WO2018003140A1 - 手術支援装置、その制御方法及びプログラム、並びに手術支援システム - Google Patents

手術支援装置、その制御方法及びプログラム、並びに手術支援システム Download PDF

Info

Publication number
WO2018003140A1
WO2018003140A1 PCT/JP2016/085615 JP2016085615W WO2018003140A1 WO 2018003140 A1 WO2018003140 A1 WO 2018003140A1 JP 2016085615 W JP2016085615 W JP 2016085615W WO 2018003140 A1 WO2018003140 A1 WO 2018003140A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
body cavity
hollow tube
medical instrument
optical component
Prior art date
Application number
PCT/JP2016/085615
Other languages
English (en)
French (fr)
Inventor
岳洋 安藤
寛之 宮本
Original Assignee
株式会社A-Traction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社A-Traction filed Critical 株式会社A-Traction
Priority to JP2018524863A priority Critical patent/JP6893036B2/ja
Priority to EP16907372.3A priority patent/EP3476338A4/en
Publication of WO2018003140A1 publication Critical patent/WO2018003140A1/ja
Priority to US16/214,699 priority patent/US20200297423A9/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00133Drive units for endoscopic tools inserted through or with the endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00097Sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00149Holding or positioning arrangements using articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/3132Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2415Stereoscopic endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • A61B2034/2057Details of tracking cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/062Measuring instruments not otherwise provided for penetration depth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0801Prevention of accidental cutting or pricking
    • A61B2090/08021Prevention of accidental cutting or pricking of the patient or his organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/306Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/309Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using white LEDs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/371Surgical systems with images on a monitor during operation with simultaneous use of two cameras

Definitions

  • the present invention relates to a surgery support device, a control method and program thereof, and a surgery support system.
  • Patent Document 1 discloses a technique for controlling the posture of an in-vivo insertion portion by detecting contact with surrounding organs and other medical instruments using a contact sensor of each joint in an endoscope having a joint in the in-vivo insertion portion. is doing.
  • Patent Document 2 there are known devices that measure a three-dimensional shape of an organ using a stereo camera inserted from a body wall to prevent contact between a medical instrument and the organ.
  • a stereo camera is provided at the tip of a trocar inserted into a body cavity. Based on the three-dimensional position of the organ located in the body cavity obtained by using the stereo camera, the non-contact between the medical instrument and the organ is determined.
  • a technique for setting an interference area is disclosed.
  • Patent Document 1 cannot be used for a fragile organ that is damaged only by touching because the medical instrument contacts the organ.
  • a camera is fixed to the tip of a trocar that can change only the insertion angle into the abdominal cavity, and a blind spot occurs depending on the moving direction of the medical instrument.
  • the three-dimensional position in the predetermined direction of the medical instrument may not be generated or the three-dimensional position may not be the latest, and it may not be possible to accurately detect the close approach between the organ and the like that changes every moment. is there.
  • Patent Document 2 discloses a method of setting a non-interference area by providing a lightwave distance meter at the tip of a medical instrument instead of a stereo camera.
  • the optical distance meter is located at the tip of the medical instrument, the measurement range is narrow, and interference in a shaft portion other than the tip of the medical instrument (part from the body wall from the tip) cannot be detected.
  • an object of the present invention is to provide a surgery support apparatus, a control method and program thereof, and a surgery support system that can accurately detect the approach between a medical instrument inserted into a body cavity and an object in the body cavity.
  • the surgery support apparatus of the present invention has the following configuration. That is, it is a hollow tube having a distance measuring means for measuring the distance to an object in the body cavity, a cylindrical part partially inserted into the body cavity, and a part for measuring the distance by the distance measuring means.
  • a hollow tube that enables distance measurement by a distance measuring means at any position on the circumference at a predetermined distance from the long axis of the cylindrical portion, and a tube inserted through the cylindrical portion into the body cavity.
  • Control means for controlling the position on the circumference around the long axis for measuring the distance by the distance measuring means so as to detect that the medical instrument approaches the object in the body cavity,
  • the position on the circumference around the major axis is controlled in accordance with the traveling direction of the tip of the medical instrument.
  • the accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
  • the figure which shows the structural example of the hollow tube 6 and optical component holder 5 which concern on this embodiment The figure which shows the structural example of the hollow tube 6 and hollow tube drive part 7 which concern on this embodiment.
  • the figure explaining the optical axis of the optical components 21 and 22 which concern on this embodiment The figure explaining the control method of the detection range of distance measurement in the object detection processing concerning this embodiment
  • the flowchart which shows a series of operation
  • FIG. 1 is a diagram illustrating a functional configuration example of a surgery system including a surgery support apparatus according to the present embodiment.
  • This surgical system includes, for example, a medical instrument 1, a medical instrument drive unit 2, an outer tube (trocar) 4, an optical component holder 5, a hollow tube 6, a hollow tube drive unit 7, and a distance measurement unit. 8 and a control unit 9.
  • the surgery support apparatus includes an optical component holder 5, a hollow tube 6, a hollow tube driving unit 7, a distance measuring unit 8, and a control unit 9.
  • the medical instrument 1 includes forceps, an insulator, an electric knife, an aspiration tube, an ultrasonic coagulation and incision device, a hemostasis device, a radiofrequency ablation device, an endoscope, a thoracoscope, a laparoscope, and the like that are inserted into a body cavity.
  • the straight shaft 10 can be any device that can be inserted through the hollow tube 6 into a body cavity.
  • the distal end of the medical instrument 1 may have a degree of freedom to bend, and a device for driving the bent part may be included in the medical instrument or in the medical instrument drive unit.
  • the medical instrument drive unit 2 includes a drive unit for operating the position and orientation of the medical instrument 1 outside the body, and is configured to be able to control the position and orientation of the medical instrument in at least two degrees of freedom. First, the medical instrument drive unit 2 can change the insertion angle of the medical instrument 1 with respect to the contact between the outer tube 4 and the body wall 3 (that is, the hole portion of the body wall 3).
  • the medical instrument drive unit 2 includes a rail 11 that can be driven in parallel with the shaft 10 of the medical instrument, and can move the medical instrument 1 in the longitudinal direction of the shaft 10.
  • the mechanism of the drive unit may be a known one, and is not limited to the illustrated one, for example, a mechanism using an R guide, a mechanism using a parallel link, or a mechanism using a vertical articulated arm.
  • These drive units include a plurality of positioning actuators such as servo motors, and current position information such as a joint angle of the mechanism can be acquired from an encoder included in the actuator.
  • the tip position of the medical instrument 1 is also known on the coordinate system of the medical instrument drive unit 2.
  • the outer tube 4 has a hollow structure for inserting the medical instrument 1 and the like, and is used by being inserted into a hole formed in the body wall 3.
  • the outer tube 4 according to this embodiment is configured to be connectable to the body wall 3 side end portion of the rail 11 of the medical instrument drive unit 2, but if it can be connected to the medical instrument drive unit 2, a normal laparoscope It may be equivalent to that used for surgery or the like.
  • the inner diameter of the outer tube is larger than the outer shape of the hollow tube 6 because the hollow tube 6 described later is inserted.
  • the hollow tube 6 has an optical component holder 5 that can protrude to the outside of the hollow tube 6 in the vicinity of the tip thereof, and is configured to be inserted into the outer tube 4.
  • a more detailed configuration example of the hollow tube 6 and the optical component holder 5 will be described with reference to FIG.
  • a hole of a predetermined size is provided in the side surface near the tip of the hollow tube 6 so that a part of the optical component holder 5 can protrude outside the outer shape of the hollow tube 6 through the hole. (2a in Figure 2).
  • optical parts 21 and 22 for optical distance measurement are arranged on a part of the optical part holder 5 protruding outward from the outer shape of the hollow tube 6.
  • optical components may be configured to include only an optical fiber for weight reduction and simplification, and in addition to the optical fiber, a lens, a diffraction grating, a mirror, a filter, a wave plate, and a source (laser, LED) ), Including one or more optical components such as a light receiving unit (photodiode), may be configured to improve functionality that can be realized in the optical component holder 5.
  • the base side of the optical component holder 5 has a shape with a smooth slope 23.
  • the optical component holder 5 may include up to the connecting portion 26 that is a portion connected to the distance measuring portion 8.
  • the connection unit 26 is configured by an optical fiber or a cable for transmitting and receiving an electrical signal according to the configuration of the optical component holder 5.
  • the optical component holder 5 includes a catching portion 24 for preventing the optical component holder 5 from jumping out of the hollow tube 6 more than necessary.
  • the user of the surgical support system pushes the optical component holder 5 into the hollow tube 6 as shown in 2c and 2d of FIG. insert.
  • the external force from the outer tube 4 acts on the optical component holder 5, and therefore the optical component holder 5 maintains the state of 2c and 2d in FIG.
  • the restoring force by the elastic body 25 works, and the optical components 21 and 22 protrude outward from the outer diameter of the hollow tube (that is, 2 a and 2 b).
  • the medical instrument 1 when removing the medical instrument 1, first, the medical instrument 1 is pulled out from the hollow tube 6, and further, the hollow tube 6 is pulled out from the outer tube 4.
  • the shape of the base side of the optical component holder 5 has the inclined surface 23 including the smooth inclined portion, the optical component holder 5 is pushed by the distal end portion of the outer tube 4 (the user touches the optical component holder 5).
  • the optical component holder 5 is automatically stored in the hollow tube 6. That is, the inclined surface 23 is a force for storing the optical component holder 5 in the cylindrical portion of the hollow tube 6 when the optical component holder 5 comes into contact with the end portion of the outer tube 4 when the hollow tube 6 is pulled out from the outer tube 4.
  • the surface on which the optical component of the optical component holder 5 is arranged and the top portion of the optical component holder 5 form a corner, but this may form a smooth slope.
  • the hollow tube 6 can be easily inserted, and the influence of contact with an organ or the like in the body cavity can be reduced.
  • the optical component holder 5 is configured to be stored in the hollow tube 6 when the hollow tube 6 is inserted into the outer tube 4 and to protrude outside the hollow tube 6 when passing through the outer tube 4. In this way, when inserting an optical component into a body cavity, it is not necessary to provide a new hole in the abdominal wall or enlarge the hole in the abdominal wall during insertion, thereby reducing the burden on the patient. it can.
  • the shape of the optical component holder 5 is provided with the inclined surface 23, the structure of the hollow tube 6 can be achieved without requiring a mechanism such as electric control for storing the optical component holder 5 in the hollow tube 6. It is possible to simplify and secure a wider space in the hollow tube 6.
  • the hollow tube 6 is fixed to the support portion of the rail 11 of the medical instrument drive unit 2 with only a degree of freedom of rotation around the long axis.
  • a general bearing structure such as a bearing can be used.
  • the long axis direction of the hollow tube 6 is parallel to the long axis direction of the shaft 10 of the medical instrument 1 and the direction of the rail 11 of the medical instrument driving unit 2. For this reason, the shaft 10 of the medical instrument 1 can freely advance and retract within the hollow tube 6.
  • the hollow tube driving unit 7 includes a driving unit for rotating the hollow tube 6 about its axis, and is fixed to the support unit of the rail 11 of the medical instrument driving unit 2.
  • the hollow tube drive unit 7 has a drive mechanism 31 that allows the support portion of the rail 11 and the hollow tube 6 to be relatively rotatable.
  • the drive mechanism 31 can use a mechanism for transmitting a general rotational force, such as a gear, a belt pulley, a friction wheel, and the like, and is not limited to those listed here.
  • the outer tube 4 and the support portion of the rail 11 are detachably fixed by an attaching / detaching mechanism 32, and are configured to be restricted only at least in the long axis direction.
  • the attachment / detachment mechanism 32 may be a mechanism that can be temporarily fixed in the long axis direction, such as a fitting mechanism, a magnet, or an adhesive material, and may have any structure.
  • the hollow tube driving section 7 may be provided in a removable hollow tube 41 as shown in FIG.
  • the hollow tube drive unit 7 and the drive mechanism 31 are integrally attached and detached from the support part of the rail 11.
  • the attachment / detachment mechanisms 42a and 42b of the hollow tube 41 fix the hollow tube 41 so as to restrain the rotation around the long axis of the hollow tube 41 and the movement in the long axis direction relative to the support portion of the rail 11, and the outer tube 4
  • the attachment / detachment mechanism 32 it can be configured by a fitting mechanism, a magnet, an adhesive material, or the like.
  • the distal end shape of the outer tube 4 can be a known shape used in normal laparoscopic surgery or a shape including a balloon 51 surrounding the optical component holder 5 shown in FIG.
  • this balloon 51 it is possible to prevent body fluids or the like that hang down from the base side of the outer tube 4 from adhering to the optical component holder 5. Accordingly, it is possible to prevent a decrease in distance measurement accuracy due to liquid or the like adhering to the optical component holder 5.
  • the distance measuring unit 8 is integrated with the optical components 21 and 22 arranged in the optical component holder, and realizes a distance measuring unit that measures the distance to the object in the body cavity by the emitted light. What realizes this function is a method of estimating the distance by measuring the time taken for the light to reciprocate, a method of estimating the distance using light interference, a method of estimating the distance by the intensity of reflected light, The principle of a known optical distance meter, such as a method for estimating distance by triangulation, can be used. In general, a method of measuring the distance to an object in a body cavity using emitted light can more easily and stably measure the distance than a method using a stereo image.
  • the distance measuring unit 8 includes a light generation source, a light receiving unit, and a measurement unit containing an arithmetic chip for estimating the distance, and the measurement unit is connected to the optical components 21 and 22 (that is, the optical component).
  • the measurement unit is one or more optical components such as a lens, a diffraction grating, a mirror, a filter, a wave plate, a source (laser, LED), a light receiving unit (photodiode), etc., depending on the members included in the optical component holder 5 May be included.
  • the measurement unit may be incorporated around the medical instrument drive unit 2 and the hollow tube drive unit 7, or may be incorporated inside the optical component holder 5.
  • the optical component 22 on the emission side in the optical component holder 5 has a function of collimating light, and the light is irradiated to the object in a spot shape.
  • the spot diameter on the object is, for example, about the same as the diameter of the shaft of the medical instrument to be inserted and is 20 mm or less.
  • the optical component 21 on the light receiving side in the optical component holder 5 receives the reflected light of the light emitted from the optical component 22.
  • the optical axis 61 of the optical component 21 on the light receiving side is disposed slightly inclined toward the optical component 22 side on the emission side, and the reflected light of the light irradiated on the object can be efficiently acquired. Have been adjusted so that.
  • each optical component 22 on the light emission side is basically parallel to the major axis direction of the shaft 10 of the medical instrument 1, but may have an angle away from the major axis direction of the shaft.
  • the optical axis 61 on the light receiving side is similarly at an angle away from the shaft.
  • the range of distance measurement includes the shaft 10 of the medical instrument 1 in addition to the distance measurement range when the optical component holder 5 is stationary. Spans a cylindrical or conical region surrounding The origin of distance measurement is assumed to be the position of the optical component 22 in the present embodiment, but is not limited to this, and may be any position as long as the relative position of the optical component 22 and the medical instrument drive unit 2 is fixed. .
  • the control unit 9 includes a central processing unit such as a CPU or MPU, a ROM and a RAM, and executes software stored in a ROM or a recording medium (not shown) to control an object detection process described later.
  • the control unit 9 is connected to the medical instrument driving unit 2, the hollow tube driving unit 7, and the distance measuring unit 8.
  • the control unit 9 is current position information for specifying the tip position of the medical instrument from the joint angle of the medical instrument drive unit 2 and the position of the rail 11, rotation information for specifying the rotation of the hollow tube 6, and The distance information for specifying the distance of the distance measuring unit 8 is acquired and the calculation is performed. Further, control information for controlling these units is transmitted based on the result of the calculation.
  • the control unit 9 is connected to an output unit (not shown) configured by, for example, a liquid crystal panel, a speaker, or a vibration member, and outputs sounds, images, characters, or vibrations to the user as necessary.
  • the control unit 9 determines the traveling direction of the medical instrument 1. Specifically, when the medical instrument 1 is moved in the body cavity by the medical instrument drive unit 2, the traveling direction of the distal end of the medical instrument 1 is three-dimensionally extended from the distal end of the medical instrument 1, as shown in the left diagram of FIG. Can be represented by a typical vector.
  • the control unit 9 first specifies the tip position of the shaft 10 of the medical instrument 1 based on the current position information obtained from the medical instrument drive unit 2. More specifically, an orthogonal coordinate system O s in which any one axis is parallel to the shaft 10 of the medical device 1 is considered.
  • the remaining two axes may be arbitrarily determined as long as they can be mutually converted from the coordinate system of the medical instrument drive unit 2.
  • the command angle by the hollow tube drive section 7 and 0 degrees select the parallel vector and the direction from the shaft 10 of the medical device 1 to the optical component, it may define an orthogonal coordinate system O s therewith Is possible.
  • the Z-axis is the direction of the shaft 10 of the medical device 1
  • the X-axis is the direction when the command angle by the hollow tube driving unit 7 is 0 degree.
  • the optical axes for distance measurement intersect on the X axis when the command angle of the hollow tube driving unit 7 is 0 degree. Note that these coordinate system determination methods are not limited to the above as long as they can be mutually converted with the coordinate system of the medical instrument drive unit 2.
  • the tip position of the shaft 10 of the medical instrument 1 is known from the current position information obtained from the medical instrument driver 2, and the hollow tube 6 is fixed to the rail 11 of the medical instrument driver 2.
  • the control unit 9 can specify the tip position and the three-dimensional vector of the shaft 10 in relation to the origin of distance measurement (the position of the optical component 22) fixed to the hollow tube 6.
  • the controller 9 can also specify the tip position of the shaft 10 to be moved at the next time. The coordinates of these tip positions And The controller 9 uses these tip positions to determine a vector v m from a point at a certain time to a point at the next time.
  • the vector is It is expressed as In this way, the control unit 9 is based on an instruction for moving the tip of the shaft 10 of the medical instrument 1 to a predetermined position (or the control unit 9 may set the predetermined position). A three-dimensional vector representing the traveling direction of the tip position is calculated.
  • the control unit 9 controls the hollow tube driving unit 7 so that the distance measurement spot that is the distance measurement detection range 72 exists in the direction in which the tip of the shaft 10 moves. Rotate. This is because, on a plane perpendicular to the long axis of the hollow tube 6, the direction obtained by projecting the three-dimensional vector 71 onto the plane, and the direction from the long axis of the hollow tube 6 toward the optical component 22 The hollow tube 6 is rotated so that the two coincide with each other. Specifically, the control unit 9 sets the hollow tube driving unit 7 based on the three-dimensional vector 71 so that the three-dimensional vector 71 and the distance measurement detection range 72 (that is, the optical axis on the emission side) intersect. Drive to rotate the hollow tube 6 (right figure in FIG. 7).
  • the vector v m described above is projected onto the XY plane of the orthogonal coordinate system O s .
  • This can be done by taking the inner product with the basis vectors representing the X and Y axes, It becomes.
  • the vectors i s and j s are basis vectors representing the X-axis and Y-axis of the orthogonal coordinate system O s . Since the traveling direction of the tip position of the shaft 10 of the medical device 1 is represented by a vector v mp in the XY plane of the orthogonal coordinate system O s , the angle ⁇ between the X axis and the polar coordinate system around the Z axis is considered. Can be represented.
  • the X axis is the direction in which the command angle of the hollow tube drive unit is 0 degree
  • the angle ⁇ as the command angle of the hollow tube drive unit 7 as it is, for the distance measurement
  • the optical axis and the three-dimensional vector representing the traveling direction can be crossed.
  • the optical component holder 5 faces in the space in which the tip of the shaft 10 of the medical instrument 1 moves, and the distance measurement detection range 72 exists.
  • Other methods may be used as long as the hollow tube 6 can be rotated so that the distance measurement detection range 72 exists in the traveling direction of the tip position of the shaft 10.
  • control unit 9 instructs the distance measurement unit 8 to measure the distance while moving the tip position of the shaft 10 of the medical instrument 1 in the traveling direction.
  • the control unit 9 determines whether the object in the body cavity has been approached by considering the distance obtained from the distance measurement unit 8 and the tip position of the shaft 10 of the medical instrument 1. Specifically, the control unit 9 determines whether the distance measured by the distance measurement unit 8 is shorter than a predetermined threshold, and determines that an object has been detected if the measured distance is shorter than the predetermined threshold. Then proceed to S5.
  • a predetermined threshold value for example, a value obtained by adding a predetermined margin to the distance from the intersection of the distance measurement origin to the perpendicular line extending from the long axis of the shaft 10 to the tip position of the shaft 10 can be used.
  • the process returns to S3 to continue the distance measurement.
  • control unit 9 notifies the user.
  • information indicating the presence of an object in the body cavity is output to an output unit (not shown) by sound, light, vibration, or the like.
  • the control unit 9 controls the movement of the tip position of the shaft 10 of the medical instrument 1 and performs an avoidance action.
  • the avoidance action for example, the control unit 9 stops at the place, removes the medical instrument 1 from the body so as to be sufficiently near the object position, changes the traveling direction to the direction where there is no object, etc. Can be executed. Either the notification to the user in S5 and the avoidance behavior in S6 may be performed, or if both are performed, the notification to the user may be performed after the avoidance behavior. Thereafter, the control unit 9 ends this series of operations.
  • the optical component holder 5 in which the optical component 22 included in the distance measuring unit 8 is arranged can be stored in the hollow tube 6, and a part of the hollow tube 6 is inserted into the body cavity. Then, the optical component 22 of the optical component holder 5 is configured to protrude to the outside of the hollow tube 6. Further, the optical component 22 is rotated in the traveling direction of the distal end position of the shaft 10 of the medical instrument 1 to detect the approach of the shaft 10 portion (including the distal end position) of the medical instrument and the object. By doing so, it is possible to accurately detect the approach between the medical instrument inserted into the body cavity and the object in the body cavity.
  • the diameter of the hollow tube 6 may be made larger so that a gap is provided between the hollow tube 6 and the cross section of the medical device 1, and the optical components 21 and 22 are arranged in the gap to measure the distance. That is, an optical component may be arranged inside the side surface of the hollow tube 6 to measure the distance around the medical instrument 1.
  • the example in which the pair of optical components 21 and 22 is protruded from the side surface of the hollow tube 6 and the hollow tube 6 is rotated according to the movement of the medical instrument 1 has been described.
  • a plurality of sets of optical components (for example, 4 sets or 8 sets) are arranged along the outer periphery on the outer side (or the inner side) of the hollow tube 6, and distance measurement is performed according to the movement of the medical instrument 1.
  • a set of optical components may be selected. Even in this way, distance measurement in the traveling direction of the medical instrument inserted into the body cavity can be performed.
  • the surgery support apparatus has been described by taking an example in which the optical component holder 5, the hollow tube 6, the hollow tube driving unit 7, the distance measuring unit 8, and the control unit 9 are included.
  • the example in which the optical component of the optical component holder 5 is protruded from the hollow tube 6 by the hollow tube 6 including the elastic body 25 has been described.
  • the optical component of the optical component holder 5 may be configured to protrude from the hollow tube 6 in response to the insertion of the medical instrument 1 into the hollow tube 6 without providing an elastic body.
  • each of the configurations of the above-described surgery support system may be realized as a separated or integrated configuration.
  • the control unit reads out and executes the computer program for executing the above-described processing from the recording medium
  • the present invention includes the case where the program is acquired and executed via wired communication or wireless communication. obtain.
  • the optical component housed in the optical component holder 5 is configured by a pair of the optical component 21 on the light receiving side and the optical component 22 on the output side has been described.
  • the optical component holder 5 described above may be configured to include not only one emission side and one light receiving side, but also a plurality of either one.
  • the optical component holder 5 is configured to include a plurality of optical components 22 on the output side, whereas the optical component holder 5 includes one optical component 21 on the light receiving side.
  • the optical axes of the plurality of optical components 22 on the exit side are inclined (not parallel) to each other and are arranged to face different directions.
  • the optical axes of the plurality of optical components 22 on the emission side and the optical axes of the optical components 21 on the light receiving side may be arranged in different directions.
  • the distance measuring unit 8 switches (selects) the optical component 22 that emits light at a predetermined time interval among the plurality of optical components 22 on the output side, for example. And control to sequentially emit the emitted light in a plurality of directions.
  • the distance measuring unit 8 switches the optical component 22 that emits light according to the traveling direction of the tip position of the shaft 10 of the medical instrument 1 or according to the rotational direction of the hollow tube 6, and more You may enable it to measure the distance of the area
  • the distance measuring unit 8 includes a plurality of light sources such as laser diodes, and switches the emitted optical component 22 by electrically switching the light source to emit light.
  • the emitted optical component 22 may be switched by providing a single light source such as a laser diode and a mechanism such as an optical switch for switching an optical path between the light source and the plurality of optical components 22.
  • the optical component holder 5 may be configured to include a plurality of optical components 21 on the light receiving side, whereas the optical component holder 5 includes one optical component 22 on the output side.
  • the distance can be measured with higher sensitivity. More specifically, in the vicinity of the optical component 21 on the light receiving side and the optical component 22 on the irradiation side shown in FIG. 6, there is a region where the sensitivity is extremely lowered without the irradiation and light fluxes intersecting.
  • a single optical fiber newly provided as the light receiving side optical component 21 is disposed in the vicinity of the light receiving side optical component 21 and the irradiation side optical component 22.
  • a new measurement region 91 is provided by arranging a new optical component (optical fiber 92) on the light receiving side between the optical component 21 on the light receiving side and the optical component 22 on the irradiation side.
  • the optical fibers 93 and 94 represent fibers that transmit light from the optical component 21 on the light receiving side and light to the optical component 22 on the emission side, respectively.
  • the optical components 21 and 22 are simply You may comprise at the front-end
  • optical fiber 92 having a numerical aperture (NA) as large as possible.
  • NA numerical aperture
  • the optical fiber 92 has a larger numerical aperture than other light receiving optical components.
  • the light receiving components of the distance measuring unit 8 may be newly required, but together with the light receiving side optical fiber 93 provided in advance, the distance measuring unit 8 Only one light receiving component may be used.
  • the example in which the optical component included in the optical component holder 5 is configured to be exposed in the body cavity has been described. Since the optical component holder 5 is used in a body cavity, a substance (attachment 1002) in the body cavity such as blood may adhere to the optical component and erroneous detection of distance may occur. On the other hand, as shown in FIG. 10, a glass plate 1001 may be disposed on the front side of the optical component 21 and the optical component 22 so that the optical component does not touch body fluid or the like. At this time, the positions of the optical component 21 and the optical component 22 may be set back by a predetermined distance L from the tip of the portion where the optical component holder 5 protrudes from the hollow tube 6.
  • This distance L is not less than the shortest distance that can be measured by the optical component 21 and the optical component 22.
  • control unit 9 determines that the dirt is detected because the distance obtained from the distance measuring unit 8 is the distance L, for example, the control unit 9 notifies the user that the dirt is detected. In addition to the notification, the control unit 9 may further notify that the cleaning is urged, or may automatically perform a process for cleaning the optical component holder 5.
  • the method of automatically cleaning the optical component holder 5 can be performed by using a known method in which a separately provided nozzle is disposed in the vicinity of the glass plate 1001 and gas and liquid are allowed to flow out for cleaning.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Robotics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Endoscopes (AREA)
  • Surgical Instruments (AREA)

Abstract

手術支援装置は、体腔内の物体までの距離を計測する距離計測手段と、一部が体腔内に挿入される筒状部と距離計測手段による距離の計測を行うための部分とを有する中空管であって、筒状部の長軸から所定距離にある円周上のいずれかの位置で距離計測手段による距離の計測を可能にする中空管と、筒状部を通過して体腔内に挿入された医療器具が体腔内の物体に接近したことを検知するように、距離計測手段による距離の計測を行う長軸まわりの円周上の位置を制御する制御手段と、を有し、制御手段は、医療器具の先端の進行方向に応じて、長軸まわりの円周上の位置を制御する。

Description

手術支援装置、その制御方法及びプログラム、並びに手術支援システム
 本発明は、手術支援装置、その制御方法及びプログラム、並びに手術支援システムに関する。
 従来、腹腔鏡下手術では、腹壁に小径の穴を空け、その小径の穴から内視鏡や治療装置等の医療器具を体腔内に挿入することにより手術が行われている。体腔内において内視鏡によって観察できる範囲は、医療器具の先端が稼働する範囲と比較して狭いため、内視鏡の視野外で医療器具の一部が臓器等に接触し、損傷を引き起こす可能性がある。このような医療器具による臓器との接触を防止するため、医療器具と臓器等との接触や接近を検知する方法が知られている(特許文献1、特許文献2)。
 特許文献1は、体内挿入部に関節を設けた内視鏡において、各関節の接触センサにより周辺臓器や他の医療器具との接触を検知して、体内挿入部の姿勢を制御する技術を開示している。一方、体壁から挿入したステレオカメラを用いて臓器の三次元形状を計測し、医療器具と臓器の接触を防止するものが知られている。特許文献2は、体腔内に挿入されたトロッカの先端部にステレオカメラを設け、ステレオカメラを用いて得られる体腔内に位置する臓器の3次元位置に基づいて、医療器具と臓器等との非干渉領域を設定する技術を開示している。
特開2004‐81277号公報 特開2015‐159955号公報
 しかしながら、特許文献1に開示された技術では、医療器具が臓器に接触するため、触れるだけで損傷するような脆い臓器に対して使用することができない。また、特許文献2に開示された技術では、腹腔内への挿入角度のみが変更可能なトロッカの先端にカメラが固定されており、医療器具の移動方向によっては死角が生じる。このため、医療器具の所定方向の3次元位置が生成されていない又は3次元位置が最新でない場合があり、刻々と変化する臓器等と医療機器との接近を精度よく検知することができない場合がある。更に、特許文献2では、ステレオカメラに代えて、医療器具の先端に光波距離計を設けて非干渉領域を設定する方法を開示している。しかしながら、光波距離計が医療器具の先端にあるために測定範囲が狭く、医療器具の先端以外のシャフト部分(先端より体壁よりの部分)における干渉を検出することができない。
 本発明は、上述の問題点に鑑みてなされたものである。すなわち、体腔内に挿入された医療器具と体腔内の物体との接近を精度よく検知することが可能な手術支援装置、その制御方法及びプログラム、並びに手術支援システムを提供することを目的とする。
 この課題を解決するため、例えば本発明の手術支援装置は以下の構成を備える。すなわち、体腔内の物体までの距離を計測する距離計測手段と、一部が体腔内に挿入される筒状部と距離計測手段による距離の計測を行うための部分とを有する中空管であって、筒状部の長軸から所定距離にある円周上のいずれかの位置で距離計測手段による距離の計測を可能にする中空管と、筒状部を通過して体腔内に挿入された医療器具が体腔内の物体に接近したことを検知するように、距離計測手段による距離の計測を行う長軸まわりの円周上の位置を制御する制御手段と、を有し、制御手段は、医療器具の先端の進行方向に応じて、長軸まわりの円周上の位置を制御する、ことを特徴とする。
 本発明によれば、体腔内に挿入された医療器具と体腔内の物体との接近を精度よく検知することが可能になる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本実施形態に係る手術支援装置を含む手術システムの構成例を示す図 本実施形態に係る中空管6と光学部品ホルダ5の構成例を示す図 本実施形態に係る中空管6及び中空管駆動部7の構成例を示す図 本実施形態に係る中空管41を用いる場合の中空管6及び中空管駆動部7の構成例を示す図 本実施形態に係る外套管4の先端にバルーン51を備える例を示す図 本実施形態に係る光学部品21及び22の光軸を説明する図 本実施形態に係る物体検知処理における距離計測の検知範囲の制御方法を説明する図 本実施形態に係る物体検知処理の一連の動作を示すフローチャート 他の実施形態に係る光学部品の配置を示す図 他の実施形態に係る汚れを検知するための光学部品ホルダの構成を示す図
 以下、本発明の例示的な実施形態について、図面を参照して詳細に説明する。
 (手術支援装置の構成)
 図1は、本実施形態に係る手術支援装置を含む手術システムの機能構成例を示す図である。
 本手術システムは、例えば、医療器具1と、医療器具駆動部2と、外套管(トロッカー)4と、光学部品ホルダ5と、中空管6と、中空管駆動部7と、距離計測部8と、制御部9とから構成される。このうち、本実施形態に係る手術支援装置は、光学部品ホルダ5と、中空管6と、中空管駆動部7と、距離計測部8と、制御部9とを含む。
 医療器具1は、体腔内に挿入して使用される鉗子、攝子、電気メス、吸引管、超音波凝固切開装置、止血装置、ラジオ波焼灼装置、内視鏡、胸腔鏡、腹腔鏡等を含み、その直線状のシャフト10を、中空管6を通して体腔内に挿入可能な任意の器具である。また、医療器具1の先端は屈曲する自由度を持っていてもよく、その屈曲部を駆動するための装置は医療器具内または医療器具駆動部に含まれてよい。
 医療器具駆動部2は、体外で医療器具1の位置姿勢を操作するための駆動部を含み、医療器具の位置姿勢を、少なくとも2つの自由度において制御可能に構成される。まず、医療器具駆動部2は、外套管4と体壁3の接点(すなわち体壁3の穴の部分)に対して、医療器具1の挿入角度を変化させることができる。また、医療器具駆動部2は、医療器具のシャフト10と平行に駆動可能なレール11を有し、医療器具1をシャフト10の長軸方向に移動させることができる。駆動部の機構は公知のものであってよく、例えばRガイドを用いた機構、平行リンクを用いた機構、又は垂直多関節アームによる機構等、図示したものには限らない。これらの駆動部にはサーボモータ等の位置決め用アクチュエータが複数含まれており、アクチュエータに含まれるエンコーダから機構の関節角等の現在位置情報を取得可能である。これにより、医療器具1の先端位置も医療器具駆動部2が持つ座標系上で既知となる。
 外套管4は、医療器具1等を挿入するための中空状の構造を有し、体壁3に開けられた穴に挿入されて使用される。本実施形態に係る外套管4は、医療器具駆動部2のレール11の体壁3側端部と連結可能に構成されているが、医療器具駆動部2と連結可能であれば通常の腹腔鏡手術等に使用されるものと同等であってもよい。また、この外套管の内径は、後述する中空管6を挿入するため、当該中空管6の外形よりも大きい。
 中空管6は、その先端部付近に、中空管6の外部に突出可能な光学部品ホルダ5を有し、外套管4内に挿入可能に構成される。より詳細な中空管6と光学部品ホルダ5の構成例を、図2を参照して説明する。中空管6の先端部付近の側面には、所定の大きさの穴が設けられており、その穴を通して光学部品ホルダ5の一部が中空管6の外形よりも外側に突出可能に備えられている(図2の2a)。また、図2の2bに示すように、中空管6の外形よりも外側に突出した光学部品ホルダ5の一部には、光距離計測のための光学部品21及び22が配置される。これらの光学部品は、軽量化や簡素化のために光ファイバのみを含むように構成されてもよいし、光ファイバ以外にレンズ、回折格子、ミラー、フィルタ、波長板、発生源(レーザー、LED)、受光部(フォトダイオード)等の1つ以上の光学部品を含んで光学部品ホルダ5内で実現可能な機能性を向上させるように構成されてもよい。
 再び図2の2aを参照すると、光学部品ホルダ5の少なくとも根元側は、滑らかな斜面23を備えた形状をしている。また、光学部品ホルダ5は、距離計測部8に接続される部分である接続部26までを含んでよい。接続部26は、光学部品ホルダ5の構成に応じて、光ファイバや電気信号を受送信するためのケーブルで構成される。光学部品ホルダ5は、必要以上に中空管6から飛び出さないようにするための引っ掛かり部24を備えている。弾性体25によって中空管6に固定され、中空管6の外部から光学部品ホルダ5に外力が加わらない場合には、その弾性体25の復元力によって光学部品ホルダ5に備わる光学部品21及び22が中空管6の外径から飛び出す状態になる。一方、図2の2cに示すように、光学部品ホルダ5を中空管6に押し込むような外力が加わると、光学部品ホルダ5は中空管6の内部に収納され、中空管6の外径よりも内側に入り込む。すなわち、図2の2dに示すように、光学部品ホルダ5の光学部品21及び22は中空管6の内部に格納される。
 中空管6を外套管4に挿入する際には、手術支援システムの使用者が光学部品ホルダ5を図2の2cや2dに示すように中空管6の内部に押し込んで外套管4に挿入する。光学部品ホルダ5が外套管4の内部を通過している状態では、光学部品ホルダ5に外套管4からの外力が働くため、光学部品ホルダ5は図2の2cや2dの状態を維持する。そして、光学部品ホルダ5が外套管4を通過すると弾性体25による復元力が働き、光学部品21及び22が中空管の外径よりも外側に突出した状態になる(すなわち2aや2b)。この状態では、中空管6内には少なくとも医療器具1のシャフト10が通過できるだけの空間が確保されるため、医療器具1のシャフト10が中空管6の内部を通過して体腔内に挿入可能となる。光学部品ホルダ5は、医療器具1のシャフト10が中空管6に挿入されると中空管6の外部に突出した状態で固定され、距離計測の際の光学部品21及び22の位置の変動を防止する。
 反対に、医療器具1を抜去する際には、まず医療器具1が中空管6から引き抜かれ、さらに中空管6が外套管4から引き抜かれる。このとき、光学部品ホルダ5の根元側の形状がなめらかな傾斜部を含んだ斜面23を有しているため、外套管4の先端部に押されて、(使用者が光学部品ホルダ5に触れることなく)光学部品ホルダ5が中空管6内に自動的に格納される。すなわち、斜面23は、中空管6を外套管4から引き抜く際に光学部品ホルダ5が外套管4の端部と接触すると、光学部品ホルダ5を中空管6の筒状部内に格納する力を生じさせる。なお、上述の例では、光学部品ホルダ5の光学部品を配置する面と光学部品ホルダ5の頂上部分とが角を構成しているが、これは滑らかな斜面を構成してよい。このようにすれば中空管6の挿入が容易になるほか、体腔内で臓器等と接触した場合の影響を低減することができる。
 このように、本実施形態では、中空管6の側面から突出した光学部品21及び22によって距離計測を行うことにより、医療器具1の先端のみならずシャフト10の部分が体腔内の物体に接近したことを検知することが可能になる。また、光学部品ホルダ5を、中空管6を外套管4に挿入した際に中空管6内に格納し、外套管4を通過すると中空管6の外部に突出するように構成した。このようにすることで、体腔内に光学部品を挿入する際に、腹壁に新たな穴を設けたり挿入の際に腹壁の穴を拡大したりする必要がなく、患者の負担を低減することができる。また、光学部品ホルダ5の形状が斜面23を備えることにより、光学部品ホルダ5を中空管6内に格納するための電動制御等の機構を必要とすることなく、中空管6の構造を簡易にし、中空管6内により広い空間を確保することができる。
 なお、図2の2a及び図2の2cに示した例では、光学部品ホルダ5を突出させる穴が中空管6の側面にある例を説明した。このようにすることで、医療器具1が抜去される方向に移動した際にシャフト10に付着した液体等が直接光学部品ホルダ5に付着することを抑制することができる。他方、当該穴を設ける代わりに、中空管6の端面から伸びる切れ込みを設けたり、中空管6の先端に光学部品ホルダ5を設けてもよい。
 中空管6は、図3に示すように、医療器具駆動部2のレール11の支持部に、長軸周りの回転自由度のみをもつ状態で固定される。中空管6を固定する方法には、一般的なベアリング等による軸受構造を用いることができる。中空管6の長軸方向は、医療器具1のシャフト10の長軸方向および医療器具駆動部2のレール11の方向と平行である。このため、中空管6内を医療器具1のシャフト10が自由に進退可能となっている。
 中空管駆動部7は、中空管6を軸回りで回転させるための駆動部を含み、医療器具駆動部2のレール11の支持部に固定される。中空管駆動部7は、レール11の支持部と中空管6とを相対的に回転可能とするような駆動機構31を有する。駆動機構31は、ギヤ、ベルトプーリ、摩擦車等、一般的な回転力を伝達する機構を用いることができ、ここに挙げたものに限らない。外套管4とレール11の支持部とは着脱機構32によって着脱可能に固定され、少なくとも長軸方向の動きだけは拘束されるように構成される。着脱機構32は、例えば嵌合機構、磁石、粘着材料等、長軸方向に一時的に固定可能な機構であればよく、その構造は問わない。
 また、中空管駆動部7は、図4に示すように、着脱可能な中空管41に備えられてもよい。この場合、中空管駆動部7と駆動機構31とはレール11の支持部から一体的に着脱される。中空管41の着脱機構42a、42bは、レール11の支持部に対する中空管41の長軸周りの回転と長軸方向の移動を拘束するように中空管41を固定し、外套管4の着脱機構32と同様、嵌合機構、磁石、粘着材料等により構成することができる。このように中空管41を着脱可能な構成にすることで、手術支援装置あるいは手術支援システムを設置する際の煩雑さを低減することができる。
 外套管4の先端形状は、通常の腹腔鏡手術に用いられる公知の形状、もしくは図5に示す光学部品ホルダ5を取り囲むようなバルーン51を備えた形状にすることができる。このバルーン51を用いることにより、外套管4の根元側から垂れてくる体液等が光学部品ホルダ5に付着することを防止することができる。従って、光学部品ホルダ5に液体等が付着することによる距離計測の精度低下を防止することができる。
 距離計測部8は、光学部品ホルダ内に配置された光学部品21及び22と一体として、発光させた光によって体腔内の物体までの距離を計測する距離計測手段を実現する。この機能を実現するものは、光が往復するまでにかかる時間を計測して距離を推定する方法、光の干渉を利用して距離を推定する方法、反射光の強度で距離を推定する方法、三角測量によって距離を推定する方法等、公知の光距離計の原理を用いることができる。一般に、発光させた光を用いて体腔内の物体までの距離を計測する方法では、ステレオ画像による方法と比較してより簡便かつ安定した距離計測が可能である。
 図1に示す例では、距離計測部8が光の発生源、受光部及び距離を推定する演算チップを納めた計測ユニットを含み、計測ユニットが光学部品21及び22と接続される(すなわち光学部品ホルダ5と距離計測部8とが距離を置く)例を示している。計測ユニットは、光学部品ホルダ5に含まれる部材に応じて、レンズ、回折格子、ミラー、フィルタ、波長板、発生源(レーザー、LED)、受光部(フォトダイオード)等の1つ以上の光学部品を含んでよい。また、計測ユニットは、上述の例のほか、医療器具駆動部2や中空管駆動部7の周辺に組み込まれてもよいし、光学部品ホルダ5の内部に組み込まれてもよい。
 光学部品ホルダ5における、射出側である光学部品22は、光をコリメートする作用を有し、光は対象物にスポット状に照射される。対象物上のスポット径は、例えば、挿入される医療器具のシャフトの直径と同等程度であり20mm以下である。光学部品ホルダ5における、受光側の光学部品21は、光学部品22から射出された光の反射光を受光する。受光側の光学部品21の光軸61は、図6に示すように、射出側の光学部品22側にわずかに傾いて配置され、対象物に照射された光の反射光を効率的に取得できるように調整されている。なお、図6における各点線はそれぞれの光学部品の光軸を、実線は光学部品22の射出範囲及び光学部品21の受光範囲を示している。なお、光の射出側の光学部品22は、医療器具1のシャフト10の長軸方向と基本的には平行であるが、シャフトの長軸方向から離れるような角度を持っていてもよい。この場合、受光側の光軸61も同様にシャフトから離れるような角度を持つ。
 中空管6が上述した中空管駆動部7によって回転可能であるため、距離計測の範囲は、光学部品ホルダ5が静止している場合の距離計測範囲に加えて、医療器具1のシャフト10を取り囲む円筒形または円錐形の領域に及ぶ。距離計測の原点は、本実施形態では光学部品22の位置であるものとするが、これに限らず、光学部品22と医療器具駆動部2の相対位置が固定されていれば任意の位置でよい。
 制御部9は、CPU又はMPUなどの中央演算装置、ROM及びRAMを含み、ROM或いは不図示の記録媒体に記憶されたソフトウェアを実行して、後述する物体検知処理を制御する。制御部9は、医療器具駆動部2、中空管駆動部7、及び距離計測部8と互いに接続される。例えば、制御部9は、医療器具駆動部2の関節角やレール11の位置から医療器具の先端位置を特定するための現在位置情報、中空管6の回転を特定するための回転情報、及び距離計測部8の距離を特定する距離情報を取得して演算を行う。また、当該演算の結果に基づいて、これら各部を制御するための制御情報を送信する。更に、制御部9は、例えば液晶パネル、スピーカ或いは振動部材によって構成される不図示の出力部と接続され、必要に応じて、使用者に対する音、画像や文字、又は振動を出力する。
 (物体検知処理に係る一連の動作)
 次に、図7及び図8を参照して、本実施形態に係る手術支援装置の物体検知処理に係る一連の動作を説明する。本処理は、例えば、制御部9が医療器具1のシャフト10の先端を移動させるための指示を受けた場合に開始されるものとする。なお、本処理は、制御部9がROMに記憶されたプログラムを実行して各部を制御することにより実現される。
 S1において、制御部9は、医療器具1の進行方向を決定する。具体的に、医療器具駆動部2により医療器具1を体腔内で移動させる場合、図7の左図に示すように、医療器具1の先端の進行方向は、医療器具1の先端から伸びる3次元的なベクトルによって表すことができる。例えば、制御部9は、まず医療器具駆動部2から得られる現在位置情報に基づいて医療器具1のシャフト10の先端位置を特定する。より具体的には、医療器具1のシャフト10に任意の1軸が平行である直交座標系Osを考える。ここで残りの2軸は、医療器具駆動部2が有する座標系から相互に変換できれば任意に決めてよい。例えば中空管駆動部7による指令角度を0度とした場合、医療器具1のシャフト10から光学部品に向かう方向と平行なベクトルを選び、それを用いて直交座標系Osを規定することが可能である。ここでは簡便のために、例えばZ軸を医療器具1のシャフト10の方向、X軸を中空管駆動部7による指令角度を0度とした場合の方向とする。また、距離計測のための光軸は、中空管駆動部7の指令角度を0度としたときにX軸上で交わるものとする。なお、これらの座標系の決定方法は、医療器具駆動部2が有する座標系と相互に変換可能であれば上記に限らない。
 医療器具1のシャフト10の先端位置は医療器具駆動部2から得られる現在位置情報によって既知であり、また、中空管6は医療器具駆動部2のレール11に固定されている。このため、制御部9は、シャフト10の先端位置及び3次元ベクトルを、中空管6に固定されている距離計測の原点(光学部品22の位置)との関係において特定することができる。また、制御部9は、同様に、次の時刻に移動させるシャフト10の先端位置も特定することができる。これらの先端位置の座標を
Figure JPOXMLDOC01-appb-M000001

とする。制御部9は、これらの先端位置を用いて、ある時刻の点から次の時刻の点へ向かうベクトルvmを求める。すなわち当該ベクトルは、
Figure JPOXMLDOC01-appb-M000002

のように表わされる。このようにして、制御部9は、医療器具1のシャフト10の先端を所定の位置に移動させるための指示(或いは所定の位置を制御部9が設定してもよい)に基づいて当該シャフト10の先端位置の進行方向を表す3次元ベクトルを算出する。
 S2において、制御部9は、中空管駆動部7を制御して、シャフト10の先端が移動する方向に、距離計測の検知範囲72である距離計測スポットが存在するように中空管6を回転させる。これは、中空管6の長軸と垂直な平面上で考えると、3次元ベクトル71を当該平面に射影して得られる方向と、中空管6の長軸から光学部品22へ向かう方向とが一致するように、中空管6を回転させることになる。具体的に、制御部9は、この3次元ベクトル71に基づいて、3次元ベクトル71と距離計測の検知範囲72(すなわち射出側の光軸)が交差するように、中空管駆動部7を駆動して中空管6を回転させる(図7右図)。例えば、上述したベクトルvmを、直交座標系OsのXY平面に射影する。これはX軸、Y軸を表す基底ベクトルとの内積を取ればよく、
Figure JPOXMLDOC01-appb-M000003

となる。ここでベクトルisとjsとは、直交座標系OsのX軸、Y軸を表す基底ベクトルである。医療器具1のシャフト10の先端位置の進行方向は、直交座標系OsのXY平面におけるベクトルvmpで表されるため、Z軸まわりの極座標系と考えてX軸との間の角度θとして表すことができる。上述したように、X軸は中空管駆動部の指令角度が0度となる方向であるため、角度θをそのまま中空管駆動部7の指令角度として入力することにより、距離計測のための光軸と進行方向を表す3次元ベクトルとを交差させることができる。このようにすれば、医療器具1のシャフト10の先端が移動する空間内には光学部品ホルダ5が向いて距離計測の検知範囲72が存在することとなる。なお、シャフト10の先端位置の進行方向に距離計測の検知範囲72が存在するように中空管6を回転させることができれば、他の方法を用いてよい。
 S3において、制御部9は、医療器具1のシャフト10の先端位置を進行方向に移動させながら、距離計測部8に指示して距離を計測させる。
 S4において、制御部9は、距離計測部8から得られる距離と医療器具1のシャフト10の先端位置とを考慮することによって体腔内の物体に接近したかを判定する。具体的に、制御部9は、距離計測部8によって計測された距離が、所定の閾値よりも短いかを判定し、計測された距離が所定の閾値より短い場合、物体を検知したと判定してS5へ処理を進める。所定の閾値には、例えば、距離計測の原点からシャフト10の長軸に下した垂線との交点からシャフト10の先端位置までの距離に、更に所定のマージンを加えたものを用いることができる。このように、シャフト10の先端位置の進行方向に光学部品ホルダ5を移動させることにより、医療器具のシャフト10部分(先端位置を含む)と物体との接近を検知することができる。従って、体腔内に挿入された医療器具と体腔内の物体との接近を精度よく検知することが可能になる。一方、計測された距離が所定の閾値以上である場合、物体は検知されていない。このため距離の計測を継続するためにS3へ処理を戻す。
 S5において、制御部9は、使用者への通知を行う。使用者への通知は、例えば音、光、振動等により体腔内の物体の存在を示す情報を不図示の出力部に出力させる。
 S6において、制御部9は、医療器具1のシャフト10の先端位置の動きを制御して回避行動をとる。制御部9は、回避行動として、例えばその場に停止する、物***置よりも十分手前になるように医療器具1を体外へ抜去する、物体が無い方向へ進行方向を変更する等のいずれかを実行することができる。S5における使用者への通知とS6における回避行動は、いずれかを行うようにしてもよいし、両方を行う場合には使用者への通知を回避行動の後に行ってもよい。制御部9は、その後、本一連の動作を終了する。
 以上説明したように本実施形態では、距離計測部8に含まれる光学部品22が配置された光学部品ホルダ5を中空管6に格納可能にし、中空管6の一部が体腔内に挿入されると、光学部品ホルダ5の光学部品22が中空管6の外部へ突出するように構成した。また、医療器具1のシャフト10の先端位置の進行方向に光学部品22を回転させて、医療器具のシャフト10部分(先端位置を含む)と物体との接近を検知するようにした。このようにすることで、体腔内に挿入された医療器具と体腔内の物体との接近を精度よく検知することが可能になる。
 なお、本発明は、上述した実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の他の形態も含み得る。
 <他の実施形態>
 例えば、上述した実施形態では、光学部品21及び22に光距離計測を用いる例を説明した。しかし、光学部品21及び22のそれぞれにカメラを用いてステレオカメラを構成するようにしてもよい。或いは、光距離計測とステレオカメラとを備え、ステレオカメラによって体腔内で三次元計測を行う際に、特徴点抽出の精度が低下して距離計測の精度が下がる場合には、光距離計測を用いるようにしてもよい。
 また、上述した実施形態では、光学部品ホルダ5の光学部品を中空管6の側面から突出させて距離計測を行う例を説明した。しかし、中空管6の直径をより大きくして医療器具1の断面との間に隙間を設け、この隙間に光学部品21及び22を配置して距離計測を行うようにしてもよい。すなわち、中空管6の側面の内側に光学部品を配置して、医療器具1の周囲の距離計測を行うようにしてもよい。
 さらに、上述した実施形態では、1組の光学部品21及び22を中空管6の側面から突出させ、医療器具1の移動に応じて中空管6を回転する例を説明した。しかし、(例えば4組又は8組の)複数の組の光学部品を、中空管6の外側(或いは内側)に外周に沿って配置し、医療器具1の移動に応じて、距離計測を行う光学部品の組を選択するようにしてもよい。このようにしても、体腔内に挿入された医療器具の進行方向における距離計測が可能になる。
 また、本実施形態に係る手術支援装置は、光学部品ホルダ5と、中空管6と、中空管駆動部7と、距離計測部8と、制御部9とを含む場合を例に説明したが、これら以外の手術支援システムに含まれる任意の構成を更に含んでもよい。さらに、上述した実施形態では、中空管6が弾性体25を備えることにより、光学部品ホルダ5の光学部品を中空管6から突出させる例を説明した。しかし、弾性体を備えずに、中空管6に医療器具1を挿入したことに応じて光学部品ホルダ5の光学部品が中空管6から突出するように構成してもよい。
 さらに、上述した手術支援システムの構成のそれぞれが分離され又は統合された構成として実現されてもよい。また、本発明は、上述した処理を実行するコンピュータのプログラムを、制御部が記録媒体から読み出して実行する場合のほか、当該プログラムを有線通信又は無線通信を介して取得して実行する場合を含み得る。
 上述した実施形態では、光学部品ホルダ5に収納される光学部品が受光側の光学部品21と出射側の光学部品22との1対で構成される例を説明した。しかし、上述した光学部品ホルダ5は、出射側と受光側とを1つずつ備えるだけでなく、いずれかを複数備えるように構成されてもよい。
 例えば、光学部品ホルダ5は、受光側の光学部品21を1つ備えるのに対して、出射側の光学部品22を複数備えるように構成される。この構成では、複数の出射側の光学部品22のそれぞれの光軸は互いに傾き(平行ではない)、それぞれ異なる方向を向くように配置される。更に、複数の出射側の光学部品22のそれぞれの光軸と受光側の光学部品21の光軸とが異なる方向に向くように配置されてもよい。
 光学部品ホルダが出射側の光学部品22を複数備える場合、距離計測部8は、例えば、複数の出射側の光学部品22のうち光を照射する光学部品22を所定の時間間隔で切り替えて(選択して)、出射光を複数の方向に順次照射するように制御する。或いは、距離計測部8は、医療器具1のシャフト10の先端位置の進行方向に応じて、又は中空管6の回転方向に応じて光を照射する光学部品22を切り替えて、より進行方向又は回転方向に近い領域の距離を計測できるようにしてもよい。出射光の方向を切り替えて距離を計測することにより、光学部品自体を可動させることなく、より広い範囲の障害物を検知することが可能となる。距離計測部8は、例えばレーザーダイオード等の光源を複数備え、発光させる光源を電気的に切り替えることにより、出射する光学部品22を切り替える。或いは、例えばレーザーダイオード等の1つの光源と、当該光源と複数の光学部品22との間で光路を切り替える光スイッチ等の機構とを備えることにより、出射する光学部品22を切り替えてもよい。
 一方、光学部品ホルダ5は、出射側の光学部品22を1つ備えるのに対して、受光側の光学部品21を複数備えるように構成されてもよい。受光側の光学部品21を複数備えることにより、より高感度に距離を計測することが可能となる。より具体的には、図6に示した受光側の光学部品21と照射側の光学部品22の近傍では、照射と受光の光束が交わらずに感度が極端に低下する領域が存在する。これに対し、例えば受光側の光学部品21として新たに設けた光ファイバ単体を、受光側の光学部品21と照射側の光学部品22との近傍に配置する。例えば、図9に示すように、受光側の光学部品21と照射側の光学部品22の間に新たな受光側の光学部品(光ファイバ92)を配置することにより、新たな計測領域91を設ける。なお、光ファイバ93,94はそれぞれ受光側の光学部品21からの光、及び出射側の光学部品22への光を伝送するファイバを表すが、上述したように光学部品21及び光学部品22が単に光ファイバ93,94の先端で構成されてもよい。このように、光学部品の近傍に更なる受光側の光学部品(光ファイバ92)を配置することで、計測領域が広がり、計測をより安定させることができる。なお、光ファイバ92は、なるべく開口数(NA)が大きい物を使用することが望ましく、図9の例では光ファイバ92は他の受光用の光学部品より開口数が大きい。なお、受光側の光学部品を追加することにより、距離計測部8の受光部品も新たに必要となる場合もあるが、予め備えている受光側の光ファイバ93とまとめて、距離計測部8では1つの受光部品だけを用いてもよい。
 また、上述した実施形態では、光学部品ホルダ5の備える光学部品が体腔内にむき出しで置かれるように構成される例を説明した。光学部品ホルダ5は体腔内で用いられるため、血液等の体腔内の物質(付着物1002)が光学部品に付着して距離の誤検出が生じる可能性がある。これに対し、図10に示すように、光学部品21及び光学部品22の前側にガラス板1001を配置して、光学部品が体液等に触れないように密閉してもよい。このとき、光学部品21及び光学部品22の位置は、光学部品ホルダ5が中空管6から突出する部分の先端から所定の距離Lだけ後退して配置してもよい。この距離Lは、光学部品21及び光学部品22によって距離が計測可能な最短の距離以上である。このように光学部品ホルダ5を構成にすることで、ガラス板1001の表面に付着物が付着した場合に、距離Lにある障害物として検知されるため、汚れの検知が可能となる。
 制御部9は、例えば距離計測部8から得られる距離が距離Lであることにより汚れを検知したと判定した場合、使用者に汚れを検知した旨を通知する。また、制御部9は当該通知に加えて洗浄を促す旨を更に通知してもよいし、自動的に光学部品ホルダ5を洗浄するための処理を行ってもよい。自動的に光学部品ホルダ5を洗浄する方法については、別途備えられるノズルをガラス板1001の近傍に配置し、気体や液体を流出させて洗浄する公知の手法を用いて行うことができる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2016年6月27日提出の日本国特許出願特願2016-126708を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (19)

  1.  体腔内の物体までの距離を計測する距離計測手段と、
     一部が体腔内に挿入される筒状部と前記距離計測手段による距離の計測を行うための部分とを有する中空管であって、前記筒状部の長軸から所定距離にある円周上のいずれかの位置で前記距離計測手段による距離の計測を可能にする前記中空管と、
     前記筒状部を通過して体腔内に挿入された医療器具が前記体腔内の物体に接近したことを検知するように、前記距離計測手段による距離の計測を行う前記長軸まわりの前記円周上の位置を制御する制御手段と、を有し、
     前記制御手段は、前記医療器具の先端の進行方向に応じて、前記長軸まわりの前記円周上の位置を制御する、ことを特徴とする手術支援装置。
  2.  前記中空管の前記筒状部を、前記医療器具に対して前記長軸まわりに回転させる中空管駆動手段を更に有し、
     前記制御手段は、前記中空管駆動手段を制御して、前記距離計測手段による距離の計測を行う前記長軸まわりの前記円周上の位置を制御する、ことを特徴とする請求項1に記載の手術支援装置。
  3.  前記制御手段は、前記医療器具の先端の進行方向に対して前記距離計測手段による距離の計測を行うように、前記距離計測手段による距離の計測を行う前記長軸まわりの前記円周上の位置を制御する、ことを特徴とする請求項1又は2に記載の手術支援装置。
  4.  前記制御手段は、前記医療器具の先端の進行方向と、前記距離計測手段の光軸の方向とが交差するように、前記距離計測手段による距離の計測を行う前記長軸まわりの前記円周上の位置を制御する、ことを特徴とする請求項1から3のいずれか1項に記載の手術支援装置。
  5.  前記制御手段は、前記距離計測手段によって計測された前記体腔内の物体までの距離が、前記医療器具の先端までの長さを考慮した所定の距離より短い場合、前記医療器具が前記体腔内の物体に接近したものとして検知する、ことを特徴とする請求項1から4のいずれか1項に記載の手術支援装置。
  6.  前記距離計測手段は、発光させた光を用いて前記体腔内の物体までの距離を計測する、ことを特徴とする請求項1から5のいずれか1項に記載の手術支援装置。
  7.  前記中空管は、前記距離計測手段による距離の計測を行うための光学部品を含んだホルダであって、前記光学部品が前記筒状部の側面より外部へ突出した状態か、前記筒状部の内に格納された状態となるように構成される前記ホルダを更に備え、
     前記ホルダは、前記距離計測手段による距離の計測を行う場合、前記光学部品が前記筒状部の側面より外部へ突出した状態になる、ことを特徴とする請求項1から6のいずれか1項に記載の手術支援装置。
  8.  前記中空管は、前記ホルダに含まれる前記光学部品が前記筒状部の側面より外部へ突出した場合に、前記筒状部に前記医療器具を挿入可能になるように構成される、ことを特徴とする請求項7に記載の手術支援装置。
  9.  前記中空管は、前記筒状部の一部が外套管を通過して体腔内に挿入され、
     前記筒状部に格納された前記ホルダに含まれる前記光学部品は、前記ホルダが前記外套管を通過することにより、前記筒状部の側面より外部へ突出した状態となる、ことを特徴とする請求項7又は8に記載の手術支援装置。
  10.  前記ホルダは、前記中空管を前記外套管から引き抜く際に前記外套管の端部と接触すると、前記ホルダを前記筒状部に格納する力を生じさせる傾斜部を備える、ことを特徴とする請求項9に記載の手術支援装置。
  11.  前記中空管は、前記ホルダに含まれる前記光学部品を前記筒状部の側面より外部へ突出させる弾性体を更に備え、
     前記弾性体は、前記ホルダが前記筒状部の外部から外力を受けると前記ホルダを前記筒状部に格納するように構成される、ことを特徴とする請求項7から10のいずれか1項に記載の手術支援装置。
  12.  前記医療器具の先端の進行方向は、前記医療器具の挿入角度の変更と前記医療器具の挿入深度の変更により生じる、ことを特徴とする請求項1から11のいずれか1項に記載の手術支援装置。
  13.  前記中空管は、前記距離計測手段による距離の計測を行うための複数の光学部品を、前記筒状部の前記長軸から所定距離にある円周上の位置に配置し、
     前記制御手段は、前記複数の光学部品のうちの1つ以上を選択することにより、前記距離計測手段による距離の計測を行う前記長軸まわりの前記円周上の位置を制御する、ことを特徴とする請求項1に記載の手術支援装置。
  14.  光を出射する光学部品を用いて、体腔内の物体までの距離を計測する距離計測手段と、
     一部が体腔内に挿入される筒状部と、前記筒状部の長軸方向の距離を前記距離計測手段によって計測するための一部が前記筒状部より外部へ突出可能なホルダとを有する中空管と、を有し、
     前記中空管は、前記筒状部を通過して体腔内に挿入された医療器具が前記体腔内の物体に接近したことを検知するように前記筒状部の長軸まわりに回転し、
     前記距離計測手段は、光軸の向きが互いに異なるように前記ホルダに配置された複数の前記光学部品のいずれかを選択して、前記体腔内の物体までの距離を計測する、ことを特徴とする手術支援装置。
  15.  光を出射する光学部品を用いて、体腔内の物体までの距離を計測する距離計測手段と、
     一部が体腔内に挿入される筒状部と、前記筒状部の長軸方向の距離を前記距離計測手段によって計測するための一部が前記筒状部より外部へ突出可能なホルダとを有する中空管と、を有し、
     前記中空管は、前記筒状部を通過して体腔内に挿入された医療器具が前記体腔内の物体に接近したことを検知するように前記筒状部の長軸まわりに回転し、
     前記ホルダは、前記光学部品と、体腔内の物質の前記光学部品への付着を防止する壁を更に備え、前記光学部品と前記壁とは、前記物質の前記壁への付着を検出できるように前記光学部品による距離の計測が可能な第1の距離より離れて配置される、ことを特徴とする手術支援装置。
  16.  請求項1から13のいずれか1項に記載の手術支援装置と、
     前記筒状部を通過して体腔内に挿入された前記医療器具の体腔内の移動を、前記制御手段の制御情報に基づいて制御する医療器具駆動手段と、を含む手術システムであって、
     前記制御手段は、前記医療器具が前記体腔内の物体に接近したことを検知した場合、前記医療器具が前記体腔内の物体と接触しないように前記医療器具駆動手段を制御する、ことを特徴とする手術支援システム。
  17.  体腔内の物体までの距離を計測する距離計測装置と、一部が体腔内に挿入される筒状部と前記距離計測装置による距離の計測を行うための部分とを有する中空管であって、前記筒状部の長軸から所定距離にある円周上のいずれかの位置で前記距離計測装置による距離の計測を可能にする前記中空管と、制御装置と、を含む手術支援装置の制御方法であって、
     前記制御装置が、前記筒状部を通過して体腔内に挿入された医療器具が前記体腔内の物体に接近したことを検知するように、前記距離計測装置による距離の計測を行う前記長軸まわりの前記円周上の位置を制御する工程を有し、
     前記制御する工程では、前記医療器具の先端の進行方向に応じて、前記長軸まわりの前記円周上の位置を制御する、ことを特徴とする手術支援装置の制御方法。
  18.  コンピュータに請求項17に記載の手術支援装置の制御方法の工程を実行させるためのプログラム。
  19.  体腔内の物体までの距離を計測する距離計測手段と、
     一部が体腔内に挿入される筒状部を有する中空管であって、前記筒状部の長軸まわりのいずれかの位置で前記距離計測手段による距離の計測を可能にする前記中空管と、を有する手術支援装置であって、
     前記中空管は、前記距離計測手段による距離の計測を行うための一部が前記筒状部より外部へ突出可能なホルダを更に備え、
     前記一部は、前記中空管を体腔内から引き抜く際に前記中空管を挿入した他の器具と接触する位置に傾斜部を有する、ことを特徴とする手術支援装置。
PCT/JP2016/085615 2016-06-27 2016-11-30 手術支援装置、その制御方法及びプログラム、並びに手術支援システム WO2018003140A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018524863A JP6893036B2 (ja) 2016-06-27 2016-11-30 手術支援装置、その制御方法及びプログラム、並びに手術支援システム
EP16907372.3A EP3476338A4 (en) 2016-06-27 2016-11-30 SURGICAL ASSISTANCE DEVICE, METHOD AND PROGRAM FOR CONTROLLING THE SAME, AND SURGICAL ASSISTANCE SYSTEM
US16/214,699 US20200297423A9 (en) 2016-06-27 2018-12-10 Surgery assisting apparatus and control method of the same, and surgery assisting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016126708 2016-06-27
JP2016-126708 2016-06-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/214,699 Continuation US20200297423A9 (en) 2016-06-27 2018-12-10 Surgery assisting apparatus and control method of the same, and surgery assisting system

Publications (1)

Publication Number Publication Date
WO2018003140A1 true WO2018003140A1 (ja) 2018-01-04

Family

ID=60786838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085615 WO2018003140A1 (ja) 2016-06-27 2016-11-30 手術支援装置、その制御方法及びプログラム、並びに手術支援システム

Country Status (4)

Country Link
US (1) US20200297423A9 (ja)
EP (1) EP3476338A4 (ja)
JP (1) JP6893036B2 (ja)
WO (1) WO2018003140A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101997827B1 (ko) * 2016-10-06 2019-07-08 사회복지법인 삼성생명공익재단 대퇴터널 유도기
EP4208119A1 (en) 2020-09-02 2023-07-12 Nuvasive, Inc. Surgical systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004081277A (ja) 2002-08-23 2004-03-18 Yamaguchi Technology Licensing Organization Ltd 自動干渉回避型内視鏡
JP2012078709A (ja) * 2010-10-05 2012-04-19 Olympus Corp ガイドチューブ装置および内視鏡システム
JP2014132980A (ja) * 2013-01-10 2014-07-24 Advanced Healthcare Kk トロカールおよび手術支援システム
JP2015159955A (ja) 2014-02-27 2015-09-07 オリンパス株式会社 手術システムおよび医療器具の干渉回避方法
JP2016016053A (ja) * 2014-07-07 2016-02-01 京セラオプテック株式会社 トロカール組立体
JP2016126708A (ja) 2015-01-08 2016-07-11 株式会社デンソー 表示制御装置、表示制御方法
JP6108509B1 (ja) * 2016-06-24 2017-04-05 株式会社A−Traction 手術支援装置、その制御方法及びプログラム、並びに手術支援システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118867B2 (ja) * 2007-03-16 2013-01-16 オリンパス株式会社 内視鏡観察装置および内視鏡の作動方法
WO2009144729A1 (en) * 2008-05-28 2009-12-03 Technion Research & Development Foundation Ltd. Laparoscopic camera array
JP5975500B2 (ja) * 2013-05-16 2016-08-23 アドバンストヘルスケア株式会社 トロカール、ポートおよび手術支援システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004081277A (ja) 2002-08-23 2004-03-18 Yamaguchi Technology Licensing Organization Ltd 自動干渉回避型内視鏡
JP2012078709A (ja) * 2010-10-05 2012-04-19 Olympus Corp ガイドチューブ装置および内視鏡システム
JP2014132980A (ja) * 2013-01-10 2014-07-24 Advanced Healthcare Kk トロカールおよび手術支援システム
JP2015159955A (ja) 2014-02-27 2015-09-07 オリンパス株式会社 手術システムおよび医療器具の干渉回避方法
JP2016016053A (ja) * 2014-07-07 2016-02-01 京セラオプテック株式会社 トロカール組立体
JP2016126708A (ja) 2015-01-08 2016-07-11 株式会社デンソー 表示制御装置、表示制御方法
JP6108509B1 (ja) * 2016-06-24 2017-04-05 株式会社A−Traction 手術支援装置、その制御方法及びプログラム、並びに手術支援システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476338A4

Also Published As

Publication number Publication date
EP3476338A4 (en) 2019-08-14
US20200179056A1 (en) 2020-06-11
JP6893036B2 (ja) 2021-06-23
EP3476338A1 (en) 2019-05-01
JPWO2018003140A1 (ja) 2019-05-16
US20200297423A9 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP6932727B2 (ja) 骨を切断するための医療装置
JP7414770B2 (ja) 医療用アーム装置、医療用アーム装置の作動方法、及び情報処理装置
KR101981555B1 (ko) 카테터 시스템
EP3265008B1 (en) Surgical tool tracking to control surgical system
EP3760389A1 (en) Switching control of an instrument to an input device upon the instrument entering a display area viewable by an operator of the input device
US20140303643A1 (en) Surgical robot system
EP2609881A1 (en) Robot system and control method thereof
JP2019188038A (ja) 外科手術システム及び外科手術システムの制御方法
JP6469295B1 (ja) 手術支援装置、その制御方法、並びに手術支援システム
US20190354200A1 (en) Virtual foot pedal
JP2018501868A (ja) レプリカ制御ツール及びロボティック作動システム
WO2018003140A1 (ja) 手術支援装置、その制御方法及びプログラム、並びに手術支援システム
US9872692B2 (en) Motion-compensated micro-forceps system and method
JP6108509B1 (ja) 手術支援装置、その制御方法及びプログラム、並びに手術支援システム
JP6506490B1 (ja) 手術支援装置、その制御方法、並びに手術支援システム
EP3305166A1 (en) Medical manipulator system
US20210393331A1 (en) System and method for controlling a robotic surgical system based on identified structures
US20200205902A1 (en) Method and apparatus for trocar-based structured light applications
KR20240003457A (ko) 유연성을 갖는 내시경용 로봇팔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524863

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016907372

Country of ref document: EP

Effective date: 20190128