径和表面形状,能够精确控制对壳体进行镭雕形成的镭雕孔的孔径和表面形状,另外,通过控制镭射机发射的光束能量,能够精确控制对壳体进行镭雕形成的镭雕孔的孔深,因此,本发明提供的用于对壳体表面进行光处理的方法适用于未来终端设备更窄的显示屏边框,以及更薄的终端设备机身等发展方向。
结合第一方面、第一方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,该壳体为终端设备面壳。
第二方面,本发明提供了一种用于对壳体表面进行光处理的装置,该装置包括光掩膜和反光模块,该光掩膜包括第一透光区域和第二透光区域,该反光模块位于该光掩膜的下方,其中:
第一透光区域用于将镭射机发射的第一光束透射至壳体的第一粘结面,以对该第一粘结面进行镭雕;
第二透光区域用于将该镭射机发射的第二光束透射至该反射模块;
该反光模块用于将该第二光束反射至该壳体的第二粘结面,以对该第二粘结面进行镭雕,其中,该第一粘结面和该第二粘结面之间存在夹角。
本发明提供的用于对壳体表面进行光处理的装置包括光掩膜,光掩膜包括多个透光区域,该透光区域用于将镭射机发射的光束透射至壳体的第一粘结面,以对该第一粘结面进行镭雕,能够增加该第一粘结面和胶水的粘结面积,从而提高壳体与显示屏的粘结强度。
此外,该装置还包括反光模块,该光掩膜的多个透光区域包括第一透区 域和第二透光区域,该反光模块用于将透射过该第二透光区域的第二光束,反射至与该第一粘结面存在夹角的第二粘结面,以对该第二粘结面进行镭雕,能够对壳体的第一粘结面和第二粘结面同时进行镭雕,从而进一步提高壳体与显示屏的粘结强度。
结合第二方面,在第二方面的第一种可能的实现方式中,该反光模块包括第一反光片和第二反光片,该第一反光片用于将该第二光束反射至该第二反光片;该第二反光片用于将经过该第一反光片反射的该第二光束反射至该第二粘结面。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,该第一反光片与竖直方向的夹角为15°~45°;或者,该第二反光片与该第一反光片的夹角为125°~145°。
本发明提供的用于对壳体表面进行光处理的装置中,反光模块包括两个反光片,该两个反光片用于将透射过第二透光区域的第二光束反射至壳体的第二粘结面,通过两个反光片的不同位置和角度的设置,能够精确控制该第二光束反射至该第二粘结面时的入射角,从而能够进一步控制通过该第二光束在该第二粘结面上镭雕形成的镭雕孔的表面形状。
结合第二方面、第二方面的第一种或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,该光掩膜包括在与该第一粘结面和该第二粘结面的相交线平行的方向上的N排透光孔,其中,该第二透光区域包括位于前n排的透光孔,该第一透光区域包括位于其余的(N-n)排的透光孔,该N为大于或等于2的整数,该n为大于或等于1的整数。
结合第二方面、第二方面的第一种或第二种可能的实现方式,在第二方面的第四种可能的实现方式中,该光掩膜包括在与该第一粘结面和该第二粘结面的相交线垂直的方向上的N排透光孔,其中,第二透光区域包括n排透光孔,该第一透光区域包括(N-n)排透光孔,该N大于等于2的整数,该n为大于等于1的整数。
本发明提供的用于对壳体表面进行光处理的装置中,光掩膜上包括多个不同排布的透光孔,该多个不同排布的透光孔用于通过光掩膜对壳体进行镭雕后,在该壳体的第一粘结面和第二粘结面上得到不同排布的镭雕孔,适用于不同镭雕孔排布需求的表面处理场景。
结合第二方面、第二方面的第一种至第四种可能的实现方式中的任一种 可能的实现方式,在第二方面的第五种可能的实现方式中,该第一透光区域包括孔径为0.1μm~3mm的至少一个透光孔;或者,该第二透光区域包括孔径为0.1μm~3mm的至少一个透光孔。
结合第二方面、第二方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第二方面的第六种可能的实现方式中,该第一透光区域包括表面形状为圆形、三角形、正方形或平行四边形的至少一个透光孔;或者,该第二透光区域包括表面形状为圆形、三角形、正方形或平行四边形的至少一个透光孔。
本发明提供的用于对壳体表面进行光处理的装置中,光掩膜包括具有多种孔径和表面形状的多个透光孔,用于精确控制对壳体进行镭雕形成的镭雕孔的孔径和表面形状,另外,通过控制镭射机发射的光束能量,能够精确控制对壳体进行镭雕形成的镭雕孔的孔深,因此,本发明提供的用于对壳体表面进行光处理的装置适用于对未来更窄的显示屏边框,以及更薄的终端设备机身等终端设备的壳体进行镭雕。
结合第二方面、第二方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第二方面的第七种可能的实现方式中,该壳体为终端设备面壳。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍。
图1是本发明实施例的用于对壳体表面进行光处理的装置的示意图。
图2是本发明实施例的另一用于对壳体表面进行光处理的装置的示意图。
图3是本发明实施例的又一用于对壳体表面进行光处理的装置的示意图。
图4是本发明实施例的透光孔的示意图。
图5是本发明实施例的光掩膜的示意图。
图6是本发明实施例的另一光掩膜的示意图。
图7是本发明实施例的用于对壳体表面进行光处理的方法的示意性流程图
图8是本发明实施例的另一用于对壳体表面进行光处理的方法的示意性流程图。
图9是本发明实施例的又一用于对壳体表面进行光处理的方法的示意性流程图。
图10是本发明实施例的终端设备的面壳的示意图
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本发明实施例的技术方案可以应用于所有具有显示屏的终端设备,例如该终端设备可以是具有显示屏的移动电话、平板个人电脑(Tablet Personal Computer)、媒体播放器、智能电视、笔记本电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、个人计算机(Personal Computer)、移动上网装置(Mobile Internet Device)或智能手表等可穿戴式设备(Wearable Device)等,本发明实施例的技术方案还可以应用于具有显示屏的显示设备,例如该显示设备可以是电视、显示器等,本发明实施例对此不作限定。
图1示出了本发明实施例的用于对壳体表面进行光处理的装置100的示意图。
应理解,本发明实施例的用于对壳体表面进行光处理的装置用于通过镭雕机发射激光束对壳体的粘结面进行镭雕处理,在该壳体的粘结面上形成镭雕孔,增加以便于在具有镭雕孔的待粘结面上点胶,与显示屏进行粘结,但本发明实施例不限于此。
还应理解,本发明实施例中的壳体可以为终端设备面壳,该终端设备面壳可以包括底面(第一粘结面)和侧面(第二粘结面),该底面和该侧面之间存在夹角。
可选地,该终端设备可以为手机,该终端设备面壳可以为该手机的面壳,且该手机面壳的底面和侧面垂直,但本发明实施例不限于此。
图1可以为装置100的截面图,该装置100包括光掩膜110和反光模块120,其中,光掩膜110包括透光区域,该光掩膜110中除透光区域外的区域为遮光区域113。
具体而言,该光掩膜110的透光区域用于将镭射机发射的部分光束透射至壳体的第一粘结面,以对该第一粘结面进行镭雕,其余光束被遮光区域113遮挡。
本发明实施例的用于对壳体表面进行光处理的装置包括光掩膜,该光掩膜包括透光区域,该光掩膜的透光区域用于镭雕机发射的光束通过透射至壳体的第一粘结面,以对该第一粘结面进行镭雕,能够增加该第一粘结面和胶水的粘结面积,从而提高壳体与显示屏的粘结强度。
具体而言,该反光模块120用于将从上述透光区域透射出来的光束反射至该壳体的第二粘结面,以对该第二粘结面进行镭雕,其中,该第一粘结面与该第二粘结面之间存在夹角。
本发明实施例的用于对壳体表面进行光处理的装置还包括反光模块,该反光模块用于将透射过该透光区域的光束,反射至与该第一粘结面存在夹角的第二粘结面,以对该第二粘结面进行镭雕。
可选地,该光掩膜110和该反光模块120可以为两个单独的装置,或者可以通过透明介质粘结,集成在同一个装置中,本发明实施例对此不作限定。
具体而言,该装置100可以包括光掩膜110和反光模块120,该光掩膜110包括第一透光区域和第二透光区域,该第一透光区域用于将镭射机发射的第一光束透射至壳体的第一粘结面,以对该第一粘结面进行镭雕;该第二透光区域用于将镭射机发射的第二光束透射至该反光模块,该反光模块用于将该第二光束反射至该壳体的第二粘结面,以对该第二粘结面进行镭雕,其中,该第一粘结面和该第二粘结面之间存在夹角。
本发明实施例的用于对壳体表面进行光处理的装置,能够对壳体的第一粘结面和第二粘结面同时进行镭雕,从而进一步提高壳体与显示屏的粘结强度。
可选地,该第一透光区域可以包括至少一个透光孔(图1中示出了透光孔111),该第二透光区域可以包括至少一个透光孔(图1中示出了透光孔112),但本发明实施例对此不作限定。
可选地,该反光模块120可以包括第一反光片121和第二反光片122,该第一反光片用于将透射过第二透光区域的第二光束反射至该第二反光片,该第二反光片用于将经过该第一反光片反射的第二光束反射至该壳体的第二粘结面。
可选地,该第一反光片与竖直方向的夹角可以为15°~45°,该第二反光片与该第一反光片的夹角可以为125°~145°,但本发明实施例对此不作限定。
可选地,如图2所示,该第一反光片121和该第二反光片122可以分别位于该光掩膜第二透光区域的透光孔下方(如图2中示出的透光孔112),且该第一反光片为与该光掩膜与该第二反光片之间,以将透过该透光孔112的第二光束反射至第二粘结面,但本发明实施例对此不作限定。
可选地,如图3所示,该第一反光片121可以位于该第二透光区域的透光孔下方(如图3中示出的透光孔112),该第二反光片122(如图3中实线示出的第二反光片122)可以位于该光掩膜遮光区域113的下方,或者该第二反光片122(如图3中虚线示出的第二反光片122)可以位于该光掩膜的外部,以将透过该透光孔112的第二光束反射至第二粘结面,但本发明实施例对此不作限定。
可选地,该光掩膜110、该第一反光片121和该第二反光片122可以分别作为单独的装置设置于镭雕机与终端设备的壳体之间,或者可以通过透明介质的粘结集成为一个装置设置于镭雕机与终端设备的壳体之间,以便于镭雕机对终端设备的壳体进行镭雕。
本发明实施例的用于对壳体表面进行光处理的装置中,通过两个反光片的不同位置和角度的设置,能够精确控制该第二光束反射至该第二粘结面时的入射角,从而能够进一步控制通过该第二光束在该第二粘结面上镭雕形成的镭雕孔的表面形状。
可选地,该光掩膜的第一透光区域可以包括孔径为0.1μm~3mm的至少一个透光孔;或者,该光掩膜的第二透光区域包括孔径为0.1μm~3mm的至少一个透光孔,本发明实施例对此不作限定。
可选地,如图4所示,该光掩膜的第一透光区域可以包括至少一个表面形状为正方形的透光孔(如图4中(a)所示)、可以包括至少一个表面形状为三角形的透光孔(如图4中(b)所示)、可以包括至少一个表面形状为圆形的透光孔(如图4中(c)所示)、还可以包括至少一个表面形状为平行四边形的透光孔(如图4中(d)所示),但本发明实施例对此不作限定。
可选地,如图4所示,该光掩膜的第二透光区域可以包括至少一个表面形状为正方形的透光孔(如图4中(a)所示)、可以包括至少一个表面形状 为三角形的透光孔(如图4中(b)所示)、可以包括至少一个表面形状为圆形的透光孔(如图4中(c)所示)、还可以包括至少一个表面形状为平行四边形的透光孔(如图4中(d)所示),但本发明实施例对此不作限定。
本发明实施例的用于对壳体表面进行光处理的装置中,光掩膜包括具有多种孔径和表面形状的多个透光孔,用于精确控制对壳体进行镭雕形成的镭雕孔的孔径和表面形状,另外,通过控制镭射机发射的光束能量,能够精确控制对壳体进行镭雕形成的镭雕孔的孔深,因此,本发明提供的用于对壳体表面进行光处理的装置适用于对未来更窄的显示屏边框,以及更薄的终端设备机身的终端设备的壳体进行镭雕。
另外,光掩膜上的透光孔的尺寸和形状可以精细化控制,由于镭雕机发射的激光束发散度极小,使得通过该透光孔透射出来的光束,在粘结面上镭雕形成的镭雕孔的表面形状和尺寸比现有的镭雕技术形成的镭雕孔的形状和尺寸的粒度更精细,更加精确。
图5示出了本发明实施例的光掩膜的示意图,该光掩膜包括在与该壳体的第一粘结面和该第二粘结面的相交线平行的方向上的N排透光孔(如图5中所示的由左至右的N列透光孔),其中,第二透光区域包括位于前n排的透光孔(例如,图5中透光孔111所在的列),第一透光区域包括位于其余的(N-n)排的透光孔(例如,图5中透光孔112所在的列),N≥2,n≥1。
作为一个可选实施例,假设壳体的第二粘结面位于如图5中所示的光掩膜的左侧,如图5中所示的第一区域包括的透光孔(如图5中所示的透光孔112)用于将第一光束透射至第一粘结面,以对第一粘结面进行镭雕,第二区域包括的透光孔(如图5中所示的透光孔111)用于将第二光束透射至反光模块,并经过反光模块反射至第二粘结面,以对第二粘结面进行镭雕,使得该第一光束和该第二光束在空间上传播时互不干扰,但本发明实施例对此不作限定。
可选地,通过如图5所示的光掩膜对壳体进行镭雕时,若第二透光区域包括的透光孔可以为一列,也可以为多列。当该第二透光区域包括的透光孔为多列时,每列透光孔下方的反光模块的位置应现在竖直方向上相互错开,以在该第二粘结面竖直方向上不同位置形成镭雕孔,但本发明实施例对此不作限定。
图6示出了本发明实施例的另一光掩膜的示意图,该光掩膜包括在与该 第一粘结面和该第二粘结面的相交线垂直的方向上的N排透光孔,其中,第二透光区域包括n排透光孔,该第一透光区域包括(N-n)排透光孔,N≥2,n≥1。
作为一个可选实施例,假设壳体的第二粘结面位于如图6中所示的光掩膜的左侧,如图6中所示的第一区域包括的透光孔(如图6中所示的透光孔111)用于将第一光束透射至第一粘结面,以对第一粘结面进行镭雕,第二区域包括的透光孔(如图6中所示的透光孔112)用于将第二光束透射至反光模块,并经过反光模块反射至第二粘结面,以对第二粘结面进行镭雕,使得该第一光束和该第二光束在空间上传播时互不干扰,但本发明实施例对此不作限定。
可选地,图6所示的第一透光区域包括的透光孔(如图6中所示的透光孔111)和第二透光区域包括的透光孔(如图6中所示的透光孔112)还可以位于同一列,且位于同一列的第一区域的透光孔和第二区域的透光孔完全交错排列,没有重叠,但本发明实施例对此不作限定。
可选地,通过如图6所示的光掩膜对壳体进行镭雕时,若第二透光区域包括的透光孔可以为一列,也可以为多列。当该第二透光区域包括的透光孔为多列时,每列透光孔下方的反光模块的位置应现在竖直方向上相互错开,以在该第二粘结面竖直方向上不同位置形成镭雕孔,但本发明实施例对此不作限定。
本发明实施例的用于对壳体表面进行光处理的装置中,光掩膜上包括多个不同排布的透光孔,该多个不同排布的透光孔用于通过光掩膜对壳体进行镭雕后,在该壳体的第一粘结面和第二粘结面上得到不同排布的镭雕孔,适用于不同镭雕孔排布需求的表面处理场景。
上面结合图1至图6对本发明实施例的用于对壳体表面进行光处理的装置进行了描述,下面将结合图7至图10对本发明实施例的用于对壳体表面进行光处理的方法进行详细描述。
图7示出了本发明实施例的用于对壳体表面进行光处理的方法的示意性流程图,该方法可以用于对终端设备面壳进行镭雕,并由镭雕机执行,但本发明实施例对此不作限定。
具体而言,镭雕机发射至少一路光束,该至少一路光束中的每路光束通过光掩膜110透光区域的透光孔透射至位于该光掩膜下方壳体的第一粘结 面,形成该第一粘结面上的镭雕孔。
作为一个可选实施例,如图7中所示,镭雕机发射第一光束130和第二光束140,该第一光束130通过该光掩膜上的透光孔111透射至壳体的第一粘结面150,形成该第一粘结面上的镭雕孔151,该第二光束140通过该光掩膜上的透光孔112透射至该第一粘结面150,形成该第一粘结面上的镭雕孔152。
本发明实施例的用于对壳体表面进行光处理的方法中,镭雕机发射的第一光束通过光掩膜的第一透光区域透射至壳体的第一粘结面,以对该第一粘结面进行镭雕,能够增加该第一粘结面和胶水的粘结面积,从而提高壳体与显示屏的粘结强度。
图8示出了本发明实施例的另一用于对壳体表面进行光处理的方法的示意性流程图,该方法可以用于对终端设备面壳进行镭雕,并由镭雕机执行,但本发明实施例对此不作限定。
具体而言,镭雕机发射第一光束和第二光束,该第一光束通过光掩膜的第一透光区域透射至壳体的第一粘结面,形成该第一粘结面上的镭雕孔,该第二光束通过光掩膜的第二透光区域透射至该壳体的第二粘结面,形成该第二粘结面上的镭雕孔。
作为一个可选实施例,如图8中所示,镭雕机发射第一光束130和第二光束140,该第一光束130通过光掩膜上的透光孔111透射至壳体的第一粘结面150,形成该第一粘结面上的镭雕孔151,该第二光束140通过该光掩膜上的透光孔112透射至反光模块120,该第二光束140通过该反光模块120反射至该壳体的第二粘结面160,形成该第二粘结面上的镭雕孔161。
本发明实施例的用于对壳体表面进行光处理的方法中,镭雕机发射的第二光束通过光掩膜的第二透光区域透射至反光模块,该反光模块将该第二光束反射至与该第一粘结面存在夹角的第二粘结面,以对该第二粘结面进行镭雕,能够对壳体的第一粘结面和第二粘结面同时进行镭雕,从而进一步提高壳体与显示屏的粘结强度。
可选地,该反光模块120可以包括第一反光片121和第二反光片122,该第二光束通过该透光孔112透射至该第一反光片121,通过该第一反光片121反射至第二反光片122,并通过该第二反光片122反射至该壳体的第二粘结面160,形成该第二粘结面上的镭雕孔161,但本发明实施例对此不作 限定。
可选地,如图8所示,该第一反光片121和该第二反光片122可以分别位于该光掩膜第二透光区域的透光孔下方(如图8中示出的透光孔112),且该第一反光片为与该光掩膜与该第二反光片之间,以将透过该透光孔112的第二光束反射至第二粘结面进行镭雕,但本发明实施例对此不作限定。
可选地,如图9所示,该第一反光片121可以位于该第二透光区域的透光孔下方(如图9中示出的透光孔112),该第二反光片122(如图3中示出的第二反光片122)可以位于该光掩膜的外部,以将透过该透光孔112的第二光束反射至第二粘结面进行镭雕,但本发明实施例对此不作限定。
可选地,该光掩膜110、该第一反光片121和该第二反光片122可以分别作为单独的装置设置于镭雕机与终端设备的壳体之间,或者可以通过透明介质的粘结集成为一个装置设置于镭雕机与终端设备的壳体之间,以便于镭雕机对终端设备的壳体进行镭雕。
可选地,该第一反光片与竖直方向的夹角为15°~45°;或者,该第二反光片与该第一反光片的夹角为125°~145°。
例如,假设该壳体的第一粘结面与第二粘结面垂直,该第一反光片与竖直方向的夹角为22.5°,该第二反光片与该第一反光片的夹角为135°,则通过该第一反光片和该第二反光片的反射,可以使得该第二光束的沿水平向左的方向射入该第二粘结面。
本发明实施例的用于对壳体表面进行光处理的方法,通过两个反光片将透射过光掩膜的第二光束反射至壳体的第二粘结面,能够通过控制该第一反光片与该第二反光片的位置和角度,精确控制该第二光束反射至该第二粘结面时的入射角,从而能够进一步控制通过该第二光束在该第二粘结面上镭雕形成的镭雕孔的表面形状。
可选地,该光掩膜的第一透光区域可以包括孔径为0.1μm~3mm的至少一个透光孔;或者,该光掩膜的第二透光区域包括孔径为0.1μm~3mm的至少一个透光孔,本发明实施例对此不作限定。
可选地,该光掩膜的第一透光区域可以包括至少一个表面形状为正方形的透光孔(如图4中(a)所示)、可以包括至少一个表面形状为三角形的透光孔(如图4中(b)所示)、可以包括至少一个表面形状为圆形的透光孔(如图4中(c)所示)、还可以包括至少一个表面形状为平行四边形的透光孔(如 图4中(d)所示),但本发明实施例对此不作限定。
可选地,该光掩膜的第二透光区域可以包括至少一个表面形状为正方形的透光孔(如图4中(a)所示)、可以包括至少一个表面形状为三角形的透光孔(如图4中(b)所示)、可以包括至少一个表面形状为圆形的透光孔(如图4中(c)所示)、还可以包括至少一个表面形状为平行四边形的透光孔(如图4中(d)所示),但本发明实施例对此不作限定。
本发明实施例的用于对壳体表面进行光处理的方法,通过控制光掩膜上的透光孔的孔径和表面形状,能够精确控制对壳体进行镭雕形成的镭雕孔的孔径和表面形状,另外,通过控制镭射机发射的光束能量,能够精确控制对壳体进行镭雕形成的镭雕孔的孔深,因此,本发明提供的用于对壳体表面进行光处理的方法适用于未来终端设备更窄的显示屏边框,以及更薄的终端设备机身等发展方向。
另外,光掩膜上的透光孔的尺寸和形状可以精细化控制,由于镭雕机发射的激光束发散度极小,使得通过该透光孔透射出来的光束,在粘结面上镭雕形成的镭雕孔的表面形状和尺寸比现有的镭雕技术形成的镭雕孔的形状和尺寸的粒度更精细,更加精确。
本发明实施例的用于对壳体表面进行光处理的方法,能够通过在光掩膜设置如图5和图6中所示的多种不同排布方式的透光孔,并通过这些透光孔对壳体进行镭雕,能够在该壳体的第一粘结面和第二粘结面上得到不同排布的镭雕孔,适用于不同镭雕孔排布需求的表面处理场景。
图10示出了本发明实施例的终端设备面壳的示意图,该终端设备面壳以手机面壳为例,如图10所示,采用如图2或图3中所示的用于对壳体表面进行光处理的装置,以及如图8或图9中所示的用于对壳体表面进行光处理的方法对终端设备面壳进行镭雕以后,可以形成如图10所示的手机面壳的底面150上的镭雕孔(图10中示出了镭雕孔151和镭雕孔152),以及形成该手机面壳的侧面160上的镭雕孔(图10中示出了镭雕孔161和镭雕孔162),在该手机面壳的底面和侧面进行点胶后,便可以与该手机的显示屏170进行粘结。
采用本发明提供的用于对壳体表面进行光处理的方法和装置,能够对手机面壳的底面和侧面同时进行镭雕,并且镭雕形成的镭雕孔的表面形状和孔径可以精确控制,从而可以增加手机面壳和胶水的粘结面积,增加手机面壳 与显示屏之间胶水的粘结强度。
本发明提供的用于对壳体表面进行光处理的装置中,光掩膜上包括多个不同排布的透光孔,该多个不同排布的透光孔用于通过光掩膜对壳体进行镭雕后,在手机面壳的底面和侧面上得到不同排布的镭雕孔,适用于不同镭雕孔排布需求的表面处理场景。
本发明提供的用于对壳体表面进行光处理的方法适用于未来手机更窄的显示屏边框,以及更薄的机身等发展方向。
另外,光掩膜上的透光孔的尺寸和形状可以精细化控制,由于镭雕机发射的激光束发散度极小,使得通过该透光孔透射出来的光束,在手机面壳上镭雕形成的镭雕孔的表面形状和尺寸比现有的镭雕技术形成的镭雕孔的形状和尺寸的粒度更精细,更加精确。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:read-only memory,简称:ROM)、随机存取存储器(random access memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种用于对壳体表面进行光处理的方法,其特征在于,包括:
    镭雕机发射第一光束和第二光束;
    所述第一光束通过光掩膜的第一透光区域透射至所述壳体的第一粘结面,以对所述第一粘结面进行镭雕;
    所述第二光束通过所述光掩膜的第二透光区域透射至反光模块;
    所述反光模块将所述第二光束反射至所述壳体的第二粘结面,以对所述第二粘结面进行镭雕,其中,所述第一粘结面和所述第二粘结面之间存在夹角。
  2. 根据权利要求1所述的方法,其特征在于,所述反光模块包括第一反光片和第二反光片,
    所述反光模块将所述第二光束反射至所述壳体的第二粘结面,以对所述第二粘结面进行镭雕,包括:
    所述第一反光片将所述第二光束反射至所述第二反光片;
    所述第二反光片将所述第二光束反射至所述第二粘结面。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一反光片与竖直方向的夹角为15°~45°;
    或者,
    所述第二反光片与所述第一反光片的夹角为125°~145°。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述光掩膜包括在与所述第一粘结面和所述第二粘结面的相交线平行的方向上的N排透光孔,其中,所述第二透光区域包括位于前n排的透光孔,所述第一透光区域包括位于其余的(N-n)排的透光孔,所述N为大于或等于2的整数,所述n为大于或等于1的整数。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述光掩膜包括在与所述第一粘结面和所述第二粘结面的相交线垂直的方向上的N排透光孔,其中,第二透光区域包括n排透光孔,所述第一透光区域包括(N-n)排透光孔,所述N大于等于2的整数,所述n为大于等于1的整数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,
    所述第一透光区域包括孔径为0.1μm~3mm的至少一个透光孔;
    或者,
    所述第二透光区域包括孔径为0.1μm~3mm的至少一个透光孔。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,
    所述第一透光区域包括表面形状为圆形、三角形、正方形或平行四边形的至少一个透光孔;
    或者,
    所述第二透光区域包括表面形状为圆形、三角形、正方形或平行四边形的至少一个透光孔。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述壳体为终端设备面壳。
  9. 一种用于对壳体表面进行光处理的装置,其特征在于,所述装置包括光掩膜和反光模块,所述光掩膜包括第一透光区域和第二透光区域,所述反光模块位于所述光掩膜的下方,其中:
    第一透光区域用于将镭射机发射的第一光束透射至壳体的第一粘结面,以对所述第一粘结面进行镭雕;
    第二透光区域用于将所述镭射机发射的第二光束透射至所述反射模块;
    所述反光模块用于将所述第二光束反射至所述壳体的第二粘结面,以对所述第二粘结面进行镭雕,其中,所述第一粘结面和所述第二粘结面之间存在夹角。
  10. 根据权利要求9所述的装置,其特征在于,所述反光模块包括第一反光片和第二反光片,
    所述第一反光片用于将所述第二光束反射至所述第二反光片;
    所述第二反光片用于将经过所述第一反光片反射的所述第二光束反射至所述第二粘结面。
  11. 根据权利要求10所述的装置,其特征在于,
    所述第一反光片与竖直方向的夹角为15°~45°;
    或者,
    所述第二反光片与所述第一反光片的夹角为125°~145°。
  12. 根据权利要求9至11中任一项所述的装置,其特征在于,所述光掩膜包括在与所述第一粘结面和所述第二粘结面的相交线平行的方向上的N排透光孔,其中,所述第二透光区域包括位于前n排的透光孔,所述第一透光区域包括位于其余的(N-n)排的透光孔,所述N为大于或等于2的整 数,所述n为大于或等于1的整数。
  13. 根据权利要求9至11中任一项所述的装置,其特征在于,所述光掩膜包括在与所述第一粘结面和所述第二粘结面的相交线垂直的方向上的N排透光孔,其中,第二透光区域包括n排透光孔,所述第一透光区域包括(N-n)排透光孔,所述N大于等于2的整数,所述n为大于等于1的整数。
  14. 根据权利要求9至13中任一项所述的装置,其特征在于,
    所述第一透光区域包括孔径为0.1μm~3mm的至少一个透光孔;
    或者,
    所述第二透光区域包括孔径为0.1μm~3mm的至少一个透光孔。
  15. 根据权利要求9至14中任一项所述的装置,其特征在于,
    所述第一透光区域包括表面形状为圆形、三角形、正方形或平行四边形的至少一个透光孔;
    或者,
    所述第二透光区域包括表面形状为圆形、三角形、正方形或平行四边形的至少一个透光孔。
  16. 根据权利要求9至15中任一项所述的装置,其特征在于,所述壳体为终端设备面壳。
PCT/CN2016/089417 2016-07-08 2016-07-08 一种用于对壳体表面进行光处理的方法和装置 WO2018006416A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/097,507 US20190151994A1 (en) 2016-07-08 2016-07-08 Method and Apparatus for Performing Light Processing on Surface of Housing
CN201680080726.8A CN108602161B (zh) 2016-07-08 2016-07-08 一种用于对壳体表面进行光处理的方法和装置
PCT/CN2016/089417 WO2018006416A1 (zh) 2016-07-08 2016-07-08 一种用于对壳体表面进行光处理的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/089417 WO2018006416A1 (zh) 2016-07-08 2016-07-08 一种用于对壳体表面进行光处理的方法和装置

Publications (1)

Publication Number Publication Date
WO2018006416A1 true WO2018006416A1 (zh) 2018-01-11

Family

ID=60901295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089417 WO2018006416A1 (zh) 2016-07-08 2016-07-08 一种用于对壳体表面进行光处理的方法和装置

Country Status (3)

Country Link
US (1) US20190151994A1 (zh)
CN (1) CN108602161B (zh)
WO (1) WO2018006416A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315604A (en) * 1993-01-28 1994-05-24 International Business Machines Corporation Optical structure for adjusting the peak power of a laser beam
US6574024B1 (en) * 2000-03-31 2003-06-03 Matsushita Electric Industrial Co., Ltd. Laser beam homogenization by scanning a beam onto a mask
CN101085560A (zh) * 2006-06-08 2007-12-12 日立比亚机械股份有限公司 复合板、复合板的加工方法及激光加工装置
CN101221902A (zh) * 2008-02-03 2008-07-16 友达光电股份有限公司 应用于连续性侧向长晶技术的掩膜以及激光结晶方法
CN102217036A (zh) * 2008-11-21 2011-10-12 3M创新有限公司 用具有稀疏图案的掩模进行激光烧蚀加工
CN202846021U (zh) * 2012-08-29 2013-04-03 惠州市裕元华阳精密部件有限公司 一种镭雕加工装置
CN104981124A (zh) * 2015-05-11 2015-10-14 深圳天珑无线科技有限公司 移动终端及其壳体及壳体的加工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340588A (ja) * 2002-05-24 2003-12-02 Inst Of Physical & Chemical Res 透明材料内部の処理方法およびその装置
KR20080087396A (ko) * 2007-03-27 2008-10-01 삼성에스디아이 주식회사 레이저 마킹장치
CN203076783U (zh) * 2012-12-19 2013-07-24 温州联迪激光科技有限公司 多工位激光机
CN103466922B (zh) * 2013-09-30 2015-12-23 上海大学 激光封装方法及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315604A (en) * 1993-01-28 1994-05-24 International Business Machines Corporation Optical structure for adjusting the peak power of a laser beam
US6574024B1 (en) * 2000-03-31 2003-06-03 Matsushita Electric Industrial Co., Ltd. Laser beam homogenization by scanning a beam onto a mask
CN101085560A (zh) * 2006-06-08 2007-12-12 日立比亚机械股份有限公司 复合板、复合板的加工方法及激光加工装置
CN101221902A (zh) * 2008-02-03 2008-07-16 友达光电股份有限公司 应用于连续性侧向长晶技术的掩膜以及激光结晶方法
CN102217036A (zh) * 2008-11-21 2011-10-12 3M创新有限公司 用具有稀疏图案的掩模进行激光烧蚀加工
CN202846021U (zh) * 2012-08-29 2013-04-03 惠州市裕元华阳精密部件有限公司 一种镭雕加工装置
CN104981124A (zh) * 2015-05-11 2015-10-14 深圳天珑无线科技有限公司 移动终端及其壳体及壳体的加工方法

Also Published As

Publication number Publication date
CN108602161A (zh) 2018-09-28
US20190151994A1 (en) 2019-05-23
CN108602161B (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
JP6360946B2 (ja) 広視野の仮想画像プロジェクタ
US10462272B2 (en) Electronic device including housing having at least one through hole
US10871657B2 (en) Floating image display
US10684492B2 (en) System for imaging in the air
US10788908B2 (en) Electronic device including optical structure
US9720548B2 (en) See-through IR frontlight with embedded partially reflective facets
CN109917545A (zh) 空中图像显示装置
US20150338943A1 (en) Inter-display communication
KR20180037799A (ko) 생체 센서를 포함하는 전자 장치
JP2020508494A (ja) バーチャル・リアリティー・ヘッドマウント装置
US20140092365A1 (en) Space image forming element, method of manufacturing the same, display device, and terminal
JP2018510377A (ja) 仮想および拡張現実システムおよび構成要素のための改良された製造
JP7359960B2 (ja) パンチホールスクリーン及び電子機器
CN112764592B (zh) 触控反馈***、终端设备及触控反馈控制方法和存储介质
KR20190115820A (ko) 메타 표면이 형성된 투명 부재를 포함하는 광원 모듈 및 이를 포함하는 전자 장치
JP2022521737A (ja) スクリーンアセンブリ及び電子装置
CN109709756A (zh) 一种投影器、摄像头模组和终端设备
KR20220079999A (ko) 디스플레이 모듈 및 이의 제어 방법과 장치, 전자기기
CN112289829A (zh) 窗构件以及窗构件的制造方法
KR102417877B1 (ko) 백라이트 유닛 및 이를 포함하는 표시 장치
WO2018006416A1 (zh) 一种用于对壳体表面进行光处理的方法和装置
KR102570276B1 (ko) 광 경로 조절부 및 이를 포함하는 디스플레이 장치
CN110178071B (zh) 被配置为显示依赖于观看位置的图像的显示屏
CN112334830A (zh) 图像显示设备
CN109240024A (zh) 一种结构光支架及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907920

Country of ref document: EP

Kind code of ref document: A1