WO2018000680A1 - 变频空调主动控制方法及装置 - Google Patents

变频空调主动控制方法及装置 Download PDF

Info

Publication number
WO2018000680A1
WO2018000680A1 PCT/CN2016/104394 CN2016104394W WO2018000680A1 WO 2018000680 A1 WO2018000680 A1 WO 2018000680A1 CN 2016104394 W CN2016104394 W CN 2016104394W WO 2018000680 A1 WO2018000680 A1 WO 2018000680A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
frequency
interval
module
inverter compressor
Prior art date
Application number
PCT/CN2016/104394
Other languages
English (en)
French (fr)
Inventor
吕根贵
吴民安
刘新华
庄志宏
Original Assignee
海信科龙电器股份有限公司
海信(广东)空调有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信科龙电器股份有限公司, 海信(广东)空调有限公司 filed Critical 海信科龙电器股份有限公司
Priority to EP16907076.0A priority Critical patent/EP3477214B1/en
Priority to ES16907076T priority patent/ES2949543T3/es
Publication of WO2018000680A1 publication Critical patent/WO2018000680A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/027Compressor control by controlling pressure
    • F25B2600/0271Compressor control by controlling pressure the discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21154Temperatures of a compressor or the drive means therefor of an inverter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • Embodiments of the present invention relate to an inverter air conditioner technology, and in particular, to an active control method and apparatus for an inverter air conditioner.
  • the inverter air conditioner adopts the inverter compressor and the control device, so that the frequency of the compressor of the air conditioner is not fixed, but can be changed as the load changes, and can provide better comfort for the user. .
  • the inverter air conditioner In high temperature environment, that is, when the temperature is higher than 50 °C, the inverter air conditioner has a larger cooling capacity and needs to run a larger frequency.
  • the higher the frequency the higher the output power of the intelligent power module (IPM) of the inverter air conditioner, the higher the heat generation, the higher the temperature of the IPM, and the IPM is easily damaged.
  • the frequency rises, causing the inverter compressor to operate at an ultra-high exhaust pressure, and operating at an ultra-high exhaust pressure for a long time, which easily damages the inverter compressor and has a high safety hazard.
  • the current inverter air conditioner artificially limits the operating frequency of the inverter compressor, so that the output power of the IPM is lower, the temperature is also correspondingly lowered, and the exhaust pressure is relatively low.
  • the embodiments of the present invention provide an active control method and device for an inverter air conditioner, which can achieve the purpose of not attenuating the refrigeration capacity of the inverter air conditioner in a high temperature environment.
  • an embodiment of the present invention provides an active control method for an inverter air conditioner, including:
  • Step 1 Starting an inverter compressor to operate the inverter compressor at a first frequency for a first time period
  • Step 2 determining whether the first temperature exceeds a first threshold, where the first temperature is smart power If the temperature of the module IPM is not exceeded, go to step 3; otherwise, go to step 8.
  • Step 3 Determine a second temperature, determine, according to the temperature interval to which the second temperature belongs, whether the first frequency needs to be adjusted, if necessary, perform step 4; otherwise, perform step 5, the second temperature is outdoor The temperature of the coil;
  • Step 4 adjusting the first frequency, the inverter compressor is operated at the adjusted frequency for a first preset duration, and returns to step 2;
  • Step 5 determining whether the exhaust pressure is less than a preset threshold, if less, then performing step 6; otherwise, performing step 7;
  • Step 6 adjusting the first frequency, running the second preset duration and then returning to step 2;
  • Step 7 Turn off the inverter compressor
  • Step 8 Adjust the first frequency, and run the third preset duration to return to step 2.
  • an embodiment of the present invention provides an active control device for an inverter air conditioner, including:
  • a running module for starting the inverter compressor to operate the inverter compressor at the first frequency for a first time period
  • the IPM temperature determining module is configured to determine whether the first temperature exceeds a first threshold, where the first temperature is a temperature of the intelligent power module IPM, if not, the coil temperature determining module is operated; otherwise, the operating frequency adjusting module adjusts Performing, by the first frequency, the IPM temperature determining module after running the third preset duration;
  • the coil temperature determining module is configured to determine a second temperature, determine whether the first frequency needs to be adjusted according to a temperature interval to which the second temperature belongs, and if necessary, run the frequency adjusting module to adjust the a first frequency, the inverter compressor is operated at the adjusted frequency for a first preset duration, and the IPM temperature determination module is operated; otherwise, the second temperature of the exhaust pressure detection module is the temperature of the outdoor coil ;
  • the exhaust pressure detecting module is configured to determine whether the exhaust pressure is less than a preset threshold. If less than, the frequency adjusting module is operated, the first frequency is adjusted, and the IPM temperature is executed after running the second preset duration Determining the module; otherwise, executing the shutdown module;
  • the closing module is configured to close the inverter compressor.
  • the active control method and device for the inverter air conditioner provided by the embodiment of the invention open the inverter compressor so that the inverter compressor runs at the first frequency for the first time period, so that the indoor temperature tends to temperature, the temperature of the IPM is detected, and the temperature of the IPM is If the threshold is not in a safe environment, The temperature of the outdoor coil is detected, and the first frequency is adjusted according to the temperature range to which the temperature of the outdoor coil belongs. If the outdoor coil temperature is relatively low, the first frequency needs to be increased, so that the refrigeration capacity of the inverter air conditioner is increased.
  • FIG. 1 is a flow chart of an embodiment of an active control method for an inverter air conditioner according to the present invention
  • FIG. 2 is a flow chart of a second embodiment of an active control method for an inverter air conditioner according to the present invention
  • Embodiment 3 is a schematic structural view of Embodiment 1 of an active control device for an inverter air conditioner according to the present invention
  • FIG. 4 is a schematic structural view of a second embodiment of an active control device for an inverter air conditioner according to the present invention.
  • FIG. 1 is a flow chart of an embodiment of an active control method for an inverter air conditioner according to the present invention.
  • the main body of the embodiment of the present invention is an inverter air conditioner active control device, and the device is disposed on the inverter air conditioner.
  • the embodiments of the present invention include:
  • Step 1 Start an inverter compressor to operate the inverter compressor at a first frequency for a first period of time.
  • the environment can be divided into three categories according to the type of climate: the first category, the T1 environment, the maximum temperature is 43 °C in the environment; the second category, the T2 environment, the maximum temperature in the environment is 35 °C; the third category , T3 temperature, the maximum temperature in this environment is 52 °C.
  • the inverter air conditioner in the embodiment of the invention is mainly used in the T3 environment. In the T3 environment, the inverter air conditioner is turned on, and the inverter compressor of the inverter air conditioner is started, so that the inverter compressor runs at the first frequency for the first time period, and after the first time period, the indoor temperature tends to be stable.
  • the first frequency is, for example, the initial frequency of the inverter compressor, which is generally 50 Hz to 55 Hz.
  • the first duration is a predetermined value, for example 5 minutes.
  • Step 2 Determine whether the first temperature exceeds a first threshold, where the first temperature is the temperature of the intelligent power module IPM. If not, perform step 3; otherwise, perform step 8.
  • the temperature of the intelligent power module is referred to as a first temperature
  • the temperature of the outdoor coil of the inverter air conditioner is referred to as a second temperature.
  • the first temperature of the IPM is collected, for example, a temperature sensor is set on the IPM, and the first temperature of the IPM is detected according to the temperature sensor. After the first temperature is collected, it is determined whether the first temperature exceeds a first threshold. If it exceeds, the temperature of the IPM is higher and continues to work at this temperature. The IPM may be lost. In this case, step 8 is required to lower the first frequency to lower the temperature of the IPM. If the first temperature does not exceed the first threshold, It indicates that the temperature of the IPM is suitable, and the IPM will not be damaged at this temperature. Proceed to step 3.
  • Step 3 Determine a second temperature, determine, according to the temperature interval to which the second temperature belongs, whether the first frequency needs to be adjusted, if necessary, perform step 4; otherwise, perform step 5, the second temperature is outdoor The temperature of the coil.
  • step 4 is performed to adjust the first frequency, and after the adjustment, return to step 2, and the change of the first frequency causes the second temperature to also change, so that the outdoor disk can be realized. Correction of the second temperature of the tube. If the second temperature belongs to the third interval or the fourth interval, step 5 is performed to detect the exhaust pressure of the inverter air conditioner.
  • Step 4 Adjust the first frequency, run the inverter compressor at the adjusted frequency for a first preset duration, and return to step 2.
  • step 4 is specifically: increasing the first frequency by the first set value to obtain the second frequency, and operating the inverter compressor at the second frequency. a preset duration, return to step 2;
  • step 4 is specifically: increasing the first frequency by the second set value to obtain the third frequency, and operating the inverter compressor at the third frequency for the first preset duration. , return to step 2;
  • the first frequency is increased, thereby improving the cooling capacity of the inverter air conditioner.
  • step 5 If it is determined in step 3 that the second temperature belongs to the third interval or the fourth interval, step 5 is performed.
  • the second temperature in the first interval, is ⁇ 62 ° C; in the second interval, 60 ° C ⁇ the second temperature ⁇ 67 ° C; in the third interval, 67 ° C ⁇ the first
  • the second temperature is ⁇ 70 ° C; in the fourth interval, the second temperature is ⁇ 70 ° C.
  • the first set value is greater than the second set value. It can be seen that when the second temperature is relatively low, the first frequency needs to be adjusted; when the second temperature is relatively high, the exhaust pressure needs to be determined.
  • Step 5 Determine whether the exhaust pressure is less than a preset threshold. If it is less, perform step 6; otherwise, perform step 7.
  • Step 6 Adjust the first frequency, and run the second preset duration to return to step 2.
  • Step 7 Turn off the inverter compressor.
  • a pressure switch is mounted on the exhaust pipe of the inverter air conditioner.
  • pressure detection is achieved by a pressure switch.
  • step 6 is performed to lower the first frequency, and the second preset time is operated at the reduced frequency; when the exhaust pressure is greater than the preset threshold, the pressure on the exhaust pipe is too Large, it is possible to damage the exhaust pipe, then perform the steps 7 to turn off the inverter compressor, that is, turn off the inverter air conditioner.
  • Step 8 Adjust the first frequency, and run the third preset duration to return to step 2.
  • the active control method of the inverter air conditioner opens the inverter compressor so that the inverter compressor runs at the first frequency for the first time period, so that the indoor temperature tends to temperature, the temperature of the IPM is detected, and the temperature of the IPM does not exceed
  • the threshold is in a safe environment
  • the temperature of the outdoor coil is detected, and the first frequency is adjusted according to the temperature interval to which the temperature of the outdoor coil belongs. If the outdoor coil temperature is relatively low, the first frequency needs to be increased.
  • the refrigeration capacity of the inverter air conditioner is increased, and the temperature of the outdoor coil is further corrected; if the outdoor coil temperature is relatively high, the first frequency is not required to be adjusted, and the exhaust pressure is detected, thereby realizing the initiative of the inverter air conditioner. Control, to achieve the purpose of not attenuating the refrigeration capacity of the inverter air conditioner in a high temperature environment.
  • FIG. 2 is a flowchart of Embodiment 2 of an active control method for an inverter air conditioner according to the present invention.
  • This embodiment includes:
  • step 1 performs step 1; otherwise, execute 113 without starting the inverter compressor.
  • the inverter air conditioner provided by the embodiment of the invention is mainly used in the T3 environment, that is, the temperature exceeds 50 °C. If this condition is met, the active control method of the inverter air conditioner provided in this case is used. For environments with temperatures below 50 ° C, current air conditioning can be used for temperature regulation.
  • the inverter air conditioner is turned on, and the refrigeration is started, so that the inverter compressor runs at the first frequency, for example, at a frequency of 50 to 55 Hz, for example, for 5 minutes.
  • Step 102 Determine whether the first temperature exceeds a first threshold, where the first temperature is a temperature of the smart power module IPM, if not, execute 103; otherwise, perform 112.
  • the first threshold is set to 90 °C. In this step, it is detected whether the temperature of the outdoor IPM satisfies the condition of the first temperature ⁇ 90 ° C, and if yes, executes 103; otherwise, executes 112.
  • the second temperature of the outdoor coil is collected, and according to the second temperature, the manner of checking the table is Which interval the second temperature is in.
  • the temperature included in the temperature interval is divided into a continuous first interval, a second region, a third interval and a fourth interval from low to high; in the first interval, the second temperature is ⁇ 62 ° C; in the second interval, 60 °C ⁇ second temperature ⁇ 67 ° C; in the third interval, 67 ° C ⁇ second temperature ⁇ 70 ° C; in the fourth interval, the second temperature ⁇ 70 ° C.
  • the first set value is, for example, 5 Hz
  • the first preset time is, for example, 1 to 10 minutes.
  • the first frequency is adjusted to obtain a second frequency, and the second frequency is operated for 1 to 10 minutes, and then returns to 102. That is, when the second temperature is in the first interval, the first frequency is increased, and after running for 1 to 10 minutes at the increased frequency, the first temperature of the IPM is continuously detected, and the first temperature of the IPM is less than the first threshold.
  • the second temperature of the outdoor coil is continuously collected. If the second temperature still belongs to the first interval, the process continues to be performed until the second temperature exits the first interval to reach the second interval.
  • the second set value is, for example, 3HZ
  • the first preset duration is, for example, 1 to 10 minutes.
  • the first frequency is adjusted to obtain a third frequency, and the third frequency is operated for 1 to 10 minutes, and then returns to 102. That is, when the second temperature is in the second interval, the first frequency is increased, and after running for 1 to 10 minutes at the increased frequency, the first temperature of the IPM is continuously detected, and the first temperature of the IPM is less than the first threshold.
  • the second temperature of the outdoor coil is continuously collected. If the second temperature still belongs to the second interval, the process continues to be performed until the second temperature exits the second interval to reach the third interval.
  • the inverter compressor is operated at the first frequency.
  • the first frequency is decreased by a third set value to obtain a fourth frequency
  • the inverter compressor is operated at the fourth frequency for the second preset duration, and returns to 102.
  • the third set value is, for example, 3HZ
  • the second preset time is, for example, 1 to 10 minutes.
  • the first frequency is lowered to obtain a fourth frequency, and the fourth frequency is operated for 1 to 10 minutes, and then returns to 102.
  • the method includes:
  • step 110 determining whether the adjusted frequency is equal to the maximum frequency of the inverter compressor, and if so, executing step 111; otherwise, returning to step 102;
  • the first frequency is decreased by the fourth set value to obtain the fifth frequency, and the inverter compressor is operated for the third preset time length at the fifth frequency, and the process returns to step 102.
  • the fourth set value is, for example, 5 Hz
  • the third preset time is, for example, 1 to 10 minutes.
  • the first frequency is lowered to obtain a fifth frequency
  • the fifth frequency is operated for 1 to 10 minutes, and then returns to 102.
  • Embodiment 3 is a schematic structural view of Embodiment 1 of an active control device for an inverter air conditioner according to the present invention.
  • the variable frequency air conditioner active control device provided in this embodiment can implement the steps of the above-mentioned over-the-air upgrade method applied to the active control device side of the inverter air conditioner provided by any embodiment of the present invention.
  • the active control device for the inverter air conditioner provided in this embodiment includes:
  • the operating module 11 is configured to start the inverter compressor to operate the inverter compressor at the first frequency for a first time period
  • the IPM temperature determining module 12 is configured to determine whether the first temperature exceeds a first threshold, where the first temperature is a temperature of the smart power module IPM, if not, the coil temperature determining module 13 is operated; otherwise, the operating frequency adjusting module 16, the first frequency is adjusted, after running the third preset duration, the IPM temperature determining module 12 is executed;
  • the coil temperature determining module 13 is configured to determine a second temperature, determine whether the first frequency needs to be adjusted according to a temperature interval to which the second temperature belongs, and if necessary, run the frequency adjusting module 16 to adjust The first frequency, the inverter compressor is operated at the adjusted frequency for a first preset duration, and the IPM temperature determining module 12 is operated; otherwise, the exhaust pressure is operated.
  • the force detecting module 14, the second temperature is the temperature of the outdoor coil;
  • the exhaust pressure detecting module 14 is configured to determine whether the exhaust pressure is less than a preset threshold. If less than, the frequency adjusting module 16 is operated, the first frequency is adjusted, and the second preset duration is executed. IPM temperature determination module 12; otherwise, the shutdown module 15 is executed;
  • the closing module 15 is configured to close the inverter compressor.
  • the active control method of the inverter air conditioner opens the inverter compressor so that the inverter compressor runs at the first frequency for the first time period, so that the indoor temperature tends to temperature, the temperature of the IPM is detected, and the temperature of the IPM does not exceed
  • the threshold is in a safe environment
  • the temperature of the outdoor coil is detected, and the first frequency is adjusted according to the temperature interval to which the temperature of the outdoor coil belongs. If the outdoor coil temperature is relatively low, the first frequency needs to be increased.
  • the refrigeration capacity of the inverter air conditioner is increased, and the temperature of the outdoor coil is further corrected; if the outdoor coil temperature is relatively high, the first frequency is not required to be adjusted, and the exhaust pressure is detected, thereby realizing the initiative of the inverter air conditioner. Control, to achieve the purpose of not attenuating the refrigeration capacity of the inverter air conditioner in a high temperature environment.
  • the temperature range included in the temperature interval is divided into a continuous first interval, a second region, a third interval, and a fourth interval from low to high;
  • the frequency adjustment module 16 is specifically configured to: increase the first frequency by a first set value to obtain a second frequency.
  • the inverter is operated at the second frequency for the first predetermined duration, and the IPM temperature determining module 12 is executed;
  • the frequency adjustment module 16 is specifically configured to: increase the first frequency by a second set value to obtain a third frequency.
  • the inverter is operated at the third frequency for the first predetermined duration, and the IPM temperature determining module 12 is executed;
  • the exhaust pressure detecting module 14 is executed if the coil temperature determining module 13 determines that the second temperature belongs to the third interval or the fourth interval.
  • the second temperature is ⁇ 62 ° C
  • the second temperature is ⁇ 70 °C.
  • the frequency adjusting module 16 is specifically configured to reduce the first frequency by a fourth.
  • the set value obtains a fifth frequency, and the inverter compressor is operated at the fifth frequency for the third predetermined duration, and the IPM temperature determining module 12 is executed.
  • FIG. 4 is a schematic structural view of a second embodiment of an active control device for an inverter air conditioner according to the present invention.
  • the active control device for an inverter air conditioner provided in this embodiment is further based on the above FIG.
  • the frequency determining module 17 is configured to determine, after the IPM temperature determining module 12 is executed, after the frequency adjusting module 16 adjusts the first frequency, whether the adjusted frequency is equal to a maximum frequency of the inverter compressor, If so, the operation module 11 is executed to operate the inverter compressor at the maximum frequency to execute the IPM temperature determination module 12; otherwise, the IPM temperature determination module 12 is directly executed.
  • the active control device for the inverter air conditioner provided in this embodiment further includes:
  • the outdoor temperature determining module 18 is configured to detect whether the outdoor temperature exceeds a second threshold, and if so, execute the operating module 11; otherwise, the inverter compressor is not activated.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

提供了一种变频空调主动控制方法及装置。该控制方法包括:开启变频压缩机使得变频压缩机在第一频率下运行第一时长,对智能功率模块IPM的温度进行检测,在智能功率模块IPM的温度未超过阈值的情况下,检测室外盘管的温度,根据室外盘管的温度所属的温度区间决定是否对第一频率进行调整。若室外盘管温度相对较低,需要加大第一频率,使得变频空调的制冷能力提高,并且进一步对室外盘管的温度进行修正;若室外盘管温度相对较高,无需对第一频率进行调整,则检测排气压力。该控制方法实现了对变频空调的主动控制,达到了高温环境下保持变频空调的制冷能力不降低的目的。

Description

变频空调主动控制方法及装置 技术领域
本发明实施例涉及变频空调技术,尤其涉及一种变频空调主动控制方法及装置。
背景技术
相对于定速空调来说,变频空调采用了变频压缩机和控制装置,使得空调的压缩机的频率不是固定的,而是可以随着负荷的变化而变化,能够为用户提供更好的舒适度。
高温环境下,即温度高于50℃时,变频空调为输出更大的制冷能力,需要运行更大的频率。频率升高,导致变频空调的智能功率模块(Intelligent Power Module,IPM)的输出功率越大,发热量越大,导致IPM的温度越高,容易损坏IPM。另外,频率升高,导致变频压缩机运行在超高的排气压力下,长时间运行在超高的排气压力下,容易损坏变频压缩机且安全隐患高。为解决上述问题,目前的变频空调通过人为的限制变频压缩机的运行频率,使得IPM的输出功率较低,温度也相应的交底,同时使得排气压力相对较低。
上述变频空调控制过程中,通过人为限制变频压缩机的运行频率,导致变频空调的制冷能力下降,使用变频空调后,温度并没有下降到预期值。
发明内容
本发明实施例提供本发明提供一种变频空调主动控制方法及装置,实现高温环境下不衰减变频空调的制冷能力的目的。
第一方面,本发明实施例提供一种变频空调主动控制方法,包括:
步骤1、启动变频压缩机,以使所述变频压缩机在第一频率下运行第一时长;
步骤2、确定第一温度是否超过第一阈值,所述第一温度为智能功率 模块IPM的温度,若未超过,则执行步骤3;否则,执行步骤8;
步骤3、确定第二温度,根据所述第二温度所属的温度区间,确定是否需要调整所述第一频率,若需要,则执行步骤4;否则,执行步骤5,所述第二温度为室外盘管的温度;
步骤4、调整所述第一频率,将所述变频压缩机在调整后的频率下运行第一预设时长,返回步骤2;
步骤5、确定排气压力是否小于预设阈值,若小于,则执行步骤6;否则,执行步骤7;
步骤6、调整所述第一频率,运行第二预设时长后返回步骤2;
步骤7、关闭所述变频压缩机;
步骤8、调整所述第一频率,运行第三预设时长后返回步骤2。
第二方面,本发明实施例提供一种变频空调主动控制装置,包括:
运行模块,用于启动变频压缩机,以使所述变频压缩机在第一频率下运行第一时长;
IPM温度确定模块,用于确定第一温度是否超过第一阈值,所述第一温度为智能功率模块IPM的温度,若未超过,则运行盘管温度确定模块;否则,运行频率调整模块,调整所述第一频率,运行第三预设时长后执行所述IPM温度确定模块;
所述盘管温度确定模块,用于确定第二温度,根据所述第二温度所属的温度区间,确定是否需要调整所述第一频率,若需要,则运行所述频率调整模块,调整所述第一频率,将所述变频压缩机在调整后的频率下运行第一预设时长,运行所述IPM温度确定模块;否则,运行排气压力检测模块所述第二温度为室外盘管的温度;
所述排气压力检测模块,用于确定排气压力是否小于预设阈值,若小于,则运行所述频率调整模块,调整所述第一频率,运行第二预设时长后执行所述IPM温度确定模块;否则,执行关闭模块;
所述关闭模块,用于关闭所述变频压缩机。
本发明实施例提供的变频空调主动控制方法及装置,开启变频压缩机使得变频压缩机在第一频率下运行第一时长使得室内温度趋于温度后,对IPM的温度进行检测,在IPM的温度未超过阈值处于安全环境的情况下, 检测出室外盘管的温度,根据室外盘管的温度所属的温度区间决定是否对第一频率进行调整,若室外盘管温度相对较低,需要加大第一频率,使得变频空调的制冷能力增加,并且进一步对室外盘管的温度进行修正;若室外盘管温度相对较高,无需对第一频率进行调整,则检测排气压力,从而实现对变频空调的主动控制,实现高温环境下不衰减变频空调的制冷能力的目的。
附图说明
为了更清楚地说明本发明方法实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明方法的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明变频空调主动控制方法实施例的流程图;
图2为本发明变频空调主动控制方法实施例二的流程图;
图3为本发明变频空调主动控制装置实施例一的结构示意图;
图4为本发明变频空调主动控制装置实施例二的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包 括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1为本发明变频空调主动控制方法实施例的流程图。本发明实施例的执行主体为变频空调主动控制装置,该装置设置在变频空调上。具体的,本发明实施例包括:
步骤1、启动变频压缩机,以使所述变频压缩机在第一频率下运行第一时长。
一般来说,可根据气候类型将环境分为三类:第一类、T1环境,该环境下最高温度为43℃;第二类、T2环境,该环境下最高气温为35℃;第三类、T3温度,该环境下最高气温为52℃。本发明实施例中的变频空调,主要用于T3环境。在T3环境下,开启变频空调,启动变频空调的变频压缩机,使得变频压缩机在第一频率下运行第一时长,运行第一时长后,室内温度趋于稳定。其中,第一频率例如为变频压缩机的初始频率,其一般为50HZ~55HZ。第一时长为一个预先设定的值,例如为5分钟。
步骤2、确定第一温度是否超过第一阈值,所述第一温度为智能功率模块IPM的温度,若未超过,则执行步骤3;否则,执行步骤8。
本发明实施例中,将智能功率模块(Intelligent Power Module,IPM)的温度称之为第一温度,将变频空调的室外盘管的温度称之为第二温度。本步骤中,采集IPM的第一温度,例如,在IPM上设置温度传感器,根据该温度传感器,检测出IPM的第一温度。采集到第一温度后,确定该第一温度是否超过第一阈值。若超过,则说明IPM的温度较高,继续在该温度下工作,可能会损耗IPM,此时需要执行步骤8以降低第一频率从而降低IPM的温度;若第一温度未超过第一阈值,则说明IPM的温度比较合适,在该温度下不会导致IPM损坏,继续执行步骤3。
步骤3、确定第二温度,根据所述第二温度所属的温度区间,确定是否需要调整所述第一频率,若需要,则执行步骤4;否则,执行步骤5,所述第二温度为室外盘管的温度。
具体的,在确定出第一温度未超过第一阈值后,继续确定室外判断的第二温度所属的温度区间,进而根据温度区间确定是否需要调整第一频率。其中,温度区间包括的温度由低至高被划分为连续的第一区间、第二 区级、第三区间与第四区间。本步骤中,确定室外判断的第二温度属于哪个区间,根所属的区间不同,接下来的执行动作也不同。若第二温度属于第一区间或第二区间则执行步骤4以对第一频率进行调整,调整后返回步骤2,第一频率的变化,导致第二温度也发生变化,因此可以实现对室外盘管的第二温度的修正。若第二温度属于第三区间或第四区间,则执行步骤5以对变频空调的排气压力进行检测。
步骤4、调整所述第一频率,将所述变频压缩机在调整后的频率下运行第一预设时长,返回步骤2。
具体的,若步骤3中,确定出第二温度属于第一区间,则步骤4具体为:将第一频率增加第一设定值得到第二频率,将变频压缩机在第二频率下运行第一预设时长,返回步骤2;
若步骤3中,确定第二温度属于第二区间,则步骤4具体为:将第一频率增加第二设定值得到第三频率,将变频压缩机在第三频率下运行第一预设时长,返回步骤2;
上述的当第二温度属于第一区间或第二区间时,增大第一频率,从而提高变频空调的制冷能力。
若步骤3中,确定第二温度属于第三区间或第四区间,则执行步骤5。
其中,所述第一区间中,所述第二温度≤62℃;所述第二区间中,60℃<所述第二温度<67℃;所述第三区间中,67℃<所述第二温度<70℃;所述第四区间中,所述第二温度≥70℃。所述第一设定值大于所述第二设定值。由此可知,当第二温度相对较低时,需要对第一频率进行调整;当第二温度相对较高时,需要确定排气压力。
步骤5、确定排气压力是否小于预设阈值,若小于,则执行步骤6;否则,执行步骤7。
步骤6、调整所述第一频率,运行第二预设时长后返回步骤2。
步骤7、关闭所述变频压缩机。
本发明实施例中,变频空调的排气管上安装有压力开关。步骤5中,通过压力开关实现压力检测。当排气压力小于预设阈值时,执行步骤6以降低第一频率,并在降低后的频率下运行第二预设时长;当排气压力大于预设阈值,说明排气管上的压力太大,有可能损坏排气管,此时执行步骤 7以关闭变频压缩机,即关闭变频空调。
步骤8、调整所述第一频率,运行第三预设时长后返回步骤2。
本发明实施例提供的变频空调主动控制方法,开启变频压缩机使得变频压缩机在第一频率下运行第一时长使得室内温度趋于温度后,对IPM的温度进行检测,在IPM的温度未超过阈值处于安全环境的情况下,检测出室外盘管的温度,根据室外盘管的温度所属的温度区间决定是否对第一频率进行调整,若室外盘管温度相对较低,需要加大第一频率,使得变频空调的制冷能力增加,并且进一步对室外盘管的温度进行修正;若室外盘管温度相对较高,无需对第一频率进行调整,则检测排气压力,从而实现对变频空调的主动控制,实现高温环境下不衰减变频空调的制冷能力的目的。
下面,用一个具体的实施例对本发明变频空调主动控制方法进行详细说明。具体的,可参见图2,图2为本发明变频空调主动控制方法实施例二的流程图。本实施例包括:
100、检测室外温度是否超过第二阈值,若超过,则执行所述步骤1;否则,执行113不启动变频压缩机。
本发明实施例提供的变频空调主要是用于T3环境下,即温度超过50℃。如果满足该条件,才使用本案提供的变频空调主动控制方法。对于温度低于50℃的环境,可以采用目前现有的空调进行调温。
101、启动变频压缩机,以使所述变频压缩机在第一频率下运行第一时长。
本步骤中,开启变频空调,开始制冷,使得变频压缩机在第一频率下,如50~55HZ的频率下运行第一时长,如5分钟。
102、确定第一温度是否超过第一阈值,所述第一温度为智能功率模块IPM的温度,若未超过,则执行103;否则,执行112。
本实施例中,将第一阈值设置为90℃。本步骤中,检测室外的IPM的温度是否满足第一温度≤90℃的条件,若满足,则执行103;否则,执行112。
103、确定第二温度,根据第二温度所属的温度区间。
具体的,采集室外盘管的第二温度,根据第二温度以查表的方式,确 定该第二温度处于哪个区间。其中,温度区间包括的温度由低至高被划分为连续的第一区间、第二区级、第三区间与第四区间;第一区间中,第二温度≤62℃;第二区间中,60℃<第二温度<67℃;第三区间中,67℃<第二温度<70℃;第四区间中,第二温度≥70℃。若确定出第二温度属于第一区间,则执行104;若确定出第二温度属于第二区间,则执行105;若确定温度区间属于第三区间,则执行106;如确定出温度区间属于第四区间,则执行107;
104、将所述第一频率增加第一设定值得到第二频率,将所述变频压缩机在所述第二频率下运行所述第一预设时长。
具体的,第一设定值例如为5HZ,第一预设时长例如为1~10分钟。本步骤中,将第一频率调高后得到第二频率,在第二频率下运行1~10分钟,然后返回102。也就是说,当第二温度处于第一区间时,将第一频率增加,在增大的频率下运行1~10分钟后继续检测IPM的第一温度,在IPM的第一温度小于第一阈值时,继续采集室外盘管的第二温度,如果第二温度还是属于第一区间,则继续循环执行该过程,直到第二温度退出该第一区间,达到第二区间。
105、将所述第一频率增加第二设定值得到第三频率,将所述变频压缩机在所述第三频率下运行所述第一预设时长。
具体的,第二设定值例如为3HZ,第一预设时长例如为1~10分钟。本步骤中,将第一频率调高后得到第三频率,在第三频率下运行1~10分钟,然后返回102。也就是说,当第二温度处于第二区间时,将第一频率增加,在增大的频率下运行1~10分钟后继续检测IPM的第一温度,在IPM的第一温度小于第一阈值时,继续采集室外盘管的第二温度,如果第二温度还是属于第二区间,则继续循环执行该过程,直到第二温度退出该第二区间,达到第三区间。
106、保持第一频率运行,返回102;
本步骤中,将变频压缩机在第一频率下一直运行下去。
107、确定排气压力是否小于预设阈值,若小于,则执行108;否则,执行109;
本步骤中,需要检测排气压力,若排气压力≤4.8MPa,则执行108以 降低第一频率;否则,执行109以关闭变频空调。
108、将所述第一频率减少第三设定值得到第四频率,将所述变频压缩机在所述第四频率下运行所述第二预设时长,返回102。
具体的,第三设定值例如为3HZ,第二预设时长例如为1~10分钟。本步骤中,将第一频率降低后得到第四频率,在第四频率下运行1~10分钟,然后返回102。
109、关闭变频空调。
上述步骤104与105后,包括:
110、确定调整后的频率是否等于变频压缩机的最大频率,若是,则执行步骤111;否则,返回步骤102;
111、将变频压缩机在最大频率下运行,返回102。
112、将第一频率减少第四设定值得到第五频率,将变频压缩机在第五频率下运行第三预设时长,返回步骤102。
具体的,第四设定值例如为5HZ,第三预设时长例如为1~10分钟。本步骤中,将第一频率降低后得到第五频率,在第五频率下运行1~10分钟,然后返回102。
图3为本发明变频空调主动控制装置实施例一的结构示意图。本实施例提供的变频空调主动控制装置,其可实现本发明任意实施例提供的应用于变频空调主动控制装置侧的上述空中下载升级方法的各个步骤。具体的,本实施例提供的变频空调主动控制装置包括:
运行模块11,用于启动变频压缩机,以使所述变频压缩机在第一频率下运行第一时长;
IPM温度确定模块12,用于确定第一温度是否超过第一阈值,所述第一温度为智能功率模块IPM的温度,若未超过,则运行盘管温度确定模块13;否则,运行频率调整模块16,调整所述第一频率,运行第三预设时长后执行所述IPM温度确定模块12;
所述盘管温度确定模块13,用于确定第二温度,根据所述第二温度所属的温度区间,确定是否需要调整所述第一频率,若需要,则运行所述频率调整模块16,调整所述第一频率,将所述变频压缩机在调整后的频率下运行第一预设时长,运行所述IPM温度确定模块12;否则,运行排气压 力检测模块14,所述第二温度为室外盘管的温度;
所述排气压力检测模块14,用于确定排气压力是否小于预设阈值,若小于,则运行所述频率调整模块16,调整所述第一频率,运行第二预设时长后执行所述IPM温度确定模块12;否则,执行关闭模块15;
所述关闭模块15,用于关闭所述变频压缩机。
本发明实施例提供的变频空调主动控制方法,开启变频压缩机使得变频压缩机在第一频率下运行第一时长使得室内温度趋于温度后,对IPM的温度进行检测,在IPM的温度未超过阈值处于安全环境的情况下,检测出室外盘管的温度,根据室外盘管的温度所属的温度区间决定是否对第一频率进行调整,若室外盘管温度相对较低,需要加大第一频率,使得变频空调的制冷能力增加,并且进一步对室外盘管的温度进行修正;若室外盘管温度相对较高,无需对第一频率进行调整,则检测排气压力,从而实现对变频空调的主动控制,实现高温环境下不衰减变频空调的制冷能力的目的。
可选的,在本发明一实施例中,所述温度区间包括的温度由低至高被划分为连续的第一区间、第二区级、第三区间与第四区间;
若所述盘管温度确定模块13确定出所述第二温度属于所述第一区间,则所述频率调整模块16具体用于:将所述第一频率增加第一设定值得到第二频率,将所述变频压缩机在所述第二频率下运行所述第一预设时长,执行所述IPM温度确定模块12;
若所述盘管温度确定模块13确定出所述第二温度属于所述第二区间,则所述频率调整模块16具体用于:将所述第一频率增加第二设定值得到第三频率,将所述变频压缩机在所述第三频率下运行所述第一预设时长,执行所述IPM温度确定模块12;
若所述盘管温度确定模块13确定出所述第二温度属于所述第三区间或所述第四区间,则执行所述排气压力检测模块14。
可选的,在本发明一实施例中,所述第一区间中,所述第二温度≤62℃;
所述第二区间中,60℃<所述第二温度<67℃;
所述第三区间中,67℃<所述第二温度<70℃;
所述第四区间中,所述第二温度≥70℃。
可选的,在本发明一实施例中,若所述排气压力检测模块14确定出排气压力小于预设阈值,则所述频率调整模块16具体用于将所述第一频率减少第四设定值得到第五频率,将所述变频压缩机在所述第五频率下运行所述第三预设时长,执行所述IPM温度确定模块12。
图4为本发明变频空调主动控制装置实施例二的结构示意图,本实施例提供的变频空调主动控制装置,在上述图3的基础上,进一步的,还包括:
频率确定模块17,用于在所述频率调整模块16调整所述第一频率后,执行所述IPM温度确定模块12之前,确定所述调整后的频率是否等于所述变频压缩机的最大频率,若是,则执行所述运行模块11将所述变频压缩机在所述最大频率下运行,执行所述IPM温度确定模块12;否则,直接执行所述IPM温度确定模块12。
在请参照图4,本实施例提供的变频空调主动控制装置,还包括:
室外温度确定模块18,用于检测室外温度是否超过第二阈值,若超过,则执行所述运行模块11;否则,不启动所述变频压缩机。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (13)

  1. 一种变频空调主动控制方法,其特征在于,包括:
    步骤1、启动变频压缩机,以使所述变频压缩机在第一频率下运行第一时长;
    步骤2、确定第一温度是否超过第一阈值,所述第一温度为智能功率模块IPM的温度,若未超过,则执行步骤3;否则,执行步骤8;
    步骤3、确定第二温度,根据所述第二温度所属的温度区间,确定是否需要调整所述第一频率,若需要,则执行步骤4;否则,执行步骤5,所述第二温度为室外盘管的温度;
    步骤4、调整所述第一频率,将所述变频压缩机在调整后的频率下运行第一预设时长,返回步骤2;
    步骤5、确定排气压力是否小于预设阈值,若小于,则执行步骤6;否则,执行步骤7;
    步骤6、调整所述第一频率,运行第二预设时长后返回步骤2;
    步骤7、关闭所述变频压缩机;
    步骤8、调整所述第一频率,运行第三预设时长后返回步骤2。
  2. 根据权利要求1所述的方法,其特征在于,所述温度区间包括的温度由低至高被划分为连续的第一区间、第二区级、第三区间与第四区间;
    若所述步骤3中,确定出所述第二温度属于所述第一区间,则所述步骤4具体为:将所述第一频率增加第一设定值得到第二频率,将所述变频压缩机在所述第二频率下运行所述第一预设时长,返回步骤2;
    若所述步骤3中,确定所述第二温度属于所述第二区间,则所述步骤4具体为:将所述第一频率增加第二设定值得到第三频率,将所述变频压缩机在所述第三频率下运行所述第一预设时长,返回步骤2;
    若所述步骤3中,确定所述第二温度属于所述第三区间或所述第四区间,则执行所述步骤5。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一区间中,所述第二温度≤62℃;
    所述第二区间中,60℃<所述第二温度<67℃;
    所述第三区间中,67℃<所述第二温度<70℃;
    所述第四区间中,所述第二温度≥70℃。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述步骤6具体为:
    将所述第一频率减少第三设定值得到第四频率,将所述变频压缩机在所述第四频率下运行所述第二预设时长,返回步骤2。
  5. 根据权利要求1~3任一项所述的方法,其特征在于,所述步骤8具体为:
    将所述第一频率减少第四设定值得到第五频率,将所述变频压缩机在所述第五频率下运行所述第三预设时长,返回步骤2。
  6. 根据权利要求1~3任一项所述的方法,其特征在于,所述步骤4之后,返回所述步骤2之前,还包括:
    步骤9、确定所述调整后的频率是否等于所述变频压缩机的最大频率,若是,则执行步骤10;否则,返回步骤2;
    步骤10、将所述变频压缩机在所述最大频率下运行,返回步骤2。
  7. 根据权利要求1~3任一项所述的方法,其特征在于,所述步骤1之前,还包括:
    步骤0、检测室外温度是否超过第二阈值,若超过,则执行所述步骤1;否则,不启动所述变频压缩机。
  8. 一种变频空调主动控制装置,其特征在于,包括:
    运行模块,用于启动变频压缩机,以使所述变频压缩机在第一频率下运行第一时长;
    IPM温度确定模块,用于确定第一温度是否超过第一阈值,所述第一温度为智能功率模块IPM的温度,若未超过,则运行盘管温度确定模块;否则,运行频率调整模块,调整所述第一频率,运行第三预设时长后执行所述IPM温度确定模块;
    所述盘管温度确定模块,用于确定第二温度,根据所述第二温度所属的温度区间,确定是否需要调整所述第一频率,若需要,则运行所述频率调整模块,调整所述第一频率,将所述变频压缩机在调整后的频率下运行第一预设时长,运行所述IPM温度确定模块;否则,运行排气压力检测模块所述第二温度为室外盘管的温度;
    所述排气压力检测模块,用于确定排气压力是否小于预设阈值,若小于,则运行所述频率调整模块,调整所述第一频率,运行第二预设时长后执行所述IPM温度确定模块;否则,执行关闭模块;
    所述关闭模块,用于关闭所述变频压缩机。
  9. 根据权利要求8所述的装置,其特征在于,所述温度区间包括的温度由低至高被划分为连续的第一区间、第二区级、第三区间与第四区间;
    若所述盘管温度确定模块确定出所述第二温度属于所述第一区间,则所述频率调整模块具体用于:将所述第一频率增加第一设定值得到第二频率,将所述变频压缩机在所述第二频率下运行所述第一预设时长,执行所述IPM温度确定模块;
    若所述盘管温度确定模块确定出所述第二温度属于所述第二区间,则所述频率调整模块具体用于:将所述第一频率增加第二设定值得到第三频率,将所述变频压缩机在所述第三频率下运行所述第一预设时长,执行所述IPM温度确定模块;
    若所述盘管温度确定模块确定出所述第二温度属于所述第三区间或所述第四区间,则执行所述排气压力检测模块。
  10. 根据权利要求9所述的装置,其特征在于,
    所述第一区间中,所述第二温度≤62℃;
    所述第二区间中,60℃<所述第二温度<67℃;
    所述第三区间中,67℃<所述第二温度<70℃;
    所述第四区间中,所述第二温度≥70℃。
  11. 根据权利要求8~10任一项所述的装置,其特征在于,
    若所述排气压力检测模块确定出排气压力小于预设阈值,则所述频率调整模块具体用于将所述第一频率减少第四设定值得到第五频率,将所述变频压缩机在所述第五频率下运行所述第三预设时长,执行所述IPM温度确定模块。
  12. 根据权利要求8~10任一项所述的装置,其特征在于,还包括:
    频率确定模块,用于在所述频率调整模块调整所述第一频率后,执行所述IPM温度确定模块之前,确定所述调整后的频率是否等于所述变频压缩机的最大频率,若是,则执行所述运行模块将所述变频压缩机在所述最 大频率下运行,执行所述IPM温度确定模块;否则,直接执行所述IPM温度确定模块。
  13. 根据权利要求8~10任一项所述的装置,其特征在于,还包括:
    室外温度确定模块,用于检测室外温度是否超过第二阈值,若超过,则执行所述运行模块;否则,不启动所述变频压缩机。
PCT/CN2016/104394 2016-06-28 2016-11-02 变频空调主动控制方法及装置 WO2018000680A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16907076.0A EP3477214B1 (en) 2016-06-28 2016-11-02 Active control method and device for inverter air conditioner
ES16907076T ES2949543T3 (es) 2016-06-28 2016-11-02 Método y dispositivo de control activo para un acondicionador de aire inversor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610509034.2A CN106196784B (zh) 2016-06-28 2016-06-28 变频空调主动控制方法及装置
CN201610509034.2 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018000680A1 true WO2018000680A1 (zh) 2018-01-04

Family

ID=57464099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104394 WO2018000680A1 (zh) 2016-06-28 2016-11-02 变频空调主动控制方法及装置

Country Status (4)

Country Link
EP (1) EP3477214B1 (zh)
CN (1) CN106196784B (zh)
ES (1) ES2949543T3 (zh)
WO (1) WO2018000680A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019233815A1 (en) * 2018-06-05 2019-12-12 Arcelik Anonim Sirketi A refrigerator
CN115823712A (zh) * 2022-12-08 2023-03-21 宁波奥克斯电气股份有限公司 一种防止空调误停机的控制方法及空调器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059184B (zh) * 2018-06-27 2021-01-26 奥克斯空调股份有限公司 温度保护控制方法及空调器
CN110513823B (zh) * 2019-09-05 2021-04-02 宁波奥克斯电气股份有限公司 一种智能功率模块的温度控制方法、装置以及空调器
CN110940032B (zh) * 2019-11-19 2021-02-09 珠海格力电器股份有限公司 功率模块温度检测控制方法、装置、存储介质及空调器
CN113124533B (zh) * 2021-04-02 2022-05-24 宁波奥克斯电气股份有限公司 一种空调制冷控制方法、装置及空调器
CN114811914B (zh) * 2022-05-13 2023-09-08 宁波奥克斯电气股份有限公司 一种空调器的控制方法和空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274065A (zh) * 1999-05-14 2000-11-22 三星电子株式会社 一种防止空调器过热的方法
JP2002286306A (ja) * 2001-03-28 2002-10-03 Fujitsu General Ltd 空気調和機
JP2002286272A (ja) * 2001-03-27 2002-10-03 Fujitsu General Ltd 空気調和機
CN104236029A (zh) * 2014-07-11 2014-12-24 珠海格力电器股份有限公司 空调保护***及其控制方法、空调器
CN104566817A (zh) * 2014-12-26 2015-04-29 广东美的制冷设备有限公司 空调器温度应力的监控方法和***

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243246A (ja) * 2001-02-15 2002-08-28 Sanden Corp 空調装置
JP4127230B2 (ja) * 2004-03-26 2008-07-30 株式会社デンソー 車両用空調装置
CN102661272A (zh) * 2012-05-24 2012-09-12 山东龙都瑞麟祥机电股份有限公司 电动汽车用调频空调压缩机驱动器
CN102748275B (zh) * 2012-07-16 2014-11-12 海信(山东)空调有限公司 一种变频空调器压缩机频率边界控制方法
US10197320B2 (en) * 2014-05-09 2019-02-05 Gd Midea Heating & Ventilating Equipment Co., Ltd. Method and apparatus for adjusting operating frequency of inverter compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274065A (zh) * 1999-05-14 2000-11-22 三星电子株式会社 一种防止空调器过热的方法
JP2002286272A (ja) * 2001-03-27 2002-10-03 Fujitsu General Ltd 空気調和機
JP2002286306A (ja) * 2001-03-28 2002-10-03 Fujitsu General Ltd 空気調和機
CN104236029A (zh) * 2014-07-11 2014-12-24 珠海格力电器股份有限公司 空调保护***及其控制方法、空调器
CN104566817A (zh) * 2014-12-26 2015-04-29 广东美的制冷设备有限公司 空调器温度应力的监控方法和***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019233815A1 (en) * 2018-06-05 2019-12-12 Arcelik Anonim Sirketi A refrigerator
CN115823712A (zh) * 2022-12-08 2023-03-21 宁波奥克斯电气股份有限公司 一种防止空调误停机的控制方法及空调器

Also Published As

Publication number Publication date
ES2949543T3 (es) 2023-09-29
EP3477214A4 (en) 2020-03-25
CN106196784B (zh) 2019-02-26
EP3477214B1 (en) 2023-05-17
EP3477214A1 (en) 2019-05-01
CN106196784A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018000680A1 (zh) 变频空调主动控制方法及装置
CN107166642B (zh) 一种变频空调室外直流风机控制方法
CN104613651B (zh) 变频空气源热泵热水器频率调节方法
CN107676939B (zh) 一种定频空调的控制方法、控制***及控制装置
WO2018049717A1 (zh) 一种适于空调器的达温停机控制方法及空调器
CN104019528B (zh) 变频空调高效节能运转控制算法
WO2018176621A1 (zh) 空调器制热运行的控制方法
CN109539511B (zh) 压缩机、其频率控制方法、空调器、计算机设备和存储介质
CN103836762B (zh) 变频空调及其***控制方法和装置
US9879893B2 (en) Air conditioning system, method for controlling air conditioning system, and outdoor apparatus of air conditioning system
US9797642B2 (en) System and method for controlling an air conditioning system and an outdoor apparatus of the system
CN104913445B (zh) 风机档位的控制方法、风机档位的控制***和空调器
CN112268349B (zh) 空调及其控制方法、计算机可读存储介质
CN107289575B (zh) 防凝露控制方法及***
WO2019148972A1 (zh) 空调防凝露控制的方法、装置及计算机存储介质
CN105650801A (zh) 控制空调进入除霜模式的方法、装置及空调器
CN106352510A (zh) 适于空调器的自动模式控制方法及装置
CN104566769B (zh) 空调节能控制方法和***
CN105042763B (zh) 变频磁悬浮离心式中央空调机组正常运行的控制方法
CN105465956B (zh) 一种双缸变容空调器的控制方法
CN108917117A (zh) 空调及其控制方法、装置
CN109425195A (zh) 冰箱温度控制方法、装置及冰箱
CN105042768A (zh) 变频空调机制冷运行时防止室内换热器结霜的控制方法
CN105444419B (zh) 空气能热水器的压缩机频率控制的方法及装置
CN110848899B (zh) 一种变频空调运行控制方法、计算机可读存储介质及空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016907076

Country of ref document: EP

Effective date: 20190128