WO2017222115A1 - Method for measuring thermal property by using lock-in thermography - Google Patents

Method for measuring thermal property by using lock-in thermography Download PDF

Info

Publication number
WO2017222115A1
WO2017222115A1 PCT/KR2016/012445 KR2016012445W WO2017222115A1 WO 2017222115 A1 WO2017222115 A1 WO 2017222115A1 KR 2016012445 W KR2016012445 W KR 2016012445W WO 2017222115 A1 WO2017222115 A1 WO 2017222115A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
sample module
source substrate
thermal
phase
Prior art date
Application number
PCT/KR2016/012445
Other languages
French (fr)
Korean (ko)
Inventor
김선진
이계승
허환
김건희
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Publication of WO2017222115A1 publication Critical patent/WO2017222115A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/30Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements
    • G01N25/32Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements using thermoelectric elements

Definitions

  • an average thermal property of the formed module can be estimated. It relates to a thermal property measurement method using.
  • thermophysical measuring apparatus using a laser as shown in FIG. 1 has been developed, but in the case of a thermophysical measuring apparatus using a laser, a semiconductor module in which a plurality of chips having different thermal properties are stacked is formed. In the case of the average thermal property measurement ability is reduced, the both sides of the sample must be flat, so the incident and reflection of the laser beam is made precisely, there is a disadvantage that the target object must be processed.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a method for obtaining average thermal properties of a module in which a plurality of objects having different thermal properties are combined.
  • the arrangement step (S100) is located in the sample module 2 on the heat source substrate (1) having a plurality of heat sources;
  • a thermal property estimating step (S400) of estimating average thermal properties of the sample module 2 using the signal measured in the signal measuring step (S300).
  • the signal measured in the signal measuring step (S300) is characterized in that any one or more selected from infrared, amplitude, phase signal.
  • thermal property estimation step (S400) it characterized in that the average thermal diffusion length of the sample module 2 by substituting the measured phase signal to the following equation (1).
  • thermal property estimation step (S400) it characterized in that the average thermal diffusion length of the sample module 2 by substituting the measured phase signal to the following equation (2).
  • the arrangement step (S100) has a different thickness ( , The first sample module and the second sample module of) are respectively positioned on the heat source substrate 1, and the signal measuring step S300 is performed by measuring the phase signal of the first sample module S310 and the second sample module. It includes a phase signal measuring step (S320), the thermal property estimation step (S400), by substituting the phase signals measured in the first and second sample modules into the following equation 3, the average thermal diffusion length of the sample module (2) It is characterized by estimating.
  • the plurality of heat sources of the heat source substrate 1 is made of a polyresist that emits heat when power is applied, and the plurality of heat sources are connected in series.
  • the disposing step S100 may include a substrate disposing step S110 for positioning the heat source substrate 1 on an XY plane, and a portion of the plurality of heat sources of the heat source substrate 1 may be partially connected to the sample module 2. And a sample disposition step S120 for placing the sample module 2 on one surface of the heat source substrate 1 so that the remaining one does not come into contact with each other, and the signal applying step S200 includes the sample module 2.
  • a substrate disposing step S110 for positioning the heat source substrate 1 on an XY plane, and a portion of the plurality of heat sources of the heat source substrate 1 may be partially connected to the sample module 2.
  • a sample disposition step S120 for placing the sample module 2 on one surface of the heat source substrate 1 so that the remaining one does not come into contact with each other
  • the signal applying step S200 includes the sample module 2.
  • the signal measuring step (S300) is a signal appearing at the heat source point (d, e) formed on the heat source substrate 1 that is not in contact with the sample module 2, and the sample module (2)
  • the sample module 2 located in the Z-axis direction of the heat source points (a, b, c) formed in the heat source substrate 1 in contact with It characterized by measuring the signal that appears at the top surface.
  • first heat source points (a, b, c) formed on the heat source substrate 1 in contact with the sample module 2 are located on the same line but spaced apart from each other by a predetermined distance so as not to cause thermal interference with each other.
  • the second heat source points d and e formed on the heat source substrate 1 that are not in contact with (2) are centered on a central heat source point b located at the center of the first heat source points a, b, and c. It is characterized in that spaced apart a certain distance in the X-axis direction or Y-axis direction.
  • the thermal diffusivity is 0.1mm 2 / s ⁇ 1mm 2 / s, a thickness of 0.1mm ⁇ 0.5mm between the heat source substrate 1 and the sample module (2) Or it characterized in that it further comprises a thin film installation step (S130) positioned on the sample module.
  • the method of measuring physical properties using the phase-locked thermal imaging method of the present invention having the above-described configuration includes a signal appearing on the surface of a sample by transferring heat energy emitted from a heat source substrate to a stacked sample, and appearing on a heat source substrate where thermal energy is emitted.
  • a signal By using a signal, an average thermal property of a sample module in which sample units having different thermal properties are stacked may be measured.
  • the heat source substrate is capable of dissipating heat at a plurality of designated points, it has the advantage of separately measuring and reading the average property data of the samples at different positions.
  • FIG. 1 is a conceptual view showing a thermal property measuring apparatus using a conventional laser.
  • FIG. 2 is a flowchart illustrating a method of measuring thermal properties using a phase locked thermal imaging technique.
  • FIG. 3 is a conceptual diagram illustrating a method for measuring thermal properties using a phase locked thermal imaging technique.
  • FIG. 4 is a conceptual diagram showing a position where the phase is measured in the sample module.
  • FIG. 5 is a conceptual view showing that the sample module is located on the heat source substrate.
  • FIG. 6 is a side view showing a phase signal measurement of a thermal imaging camera.
  • the thermophysical measuring equipment used in the present invention includes an external modulation application device for applying a thermal signal, a thermal imaging camera for measuring a thermal signal radiated from a sample module, a display unit for outputting a thermal signal measured from a thermal imaging camera, and a local part. It includes a heat source substrate for generating a heat source.
  • the basic measurement principle through the thermophysical measuring equipment is to generate a periodic heat source in the local part of the lower part of the sample module to be measured by applying a periodic voltage to the heat source substrate, and use the phase-locked thermal imaging technique to position and phase the sample module.
  • the thermal property measuring method includes a disposition step (S100) in which the sample module 2 is positioned on the heat source substrate 1, and a signal applying a predetermined waveform of energy to the heat source substrate 1.
  • Thermal energy is transmitted through the step S200 and the sample module 2 which is in contact with the heat source of the heat source substrate 1 so that the signal appearing on the upper surface of the sample module 2 and the sample module 2 are not disposed.
  • the sample module 2 is positioned on the heat source substrate 1 in the arrangement step S100, and is uniform to the heat sources of the heat source substrate 1 in the signal applying step S200.
  • thermal energy is transferred to the sample module 2 positioned above, and the sample is in contact with the heat source of the heat source substrate 1 in which thermal energy is emitted in the signal measuring step S300.
  • Thermal energy is transmitted through the module 2 to generate a signal appearing on the upper surface of the sample module 2 corresponding to the heat source and a signal appearing at the heat source of the heat source substrate 1 in which the sample module 2 is not disposed.
  • the measurement is performed separately, and the average thermal properties of the sample module 2 are measured using the signal measured in the thermal property estimation step S400.
  • the thermal property measurement method using the phase-locked thermal imaging method is an infrared ray, amplitude appearing at one point on the top surface of the heat source substrate 1 and the sample module 2 corresponding to the heat sources in the signal measuring step 300. It is sufficient to measure any one or more of the phase signals.
  • the external modulation applying device 3 for applying a signal to the heat source substrate 1 and the plurality of sample units 2-1, 2-2, 2-3, having different thermal properties All that is required is a sample module 2 in which 2-4 and 2-5 are combined and an infrared camera 5 for measuring a signal appearing in the heat source substrate 1. The signal is measured by varying the magnification of the lens 4 according to the size of the specimen.
  • a thermal image measuring apparatus may be used to detect a thermal signal from the sample module 2 and estimate a defect depth of the sample module 2.
  • Infrared signals of the heat source substrate 1 and the sample module 2 are measured using an infrared camera.
  • the amplitude and phase signals of the temperature can be obtained from the measured infrared signals. That is, when energy is applied to the heat source of the heat source substrate 1 at regular intervals, heat energy is transferred through the sample module 2 in contact with the heat source, and heat energy is transferred to the upper surface of the sample module 2 after applying energy to the heat source.
  • the phase signal can be obtained using the delay up to.
  • Various methods may be used to apply the energy of a predetermined waveform to the heat source substrate 1.
  • a function generator (6) to input a signal to the external modulation applying device (3) to generate heat energy from the heat source of the heat source substrate (1) selected, the heat source substrate (1) and the sample module (2)
  • the measured signal is measured using the infrared camera 5, and the specific image measured using the infrared camera 5 is input to the control unit 7 and then, according to the position and the number of heat sources shown in the measured image.
  • the average thermal diffusion length of the sample module 2 can be measured.
  • the thermal property estimating step S400 may be performed by applying a signal measured by selecting any one of Equations 1, 2, and 3 below to estimate an average thermal diffusion length of the sample module 2. Can be.
  • phase signal ( ) when heat energy is generated from the heat sources of the heat source substrate 1 positioned in the XY plane, a phase signal that is a reference in the heat source ( ) Is measured, and the heat energy transferred from the heat source is transferred to the sample module 2 located in the Z axis direction of the heat source substrate 1 and transmitted through the sample module 2 on the upper surface of the Z axis of the sample module 2. Phase signal ( ) Is measured.
  • the thermal diffusion length is related to the special dimensions of the sample module by the periodic heat source, and it refers to how long a long distance thermal change takes to cause a temperature change that can be detected at the current position.
  • the average thermal diffusion length of the sample module 2 is obtained by substituting the phase signals measured at different points in 1.
  • phase signal as a reference generated from the heat source of the heat source substrate 1
  • the reference signal is measured by measuring a phase signal at a heat source formed at a point of the heat source substrate 1 where the sample module 2 is not located.
  • Phase signal Is the reference phase signal ( Can be used instead.
  • the contact surfaces of the heat source substrate 1 and the sample module 2 are not integrally contacted with each other, so that an error may occur in obtaining accurate thermal properties of the sample module 2.
  • the contact phase resistance of the heat source substrate 1 and the sample module 2 can be By using Equation 2 including), the more accurate average length of thermal diffusion of the sample module 2 can be obtained.
  • the contact phase resistance ( It is also possible to measure the average thermal diffusion length of the sample module 2 without considering).
  • a plurality of heat sources a, b, c, d, and e are formed on one surface of the heat source substrate 1. .
  • the heat sources are made of polyregisters to release heat when power is applied.
  • the plurality of heat sources are connected in series by a conductive wire made of a material such as aluminum so that power can be applied to the polyresist.
  • the plurality of heat sources simultaneously dissipate heat in response to a signal applied from the outside and transmits the heat to the contacting sample module.
  • phase signal is measured only at one point when measuring the phase signal in the signal measuring step S300, when a defect is formed in the sample module 2 positioned in the Z-axis direction of the heat source, Alternatively, when the thickness of the sample module constituting the sample module 2 is not constant, the reliability of the measured average thermal diffusion length is lowered. Therefore, it is preferable to measure the phase signal at a plurality of points to compensate for this.
  • the first heat source points (a, b, c) formed on the contact surface is located on the same line, but are formed at a predetermined distance apart from each other to prevent thermal interference
  • the second heat source points (d, e) formed on the non-contact surface are
  • the first heat source points a, b, and c may be formed to be spaced apart from each other by a predetermined distance in the X-axis direction and the Y-axis direction with respect to the center heat source point b located at the center.
  • the sample module 2 in the batch step (S100) is a material (graphite, Cu, Si) having a thermal diffusivity of 70 ⁇ 90mm 2 / s
  • the LIT device calculates the phase value representing the time the heat travels, even at 100 frame rate, only one shot per 10 ms can be taken, and the exposure time also has a specific limitation that requires 2 ms. It is difficult to measure without opaque material.
  • a thin film installation step S130 may be further provided between 1) and the sample module 2 or on the sample surface.
  • the infrared camera 5 is a mid-infrared camera using a wavelength band of 3 ⁇ 5 ⁇ m, 7 ⁇ 12 ⁇ m in the case of far infrared camera to transmit a 3 ⁇ 11 ⁇ m wavelength band
  • the sample module 2 having a thermal diffusivity of 10 mm 2 / s or more can also measure the thermal properties.
  • thermal property measurement method using the present inventors phase locked thermal imaging technique using the thermal diffusivity measured (thermal diffusivity) It is possible to find (mm 2 / s).
  • thermal diffusivity is calculated

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The present invention relates to a method for measuring a thermal property by using lock-in thermography and, more specifically, to a method for measuring a thermal property by using lock-in thermography, capable of measuring a mean thermal property even though a plurality of unit bodies having different thermal properties are stacked to form a single module, the method comprising: an arrangement step of placing a sample module on a heat source substrate including a plurality of heat sources; a signal application step of applying a predetermined waveform of energy to the heat source substrate; a signal measurement step of measuring a signal appearing on the upper surface of the sample module according to thermal energy transferred through the sample module coming in contact with heat sources of the heat source substrate, and a signal appearing on heat sources of the heat source substrate on which the sample module is not arranged; and a thermal property estimation step of estimating a mean thermal property of the sample module by using the signals measured in the signal measurement step.

Description

위상잠금 열화상 기법을 이용한 열물성 측정방법Thermal property measurement method using phase locked thermal imaging technique
본 발명은, 반도체, 반도체에 사용되는 웨이퍼와 같은 서로 다른 열물성을 가지는 복수개의 개체가 적층되어 하나의 모듈을 형성할 경우, 형성된 모듈의 평균 열물성을 추정할 수 있는, 위상잠금 열화상 기법을 이용한 열물성 측정방법에 관한 것이다.According to the present invention, when a plurality of objects having different thermal properties such as semiconductors and wafers used for semiconductors are stacked to form one module, an average thermal property of the formed module can be estimated. It relates to a thermal property measurement method using.
TSV(Trough Silicon Via) 기반 3차원 적층 기술을 이용하여 플래쉬 메모리, DDR 메모리, Wide IO 메모리 적층을 통한 대용량, 초고속 메모리를 개발하는데 있어 수율 문제, 테스트, 그리고 검사 기법의 부재로 상용화에 어려움을 겪고 있다.It is difficult to commercialize due to the lack of yield problems, test, and inspection techniques in developing large-capacity, high-speed memory through stacking of flash memory, DDR memory, and wide IO memory using TSV (Through Silicon Via) based three-dimensional stacking technology. have.
유럽은 2010년부터 총 36,5M 유로 이상의 연구비를 투입한 Efficient Silicon Multi-chip System-in-Package Integration - Reliability, Failure Analysis and Test (ESiP) 과제를 9개국의 41개의 기관이 참여하여 시작하고 있으며, 주된 연구분야는 TSV 기반 3차원 SiP의 파괴 모드 분석이며 이를 위해 Lock-in Thermography 기술이 비파괴검사 중 주목을 받고 있으며 FIB, SAM, SEM, Photoemission microscopy 기술도 함께 연구되고 있다.Since 2010, 41 institutions from nine countries have been involved in the Efficient Silicon Multi-chip System-in-Package Integration-Reliability, Failure Analysis and Test (ESiP) project, which has invested more than 36,5M euros. The main research area is the failure mode analysis of TSV-based three-dimensional SiP. For this purpose, Lock-in Thermography technology is attracting attention during non-destructive testing, and FIB, SAM, SEM and Photoemission microscopy are also being studied.
또한, 3D-FI (Fault Isolation) 기술로, 위상잠금 열화상 기법(LIT, Lock-in thermography)을 이용해 국부적 발열에 의한 적외선 열방사를 검출해 3차원 결함 위치를 추적하는 장비가 개발되고 있으나, LIT의 핵심 기술로, 열원 깊이(Z축) 추정방법에는 시편자체의 열물성 데이터(열전도도, 밀도, 비열 등)를 필요로 하는데 반하여, 실제 시편들은 상당히 다양한 물질들로 복합되어 있기 때문에 전체적인 열물성 데이터를 구하기가 쉽지 않은 문제가 있다.In addition, as a 3D-FI (Fault Isolation) technology, a device for detecting a three-dimensional defect location by detecting infrared thermal radiation caused by local heating using a phase-locked thermography (LIT) has been developed. As a core technology of LIT, the method of estimating the heat source depth (Z-axis) requires the thermal property data (thermal conductivity, density, specific heat, etc.) of the specimen itself, whereas the actual specimen is composed of a large variety of materials, so the overall heat There is a problem that property data is not easy to obtain.
상기와 같은 단점을 해결하고자 도 1에 도시된 바와 같은 레이저를 이용한 열물성 측정장치가 개발되었으나, 레이저를 이용한 열물성 측정장치의 경우 서로 다른 열물성을 가지는 복수개의 칩이 적층되어 형성되는 반도체모듈의 경우 평균 열물성 측정 능력이 떨어질 뿐만 아니라, 샘플 양면이 평탄해야 레이저빔의 입사 및 반사가 정밀하게 이루어지기 때문에 대상 물체를 가공해야 하는 단점을 가진다.In order to solve the above disadvantages, a thermophysical measuring apparatus using a laser as shown in FIG. 1 has been developed, but in the case of a thermophysical measuring apparatus using a laser, a semiconductor module in which a plurality of chips having different thermal properties are stacked is formed. In the case of the average thermal property measurement ability is reduced, the both sides of the sample must be flat, so the incident and reflection of the laser beam is made precisely, there is a disadvantage that the target object must be processed.
따라서, 샘플의 국부 영역에 대한 수직 1차원적 열물성(열확산길이 및 열확산도)를 측정하기 위한 방법의 필요성이 대두되고 있다.Thus, there is a need for a method for measuring vertical one-dimensional thermal properties (thermal diffusion length and thermal diffusivity) for a localized region of a sample.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서 본 발명의 목적은, 서로 다른 열물성을 가지는 복수개의 개체가 결합된 모듈의 평균 열물성을 구할 수 있는 방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for obtaining average thermal properties of a module in which a plurality of objects having different thermal properties are combined.
상기한 바와 같은 목적을 달성하기 위한 본 발명인 위상잠금 열화상 기법을 이용한 열물성 측정방법은, 복수 개의 열원이 구비된 열원 기판(1)에 시료 모듈(2)이 위치되는 배치단계(S100); 상기 열원 기판(1)에 일정 파형의 에너지를 인가하는 신호 인가단계(S200); 상기 열원 기판(1)의 열원과 맞닿은 상기 시료 모듈(2)을 통해 열에너지가 전달되어 상기 시료 모듈(2)의 상면에서 나타나는 신호와, 상기 시료 모듈(2)이 배치되지 않는 상기 열원 기판(1)의 열원에서 나타나는 신호를 측정하는 신호 측정단계(S300); 및 상기 신호 측정단계(S300)에서 측정된 신호를 이용하여 상기 시료 모듈(2)의 평균 열물성을 추정하는 열물성 추정단계(S400);를 포함하는 것을 특징으로 한다.Thermal property measurement method using a phase-locked thermal imaging method of the present invention for achieving the above object, the arrangement step (S100) is located in the sample module 2 on the heat source substrate (1) having a plurality of heat sources; A signal applying step (S200) of applying energy of a predetermined waveform to the heat source substrate (1); Thermal energy is transmitted through the sample module 2 in contact with the heat source of the heat source substrate 1 so that a signal appears on the upper surface of the sample module 2 and the heat source substrate 1 on which the sample module 2 is not disposed. A signal measuring step (S300) of measuring a signal appearing at the heat source; And a thermal property estimating step (S400) of estimating average thermal properties of the sample module 2 using the signal measured in the signal measuring step (S300).
또한, 상기 신호 측정단계(S300)에서 측정되는 신호는 적외선, 진폭, 위상 신호 중 선택되는 어느 하나 이상인 것을 특징으로 한다.In addition, the signal measured in the signal measuring step (S300) is characterized in that any one or more selected from infrared, amplitude, phase signal.
또한, 상기 열물성 추정단계(S400)는, 측정된 위상 신호를 하기 식 1에 대입하여 상기 시료 모듈(2)의 평균 열확산 길이를 추정하는 것을 특징으로 한다.In addition, the thermal property estimation step (S400), it characterized in that the average thermal diffusion length of the sample module 2 by substituting the measured phase signal to the following equation (1).
[식 1][Equation 1]
Figure PCTKR2016012445-appb-I000001
Figure PCTKR2016012445-appb-I000001
(이때,
Figure PCTKR2016012445-appb-I000002
은 시료 모듈의 두께,
Figure PCTKR2016012445-appb-I000003
는 시료 모듈이 배치되지 않는 열원 기판의 열원에서 측정되는 위상 신호,
Figure PCTKR2016012445-appb-I000004
은 열원 기판의 열원과 맞닿은 시료 모듈을 통해 열에너지가 전달되어 시료 모듈의 상면에서 측정되는 위상 신호,
Figure PCTKR2016012445-appb-I000005
는 시료의 평균 열확산길이)
(At this time,
Figure PCTKR2016012445-appb-I000002
Is the thickness of the sample module,
Figure PCTKR2016012445-appb-I000003
Is a phase signal measured at a heat source of a heat source substrate on which a sample module is not disposed,
Figure PCTKR2016012445-appb-I000004
Is a phase signal measured on the upper surface of the sample module by transferring heat energy through the sample module in contact with the heat source of the heat source substrate,
Figure PCTKR2016012445-appb-I000005
Is the average thermal diffusion length of the sample)
또한, 상기 열물성 추정단계(S400)는, 측정된 위상 신호를 하기 식 2에 대입하여 상기 시료 모듈(2)의 평균 열확산 길이를 추정하는 것을 특징으로 한다.In addition, the thermal property estimation step (S400), it characterized in that the average thermal diffusion length of the sample module 2 by substituting the measured phase signal to the following equation (2).
[식 2][Equation 2]
Figure PCTKR2016012445-appb-I000006
Figure PCTKR2016012445-appb-I000006
(이때,
Figure PCTKR2016012445-appb-I000007
은 시료 모듈의 두께,
Figure PCTKR2016012445-appb-I000008
는 시료 모듈이 배치되지 않는 열원 기판의 열원에서 측정되는 위상 신호,
Figure PCTKR2016012445-appb-I000009
은 열원 기판의 열원과 맞닿은 시료 모듈을 통해 열에너지가 전달되어 시료 모듈의 상면에서 측정되는 위상 신호,
Figure PCTKR2016012445-appb-I000010
는 열원 기판과 시료 모듈의 접촉 위상 저항,
Figure PCTKR2016012445-appb-I000011
는 시료의 평균 열확산길이)
(At this time,
Figure PCTKR2016012445-appb-I000007
Is the thickness of the sample module,
Figure PCTKR2016012445-appb-I000008
Is a phase signal measured at a heat source of a heat source substrate on which a sample module is not disposed,
Figure PCTKR2016012445-appb-I000009
Is a phase signal measured on the upper surface of the sample module by transferring heat energy through the sample module in contact with the heat source of the heat source substrate,
Figure PCTKR2016012445-appb-I000010
Is the contact phase resistance of the heat source substrate and the sample module,
Figure PCTKR2016012445-appb-I000011
Is the average thermal diffusion length of the sample)
또한, 상기 배치단계(S100)는 서로 다른 두께(
Figure PCTKR2016012445-appb-I000012
,
Figure PCTKR2016012445-appb-I000013
)의 제1 시료 모듈과 제2 시료 모듈이 각각 상기 열원 기판(1)에 위치되고, 상기 신호 측정단계(S300)는, 제1 시료 모듈의 위상 신호 측정단계(S310)와 제2 시료 모듈의 위상 신호 측정단계(S320)를 포함하며, 상기 열물성 추정단계(S400)는, 제1 및 제2 시료 모듈에서 측정된 위상 신호를 하기 식 3에 대입하여 상기 시료 모듈(2)의 평균 열확산 길이를 추정하는 것을 특징으로 한다.
In addition, the arrangement step (S100) has a different thickness (
Figure PCTKR2016012445-appb-I000012
,
Figure PCTKR2016012445-appb-I000013
The first sample module and the second sample module of) are respectively positioned on the heat source substrate 1, and the signal measuring step S300 is performed by measuring the phase signal of the first sample module S310 and the second sample module. It includes a phase signal measuring step (S320), the thermal property estimation step (S400), by substituting the phase signals measured in the first and second sample modules into the following equation 3, the average thermal diffusion length of the sample module (2) It is characterized by estimating.
[식 3][Equation 3]
Figure PCTKR2016012445-appb-I000014
Figure PCTKR2016012445-appb-I000014
(이때,
Figure PCTKR2016012445-appb-I000015
은 제1 시료 모듈의 두께,
Figure PCTKR2016012445-appb-I000016
는 제2 시료 모듈의 두께,
Figure PCTKR2016012445-appb-I000017
은 열원 기판의 열원과 맞닿은 제1 시료 모듈을 통해 열에너지가 전달되어 제1 시료 모듈의 상면에서 측정되는 위상 신호
Figure PCTKR2016012445-appb-I000018
에서 제1 시료 모듈이 배치되지 않는 열원 기판의 열원에서 측정되는 위상 신호
Figure PCTKR2016012445-appb-I000019
를 빼준 위상차,
Figure PCTKR2016012445-appb-I000020
는 열원 기판의 열원과 맞닿은 제2 시료 모듈을 통해 열에너지가 전달되어 제2 시료 모듈의 상면에서 측정되는 위상 신호
Figure PCTKR2016012445-appb-I000021
에서 제2 시료 모듈이 배치되지 않는 열원 기판의 열원에서 측정되는 위상 신호
Figure PCTKR2016012445-appb-I000022
를 빼준 위상차,
Figure PCTKR2016012445-appb-I000023
는 시료의 평균 열확산길이)
(At this time,
Figure PCTKR2016012445-appb-I000015
Is the thickness of the first sample module,
Figure PCTKR2016012445-appb-I000016
Is the thickness of the second sample module,
Figure PCTKR2016012445-appb-I000017
Is a phase signal measured at an upper surface of the first sample module by transferring heat energy through the first sample module in contact with the heat source of the heat source substrate.
Figure PCTKR2016012445-appb-I000018
Signal measured at a heat source of a heat source substrate on which the first sample module is not disposed
Figure PCTKR2016012445-appb-I000019
Phase difference minus
Figure PCTKR2016012445-appb-I000020
Is a phase signal measured on the upper surface of the second sample module by transferring heat energy through the second sample module in contact with the heat source of the heat source substrate.
Figure PCTKR2016012445-appb-I000021
Signal measured at a heat source of a heat source substrate on which a second sample module is not disposed
Figure PCTKR2016012445-appb-I000022
Phase difference minus
Figure PCTKR2016012445-appb-I000023
Is the average thermal diffusion length of the sample)
또한, 상기 열원 기판(1)의 복수 개의 열원은 전원이 인가되면 열을 방출하는 폴리레지스터로 이루어지고, 상기 복수 개의 열원은 직렬로 연결된 것을 특징으로 한다.In addition, the plurality of heat sources of the heat source substrate 1 is made of a polyresist that emits heat when power is applied, and the plurality of heat sources are connected in series.
또한, 상기 배치단계(S100)는 상기 열원 기판(1)을 XY평면에 위치시키는 기판 배치단계(S110)와, 상기 열원 기판(1)의 복수 개의 열원 중, 일부는 상기 시료 모듈(2)과 접촉되고, 나머지는 접촉되지 않도록, 상기 열원 기판(1)의 일면에 상기 시료 모듈(2)을 위치시키는 시료 배치단계(S120)를 포함하고, 상기 신호 인가단계(S200)는 상기 시료 모듈(2)과 접촉되는 상기 열원 기판(1)에 형성된 열원 지점(a, b, c)과, 상기 시료 모듈(2)과 접촉되지 않는 상기 열원 기판(1)에 형성된 열원 지점(d, e)에 일정 파형의 에너지를 인가하며, 상기 신호 측정단계(S300)는 상기 시료 모듈(2)과 접촉되지 않는 상기 열원 기판(1)에 형성된 열원 지점(d, e)에서 나타나는 신호와, 상기 시료 모듈(2)과 접촉되는 상기 열원 기판(1)에 형성된 열원 지점(a, b, c)의 Z축 방향에 위치된 상기 시료 모듈(2)의 상면에서 나타나는 신호를 측정하는 것을 특징으로 한다.In addition, the disposing step S100 may include a substrate disposing step S110 for positioning the heat source substrate 1 on an XY plane, and a portion of the plurality of heat sources of the heat source substrate 1 may be partially connected to the sample module 2. And a sample disposition step S120 for placing the sample module 2 on one surface of the heat source substrate 1 so that the remaining one does not come into contact with each other, and the signal applying step S200 includes the sample module 2. ) Are fixed to the heat source points (a, b, c) formed on the heat source substrate (1) in contact with the heat source substrate, and the heat source points (d, e) formed on the heat source substrate (1) not in contact with the sample module (2). Applying the energy of the waveform, the signal measuring step (S300) is a signal appearing at the heat source point (d, e) formed on the heat source substrate 1 that is not in contact with the sample module 2, and the sample module (2) The sample module 2 located in the Z-axis direction of the heat source points (a, b, c) formed in the heat source substrate 1 in contact with It characterized by measuring the signal that appears at the top surface.
또한, 상기 시료 모듈(2)과 접촉되는 상기 열원 기판(1)에 형성된 제1 열원 지점(a, b, c)은 동일선상에 위치되되 서로 열적 간섭이 일어나지 않도록 일정거리 이격되고, 상기 시료 모듈(2)과 접촉되지 않는 상기 열원 기판(1)에 형성된 제2 열원 지점(d, e)은 상기 제1 열원 지점(a, b, c) 중 중심에 위치되는 중앙 열원 지점(b)을 중심으로 X축 방향 또는 Y축 방향으로 일정거리 이격되는 것을 특징으로 한다.In addition, the first heat source points (a, b, c) formed on the heat source substrate 1 in contact with the sample module 2 are located on the same line but spaced apart from each other by a predetermined distance so as not to cause thermal interference with each other. The second heat source points d and e formed on the heat source substrate 1 that are not in contact with (2) are centered on a central heat source point b located at the center of the first heat source points a, b, and c. It is characterized in that spaced apart a certain distance in the X-axis direction or Y-axis direction.
또한, 상기 배치단계(S100)는, 열확산도가 0.1mm2/s~1mm2/s이고, 두께가 0.1mm~0.5mm인 박막을 상기 열원 기판(1)과 상기 시료 모듈(2) 사이에 또는 상기 시료 모듈 위에 위치시키는 박막 설치단계(S130)를 더 포함하는 것을 특징으로 한다.In addition, the arrangement step (S100), the thermal diffusivity is 0.1mm 2 / s ~ 1mm 2 / s, a thickness of 0.1mm ~ 0.5mm between the heat source substrate 1 and the sample module (2) Or it characterized in that it further comprises a thin film installation step (S130) positioned on the sample module.
상기와 같은 구성에 의한 본 발명인 위상잠금 열화상 기법을 이용한 열물성 측정방법은, 열원 기판에서 방출되는 열에너지가 적층된 시료에 전달되어 시료의 표면에서 나타나는 신호와, 열에너지가 방출되는 열원 기판에서 나타나는 신호를 이용하여, 서로 다른 열물성을 가지는 시료 단위체가 적층된 시료 모듈의 평균 열물성을 측정할 수 있는 장점을 가진다.The method of measuring physical properties using the phase-locked thermal imaging method of the present invention having the above-described configuration includes a signal appearing on the surface of a sample by transferring heat energy emitted from a heat source substrate to a stacked sample, and appearing on a heat source substrate where thermal energy is emitted. By using a signal, an average thermal property of a sample module in which sample units having different thermal properties are stacked may be measured.
또한, 열원 기판이 지정된 복수개의 지점에서 열 방출이 가능하므로, 서로 다른 위치에서 시료의 평균 물성 데이터를 개별 측정하여 비교 판독할 수 있는 장점을 가진다.In addition, since the heat source substrate is capable of dissipating heat at a plurality of designated points, it has the advantage of separately measuring and reading the average property data of the samples at different positions.
아울러, 특정 수식을 이용하여 열원 기판과 접촉하는 시료의 일면이 평평하지 않더라도, 측정되는 평균 열물성 오차를 최소화 시킬 수 있는 장점을 가진다.In addition, even if one surface of the sample contacting the heat source substrate is not flat using a specific formula, it has an advantage of minimizing the average thermal property error measured.
도 1은 종래의 레이저를 이용한 열물성 측정장치는 나타낸 개념도.1 is a conceptual view showing a thermal property measuring apparatus using a conventional laser.
도 2는 위상잠금 열화상 기법을 이용한 열물성 측정방법을 나타낸 순서도.2 is a flowchart illustrating a method of measuring thermal properties using a phase locked thermal imaging technique.
도 3은 위상잠금 열화상 기법을 이용한 열물성 측정방법을 나타낸 개념도.3 is a conceptual diagram illustrating a method for measuring thermal properties using a phase locked thermal imaging technique.
도 4는 시료 모듈에서 위상이 측정되는 위치를 나타낸 개념도.4 is a conceptual diagram showing a position where the phase is measured in the sample module.
도 5는 열원 기판에 시료 모듈이 위치된 것을 나타낸 개념도.5 is a conceptual view showing that the sample module is located on the heat source substrate.
도 6은 열화상 카메라의 위상 신호 측정을 나타낸 측면도.6 is a side view showing a phase signal measurement of a thermal imaging camera.
본 발명에 사용되는 열물성 측정 장비는 열적 신호를 인가하는 외부 변조 인가장치, 시료모듈에서 방사되는 열적신호를 측정하는 열영상 카메라, 열영상 카메라에서 측정된 열적신호를 출력하는 디스플레이부 그리고 국소 부분에서 열원을 발생시켜주는 열원 기판을 포함한다. 열물성 측정 장비를 통한 기본적인 측정 원리는 열원 기판에 주기적인 전압을 인가하여 측정하고자 하는 시료모듈 하부의 국소 부분에 주기적인 열원을 발생시키고, 위상잠금 열화상 기법을 이용하여 시료모듈의 위치와 위상잠금 주파수를 달리하면서 시료모듈 상부까지 전달되는 열적 위상 신호를 측정하여 그 측정된 위상 데이터를 바탕으로 시료모듈의 두께방향에 대한 열확산길이 및 열확산도를 추정하는 것이다.The thermophysical measuring equipment used in the present invention includes an external modulation application device for applying a thermal signal, a thermal imaging camera for measuring a thermal signal radiated from a sample module, a display unit for outputting a thermal signal measured from a thermal imaging camera, and a local part. It includes a heat source substrate for generating a heat source. The basic measurement principle through the thermophysical measuring equipment is to generate a periodic heat source in the local part of the lower part of the sample module to be measured by applying a periodic voltage to the heat source substrate, and use the phase-locked thermal imaging technique to position and phase the sample module. By measuring the thermal phase signal transmitted to the upper part of the sample module while varying the lock frequency, the thermal diffusion length and the thermal diffusivity in the thickness direction of the sample module are estimated based on the measured phase data.
이하, 상기와 같은 본 발명인 위상잠금 열화상 기법을 이용한 열물성 측정방법에 대하여 도면을 참조하여 상세히 설명한다.Hereinafter, a method of measuring physical properties using the phase-locked thermal imaging method of the present invention as described above will be described in detail with reference to the accompanying drawings.
도 2를 참조하여 설명하면, 열물성 측정방법은 열원 기판(1)에 시료 모듈(2)이 위치되는 배치단계(S100)와, 상기 열원 기판(1)에 일정 파형의 에너지를 인가하는 신호 인가단계(S200)와, 상기 열원 기판(1)의 열원과 맞닿은 상기 시료 모듈(2)을 통해 열에너지가 전달되어 상기 시료 모듈(2)의 상면에서 나타나는 신호와, 상기 시료 모듈(2)이 배치되지 않는 상기 열원 기판(1)의 열원에서 나타나는 신호를 측정하는 신호 측정단계(S300) 및 상기 신호 측정단계(S300)에서 측정된 신호를 이용하여 시료 모듈(2)의 평균 열물성을 추정하는 열물성 추정단계(S400)를 포함하여 이루어진다.Referring to FIG. 2, the thermal property measuring method includes a disposition step (S100) in which the sample module 2 is positioned on the heat source substrate 1, and a signal applying a predetermined waveform of energy to the heat source substrate 1. Thermal energy is transmitted through the step S200 and the sample module 2 which is in contact with the heat source of the heat source substrate 1 so that the signal appearing on the upper surface of the sample module 2 and the sample module 2 are not disposed. The thermal property of estimating the average thermal properties of the sample module 2 using the signal measurement step (S300) and the signal measured in the signal measurement step (S300) for measuring the signal appearing in the heat source of the heat source substrate (1) It includes the estimation step (S400).
도 3을 참조하여 상세히 설명하면, 상기 배치단계(S100)에서 시료 모듈(2)이 열원 기판(1)에 위치되고, 상기 신호 인가단계(S200)에서 상기 열원 기판(1)의 열원들에 일정한 파형의 에너지 신호를 인가하여 열에너지를 방출시키면 상측에 위치되는 시료 모듈(2)에 열에너지가 전달되며, 상기 신호 측정단계(S300)에서 열에너지가 방출되는 상기 열원 기판(1)의 열원과 맞닿은 상기 시료 모듈(2)을 통해 열에너지가 전달되어 상기 열원에 대응하는 상기 시료 모듈(2)의 상면에 나타나는 신호와, 상기 시료 모듈(2)이 배치되지 않는 상기 열원 기판(1)의 열원에서 나타나는 신호를 개별적으로 측정하며, 열물성 추정단계(S400)에서 측정된 신호를 이용하여 시료 모듈(2)의 평균 열물성을 측정하는 것이다.Referring to FIG. 3, the sample module 2 is positioned on the heat source substrate 1 in the arrangement step S100, and is uniform to the heat sources of the heat source substrate 1 in the signal applying step S200. When the thermal energy is emitted by applying a wave energy signal, thermal energy is transferred to the sample module 2 positioned above, and the sample is in contact with the heat source of the heat source substrate 1 in which thermal energy is emitted in the signal measuring step S300. Thermal energy is transmitted through the module 2 to generate a signal appearing on the upper surface of the sample module 2 corresponding to the heat source and a signal appearing at the heat source of the heat source substrate 1 in which the sample module 2 is not disposed. The measurement is performed separately, and the average thermal properties of the sample module 2 are measured using the signal measured in the thermal property estimation step S400.
이때, 상기 위상잠금 열화상 기법을 이용한 열물성 측정방법은 상기 신호 측정단계(300)에서 열원들에 대응하여 상기 열원 기판(1)과 상기 시료 모듈(2) 상면의 일지점에서 나타나는 적외선, 진폭, 위상 신호 중 선택되는 어느 하나 이상을 측정하면 충분하다. 그래서 도 6에 도시된 바와 같이 열원 기판(1)에 신호를 인가하는 외부 변조 인가장치(3)와, 서로 다른 열물성을 가지는 복수개의 시료 단위체(2-1, 2-2, 2-3, 2-4, 2-5)가 결합되어 이루어진 시료 모듈(2) 및 열원 기판(1)에서 나타나는 신호를 측정하는 적외선 카메라(5)만 있으면 충분하다. 시편의 크기에 따라 렌즈(4)의 배율을 다르게하여 신호를 측정한다. 도 4에 도시된 바와 같이 시료 모듈(2)에서 열적 신호를 파악하여 시료 모듈(2)의 결함 깊이를 추정하는 열영상 측정 장치를 사용할 수도 있다.In this case, the thermal property measurement method using the phase-locked thermal imaging method is an infrared ray, amplitude appearing at one point on the top surface of the heat source substrate 1 and the sample module 2 corresponding to the heat sources in the signal measuring step 300. It is sufficient to measure any one or more of the phase signals. Thus, as shown in FIG. 6, the external modulation applying device 3 for applying a signal to the heat source substrate 1 and the plurality of sample units 2-1, 2-2, 2-3, having different thermal properties, All that is required is a sample module 2 in which 2-4 and 2-5 are combined and an infrared camera 5 for measuring a signal appearing in the heat source substrate 1. The signal is measured by varying the magnification of the lens 4 according to the size of the specimen. As shown in FIG. 4, a thermal image measuring apparatus may be used to detect a thermal signal from the sample module 2 and estimate a defect depth of the sample module 2.
상기 열원 기판(1) 및 상기 시료 모듈(2)의 적외선 신호를 적외선 카메라를 이용하여 측정한다. 측정된 적외선 신호로부터 온도의 진폭과 위상 신호를 얻을 수 있다. 즉, 열원 기판(1)의 열원에 일정 주기로 에너지를 가하면 열원과 맞닿아 있는 시료 모듈(2)을 통해 열에너지가 전달되고, 열원에 에너지를 가한 후 시료 모듈(2)의 상면에 열에너지가 전달되기까지의 딜레이를 이용하여 위상신호를 얻을 수 있다.Infrared signals of the heat source substrate 1 and the sample module 2 are measured using an infrared camera. The amplitude and phase signals of the temperature can be obtained from the measured infrared signals. That is, when energy is applied to the heat source of the heat source substrate 1 at regular intervals, heat energy is transferred through the sample module 2 in contact with the heat source, and heat energy is transferred to the upper surface of the sample module 2 after applying energy to the heat source. The phase signal can be obtained using the delay up to.
상기 열원 기판(1)에 일정 파형의 에너지를 인가하는 방법은 다양한 방법이 가능하다. 본원 발명에서는 함수발생기(6)를 이용하여 외부 변조 인가장치(3)에 신호를 입력하여 선택되는 열원 기판(1)의 열원에서 열에너지를 발생시키고, 열원 기판(1) 및 시료 모듈(2)에서 측정되는 신호를 적외선 카메라(5)를 이용하여 측정하고, 적외선 카메라(5)를 이용하여 측정된 특정 이미지는 제어부(7)로 입력된 후 측정된 이미지에 나타난 열원의 위치와 개수에 따라 이하에서 설명하는 식 1, 식 2, 식 3에 대입되어 시료 모듈(2)의 평균 열확산 길이를 측정할 수 있는 것이다.Various methods may be used to apply the energy of a predetermined waveform to the heat source substrate 1. In the present invention, by using a function generator (6) to input a signal to the external modulation applying device (3) to generate heat energy from the heat source of the heat source substrate (1) selected, the heat source substrate (1) and the sample module (2) The measured signal is measured using the infrared camera 5, and the specific image measured using the infrared camera 5 is input to the control unit 7 and then, according to the position and the number of heat sources shown in the measured image. Substituted in Formulas 1, 2, and 3 to be described, the average thermal diffusion length of the sample module 2 can be measured.
상세히 설명하면, 본 발명에서 상기 열물성 추정단계(S400)는 하기 식 1, 식 2, 식 3 중 어느 하나를 선택하여 측정되는 신호를 적용함으로서, 시료 모듈(2)의 평균 열확산 길이를 추정할 수 있다.In detail, in the present invention, the thermal property estimating step S400 may be performed by applying a signal measured by selecting any one of Equations 1, 2, and 3 below to estimate an average thermal diffusion length of the sample module 2. Can be.
[식 1][Equation 1]
Figure PCTKR2016012445-appb-I000024
Figure PCTKR2016012445-appb-I000024
(이때,
Figure PCTKR2016012445-appb-I000025
은 시료 모듈의 두께,
Figure PCTKR2016012445-appb-I000026
는 시료 모듈이 배치되지 않는 열원 기판의 열원에서 측정되는 위상 신호,
Figure PCTKR2016012445-appb-I000027
은 열원 기판의 열원과 맞닿은 시료 모듈을 통해 열에너지가 전달되어 시료 모듈의 상면에서 측정되는 위상 신호,
Figure PCTKR2016012445-appb-I000028
는 시료의 평균 열확산길이)
(At this time,
Figure PCTKR2016012445-appb-I000025
Is the thickness of the sample module,
Figure PCTKR2016012445-appb-I000026
Is a phase signal measured at a heat source of a heat source substrate on which a sample module is not disposed,
Figure PCTKR2016012445-appb-I000027
Is a phase signal measured on the upper surface of the sample module by transferring heat energy through the sample module in contact with the heat source of the heat source substrate,
Figure PCTKR2016012445-appb-I000028
Is the average thermal diffusion length of the sample)
[식 2][Equation 2]
Figure PCTKR2016012445-appb-I000029
Figure PCTKR2016012445-appb-I000029
(이때,
Figure PCTKR2016012445-appb-I000030
은 시료 모듈의 두께,
Figure PCTKR2016012445-appb-I000031
는 시료 모듈이 배치되지 않는 열원 기판의 열원에서 측정되는 위상 신호,
Figure PCTKR2016012445-appb-I000032
은 열원 기판의 열원과 맞닿은 시료 모듈을 통해 열에너지가 전달되어 시료 모듈의 상면에서 측정되는 위상 신호,
Figure PCTKR2016012445-appb-I000033
는 열원 기판과 시료 모듈의 접촉 위상 저항,
Figure PCTKR2016012445-appb-I000034
는 시료의 평균 열확산길이)
(At this time,
Figure PCTKR2016012445-appb-I000030
Is the thickness of the sample module,
Figure PCTKR2016012445-appb-I000031
Is a phase signal measured at a heat source of a heat source substrate on which a sample module is not disposed,
Figure PCTKR2016012445-appb-I000032
Is a phase signal measured on the upper surface of the sample module by transferring heat energy through the sample module in contact with the heat source of the heat source substrate,
Figure PCTKR2016012445-appb-I000033
Is the contact phase resistance of the heat source substrate and the sample module,
Figure PCTKR2016012445-appb-I000034
Is the average thermal diffusion length of the sample)
[식 3][Equation 3]
Figure PCTKR2016012445-appb-I000035
Figure PCTKR2016012445-appb-I000035
(이때,
Figure PCTKR2016012445-appb-I000036
은 제1 시료 모듈의 두께,
Figure PCTKR2016012445-appb-I000037
는 제2 시료 모듈의 두께,
Figure PCTKR2016012445-appb-I000038
은 열원 기판의 열원과 맞닿은 제1 시료 모듈을 통해 열에너지가 전달되어 제1 시료 모듈의 상면에서 측정되는 위상 신호
Figure PCTKR2016012445-appb-I000039
에서 제1 시료 모듈이 배치되지 않는 열원 기판의 열원에서 측정되는 위상 신호
Figure PCTKR2016012445-appb-I000040
를 빼준 위상차,
Figure PCTKR2016012445-appb-I000041
는 열원 기판의 열원과 맞닿은 제2 시료 모듈을 통해 열에너지가 전달되어 제2 시료 모듈의 상면에서 측정되는 위상 신호
Figure PCTKR2016012445-appb-I000042
에서 제2 시료 모듈이 배치되지 않는 열원 기판의 열원에서 측정되는 위상 신호
Figure PCTKR2016012445-appb-I000043
를 빼준 위상차,
Figure PCTKR2016012445-appb-I000044
는 시료의 평균 열확산길이)
(At this time,
Figure PCTKR2016012445-appb-I000036
Is the thickness of the first sample module,
Figure PCTKR2016012445-appb-I000037
Is the thickness of the second sample module,
Figure PCTKR2016012445-appb-I000038
Is a phase signal measured at an upper surface of the first sample module by transferring heat energy through the first sample module in contact with the heat source of the heat source substrate.
Figure PCTKR2016012445-appb-I000039
Signal measured at a heat source of a heat source substrate on which the first sample module is not disposed
Figure PCTKR2016012445-appb-I000040
Phase difference minus
Figure PCTKR2016012445-appb-I000041
Is a phase signal measured on the upper surface of the second sample module by transferring heat energy through the second sample module in contact with the heat source of the heat source substrate.
Figure PCTKR2016012445-appb-I000042
Signal measured at a heat source of a heat source substrate on which a second sample module is not disposed
Figure PCTKR2016012445-appb-I000043
Phase difference minus
Figure PCTKR2016012445-appb-I000044
Is the average thermal diffusion length of the sample)
도 4a에 도시된 바와 같이 XY 평면에 위치된 열원 기판(1)의 열원들에서 열에너지를 발생시킬 경우 열원에서 기준이 되는 위상신호(
Figure PCTKR2016012445-appb-I000045
)가 측정되고, 열원에서 전달된 열에너지가 열원 기판(1)의 Z축방향에 위치된 시료 모듈(2)에 전달되어 시료 모듈(2)의 Z축 상면에서 시료 모듈(2)을 통해 전달된 위상신호(
Figure PCTKR2016012445-appb-I000046
)가 측정된다.
As shown in FIG. 4A, when heat energy is generated from the heat sources of the heat source substrate 1 positioned in the XY plane, a phase signal that is a reference in the heat source (
Figure PCTKR2016012445-appb-I000045
) Is measured, and the heat energy transferred from the heat source is transferred to the sample module 2 located in the Z axis direction of the heat source substrate 1 and transmitted through the sample module 2 on the upper surface of the Z axis of the sample module 2. Phase signal (
Figure PCTKR2016012445-appb-I000046
) Is measured.
이때, 열확산 길이는 주기적인 열원에 의한 시료 모듈이 지닌 특수 치수에 관한 것으로, 먼 거리의 열적 변화가 얼마나 오래 걸려 현 위치에서 감지할 수 있는 온도 변화를 일으킬 수 있는 거리인 지를 말하므로, 상기 식 1에 서로 다른 지점에서 측정된 위상신호를 각각 대입하여 시료 모듈(2)의 평균 열확산 길이를 구하는 것이다.In this case, the thermal diffusion length is related to the special dimensions of the sample module by the periodic heat source, and it refers to how long a long distance thermal change takes to cause a temperature change that can be detected at the current position. The average thermal diffusion length of the sample module 2 is obtained by substituting the phase signals measured at different points in 1.
하지만 열원 기판(1)의 열원에서 발생하는 기준이 되는 위상신호(
Figure PCTKR2016012445-appb-I000047
)는 열원 기판(1) 위에 시료 모듈(2)이 위치될 경우 측정하기 어려우므로, 시료 모듈(2)이 위치하지 않는 열원 기판(1)의 일 지점에 형성된 열원에서 위상신호를 측정하여 기준이 되는 위상신호(
Figure PCTKR2016012445-appb-I000048
)를 기준 위상신호(
Figure PCTKR2016012445-appb-I000049
)로 대체하여 사용할 수 있다.
However, the phase signal as a reference generated from the heat source of the heat source substrate 1
Figure PCTKR2016012445-appb-I000047
) Is difficult to measure when the sample module 2 is positioned on the heat source substrate 1, so that the reference signal is measured by measuring a phase signal at a heat source formed at a point of the heat source substrate 1 where the sample module 2 is not located. Phase signal
Figure PCTKR2016012445-appb-I000048
) Is the reference phase signal (
Figure PCTKR2016012445-appb-I000049
Can be used instead.
또한, 열원 기판(1)과 시료 모듈(2)은 일체형이 아니므로 서로 간의 접촉면은 서로 완전 접촉되지 않아 정확한 시료 모듈(2)의 열물성을 구하는데 오차가 발생할 수 있다. 접촉 저항 개념을 이용하여 열원 기판(1)과 시료 모듈(2)의 접촉 위상 저항(
Figure PCTKR2016012445-appb-I000050
)이 포함된 상기 식 2를 사용함으로써, 더욱 정밀한 시료 모듈(2)의 평균 열확산 길이를 구할 수 있다.
In addition, since the heat source substrate 1 and the sample module 2 are not integral, the contact surfaces of the heat source substrate 1 and the sample module 2 are not integrally contacted with each other, so that an error may occur in obtaining accurate thermal properties of the sample module 2. Using the contact resistance concept, the contact phase resistance of the heat source substrate 1 and the sample module 2 can be
Figure PCTKR2016012445-appb-I000050
By using Equation 2 including), the more accurate average length of thermal diffusion of the sample module 2 can be obtained.
이때, 식 2를 이용하여 시료 모듈(2)의 평균 열확산 길이를 구할 경우 열확산 길이를 구하는 시료 모듈(2)의 양면 중 일면이 평평하지 않아 열원 기판(1)과 완전 접촉되지 않더라도 정밀한 열확산 길이 측정이 가능하므로, 시료 모듈(2)을 평평하게 만들기 위하여 파손하지 않아도 되는 장점이 있다.In this case, when the average thermal diffusion length of the sample module 2 is obtained by using Equation 2, even if one surface of both sides of the sample module 2 for obtaining the thermal diffusion length is not flat and not completely in contact with the heat source substrate 1, the precise thermal diffusion length measurement Since this is possible, there is an advantage in that it does not need to be damaged in order to make the sample module 2 flat.
그리고, 상기 접촉 위상 저항(
Figure PCTKR2016012445-appb-I000051
)를 모를 경우, 서로 두께가 다른 시료 모듈(2)을 이용하여 접촉 위상 저항(
Figure PCTKR2016012445-appb-I000052
)를 고려하지 않고 시료 모듈(2)의 평균 열확산 길이를 측정하는 것 또한 가능하다.
And the contact phase resistance (
Figure PCTKR2016012445-appb-I000051
), The contact phase resistance (
Figure PCTKR2016012445-appb-I000052
It is also possible to measure the average thermal diffusion length of the sample module 2 without considering).
상세히 설명하면, 도 4a, 4b에 도시된 바와 같이, 상기 배치단계(S100)에서 서로 다른 두께(
Figure PCTKR2016012445-appb-I000053
,
Figure PCTKR2016012445-appb-I000054
)의 제1 시료 모듈과 제2 시료 모듈을 각각 상기 열원 기판(1)에 위치시키고, 상기 신호 측정단계(S300)에서 제1 시료 모듈의 위상을 측정하는 위상 측정단계(S310)와 제2 시료 모듈의 위상 측정단계(S320)가 이루어지며, 상기 열물성 추정단계(S400)에서, 각각의 시료 모듈에서 측정된 위상 신호를 상기 식 3에 대입하여 상기 시료 모듈(2)의 평균 열확산 길이를 추정하는 것이다.
In detail, as shown in Figure 4a, 4b, different thicknesses (
Figure PCTKR2016012445-appb-I000053
,
Figure PCTKR2016012445-appb-I000054
The first sample module and the second sample module of the) is positioned on the heat source substrate 1, respectively, and the phase measurement step (S310) and the second sample for measuring the phase of the first sample module in the signal measuring step (S300) A phase measurement step (S320) of the module is performed, and in the thermal property estimation step (S400), the average thermal diffusion length of the sample module 2 is estimated by substituting the phase signal measured in each sample module into Equation 3. It is.
또한, 본 발명인 위상잠금 열화상 기법을 이용한 열물성 측정방법은 도 5에 도시된 바와 같이, 상기 열원 기판(1)의 일면에 복수 개의 열원(a, b, c, d, e)이 형성된다. 열원들은 전원이 인가되면 열을 방출하도록 폴리레지스터로 이루어진다. 복수 개의 열원은 폴리레지스터에 전원이 인가될 수 있도록 알루미늄 등의 재질로 이루어진 도선에 의해 직렬로 연결되어 있다. 복수 개의 열원은 외부에서 인가되는 신호에 대응하여 동시에 열을 방출하고, 맞닿아 있는 시료 모듈에 전달한다.In addition, in the method of measuring thermal properties using the phase-locked thermal imaging method of the present invention, as shown in FIG. 5, a plurality of heat sources a, b, c, d, and e are formed on one surface of the heat source substrate 1. . The heat sources are made of polyregisters to release heat when power is applied. The plurality of heat sources are connected in series by a conductive wire made of a material such as aluminum so that power can be applied to the polyresist. The plurality of heat sources simultaneously dissipate heat in response to a signal applied from the outside and transmits the heat to the contacting sample module.
상세히 설명하면, 신호 측정단계(S300)에서 위상신호 측정 시 하나의 지점에서만 위상신호를 측정하게 되면, 열원의 Z축 방향에 위치되는 상기 시료 모듈(2)의 내부에 결함이 형성되어 있는 경우, 또는 시료 모듈(2)을 구성하는 시료 모듈의 두께가 일정하지 않을 경우에 측정된 평균 열확산 길이의 신뢰성이 떨어지게 되므로 이를 보완하기 위해 복수 지점에서 위상신호를 측정하는 것이 바람직하다.In detail, when the phase signal is measured only at one point when measuring the phase signal in the signal measuring step S300, when a defect is formed in the sample module 2 positioned in the Z-axis direction of the heat source, Alternatively, when the thickness of the sample module constituting the sample module 2 is not constant, the reliability of the measured average thermal diffusion length is lowered. Therefore, it is preferable to measure the phase signal at a plurality of points to compensate for this.
따라서, 상기 배치단계(S100)에서 상기 열원 기판(1)을 XY평면에 위치시키는 기판 배치단계(S110)와 상기 열원 기판(1)의 일면에 시료 모듈(2)의 타면을 위치시키는 시료 배치단계(S120)로 구분하고, 상기 신호 인가단계(S200)에서 상기 시료 모듈(2)과 접촉되는 상기 열원 기판(1)의 접촉일면과, 상기 접촉일면의 외부에 형성된 상기 열원 기판(1)의 비접촉일면에 개별적으로 형성된 열원 지점에 일정 파형의 에너지를 인가하고, 상기 신호 측정단계(S300)에서 비접촉일면에 형성된 열원 지점(d, e)에서의 신호와, 접촉일면에 형성되 열원 지점(a, b, c)의 Z축 방향에 위치된 시료 모듈(2)의 상면에서 나타나는 신호를 측정하여, 다양한 위치에서 측정되는 위상값을 서로 비교할 수 있도록 한 것이다.Therefore, in the arrangement step S100, the substrate arrangement step S110 for positioning the heat source substrate 1 on the XY plane and the sample arrangement step for positioning the other surface of the sample module 2 on one surface of the heat source substrate 1. (S120) and the non-contact between the contact surface of the heat source substrate 1 and the heat source substrate 1 formed outside the contact surface in contact with the sample module 2 in the signal applying step (S200) Energy of a predetermined waveform is applied to a heat source point formed separately on one surface, and a signal from the heat source points d and e formed on a non-contact surface in the signal measuring step S300 and heat source points a and b formed on a contact surface. , c) by measuring the signal appearing on the upper surface of the sample module 2 located in the Z-axis direction, so that the phase values measured at various positions can be compared with each other.
이때, 접촉일면에 형성된 제1 열원 지점(a, b, c)은 동일선상에 위치되되 서로 열적인 간섭이 일어나지 않도록 일정거리 이격 형성되고, 비접촉일면에 형성된 제2 열원 지점(d, e)은 제1 열원 지점(a, b, c) 중 중심에 위치되는 중앙 열원 지점(b)을 중심으로 X축 방향과 Y축 방향으로 일정거리 이격되어 형성될 수 있다.At this time, the first heat source points (a, b, c) formed on the contact surface is located on the same line, but are formed at a predetermined distance apart from each other to prevent thermal interference, and the second heat source points (d, e) formed on the non-contact surface are The first heat source points a, b, and c may be formed to be spaced apart from each other by a predetermined distance in the X-axis direction and the Y-axis direction with respect to the center heat source point b located at the center.
그리고 본 발명인 위상잠금 열화상 기법을 이용한 열물성 측정방법은, 상기 배치단계(S100)에서 시료 모듈(2)이 70~90mm2/s의 열확산도를 가지는 물질(graphite, Cu, Si) 일 경우 열이 이동하는 시간을 나타내는 위상 값을 계산하는 LIT 장비가 아무리 높음 Frame rate로 측정한다고 할지라도 100Hz로, 10ms 당 1장 촬영이 가능할 뿐이고, 노출시간 또한 2ms를 필요로 하는 구체적인 한계를 가지기 때문에, 불투명한 물질이 없다면 측정이 어렵다.And the method of measuring the thermal properties using the phase locked thermal imaging method of the present invention, when the sample module 2 in the batch step (S100) is a material (graphite, Cu, Si) having a thermal diffusivity of 70 ~ 90mm 2 / s No matter how high the LIT device calculates the phase value representing the time the heat travels, even at 100 frame rate, only one shot per 10 ms can be taken, and the exposure time also has a specific limitation that requires 2 ms. It is difficult to measure without opaque material.
따라서, 열확산도가 높아 열물성 측정이 어려운 시료 모듈(2)의 경우 상기와 같이 열확산도가 0.1mm2/s ~ 1mm2/s이고, 두께가 01.mm ~ 0.5mm인 박막을 열원 기판(1)과 시료 모듈(2) 사이 또는 시료면 위에 위치시키는 박막 설치단계(S130)가 더 이루어질 수 있다.Therefore, when the diffusivity is high, thermal physical property measurement is difficult sample module (2) and the thermal diffusivity is 0.1mm 2 / s ~ 1mm 2 / s as described above, the heat source to the substrate a thin film having a thickness of 01.mm ~ 0.5mm ( A thin film installation step S130 may be further provided between 1) and the sample module 2 or on the sample surface.
상세히 설명하면, 상기 시료 모듈(2)의 열확산도가 높을 경우 열확산에 걸리는 시간이 짧아 측정이 어려우므로, 열확산도가 낮은 박막을 이용하여 열확산 속도를 감소시켜 정확한 열물성을 측정하는 것이다.In detail, when the thermal diffusivity of the sample module 2 is high, the time required for thermal diffusion is short, and thus measurement is difficult. Therefore, accurate thermal properties are measured by reducing the thermal diffusion rate using a thin film having a low thermal diffusivity.
또한, 상기 박막 설치단계(S130)를 통해, 상기 적외선 카메라(5)가 중적외선 카메라일 경우 3~5㎛, 원적외선 카메라의 경우 7~12㎛의 파장대를 이용하므로 3~11㎛파장대를 투과시키는 Si의 경우도 열물성 측정이 가능할 뿐만 아니라, 10mm2/s 이상 열확산도를 가지는 시료 모듈(2) 또한 열물성 측정이 가능하다.In addition, through the thin film installation step (S130), because the infrared camera 5 is a mid-infrared camera using a wavelength band of 3 ~ 5㎛, 7 ~ 12㎛ in the case of far infrared camera to transmit a 3 ~ 11㎛ wavelength band In the case of Si, not only the thermal properties can be measured, but also the sample module 2 having a thermal diffusivity of 10 mm 2 / s or more can also measure the thermal properties.
아울러, 본 발명인 위상잠금 열화상 기법을 이용한 열물성 측정방법은 측정된 열확산 길이를 이용하여 열확산도(thermal diffusivity)
Figure PCTKR2016012445-appb-I000055
(mm2/s)를 구하는 것이 가능하다.
In addition, the thermal property measurement method using the present inventors phase locked thermal imaging technique using the thermal diffusivity measured (thermal diffusivity)
Figure PCTKR2016012445-appb-I000055
It is possible to find (mm 2 / s).
상세히 설명하면, 열확산도는 하기 [식 4]에 의해 구해진다.In detail, thermal diffusivity is calculated | required by following [Equation 4].
[식 4][Equation 4]
Figure PCTKR2016012445-appb-I000056
Figure PCTKR2016012445-appb-I000056
따라서, 상기 식 1 내지 식 3을 통해 구해진 시료 묘듈(2)의 평균 열확산길이(
Figure PCTKR2016012445-appb-I000057
)를 이용하여 시료 모듈의 열확산도(
Figure PCTKR2016012445-appb-I000058
)를 산출할 수 있다.
Therefore, the average thermal diffusion length of the sample module 2 obtained through the equations (1) to (3)
Figure PCTKR2016012445-appb-I000057
Thermal diffusivity of the sample module
Figure PCTKR2016012445-appb-I000058
) Can be calculated.
본 발명의 상기한 실시 예에 한정하여 기술적 사상을 해석해서는 안된다. 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당업자의 수준에서 다양한 변형 실시가 가능하다. 따라서 이러한 개량 및 변경은 당업자에게 자명한 것인 한 본 발명의 보호범위에 속하게 된다.The technical spirit should not be interpreted as being limited to the above embodiments of the present invention. Various modifications may be made at the level of those skilled in the art without departing from the spirit of the invention as claimed in the claims. Therefore, such improvements and modifications fall within the protection scope of the present invention as long as it will be apparent to those skilled in the art.

Claims (9)

  1. 복수 개의 열원이 구비된 열원 기판(1)에 시료 모듈(2)이 위치되는 배치단계(S100);An arrangement step (S100) in which the sample module 2 is positioned on a heat source substrate 1 having a plurality of heat sources;
    상기 열원 기판(1)에 일정 파형의 에너지를 인가하는 신호 인가단계(S200);A signal applying step (S200) of applying energy of a predetermined waveform to the heat source substrate (1);
    상기 열원 기판(1)의 열원과 맞닿은 상기 시료 모듈(2)을 통해 열에너지가 전달되어 상기 시료 모듈(2)의 상면에서 나타나는 신호와, 상기 시료 모듈(2)이 배치되지 않는 상기 열원 기판(1)의 열원에서 나타나는 신호를 측정하는 신호 측정단계(S300); 및Thermal energy is transmitted through the sample module 2 in contact with the heat source of the heat source substrate 1 so that a signal appears on the upper surface of the sample module 2 and the heat source substrate 1 on which the sample module 2 is not disposed. A signal measuring step (S300) of measuring a signal appearing at the heat source; And
    상기 신호 측정단계(S300)에서 측정된 신호를 이용하여 상기 시료 모듈(2)의 평균 열물성을 추정하는 열물성 추정단계(S400);를 포함하는 것을 특징으로 하는 위상잠금 열화상 기법을 이용한 열물성 측정방법.Thermal property estimation using a phase-locked thermal imaging method comprising a; thermal property estimation step (S400) for estimating the average thermal properties of the sample module (2) using the signal measured in the signal measurement step (S300) Physical property measurement method.
  2. 제 1항에 있어서,The method of claim 1,
    상기 신호 측정단계(S300)에서 측정되는 신호는 적외선, 진폭, 위상 신호 중 선택되는 어느 하나 이상인 것을 특징으로 하는, 위상잠금 열화상 기법을 이용한 열물성 측정방법.The signal measured in the signal measuring step (S300) is characterized in that any one or more selected from infrared, amplitude, phase signal, thermal property measurement method using a phase-locked thermal imaging technique.
  3. 제 1항에 있어서, The method of claim 1,
    상기 열물성 추정단계(S400)는, 측정된 위상 신호를 하기 식 1에 대입하여 상기 시료 모듈(2)의 평균 열확산 길이를 추정하는 것을 특징으로 하는, 위상잠금 열화상 기법을 이용한 열물성 측정방법.In the thermal property estimation step (S400), the average thermal diffusion length of the sample module 2 is estimated by substituting the measured phase signal into Equation 1 below. .
    [식 1][Equation 1]
    Figure PCTKR2016012445-appb-I000059
    Figure PCTKR2016012445-appb-I000059
    (이때,
    Figure PCTKR2016012445-appb-I000060
    은 시료 모듈의 두께,
    Figure PCTKR2016012445-appb-I000061
    는 시료 모듈이 배치되지 않는 열원 기판의 열원에서 측정되는 위상 신호,
    Figure PCTKR2016012445-appb-I000062
    은 열원 기판의 열원과 맞닿은 시료 모듈을 통해 열에너지가 전달되어 시료 모듈의 상면에서 측정되는 위상 신호,
    Figure PCTKR2016012445-appb-I000063
    는 시료의 평균 열확산길이)
    (At this time,
    Figure PCTKR2016012445-appb-I000060
    Is the thickness of the sample module,
    Figure PCTKR2016012445-appb-I000061
    Is a phase signal measured at a heat source of a heat source substrate on which a sample module is not disposed,
    Figure PCTKR2016012445-appb-I000062
    Is a phase signal measured on the upper surface of the sample module by transferring heat energy through the sample module in contact with the heat source of the heat source substrate,
    Figure PCTKR2016012445-appb-I000063
    Is the average thermal diffusion length of the sample)
  4. 제 1항에 있어서, The method of claim 1,
    상기 열물성 추정단계(S400)는, 측정된 위상 신호를 하기 식 2에 대입하여 상기 시료 모듈(2)의 평균 열확산 길이를 추정하는 것을 특징으로 하는, 위상잠금 열화상 기법을 이용한 열물성 측정방법.In the thermal property estimation step (S400), the average thermal diffusion length of the sample module 2 is estimated by substituting the measured phase signal into Equation 2 below. .
    [식 2][Equation 2]
    Figure PCTKR2016012445-appb-I000064
    Figure PCTKR2016012445-appb-I000064
    (이때,
    Figure PCTKR2016012445-appb-I000065
    은 시료 모듈의 두께,
    Figure PCTKR2016012445-appb-I000066
    는 시료 모듈이 배치되지 않는 열원 기판의 열원에서 측정되는 위상 신호,
    Figure PCTKR2016012445-appb-I000067
    은 열원 기판의 열원과 맞닿은 시료 모듈을 통해 열에너지가 전달되어 시료 모듈의 상면에서 측정되는 위상 신호,
    Figure PCTKR2016012445-appb-I000068
    는 열원 기판과 시료 모듈의 접촉 위상 저항,
    Figure PCTKR2016012445-appb-I000069
    는 시료의 평균 열확산길이)
    (At this time,
    Figure PCTKR2016012445-appb-I000065
    Is the thickness of the sample module,
    Figure PCTKR2016012445-appb-I000066
    Is a phase signal measured at a heat source of a heat source substrate on which a sample module is not disposed,
    Figure PCTKR2016012445-appb-I000067
    Is a phase signal measured on the upper surface of the sample module by transferring heat energy through the sample module in contact with the heat source of the heat source substrate,
    Figure PCTKR2016012445-appb-I000068
    Is the contact phase resistance of the heat source substrate and the sample module,
    Figure PCTKR2016012445-appb-I000069
    Is the average thermal diffusion length of the sample)
  5. 제 1항에 있어서, The method of claim 1,
    상기 배치단계(S100)는 서로 다른 두께(
    Figure PCTKR2016012445-appb-I000070
    ,
    Figure PCTKR2016012445-appb-I000071
    )의 제1 시료 모듈과 제2 시료 모듈이 각각 상기 열원 기판(1)에 위치되고,
    The arrangement step (S100) has a different thickness (
    Figure PCTKR2016012445-appb-I000070
    ,
    Figure PCTKR2016012445-appb-I000071
    A first sample module and a second sample module are respectively located on the heat source substrate 1,
    상기 신호 측정단계(S300)는, 제1 시료 모듈의 위상 신호 측정단계(S310)와 제2 시료 모듈의 위상 신호 측정단계(S320)를 포함하며,The signal measuring step S300 may include a phase signal measuring step S310 of the first sample module and a phase signal measuring step S320 of the second sample module.
    상기 열물성 추정단계(S400)는, 제1 및 제2 시료 모듈에서 측정된 위상 신호를 하기 식 3에 대입하여 상기 시료 모듈(2)의 평균 열확산 길이를 추정하는 것을 특징으로 하는, 위상잠금 열화상 기법을 이용한 열물성 측정방법.In the thermal property estimating step (S400), the average phase length of thermal diffusion of the sample module 2 is estimated by substituting the phase signals measured by the first and second sample modules into the following Equation 3. Method of measuring thermal properties using imaging technique.
    [식 3][Equation 3]
    Figure PCTKR2016012445-appb-I000072
    Figure PCTKR2016012445-appb-I000072
    (이때,
    Figure PCTKR2016012445-appb-I000073
    은 제1 시료 모듈의 두께,
    Figure PCTKR2016012445-appb-I000074
    는 제2 시료 모듈의 두께,
    Figure PCTKR2016012445-appb-I000075
    은 열원 기판의 열원과 맞닿은 제1 시료 모듈을 통해 열에너지가 전달되어 제1 시료 모듈의 상면에서 측정되는 위상 신호
    Figure PCTKR2016012445-appb-I000076
    에서 제1 시료 모듈이 배치되지 않는 열원 기판의 열원에서 측정되는 위상 신호
    Figure PCTKR2016012445-appb-I000077
    를 빼준 위상차,
    Figure PCTKR2016012445-appb-I000078
    는 열원 기판의 열원과 맞닿은 제2 시료 모듈을 통해 열에너지가 전달되어 제2 시료 모듈의 상면에서 측정되는 위상 신호
    Figure PCTKR2016012445-appb-I000079
    에서 제2 시료 모듈이 배치되지 않는 열원 기판의 열원에서 측정되는 위상 신호
    Figure PCTKR2016012445-appb-I000080
    를 빼준 위상차,
    Figure PCTKR2016012445-appb-I000081
    는 시료의 평균 열확산길이)
    (At this time,
    Figure PCTKR2016012445-appb-I000073
    Is the thickness of the first sample module,
    Figure PCTKR2016012445-appb-I000074
    Is the thickness of the second sample module,
    Figure PCTKR2016012445-appb-I000075
    Is a phase signal measured at an upper surface of the first sample module by transferring heat energy through the first sample module in contact with the heat source of the heat source substrate.
    Figure PCTKR2016012445-appb-I000076
    Signal measured at a heat source of a heat source substrate on which the first sample module is not disposed
    Figure PCTKR2016012445-appb-I000077
    Phase difference minus
    Figure PCTKR2016012445-appb-I000078
    Is a phase signal measured on the upper surface of the second sample module by transferring heat energy through the second sample module in contact with the heat source of the heat source substrate.
    Figure PCTKR2016012445-appb-I000079
    Signal measured at a heat source of a heat source substrate on which a second sample module is not disposed
    Figure PCTKR2016012445-appb-I000080
    Phase difference minus
    Figure PCTKR2016012445-appb-I000081
    Is the average thermal diffusion length of the sample)
  6. 제 1항 내지 제 5항 중 어느 하나의 항에 있어서, The method according to any one of claims 1 to 5,
    상기 열원 기판(1)의 복수 개의 열원은 전원이 인가되면 열을 방출하는 폴리레지스터로 이루어지고,The plurality of heat sources of the heat source substrate 1 is made of a poly register that emits heat when power is applied,
    상기 복수 개의 열원은 직렬로 연결된 것을 특징으로 하는, 위상잠금 열화상 기법을 이용한 열물성 측정방법.And a plurality of heat sources are connected in series, thermal property measurement method using a phase locked thermal imaging technique.
  7. 제 1항에 있어서,The method of claim 1,
    상기 배치단계(S100)는,The arrangement step (S100),
    상기 열원 기판(1)을 XY평면에 위치시키는 기판 배치단계(S110)와, A substrate disposing step (S110) for placing the heat source substrate 1 on an XY plane;
    상기 열원 기판(1)의 복수 개의 열원 중, 일부는 상기 시료 모듈(2)과 접촉되고, 나머지는 접촉되지 않도록, 상기 열원 기판(1)의 일면에 상기 시료 모듈(2)을 위치시키는 시료 배치단계(S120)를 포함하고,A sample arrangement in which the sample module 2 is placed on one surface of the heat source substrate 1 such that some of the plurality of heat sources of the heat source substrate 1 are in contact with the sample module 2, and others are not in contact. Including step S120,
    상기 신호 인가단계(S200)는 상기 시료 모듈(2)과 접촉되는 상기 열원 기판(1)에 형성된 열원 지점(a, b, c)과, 상기 시료 모듈(2)과 접촉되지 않는 상기 열원 기판(1)에 형성된 열원 지점(d, e)에 일정 파형의 에너지를 인가하며,The signal applying step S200 may include heat source points a, b, and c formed on the heat source substrate 1 in contact with the sample module 2, and the heat source substrate not in contact with the sample module 2. Energy of a predetermined waveform is applied to the heat source points (d, e) formed in 1),
    상기 신호 측정단계(S300)는 상기 시료 모듈(2)과 접촉되지 않는 상기 열원 기판(1)에 형성된 열원 지점(d, e)에서 나타나는 신호와, 상기 시료 모듈(2)과 접촉되는 상기 열원 기판(1)에 형성된 열원 지점(a, b, c)의 Z축 방향에 위치된 상기 시료 모듈(2)의 상면에서 나타나는 신호를 측정하는 것을 특징으로 하는, 위상잠금 열화상 기법을 이용한 열물성 측정방법.The signal measuring step S300 includes a signal appearing at the heat source points d and e formed on the heat source substrate 1 not in contact with the sample module 2, and the heat source substrate in contact with the sample module 2. Thermal property measurement using a phase-locked thermal imaging technique, characterized in that for measuring a signal appearing on the upper surface of the sample module 2 located in the Z-axis direction of the heat source points (a, b, c) formed in (1) Way.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 시료 모듈(2)과 접촉되는 상기 열원 기판(1)에 형성된 제1 열원 지점(a, b, c)은 동일선상에 위치되되 서로 열적 간섭이 일어나지 않도록 일정거리 이격되고,The first heat source points (a, b, c) formed on the heat source substrate (1) in contact with the sample module (2) are located on the same line but spaced apart from each other to prevent thermal interference,
    상기 시료 모듈(2)과 접촉되지 않는 상기 열원 기판(1)에 형성된 제2 열원 지점(d, e)은 상기 제1 열원 지점(a, b, c) 중 중심에 위치되는 중앙 열원 지점(b)을 중심으로 X축 방향 또는 Y축 방향으로 일정거리 이격되는 것을 특징으로 하는, 위상잠금 열화상 기법을 이용한 열물성 측정방법.The second heat source points d and e formed on the heat source substrate 1 that are not in contact with the sample module 2 are the central heat source points b located at the center of the first heat source points a, b, and c. The thermal property measurement method using a phase-locked thermal imaging method, characterized in that spaced apart a predetermined distance in the X-axis or Y-axis direction with respect to).
  9. 제 1 항에 있어서,The method of claim 1,
    상기 배치단계(S100)는, 열확산도가 0.1mm2/s~1mm2/s이고, 두께가 0.1mm~0.5mm인 박막을 상기 열원 기판(1)과 상기 시료 모듈(2) 사이에 또는 상기 시료 모듈 위에 위치시키는 박막 설치단계(S130)를 더 포함하는 것을 특징으로 하는, 위상잠금 열화상 기법을 이용한 열물성 측정방법.In the disposing step S100, a thin film having a thermal diffusivity of 0.1 mm 2 / s to 1 mm 2 / s and a thickness of 0.1 mm to 0.5 mm is disposed between the heat source substrate 1 and the sample module 2 or the Thermal property measurement method using a phase-locked thermal imaging method, characterized in that it further comprises a thin film installation step (S130) placed on the sample module.
PCT/KR2016/012445 2016-06-21 2016-11-01 Method for measuring thermal property by using lock-in thermography WO2017222115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0076962 2016-06-21
KR1020160076962A KR101759862B1 (en) 2016-06-21 2016-06-21 The measurement method of thermal property using Lock-in thermography

Publications (1)

Publication Number Publication Date
WO2017222115A1 true WO2017222115A1 (en) 2017-12-28

Family

ID=59419091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012445 WO2017222115A1 (en) 2016-06-21 2016-11-01 Method for measuring thermal property by using lock-in thermography

Country Status (2)

Country Link
KR (1) KR101759862B1 (en)
WO (1) WO2017222115A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390919A (en) * 2021-06-24 2021-09-14 中国科学技术大学 Method for observing material phase boundary by phase-locked infrared imaging

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020073978A (en) * 2001-03-19 2002-09-28 현대중공업 주식회사 Method of measuring the thickness of thin film layer using infrared thermal image system
US20050002436A1 (en) * 2003-05-07 2005-01-06 Naoyuki Taketoshi Method for measuring thermophysical property of thin film and apparatus therefor
US20150153293A1 (en) * 2013-12-04 2015-06-04 Watlow Electric Manufacturing Company Thermographic inspection system
KR101528200B1 (en) * 2014-12-30 2015-06-12 한국기초과학지원연구원 An apparatus for three dimensional thermal image measurement and a method thereof
KR101551609B1 (en) * 2015-06-10 2015-09-08 한국기초과학지원연구원 A thermal characteristic apparatus for wafer device and a control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020073978A (en) * 2001-03-19 2002-09-28 현대중공업 주식회사 Method of measuring the thickness of thin film layer using infrared thermal image system
US20050002436A1 (en) * 2003-05-07 2005-01-06 Naoyuki Taketoshi Method for measuring thermophysical property of thin film and apparatus therefor
US20150153293A1 (en) * 2013-12-04 2015-06-04 Watlow Electric Manufacturing Company Thermographic inspection system
KR101528200B1 (en) * 2014-12-30 2015-06-12 한국기초과학지원연구원 An apparatus for three dimensional thermal image measurement and a method thereof
KR101551609B1 (en) * 2015-06-10 2015-09-08 한국기초과학지원연구원 A thermal characteristic apparatus for wafer device and a control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390919A (en) * 2021-06-24 2021-09-14 中国科学技术大学 Method for observing material phase boundary by phase-locked infrared imaging
CN113390919B (en) * 2021-06-24 2022-07-15 中国科学技术大学 Method for observing material phase boundary by phase-locked infrared imaging

Also Published As

Publication number Publication date
KR101759862B1 (en) 2017-07-31

Similar Documents

Publication Publication Date Title
WO2012141544A2 (en) Interferometer for tsv measurement and measurement method using same
US10242895B2 (en) Self-contained metrology wafer carrier systems
US11378610B2 (en) Inspection system and temperature measuring method for inspection system
Webb Thermal imaging of electronic devices with low surface emissivity
WO2017222115A1 (en) Method for measuring thermal property by using lock-in thermography
US9927308B1 (en) Temperature sensor calibration of an entire wafer in a liquid bath
CN103543174B (en) Testing method and system of junction-loop thermal resistance
WO2017039170A1 (en) Device and method for measuring change in thickness or height of object
KR20020039267A (en) Method and apparatus for testing of sheet material
WO2011059245A2 (en) Apparatus and method for measuring property of contact heat conduction material
RU2620029C1 (en) Holder unit for nanocalorimetric sensors for measuring thermophysical and structural parameters of sample
RU2711563C1 (en) Thermostating device for carrying out nanocalorimetric measurements
Hu et al. Infrared Radiation Transparent Film Impact on Thermal Measurement
Fukunaga et al. Identification of high resolution transient thermal network model for power module packages
US20210159852A1 (en) Reusable interface for solar cell test and characterization
WO2024117531A1 (en) Liquid level measurement system using lock-in thermography, and method therefor
WO2017043942A1 (en) Method for analyzing three-dimensional specimen
CN109724712A (en) Temperature-detecting device and its manufacturing method and laser surface annealing device
CN112345119B (en) Semiconductor wafer temperature calibration system
RU2392687C1 (en) Method of inspecting integrated circuits
CN115394673A (en) Large-size wafer-level substrate thermal test variable-temperature environment control device suitable for 3 omega electrical method
CN207050886U (en) A kind of measurement and control of temperature module for OLED life-span accelerated tests
WO2018105946A1 (en) Transmission axis measuring system using non-normal arrangement of polarizer
Weed et al. An experimental investigation of the emissivity of various electronic packages
KR20210027096A (en) High frequency characteristic inspection apparatus and high frequency characteristic inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16906390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16906390

Country of ref document: EP

Kind code of ref document: A1