WO2017222063A1 - 複合多孔質中空糸膜、複合多孔質中空糸膜モジュール及び複合多孔質中空糸膜モジュールの運転方法 - Google Patents

複合多孔質中空糸膜、複合多孔質中空糸膜モジュール及び複合多孔質中空糸膜モジュールの運転方法 Download PDF

Info

Publication number
WO2017222063A1
WO2017222063A1 PCT/JP2017/023295 JP2017023295W WO2017222063A1 WO 2017222063 A1 WO2017222063 A1 WO 2017222063A1 JP 2017023295 W JP2017023295 W JP 2017023295W WO 2017222063 A1 WO2017222063 A1 WO 2017222063A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
composite porous
porous hollow
weight
Prior art date
Application number
PCT/JP2017/023295
Other languages
English (en)
French (fr)
Inventor
俊 志村
花川 正行
健太 岩井
北出 有
将弘 木村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017534858A priority Critical patent/JP6547832B2/ja
Priority to KR1020187037071A priority patent/KR102274763B1/ko
Priority to CN201780039392.4A priority patent/CN109328101B/zh
Priority to US16/312,768 priority patent/US11235989B2/en
Publication of WO2017222063A1 publication Critical patent/WO2017222063A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00113Pretreatment of the casting solutions, e.g. thermal treatment or ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/52Crystallinity

Definitions

  • the present invention relates to a composite porous hollow fiber membrane module and a method for operating the composite porous hollow fiber membrane module that can be used for water treatment, food or chemical production, or medical applications.
  • Separation membranes are used for filtration in various fields such as water treatment fields such as water purification and wastewater treatment, medical applications such as blood purification, and food industry fields.
  • the separation membrane When filtration is performed, the pores of the separation membrane are blocked. As the clogging progresses, the filtration pressure increases, so that it becomes difficult to maintain the filtration amount gradually. Therefore, a method for washing the separation membrane after performing a filtration operation for a certain time is disclosed.
  • the separation membrane As the chemical cleaning of the separation membrane, the separation membrane may be washed with an acid such as hydrochloric acid, citric acid or oxalic acid, an alkali such as an aqueous sodium hydroxide solution, chlorine or a surfactant. Therefore, in recent years, a separation membrane using a fluororesin polymer represented by polyvinylidene fluoride has been developed and used as a material having high chemical resistance.
  • Patent Document 1 in a porous hollow fiber membrane made of a polyvinylidene fluoride-based resin, a fibrous structure having a diameter oriented in the length direction of 0.9 ⁇ m or more and 3 ⁇ m or less accounts for 30% or more of the entire porous hollow fiber membrane. It is described that this porous hollow fiber membrane is excellent in strength and pure water permeation performance. Further, this document describes that, in the method for producing a hollow fiber membrane, pressure is applied in a liquid feed line to a polyvinylidene fluoride resin solution before being discharged from a die.
  • Patent Documents 2 and 3 disclose hollow membranes having a three-dimensional network structure and a spherical structure. Furthermore, in Patent Document 4, a composition obtained by adding a plasticizer and a good solvent of vinylidene fluoride resin to a vinylidene fluoride resin is extruded into a film shape, and cooled preferentially from one side surface. After the solidified film is formed, the plasticizer is extracted and further stretched to form a porous film; in the porous film, the product orientation part and the product non-orientation part (random orientation part) are obtained by X-ray diffraction. It is described that is recognized.
  • the inventors have made the molecular chain orientation degree ⁇ of the fluororesin polymer with respect to the longitudinal direction of the composite porous hollow fiber membrane to be 0.4 or more and less than 1.0.
  • the present inventors have found that the above problems can be solved and have completed the present invention.
  • the present invention has the following configurations [1] to [14].
  • the orientation degree ⁇ of the molecular chain of the fluororesin polymer with respect to the longitudinal direction of the composite porous hollow fiber membrane, which is oriented in the longitudinal direction of the thread membrane and calculated based on the following formula (1), is 0.
  • the first layer has a columnar structure oriented in the longitudinal direction of the composite porous hollow fiber membrane
  • the second layer has a three-dimensional network structure
  • a composite porous hollow fiber membrane having an average pore diameter on the surface of the second layer of 5.0 nm or more and 5.0 ⁇ m or less.
  • Porous hollow fiber membrane [10] A composite case according to any one of [1] to [9], which has a cylindrical case having a first end and a second end in the height direction, and a plurality of [1] to [9] accommodated in the cylindrical case.
  • the hollow part of the porous hollow fiber membrane is a composite porous hollow fiber membrane module in which the second end side is open and the first end side is closed.
  • a liquid to be filtered is introduced into the cylindrical case from a fluid outflow inlet located on the first end side end surface, and the liquid to be filtered is introduced from a fluid outflow inlet located on the second end side surface.
  • the step of discharging outside the cylindrical case (B) The composite porous hollow fiber membrane module according to [12] [10], wherein the filtrate is taken out from the hollow portion of the composite porous hollow fiber membrane to the second end side.
  • step (D) After the step (B), the step of filtering the fluid from the hollow portion of the composite porous hollow fiber membrane on the second end side to the outside of the composite porous hollow fiber membrane [14]
  • step (E) A gas is introduced into the cylindrical case from a fluid outflow inlet located on the first end side end face, and the gas is introduced from the fluid outflow inlet located on the second end side surface to the outside of the cylindrical case.
  • a composite porous hollow fiber membrane capable of suppressing the blockage in the pores and capable of stable operation for a long period of time.
  • a composite porous hollow fiber membrane module capable of stably operating for a long period of time and a method for operating the same are provided by suppressing clogging of the channels and pores in the membrane caused by microorganisms.
  • FIG. 2 is a graph showing Raman orientation parameters at each measurement location of the composite porous hollow fiber membrane of Example 4.
  • FIG. 3 is a cross-sectional photograph of the composite porous hollow fiber membrane of Example 4 in the longitudinal direction.
  • 4 is a view showing a cross-sectional photograph in the longitudinal direction of the composite porous hollow fiber membrane of Comparative Example 1.
  • FIG. FIG. 5 is a view showing a cross-sectional photograph of the second layer having the three-dimensional network structure of the present invention.
  • FIG. 6 is a view showing a composite porous hollow fiber membrane module 100A of the present invention.
  • FIG. 7 is a diagram showing the filtration device used in the examples.
  • the composite porous hollow fiber membrane of the present invention comprises a first layer and a second layer containing a fluororesin polymer, the first layer has a columnar structure, and the second layer is tertiary. It has a former network structure.
  • the degree of orientation ⁇ of the molecular chain of the fluororesin polymer with respect to the longitudinal direction of the composite porous hollow fiber membrane is 0.4 or more and less than 1.0. is there.
  • the degree of orientation ⁇ is calculated from the half width H (°) obtained by wide-angle X-ray diffraction measurement based on the following formula (1).
  • Orientation degree ⁇ (180 ° ⁇ H) / 180 ° (1) (However, H is the half width (°) of the diffraction intensity distribution in the circumferential direction of the wide-angle X-ray diffraction image.)
  • the molecular chain of the fluororesin-based polymer is oriented, so that a composite porous hollow fiber membrane having a strength that can withstand use under conditions where a large force such as crossflow filtration or air scrubbing is applied is realized.
  • the orientation of the molecular chain of the fluororesin polymer in the longitudinal direction of the composite porous hollow fiber membrane and the method for measuring the orientation degree ⁇ will be specifically described below.
  • the composite porous hollow fiber membrane is attached to the fiber sample stage so that the longitudinal direction is vertical.
  • the short direction of the composite porous hollow fiber membrane is a direction parallel to the radial direction of the hollow fiber, and the long direction is a direction perpendicular to the short direction.
  • the diffraction angle 2 ⁇ 20.
  • a peak can be seen in the vicinity of °.
  • the horizontal axis of the diffraction pattern obtained at this time is the X-ray diffraction angle 2 ⁇ , and the vertical axis is the diffraction intensity.
  • the diffraction intensity is substantially constant over the entire 360 ° circumferential direction of the Debye ring.
  • the position of the diffraction peak in the radial direction of the Debye ring (that is, the value of 2 ⁇ corresponding to the diffraction peak) is “around 20 °” in the above description.
  • the value of 2 ⁇ varies depending on the structure and composition of the polymer and may be in the range of 15 to 25 °.
  • the derived diffraction peak is seen.
  • the intensity distribution in the azimuth angle direction can be obtained by fixing the value of the diffraction angle 2 ⁇ and further measuring the intensity from 0 ° to 360 ° in the azimuth angle direction (circumferential direction).
  • This intensity distribution can be said to be an intensity distribution obtained by scanning a crystal peak in a diffraction image in the circumferential direction.
  • a peak is considered to exist.
  • a width (half-value width H) at a position half the peak height is obtained.
  • the degree of orientation ⁇ is calculated by substituting this half width H into the above equation (1).
  • the degree of orientation ⁇ in the longitudinal direction of the composite porous hollow fiber membrane of the molecular chain of the fluororesin polymer of the present invention is in the range of 0.4 or more and less than 1.0, preferably 0.5 or more and 1.0. It is less than, More preferably, it is 0.6 or more and less than 1.0.
  • the degree of orientation ⁇ is 0.4 or more, the mechanical strength of the composite porous hollow fiber membrane is increased.
  • the toughness of a composite porous hollow fiber membrane becomes high because orientation degree (pi) is less than 1.0.
  • the degree of orientation ⁇ is 0.4 or more and less than 1.0 at 80% or more measurement points when the wide-angle X-ray diffraction measurement is performed at 1 cm intervals in the longitudinal direction of the composite porous hollow fiber membrane. It is preferable that
  • the ratio of the intensity at the azimuth angle of 180 ° and the intensity at the azimuth angle of 90 ° exceeds 0.80 and is less than 1.25. Assumes no peak. That is, in this case, it is determined that the fluororesin polymer is non-oriented.
  • the information obtained by X-ray diffraction measurement reflects the orientation state of the entire composite porous hollow fiber membrane.
  • the result is “with orientation”.
  • the molecular chains of the first layer are oriented but the molecular chains of the second layer are not oriented.
  • the orientation is detected by X-ray diffraction for the entire composite porous hollow fiber membrane.
  • the thickness of the first layer occupies 50% or more of the thickness of the composite porous hollow fiber membrane, the influence of the first layer on the diffraction result becomes large.
  • the composite porous hollow fiber membrane includes at least a first layer and a second layer.
  • the first layer can be identified as a portion where a columnar structure is observed when a longitudinal section of the separation membrane is photographed 3000 times using a scanning electron microscope.
  • the first layer has a columnar structure oriented in the longitudinal direction of the composite porous hollow fiber membrane.
  • the first layer contains a fluororesin polymer.
  • the main structure is preferably a columnar structure.
  • the proportion of the columnar structure is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 95% by weight or more.
  • the first layer may be composed of only a columnar structure, and in this case, the first layer can be expressed as an aggregate of columnar structures. More specifically, the first layer preferably has a columnar structure containing a fluororesin-based polymer as a main component as its main structure.
  • X contains Y as a main component means that the proportion of Y in X is 80 wt% or more, 90 wt% or more, or 95 wt% or more.
  • X may be composed only of Y.
  • the first layer may be composed of only a fluororesin polymer.
  • X contains Y as a main component can be rephrased as “X is based on Y”.
  • orienting in the longitudinal direction means that the acute angle of the longitudinal direction of the columnar structure and the longitudinal direction of the composite porous hollow fiber membrane is within 20 degrees.
  • the first layer may contain a structure other than the columnar structure.
  • the structure other than the columnar structure include a spherical structure having an aspect ratio (long length / short length) of less than 3.
  • the short length and the long length of the spherical structure are preferably in the range of 0.5 ⁇ m to 3 ⁇ m.
  • the proportion of the spherical structure in the first layer is preferably 20% by weight or less, 10% by weight or less, 5% by weight or less, or less than 1% by weight.
  • the occupation ratio (%) of each structure in the first layer is a columnar structure using a scanning electron microscope (SEM) or the like for the first layer portion in the longitudinal cross section of the composite porous hollow fiber membrane.
  • SEM scanning electron microscope
  • a photograph is taken at a magnification at which the spherical structure can be clearly confirmed, preferably 1000 to 5000 times, and is obtained by the following formula (6).
  • Occupancy (%) ⁇ (area occupying the first layer of each structure) / (area of the first layer of the entire photograph) ⁇ ⁇ 100 (6)
  • the photographed photograph is printed on paper, and the weight of the paper corresponding to the first layer of the entire photograph and the weight of the paper corresponding to the tissue portion of the first layer cut out from the photograph are measured.
  • FIB focused ion beam
  • the porosity of the first layer is preferably 40% or more and 90% or less, 50% or more and 80% or less, or 50% or more and 70% or less in order to achieve both high pure water permeability and high strength.
  • the porosity is 40% or more, high pure water permeation performance is obtained, and when it is 90% or less, high strength can be realized.
  • the composite porous hollow fiber membrane is used for cross-flow filtration performed in fermentation industry and food industry application, or when air scrubbing for water treatment is applied, the porosity falls within any of these ranges. It is desirable to satisfy.
  • the porosity of the first layer is obtained by the following formula (5) using the resin part area of the first layer and the gap part area of the first layer in the cross section described above. In order to increase the accuracy, it is preferable to obtain the porosity for a cross section of any 20 points or more, preferably 30 points or more, and use an average value thereof.
  • Porosity (%) ⁇ 100 ⁇ (void partial area) ⁇ / ⁇ (resin partial area) + (void partial area) ⁇ (5)
  • the fluororesin polymer means a resin containing at least one of vinylidene fluoride homopolymer and vinylidene fluoride copolymer.
  • the fluororesin polymer may contain a plurality of types of vinylidene fluoride copolymers.
  • As the fluororesin polymer polyvinylidene fluoride is preferable. Further, at least a part of the molecular chain of the fluororesin-based polymer is oriented in the longitudinal direction of the composite porous hollow fiber membrane.
  • the vinylidene fluoride copolymer is a polymer having a vinylidene fluoride residue structure, and is typically a copolymer of a vinylidene fluoride monomer and other fluorine-based monomers.
  • a copolymer include a copolymer of vinylidene fluoride and one or more monomers selected from vinyl fluoride, tetrafluoroethylene, hexafluoropropylene, and trichloroethylene chloride. It is done.
  • a monomer such as ethylene other than the fluorine-based monomer may be copolymerized to such an extent that the effects of the present invention are not impaired.
  • the weight average molecular weight of the fluororesin-based polymer may be appropriately selected depending on the required strength and water permeability of the composite porous hollow fiber membrane, but when the weight average molecular weight increases, the water permeability performance decreases and the weight average molecular weight As the value decreases, the strength decreases. For this reason, in order for the composite porous hollow fiber membrane to have a strength that can withstand the cross-flow filtration operation, it is preferable to have a layer formed with a weight average molecular weight of the fluororesin polymer of 50,000 to 1,000,000. . In the case of fermentation industry and food industry where the composite porous hollow fiber membrane is frequently subjected to chemical cleaning, the weight average molecular weight is preferably 100,000 or more and 700,000 or less, and more preferably 150,000 or more and 600,000 or less.
  • the first layer preferably contains a fluororesin polymer as a main component.
  • Columnar structure is a solid substance that is long in one direction.
  • the aspect ratio (longitudinal length / short side length) of the columnar structure is preferably 3 or more.
  • the “longitudinal length” is the length of the columnar tissue in the longitudinal direction.
  • the “short length” is an average length in the short direction of the columnar structure.
  • the long length and the short length can be measured as follows.
  • the composite porous hollow fiber membrane is cut along the longitudinal direction of the composite porous hollow fiber membrane.
  • the obtained cross section is observed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the magnification can be changed according to the length of the columnar structure, and is such that five, preferably ten, whole columnar structures are included in the longitudinal direction in the visual field.
  • the maximum length in the longitudinal direction may be measured as the longitudinal length.
  • the short length is obtained by measuring the length in each short direction at a predetermined number of arbitrary measurement points in one columnar structure and calculating the average value thereof.
  • the number of measurement points is a value obtained by dividing the longitudinal length ( ⁇ m) by 1 ⁇ m (rounded down after the decimal point). For example, when the longitudinal length of the columnar structure is 20.5 ⁇ m, the number of measurement points is 20. However, if this value is 21 or more, any 20 locations may be measured.
  • the longitudinal length of the columnar structure is not particularly limited, but is preferably 7 ⁇ m or more, more preferably 10 ⁇ m or more, and further preferably 15 ⁇ m or more.
  • the longitudinal length of the columnar tissue is preferably, for example, 50 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the short length of the columnar structure is preferably 0.5 ⁇ m or more and 3 ⁇ m or less. It is preferable for the short length to be in the above range since high strength performance and high pure water permeation performance can be obtained. Since the physical strength of the columnar structure itself is increased when the short length of the columnar structure is 0.5 ⁇ m or more, high strength can be obtained. Moreover, since the space
  • the short length of the columnar structure is more preferably 0.7 ⁇ m or more and 2.5 ⁇ m or less, and further preferably 1 ⁇ m or more and 2 ⁇ m or less.
  • the preferred range of the representative value of the longitudinal length of the columnar structure and the representative value of the short length are respectively the longitudinal length and the short length of the individual columnar structures described above. It is the same as the preferable range. For the effect that each representative value is within the range, the description of the effect when the dimensions of the individual columnar structures are within the range is applied.
  • the longitudinal length is measured for 5 columnar structures, preferably 10 columnar structures, at 3 positions, preferably 5 positions, in the composite porous hollow fiber membrane.
  • the representative value of the short length is obtained by measuring the short length (calculated as an average value) as described above and calculating the average value of the columnar structure that is the target of measurement of the representative value of the long length. Is determined.
  • the representative value of the aspect ratio of the columnar structure calculated from the representative value of the long length and the representative value of the short length is preferably 3 or more, more preferably. Is 5 or more, more preferably 10 or more, and particularly preferably 20 or more.
  • the short length of the columnar structure is preferably 0.5 ⁇ m or more and 3 ⁇ m or less, and the aspect ratio of the columnar structure is preferably 3 or more.
  • Thickness uniformity (average value D described later) of the columnar structure is preferably 0.60 or more, more preferably 0.70 or more, still more preferably 0.80 or more, Especially preferably, it is 0.90 or more.
  • the thickness uniformity is 1.0 at the maximum, but the columnar structure may have a thickness uniformity of less than 1.0.
  • the columnar structure has high thickness uniformity, that is, the number of constricted portions of the columnar structure is small, so that the elongation of the composite porous hollow fiber membrane is increased. It is preferable that the composite porous hollow fiber membrane retains a high degree of elongation since it is difficult for the yarn to break even when a sudden load is applied. Practically, even when an external force suddenly acts on the composite porous hollow fiber membrane due to a change in the liquid flow of crossflow filtration, the composite porous hollow fiber membrane is not easily broken.
  • the breaking elongation of the composite porous hollow fiber membrane is preferably 50% or more, and more preferably 80% or more.
  • the thickness uniformity will be described. The smaller the variation in the length of each columnar structure in the short direction, the fewer the constricted portion of the columnar structure, the higher the thickness uniformity, and the closer to an ideal cylinder.
  • the thickness uniformity of the columnar structure can be obtained by comparing the first and second cross sections parallel to the short direction of the composite porous hollow fiber membrane. This will be specifically described below.
  • a first cross section and a second cross section that are parallel to each other are selected.
  • the distance between the first surface and the second surface is 5 ⁇ m.
  • the resin portion and the void portion are distinguished from each other in the first layer, and the resin portion area and the void portion area are measured.
  • the first cross section is projected onto the second cross section, the area of the portion where the resin portion in the first cross section overlaps the resin portion in the second cross section, that is, the overlapping area is obtained.
  • Thickness uniformity B (overlap area) / (resin partial area of the first cross section) (4)
  • the composite porous hollow fiber membrane has a columnar structure. I can say that.
  • the composite porous hollow fiber membrane is embedded in advance with an epoxy resin or the like, and the epoxy resin or the like is embedded in osmium or the like. It is preferable to carry out a dyeing treatment.
  • the void portion is filled with epoxy resin or the like, and when the cross-section processing by the focused ion beam described later, the portion made of fluororesin-based polymer and the void portion (that is, epoxy resin portion) ) Can be clearly distinguished from each other, and the observation accuracy is increased.
  • a scanning electron microscope (SEM) equipped with a focused ion beam (FIB) is used. Is preferred. A surface parallel to the short direction of the composite porous hollow fiber membrane is cut out using FIB, and cutting and SEM observation by FIB are repeated 200 times at 50 nm intervals in the longitudinal direction of the composite porous hollow fiber membrane. To do. Information of a depth of 10 ⁇ m can be obtained by such continuous section observation.
  • observation magnification may be any magnification that allows the columnar structure and the spherical structure to be clearly confirmed, and for example, 1000 to 5000 times may be used.
  • the columnar structure contains a fluororesin polymer.
  • the columnar structure preferably contains a fluororesin polymer as a main component, and the proportion of the fluororesin polymer in the columnar structure is preferably 80% by weight or more, more preferably 90% by weight or more, and 95% by weight. It is still more preferable that it is above. Further, the columnar structure may be composed of only a fluororesin polymer.
  • the first layer has a solid content containing a fluororesin polymer, and at least a part of the solid content constitutes a columnar structure.
  • the proportion of the solid content constituting the columnar structure in the solid content containing the fluororesin polymer is preferably 80% by weight or more, more preferably 90% by weight or more, and 95% by weight or more. More preferably it is.
  • at least the columnar structure contains a fluororesin polymer oriented in the longitudinal direction of the composite porous hollow fiber membrane.
  • the orientation of the molecular chain can also be confirmed by orientation analysis by Raman spectroscopy.
  • Raman spectroscopy the degree of orientation of molecular chains in a columnar structure described later can be measured.
  • the membrane is sectioned by cutting with a microtome.
  • laser Raman measurement is performed at 1 ⁇ m intervals along the longitudinal direction of the columnar structure while confirming the columnar structure.
  • the number of measurement points in one columnar structure is a value obtained by dividing the longitudinal length ( ⁇ m) of a columnar structure described later by 1 ⁇ m (rounded down to the nearest decimal point). For example, when the longitudinal length of the columnar structure is 20.5 ⁇ m, the number of measurement points is 20.
  • a vibration mode indicating a vibration direction parallel to the molecular chain and a vibration direction perpendicular to the molecular chain are represented.
  • the orientation degree can be calculated by appropriately selecting the vibration mode to be shown and taking the scattering intensity ratio.
  • the Raman band near 1270 cm ⁇ 1 belongs to the coupling mode of CF 2 (fluorocarbon) stretching vibration and CC (carbon-carbon) stretching vibration. .
  • the vibration direction in these vibration modes is parallel to the molecular chain.
  • the vibration direction of the Raman band near 840 cm ⁇ 1 is perpendicular to the molecular chain.
  • the Raman orientation parameter can be calculated by the following formula (2).
  • the Raman orientation parameter has a larger value as the orientation of the composite porous hollow fiber membrane in the longitudinal direction is higher, 1 when no orientation is achieved, and 1 when the orientation in the lateral direction is high.
  • Raman orientation parameter (I1270 parallel / I840 parallel) / (I1270 vertical / I840 vertical) (2)
  • I1270 parallel the intensity of the Raman bands of 1270 cm -1 when parallel condition
  • I1270 vertical the intensity of the Raman bands of 1270 cm -1 when the vertical condition
  • I840 parallel the intensity of the Raman bands of 840 cm -1 at collinear condition
  • I840 Vertical Vertical conditions It is the intensity of the Raman band at 840 cm ⁇ 1 at the time.
  • Parallel condition the longitudinal direction of the composite porous hollow fiber membrane is parallel to the polarization direction.
  • Vertical condition the longitudinal direction of the composite porous hollow fiber membrane is orthogonal to the polarization direction.
  • ten different columnar structures having a length of 0.5 to 1.5 times the representative value of the longitudinal length of the columnar structure are selected.
  • laser Raman measurement is performed at intervals of 1 ⁇ m as described above, and the orientation parameter at each measurement point is calculated by Equation (2).
  • the average value of the obtained values is taken as the average value ⁇ of the Raman orientation parameters.
  • the operation of selecting the largest orientation parameter and the smallest orientation parameter among the measurement points of one columnar structure is performed for ten different columnar structures.
  • the average values are calculated as the maximum Raman alignment parameter M and the minimum Raman alignment parameter m for the 10 selected largest alignment parameters and the ten smallest alignment parameters, respectively.
  • the average value ⁇ of the Raman orientation parameter is preferably 3.0 or more, more preferably 3.4 or more, or 3.7 or more.
  • the strength of the composite porous hollow fiber membrane is increased and can be suitably used for cross flow filtration.
  • the maximum Raman orientation parameter M and the minimum Raman orientation parameter m are considered to represent the orientation degree of the main orientation location in the columnar structure and the orientation degree of the portion that becomes the power point during stretching, respectively. For this reason, M and m should just be made into an appropriate range in consideration of balance of performance, such as intensity, elongation, and water permeability, of the obtained composite porous hollow fiber membrane.
  • M / m is preferably 3 or more, more preferably 4 or more, and still more preferably 5 or more.
  • the degree of orientation ⁇ determined by wide-angle X-ray diffraction measurement represents the molecular chain orientation of the entire composite porous membrane hollow fiber membrane, and the average value ⁇ of the Raman orientation parameters determined by Raman spectroscopy is the composite porous membrane hollow fiber It tends to represent the orientation of molecular chains when focused on the columnar structure of the film, that is, the orientation of local molecular chains.
  • the orientation degree ⁇ is in the range of 0.6 or more and less than 1.0.
  • the average value ⁇ of Raman orientation parameters is preferably 3.4 or more, and the orientation degree ⁇ is in the range of 0.7 or more and less than 1.0, and the average value of Raman orientation parameters. More preferably, ⁇ is 3.7 or more.
  • the second layer has a three-dimensional network structure.
  • the second layer in the present invention is a portion where a three-dimensional network structure is observed when a cross section in the longitudinal direction of the fluororesin-based polymer separation membrane is photographed at 60000 times using a scanning electron microscope.
  • the three-dimensional network structure is a structure in which solid content is three-dimensionally spread in a network.
  • the three-dimensional network has pores and voids partitioned by solid contents forming a network.
  • the second layer substantially has a separation performance, that is, a performance for removing a target substance from a liquid to be filtered in the composite porous hollow fiber membrane by having a three-dimensional network structure.
  • the average pore diameter on the surface of the second layer is 5.0 nm or more and 5.0 ⁇ m or less.
  • the average pore diameter on the surface of the second layer is 5.0 ⁇ m or less, microorganisms can be separated.
  • the average pore diameter on the surface of the second layer is 2.0 ⁇ m or less or 1.0 ⁇ m or less, the microorganism removal performance is further improved.
  • the water permeability of a composite porous hollow fiber membrane is securable because the average pore diameter of the surface in a 2nd layer is 5.0 nm or more.
  • the surface average pore diameter of the second layer may be 10 nm or more.
  • the average pore diameter of the surface of the second layer is 0.2 ⁇ m or more, 0.3 ⁇ m or more, or 0.4 ⁇ m or more, since useful components such as flavor can be permeated in the fermentation industry and the food industry.
  • the average pore diameter on the surface of the two layers is 1.5 ⁇ m or less or 1.3 ⁇ m or less, blockage by yeast can be suppressed.
  • the average pore diameter on the surface of the second layer is preferably 0.4 ⁇ m or more and 1.0 ⁇ m or less.
  • the average pore size on the surface of the two layers is preferably 5.0 nm or more and 1.0 ⁇ m or less.
  • the average pore diameter of the surface of the second layer is obtained by taking a photograph of the surface of the second layer at 60000 times using a scanning electron microscope, and measuring the diameter of any pore of 10 or more, preferably 20 or more, It is obtained by number averaging.
  • the average pore diameter of the surface of the second layer is obtained by obtaining a circle having an area equal to the area of the pores (equivalent circle) by an image processing apparatus or the like, and the equivalent circle diameter is the diameter of the pores. It is calculated
  • the “surface of the second layer” refers to the surface of the second layer exposed in the composite porous hollow fiber membrane when the second layer is located on the outermost surface of the composite porous hollow fiber membrane. Point to. Moreover, what is necessary is just to expose the surface of a 2nd layer except one layer, when the 2nd layer is not exposed and is arrange
  • the second layer has substantially no macrovoid.
  • Macro voids are pores having a major axis that is ten times or more the surface pore size. Macrovoids show little filtration resistance to permeate fluids.
  • the presence or absence of macrovoids can be determined by photographing the second layer at a magnification of 3000 using a scanning electron microscope in the radial cross section of the composite porous hollow fiber membrane and measuring the major axis in the photographed image. If the hole has an irregular shape and it is difficult to determine the major axis, use an image processing device or the like to obtain a circle having an area equal to the area of the hole (equivalent circle) and use the equivalent circle diameter as the major axis. Good. In order to confirm the presence or absence of macro voids, it is preferable to perform imaging at least 30 locations.
  • the second layer has a solid content containing a fluororesin polymer, and at least a part of the solid content constitutes a three-dimensional network structure.
  • the proportion of the solid content constituting the three-dimensional network structure is preferably 80% by weight or more, more preferably 90% by weight or more, and 95% by weight. It is still more preferable that it is above.
  • the main structure in the second layer is preferably a three-dimensional network structure.
  • the proportion of the three-dimensional network structure is preferably 80% by weight or more, more preferably 90% by weight or more, and still more preferably 95% by weight or more.
  • the second layer may be composed of only a three-dimensional network structure. More specifically, the second layer preferably has, as its main structure, a three-dimensional network structure containing a fluororesin polymer as a main component.
  • the second layer is preferably arranged so as to be in contact with the liquid to be filtered in the composite porous hollow fiber membrane. Since the membrane used for external pressure filtration is in contact with the liquid to be filtered on the outer surface, the second layer is preferably provided as the outermost layer. Moreover, it is preferable that a 1st layer is arrange
  • the first layer is preferably the thickest of the layers possessed by the composite porous hollow fiber membrane. Thereby, the composite porous hollow fiber membrane can obtain high strength. Moreover, it is preferable that ratio of the thickness of the 1st layer with respect to the thickness of the whole composite porous hollow fiber membrane is 0.50 or more, 0.55 or more, and 0.60 or more.
  • the composite porous hollow fiber membrane may include a plurality of first layers. When the composite hollow fiber membrane includes a plurality of first layers, the total thickness of the first layers may be within the above numerical range.
  • the thickness of the first layer is preferably 100 ⁇ m or more and 500 ⁇ m or less, and more preferably 150 ⁇ m or more and 300 ⁇ m or less, from the balance between water permeability and physical strength.
  • the second layer has a network structure that extends three-dimensionally not only in the circumferential direction of the film but also in the thickness direction of the film. Therefore, it can be said that the second layer has a plurality of thin “nets” overlapped in the thickness direction.
  • This thin “net” is hereinafter referred to as “thin layer”.
  • the microorganism removal performance by the second layer is the sum of the microorganism removal performance of each thin layer in the second layer. That is, when the number of thin layers is increased, the microorganism removal performance is improved.
  • the thickness of the second layer may be changed depending on the conditions of the liquid to be filtered such as the concentration of the removal target, the conditions of the filtration operation, the required conditions of the permeate, and the like, for example, preferably 10 ⁇ m or more and 120 ⁇ m or less. More preferably, it is 15 ⁇ m or more and 80 ⁇ m or less.
  • the thickness of the second layer is preferably 2 times or more, 5 times or more, or 10 times or more the surface average pore diameter of the second layer.
  • the ratio of the thickness of the second layer to the thickness of the entire composite porous hollow fiber membrane is preferably 0.03 or more and 0.35 or less.
  • the composite porous hollow fiber membrane of the present invention is a laminate of the above-described layer having a columnar structure and a layer having a three-dimensional network structure.
  • the second layer having a three-dimensional network structure is thicker than the first layer having a columnar structure, the physical strength decreases.
  • the thickness of the second layer having the three-dimensional network structure is too thin, there is a concern that the removal target may leak when there are defects or the like of the second layer. Therefore, the ratio of the average thickness of the second layer to the average thickness of the first layer is preferably 0.04 or more and 0.5 or less, more preferably 0.07 or more and 0.4 or less.
  • the interface When the first layer and the second layer are in contact with each other, the interface may have a structure in which both are intricate.
  • 1/2 of the thickness of the complicated structure is set as the thickness of the first layer and the second layer, respectively.
  • the composite porous hollow fiber membrane of the present invention preferably has a pure water permeation performance at 50 kPa and 25 ° C. of 0.1 m 3 / m 2 / hr or more and a breaking strength of 25 MPa or more. More preferably, the pure water permeation performance at 50 kPa and 25 ° C. is 0.2 m 3 / m 2 / hr or more, and the breaking strength is 30 MPa or more. In particular, from the viewpoint of a high-performance composite porous hollow fiber membrane that has both high pure water permeation performance and high strength performance, the pure water permeation performance at 50 kPa and 25 ° C. is 0.2 m 3 / m 2 / hr or more.
  • the range is 5.0 m 3 / m 2 / hr or less, and the breaking strength is preferably in the range of 25 MPa or more and 70 MPa or less, more preferably 50 kPa, and the pure water permeation performance at 25 ° C. is 0.2 m 3 / m 2 / hr or more. 0 m 3 / m 2 / hr or less, and the breaking strength is in the range of 30 MPa to 70 MPa.
  • the pure water permeation performance is measured by preparing a miniature module having a length of 200 mm composed of four composite porous hollow fiber membranes. Under the conditions of a temperature of 25 ° C. and a filtration differential pressure of 16 kPa, the external pressure total filtration of reverse osmosis membrane filtrate is performed for 10 minutes, and the permeation amount (m 3 ) is obtained. By converting the permeation amount (m 3 ) into a value per unit time (h) and effective membrane area (m 2 ), and further multiplying by (50/16), it is converted into a value at a pressure of 50 kPa to obtain pure water. Find the transmission performance.
  • the methods for measuring the breaking strength and breaking elongation are not particularly limited. For example, using a tensile tester, a sample having a measurement length of 50 mm is subjected to a tensile test at a pulling speed of 50 mm / min, and the sample is changed to 5 It can be measured by performing the measurement more than once and obtaining the average value of the breaking strength and the average value of the breaking elongation.
  • the composite porous hollow fiber membrane may further include layers in addition to the first layer and the second layer.
  • the dimensions of the composite porous hollow fiber membrane may be, for example, an outer diameter of 1.5 mm and an inner diameter of about 0.8 mm. However, the dimensions can be changed according to the purpose of use.
  • the composite porous hollow fiber membrane described above is capable of passing pure water sufficient for various water treatments such as fermentation industry, food industry, drinking water production, industrial water production, water purification, wastewater treatment, seawater desalination, industrial water production, etc. Has performance, strength and elongation.
  • the fluororesin-based polymer solution for forming the second layer and the fluororesin-based polymer solution for forming the first layer are simultaneously discharged from the base, and solidified and cooled and solidified in the coagulation bath, respectively. Can be used to form the second layer and the first layer simultaneously.
  • the first method is easy to control the performance of the resulting film because each operation can be controlled individually.
  • the second method since each operation can be performed simultaneously, the manufacturing apparatus can be minimized.
  • the first method will be described.
  • the method for producing a composite porous hollow fiber membrane includes the following steps 1) to 3).
  • step 1) the step 1) will be described. Specifically, this process includes the following steps (A) Preparation of a membrane forming stock solution (B) Formation of a porous hollow fiber having a columnar structure.
  • the concentration of the fluororesin polymer is preferably 20% by weight or more and 60% by weight or less, and more preferably 30% by weight or more and 50% by weight or less.
  • the poor solvent means that the fluororesin polymer cannot be dissolved in an amount of 5% by weight or more in a low temperature region of 60 ° C. or lower, but the melting point of the fluororesin polymer (for example, It is a solvent that can be dissolved by 5 wt% or more in a high temperature region of about 178 ° C. or less when it is composed of vinylidene fluoride homopolymer alone.
  • the good solvent is a solvent capable of dissolving 5% by weight or more of the fluororesin polymer even in a low temperature region of 60 ° C. or less, and the non-solvent is up to the melting point of the fluororesin polymer or the boiling point of the solvent.
  • the solvent is defined as a solvent that does not dissolve or swell the fluororesin polymer.
  • examples of the poor solvent for the fluororesin polymer include cyclohexanone, isophorone, ⁇ -butyrolactone, methyl isoamyl ketone, propylene carbonate, dimethyl sulfoxide, and a mixed solvent thereof.
  • examples of the good solvent include N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran, tetramethylurea, trimethyl phosphate, and a mixed solvent thereof.
  • Non-solvents include water, hexane, pentane, benzene, toluene, methanol, ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butylene glycol, pentanediol, Hexanediol, aliphatic hydrocarbons such as low molecular weight polyethylene glycol, aromatic hydrocarbons, aliphatic polyhydric alcohols, aromatic polyhydric alcohols, chlorinated hydrocarbons, other chlorinated organic liquids, and mixed solvents thereof Is mentioned.
  • porous hollow fiber having columnar structure In the formation process of porous hollow fiber, a process containing a fluororesin-based polymer is utilized by utilizing a thermally induced phase separation method in which phase separation is induced by temperature change. A porous hollow fiber is obtained from the membrane stock solution. In order to perform 2.0 times or higher high-stretching, which will be described later, the porous hollow fiber has a columnar structure oriented in the longitudinal direction, and the thickness uniformity of the columnar structure is 0.60 or more and 1 Preferably it is less than 0.00. The lower limit of the thickness uniformity of the columnar structure is more preferably 0.70 or more, further preferably 0.80 or more, and particularly preferably 0.90 or more.
  • phase separation mechanisms Two types of phase separation mechanisms are mainly used.
  • One is a solution in which a polymer solution that is uniformly dissolved at a high temperature is separated into a polymer dense phase and a polymer dilute phase due to a decrease in solution solubility at the time of cooling, and then the structure is fixed by crystallization. It is a liquid phase separation method.
  • the other is a solid-liquid phase separation method in which a polymer solution that is uniformly dissolved at a high temperature causes crystallization of the polymer when the temperature is lowered and phase-separates into a polymer solid phase and a solvent phase.
  • a three-dimensional network structure is mainly formed
  • a spherical structure mainly formed of a spherical structure is formed.
  • the latter phase separation mechanism is preferably used. Therefore, the polymer concentration and solvent that induce solid-liquid phase separation are selected.
  • a hollow part forming liquid is discharged while discharging the above-mentioned membrane forming stock solution from a tube outside a double tube die for spinning a porous hollow fiber membrane. Is discharged from the pipe inside the double pipe type base. The membrane forming stock solution thus discharged is cooled and solidified in a cooling bath to obtain a porous hollow fiber.
  • the fluororesin-based polymer solution is placed under a specific temperature condition for a certain period of time while being pressurized before being discharged from the die.
  • the pressure is preferably 0.5 MPa or more, and more preferably 1.0 MPa or more.
  • the temperature T of the polymer solution preferably satisfies Tc + 35 ° C. ⁇ T ⁇ Tc + 60 ° C., and more preferably satisfies Tc + 40 ° C. ⁇ T ⁇ Tc + 55 ° C.
  • Tc is the crystallization temperature of the fluororesin polymer solution.
  • the time for which the polymer solution is held under this pressure and temperature is preferably 10 seconds or more, and more preferably 20 seconds or more.
  • a retention part for retaining the polymer solution is provided in any part of the liquid feed line for sending the polymer solution to the die, and a pressurizing means for pressurizing the retained polymer solution,
  • a temperature adjusting means for example, a heating means for adjusting the temperature of the polymer solution.
  • the pump include a piston pump, a plunger pump, a diaphragm pump, a wing pump, a gear pump, a rotary pump, and a screw pump, and two or more kinds may be used.
  • the crystallization temperature Tc of the fluororesin polymer solution is defined as follows. Using a differential scanning calorimetry (DSC measurement) device, a mixture of the same composition as the film-forming polymer stock solution, such as a fluororesin polymer and a solvent, is sealed in a sealed DSC vessel and dissolved at a heating rate of 10 ° C./min. The rising temperature of the crystallization peak observed in the process of lowering the temperature at a temperature lowering rate of 10 ° C./min after the temperature is raised to the temperature, kept for 30 minutes and uniformly dissolved, is Tc.
  • DSC measurement differential scanning calorimetry
  • a cooling bath for cooling the fluororesin polymer solution discharged from the die will be described.
  • the cooling bath it is preferable to use a mixed liquid composed of a poor solvent or a good solvent having a concentration of 50 to 95% by weight and a non-solvent having a concentration of 5 to 50% by weight.
  • the same poor solvent as the polymer solution as the poor solvent.
  • the hollow portion forming liquid it is preferable to use a mixed liquid composed of a poor solvent or a good solvent having a concentration of 50 to 95% by weight and a non-solvent having a concentration of 5 to 50% by weight, like the cooling bath.
  • the same poor solvent as the polymer solution as the poor solvent.
  • the polymer-incorporated growth into the constricted part leads to the disappearance of the constricted part having a high interfacial energy and is stabilized in terms of energy, and therefore can be preferentially generated over the growth other than the constricted part.
  • the headline and the method for improving the thickness uniformity were intensively studied.
  • the thermally induced phase separation includes at least one of the following cooling steps a) and b) as a method for promoting the polymer uptake and growth in the constricted portion.
  • the cooling and solidification is gradually advanced by performing the cooling and solidification in the cooling bath in the vicinity of the crystallization temperature of the polymer solution.
  • the temperature Tb of the cooling bath is set so as to satisfy Tc ⁇ 30 ° C. ⁇ Tb ⁇ Tc, where Tc is the crystallization temperature of the fluororesin polymer solution, and Tc ⁇ 20 ° C. ⁇ More preferably, Tb ⁇ Tc.
  • the passage time of the cooling bath (that is, the immersion time in the cooling bath) is not particularly limited as long as sufficient time can be secured for the completion of the heat-induced phase separation including the polymer uptake and growth in the constricted portion. It may be determined experimentally in consideration of the number of membranes, spinning speed, bath ratio, cooling capacity and the like.
  • the passage time as long as possible within the above-described temperature range of the cooling bath, for example, 10 seconds or more, preferably 20 seconds or more, more preferably 30. It should be more than seconds.
  • the cooling step includes a step of cooling using a first cooling bath that promotes crystal nucleation and growth by increasing the degree of supercooling, and then a second step that promotes polymer uptake and growth in the constricted portion. Cooling with a cooling bath may be included. The cooling step by the second cooling bath utilizes the phenomenon that the polymer uptake and growth into the constricted part occurs preferentially during the structural coarsening process of phase separation.
  • Tb1 of the first cooling bath that cools the fluororesin polymer solution discharged from the die satisfies Tb1 ⁇ Tc ⁇ 30 ° C.
  • the degree of supercooling is increased and the generation and growth of crystal nuclei are increased.
  • Tb2 of the second cooling bath a temperature near the crystallization temperature (specifically, Tc-30 ° C ⁇ Tb2 ⁇ Tc, more preferably Tc-20 ° C ⁇ Tb2 ⁇ Tc
  • the passage time of each cooling bath can be changed, for example, the passage time of the first cooling bath is 1 second to 20 seconds, preferably 3 seconds to 15 seconds, more preferably 5 seconds to 10 seconds. And the passage time of the second cooling bath is 10 seconds or longer, preferably 20 seconds or longer, more preferably 30 seconds or longer.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-297383
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2006-297383
  • the present inventors have attempted to increase the strength by stretching it. However, it was found that the film could not be stretched uniformly and the strength could not be increased.
  • a porous membrane used for water treatment has a large number of voids for allowing water to permeate, and at the time of stretching, the destruction of the structure proceeds from the voids, so that the stretching itself is very difficult.
  • the porous hollow fiber membrane has a phase-separated porous structure obtained by dry-wet spinning using the principle of non-solvent induced phase separation or thermally induced phase separation, there are many fine voids and the porosity This tendency is remarkable because of
  • the present inventors have found that if the hollow fiber has a columnar structure having a uniform thickness, the entire columnar structure can be uniformly stretched, and a high magnification stretching of 2.0 times or more is possible. did. And by such uniform and high magnification stretching, we succeeded in stretching and aligning the molecular chain of fluororesin-based polymer in the longitudinal direction of the porous hollow fiber membrane, increasing the strength while maintaining high pure water permeability performance Succeeded in doing.
  • the polymer hollow polymer fiber is elongated in the longitudinal direction of the porous hollow fiber membrane through a step of stretching the porous hollow fiber obtained in 1) by 2.0 times to 5.0 times in the longitudinal direction. Orient in the direction. Thus, the first layer is formed.
  • the draw ratio is 2.0 to 5.0 times, more preferably 2.5 to 4.0 times, and particularly preferably 2.5 to 3.5 times.
  • the draw ratio is less than 2.0 times, the orientation of the molecular chain by drawing is not sufficient, and when it exceeds 5.0 times, the elongation decreases greatly.
  • the stretching temperature is preferably 60 to 140 ° C, more preferably 70 to 120 ° C, still more preferably 80 to 100 ° C.
  • the stretching temperature is 60 ° C. or higher, the film can be stably and uniformly stretched.
  • the stretching temperature is 140 ° C. or lower, melting of the fluororesin polymer can be suppressed and stretching orientation can be performed.
  • Stretching is preferably performed in a liquid because temperature control is easy, but may be performed in a gas such as steam.
  • a liquid water is convenient and preferable, but when stretching at about 90 ° C. or higher, it is also possible to preferably employ a low molecular weight polyethylene glycol or the like.
  • a process of forming a layer having a three-dimensional network structure that is, a process of forming a second layer will be described below. Specifically, this process includes the following steps: (A) Preparation of membrane forming stock solution (B) Application of membrane forming stock solution to porous hollow fiber after stretching (C) Three-dimensional network structure by non-solvent induced phase separation Forming a layer having
  • a film-forming stock solution that is, a fluororesin polymer solution is prepared. Specifically, it is preferable to mix a solvent, a fluororesin polymer and other additives, and to heat for several hours so that a transparent solution is obtained while stirring at a temperature not higher than the boiling point of the solvent.
  • the polymer concentration in the film-forming stock solution that is, the sum of the fluororesin-based polymer and other polymer components is preferably 10% by weight to 30% by weight, and preferably 12% by weight to 25% by weight. Is more preferable.
  • a second layer having a physical strength preferable as a separation membrane and a preferable pore size for removing microorganisms can be obtained.
  • the polymer concentration is 30% by weight or less, it is possible to obtain a three-dimensional network structure having water permeability that is preferable as a separation membrane.
  • the solvent it is preferable to contain 50% by weight or more of the above-mentioned fluororesin-based polymer good solvent. Further, it may contain 50% by weight or less of a poor solvent for a fluororesin polymer. Moreover, it is preferable that the film-forming stock solution contains an additive for controlling the pore size. In this fluororesin polymer solution, an additive for controlling the pore diameter is added, and when the three-dimensional network is formed or after the three-dimensional network is formed, the additive is eluted, The average pore diameter on the surface can be controlled.
  • the additive examples include organic compounds and inorganic compounds.
  • the organic compound those that are soluble in both the solvent used in the polymer solution and the non-solvent that causes non-solvent-induced phase separation are preferably used.
  • examples thereof include water-soluble polymers such as polyvinyl pyrrolidone, polyethylene glycol, cellulose acetate, polyethylene imine, polyacrylic acid, and dextran, surfactants, glycerin, and saccharides.
  • the inorganic compound examples that are soluble in both the solvent used in the polymer solution and the non-solvent that causes non-solvent-induced phase separation are preferable, and examples thereof include calcium chloride, magnesium chloride, lithium chloride, and barium sulfate. .
  • non-solvent it is also effective to control the phase separation rate by adding a non-solvent to the polymer solution.
  • the non-solvent to be added include water, methanol, ethanol, isopropyl alcohol, ethylene glycol, 2-methoxyethanol, glycerin, acetone, methyl ethyl ketone, N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, dioxane, and the like. Is mentioned.
  • (B) Application of membrane-forming stock solution to porous hollow fiber The membrane-forming stock solution is applied to the stretched porous hollow fiber obtained by the method described above, that is, the surface of the first layer. “Coating” includes immersing the porous hollow fiber in the membrane forming stock solution or dropping the membrane forming stock solution on the porous hollow fiber.
  • a method of controlling the coating amount of the fluororesin polymer solution -Controlling the coating amount itself of the polymer solution-Dipping a fluororesin polymer separation membrane comprising a columnar structure in the polymer solution-Applying the polymer solution to a fluororesin polymer separation membrane comprising a columnar structure
  • a method such as scraping off a part of the polymer solution or blowing it off with an air knife is preferably used.
  • non-solvent induced phase separation is caused by immersing a porous hollow fiber coated with a film-forming stock solution in a coagulation bath.
  • a second layer having a three-dimensional network structure is formed.
  • the coagulation bath may contain at least a non-solvent of a fluororesin polymer.
  • the non-solvent content in the coagulation bath is preferably 40% by weight or more and 95% by weight or less.
  • the coagulation bath preferably contains a good solvent for a fluororesin polymer.
  • the coagulation bath containing a good solvent for a fluororesin polymer contains 5% to 60% by weight of a good solvent for the fluororesin polymer, preferably 20% to 50% by weight.
  • the good solvent in the coagulation bath to the above range, the penetration rate of the non-solvent into the fluororesin-based polymer solution is reduced, and a three-dimensional network structure substantially free of macrovoids is easily formed. Since the content rate of the good solvent is 5% by weight or more, the penetration rate of the non-solvent can be suppressed, and as a result, formation of macrovoids can be easily suppressed.
  • a fluororesin can be solidified in a comparatively short time because the content rate of a good solvent is 60 weight% or less.
  • the good solvent for the fluororesin-based polymer those described above can be preferably used.
  • FIG. 6 shows an example of the module configuration.
  • “upper” and “lower” refer to the upper and lower sides in the figure, respectively.
  • the direction from “down” to “up” is expressed as “height direction” for convenience.
  • FIG. 6 is a schematic longitudinal sectional view of a composite porous hollow fiber membrane module 100A according to an embodiment of the present invention.
  • the composite porous hollow fiber membrane module 100A includes a cylindrical case 1 having a first end 1a and a second end 1b in the height direction; and an end portion on the first end 1a side that is accommodated in the cylindrical case 1 (
  • a composite porous hollow fiber membrane bundle 12 having a plurality of composite porous hollow fiber membranes 2 closed at the first end) and opened at the end (second end) on the second end 1b side; and composite porous A first bundling portion 3 for bundling the end portion of the hollow fiber membrane 2 on the first end 1a side; a fluid that guides fluid through the first bundling portion 3 from the first end 1a side toward the second end 1b side; 1 flow path 4.
  • the cylindrical case 1 includes a hollow cylindrical case body 26, an upper cap 6, and a lower cap 7. As shown in FIG. 6, an upper cap 6 having a filtrate outlet 8 is provided at the upper part of the cylindrical case 1, and a lower cap 7 having a filtrate inlet 9 is provided at the lower part of the cylindrical case 1, respectively. Liquid-tight and air-tight connection.
  • the upper cap 6 and the lower cap 7 are fixed to the cylindrical case 1 with a clamp or the like, for example, using a gasket 10 as shown in FIG. Further, a filtrate outlet 11 as a nozzle for discharging fluid (filtrate) is provided on the side of the cylindrical case 1 near the filtrate outlet 8, that is, near the second end 1b.
  • the upper cap 6 has an inner diameter substantially equal to the inner diameter of the cylindrical case 1, and the upper end side thereof is reduced in diameter to form the filtrate outlet 8.
  • the lower cap 7 has an inner diameter substantially equal to the inner diameter of the cylindrical case 1, and the lower end side of the lower cap 7 has a reduced diameter to form a filtrate inlet 9. Furthermore, the composite porous hollow fiber membrane module 100A includes a composite porous hollow fiber membrane bundle 12 including a plurality of composite porous hollow fiber membranes 2, and a composite porous hollow fiber at the end of the composite porous hollow fiber membrane bundle 12. A bundling portion for bundling between the membranes 2. The bundling portion has a first bundling portion 3 disposed on the filtrate inlet 9 side of the cylindrical case 1 and a second bundling portion 13 disposed on the filtrate outlet 8 side of the cylindrical case 1.
  • the composite porous hollow fiber membrane module 100A is disposed between the tubular case 1 and the composite porous hollow fiber membrane bundle 12 so as to be aligned with the filtrate outlet 11 and the radial direction of the tubular case 1.
  • a rectifying cylinder 15 having a plurality of rectifying holes 14 on the side surface, and the second bundling portion 13 is accommodated in the rectifying cylinder 15.
  • the binding method of the composite porous composite porous hollow fiber membrane bundle 12 in the first binding part 3 is not particularly limited as long as the mechanical strength, chemical durability, thermal durability, etc. of the binding part are satisfied.
  • the potting agent can contain a silicone resin, an epoxy resin, a polyurethane resin, or the like as a main component. Further, the potting agent may contain additives such as silica, glass and rubber other than the adhesive.
  • the first bundling section 3 has a first flow path 4 serving as a fluid flow path for the liquid to be filtered.
  • the first flow path 4 includes a through hole 4 ⁇ / b> A provided in the first binding part 3.
  • the arrangement of each through hole 31A is arbitrary, such as the positions of the vertices of many equilateral triangles, the positions of the intersections of radiation and concentric circles, the positions of the intersections on the lattice, but the spacing between adjacent through holes is biased Then, since the portion where the interval is larger than the others tends to stay, it is preferable to make the interval equal so that there is no great difference in the interval.
  • the cross-sectional shape perpendicular to the height direction of the through hole 4A is arbitrary such as a circle, an ellipse, a polygon, and a star.
  • the composite porous hollow fiber membrane module 100A can be used after steam sterilization or hot water sterilization, but depending on the type of the composite porous hollow fiber membrane 2, there is a contraction caused by steam sterilization and hot water sterilization. Therefore, if steam sterilization or hot water sterilization is performed after the module is manufactured, the composite porous hollow fiber membrane 2 may be damaged due to the shrinkage of the composite porous hollow fiber membrane 2, or the composite porous hollow fiber membrane 2 may fall off from the binding portion. There is sex. Therefore, it is desirable to fabricate the composite porous hollow fiber membrane 2 in advance by steam treatment or hot water treatment and shrinking it before end binding to produce a module.
  • the sum of the areas of the composite porous hollow fiber membrane 2 and the hollow portion of the composite porous hollow fiber membrane 2 is the first binding portion 3. It is preferable that it is 35% or more and 65% or less with respect to the area of the 2nd end 1b side end surface.
  • the sum of the areas is small, the amount of filtration processing per unit volume of the composite porous hollow fiber membrane module 100A becomes small, and the cost per amount of filtration increases. If the sum of the areas is large, the channel is likely to be blocked by microorganisms or the like.
  • the composite porous hollow fiber membrane bundle 12 is bound at both ends in a loose state in view of the workability for producing the composite porous hollow fiber membrane module 100A and the cleanability of the composite porous hollow fiber membrane 2 in module cleaning. It is preferable to accommodate in the cylindrical case 1 via the parts 3 and 13.
  • the looseness means that the length of the composite porous hollow fiber membrane 2 in this portion is larger than the linear distance from the end surface on the second end 1b side of the first binding portion 3 to the end surface on the first end 1a side of the second binding portion 13. This is the longer state.
  • a second binding portion 13 that is the upper end side of the composite porous hollow fiber membrane module 100A is disposed.
  • the second binding portion 13 is configured by binding a composite porous hollow fiber membrane bundle 12 composed of a large number of composite porous hollow fiber membranes 2.
  • the hollow part of the composite porous hollow fiber membrane 2 is not sealed and is open, and the filtrate is taken out from the opening part to the upper cap 6 side.
  • the binding method and the material used are not particularly limited as long as the mechanical strength, chemical durability, thermal durability, and the like of the binding portion are satisfied. For example, the same method and material as the first binding portion 3 can be selected. .
  • the outer diameter of the second bundling portion 13 is smaller than that of the cylindrical case 1.
  • a rectifying cylinder 15 exists between the cylindrical case 1 and the second bundling part, and the second bundling part 13 is fixed to the cylindrical case 1 or the rectifying cylinder 15, and the rectifying cylinder 15 is a cylindrical case. It is fixed to.
  • Each fixing method has nothing to do with the present invention.
  • the material of the cylindrical case 1 used in the composite porous hollow fiber membrane module 100A is not particularly limited as long as it satisfies mechanical strength, chemical durability, thermal durability, and the like.
  • a vinyl chloride resin, a polypropylene resin, Fluorine resins such as polysulfone resin, polytetrafluoroethylene, and perfluoroalkoxy fluorine resin, polycarbonate, polypropylene, polymethylpentene, polyphenylene sulfide, polyether ketone, stainless steel, and aluminum can be used.
  • the material of the flow straightening cylinder 15 used in the composite porous hollow fiber membrane module 100A is not particularly limited, but can be selected from the same material as that of the cylindrical case 1, for example.
  • the rectifying cylinder 15 is accommodated in a cylindrical case 1 having a first end and a second end in the height direction as shown.
  • the cylindrical case 1 includes a fluid outflow inlet on the second end side surface from the center and a fluid outflow inlet on the first end side end surface of the cylindrical case, and the hollow portion of the composite porous hollow fiber membrane is By making the composite porous hollow fiber membrane module 100A open at the second end side and closed at the first end side, blockage due to a microbial fermentation solution or the like is difficult to occur.
  • the liquid to be filtered is supplied from the lower part of the module, and the filtrate flows out from the upper part of the module. Further, the vertical direction of the posture of the composite porous hollow fiber membrane module in use coincides with the vertical direction in the figure.
  • the filtrate enters from the filtrate inlet 9 and enters the first flow path 4 from the first end 1a side of the first binding unit 3 from below. Passes up and flows out.
  • the liquid to be filtered passes through the composite porous hollow fiber membrane 2 and then moves as a filtrate into a space surrounded by the second binding portion 13 and the upper cap 6. Thereafter, the filtrate is taken out of the module from the filtrate outlet 8.
  • the to-be-filtrated liquid outlet 11 is closed.
  • step (A) A liquid to be filtered is introduced into the cylindrical case from a fluid outflow inlet located on the first end side end surface, and the liquid to be filtered is introduced from a fluid outflow inlet located on the second end side surface.
  • step (B) A step of taking out the filtrate from the hollow portion of the composite porous hollow fiber membrane to the second end side
  • the filtrate to be filtered may be introduced from the filtrate outlet 11 and taken out from the filtrate inlet 9. That is, accumulation of turbidity is reduced by the method of operating the composite porous hollow fiber membrane module in which the following step (B) and step (C) are performed simultaneously.
  • the membrane surface linear velocity in crossflow filtration is preferably 0.1 m / s or more and 7 m / s or less.
  • shear By applying shear at a film surface linear velocity of 0.1 m / s or more, blockage of the flow path by the microorganism culture solution can be suppressed.
  • the electric power cost in microorganism culture solution circulation can be reduced, and the stress by the shear to a microorganism can be suppressed. More preferably, by setting it to 0.3 m / s or more and 3 m / s or less, it is possible to achieve both higher occlusion suppression effect, economy, and stable growth of microorganisms.
  • a step of cleaning the inside of the module is provided, and water, chemical solution, gas, etc. are supplied from the filtrate inlet 9
  • hot water of about 80 ° C. or higher is supplied in a process that requires hot water sterilization.
  • the case of supplying gas is particularly called air scrubbing. That is, accumulation of turbidity can be suppressed by the operation method of the composite porous hollow fiber membrane module that performs the following step (E).
  • a gas is introduced into the cylindrical case from a fluid outflow inlet located on the first end side end face, and the gas is introduced from the fluid outflow inlet located on the second end side surface to the outside of the cylindrical case.
  • the washing step there is a case where a filtrate, water, or a washing solution is introduced from the filtrate outlet 8 and discharged from the hollow portion of the composite porous hollow fiber membrane 2 to the outside. It is simply called backwashing. That is, accumulation of turbidity can be suppressed by the operation method of the composite porous hollow fiber membrane module in which the step (B) and the following step (D) are repeated. (D) After the step (B), filtering the fluid from the hollow portion of the composite porous hollow fiber membrane on the second end side to the outside of the composite porous hollow fiber membrane
  • the drainage flows through the first flow path 4 from the top to the bottom, and is discharged from the filtered liquid inlet 9 to the outside of the module.
  • the fluid inlet is provided on the first end side end face, the turbidity in the module can be effectively discharged, and blockage of the flow path by the microorganism culture solution can be suppressed.
  • the blockage can be more efficiently suppressed. That is, the accumulation of turbidity can be effectively suppressed by the operation method of the composite porous hollow fiber membrane module in which the step (B) and the step (D) are repeated and the following step (E) is further performed.
  • a gas is introduced into the cylindrical case from a fluid outflow inlet located on the first end side end face, and the gas is introduced from the fluid outflow inlet located on the second end side surface to the outside of the cylindrical case.
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified and improved.
  • the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
  • the cross section in the longitudinal direction of the composite porous hollow fiber membrane was sectioned by cutting with a microtome. While selecting 10 columnar structures per composite porous hollow fiber membrane and confirming the columnar structures with an optical microscope, each columnar structure is scattered by laser Raman spectroscopy at 1 ⁇ m intervals along the longitudinal direction. Intensity measurements were taken.
  • Each orientation parameter was calculated by the formula (2), and the average value of each orientation parameter was defined as the average value ⁇ of Raman orientation parameters.
  • the largest orientation parameter and the smallest orientation parameter are selected, and the average value is obtained for each of them, and the maximum Raman orientation parameter M and the minimum Raman orientation parameter m are obtained. Calculated.
  • I1270 parallel the intensity of the Raman bands of 1270 cm -1 when parallel condition
  • I1270 vertical the intensity of the Raman bands of 1270 cm -1 when the vertical condition
  • I840 parallel the intensity of the Raman bands of 840 cm -1 at collinear condition
  • I840 Vertical Vertical conditions Intensity of Raman band at 840 cm ⁇ 1 at the time
  • Parallel condition The longitudinal direction of the composite porous hollow fiber membrane is parallel to the polarization direction
  • Vertical condition The longitudinal direction of the composite porous hollow fiber membrane is orthogonal to the polarization direction
  • the laser Raman spectrometer and measurement conditions are as follows.
  • Device Job Yvon / Ehime Bussan Co., Ltd. T-64000 Condition: Measurement mode; Microscopic Raman Objective lens; x100 Beam diameter: 1 ⁇ m
  • Light source Ar + Laser / 514.5nm
  • Laser power 100mW Diffraction grating; Single 600gr / mm Slit; 100 ⁇ m Detector: CCD / Jobin Yvon 1024 ⁇ 256
  • the above photographing was performed at five locations, and the longitudinal length and the short length were obtained for each of the 10 columnar structures, and a total of 50 long lengths and a total of 50 short lengths were obtained. Next, an average value of a total of 50 longitudinal lengths was calculated and used as a representative value of the longitudinal length, and an average value of a total of 50 short lengths was calculated and used as a representative value of the short length.
  • the composite porous hollow fiber membrane was resin-embedded with an epoxy resin, and the void portion was filled with the epoxy resin by osmium staining treatment.
  • a scanning electron microscope equipped with a focused ion beam (FIB) (Strata400S, manufactured by FEI)
  • FIB focused ion beam
  • FIB Cutting and SEM observation were performed 200 times repeatedly at 50 nm intervals in the longitudinal direction of the composite porous hollow fiber membrane, and information on a depth of 10 ⁇ m was obtained.
  • Thickness uniformity was determined by comparing the first and second sections parallel to the short direction of the composite porous hollow fiber membrane obtained by continuous section observation using the FIB. Here, 20 sets were selected so that the first cross section and the second cross section were parallel to each other with an interval of 5 ⁇ m.
  • a columnar structure is provided when the thickness uniformity is 0.60 or more in 16 sets or more, and a fibrous structure is provided in the case of 15 sets or less.
  • Porosity The porosity is determined from 20 sets of the first cross section and the second cross section obtained in “(6) Thickness uniformity”, that is, a total of 40 first cross sections. About the layer cross section, it calculated
  • hole part area, and those average values were used. Porosity (%) ⁇ 100 ⁇ (void partial area) ⁇ / ⁇ (resin partial area) + (void partial area) ⁇ (5)
  • Occupancy rate of tissue The cross section in the longitudinal direction of the first layer was photographed at 20 times at 3000 magnifications using a scanning electron microscope (manufactured by FEI, Strata400S), and the occupancy rate was expressed by the following formula ( Each was obtained in 6) and the average value thereof was adopted.
  • Occupancy rate (%) ⁇ (area occupied by each tissue) / (area of the entire photograph) ⁇ ⁇ 100 (6)
  • Crystallization temperature Tc of fluororesin polymer solution Using a DSC-6200 manufactured by Seiko Denshi Kogyo Co., Ltd., a mixture of the same composition as the film-forming polymer stock solution, such as a fluororesin polymer and a solvent, is sealed in a sealed DSC vessel and dissolved at a heating rate of 10 ° C./min. The temperature was raised to the temperature, kept for 30 minutes and dissolved uniformly, and then the rising temperature of the crystallization peak observed in the process of lowering the temperature at a temperature lowering rate of 10 ° C./min was defined as the crystallization temperature Tc.
  • the fluororesin-based polymer separation membrane of the example has a second layer in the outer layer and a columnar structure in the inner layer.
  • the average thickness of the outer layer having a three-dimensional network structure and the average thickness of the inner layer having a columnar structure are taken by photographing the cross section of the fluororesin polymer separation membrane at 100 times and 1000 times using the above scanning electron microscope, The following method was used for calculation from the photograph.
  • the average thickness of the second layer was determined by the following method. In a 1000 ⁇ photograph, the distance from an arbitrary point on the surface of the outer layer to the inner layer toward the inner layer tangential to the outer layer surface tangent and the first observation of the columnar structure is measured. This distance is the thickness of the second layer. This operation was performed at 30 arbitrary locations, and the number average was performed to calculate the average thickness of the second layer.
  • the average thickness of the first layer can also be calculated.
  • the first layer is thick in the examples, when the photograph is taken at 1000 times from the surface of the fluororesin-based polymer separation membrane cross section to the opposite surface, A few photos must be pasted together. Therefore, instead of taking several pictures at 1000 times, the following method was selected.
  • the thickness of the fluororesin polymer separation membrane is obtained by subtracting the average thickness of the second layer from the thickness of the fluororesin polymer separation membrane. This operation was performed at arbitrary 30 locations, and the number averaged to calculate the average thickness of the first layer.
  • ⁇ Macro void> Further, whether or not the three-dimensional network structure has macrovoids was taken by taking a photograph of the cross section of the second layer at a magnification of 3000 using the above-mentioned scanning electron microscope. That is, by observing cross-sections at 30 points different from each other, when there are no macrovoids or when there are only macrovoids whose major axis is less than ten times the surface pore diameter, no macrovoids are present. When at least one macrovoid more than double was observed, it was judged to have a macrovoid.
  • Example 1 36% by weight of vinylidene fluoride homopolymer (KF1300 manufactured by Kureha Co., Ltd., weight average molecular weight: 417,000, number average molecular weight: 221,000) and 64% by weight of ⁇ -butyrolactone were dissolved at 150 ° C.
  • the crystallization temperature Tc of this vinylidene fluoride homopolymer solution was 48 ° C.
  • an apparatus including a double-tube base, a pipe connected to the base, and two gear pumps arranged on the pipe was used.
  • the film-forming stock solution was pressurized to 2.0 MPa in the pipe between the gear pumps, it was held at 99 to 101 ° C. for 20 seconds. Thereafter, the 85% by weight aqueous solution of ⁇ -butyrolactone was discharged from the inner tube of the double tube die, and the film forming stock solution was discharged from the outer tube. The film-forming stock solution thus discharged was solidified by being retained for 20 seconds in a cooling bath made of 85% by weight ⁇ -butyrolactone and having a temperature of 25 ° C.
  • the obtained hollow fiber had a columnar structure with a thickness uniformity of 0.62, the occupation ratio of the columnar structure was 86%, and the spherical structure occupation ratio was 14%.
  • the hollow fiber obtained above was stretched 2.5 times in 95 ° C. water.
  • a columnar structure was observed.
  • the hollow fiber has a columnar structure having a typical value of 16 ⁇ m in the longitudinal length, a representative value of 2.2 ⁇ m in the short length, and a thickness uniformity of 0.61, has a porosity of 55%, and a vinylidene fluoride homopolymer molecule.
  • the degree of orientation ⁇ of the chain in the longitudinal direction of the hollow fiber was 0.61
  • the average value ⁇ of Raman orientation parameters was 3.12
  • the membrane-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation, and immediately solidified in a 50 ° C. water bath, so that the columnar structure and the three-dimensional structure provided on the outside thereof are provided.
  • a composite porous hollow fiber membrane having a network structure was produced.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • a membrane module having a diameter of 3 cm, a height of 50 cm, and an effective membrane area of 0.3 m 2 was produced.
  • constant-flow external pressure total filtration of Lake Biwa water was performed.
  • the raw water was pressurized and supplied with a pressure pump, and the filtration linear velocity was 3 m / d. Every 120 minutes, backwashing with a 5 ppm sodium hypochlorite aqueous solution was performed for 30 seconds, and air scrubbing with air was performed for 1 minute. This filtration operation was carried out continuously for one month from February 1, 2016 to March 1, 2016.
  • the filtration differential pressure (A) immediately after physical washing at the start of the filtration operation and the filtration differential pressure (B) at the end of the filtration operation were measured.
  • a lower A means that operation can be started with lower energy.
  • the increase in filtration differential pressure (%) was calculated as (BA) ⁇ (1 / A) ⁇ 100. It means that the lower the filtration differential pressure rise is, the more stable operation is possible, that is, the drivability is excellent. Therefore, it means that a membrane having a lower A and a higher degree of filtration differential pressure can be stably operated with lower energy.
  • the filtration time (120 minutes) was set longer than the filtration time (30 minutes) assumed in actual operation in order to evaluate drivability in a short period.
  • the filtration differential pressure was 31 kPa at the start of the filtration operation, and the filtration differential pressure was 40 kPa at the end of the filtration operation, and the filtration differential pressure at the start of the filtration operation was low. Further, it was found that the degree of increase in the filtration differential pressure was as low as 29%, so that stable operation was possible.
  • the film-forming stock solution was pressurized to 2.0 MPa and retained at 99 to 101 ° C. for 20 seconds. Thereafter, the 85% by weight aqueous solution of ⁇ -butyrolactone was discharged from the tube inside the double tube die while the film forming stock solution was discharged from the tube outside the double tube die.
  • the discharged film forming stock solution is allowed to stay in a first cooling bath at a temperature of 5 ° C. composed of an 85% by weight aqueous solution of ⁇ -butyrolactone for 10 seconds, and then a second cooling at a temperature of 25 ° C. composed of an 85% by weight aqueous solution of ⁇ -butyrolactone. It was solidified by staying in the bath for 20 seconds.
  • the obtained hollow fiber had a columnar structure with a thickness uniformity of 0.65, a columnar structure occupation ratio of 87%, and a spherical structure occupation ratio of 13%.
  • the hollow fiber obtained above was stretched 3 times in water at 95 ° C.
  • the hollow fiber after drawing has a columnar structure having a long length of 19 ⁇ m, a short length of 1.8 ⁇ m, and a thickness uniformity of 0.66, a porosity of 61%, and a hollow fiber of vinylidene fluoride homopolymer molecular chain.
  • the degree of orientation ⁇ in the longitudinal direction was 0.77
  • the average value ⁇ of Raman orientation parameters was 3.74
  • M / m was 4.2. Table 1 shows the structure and performance of the hollow fiber after stretching.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and filtration operation of Lake Biwa water was performed.
  • the filtration differential pressure was 30 kPa at the start of the filtration operation
  • the filtration differential pressure was 38 kPa at the end of the filtration operation
  • the filtration differential pressure at the start of the filtration operation was low.
  • it was found that the increase in the filtration differential pressure was as low as 27%, so that stable operation was possible.
  • Example 3 > 38% by weight of vinylidene fluoride homopolymer (KF1300 manufactured by Kureha Co., Ltd., weight average molecular weight: 417,000, number average molecular weight: 221,000) and 62% by weight of ⁇ -butyrolactone were dissolved at 150 ° C.
  • the vinylidene fluoride homopolymer solution had a Tc of 51 ° C.
  • the film-forming stock solution was pressurized to 2.0 MPa and retained at 99 to 101 ° C. for 20 seconds. Thereafter, the 85% by weight aqueous solution of ⁇ -butyrolactone was discharged from the inner tube of the double-tube type die, and the film forming stock solution was discharged from the outer tube.
  • the discharged film forming stock solution was allowed to stay in a first cooling bath at a temperature of 5 ° C. composed of an 85% by weight aqueous solution of ⁇ -butyrolactone for 10 seconds, and then a second cooling bath at a temperature of 35 ° C. composed of an 85% by weight aqueous solution of ⁇ -butyrolactone. It was solidified by allowing it to stay for 50 seconds.
  • the obtained hollow fiber had a columnar structure with a thickness uniformity of 0.66, a columnar structure occupation ratio of 91%, and a spherical structure occupation ratio of 9%.
  • the hollow fiber obtained above was stretched 3 times in water at 95 ° C.
  • the hollow fiber after drawing has a columnar structure having a long length of 24 ⁇ m, a short length of 1.6 ⁇ m and a thickness uniformity of 0.66, a porosity of 59%, and a composite porous structure of vinylidene fluoride homopolymer molecular chain
  • the degree of orientation ⁇ in the longitudinal direction of the hollow fiber membrane was 0.85
  • the average value ⁇ of Raman orientation parameters was 4.37
  • M / m was 5.0. Table 1 shows the structure and performance of the hollow fiber after stretching.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 30 kPa at the start of the filtration operation, and the filtration differential pressure was 39 kPa at the end of the filtration operation, and the filtration differential pressure at the start of the filtration operation was low.
  • the degree of increase in the filtration differential pressure was as low as 30%, so that stable operation was possible.
  • Example 4 38% by weight of vinylidene fluoride homopolymer (KF1300 manufactured by Kureha Co., Ltd., weight average molecular weight: 417,000, number average molecular weight: 221,000) and 62% by weight of ⁇ -butyrolactone were dissolved at 150 ° C.
  • the vinylidene fluoride homopolymer solution had a Tc of 51 ° C.
  • the solution is pressurized to 2.0 MPa on the line between the two by installing two gear pumps, held at 99-101 ° C. for 20 seconds, and then discharged from the outer pipe of the double pipe die.
  • a 85% by weight aqueous solution of ⁇ -butyrolactone was discharged from the inner tube of the double-tube base, and was retained for 10 seconds in a first cooling bath consisting of an 85% by weight aqueous solution of ⁇ -butyrolactone, and then ⁇ -butyrolactone. It was allowed to stay for 50 seconds in a second cooling bath composed of 85% by weight aqueous solution and having a temperature of 35 ° C. to solidify.
  • the obtained hollow fiber had a columnar structure with a thickness uniformity of 0.66, a columnar structure occupation ratio of 91%, and a spherical structure occupation ratio of 9%.
  • the hollow fiber obtained above was stretched 3.5 times in 95 ° C. water.
  • the hollow fiber after drawing has a columnar structure with a long length of 28 ⁇ m, a short length of 1.3 ⁇ m, and a thickness uniformity of 0.62, a porosity of 61%, and a composite porous of vinylidene fluoride homopolymer molecular chain
  • the degree of orientation ⁇ in the longitudinal direction of the hollow fiber membrane was 0.89
  • the average value ⁇ of Raman orientation parameters was 4.42
  • FIG. 2 shows the Raman orientation parameter at each measurement location of the composite porous hollow fiber membrane
  • FIG. Cross-sectional photographs in the longitudinal direction of the membrane are shown in FIG.
  • vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (trade name Ionette T-20C, manufactured by Sanyo Chemical Co., Ltd., 5% by weight) and water 3% by weight at 95 ° C. was prepared.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 29 kPa at the start of the filtration operation
  • the filtration differential pressure was 37 kPa at the end of the filtration operation
  • the filtration differential pressure at the start of the filtration operation was low.
  • the increase in the filtration differential pressure was as low as 28%, so that stable operation was possible.
  • Example 5 40% by weight of vinylidene fluoride homopolymer (KF1300 manufactured by Kureha Co., Ltd., weight average molecular weight: 417,000, number average molecular weight: 221,000) and 60% by weight of dimethyl sulfoxide were dissolved at 130 ° C. Tc of this vinylidene fluoride homopolymer solution was 30 ° C.
  • the solution is pressurized to 2.0 MPa on the line between them by installing two gear pumps, held at 78-80 ° C. for 20 seconds, and then discharged from the outer pipe of the double pipe die.
  • a 90% by weight aqueous solution of dimethyl sulfoxide was discharged from the inner tube of the double-tube type mouthpiece, and was retained in a cooling bath composed of 85% by weight aqueous solution of dimethyl sulfoxide at a temperature of 20 ° C. for 20 seconds to solidify.
  • the obtained hollow fiber had a columnar structure with a thickness uniformity of 0.62, a columnar structure occupation ratio of 93%, and a spherical structure occupation ratio of 7%.
  • the hollow fiber obtained above was stretched 2.5 times in 95 ° C. water.
  • the hollow fiber after drawing has a columnar structure with a long length of 20 ⁇ m, a short length of 2.1 ⁇ m, and a thickness uniformity of 0.61, a porosity of 64%, and a composite porous of vinylidene fluoride homopolymer molecular chain
  • the degree of orientation ⁇ in the longitudinal direction of the hollow fiber membrane was 0.66
  • the average value ⁇ of Raman orientation parameters was 3.40
  • M / m was 3.5. Table 1 shows the structure and performance of the hollow fiber after stretching.
  • vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (trade name Ionette T-20C, manufactured by Sanyo Chemical Co., Ltd., 5% by weight) and water 3% by weight at 95 ° C.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 31 kPa at the start of the filtration operation, and the filtration differential pressure was 41 kPa at the end of the filtration operation, and the filtration differential pressure at the start of the filtration operation was low.
  • the increase in the filtration differential pressure was as low as 32%, so that stable operation was possible.
  • Example 6 40% by weight of vinylidene fluoride homopolymer (KF1300 manufactured by Kureha Co., Ltd., weight average molecular weight: 417,000, number average molecular weight: 221,000) and 60% by weight of dimethyl sulfoxide were dissolved at 130 ° C. Tc of this vinylidene fluoride homopolymer solution was 30 ° C.
  • the solution is pressurized to 2.0 MPa on the line between them by installing two gear pumps, held at 78-80 ° C. for 20 seconds, and then discharged from the outer pipe of the double pipe die.
  • a 90% by weight aqueous solution of dimethyl sulfoxide was discharged from the inner tube of the double-tube base, and was kept in a first cooling bath composed of 85% by weight aqueous solution of dimethyl sulfoxide at a temperature of -5 ° C. for 10 seconds, and then 85% by weight of dimethyl sulfoxide. It was allowed to stay for 30 seconds in a second cooling bath made of a 15% aqueous solution at a temperature of 15 ° C. and solidified.
  • the obtained hollow fiber had a columnar structure with a thickness uniformity of 0.72, a columnar structure occupation ratio of 92%, and a spherical structure occupation ratio of 8%.
  • the hollow fiber obtained above was stretched 3 times in water at 95 ° C.
  • the hollow fiber after drawing has a columnar structure having a long length of 27 ⁇ m, a short length of 1.7 ⁇ m, and a thickness uniformity of 0.69, a porosity of 64%, and a composite porous of vinylidene fluoride homopolymer molecular chain
  • the degree of orientation ⁇ in the longitudinal direction of the hollow fiber membrane was 0.86
  • the average value ⁇ of Raman orientation parameters was 4.38
  • M / m was 5.1. Table 1 shows the structure and performance of the hollow fiber after stretching.
  • vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (trade name Ionette T-20C, manufactured by Sanyo Chemical Co., Ltd., 5% by weight) and water 3% by weight at 95 ° C. was prepared.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 30 kPa at the start of the filtration operation
  • the filtration differential pressure was 38 kPa at the end of the filtration operation
  • the filtration differential pressure at the start of the filtration operation was low.
  • the increase in the filtration differential pressure was as low as 27%, so that stable operation was possible.
  • Example 7 40% by weight of vinylidene fluoride homopolymer (KF1300 manufactured by Kureha Co., Ltd., weight average molecular weight: 417,000, number average molecular weight: 221,000) and 60% by weight of dimethyl sulfoxide were dissolved at 130 ° C. Tc of this vinylidene fluoride homopolymer solution was 30 ° C.
  • the solution is pressurized to 2.0 MPa on the line between them by installing two gear pumps, held at 78-80 ° C. for 20 seconds, and then discharged from the outer pipe of the double pipe die.
  • a 90% by weight aqueous solution of dimethyl sulfoxide was discharged from the inner tube of the double-tube base, and was kept in a first cooling bath composed of 85% by weight aqueous solution of dimethyl sulfoxide at a temperature of -5 ° C. for 10 seconds, and then 85% by weight of dimethyl sulfoxide. It was allowed to stay for 50 seconds in a second cooling bath consisting of a 20% aqueous solution at a temperature of 20 ° C. and solidified.
  • the obtained hollow fiber had a columnar structure with a thickness uniformity of 0.72, a columnar structure occupation ratio of 95%, and a spherical structure occupation ratio of 5%.
  • the hollow fiber obtained above was stretched 3.5 times in 95 ° C. water.
  • the hollow fiber after drawing has a columnar structure with a long length of 35 ⁇ m, a short length of 1.5 ⁇ m, and a thickness uniformity of 0.67, a porosity of 65%, and a composite porous of vinylidene fluoride homopolymer molecular chain
  • the degree of orientation ⁇ in the longitudinal direction of the hollow fiber membrane was 0.91
  • the average value ⁇ of Raman orientation parameters was 4.62
  • M / m was 5.8.
  • Table 1 shows the structure and performance of the hollow fiber after stretching.
  • vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (trade name Ionette T-20C, manufactured by Sanyo Chemical Co., Ltd., 5% by weight) and water 3% by weight at 95 ° C. was prepared.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 30 kPa at the start of the filtration operation
  • the filtration differential pressure was 37 kPa at the end of the filtration operation
  • the filtration differential pressure at the start of the filtration operation was low.
  • the degree of increase in the filtration differential pressure was as low as 23%, so that stable operation was possible.
  • Example 8> 40% by weight of vinylidene fluoride homopolymer (KF1300 manufactured by Kureha Co., Ltd., weight average molecular weight: 417,000, number average molecular weight: 221,000) and 60% by weight of dimethyl sulfoxide were dissolved at 130 ° C. Tc of this vinylidene fluoride homopolymer solution was 30 ° C.
  • the solution is pressurized to 2.0 MPa on the line between them by installing two gear pumps, held at 78-80 ° C. for 20 seconds, and then discharged from the outer pipe of the double pipe die.
  • a 90% by weight aqueous solution of dimethyl sulfoxide was discharged from the inner tube of the double-tube base, and was kept in a first cooling bath composed of 85% by weight aqueous solution of dimethyl sulfoxide at a temperature of -5 ° C. for 10 seconds, and then 85% by weight of dimethyl sulfoxide. It was allowed to stay for 50 seconds in a second cooling bath consisting of a 20% aqueous solution at a temperature of 20 ° C. and solidified.
  • the obtained hollow fiber had a columnar structure with a thickness uniformity of 0.72, a columnar structure occupation ratio of 95%, and a spherical structure occupation ratio of 5%.
  • the hollow fiber obtained above was stretched 4 times in 95 ° C. water.
  • the hollow fiber after drawing has a columnar structure with a long length of 40 ⁇ m, a short length of 1.1 ⁇ m, and a thickness uniformity of 0.63, a porosity of 66%, and a composite porous of vinylidene fluoride homopolymer molecular chain
  • the degree of orientation ⁇ in the longitudinal direction of the hollow fiber membrane was 0.92
  • the average value ⁇ of Raman orientation parameters was 4.76
  • M / m was 6.2. Table 1 shows the structure and performance of the hollow fiber after stretching.
  • vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (trade name Ionette T-20C, manufactured by Sanyo Chemical Co., Ltd., 5% by weight) and water 3% by weight at 95 ° C. was prepared.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 29 kPa at the start of the filtration operation
  • the filtration differential pressure was 37 kPa at the end of the filtration operation
  • the filtration differential pressure at the start of the filtration operation was low.
  • the increase in the filtration differential pressure was as low as 28%, so that stable operation was possible.
  • Example 9 In the composite porous hollow fiber membrane having a columnar structure produced in Example 8, 14% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, polyvinyl acetate (manufactured by Nacalai Tesque, 75% ethanol solution, Polymerization degree 500) was mixed and dissolved at a temperature of 95 ° C. in a ratio of 1.25 wt%, N-methyl-2-pyrrolidone 76.75 wt%, T-20C 5 wt% and water 3 wt%. A polymer solution was prepared.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation, and immediately solidified in a 50 ° C. water bath to form a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained hollow fiber had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 29 kPa at the start of the filtration operation
  • the filtration differential pressure was 37 kPa at the end of the filtration operation
  • the filtration differential pressure at the start of the filtration operation was low.
  • the increase in the filtration differential pressure was as low as 28%, so that stable operation was possible.
  • Example 10 In the composite porous hollow fiber membrane having a columnar structure produced in Example 8, 14% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, an ethylene-vinyl acetate copolymer (manufactured by Taisei Kayaku Co., Ltd., Polyace RDH, containing 68.5 to 71.5 mol% vinyl acetate) 1% by weight, N-methyl-2-pyrrolidone 77% by weight, T-20C 5% by weight, water 3% by weight 95 A polymer solution was prepared by mixing and dissolving at a temperature of ° C.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation, and immediately solidified in a 50 ° C. water bath to form a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.03 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 30 kPa at the start of the filtration operation
  • the filtration differential pressure was 37 kPa at the end of the filtration operation
  • the filtration differential pressure at the start of the filtration operation was low.
  • the degree of increase in the filtration differential pressure was as low as 23%, so that stable operation was possible.
  • Example 11 To the composite porous hollow fiber membrane having a columnar structure produced in Example 8, 14% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 2840, cellulose acetate (Eastman Chemical Co., CA435-75S: Three A polymer solution was prepared by mixing and dissolving 5% by weight of cellulose acetate), 81% by weight of N-methyl-2-pyrrolidone and 1% by weight of water at a temperature of 95 ° C.
  • cellulose acetate Eastman Chemical Co., CA435-75S: Three A polymer solution was prepared by mixing and dissolving 5% by weight of cellulose acetate), 81% by weight of N-methyl-2-pyrrolidone and 1% by weight of water at a temperature of 95 ° C.
  • the film-forming stock solution was uniformly applied to the hollow fiber obtained by the above-described operation, and immediately solidified in a coagulation bath composed of a 20 wt% N-methyl-2-pyrrolidone aqueous solution at 80 ° C. Then, a composite porous hollow fiber membrane having a three-dimensional network structure provided on the outside thereof was produced.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.5 ⁇ m, and an average thickness of 35 ⁇ m. Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • the composite porous hollow fiber membrane module produced using the obtained composite porous hollow fiber membrane was used, and cross flow filtration of beer was implemented with the filtration apparatus of FIG.
  • the beer used was a commercial unfiltered beer, Fuji Sakura Kogen (registered trademark) Beer Pils (manufactured by Fuji Tourism Development Co., Ltd.).
  • the cross-flow filtration membrane surface linear velocity is 0.5 m / s
  • the filtration flow rate per membrane area (filtration flux) is 2 m 3 / m 2 / d
  • the pressure on the filtrate side is the pressure on the filtrate side. Filtration was stopped when the difference (transmembrane pressure difference) reached 100 kPa. After 5.8 hours from the start of filtration, the transmembrane pressure difference reached 100 kPa.
  • Example 12 To the composite porous hollow fiber membrane having a columnar structure produced in Example 8, 14% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 2840, cellulose acetate (Eastman Chemical Co., CA435-75S: Three A polymer solution was prepared by mixing and dissolving 5% by weight of cellulose acetate), 81% by weight of N-methyl-2-pyrrolidone and 1% by weight of water at a temperature of 95 ° C.
  • cellulose acetate Eastman Chemical Co., CA435-75S: Three A polymer solution was prepared by mixing and dissolving 5% by weight of cellulose acetate), 81% by weight of N-methyl-2-pyrrolidone and 1% by weight of water at a temperature of 95 ° C.
  • the film-forming stock solution was uniformly applied to the hollow fiber obtained by the above-described operation, and immediately solidified in a coagulation bath composed of a 30 wt% N-methyl-2-pyrrolidone aqueous solution at 80 ° C. Then, a composite porous hollow fiber membrane having a three-dimensional network structure provided on the outside thereof was produced.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.8 ⁇ m, and an average thickness of 35 ⁇ m. Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • the composite porous hollow fiber membrane module produced using the obtained composite porous hollow fiber membrane was used, and cross flow filtration of beer was implemented with the filtration apparatus of FIG.
  • the beer used was a commercial unfiltered beer, Fuji Sakura Kogen (registered trademark) Beer Pils (manufactured by Fuji Tourism Development Co., Ltd.).
  • the cross-flow filtration membrane surface linear velocity is 0.5 m / s
  • the filtration flow rate per membrane area (filtration flux) is 2 m 3 / m 2 / d
  • the pressure on the filtrate side is the pressure on the filtrate side. Filtration was stopped when the difference (transmembrane pressure difference) reached 100 kPa.
  • the transmembrane pressure difference reached 100 kPa after 6.3 hours from the start of filtration.
  • Example 13 To the composite porous hollow fiber membrane having a columnar structure produced in Example 8, 14% by weight of vinylidene fluoride homopolymer having a weight average molecular weight of 2840, cellulose acetate (Eastman Chemical Co., CA435-75S: Three A polymer solution was prepared by mixing and dissolving 5% by weight of cellulose acetate), 81% by weight of N-methyl-2-pyrrolidone and 1% by weight of water at a temperature of 95 ° C.
  • cellulose acetate Eastman Chemical Co., CA435-75S: Three A polymer solution was prepared by mixing and dissolving 5% by weight of cellulose acetate), 81% by weight of N-methyl-2-pyrrolidone and 1% by weight of water at a temperature of 95 ° C.
  • the film-forming stock solution was uniformly applied to the hollow fiber obtained by the above-described operation, and immediately solidified in a coagulation bath composed of 100% water at 80 ° C., thereby providing a columnar structure and the outside thereof.
  • a composite porous hollow fiber membrane having a three-dimensional network structure was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.3 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 1 shows the structure and performance of the composite porous hollow fiber membrane.
  • the composite porous hollow fiber membrane module produced using the obtained composite porous hollow fiber membrane was used, and cross flow filtration of beer was implemented with the filtration apparatus of FIG.
  • the beer used was a commercial unfiltered beer, Fuji Sakura Kogen (registered trademark) Beer Pils (manufactured by Fuji Tourism Development Co., Ltd.).
  • the cross-flow filtration membrane surface linear velocity is 0.5 m / s
  • the filtration flow rate per membrane area (filtration flux) is 2 m 3 / m 2 / d
  • the pressure on the filtrate side is the pressure on the filtrate side. Filtration was stopped when the difference (transmembrane pressure difference) reached 100 kPa.
  • the transmembrane pressure difference reached 100 kPa 5.0 hours after the start of filtration.
  • the solution is pressurized to 2.0 MPa on the line between the two by installing two gear pumps, held at 99-101 ° C. for 20 seconds, and then discharged from the outer pipe of the double pipe die.
  • a 85% by weight aqueous solution of ⁇ -butyrolactone was discharged from the inner tube of the double-tube base, and the solid was retained for 20 seconds in a cooling bath composed of an 85% by weight aqueous solution of ⁇ -butyrolactone at a temperature of 5 ° C.
  • the obtained hollow fiber had a fibrous structure with a thickness uniformity of 0.47, a fibrous structure occupation ratio of 91%, and a spherical structure occupation ratio of 9%.
  • the hollow fiber obtained above was stretched 1.5 times in 95 ° C. water.
  • the hollow fiber after drawing has a fibrous structure having a long length of 15 ⁇ m, a short length of 2.2 ⁇ m and a thickness uniformity of 0.45, a porosity of 63%, and a vinylidene fluoride homopolymer molecular chain is not oriented.
  • the average value ⁇ of Raman orientation parameters was 1.01 and M / m was 1.0.
  • vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (trade name Ionette T-20C, manufactured by Sanyo Chemical Co., Ltd., 5% by weight) and water 3% by weight at 95 ° C. was prepared.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 2 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 29 kPa at the start of the filtration operation, the yarn breakage occurred 10 days after the operation started, and the lake Biwa water leaked to the filtrate side, so the filtration was stopped.
  • the solution is pressurized to 2.0 MPa on the line between the two by installing two gear pumps, held at 99-101 ° C. for 20 seconds, and then discharged from the outer pipe of the double pipe die.
  • a 85% by weight aqueous solution of ⁇ -butyrolactone was discharged from the inner tube of the double-tube base, and the solid was retained for 20 seconds in a cooling bath composed of an 85% by weight aqueous solution of ⁇ -butyrolactone at a temperature of 5 ° C.
  • the obtained hollow fiber had a fibrous structure with a thickness uniformity of 0.47, a fibrous structure occupation ratio of 91%, and a spherical structure occupation ratio of 9%.
  • the hollow fiber obtained above was stretched 2.5 times in 95 ° C. water.
  • the hollow fiber after drawing has a fibrous structure having a long length of 18 ⁇ m, a short length of 1.7 ⁇ m and a thickness uniformity of 0.42, a porosity of 65%, and the vinylidene fluoride homopolymer molecular chain is not oriented.
  • the average value ⁇ of Raman orientation parameters was 1.03, and M / m was 1.1.
  • Table 2 shows the structure and performance of the hollow fiber after stretching.
  • vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (trade name Ionette T-20C, manufactured by Sanyo Chemical Co., Ltd., 5% by weight) and water 3% by weight at 95 ° C. was prepared.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 2 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 28 kPa at the start of the filtration operation
  • the thread breakage occurred 12 days after the operation started, and the Lake Biwa water leaked to the filtrate side, so the filtration was stopped.
  • the solution is pressurized to 2.0 MPa on the line between the two by installing two gear pumps, held at 99-101 ° C. for 20 seconds, and then discharged from the outer pipe of the double pipe die.
  • a 85% by weight aqueous solution of ⁇ -butyrolactone was discharged from the inner tube of the double-tube base, and the solid was retained for 20 seconds in a cooling bath composed of an 85% by weight aqueous solution of ⁇ -butyrolactone at a temperature of 5 ° C.
  • the obtained hollow fiber had a fibrous structure with a thickness uniformity of 0.47, a fibrous structure occupation ratio of 91%, and a spherical structure occupation ratio of 9%. Subsequently, when the hollow fiber obtained above was stretched 3.5 times in water at 95 ° C., thread breakage occurred and the hollow fiber could not be stretched.
  • the Tc of this vinylidene fluoride homopolymer solution was 48 ° C.
  • the solution is pressurized to 0.2 MPa on the line between the two by installing two gear pumps, held at 99 to 101 ° C. for 20 seconds, and then discharged from the outer pipe of the double pipe die.
  • a 85% by weight aqueous solution of ⁇ -butyrolactone was discharged from the inner tube of the double-tube base, and the solid was retained for 20 seconds in a cooling bath composed of an 85% by weight aqueous solution of ⁇ -butyrolactone at a temperature of 5 ° C.
  • the obtained hollow fiber had a fibrous structure with a thickness uniformity of 0.42, a fibrous structure occupation ratio of 24%, and a spherical structure occupation ratio of 76%.
  • the hollow fiber obtained above was stretched twice in 95 ° C. water, thread breakage occurred and the hollow fiber could not be stretched.
  • ⁇ Comparative Example 5> 40% by weight of vinylidene fluoride homopolymer (KF1300 manufactured by Kureha Co., Ltd., weight average molecular weight: 417,000, number average molecular weight: 221,000) and 60% by weight of dimethyl sulfoxide were dissolved at 130 ° C. Tc of this vinylidene fluoride homopolymer solution was 30 ° C. The solution is pressurized to 2.0 MPa on the line between them by installing two gear pumps, held at 78-80 ° C. for 20 seconds, and then discharged from the outer pipe of the double pipe die.
  • KF1300 manufactured by Kureha Co., Ltd. weight average molecular weight: 417,000, number average molecular weight: 221,000
  • a 90% by weight aqueous solution of dimethyl sulfoxide was discharged from the inner tube of the double-tube type die, and was retained in a cooling bath composed of 85% by weight aqueous solution of dimethyl sulfoxide at a temperature of 0 ° C. for 20 seconds to solidify.
  • the obtained hollow fiber had a fibrous structure with a thickness uniformity of 0.56, a fibrous structure occupation ratio of 84%, and a spherical structure occupation ratio of 16%.
  • the hollow fiber obtained above was stretched 1.5 times in water at 95 ° C.
  • the hollow fiber after drawing has a fibrous structure having a long length of 18 ⁇ m, a short length of 1.2 ⁇ m and a thickness uniformity of 0.53, a porosity of 64%, and a vinylidene fluoride homopolymer molecular chain is not oriented.
  • the average value ⁇ of Raman orientation parameters was 1.03, and M / m was 1.1.
  • Table 2 shows the structure and performance of the hollow fiber after stretching.
  • vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (trade name Ionette T-20C, manufactured by Sanyo Chemical Co., Ltd., 5% by weight) and water 3% by weight at 95 ° C. was prepared.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 2 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 34 kPa at the start of the filtration operation, but the thread breakage occurred 11 days after the operation started, and the Lake Biwa water leaked to the filtrate side, so the filtration was stopped.
  • ⁇ Comparative Example 6> 40% by weight of vinylidene fluoride homopolymer (KF1300 manufactured by Kureha Co., Ltd., weight average molecular weight: 417,000, number average molecular weight: 221,000) and 60% by weight of dimethyl sulfoxide were dissolved at 130 ° C. Tc of this vinylidene fluoride homopolymer solution was 30 ° C. The solution is pressurized to 2.0 MPa on the line between them by installing two gear pumps, held at 78-80 ° C. for 20 seconds, and then discharged from the outer pipe of the double pipe die.
  • KF1300 manufactured by Kureha Co., Ltd. weight average molecular weight: 417,000, number average molecular weight: 221,000
  • a 90% by weight aqueous solution of dimethyl sulfoxide was discharged from the inner tube of the double-tube type die, and was retained in a cooling bath composed of 85% by weight aqueous solution of dimethyl sulfoxide at a temperature of 0 ° C. for 20 seconds to solidify.
  • the obtained hollow fiber had a fibrous structure with a thickness uniformity of 0.56, a fibrous structure occupation ratio of 84%, and a spherical structure occupation ratio of 16%.
  • the hollow fiber obtained above was stretched 2.5 times in 95 ° C. water.
  • the hollow fiber after drawing has a fibrous structure having a long length of 22 ⁇ m, a short length of 1.0 ⁇ m, and a thickness uniformity of 0.51, a porosity of 65%, and a vinylidene fluoride homopolymer molecular chain is not oriented.
  • the average value ⁇ of Raman orientation parameters was 1.05, and M / m was 1.1.
  • Table 2 shows the structure and performance of the hollow fiber after stretching.
  • vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (trade name Ionette T-20C, manufactured by Sanyo Chemical Co., Ltd., 5% by weight) and water 3% by weight at 95 ° C. was prepared.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 2 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 32 kPa at the start of the filtration operation
  • the yarn breakage occurred 18 days after the start of the operation, and the Lake Biwa water leaked to the filtrate side, so the filtration was stopped.
  • a 90% by weight aqueous solution of dimethyl sulfoxide was discharged from the inner tube of the double-tube type die, and was retained in a cooling bath composed of 85% by weight aqueous solution of dimethyl sulfoxide at a temperature of 0 ° C. for 20 seconds to solidify.
  • the obtained hollow fiber had a fibrous structure with a thickness uniformity of 0.42, a fibrous structure occupation ratio of 88%, and a spherical structure occupation ratio of 12%.
  • the hollow fiber obtained above was stretched 1.5 times in water at 95 ° C.
  • the hollow fiber after drawing has a fibrous structure having a long length of 14 ⁇ m, a short length of 1.2 ⁇ m, and a thickness uniformity of 0.41, a porosity of 71%, and a vinylidene fluoride homopolymer molecular chain is not oriented.
  • the average value ⁇ of Raman orientation parameters was 1.04, and M / m was 1.1.
  • Table 2 shows the structure and performance of the hollow fiber after stretching.
  • vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (trade name Ionette T-20C, manufactured by Sanyo Chemical Co., Ltd., 5% by weight) and water 3% by weight at 95 ° C. was prepared.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 2 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 34 kPa at the start of the filtration operation, but the thread breakage occurred 12 days after the start of the operation, and the Lake Biwa water leaked to the filtrate side, so the filtration was stopped.
  • a 90% by weight aqueous solution of dimethyl sulfoxide was discharged from the inner tube of the double-tube type die, and was retained in a cooling bath composed of 85% by weight aqueous solution of dimethyl sulfoxide at a temperature of 0 ° C. for 20 seconds to solidify.
  • the obtained hollow fiber had a fibrous structure with a thickness uniformity of 0.42, a fibrous structure occupation ratio of 88%, and a spherical structure occupation ratio of 12%.
  • the hollow fiber obtained above was stretched 2.5 times in 95 ° C. water.
  • the hollow fiber after drawing has a fibrous structure having a long length of 19 ⁇ m, a short length of 0.8 ⁇ m, and a thickness uniformity of 0.37, a porosity of 73%, and a vinylidene fluoride homopolymer molecular chain is not oriented.
  • the average value ⁇ of Raman orientation parameters was 1.06, and M / m was 1.2.
  • Table 2 shows the structure and performance of the hollow fiber after stretching.
  • vinylidene fluoride homopolymer having a weight average molecular weight of 284,000, 1% by weight of cellulose acetate (manufactured by Eastman Chemical Co., CA435-75S: cellulose triacetate), and N-methyl-2-pyrrolidone 77% by weight, polyoxyethylene coconut oil fatty acid sorbitan (trade name Ionette T-20C, manufactured by Sanyo Chemical Co., Ltd., 5% by weight) and water 3% by weight at 95 ° C. was prepared.
  • the film-forming stock solution is uniformly applied to the hollow fiber obtained by the above-described operation and immediately solidified in a water bath at 50 ° C. to have a columnar structure and a three-dimensional network structure provided on the outside thereof.
  • a composite porous hollow fiber membrane was prepared.
  • the obtained composite porous hollow fiber membrane had an outer diameter of 1330 ⁇ m, an inner diameter of 770 ⁇ m, an average pore diameter of the outer layer surface of 0.04 ⁇ m, and an average thickness of 35 ⁇ m.
  • Table 2 shows the structure and performance of the composite porous hollow fiber membrane.
  • a composite porous hollow fiber membrane module was produced in the same manner as in Example 1, and a lake Biwa water filtration operation was performed.
  • the filtration differential pressure was 34 kPa at the start of the filtration operation, but the thread breakage occurred 15 days after the start of the operation, and the Lake Biwa water leaked to the filtrate side, so the filtration was stopped.
  • This vinylidene fluoride homopolymer solution did not have Tc because dimethylacetamide is a good solvent for vinylidene fluoride homopolymer.
  • the solution is pressurized to 0.2 MPa on the line between the two by installing two gear pumps, held at 99 to 101 ° C. for 20 seconds, and then discharged from the outer pipe of the double pipe die.
  • a 85% by weight aqueous solution of dimethylacetamide was discharged from the inner tube of the double-tube type mouthpiece, and was retained in a cooling bath made of 85% by weight aqueous solution of dimethylacetamide at a temperature of 25 ° C. for 40 seconds to solidify.
  • the obtained porous hollow fiber membrane did not have any of a spherical structure, a fibrous structure, and a columnar structure, and had a three-dimensional network structure.
  • the hollow fiber obtained above was stretched twice in 95 ° C. water, thread breakage occurred and the hollow fiber could not be stretched.
  • Example 10 A porous hollow fiber membrane module was produced in the same manner as in Example 1 using the composite porous hollow fiber membrane having only a columnar structure and having no three-dimensional network structure obtained in Example 1, and Lake Biwa Water filtration operation was performed.
  • the filtration differential pressure was 22 kPa at the start of the filtration operation
  • the filtration differential pressure was 152 kPa at the end of the filtration operation
  • the filtration differential pressure at the start of the filtration operation was low.
  • the increase in the filtration differential pressure was as high as 591%, and it was found that stable operation was not possible. Therefore, it was found that the obtained porous hollow fiber membrane is excellent in physical durability, but cannot be stably operated for a long time due to poor drivability.
  • a composite porous hollow fiber membrane capable of suppressing the blockage in the pores and capable of stable operation for a long period of time.
  • a composite porous hollow fiber membrane module in which pore clogging is suppressed while having excellent chemical durability due to a fluorochemical polymer having high chemical resistance and an operation method thereof are provided. Is done. Thereby, when applied to fermentation industry and food industry, it becomes possible to perform filtration stably for a long period of time while performing chemical cleaning.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

本発明は、フッ素樹脂系高分子を含有する第1及び第2の層を少なくとも有する複合多孔質中空糸膜であって、前記フッ素樹脂系高分子の分子鎖の一部が前記複合多孔質中空糸膜の長手方向に配向しており、特定式に基づき算出される配向度πが、0.4以上1.0未満であり、前記第1の層は前記複合多孔質中空糸膜の長手方向に配向する柱状組織を有し、前記第2の層は、三次元網目組織を有し、かつ表面の平均孔径が5.0nm以上5.0μm以下である、複合多孔質中空糸膜に関する。

Description

複合多孔質中空糸膜、複合多孔質中空糸膜モジュール及び複合多孔質中空糸膜モジュールの運転方法
 本発明は、水処理、食品もしくは化学品製造、または医療等の用途に利用可能な複合多孔質中空糸膜複合多孔質中空糸膜モジュール及び複合多孔質中空糸膜モジュールの運転方法に関する。
 分離膜(多孔質膜ともいう。)は、浄水処理及び排水処理などの水処理分野、血液浄化などの医療用途、食品工業分野等、様々な方面でろ過に利用されている。
 ろ過を行うと分離膜の細孔が閉塞する。閉塞が進行すると、ろ過圧力が上昇するので、次第にろ過量を維持することが難しくなる。そのため、一定時間ろ過運転した後、分離膜を洗浄する方法が公開されている。分離膜の薬液洗浄として、塩酸、クエン酸、シュウ酸などの酸や水酸化ナトリウム水溶液などのアルカリ、塩素、界面活性剤などで分離膜を洗浄したりすることがある。それゆえ、近年では耐薬品性の高い素材として、ポリフッ化ビニリデンに代表されるフッ素樹脂系高分子を用いた分離膜が開発され、利用されている。
 特許文献1には、ポリフッ化ビニリデン系樹脂からなる多孔質中空糸膜において、長さ方向に配向した直径が0.9μm以上3μm以下の繊維状組織が多孔質中空糸膜全体の30%以上を占めることで、この多孔質中空糸膜が強度及び純水透過性能に優れることが記載されている。また、本文献には、中空糸膜の製造方法において、口金から吐出する前のポリフッ化ビニリデン系樹脂の溶液に、送液ライン中で圧力を加えることが記載されている。
 また、特許文献2及び3には、三次元網目状構造と球状構造とを有する中空膜が開示されている。
 さらに、特許文献4には、フッ化ビニリデン系樹脂に可塑剤及びフッ化ビニリデン系樹脂の良溶媒を添加して得られた組成物を膜状に押出し、その片側面から優先的に冷却して固化成膜した後、可塑剤を抽出し、更に延伸することで多孔膜を形成すること;多孔膜では、X線回折法により、結品配向部と、結品非配向部(ランダム配向部)が認められることが記載されている。
日本国特開2006-297383号公報 国際公開第03/106545号 日本国特開2006-263721号公報 国際公開第04/081109号
 ろ過条件または洗浄条件によっては、膜に大きな力が加わる。従来膜は、微生物培養液による閉塞を抑制する外圧式クロスフローろ過に使用するにはまだ不十分であった。
 本発明は、上記従来技術の課題に鑑みてなされたものであって、耐薬品性の高いフッ素樹脂系高分子による優れた化学的耐久性を備えつつ、優れた物理的耐久性と膜外表面の孔径制御により、微生物等による流路及び膜中の細孔内の閉塞を抑制し、長期安定運転可能な複合多孔質中空糸膜を提供することを目的とする。
 また、本発明は、微生物による流路及び膜中の細孔内の閉塞を抑制し、長期安定運転可能な複合多孔質中空糸膜モジュールとその運転方法を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、複合多孔質中空糸膜の長手方向に対するフッ素樹脂系高分子の分子鎖の配向度πを、0.4以上1.0未満とすることで、上記課題を解決できることを見出し、本発明を完成するに至った。
 本発明は以下の[1]~[14]の構成をとる。
[1]フッ素樹脂系高分子を含有する第1及び第2の層を少なくとも有する複合多孔質中空糸膜であって、前記フッ素樹脂系高分子の分子鎖の少なくとも一部が前記複合多孔質中空糸膜の長手方向に配向しており、下記式(1)に基づき算出される、前記複合多孔質中空糸膜の長手方向に対する前記フッ素樹脂系高分子の分子鎖の配向度πが、0.4以上1.0未満であり、前記第1の層は、前記複合多孔質中空糸膜の長手方向に配向する柱状組織を有し、前記第2の層は、三次元網目組織を有し、前記第2の層の表面の平均孔径が5.0nm以上5.0μm以下である、複合多孔質中空糸膜。
  配向度π=(180°-H)/180° ・・・(1)
(ただし、Hは広角X線回折像の円周方向における回折強度分布の半値幅(°)である。)
[2]前記柱状組織の短手長さが0.5μm以上3μm以下、且つ、該柱状組織のアスペクト比が3以上である、[1]に記載の複合多孔質中空糸膜。
[3]前記柱状組織の太さ均一性が0.60以上である、[1]または[2]に記載の複合多孔質中空糸膜。
[4]前記半値幅Hが、広角X線回折測定によるポリフッ化ビニリデンの(110)面由来の結晶ピーク(2θ=20.4°)を円周方向にスキャンして得られる強度分布の半値幅である、[1]~[3]のいずれか1つに記載の複合多孔質中空糸膜。
[5]前記複合多孔質中空糸膜の長手方向に1cm間隔の測定点で広角X線回折測定を行った際に、80%以上の前記測定点で、前記配向度πが0.4以上1.0未満である、[1]~[4]のいずれか1つに記載の複合多孔質中空糸膜。
[6]前記柱状組織において、ラマン分光法によって得られるラマン配向パラメータの平均値νが3.0以上である、[1]~[5]のいずれか1つに記載の複合多孔質中空糸膜。
[7]前記フッ素樹脂系高分子がポリフッ化ビニリデンである、[1]~[6]のいずれか1つに記載の複合多孔質中空糸膜。
[8]前記第1の層における空隙率が50%以上80%以下である、[1]~[7]のいずれか1つに記載の複合多孔質中空糸膜。
[9]50kPa、25℃における純水透過性能が0.1m/m/hr以上であり、破断強度が25MPa以上である、[1]~[8]のいずれか1つに記載の複合多孔質中空糸膜。
[10]高さ方向における第1端と第2端とを有する筒状ケースと、前記筒状ケース内に収容される複数の[1]~[9]のいずれか1つに記載の複合多孔質中空糸膜と、前記筒状ケースの中央より第2端側側面に位置する流体の流出入口と、前記筒状ケースの第1端側端面に位置する流体の流出入口とを備え、前記複合多孔質中空糸膜の中空部は、前記第2端側が開口し、前記第1端側が閉塞している、複合多孔質中空糸膜モジュール。
[11][10]に記載の複合多孔質中空糸膜モジュールの運転方法であって、下記工程(A)及び工程(B)を同時に行う複合多孔質中空糸膜モジュールの運転方法。
(A)前記第1端側端面に位置する流体の流出入口から被ろ過液を前記筒状ケース内に導入し、前記第2端側側面に位置する流体の流出入口から前記被ろ過液を前記筒状ケース外に排出する工程
(B)前記複合多孔質中空糸膜の中空部から、前記第2端側へろ過液を取り出す工程
[12][10]に記載の複合多孔質中空糸膜モジュールの運転方法であって、下記工程(B)及び工程(C)を同時に行う複合多孔質中空糸膜モジュールの運転方法。
(B)前記複合多孔質中空糸膜の中空部から、前記第2端側へろ過液を取り出す工程
(C)前記第2端側側面に位置する流体の流出入口から被ろ過液を前記筒状ケース内に導入し、前記第1端側端面に位置する流体の流出入口から前記被ろ過液を前記筒状ケース外に排出する工程
[13]前記工程(B)及び下記工程(D)を繰り返し行う、[11]または[12]に記載の複合多孔質中空糸膜モジュールの運転方法。
(D)前記工程(B)の後に、前記第2端側の前記複合多孔質中空糸膜の中空部から、前記複合多孔質中空糸膜の外側へ流体をろ過する工程
[14]前記工程(B)及び前記工程(D)を繰り返し行い、さらに下記工程(E)を行う、[13]に記載の複合多孔質中空糸膜モジュールの運転方法。
(E)前記第1端側端面に位置する流体の流出入口より気体を前記筒状ケース内に導入し、前記第2端側側面に位置する流体の流出入口から前記気体を前記筒状ケース外に排出する工程
 本発明によれば、耐薬品性の高いフッ素樹脂系高分子による優れた化学的耐久性を備えつつ、優れた物理的耐久性と膜外表面の孔径制御により、微生物等による流路及び膜中の細孔内の閉塞を抑制し、長期安定運転可能な複合多孔質中空糸膜が提供される。
 また、本発明によれば、微生物による流路及び膜中の細孔内の閉塞を抑制し、長期安定運転可能な複合多孔質中空糸膜モジュールとその運転方法が提供される。
図1は、実施例4と比較例1の複合多孔質中空糸膜の2θ=20.4°における方位角方向の強度分布を示す図である。 図2は、実施例4の複合多孔質中空糸膜の各測定箇所におけるラマン配向パラメータを示す図である。 図3は、実施例4の複合多孔質中空糸膜の長手方向の断面写真を示す図である。 図4は、比較例1の複合多孔質中空糸膜の長手方向の断面写真を示す図である。 図5は、本発明の三次元網目組織を有する第2層の断面写真を示す図である。 図6は、本発明の複合多孔質中空糸膜モジュール100Aを示す図である。 図7は、実施例で使用したろ過装置を示す図である。
1.複合多孔質中空糸膜
 本発明の複合多孔質中空糸膜は、フッ素樹脂系高分子を含有する第1層及び第2層を備え、第1層が柱状組織を有し、第2層が三次元網目組織を有する。
1-1.X線回折により決定される配向度
 複合多孔質中空糸膜において、複合多孔質中空糸膜の長手方向に対するフッ素樹脂系高分子の分子鎖の配向度πは、0.4以上1.0未満である。配向度πは、下記式(1)に基づき、広角X線回折測定によって得られた半値幅H(°)から算出される。
 配向度π=(180°-H)/180° ・・・(1)
(ただし、Hは広角X線回折像の円周方向における回折強度分布の半値幅(°)である。)
 フッ素樹脂系高分子の分子鎖が配向していることで、クロスフローろ過またはエアスクラビングなどの大きな力が加わる条件での使用にも耐えうる強度を持つ複合多孔質中空糸膜が実現される。
 フッ素樹脂系高分子の分子鎖の複合多孔質中空糸膜の長手方向への配向及びその配向度πの測定方法について、以下に具体的に説明する。
 配向度πを算出するためには、複合多孔質中空糸膜の長手方向が鉛直となるように繊維試料台に取り付ける。なお、複合多孔質中空糸膜の短手方向とは、中空糸の径方向と平行な方向であり、長手方向とは、短手方向に垂直な方向である。
 X線回折を行うと、デバイ環(Debye-Scherrer ring)と呼ばれる円環状の回折像が得られる。無配向試料ではデバイ環に沿って回折強度に大きな変化は見られないが、配向試料では、デバイ環上での強度分布に偏りが生じる。よって、この強度分布から、上記式(1)に基づいて配向度を算出することができる。
 より詳細には、分子鎖が無配向である場合には、短手方向に2θ/θスキャンすると(つまりデバイ環の径方向における回折強度分布を示す回折パターンを得ると)、回折角2θ=20°付近の位置にピークが見られる。このとき得られる回折パターンの横軸はX線の回折角2θであり、縦軸は回折強度である。さらに、回折角2θをこのピーク位置、つまり20°付近に固定して、試料を方位角β方向にスキャンすることで、横軸が方位角βを示し、縦軸が回折強度を示す回折パターン(つまり、回折角2θ=20°の位置におけるデバイ環の円周方向に沿った回折強度分布)が得られる。無配向試料では、デバイ環の円周方向360°全体にわたって、回折強度はほぼ一定となる。
 一方で、フッ素樹脂系高分子の分子鎖が複合多孔質中空糸膜の長手方向に配向している場合には、2θ=20°付近のデバイ環上で複合多孔質中空糸膜の短手方向に相当する方位角上(つまり赤道上)に、強い回折強度が見られ、他の部分では小さい回折強度が得られる。つまり、配向試料では、デバイ環の径方向における回折強度分布では、無配向試料と同様に2θ=20°付近で回折ピークが見られ、円周方向における分布では、無配向試料と違って、複合多孔質中空糸膜の短手方向に相当する方位角上に回折ピークが観察される。たとえば、後述の図1は、実施例4の複合多孔質中空糸膜の2θ=20.4°における方位角方向の強度分布を示す図であり、この図では、β=90°付近及び270°付近にピークが見られる。
 デバイ環の径方向における回折ピークの位置(つまり、回折ピークに対応する2θの値)を、以上の説明では「20°付近」とした。しかし、この2θの値は、高分子の構造、配合によって異なり、15~25°の範囲となる場合もある。例えば、α晶またはβ晶を有するポリフッ化ビニリデンホモポリマーについてX線回折を行うと、2θ=20.4°付近に、α晶またはβ晶の(110)面、すなわち分子鎖と平行な面に由来する回折ピークが見られる。
 上述したように、回折角2θの値を固定して、さらに方位角方向(円周方向)に0°から360°までの強度を測定することにより、方位角方向の強度分布が得られる。この強度分布は、回折像における結晶ピークをその円周方向にスキャンして得られる強度分布であるとも言える。ここで、方位角180°(長手方向)の強度と方位角90°(短手方向)の強度の比が0.80以下となる場合または1.25以上となる場合に、ピークが存在するとみなし、この方位角方向の強度分布において、ピーク高さの半分の位置における幅(半値幅H)を求める。
 この半値幅Hを上記式(1)に代入することによって配向度πを算出する。
 本発明のフッ素樹脂系高分子の分子鎖の複合多孔質中空糸膜の長手方向への配向度πは、0.4以上1.0未満の範囲であり、好ましくは0.5以上1.0未満であり、より好ましくは0.6以上1.0未満である。配向度πが0.4以上であることで、複合多孔質中空糸膜の機械的強度が大きくなる。また、配向度πが1.0未満であることで、複合多孔質中空糸膜の靭性が高くなる。
 なお、配向度πは、複合多孔質中空糸膜の長手方向に1cm間隔の測定点で広角X線回折測定を行った際に、80%以上の測定点で、0.4以上1.0未満であることが好ましい。
 なお、結晶ピークを円周方向にスキャンして得られる強度分布で、方位角180°の強度と方位角90°の強度の比が0.80を超えて1.25未満の範囲となる場合には、ピークが存在しないとみなす。つまり、この場合は、フッ素樹脂系高分子は無配向であると判断する。
 複合多孔質中空糸膜がポリフッ化ビニリデンのα晶またはβ晶を含有する場合、半値幅Hは、広角X線回折測定によるポリフッ化ビニリデンのα晶またはβ晶の(110)面由来の結晶ピーク(2θ=20.4°)を円周方向にスキャンして得られる強度分布から得られるものであることが好ましい。
 X線回折測定で得られる情報は、複合多孔質中空糸膜全体の配向状態を反映する。しかし、複合多孔質中空糸膜に含まれる一部の層において分子鎖が配向しており、他の一部の層で分子鎖が配向していない場合も、「配向有り」との結果になる。例えば、第1層を延伸してから第2層を形成し、かつ第2層を形成後は延伸しない場合、第1層の分子鎖は配向するが第2層の分子鎖は配向しない。しかし、第1層の分子鎖が配向していれば、複合多孔質中空糸膜全体を対象としたX線回折で、配向が検出される。特に、後述するように、第1層の厚みが複合多孔質中空糸膜の厚みの50%以上を占める場合は、第1層が回折結果に与える影響は大きくなる。
1-2.層構造
 複合多孔質中空糸膜は、第1層及び第2層を少なくとも備える。
(A)第1層
 第1層とは、走査型電子顕微鏡を用いて分離膜の長手方向の断面を3000倍で写真撮影した際に、柱状組織が観察される部分として特定できる。第1層は、複合多孔質中空糸膜の長手方向に配向する柱状組織を有する。また、第1層はフッ素樹脂系高分子を含有する。
(A-1)第1層の構成
 第1層においては、主たる構造が柱状組織であることが好ましい。第1層において、柱状組織が占める割合は、80重量%以上が好ましく、90重量%以上がより好ましく、95重量%以上が更に好ましい。また、第1層は、柱状組織のみで構成されていてもよいし、その場合、第1層は、柱状組織の集合体である、とも表現できる。
 より具体的には、第1層は、その主たる構造として、フッ素樹脂系高分子を主成分として含有する柱状組織を有することが好ましい。
 なお、本書において、「XはYを主成分として含有する」とは、XにおいてYの占める割合が80重量%以上、90重量%以上、または95重量%以上であることを意味する。また、XはYのみで構成されていてもよい。第1層は、フッ素樹脂系高分子のみで構成されていてもよい。また、「XはYを主成分として含有する」とは、「XはYをベースとする」と言い換えることができる。
 ここで、「長手方向に配向する」とは、柱状組織の長手方向と複合多孔質中空糸膜の長手方向とが成す角度のうち鋭角の角度が20度以内であることを意味する。
 第1層は、柱状組織以外の組織を含有していてもよい。柱状組織以外の構造としては、例えば、アスペクト比(長手長さ/短手長さ)が3未満の球状組織が挙げられる。球状組織の短手長さ及び長手長さは、0.5μm以上3μm以下の範囲であることが好ましい。球状組織を用いる場合に、その短手長さ及び長手長さが前記範囲であれば、複合多孔質中空糸膜の強度の低下が抑制され、かつ良好な純水透過性能を維持することができる。
 球状組織が第1層に占める割合は、20重量%以下、10重量%以下、5重量%以下または1重量%未満であることが好ましい。
 ここで、第1層における各組織の占有率(%)は、複合多孔質中空糸膜の長手方向の断面のうち、第1層の部分について、SEM(Scanning Electron Microscope)等を用いて柱状組織及び球状組織が明瞭に確認できる倍率、好ましくは1000~5000倍で写真を撮影し、下記式(6)で求められる。精度を高めるために、任意の20カ所以上、好ましくは30カ所以上の断面について占有率を求め、それらの平均値を算出することが好ましい。
  占有率(%)={(各組織の第1層を占める面積)/(写真全体の第1層の面積)}×100 ・・・(6)
 ここで、写真全体の第1層の面積及び組織が第1層を占める面積は、写真撮影された各組織の対応する重量に置き換えて求める方法などが好ましく採用できる。すなわち、撮影された写真を紙に印刷し、写真全体の第1層に対応する紙の重量及びそこから切り取った第1層の組織部分に対応する紙の重量を測定すればよい。また、SEM等による写真撮影に先立ち、後述する樹脂包埋・染色処理、集束イオンビーム(FIB)による切削加工を施すと、観察精度が高くなるため好ましい。
 第1層の空隙率は、高い純水透過性能と高い強度を両立するために、40%以上90%以下、50%以上80%以下、または50%以上70%以下であることが好ましい。空隙率が40%以上であることで高い純水透過性能が得られ、90%以下であることで高い強度を実現することができる。特に、複合多孔質中空糸膜が発酵工業及び食品工業用途で行われるクロスフローろ過に用いられる場合、または水処理用におけるエアスクラビングが適用される場合は、空隙率がこれらのいずれかの範囲を満たすことが望ましい。
 第1層の空隙率は、上述した断面における第1層の樹脂部分面積と第1層の空隙部分面積を用いて、下記式(5)によって求められる。精度を高めるために、任意の20点以上、好ましくは30点以上の断面について空隙率を求め、それらの平均値を用いることが好ましい。
  空隙率(%)={100×(空隙部分面積)}/{(樹脂部分面積)+(空隙部分面積)} ・・・(5)
(A-2)フッ素樹脂系高分子
 本書において、フッ素樹脂系高分子とは、フッ化ビニリデンホモポリマー及びフッ化ビニリデン共重合体のうちの少なくとも1つを含有する樹脂を意味する。フッ素系樹脂高分子は、複数の種類のフッ化ビニリデン共重合体を含有してもよい。フッ素樹脂系高分子としては、ポリフッ化ビニリデンが好ましい。
 また、フッ素樹脂系高分子の分子鎖の少なくとも一部は、複合多孔質中空糸膜の長手方向に配向している。
 フッ化ビニリデン共重合体は、フッ化ビニリデン残基構造を有するポリマーであり、典型的にはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマーなどとの共重合体である。このような共重合体としては、例えば、フッ化ビニル、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレンから選ばれた1種類以上のモノマーとフッ化ビニリデンとの共重合体が挙げられる。
 また、本発明の効果を損なわない程度に、前記フッ素系モノマー以外の例えばエチレンなどのモノマーが共重合されていてもよい。
 また、フッ素樹脂系高分子の重量平均分子量は、要求される複合多孔質中空糸膜の強度と透水性能によって適宜選択すればよいが、重量平均分子量が大きくなると透水性能が低下し、重量平均分子量が小さくなると強度が低下する。このため、複合多孔質中空糸膜がクロスフローろ過運転に耐えうる強度を有するためには、フッ素樹脂系高分子の重量平均分子量が5万以上100万以下で形成された層を有することが好ましい。複合多孔質中空糸膜が高頻度に薬液洗浄に晒される発酵工業、食品工業用途の場合、重量平均分子量は10万以上70万以下が好ましく、さらに15万以上60万以下が好ましい。
 第1層は、フッ素樹脂系高分子を主成分として含有することが好ましい。
(A-3)柱状組織
(a)寸法
 「柱状組織」とは、一方向に長い形状の固形物である。柱状組織のアスペクト比(長手長さ/短手長さ)は3以上であることが好ましい。
 ここで、「長手長さ」とは柱状組織の長手方向の長さである。また、「短手長さ」とは柱状組織の短手方向の平均長さである。
 長手長さ及び短手長さは、以下のように測定できる。
 長手長さを測定するには、まず、複合多孔質中空糸膜の長手方向に沿って複合多孔質中空糸膜を切断する。得られた断面を、走査型電子顕微鏡(SEM)を用いて観察する。倍率は、柱状組織の長さによって変更可能であり、視野内に5個、好ましくは10個の柱状組織の全体が、その長手方向に渡って含まれる程度とする。1つの柱状組織において、長手方向の長さにばらつきが認められる場合は、長手長さとして、長手方向の最大長さを測定すればよい。
 また、短手長さは、1つの柱状組織における所定数の任意の測定点において各短手方向の長さを計測し、それらの平均値を算出することで求められる。測定点数は、長手長さ(μm)を1μmで除した値(小数点以下切り捨て)である。たとえば、柱状組織の長手長さが20.5μmの時には、測定点数は20点となる。ただし、この値が21以上になった場合は、任意の20箇所を測定すればよい。
 柱状組織の長手長さは特に限定されないが、7μm以上であることが好ましく、より好ましくは10μm以上、更に好ましくは15μm以上である。また、柱状組織の長手長さは、例えば50μm以下であることが好ましく、より好ましくは40μm以下である。
 柱状組織の短手長さは0.5μm以上3μm以下であることが好ましい。短手長さが前記範囲であると、高い強度性能と高い純水透過性能が得られるため好ましい。柱状組織の短手長さが0.5μm以上であることで、柱状組織自体の物理的強度が大きくなるので、高い強度が得られる。また、柱状組織の短手長さが3μm以下であることで、柱状組織間の空隙が大きくなるので、良好な純水透過性能が得られる。柱状組織の短手長さは、0.7μm以上2.5μm以下であることがより好ましく、更に好ましくは1μm以上2μm以下である。
 なお、本発明の複合多孔質中空糸膜において、柱状組織の長手長さの代表値及び短手長さの代表値の好ましい範囲は、それぞれ、上述の個々の柱状組織の長手長さ及び短手長さの好ましい範囲と同一である。また、各代表値がその範囲内にあることの効果については、個々の柱状組織の寸法がその範囲にある場合の効果についての説明が適用される。
 長手長さの代表値は、以下のように測定する。長手長さの測定と同様にして、複合多孔質中空糸膜における3箇所、好ましくは5箇所の位置で、1箇所につき5個、好ましくは10個の柱状組織について、長手長さを測定する。得られた長手長さの値について平均値を求めることで、柱状組織の長手長さの代表値とすることができる。
 また、短手長さの代表値は、長手長さの代表値の測定の対象とした柱状組織について、上述のとおり短手長さ(平均値として算出される)を測定し、その平均値を算出することで決定される。
 また、本発明の複合多孔質中空糸膜において、長手長さの代表値及び短手長さの代表値から算出される柱状組織のアスペクト比の代表値は、3以上であることが好ましく、より好ましくは5以上、更に好ましくは10以上、特に好ましくは20以上である。
 本発明において、柱状組織の短手長さが0.5μm以上3μm以下であり、且つ、柱状組織のアスペクト比が3以上であることが好ましい。
(b)太さ均一性
 柱状組織の太さ均一性(後述の平均値D)は、0.60以上が好ましく、より好ましくは0.70以上であり、更に好ましくは0.80以上であり、特に好ましくは0.90以上である。太さ均一性は、最大で1.0であるが、柱状組織は、1.0未満の太さ均一性を有してもよい。
 このように複合多孔質中空糸膜において、柱状組織が高い太さ均一性を有すること、つまり柱状組織のくびれ部分が少ないことで、複合多孔質中空糸膜の伸度が高くなる。
 複合多孔質中空糸膜が高い伸度を保持していると、急激な荷重が掛かった際にも糸切れしにくいため好ましい。実用的には、クロスフローろ過の液流の変化によって複合多孔質中空糸膜に外力が急に作用した場合においても、複合多孔質中空糸膜の破断が起こりにくい。
 複合多孔質中空糸膜の破断伸度は、50%以上であることが好ましく、80%以上であることがより好ましい。
 太さ均一性について説明する。柱状組織の各短手方向の長さのバラツキが小さいほど、柱状組織は、くびれ部分が少なく、太さの均一性が高くなり、理想的な円柱に近づく。
 柱状組織の太さ均一性は、複合多孔質中空糸膜の短手方向に平行な第一の断面と第二の断面を比較することで求められる。以下に具体的に説明する。
 まず、互いに平行である第一の断面と第二の断面を選定する。第一の面と第二の面との距離は5μmとする。そして、それぞれの断面で、第1層における樹脂からなる部分と空隙部分とを区別し、樹脂部分面積と空隙部分面積を測定する。次に、第一の断面を第二の断面に投影した時に、第一の断面における樹脂からなる部分と第二の断面における樹脂からなる部分とが重なる部分の面積、すなわち重なり面積を求める。次に、下記式(3)及び(4)に基づいて、1本の複合多孔質中空糸膜について任意の20組の第一の断面と上記第二の断面について、太さ均一性A及びBをそれぞれ求める。
  太さ均一性A=(重なり面積)/(第二の断面の樹脂部分面積) ・・・(3)
  太さ均一性B=(重なり面積)/(第一の断面の樹脂部分面積) ・・・(4)
 つまり、1本の複合多孔質中空糸膜について、20組の太さ均一性A、Bが得られる。この値が大きいほど、柱状組織の太さが均一であることを意味する。
 次に、それぞれの組について、太さ均一性AとBとの平均値Cを算出する。すなわち1本の複合多孔質中空糸膜について、20個の平均値Cが得られる。この平均値Cについて、さらに平均値Dを算出する。この平均値Dが、この複合多孔質中空糸膜における柱状組織の太さ均一性である。
 また、1本の複合多孔質中空糸膜について算出された20個の平均値Cのうち、80%以上が0.60以上である場合に、この複合多孔質中空糸膜は柱状組織を有するといえる。
 なお、太さ均一性の測定に当たっては、樹脂部分と空隙部分とを明瞭に区別するために、あらかじめ、複合多孔質中空糸膜をエポキシ樹脂等で樹脂包埋し、エポキシ樹脂等をオスミウム等で染色処理することが好ましい。このような樹脂包埋・染色処理によって、空隙部分がエポキシ樹脂等で埋められ、後述する集束イオンビームによる断面加工の際に、フッ素樹脂系高分子からなる部分と、空隙部分(すなわちエポキシ樹脂部分)とが明瞭に区別できるようになるため、観察精度が高くなる。
 また、上述した複合多孔質中空糸膜の短手方向に平行な第一の断面と第二の断面を得るために、集束イオンビーム(FIB)を備えた走査型電子顕微鏡(SEM)を用いることが好ましい。複合多孔質中空糸膜の短手方向に平行な面を、FIBを用いて切り出し、FIBによる切削加工とSEM観察を、複合多孔質中空糸膜の長手方向に向かって50nm間隔で繰り返し200回実施する。このような連続断面観察によって、10μmの深さの情報を得ることができる。この中で、5μmの間隔を持つ互いに平行な面となる任意の第一の断面と第二の断面を選択し、上述した式(3)及び(4)を用いて太さ均一性を求めることができる。なお、観察倍率は、柱状組織及び球状組織が明瞭に確認できる倍率であればよく、例えば1000~5000倍を用いればよい。
(c)組成
 柱状組織は、フッ素樹脂系高分子を含有する。柱状組織は、フッ素樹脂系高分子を主成分として含有することが好ましく、柱状組織においてフッ素樹脂系高分子が占める割合は、80重量%以上が好ましく、90重量%以上がより好ましく、95重量%以上であることが更に好ましい。また、柱状組織は、フッ素樹脂系高分子のみで構成されていてもよい。
 言い換えると、第1層はフッ素樹脂系高分子を含有する固形分を有しており、その固形分の少なくとも一部が柱状組織を構成している。第1層において、フッ素樹脂系高分子を含有する固形分のうち、柱状組織を構成する固形分が占める割合は、80重量%以上が好ましく、90重量%以上がより好ましく、95重量%以上であることが更に好ましい。
 また、少なくとも、柱状組織は、複合多孔質中空糸膜の長手方向に配向するフッ素樹脂系高分子を含有する。
(A-4)ラマン分光法
 分子鎖の配向は、ラマン分光法による配向解析でも確認することができる。ラマン分光法では、後述する柱状組織における分子鎖の配向度を測定することができる。まず、複合多孔質中空糸膜の長手方向に沿う断面において、ミクロトームによる切削を行うことで、膜を切片化する。こうして得られた切片を光学顕微鏡で観察することで、柱状組織を確認しながら、柱状組織の長手方向に沿って、1μm間隔でレーザーラマン測定を行う。一つの柱状組織における測定点の数は、後述する柱状組織の長手長さ(μm)を1μmで除した値(小数点以下切り捨て)とする。たとえば、柱状組織の長手長さが20.5μmの時には、測定点数は20点となる。
 ラマン散乱は分子鎖の振動方向と入射光の偏光方向が一致する場合に強く得られることから、分子鎖に対して平行な振動方向を示す振動モードと、分子鎖に対して垂直な振動方向を示す振動モードを適宜選定し、その散乱強度比をとることで配向度を算出できる。
 例えば、フッ素樹脂系高分子がポリフッ化ビニリデンホモポリマーである場合、1270cm-1付近のラマンバンドは、CF(フルオロカーボン)伸縮振動とCC(炭素-炭素)伸縮振動とのカップリングモードに帰属する。これらの振動モードにおける振動方向は、分子鎖に対して平行である。一方で、840cm-1付近のラマンバンドの振動方向は分子鎖に対して垂直である。
 このため、ラマン配向パラメータを、下記式(2)で算出することができる。ラマン配向パラメータは、複合多孔質中空糸膜の長手方向への配向が高いほど大きな値となり、無配向時には1、短手方向への配向が高いと1よりも小さな値を示す。
  ラマン配向パラメータ=(I1270平行/I840平行)/(I1270垂直/I840垂直) ・・・(2)
 式(2)において、
 I1270平行:平行条件時の1270cm-1のラマンバンドの強度
 I1270垂直:垂直条件時の1270cm-1のラマンバンドの強度
 I840平行:平行条件時の840cm-1のラマンバンドの強度
 I840垂直:垂直条件時の840cm-1のラマンバンドの強度
である。
 平行条件:複合多孔質中空糸膜の長手方向と偏光方向が平行
 垂直条件:複合多孔質中空糸膜の長手方向と偏光方向が直交
である。
 1本の複合多孔質中空糸膜において、上述の柱状組織の長手長さの代表値の0.5倍から1.5倍の長さを持つ、10個の相異なる柱状組織を選定する。それぞれの柱状組織について、上述したように1μm間隔でレーザーラマン測定を行い、各測定点の配向パラメータを式(2)により算出する。得られた値の平均値をラマン配向パラメータの平均値νとする。
 また、1つの柱状組織の測定点の中で、最も大きな配向パラメータと最も小さな配向パラメータを選ぶ操作を、10個の相異なる柱状組織について行う。選ばれた10個の最も大きな配向パラメータと10個の最も小さな配向パラメータについて、それぞれ平均値を最大ラマン配向パラメータM、最小ラマン配向パラメータmとして算出する。
 ラマン配向パラメータの平均値ν、最大ラマン配向パラメータM、最小ラマン配向パラメータm、後述の比M/mを精度良く得るために、20個の相異なる柱状組織について測定を行うことが好ましい。
 ラマン配向パラメータの平均値νは、3.0以上が好ましく、3.4以上または3.7以上がより好ましい。
 ラマン配向パラメータの平均値νが3.0以上であることで、複合多孔質中空糸膜の強度が大きくなり、クロスフローろ過に好適に用いることができる。
 最大ラマン配向パラメータM、最小ラマン配向パラメータmは、それぞれ柱状組織における主たる配向箇所の配向度と、延伸時の力点となる部分の配向度を表すと考えられる。
 このため、得られる複合多孔質中空糸膜の強度、伸度、透水性等の性能のバランスを考慮して、Mやmを適切な範囲とすればよい。
 M/mが大きいほど、分子鎖の配向が進み、複合多孔質中空糸膜の強度が高くなる傾向にあり、クロスフローろ過運転を行うのに好ましい。このため、本発明では、M/mは、3以上が好ましく、4以上がより好ましく、5以上がさらに好ましい。
 広角X線回折測定により求められる配向度πは、複合多孔質膜中空糸膜全体の分子鎖の配向を表し、ラマン分光法により求められるラマン配向パラメータの平均値νは、複合多孔質膜中空糸膜の柱状組織に焦点をあてた場合の分子鎖の配向、すなわち局所的な分子鎖の配向を表す傾向にある。
 複合多孔質膜中空糸膜全体及び局所の分子鎖がともに強く配向していると、複合多孔質中空糸膜の強度が高くなるため、配向度πが0.6以上1.0未満の範囲であり、かつ、ラマン配向パラメータの平均値νが3.4以上であることが好ましく、さらには、配向度πが0.7以上1.0未満の範囲であり、かつ、ラマン配向パラメータの平均値νが3.7以上であることがより好ましい。
(B)第2層
 第2層は三次元網目組織を有する。また、本発明における第2層とは、走査型電子顕微鏡を用いてフッ素樹脂系高分子分離膜の長手方向の断面を60000倍で写真撮影した際に、三次元網目組織が観察される部分をいう。
 三次元網目組織とは、図5に示すように、固形分が三次元的に網目状に広がっている組織である。三次元網目組織は、網を形成する固形分に仕切られた細孔及びボイドを有する。
 第2層は、三次元網目組織を有することで、複合多孔質中空糸膜において、分離性能、つまりろ過対象の液体から標的の物質を除去する性能を実質的に担う。
 第2層の表面の平均孔径は5.0nm以上5.0μm以下である。
 第2層における表面の平均孔径が5.0μm以下であることで、微生物を分離することができる。第2層の表面の平均孔径が2.0μm以下または1.0μm以下であることで、微生物の除去性能がより高くなる。
 また、第2層における表面の平均孔径が5.0nm以上であることで、複合多孔質中空糸膜の透水性を確保することができる。第2層の表面平均孔径は、10nm以上であってもよい。
 さらに、第2層の表面の平均孔径が0.2μm以上、0.3μm以上または0.4μm以上であると、発酵工業及び食品工業で香味などの有用成分を透過することができるので好ましく、第2層の表面の平均孔径が1.5μm以下または1.3μm以下であることで、酵母による閉塞を抑制することができる。より具体的には、第2層の表面の平均孔径は、0.4μm以上1.0μm以下であることが好ましい。
 一方、飲料水製造、浄水処理、排水処理などの各種水処理で使用される場合には、膜中の細孔内への閉塞物質の浸入を防ぎつつ、優れた透水性を有するために、第2層の表面の平均孔径は5.0nm以上1.0μm以下であることが好ましい。
 第2層の表面の平均孔径は、走査型電子顕微鏡を用いて第2層の表面を60000倍で写真撮影し、10個以上、好ましくは20個以上の任意の細孔の直径を測定し、数平均して求められる。細孔が円状でない場合、第2層の表面の平均孔径は、画像処理装置等によって、細孔が有する面積と等しい面積を有する円(等価円)を求め、等価円直径を細孔の直径とする方法により求められる。
 なお、「第2層の表面」とは、第2層が複合多孔質中空糸膜の最表面に位置している場合は、複合多孔質中空糸膜において露出している第2層の表面を指す。また、第2層が露出しておらず、2つの他の層の間に配置されている場合は、いずれかの層を除いて、第2層の表面を露出させればよい。
 第2層は、マクロボイドを実質的に有さないことが好ましい。これによって、微生物等の漏洩防止の信頼性を高めることができる。マクロボイドとは、表面細孔径の十倍以上の長径を有する孔である。マクロボイドは透過流体に対してろ過抵抗を殆ど示さない。
 マクロボイドの有無は、複合多孔質中空糸膜の径方向の断面において、走査型電子顕微鏡を用いて第2層を3000倍で撮影し、撮影像において長径を測定することで判断できる。孔がいびつな形であって、長径を決定することが困難な場合、画像処理装置等によって、孔が有する面積と等しい面積を有する円(等価円)を求め、等価円直径を長径とすればよい。
マクロボイドの有無の確認には、少なくとも30箇所で撮影を行うことが好ましい。
 三次元網目組織の化学的組成(例えばフッ素樹脂系高分子の含有率)については、柱状組織における記載が適用される。
 すなわち、第2層はフッ素樹脂系高分子を含有する固形分を有しており、その固形分の少なくとも一部が三次元網目組織を構成している。第2層において、フッ素樹脂系高分子を含有する固形分のうち、三次元網目組織を構成する固形分が占める割合は、80重量%以上が好ましく、90重量%以上がより好ましく、95重量%以上であることが更に好ましい。
 第2層における主たる構造は、三次元網目組織であることが好ましい。第2層において、三次元網目組織が占める割合は、80重量%以上が好ましく、90重量%以上がより好ましく、95重量%以上であることが更に好ましい。また、第2層は、三次元網目組織のみで構成されていてもよい。
 より具体的には、第2層は、その主たる構造として、フッ素樹脂系高分子を主成分として含有する三次元網目組織を有することが好ましい。
1-3.層の配置
 第2層は、複合多孔質中空糸膜において、被ろ過液と接するよう配置されることが好ましい。外圧式のろ過に使用される膜は、被ろ過液と外表面で接するので、第2層を最外層として備えることが好ましい。また、第1層は、被ろ過液と接しない位置に配置されることが好ましい。
 このような膜は、微生物等の除去性能を有する第2層で細孔の閉塞を抑制することができ、かつ第1層の柱状組織によって高い強度を獲得することができるので、結果として、特に大きな力が加わる外圧式ろ過でも、安定したろ過を可能とする。
1-4.層厚み
 第1層は、複合多孔質中空糸膜の有する層の中で最も厚いことが好ましい。これによって、複合多孔質中空糸膜は高い強度を得ることができる。
 また、複合多孔質中空糸膜全体の厚みに対する第1層の厚みの比が、0.50以上、0.55以上、0.60以上であることが好ましい。複合多孔質中空糸膜は複数の第1層を備えてもよい。複合中空糸膜が複数の第1層を備える場合、第1層の厚みの合計が上記数値範囲内にあればよい。
 また、第1層の厚みは、透水性と物理的強度とのバランスから、100μm以上500μm以下であることが好ましく、150μm以上300μm以下であることが、より好ましい。
 第2層は、膜の周方向だけでなく、膜の厚み方向にも三次元的に広がる網目組織を有する。よって、第2層は、厚み方向に重なった複数の薄い「網」を有するともいえる。この薄い「網」を以下では「薄層」と称する。
 第2層による微生物除去性能は、第2層における各薄層での微生物除去性能の和である。つまり、薄層数を増やすと、微生物除去性能が向上する。第2層の厚みは、除去対象物の濃度等の被ろ過液の条件、ろ過運転の条件、求められる透過液の条件等によって変更すればよいが、例えば、10μm以上120μm以下であることが好ましく、15μm以上80μm以下であることがより好ましい。また、第2層の厚みは、第2層の表面平均孔径の2倍以上、5倍以上または10倍以上であることが好ましい。
 また、除去性と透水性とを確保するため、複合多孔質中空糸膜全体の厚みに対する第2層の厚みの比は、0.03以上0.35以下であることが好ましい。
 また、本発明の複合多孔質中空糸膜は、上述した柱状組織を有する層と、三次元網目組織を有する層とが積層されたものである。ただし、柱状組織を有する第1層に比べて、三次元網目組織を有する第2層の厚みが厚くなると、物理的強度が低下する。また、三次元網目組織を有する第2層の厚みが薄すぎると、第2層の欠点等が存在した場合に除去対象物の漏洩が懸念される。従って、第2層の平均厚みの第1層の平均厚みに対する比は、0.04以上0.5以下がよく、より好ましくは0.07以上0.4以下がよい。
 なお、第1層と第2層とが接している場合、その界面は、両者が互いに入り組んだ構造であってもよい。
 層厚みの測定においては、入り組んだ構造の厚みの1/2をそれぞれ第1層と第2層の厚みとする。
1-5.その他
 本発明の複合多孔質中空糸膜は、50kPa、25℃における純水透過性能が0.1m/m/hr以上であり、破断強度が25MPa以上であることが好ましい。より好ましくは50kPa、25℃における純水透過性能が0.2m/m/hr以上であり、破断強度が30MPa以上である。特に、高い純水透過性能と高い強度性能を両立させた高性能の複合多孔質中空糸膜とするという観点から、50kPa、25℃における純水透過性能が0.2m/m/hr以上5.0m/m/hr以下であり、破断強度が25MPa以上70MPa以下の範囲が好ましく、より好ましくは50kPa、25℃における純水透過性能が0.2m/m/hr以上5.0m/m/hr以下であり、破断強度が30MPa以上70MPa以下の範囲である。
 純水透過性能の測定は、複合多孔質中空糸膜4本からなる長さ200mmのミニチュアモジュールを作製して行う。温度25℃、ろ過差圧16kPaの条件下で、逆浸透膜ろ過水の外圧全ろ過を10分間行い、透過量(m)を求める。その透過量(m)を単位時間(h)及び有効膜面積(m)あたりの値に換算し、さらに(50/16)倍することにより、圧力50kPaにおける値に換算することで純水透過性能を求める。
 破断強度と破断伸度の測定方法は、特に限定されるものではないが、例えば、引っ張り試験機を用い、測定長さ50mmの試料を引っ張り速度50mm/分で引っ張り試験を、試料を変えて5回以上行い、破断強度の平均値と破断伸度の平均値を求めることで測定することができる。
 複合多孔質中空糸膜は、第1層及び第2層の他に、さらに層を備えてもよい。
 複合多孔質中空糸膜の寸法は、例えば、外径が1.5mm、内径が0.8mm程度であってもよい。ただし、寸法は、使用目的などに合わせて変更可能である。
 以上に説明した複合多孔質中空糸膜は、発酵工業、食品工業、飲料水製造、工業用水製造、浄水処理、排水処理、海水淡水化、工業用水製造などの各種水処理に十分な純水透過性能、強度、伸度を有する。
2.複合多孔質中空糸膜の製造方法
 上述した複合多孔質中空糸膜の製造方法の実施形態について、以下に述べる。
 製造方法の1つ目の例としては、第1層の表面もしくは内面に、フッ素樹脂系高分子溶液を塗布した後に、凝固浴中で凝固せしめることにより第2層を被覆する方法が挙げられる。
 2つ目の例としては、第2層形成用のフッ素樹脂系高分子溶液及び第1層形成用フッ素樹脂系高分子溶液を口金から同時に吐出し、凝固浴中でそれぞれ凝固及び冷却固化させることにより第2層と第1層とを同時に形成する方法が挙げられる。
 1つ目の方法は各操作を個別に制御できるため、得られる膜の性能をコントロールし易い。2つ目の方法は、各操作を同時に行うことができるため、製造装置を極小化することができる。以下では、1つ目の方法について説明する。
 すなわち、本実施形態に係る複合多孔質中空糸膜の製造方法は、下記1)から3)の工程を備える。
 1)フッ素樹脂系高分子を含有する製膜原液から、熱誘起相分離により、長手方向に配向し、かつ0.60以上1.00未満の太さ均一性を有する柱状組織を有する多孔質中空糸を形成する工程
 2)前記工程1)で得られた多孔質中空糸を長手方向に2.0倍以上5.0倍以下に延伸する工程
 3)前記工程2)で得られた多孔質中空糸上に、フッ素樹脂系高分子を含有する製膜原液から、非溶媒誘起相分離により、三次元網目組織を有する層を形成する工程
 各工程について以下に説明する。
2-1.柱状組織形成工程
まず、上記1)の工程について説明する。
本工程は、具体的には、以下のステップ
 (A)製膜原液の調製
 (B)柱状組織を有する多孔質中空糸の形成
を含む。
(A)製膜原液の調製
 本ステップでは、フッ素樹脂系高分子を、フッ素樹脂系高分子の貧溶媒または良溶媒に、結晶化温度以上の比較的高温で溶解することで、フッ素樹脂系高分子溶液(つまり、フッ素樹脂系高分子を含有する製膜原液)を調製する。
 製膜原液中の高分子濃度が高いと、高い強度を有する複合多孔質中空糸膜が得られる。一方で、高分子濃度が低いと、複合多孔質中空糸膜の空隙率が大きくなり、純水透過性能が向上する。このため、フッ素樹脂系高分子の濃度は、20重量%以上60重量%以下であることが好ましく、30重量%以上50重量%以下であることがより好ましい。
 本書において、貧溶媒とは、フッ素樹脂系高分子を60℃以下の低温領域では、5重量%以上溶解させることができないが、60℃以上かつフッ素樹脂系高分子の融点(例えば、高分子がフッ化ビニリデンホモポリマー単独で構成される場合は178℃程度)以下の高温領域で5重量%以上溶解させることができる溶媒である。
 また、良溶媒とは、60℃以下の低温領域でもフッ素樹脂系高分子を5重量%以上溶解させることができる溶媒であり、非溶媒とは、フッ素樹脂系高分子の融点または溶媒の沸点まで、フッ素樹脂系高分子を溶解も膨潤もさせない溶媒と定義する。
 ここで、フッ素樹脂系高分子の貧溶媒としてはシクロヘキサノン、イソホロン、γ-ブチロラクトン、メチルイソアミルケトン、プロピレンカーボネート、ジメチルスルホキシド等及びそれらの混合溶媒が挙げられる。
 良溶媒としては、N-メチル-2-ピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、テトラメチル尿素、リン酸トリメチル等及びそれらの混合溶媒が挙げられる。
 非溶媒としては、水、ヘキサン、ペンタン、ベンゼン、トルエン、メタノール、エタノール、四塩化炭素、o-ジクロルベンゼン、トリクロルエチレン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ブチレングリコール、ペンタンジオール、ヘキサンジオール、低分子量のポリエチレングリコール等の脂肪族炭化水素、芳香族炭化水素、脂肪族多価アルコール、芳香族多価アルコール、塩素化炭化水素、またはその他の塩素化有機液体及びそれらの混合溶媒などが挙げられる。
(B)柱状組織を有する多孔質中空糸の形成
 多孔質中空糸の形成工程においては、温度変化により相分離を誘起する熱誘起相分離法を利用して、フッ素樹脂系高分子を含有する製膜原液から、多孔質中空糸を得る。後述する2.0倍以上の高倍率延伸を行うためには、多孔質中空糸は、その長手方向に配向する柱状組織を有し、かつ、柱状組織の太さ均一性は0.60以上1.00未満であることが好ましい。柱状組織の太さ均一性の下限は、0.70以上であることがより好ましく、0.80以上であることが更に好ましく、0.90以上であることが特に好ましい。
 熱誘起相分離法には、主に2種類の相分離機構が利用される。一つは、高温時に均一に溶解した高分子溶液が、降温時に溶液の溶解能力低下が原因で高分子濃厚相と高分子希薄相に分離し、その後、構造が結晶化により固定される液-液相分離法である。もう一つは、高温時に均一に溶解した高分子溶液が、降温時に高分子の結晶化が起こり高分子固体相と溶媒相に相分離する固-液相分離法である。
 前者の方法では主に三次元網目組織が、後者の方法では主に球状組織で構成された球状組織が形成される。本発明の多孔質中空糸膜の製造では、後者の相分離機構が好ましく利用される。よって、固-液相分離が誘起される高分子濃度及び溶媒が選択される。前者の相分離機構では、上述したような多孔質中空糸膜の長手方向に配向した柱状組織を発現させることは困難である。これは構造が固定される前の相分離でポリマー濃厚相は非常に微細な相を形成し、柱状にすることができないためである。
 柱状組織を有する多孔質中空糸を形成する具体的な方法としては、上述の製膜原液を多孔質中空糸膜紡糸用の二重管式口金の外側の管から吐出しつつ、中空部形成液体を二重管式口金の内側の管から吐出する。こうして吐出された製膜原液を冷却浴中で冷却固化することで、多孔質中空糸を得る。
 フッ素樹脂系高分子溶液は、口金から吐出される前に、圧力をかけられながら、特定の温度条件下に一定時間置かれる。圧力は0.5MPa以上であることが好ましく、1.0MPa以上であることがより好ましい。前記高分子溶液の温度Tは、Tc+35℃≦T≦Tc+60℃を満たすことが好ましく、Tc+40℃≦T≦Tc+55℃を満たすことがより好ましい。Tcは、フッ素樹脂系高分子溶液の結晶化温度である。この圧力及び温度下で前記高分子溶液が保持される時間は、10秒以上であることが好ましく、20秒以上であることがより好ましい。
 具体的には、高分子溶液を口金に送る送液ラインのいずれかの箇所に、高分子溶液を滞留させる滞留部が設けられており、滞留した高分子溶液を加圧する加圧手段と、滞留した高分子溶液の温度を調整する温度調整手段(例えば加熱手段)が設けられる。加圧手段としては、特に限定されないが、送液ラインに2つ以上のポンプを設置することで、その間のいずれかの箇所で加圧することができる。ここでポンプとしては、ピストンポンプ、プランジャーポンプ、ダイヤフラムポンプ、ウィングポンプ、ギヤーポンプ、ロータリーポンプ、スクリューポンプなどが挙げられ、2種類以上を用いてもよい。
 この工程により結晶化が起こりやすい条件で圧力が加えられるため、結晶の成長が異方性を有し、等方的な球状組織ではなく、多孔質中空糸膜の長手方向に配向した組織が発現し、その結果、柱状組織が得られると推測される。
 ここで、前記フッ素樹脂系高分子溶液の結晶化温度Tcは次のように定義される。示差走査熱量測定(DSC測定)装置を用いて、フッ素樹脂系高分子と溶媒など製膜高分子原液組成と同組成の混合物を密封式DSC容器に密封し、昇温速度10℃/minで溶解温度まで昇温し30分保持して均一に溶解した後に、降温速度10℃/minで降温する過程で観察される結晶化ピークの立ち上がり温度がTcである。
 次に、口金から吐出されたフッ素樹脂系高分子溶液を冷却する冷却浴について説明する。冷却浴には、濃度が50~95重量%の貧溶媒あるいは良溶媒と、濃度が5~50重量%の非溶媒からなる混合液体を用いることが好ましい。さらに貧溶媒としては高分子溶液と同じ貧溶媒を用いることが好ましい。また、中空部形成液体には、冷却浴同様、濃度が50~95重量%の貧溶媒あるいは良溶媒と、濃度が5~50重量%の非溶媒からなる混合液体を用いることが好ましい。さらに貧溶媒としては高分子溶液と同じ貧溶媒を用いることが好ましい。
 ここで、くびれ部分を多数有する繊維状組織ではなく、均一な太さを有する柱状組織とするために、くびれ部分への高分子取り込み成長を促進させることが望ましい。本発明者らは、くびれ部分への高分子取り込み成長は、界面エネルギーの高いくびれ部分の消失につながり、エネルギー的に安定化するため、くびれ部分以外の成長よりも優先的に生じさせうることを見出し、太さ均一性を向上させための方法について鋭意検討を行った。
 その結果、くびれ部分への高分子取り込み成長を促進させる方法として、熱誘起相分離が下記a)及びb)の冷却工程のうちの少なくとも一方を備えることが好ましいことを見出した。
a)前記製膜原液をTc-30℃<Tb≦Tcを満たす温度Tbの冷却浴に浸す工程
b)前記製膜原液をTb1≦Tc-30℃を満たす温度Tb1の冷却浴に浸した後、Tc-30℃<Tb2≦Tcを満たす温度Tb2の冷却浴に浸す工程
(ただし、Tcは前記フッ素樹脂系高分子を含有する製膜原液の結晶化温度である。)
 本発明において、方法a)として、冷却浴中での冷却固化を前記高分子溶液の結晶化温度付近で行うことで、冷却固化を徐々に進行させることを見出した。この場合、冷却浴の温度Tbを、前記フッ素樹脂系高分子溶液の結晶化温度をTcとした際に、Tc-30℃<Tb≦Tcを満たすようにするものであり、Tc-20℃<Tb≦Tcとすることがより好ましい。
 冷却浴の通過時間(つまり冷却浴への浸漬時間)は、くびれ部分への高分子取り込み成長を含む熱誘起相分離が完結するのに十分な時間を確保できれば特に限定されず、多孔質中空糸膜数、紡糸速度、浴比、冷却能力などを勘案して実験的に決定すればよい。
 ただし、所望の太さ均一性を達成するためには、上述した冷却浴の温度の範囲において通過時間をできるだけ長くすることが好ましく、例えば、10秒以上、好ましくは20秒以上、さらに好ましくは30秒以上とするのがよい。
 また、方法b)として二段階以上の冷却を行ってもよい。具体的には、冷却工程は、過冷却度を高めて結晶核生成及び成長を促す第1の冷却浴を用いて冷却するステップと、その後、くびれ部分への高分子取り込み成長を促す第2の冷却浴を用いて冷却するステップとを含んでいてもよい。第2の冷却浴による冷却ステップは、くびれ部分への高分子取り込み成長が、主に相分離の構造粗大化過程で優先的に生じるという現象を利用している。
 この場合、口金から吐出されたフッ素樹脂高分子溶液を冷却する第1の冷却浴の温度Tb1が、Tb1≦Tc-30℃を満たすことで、過冷却度を高めて結晶核の生成及び成長を促すことができ、第2の冷却浴の温度Tb2を結晶化温度付近の温度とすることで(具体的には、Tc-30℃<Tb2≦Tc、より好ましくはTc-20℃<Tb2≦Tcを満たすようにすることで)、くびれ部分への高分子取り込み成長を促すことができる。Tcは高分子溶液の結晶化温度である。
 それぞれの冷却浴の通過時間は変更可能であるが、例えば、第1の冷却浴の通過時間を1秒以上20秒以下、好ましくは3秒以上15秒以下、さらに好ましくは5秒以上10秒以下とし、第2の冷却浴の通過時間を10秒以上、好ましくは20秒以上、さらに好ましくは30秒以上とするのがよい。
 0.60未満の太さ均一性を有する組織を、柱状組織と区別するために、「繊維状組織」と称すると、日本国特開2006-297383号公報(特許文献1)に開示されているのは繊維状組織を有する中空糸膜である。このような繊維状組織を有する中空糸膜は、強度及び純水透過性能に比較的優れているため、本発明者らは、これを延伸することで高強度化を図った。しかしながら、均一に延伸することができず、高強度化できないことが分かった。
 一般に、水処理用に用いられる多孔質膜は、水を透過させるための空隙部を多数有し、延伸時には、空隙部を起点として組織の破壊が進行するため、延伸そのものが大変難しい。特に、多孔質中空糸膜が、非溶媒誘起相分離や熱誘起相分離の原理を利用する乾湿式紡糸によって得られる相分離多孔構造を有する場合には、微細な空隙が多数存在し、空隙率が高いため、この傾向が顕著である。
 特許文献1における繊維状組織を有する多孔質膜の場合には、長手方向に配向した繊維状組織によって、延伸時の応力が分散され、2.0倍未満と低倍率ではあるが延伸が可能になったと考えられる。しかしながら、2.0倍以上の高倍率延伸を均一に実施することは未だ困難であり、その原因について鋭意検討した結果、繊維状組織は、くびれ部分が多く、延伸時に、このくびれ部分に応力が集中するため、くびれ部分が優先的に延伸されてしまい、繊維状組織全体を均一に延伸できないために延伸倍率を上げることができないことを発見した。
 これに対して、本発明者らは、均一な太さを有する柱状組織を有する中空糸であれば、柱状組織全体を均一に延伸できることを見出し、2.0倍以上の高倍率延伸を可能とした。そして、このような均一かつ高倍率延伸によって、フッ素樹脂系高分子の分子鎖を多孔質中空糸膜の長手方向に延伸配向させることに成功し、高い純水透過性能を維持しつつ高強度化することに成功した。
2-2.延伸
 次いで、前記1)で得られた多孔質中空糸を長手方向に2.0倍以上5.0倍以下で延伸する工程を経て、前記高分子の分子鎖を前記多孔質中空糸膜の長手方向に配向させる。こうして、第1層が形成される。
 延伸倍率は、2.0~5.0倍であり、より好ましくは2.5~4.0倍であり、とりわけ2.5~3.5倍が好ましい。延伸倍率が2.0倍未満の場合、延伸による分子鎖の配向が充分ではなく、5.0倍を超えると伸度の低下が大きくなる。
 延伸温度は、好ましくは60~140℃、より好ましくは70~120℃、さらに好ましくは80~100℃である。延伸温度が60℃以上であることで、安定して均質に延伸することができる。また、延伸温度が140℃以下であることで、フッ素樹脂系高分子の融解を抑制し、延伸配向させることができる。
 延伸は、液体中で行うと、温度制御が容易であり好ましいが、スチームなどの気体中で行ってもよい。液体としては水が簡便で好ましいが、90℃程度以上で延伸する場合には、低分子量のポリエチレングリコールなどを用いることも好ましく採用できる。
2-3.三次元網目組織を有する層の形成
 三次元網目組織を有する層を形成する工程、つまり第2層を形成する工程について、以下に説明する。本工程は、具体的には、以下のステップ
 (A)製膜原液の調製
 (B)延伸後の多孔質中空糸への製膜原液の塗布
 (C)非溶媒誘起相分離による三次元網目組織を有する層の形成
 を含む。
(A)製膜原液の調製
 本ステップでは、製膜原液、つまりフッ素樹脂系高分子溶液を調製する。具体的には、溶媒と、フッ素樹脂系高分子及びその他の添加剤を混合し、溶媒の沸点以下の温度で攪拌しながら、透明な溶液となるように、数時間加熱することが好ましい。
 製膜原液における高分子濃度、つまりフッ素樹脂系高分子及び他の高分子成分との和は、10重量%以上30重量%以下であることが好ましく、12重量%以上25重量%以下であることがより好ましい。高分子濃度が10重量%以上であることで、分離膜として好ましい物理的強度と、微生物を除去するのに好ましい細孔径とを有する第2層を得ることができる。また、高分子濃度が30重量%以下であることで、分離膜として好ましい透水性能を有する三次元網目組織を得ることができる。
 溶媒としては、上述のフッ素樹脂系高分子の良溶媒を50重量%以上含むことが好ましい。また、フッ素樹脂系高分子の貧溶媒を50重量%以下含んでいてもよい。
 また、製膜原液は、孔径を制御するための添加剤を含むことが好ましい。このフッ素樹脂系高分子溶液に、孔径を制御するための添加剤を入れ、三次元網目組織を形成する際に、または、三次元網目組織を形成した後に、該添加剤を溶出させることにより、表面の平均孔径を制御することができる。
 該添加剤としては、有機化合物及び無機化合物が挙げられる。
 有機化合物としては、該高分子溶液に用いる溶媒及び非溶媒誘起相分離を起こす非溶媒の両方に溶解するものが好ましく用いられる。例えば、ポリビニルピロリドン、ポリエチレングリコール、セルロースアセテート、ポリエチレンイミン、ポリアクリル酸、デキストランなどの水溶性ポリマー、界面活性剤、グリセリン、糖類などを挙げることができる。
 無機化合物としては、該高分子溶液に用いる溶媒及び非溶媒誘起相分離を起こす非溶媒の両方に溶解するものが好ましく、例えば、塩化カルシウム、塩化マグネシウム、塩化リチウム、硫酸バリウムなどを挙げることができる。
 また、該高分子溶液に非溶媒を添加することも、相分離速度の制御に有効である。添加する非溶媒としては例えば、水、メタノール、エタノール、イソプロピルアルコール、エチレングリコール、2-メトキシエタノール、グリセリン、アセトン、メチルエチルケトン、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ジオキサン等が挙げられる。
(B)多孔質中空糸への製膜原液の塗布
 上述した方法で得られた延伸後の多孔質中空糸、つまり第1層の表面に、製膜原液を塗布する。「塗布」としては、多孔質中空糸を製膜原液中に浸漬すること、または多孔質中空糸上に製膜原液を滴下することが挙げられる。
 また、フッ素樹脂系高分子溶液の塗布量を制御する方法としては、
-前記高分子溶液の塗布量自体を制御する
-柱状組織からなるフッ素樹脂系高分子分離膜を前記高分子溶液に浸漬する
-柱状組織からなるフッ素樹脂系高分子分離膜に前記高分子溶液を塗布した後に、前記高分子溶液の一部を掻き取るか、エアナイフを用いて吹き飛ばす
等の方法が好ましく用いられる。
(C)非溶媒誘起相分離による三次元網目組織を有する層の形成
 本ステップでは、製膜原液を塗布した多孔質中空糸を凝固浴に浸漬させることで、非溶媒誘起相分離を起こして、三次元網目組織を有する第2層を形成する。
 凝固浴は、少なくともフッ素樹脂系高分子の非溶媒を含有すればよい。凝固浴における非溶媒の含有率は40重量%以上95重量%以下が好ましい。
 また、凝固浴は、フッ素樹脂系高分子の良溶媒を含有することが好ましい。
 フッ素樹脂系高分子の良溶媒を含有する凝固浴は、フッ素樹脂系高分子の良溶媒を5重量%以上60重量%以下含有し、20重量%以上50重量%以下含有することが好ましい。凝固浴中の良溶媒を前記の範囲に調整することにより、フッ素樹脂系高分子溶液への非溶媒の侵入速度が低下し、実質的にマクロボイドを含有しない三次元網目組織が形成されやすい。良溶媒の含有率が5重量%以上であることで、非溶媒の侵入速度を抑制することができるので、その結果、マクロボイドの形成を抑制しやすい。また、良溶媒の含有率が60重量%以下であることで、比較的短時間でフッ素樹脂を凝固させることができる。なお、フッ素樹脂系高分子の良溶媒としては、上述したものを好ましく用いることができる。
3.複合多孔質中空糸膜モジュール
 上述の複合多孔質中空糸膜は、モジュールの部材として使用可能である。図6に、モジュール構成の一例を示す。なお、以下の説明において、「上」及び「下」は、図における上及び下をそれぞれ指す。また、「下」から「上」に向かう方向を「高さ方向」と便宜的に表現する。
 図6は、本発明の実施形態にかかる複合多孔質中空糸膜モジュール100Aの概略縦断面図である。
 複合多孔質中空糸膜モジュール100Aは、高さ方向における第1端1aと第2端1bとを有する筒状ケース1と;筒状ケース1内に収容され、第1端1a側の端部(第1端部)が閉塞され、第2端1b側の端部(第2端部)が開口する複数の複合多孔質中空糸膜2を有する複合多孔質中空糸膜束12と;複合多孔質中空糸膜2の第1端1a側の端部を結束する第1結束部3と;第1端1a側から第2端1b側に向けて第1結束部3を通るように流体を導く第1流路4とを備えている。
 筒状ケース1は、中空状の筒状ケース本体26と、上部キャップ6と、下部キャップ7とで構成されている。図6に示すように、筒状ケース1の上部には、ろ過液出口8を有する上部キャップ6が、筒状ケース1の下部には、被ろ過液流入口9を有する下部キャップ7がそれぞれ、液密かつ気密に接続されている。
 上部キャップ6及び下部キャップ7は、例えば図6に示すようにガスケット10を使用し、クランプ等で筒状ケース1に固定される。また、筒状ケース1のろ過液出口8寄り、すなわち第2端1b寄りの側面には、流体(被ろ過液)を排出するノズルとしての被ろ過液出口11が設けられている。上部キャップ6は筒状ケース1の内径と略等しい内径を有し、その上端側が縮径してろ過液出口8を成形している。
 下部キャップ7は筒状ケース1の内径と略等しい内径を有し、その下端側が縮径して被ろ過液流入口9を成形している。さらに、複合多孔質中空糸膜モジュール100Aは、複数の複合多孔質中空糸膜2を含む複合多孔質中空糸膜束12と、複合多孔質中空糸膜束12の端部で複合多孔質中空糸膜2間を結束する結束部とを備える。結束部は、筒状ケース1の被ろ過液流入口9側に配置される第1結束部3と、筒状ケース1のろ過液出口8側に配置される第2結束部13とを有する。
 さらに、複合多孔質中空糸膜モジュール100Aは、被ろ過液出口11と、筒状ケース1の径方向において並ぶように、筒状ケース1と複合多孔質中空糸膜束12との間に配置され、かつ側面に複数の整流孔14を有する整流筒15と、を備え、整流筒15内に、第2結束部13を収容している。
 第1結束部3における複合多孔質複合多孔質中空糸膜束12の結束方法は、結束部の機械的強度、化学的耐久性、熱的耐久性などを満たせば特に限定されないが、熱収縮チューブ等で複合多孔質中空糸膜束12の外周を覆い、加熱して結束する方法や、シートに複合多孔質中空糸膜を並べてのり巻き状に結束する方法、ポッティング剤を用いて接着する方法などが挙げられる。ポッティング剤は、シリコーン樹脂、エポキシ樹脂またはポリウレタン樹脂などを主成分として含有することができる。また、ポッティング剤は、接着剤以外のシリカ、ガラス、ゴム等の添加材を含んでもよい。
 第1結束部3は、被ろ過液等の流体流路となる第1流路4を有している。具体的には、第1流路4は、第1結束部3中に設けられた貫通孔4Aを含む。各貫通孔31Aの配置は、多数の正三角形の頂点の位置や、放射線と同心円との交点の位置、格子上の交点の位置など任意であるが、隣り合う貫通孔同士の間隔に偏りがあると、該間隔が他より大きい箇所は滞留しやすいので、該間隔に大差がないように等間隔にすることが好ましい。また、貫通孔4Aの高さ方向に垂直な断面形状は円形、楕円形、多角形、星型など任意である。
 複合多孔質中空糸膜モジュール100Aは、蒸気滅菌や温水殺菌してから使用することも可能だが、複合多孔質中空糸膜2の種類によっては蒸気滅菌及び温水殺菌により収縮が起こるものがある。そのためモジュール作製後に蒸気滅菌或いは温水殺菌を行うと複合多孔質中空糸膜2の収縮により複合多孔質中空糸膜2が損傷したり、複合多孔質中空糸膜2が結束部から脱落したりする可能性がある。従って予め複合多孔質中空糸膜2を蒸気処理或いは温水処理し、収縮させてから端部結束を行ってモジュールを製作することが望ましい。
 一般的に蒸気滅菌は121℃以上で実施するため、121℃以上の蒸気で前処理を実施しておくことが望ましい。また、温水殺菌は約80℃程度で実施することが一般的であるが、工程により温度を変えることがしばしばある。そのため、想定される使用温度以上の温水で予め複合多孔質中空糸膜2を処理しておくことが望ましい。
 複合多孔質中空糸膜モジュール100Aは、前記高さ方向に垂直な断面において、複合多孔質中空糸膜2と、複合多孔質中空糸膜2の中空部の面積の和が、第1結束部3の第2端1b側端面の面積に対して、35%以上65%以下であることが好ましい。前記面積の和が小さいと、複合多孔質中空糸膜モジュール100Aの単位体積当たりのろ過処理量が小さくなり、ろ過量当たりのコストが増加する。前記面積の和が大きいと、微生物等による流路の閉塞が起こり易い。
 また、複合多孔質中空糸膜束12は、複合多孔質中空糸膜モジュール100Aを作製する作業性やモジュール洗浄における複合多孔質中空糸膜2の洗浄性に鑑み、緩みを持つ状態で両端の結束部3、13を介して筒状ケース1内に収容することが好ましい。緩みがあるとは、第1結束部3の第2端1b側端面から第2結束部13の第1端1a側端面までの直線距離よりも、該部分の複合多孔質中空糸膜2の長さの方が長い状態を指す。
 筒状ケース1の第2端1b側には、複合多孔質中空糸膜モジュール100Aの上端側である第2結束部13が配置されている。第2結束部13は、多数本の複合多孔質中空糸膜2からなる複合多孔質中空糸膜束12を結束して構成される。ここで、複合多孔質中空糸膜2の中空部が封止されておらず、開口している状態となっており、開口部からろ過液を上部キャップ6側に取り出す。結束方法及び用いる材質は、結束部の機械的強度、化学的耐久性、熱的耐久性などを満たせば特に限定されないが、例えば第1結束部3と同様の方法、材質を選択することができる。
 また、第2結束部13の外径は筒状ケース1よりも小さい構成となっている。さらに筒状ケース1と、第2結束部の間に整流筒15が存在し、第2結束部13は、筒状ケース1或いは整流筒15に固定されており、整流筒15は、筒状ケースに固定されている。各々の固定方法は本発明とは何ら関わりない。
 複合多孔質中空糸膜モジュール100Aで使用する筒状ケース1の材質は機械的強度、化学的耐久性、熱的耐久性などを満たせば特に限定されないが、例えば塩化ビニル系樹脂、ポリプロピレン系樹脂、ポリスルホン系樹脂、ポリテトラフルオロエチレン、ペルフルオロアルコキシフッ素樹脂などのフッ素系樹脂、ポリカーボネート、ポリプロピレン、ポリメチルペンテン、ポリフェニレンサルファイド、ポリエーテルケトン、ステンレス、アルミニウムなどを挙げることができる。また複合多孔質中空糸膜モジュール100Aで使用する整流筒15の材質は特に限定されないが、例えば筒状ケース1と同様の材料から選択することができる。
 整流筒15は、示されるような高さ方向における第1端と第2端とを有する筒状ケース1内に収容される。また、筒状ケース1は、中央より第2端側側面に流体の流出入口と、筒状ケースの第1端側端面に流体の流出入口とを備え、複合多孔質中空糸膜の中空部は、第2端側が開口し、第1端側が閉塞している複合多孔質中空糸膜モジュール100Aとすることで、微生物発酵液等による閉塞が起こりづらい。
4.複合多孔質中空糸膜モジュールの運転方法
 以下では、被ろ過液はモジュール下部から供給され、ろ過液はモジュール上部から流出する。また、使用時の複合多孔質中空糸膜モジュールの姿勢の上下方向は、図における上下方向と一致する。
 複合多孔質中空糸膜モジュール100Aを用いたろ過運転中には、被ろ過液は、被ろ過液流入口9から入り第1結束部3の第1端1a側から第1流路4を下から上に通過し流れ出る。被ろ過液は、複合多孔質中空糸膜2内を通過した後、ろ過液として、第2結束部13と上部キャップ6で囲まれた空間に移動する。その後、ろ過液は、ろ過液出口8からモジュール外に取り出される。デッドエンドろ過を行う場合には、被ろ過液出口11は閉止される。
 一方、クロスフローろ過を行う場合には、被ろ過液出口11から、筒状ケース1内に導入された被ろ過液の一部が取り出される。取り出された被ろ過液は、再び被ろ過液流入口9からモジュール内に導入される。クロスフローろ過は、モジュール内に流れを起こすので、膜面近傍の流れによる膜面洗浄の効果が得られ、微生物培養液中の濁質の堆積が低減される。クロスフローろ過運転において、膜面線速度を高くすることで、膜面に付着した濁質等に対して、さらに高いせん断力を与えることができる。このとき、上述の膜内周側の柱状構造によって、複合多孔質中空糸膜は支持され、破断されることなく分離機能を維持することができる。
 つまり、下記工程(A)及び工程(B)を同時に行う、複合多孔質中空糸膜モジュールの運転方法によって、濁質の堆積が低減される。
(A)前記第1端側端面に位置する流体の流出入口から被ろ過液を前記筒状ケース内に導入し、前記第2端側側面に位置する流体の流出入口から前記被ろ過液を前記筒状ケース外に排出する工程
(B)前記複合多孔質中空糸膜の中空部から、前記第2端側へろ過液を取り出す工程
 また、クロスフローろ過は、被ろ過液を被ろ過液出口11から導入し、被ろ過液流入口9から取り出してもよい。つまり、下記工程(B)及び工程(C)を同時に行う、複合多孔質中空糸膜モジュールの運転方法によって、濁質の堆積が低減される。
(B)前記複合多孔質中空糸膜の中空部から、前記第2端側へろ過液を取り出す工程
(C)前記第2端側側面に位置する流体の流出入口から被ろ過液を前記筒状ケース内に導入し、前記第1端側端面に位置する流体の流出入口から前記被ろ過液を前記筒状ケース外に排出する工程
 クロスフローろ過における膜面線速度は0.1m/s以上7m/s以下でが好ましい。0.1m/s以上の膜面線速度でせん断を与えることで、微生物培養液による流路の閉塞を抑制できる。7m/s以下であることで、微生物培養液循環における電力費を低減でき、微生物へのせん断によるストレスを抑制できる。より好ましくは、0.3m/s以上3m/s以下とすることで、より高い閉塞抑制効果と、経済性、微生物の安定生育を両立できる。
 一定期間複合多孔質中空糸膜モジュール100Aを用いてろ過運転を行った後には、モジュール内を洗浄する工程が設けられており、被ろ過液流入口9から、水、薬液、気体などが供給される。特に、温水殺菌が必要な工程では約80℃以上の温水が供給される。
 また、気体を供給する場合を特にエアスクラビングと呼ぶ。つまり、下記工程(E)を行う複合多孔質中空糸膜モジュールの運転方法によって、濁質の堆積を抑制できる。
(E)前記第1端側端面に位置する流体の流出入口より気体を前記筒状ケース内に導入し、前記第2端側側面に位置する流体の流出入口から前記気体を前記筒状ケース外に排出する工程
 一方、洗浄工程において、ろ過液出口8から、ろ過液や、水、または洗浄液を導入し、複合多孔質中空糸膜2の中空部から外側に排出する方法をとる場合があり、逆圧洗浄または単に、逆洗と呼ぶ。つまり、前記工程(B)及び下記工程(D)を繰り返し行う複合多孔質中空糸膜モジュールの運転方法によって濁質の堆積を抑制できる。
(D)前記工程(B)の後に、前記第2端側の前記複合多孔質中空糸膜の中空部から、前記複合多孔質中空糸膜の外側へ流体をろ過する工程
 また、モジュール内を蒸気滅菌する際等は第1流路4を上から下に排水が流れ、被ろ過液流入口9からモジュール外に排出される。このとき、第1端側端面に流体流入口が設けられていることで、モジュール内の濁質を効果的に排出し、微生物培養液による流路の閉塞を抑制することができる。
 膜面、および流路の閉塞を抑制する操作であるクロスフローろ過、エアスクラビング、逆洗は組合せることでより閉塞を効率的に抑制することができる。つまり、前記工程(B)及び前記工程(D)を繰り返し行い、さらに下記工程(E)を行う複合多孔質中空糸膜モジュールの運転方法によって、効果的に濁質の堆積を抑制できる。
(E)前記第1端側端面に位置する流体の流出入口より気体を前記筒状ケース内に導入し、前記第2端側側面に位置する流体の流出入口から前記気体を前記筒状ケース外に排出する工程
 本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所、等は本発明を達成できるものであれば任意であり、限定されない。
 以下に具体的な実施例を挙げて本発明を説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、本発明に関する物性値は、以下の方法で測定することができる。
(1)純水透過性能
 複合多孔質中空糸膜4本からなる有効長さ200mmの小型モジュールを作製した。このモジュールに、温度25℃、ろ過差圧16kPaの条件で、1時間にわたって蒸留水を送液し得られた透過水量(m)を測定し、単位時間(h)及び単位膜面積(m)当たりの数値に換算し、さらに圧力(50kPa)換算して純水透過性能(m/m/h)とした。なお、単位膜面積は平均外径と複合多孔質中空糸膜の有効長から算出した。
(2)破断強度、破断伸度
 引っ張り試験機(TENSILON(登録商標)/RTM-100、東洋ボールドウィン株式会社製)を用い、測定長さ50mmの試料を引っ張り速度50mm/分で、試料を変えて5回以上試験し、破断強度、破断伸度の平均値を求めることで算出した。
(3)分子鎖の複合多孔質中空糸膜の長手方向への配向度π
 複合多孔質中空糸膜の長手方向が鉛直となるように繊維試料台に取り付け、X線回折装置(Rigaku社製、高分子用SmartLab、CuKα線)を用いて、X線回折測定(2θ/θスキャン、βスキャン)を行った。まず、2θ/θスキャンで、2θ=20.4°にピークトップがあることを確認した。次に、βスキャンにて、2θ=20.4°の回折ピークに対し、方位角方向に0°から360°までの強度を測定することにより、方位角方向の強度分布を得た。ここで、方位角180°の強度と方位角90°の強度の比が0.80以下、または、1.25以上となる場合にピークが存在するとみなし、この方位角方向の強度分布において、ピーク高さの半分の位置における幅(半値幅H)を求め、下記式(1)によって配向度πを算出した。なお、βスキャンにおける強度の極小値が0°と180°付近に見られたため、これらを通る直線をベースラインとした。
  配向度π=(180°-H)/180° ・・・(1)
(4)ラマン配向パラメータの平均値ν
 柱状構造中のポリフッ化ビニリデンホモポリマーの配向のパラメータを以下の操作により求めた。
 複合多孔質中空糸膜の長手方向の断面を、ミクロトームによる切削により切片化した。複合多孔質中空糸膜1本あたり10個の柱状組織を選択し、光学顕微鏡で柱状組織を確認しながら、それぞれの柱状組織について、その長手方向に沿って、1μm間隔でレーザーラマン分光法により散乱強度の測定を行った。
 それぞれの配向パラメータを式(2)により算出し、各配向パラメータの平均値をラマン配向パラメータの平均値νとした。また、10個の相異なる柱状組織の中で、最も大きな配向パラメータと最も小さな配向パラメータを選び、それらについてそれぞれ平均値を求め、最大ラマン配向パラメータM、最小ラマン配向パラメータmとし、M/mを算出した。
  配向パラメータ=(I1270平行/I840平行)/(I1270垂直/I840垂直) ・・・(2)
 I1270平行:平行条件時の1270cm-1のラマンバンドの強度
 I1270垂直:垂直条件時の1270cm-1のラマンバンドの強度
 I840平行:平行条件時の840cm-1のラマンバンドの強度
 I840垂直:垂直条件時の840cm-1のラマンバンドの強度
 平行条件:複合多孔質中空糸膜の長手方向と偏光方向が平行
 垂直条件:複合多孔質中空糸膜の長手方向と偏光方向が直交
 レーザーラマン分光装置及び測定条件は以下の通りである。
 装置:Jobin Yvon/愛宕物産株式会社製 T-64000
 条件:測定モード;顕微ラマン
    対物レンズ;×100
    ビーム径;1μm
    光源;Ar+レーザー/514.5nm
    レーザーパワー;100mW
    回折格子;Single 600gr/mm
    スリット;100μm
    検出器;CCD/Jobin Yvon 1024×256
(5)柱状組織の長手長さ、短手長さ
 各例で作製した複合多孔質中空糸膜の第1層について、その長手方向に沿った断面を、走査型電子顕微鏡(FEI社製、Strata400S)を用いて3000倍で撮影した。撮影された画像から、任意に10個の柱状組織を選択し、それぞれの長手長さ、短手長さを測定した。ここで、各柱状組織の長手長さとしては、長手方向の最大長さを測定した。また、上述したように、各柱状組織の長手長さを1μmで除して小数点以下を切り捨てることで得られた値を測定点数とし、短手方向の長さを測定し、それらの平均値を算出することで、各柱状組織の短手長さを求めた。
 上記撮影を5箇所で行い、それぞれ任意の10個の柱状組織について長手長さと短手長さを求め、合計50個の長手長さと合計50個の短手長さを得た。ついで、合計50個の長手長さの平均値を算出し、長手長さの代表値とし、合計50個の短手長さの平均値を算出し、短手長さの代表値とした。
(6)太さ均一性
 まず、複合多孔質中空糸膜をエポキシ樹脂で樹脂包埋し、オスミウム染色処理することで、空隙部分をエポキシ樹脂で埋めた。次に、集束イオンビーム(FIB)を備えた走査型電子顕微鏡(FEI社製、Strata400S)を用いて、複合多孔質中空糸膜の短手方向に平行な面を、FIBを用いて切り出し、FIBによる切削加工とSEM観察を、複合多孔質中空糸膜の長手方向に向かって50nm間隔で繰り返し200回実施し、10μmの深さの情報を得た。
 太さ均一性は、上記FIBを用いた連続断面観察で得た複合多孔質中空糸膜の短手方向に平行な第一の断面と第二の断面を比較することで求めた。ここで、第一の断面と第二の断面は、5μmの間隔を持つ互いに平行な面となるように、20組を選定した。
 選定された面において第1層のみを観察対象とし、それぞれの断面において、樹脂からなる部分と空隙部分(エポキシ部分)とを区別し、樹脂部分面積と空隙部分面積を測定した。次に、両断面に垂直な方向から、第一の断面を第二の断面に投影した時に、第一の断面の樹脂からなる部分と第二の断面の樹脂からなる部分とが重なる部分の面積(つまり、重なり面積)を測定した。
 太さ均一性を、下記式(3)及び(4)によって求められる太さ均一性A、Bを平均した値として算出した。こうして得られた、AとBとの20個の平均値から、さらに平均値を算出し、その値を膜の太さ均一性とした。
  太さ均一性A=(重なり面積)/(第二の断面の樹脂部分面積) ・・・(3)
  太さ均一性B=(重なり面積)/(第一の断面の樹脂部分面積) ・・・(4)
 また、16組以上で太さ均一性0.60以上となった場合に柱状組織を有するとし、15組以下の場合には繊維状組織を有するとした。
(7)空隙率
 空隙率は、「(6)太さ均一性」で得た20組の第一の断面と第二の断面、すなわち、合計40点の断面から、任意の20点の第1層断面について、樹脂部分面積と空隙部分面積を用いて、下記式(5)によって求め、それらの平均値を用いた。
  空隙率(%)={100×(空隙部分面積)}/{(樹脂部分面積)+(空隙部分面積)} ・・・(5)
(8)組織の占有率
 第1層の長手方向の断面を、走査型電子顕微鏡(FEI社製、Strata400S)を用いて3000倍で任意の20カ所の写真を撮影し、占有率を下記式(6)でそれぞれ求め、それらの平均値を採用した。ここで写真全体の面積及び組織の占める面積は、撮影された写真を紙に印刷し、写真全体に対応する紙の重量及びそこから切り取った組織部分に対応する紙の重量としてそれぞれ置き換えて求めた。
  占有率(%)={(各組織の占める面積)/(写真全体の面積)}×100 ・・・(6)
(9)フッ素樹脂系高分子溶液の結晶化温度Tc
 セイコー電子工業株式会社製DSC-6200を用いて、フッ素樹脂系高分子と溶媒など製膜高分子原液組成と同組成の混合物を密封式DSC容器に密封し、昇温速度10℃/minで溶解温度まで昇温し、30分保持して均一に溶解した後に、降温速度10℃/minで降温する過程で観察される結晶化ピークの立ち上がり温度を結晶化温度Tcとした。
(10)外表面の平均孔径
 外表面の平均孔径は、フッ素樹脂系高分子分離膜の表面を上記の走査型電子顕微鏡(FEI社製、Strata400S)を用いて60000倍で写真撮影し、30個の任意の細孔の孔径の直径を測定し、数平均して求めた。
(11)膜厚
 実施例のフッ素樹脂系高分子分離膜は外層に第2層を有し、内層に柱状組織を有している。三次元網目組織を有する外層の平均厚みや柱状組織を有する内層の平均厚みは、フッ素樹脂系高分子分離膜の断面を上記の走査型電子顕微鏡を用いて100倍及び1000倍で写真撮影し、その写真から次のような方法で算出した。
 まず、第2層の平均厚みを次の方法で求めた。1000倍の写真において、外層表面の任意の1点から内層に向かって外層表面接線に対して垂直に進み、初めて柱状組織が観察されるまでの距離を測定する。この距離が、第2層の厚みである。この操作を任意の30カ所で行い、数平均して、第2層の平均厚みを算出した。
 同様にして、第1層の平均厚みも算出できるが、実施例では第1層が厚いため、フッ素樹脂系高分子分離膜断面の表面から反対側の表面までを1000倍で写真撮影すると画面に収まらず、数枚の写真を貼り合わせなければならない。そこで、1000倍で数枚の写真撮影を行う代わりに、次の方法を選択した。
 すなわち、100倍で写真撮影し、フッ素樹脂系高分子分離膜の厚み(フッ素樹脂系高分子分離膜断面の表面から反対側の表面まで)を求めた。このフッ素樹脂系高分子分離膜の厚みから第2層の平均厚みを引き算したものが第1層の厚みである。この操作を任意の30カ所で行い、数平均して、第1層の平均厚みを算出した。
<マクロボイド>
 また、三次元網目組織がマクロボイドを有するか否かは、第2層の断面を上記の走査型電子顕微鏡を用いて3000倍で写真撮影することにより実施した。すなわち、互いに異なる30箇所の断面を観察し、マクロボイドが存在しない時あるいは長径が表面細孔径の十倍未満のマクロボイドしか存在しない時にマクロボイドを有さないとし、長径が表面細孔径の十倍以上のマクロボイドが一つでも観察された時にマクロボイドを有すると判断した。
〈実施例1〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)36重量%とγ-ブチロラクトン64重量%を150℃で溶解した。このフッ化ビニリデンホモポリマー溶液の結晶化温度Tcは48℃であった。
 製膜原液の加圧及び吐出には、二重管式口金と、その口金につながれた配管と、その配管上に配置された2つのギヤーポンプとを備える装置を用いた。
 ギヤーポンプ間の配管内で製膜原液を2.0MPaに加圧しながら、99~101℃で20秒間滞留させた。その後、γ-ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出しながら、外側の管から製膜原液を吐出した。こうして吐出した製膜原液を、γ-ブチロラクトン85重量%水溶液からなる温度25℃の冷却浴中に20秒間滞留させることで、固化させた。
 得られた中空糸は、太さ均一性0.62の柱状組織を有し、柱状組織の占有率は86%であり、球状組織占有率は14%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を2.5倍に延伸した。延伸後の中空糸を観察したところ、柱状組織が認められた。また、中空糸において、長手長さの代表値16μm、短手長さの代表値2.2μm、太さ均一性0.61の柱状組織を有し、空隙率が55%、フッ化ビニリデンホモポリマー分子鎖の中空糸の長手方向への配向度πは0.61、ラマン配向パラメータの平均値νは3.12、M/mは3.1であった。延伸後の中空糸の構造と性質を表1に示す。
 重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して製膜原液を調製した。
 この製膜原液を上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに50℃の水浴中で凝固させることで、柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて、直径3cm、高さ50cm、有効膜面積が0.3mである膜モジュールを作製した。
 この膜モジュールを用いて、琵琶湖水の定流量外圧全ろ過を行った。加圧ポンプで原水を加圧供給し、ろ過線速度は3m/dとした。120分毎に、5ppm次亜塩素酸ナトリウム水溶液による逆洗を30秒、空気によるエアスクラビングを1分行った。このろ過運転を2016年2月1日~3月1日までの1ヶ月間継続して実施した。
 ろ過運転開始時の物理洗浄直後のろ過差圧(A)とろ過運転終了時の該ろ過差圧(B)を計測した。Aが低いほど、低エネルギーで運転開始できることを意味する。また、ろ過差圧上昇度(%)を、(B-A)×(1/A)×100で算出した。ろ過差圧上昇度が低いほど安定に運転できる、すなわち、運転性が優れることを意味する。よって、Aとろ過差圧上昇度の両方が低い膜ほど、低エネルギーで安定に運転できることを意味する。なお、ろ過時間(120分)は、短期間で運転性を評価するために、実運転で想定されるろ過時間(30分)より長く設定した。
 運転性評価を実施した結果、ろ過運転開始時はろ過差圧31kPaであり、ろ過運転終了時はろ過差圧40kPaと、ろ過運転開始時のろ過差圧が低かった。また、ろ過差圧上昇度は29%と低く、安定に運転できることが分かった。
〈実施例2〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)36重量%とγ-ブチロラクトン64重量%を150℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは48℃であった。
 実施例1と同様の装置を用いて、製膜原液を2.0MPaに加圧し、99~101℃で20秒間滞留させた。その後、γ-ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出しながら、製膜原液を二重管式口金の外側の管から吐出した。吐出された製膜原液を、γ-ブチロラクトン85重量%水溶液からなる温度5℃の第1冷却浴中に10秒間滞留させ、ついで、γ-ブチロラクトン85重量%水溶液からなる温度25℃の第2冷却浴中に20秒間滞留させることで、固化させた。
 得られた中空糸は、太さ均一性0.65の柱状組織を有し、柱状組織占有率は87%であり、球状組織占有率は13%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を3倍に延伸した。延伸後の中空糸は、長手長さ19μm、短手長さ1.8μm、太さ均一性0.66の柱状組織を有し、空隙率が61%、フッ化ビニリデンホモポリマー分子鎖の中空糸の長手方向への配向度πは0.77、ラマン配向パラメータの平均値νは3.74、M/mは4.2であった。延伸後の中空糸の構造と性能を表1に示す。
 重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して製膜原液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧30kPaであり、ろ過運転終了時はろ過差圧38kPaと、ろ過運転開始時のろ過差圧が低かった。また、ろ過差圧上昇度は27%と低く、安定に運転できることが分かった。
〈実施例3〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)38重量%とγ-ブチロラクトン62重量%を150℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは51℃であった。
 実施例1と同様の装置を用いて、製膜原液を2.0MPaに加圧し、99~101℃で20秒間滞留させた。その後、γ-ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出しながら、製膜原液を外側の管から吐出した。吐出された製膜原液をγ-ブチロラクトン85重量%水溶液からなる温度5℃の第1冷却浴中に10秒間滞留させ、ついで、γ-ブチロラクトン85重量%水溶液からなる温度35℃の第2冷却浴中に50秒間滞留させることで、固化させた。
 得られた中空糸は、太さ均一性0.66の柱状組織を有し、柱状組織占有率は91%であり、球状組織占有率は9%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を3倍に延伸した。延伸後の中空糸は、長手長さ24μm、短手長さ1.6μm、太さ均一性0.66の柱状組織を有し、空隙率が59%、フッ化ビニリデンホモポリマー分子鎖の複合多孔質中空糸膜の長手方向への配向度πは0.85、ラマン配向パラメータの平均値νは4.37、M/mは5.0であった。延伸後の中空糸の構造と性能を表1に示す。
 重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧30kPaであり、ろ過運転終了時はろ過差圧39kPaと、ろ過運転開始時のろ過差圧が低かった。また、ろ過差圧上昇度は30%と低く、安定に運転できることが分かった。
〈実施例4〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)38重量%とγ-ブチロラクトン62重量%を150℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは51℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で2.0MPaに加圧し、99~101℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にγ-ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出し、γ-ブチロラクトン85重量%水溶液からなる温度5℃の第1冷却浴中に10秒間滞留させ、ついで、γ-ブチロラクトン85重量%水溶液からなる温度35℃の第2冷却浴中に50秒間滞留させ、固化させた。
 得られた中空糸は、太さ均一性0.66の柱状組織を有し、柱状組織占有率は91%であり、球状組織占有率は9%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を3.5倍に延伸した。延伸後の中空糸は、長手長さ28μm、短手長さ1.3μm、太さ均一性0.62の柱状組織を有し、空隙率が61%、フッ化ビニリデンホモポリマー分子鎖の複合多孔質中空糸膜の長手方向への配向度πは0.89、ラマン配向パラメータの平均値νは4.42、M/mは5.1であった。延伸後の中空糸の構造と性能を表1に示す。
 また、延伸後の中空糸の2θ=20.4°における方位角方向の強度分布を図1に、複合多孔質中空糸膜の各測定箇所におけるラマン配向パラメータを図2に、複合多孔質中空糸膜の長手方向の断面写真を図3にそれぞれ示す。
 さらに、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧29kPaであり、ろ過運転終了時はろ過差圧37kPaと、ろ過運転開始時のろ過差圧が低かった。また、ろ過差圧上昇度は28%と低く、安定に運転できることが分かった。
〈実施例5〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)40重量%とジメチルスルホキシド60重量%を130℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは30℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で2.0MPaに加圧し、78~80℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にジメチルスルホキシド90重量%水溶液を二重管式口金の内側の管から吐出し、ジメチルスルホキシド85重量%水溶液からなる温度20℃の冷却浴中に20秒間滞留させ固化させた。
 得られた中空糸は、太さ均一性0.62の柱状組織を有し、柱状組織占有率は93%であり、球状組織占有率は7%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を2.5倍に延伸した。延伸後の中空糸は、長手長さ20μm、短手長さ2.1μm、太さ均一性0.61の柱状組織を有し、空隙率が64%、フッ化ビニリデンホモポリマー分子鎖の複合多孔質中空糸膜の長手方向への配向度πは0.66、ラマン配向パラメータの平均値νは3.40、M/mは3.5であった。延伸後の中空糸の構造と性能を表1に示す。
 さらに、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧31kPaであり、ろ過運転終了時はろ過差圧41kPaと、ろ過運転開始時のろ過差圧が低かった。また、ろ過差圧上昇度は32%と低く、安定に運転できることが分かった。
〈実施例6〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)40重量%とジメチルスルホキシド60重量%を130℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは30℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で2.0MPaに加圧し、78~80℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にジメチルスルホキシド90重量%水溶液を二重管式口金の内側の管から吐出し、ジメチルスルホキシド85重量%水溶液からなる温度-5℃の第1冷却浴中に10秒間滞留させ、ついで、ジメチルスルホキシド85重量%水溶液からなる温度15℃の第2冷却浴中に30秒間滞留させ、固化させた。
 得られた中空糸は、太さ均一性0.72の柱状組織を有し、柱状組織占有率は92%であり、球状組織占有率は8%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を3倍に延伸した。延伸後の中空糸は、長手長さ27μm、短手長さ1.7μm、太さ均一性0.69の柱状組織を有し、空隙率が64%、フッ化ビニリデンホモポリマー分子鎖の複合多孔質中空糸膜の長手方向への配向度πは0.86、ラマン配向パラメータの平均値νは4.38、M/mは5.1であった。延伸後の中空糸の構造と性能を表1に示す。
 さらに、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧30kPaであり、ろ過運転終了時はろ過差圧38kPaと、ろ過運転開始時のろ過差圧が低かった。また、ろ過差圧上昇度は27%と低く、安定に運転できることが分かった。
〈実施例7〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)40重量%とジメチルスルホキシド60重量%を130℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは30℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で2.0MPaに加圧し、78~80℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にジメチルスルホキシド90重量%水溶液を二重管式口金の内側の管から吐出し、ジメチルスルホキシド85重量%水溶液からなる温度-5℃の第1冷却浴中に10秒間滞留させ、ついで、ジメチルスルホキシド85重量%水溶液からなる温度20℃の第2冷却浴中に50秒間滞留させ、固化させた。
 得られた中空糸は、太さ均一性0.72の柱状組織を有し、柱状組織占有率は95%であり、球状組織占有率は5%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を3.5倍に延伸した。延伸後の中空糸は、長手長さ35μm、短手長さ1.5μm、太さ均一性0.67の柱状組織を有し、空隙率が65%、フッ化ビニリデンホモポリマー分子鎖の複合多孔質中空糸膜の長手方向への配向度πは0.91、ラマン配向パラメータの平均値νは4.62、M/mは5.8であった。延伸後の中空糸の構造と性能を表1に示す。
 さらに、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧30kPaであり、ろ過運転終了時はろ過差圧37kPaと、ろ過運転開始時のろ過差圧が低かった。また、ろ過差圧上昇度は23%と低く、安定に運転できることが分かった。
〈実施例8〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)40重量%とジメチルスルホキシド60重量%を130℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは30℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で2.0MPaに加圧し、78~80℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にジメチルスルホキシド90重量%水溶液を二重管式口金の内側の管から吐出し、ジメチルスルホキシド85重量%水溶液からなる温度-5℃の第1冷却浴中に10秒間滞留させ、ついで、ジメチルスルホキシド85重量%水溶液からなる温度20℃の第2冷却浴中に50秒間滞留させ、固化させた。
 得られた中空糸は、太さ均一性0.72の柱状組織を有し、柱状組織占有率は95%であり、球状組織占有率は5%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を4倍に延伸した。延伸後の中空糸は、長手長さ40μm、短手長さ1.1μm、太さ均一性0.63の柱状組織を有し、空隙率が66%、フッ化ビニリデンホモポリマー分子鎖の複合多孔質中空糸膜の長手方向への配向度πは0.92、ラマン配向パラメータの平均値νは4.76、M/mは6.2であった。延伸後の中空糸の構造と性能を表1に示す。
 さらに、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧29kPaであり、ろ過運転終了時はろ過差圧37kPaと、ろ過運転開始時のろ過差圧が低かった。また、ろ過差圧上昇度は28%と低く、安定に運転できることが分かった。
〈実施例9〉
 実施例8で作製した柱状組織を有する複合多孔質中空糸膜に、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、ポリ酢酸ビニル(ナカライテスク社製、75%エタノール溶液、重合度500)を1.25重量%、N-メチル-2-ピロリドンを76.75重量%、T-20Cを5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで、柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた中空糸は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧29kPaであり、ろ過運転終了時はろ過差圧37kPaと、ろ過運転開始時のろ過差圧が低かった。また、ろ過差圧上昇度は28%と低く、安定に運転できることが分かった。
〈実施例10〉
 実施例8で作製した柱状組織を有する複合多孔質中空糸膜に、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、エチレン-酢酸ビニル共重合体(大成化薬社製、ポリエースRDH、68.5~71.5モル%酢酸ビニル含有)を1重量%、N-メチル-2-ピロリドンを77重量%、T-20Cを5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで、柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.03μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧30kPaであり、ろ過運転終了時はろ過差圧37kPaと、ろ過運転開始時のろ過差圧が低かった。また、ろ過差圧上昇度は23%と低く、安定に運転できることが分かった。
〈実施例11〉
 実施例8で作製した柱状構造を有する複合多孔質中空糸膜に、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を5重量%、N-メチル-2-ピロリドンを81重量%、水を1重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、80℃の20重量%N-メチル-2-ピロリドン水溶液からなる凝固浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.5μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて作製した複合多孔質中空糸膜モジュールを使用し、図7のろ過装置でビールのクロスフローろ過を実施した。ビールは市販の無ろ過ビールである富士桜高原(登録商標)麦酒ピルス(富士観光開発株式会社製)を使用した。クロスフローろ過の膜面線速度は0.5m/s、膜面積当たりのろ過流量(ろ過流束)は2m/m/dで実施し、被ろ過液側の圧力のろ過液側の圧力差(膜間差圧)が100kPaに達した時点でろ過を停止した。ろ過開始から5.8時間後に膜間差圧が100kPaに到達した。
〈実施例12〉
 実施例8で作製した柱状構造を有する複合多孔質中空糸膜に、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を5重量%、N-メチル-2-ピロリドンを81重量%、水を1重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、80℃の30重量%N-メチル-2-ピロリドン水溶液からなる凝固浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.8μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて作製した複合多孔質中空糸膜モジュールを使用し、図7のろ過装置でビールのクロスフローろ過を実施した。ビールは市販の無ろ過ビールである富士桜高原(登録商標)麦酒ピルス(富士観光開発株式会社製)を使用した。クロスフローろ過の膜面線速度は0.5m/s、膜面積当たりのろ過流量(ろ過流束)は2m/m/dで実施し、被ろ過液側の圧力のろ過液側の圧力差(膜間差圧)が100kPaに達した時点でろ過を停止した。ろ過開始から6.3時間後に膜間差圧が100kPaに到達した。
〈実施例13〉
 実施例8で作製した柱状構造を有する複合多孔質中空糸膜に、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を5重量%、N-メチル-2-ピロリドンを81重量%、水を1重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、80℃の100%水からなる凝固浴中で凝固させることで、柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.3μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表1に示す。
 得られた複合多孔質中空糸膜を用いて作製した複合多孔質中空糸膜モジュールを使用し、図7のろ過装置でビールのクロスフローろ過を実施した。ビールは市販の無ろ過ビールである富士桜高原(登録商標)麦酒ピルス(富士観光開発株式会社製)を使用した。クロスフローろ過の膜面線速度は0.5m/s、膜面積当たりのろ過流量(ろ過流束)は2m/m/dで実施し、被ろ過液側の圧力のろ過液側の圧力差(膜間差圧)が100kPaに達した時点でろ過を停止した。ろ過開始から5.0時間後に膜間差圧が100kPaに到達した。
〈比較例1〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)38重量%とγ-ブチロラクトン62重量%を150℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは51℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で2.0MPaに加圧し、99~101℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にγ-ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出し、γ-ブチロラクトン85重量%水溶液からなる温度5℃の冷却浴中に20秒間滞留させ固化させた。
 得られた中空糸は、太さ均一性0.47の繊維状組織を有し、繊維状組織占有率は91%であり、球状組織占有率は9%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を1.5倍に延伸した。延伸後の中空糸は、長手長さ15μm、短手長さ2.2μm、太さ均一性0.45の繊維状組織を有し、空隙率が63%、フッ化ビニリデンホモポリマー分子鎖は無配向、ラマン配向パラメータの平均値νは1.01、M/mは1.0であった。延伸後の中空糸の構造と性能を表2に示す。
 また、延伸後の中空糸の2θ=20.4°における方位角方向の強度分布を図1に、複合多孔質中空糸膜の長手方向の断面写真を図4にそれぞれ示す。
 さらに、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表2に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧29kPaであったが、運転開始後10日後に糸切れが発生して、琵琶湖水がろ液側に漏洩したため、ろ過を停止した。
〈比較例2〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)38重量%とγ-ブチロラクトン62重量%を150℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは51℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で2.0MPaに加圧し、99~101℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にγ-ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出し、γ-ブチロラクトン85重量%水溶液からなる温度5℃の冷却浴中に20秒間滞留させ固化させた。
 得られた中空糸は、太さ均一性0.47の繊維状組織を有し、繊維状組織占有率は91%であり、球状組織占有率は9%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を2.5倍に延伸した。延伸後の中空糸は、長手長さ18μm、短手長さ1.7μm、太さ均一性0.42の繊維状組織を有し、空隙率が65%、フッ化ビニリデンホモポリマー分子鎖は無配向、ラマン配向パラメータの平均値νは1.03、M/mは1.1であった。延伸後の中空糸の構造と性能を表2に示す。
 さらに、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表2に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧28kPaであったが、運転開始後12日後に糸切れが発生して、琵琶湖水がろ液側に漏洩したため、ろ過を停止した。
〈比較例3〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)38重量%とγ-ブチロラクトン62重量%を150℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは51℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で2.0MPaに加圧し、99~101℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にγ-ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出し、γ-ブチロラクトン85重量%水溶液からなる温度5℃の冷却浴中に20秒間滞留させ固化させた。
 得られた中空糸は、太さ均一性0.47の繊維状組織を有し、繊維状組織占有率は91%であり、球状組織占有率は9%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を3.5倍に延伸したところ糸切れが発生し延伸することができなかった。
〈比較例4〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)36重量%とγ-ブチロラクトン64重量%を150℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは48℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で0.2MPaに加圧し、99~101℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にγ-ブチロラクトン85重量%水溶液を二重管式口金の内側の管から吐出し、γ-ブチロラクトン85重量%水溶液からなる温度5℃の冷却浴中に20秒間滞留させ固化させた。
 得られた中空糸は、太さ均一性0.42の繊維状組織を有し、繊維状組織占有率は24%であり、球状組織占有率は76%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を2倍に延伸したところ糸切れが発生し延伸することができなかった。
〈比較例5〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)40重量%とジメチルスルホキシド60重量%を130℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは30℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で2.0MPaに加圧し、78~80℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にジメチルスルホキシド90重量%水溶液を二重管式口金の内側の管から吐出し、ジメチルスルホキシド85重量%水溶液からなる温度0℃の冷却浴中に20秒間滞留させ固化させた。
 得られた中空糸は、太さ均一性0.56の繊維状組織を有し、繊維状組織占有率は84%であり、球状組織占有率は16%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を1.5倍に延伸した。延伸後の中空糸は、長手長さ18μm、短手長さ1.2μm、太さ均一性0.53の繊維状組織を有し、空隙率が64%、フッ化ビニリデンホモポリマー分子鎖は無配向、ラマン配向パラメータの平均値νは1.03、M/mは1.1であった。延伸後の中空糸の構造と性能を表2に示す。
 さらに、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表2に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧34kPaであったが、運転開始後11日後に糸切れが発生して、琵琶湖水がろ液側に漏洩したため、ろ過を停止した。
〈比較例6〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)40重量%とジメチルスルホキシド60重量%を130℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは30℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で2.0MPaに加圧し、78~80℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にジメチルスルホキシド90重量%水溶液を二重管式口金の内側の管から吐出し、ジメチルスルホキシド85重量%水溶液からなる温度0℃の冷却浴中に20秒間滞留させ固化させた。
 得られた中空糸は、太さ均一性0.56の繊維状組織を有し、繊維状組織占有率は84%であり、球状組織占有率は16%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を2.5倍に延伸した。延伸後の中空糸は、長手長さ22μm、短手長さ1.0μm、太さ均一性0.51の繊維状組織を有し、空隙率が65%、フッ化ビニリデンホモポリマー分子鎖は無配向、ラマン配向パラメータの平均値νは1.05、M/mは1.1であった。延伸後の中空糸の構造と性能を表2に示す。
 さらに、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表2に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧32kPaであったが、運転開始後18日後に糸切れが発生して、琵琶湖水がろ液側に漏洩したため、ろ過を停止した。
〈比較例7〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)28重量%とジメチルスルホキシド72重量%を130℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは20℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で2.0MPaに加圧し、64~66℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にジメチルスルホキシド90重量%水溶液を二重管式口金の内側の管から吐出し、ジメチルスルホキシド85重量%水溶液からなる温度0℃の冷却浴中に20秒間滞留させ固化させた。
 得られた中空糸は、太さ均一性0.42の繊維状組織を有し、繊維状組織占有率は88%であり、球状組織占有率は12%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を1.5倍に延伸した。延伸後の中空糸は、長手長さ14μm、短手長さ1.2μm、太さ均一性0.41の繊維状組織を有し、空隙率が71%、フッ化ビニリデンホモポリマー分子鎖は無配向、ラマン配向パラメータの平均値νは1.04、M/mは1.1であった。延伸後の中空糸の構造と性能を表2に示す。
 さらに、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表2に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧34kPaであったが、運転開始後12日後に糸切れが発生して、琵琶湖水がろ液側に漏洩したため、ろ過を停止した。
〈比較例8〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)28重量%とジメチルスルホキシド72重量%を130℃で溶解した。このフッ化ビニリデンホモポリマー溶液のTcは20℃であった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で2.0MPaに加圧し、64~66℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にジメチルスルホキシド90重量%水溶液を二重管式口金の内側の管から吐出し、ジメチルスルホキシド85重量%水溶液からなる温度0℃の冷却浴中に20秒間滞留させ固化させた。
 得られた中空糸は、太さ均一性0.42の繊維状組織を有し、繊維状組織占有率は88%であり、球状組織占有率は12%であった。
 ついで、95℃の水中にて、上記で得られた中空糸を2.5倍に延伸した。延伸後の中空糸は、長手長さ19μm、短手長さ0.8μm、太さ均一性0.37の繊維状組織を有し、空隙率が73%、フッ化ビニリデンホモポリマー分子鎖は無配向、ラマン配向パラメータの平均値νは1.06、M/mは1.2であった。延伸後の中空糸の構造と性能を表2に示す。
 さらに、重量平均分子量28.4万のフッ化ビニリデンホモポリマーを14重量%、セルロースアセテート(イーストマンケミカル社製、CA435-75S:三酢酸セルロース)を1重量%、N-メチル-2-ピロリドンを77重量%、ポリオキシエチレンヤシ油脂肪酸ソルビタン(三洋化成株式会社製、商品名イオネットT-20C)を5重量%、水を3重量%の割合で95℃の温度で混合溶解して高分子溶液を調製した。
 上述の操作で得られた中空糸にこの製膜原液を均一に塗布し、すぐに、50℃の水浴中で凝固させることで柱状組織と、その外側に設けられた三次元網目組織とを有する複合多孔質中空糸膜を作製した。
 得られた複合多孔質中空糸膜は、外径1330μm、内径770μm、外層の表面の平均孔径は0.04μm、平均厚みは35μmであった。複合多孔質中空糸膜の構造と性能を表2に示す。
 得られた複合多孔質中空糸膜を用いて、実施例1と同様に複合多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧34kPaであったが、運転開始後15日後に糸切れが発生して、琵琶湖水がろ液側に漏洩したため、ろ過を停止した。
〈比較例9〉
 フッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)15重量%とジメチルアセトアミド85重量%を100℃で溶解した。このフッ化ビニリデンホモポリマー溶液は、ジメチルアセトアミドがフッ化ビニリデンホモポリマーの良溶媒であるため、Tcを有さなかった。
 該溶液を、2つのギヤーポンプを設置することにより、その間のライン上で0.2MPaに加圧し、99~101℃で20秒間滞留させた後、二重管式口金の外側の管から吐出すると同時にジメチルアセトアミド85重量%水溶液を二重管式口金の内側の管から吐出し、ジメチルアセトアミド85重量%水溶液からなる温度25℃の冷却浴中に40秒間滞留させ固化させた。
 得られた多孔質中空糸膜は、球状組織、繊維状組織、柱状組織のいずれも有さず、三次元網目状構造を有していた。
 ついで、95℃の水中にて、上記で得られた中空糸を2倍に延伸したところ糸切れが発生し延伸することができなかった。
 〈比較例10〉
 実施例1で得られた、三次元網目組織を有していない、柱状構造のみを有する複合多孔質中空糸膜を用いて、実施例1と同様に多孔質中空糸膜モジュールを作製し、琵琶湖水のろ過運転を行った。その結果、ろ過運転開始時はろ過差圧22kPaであり、ろ過運転終了時はろ過差圧152kPaと、ろ過運転開始時のろ過差圧が低かった。また、ろ過差圧上昇度は591%と高く、安定に運転できないことがわかった。従って、得られた多孔質中空糸膜は、物理的耐久性には優れるが、運転性が劣るために長期安定的に運転できないことがわかった。
 〈比較例11〉
 実施例1で作製した、三次元網目組織を有していない、柱状構造のみを有する多孔質中空糸膜を用いて作製した多孔質中空糸膜モジュールを使用し、図7のろ過装置でビールのクロスフローろ過を実施した。ビールは市販の無ろ過ビールである富士桜高原麦酒ピルス(富士観光開発株式会社製)を使用した。クロスフローろ過の膜面線速度は0.5m/s、膜面積当たりのろ過流量(ろ過流束)は2m/m/dで実施し、被ろ過液側の圧力のろ過液側の圧力差(膜間差圧)が100kPaに達した時点でろ過を停止した。ろ過開始から2.4時間後に膜間差圧が100kPaに到達した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年6月24日出願の日本特許出願(特願2016-125526)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、耐薬品性の高いフッ素樹脂系高分子による優れた化学的耐久性を備えつつ、優れた物理的耐久性と膜外表面の孔径制御により、微生物等による流路及び膜中の細孔内の閉塞を抑制し、長期安定運転可能な複合多孔質中空糸膜が提供される。
 また、本発明によれば、耐薬品性の高いフッ素樹脂系高分子による優れた化学的耐久性を備えつつ、細孔の閉塞が抑制された複合多孔質中空糸膜モジュールとその運転方法が提供される。これにより発酵工業、食品工業に適用した場合、薬品洗浄を行いつつ長期間安定してろ過を行うことができるようになる。
100A 複合多孔質中空糸膜モジュール
2    複合多孔質中空糸膜
3    第1結束部
4A   貫通孔
6    上部キャップ
7    下部キャップ
8    ろ過液出口
9    被ろ過液流入口
10   ガスケット
11   被ろ過液出口(ノズル)
12   複合多孔質中空糸膜束
13   第2結束部
14   整流孔
15   整流筒
16   被ろ過液タンク
17   被ろ過液循環ポンプ
18   被ろ過液流量計
19   被ろ過液圧力計
20   複合多孔質中空糸膜モジュール
21   被ろ過液調節弁
22   ろ過液流量計
23   ろ過液圧力計
24   ろ過液抜出しポンプ
25   ろ過液タンク
26   筒状ケース本体

Claims (14)

  1.  フッ素樹脂系高分子を含有する第1及び第2の層を少なくとも有する複合多孔質中空糸膜であって、
     前記フッ素樹脂系高分子の分子鎖の少なくとも一部が前記複合多孔質中空糸膜の長手方向に配向しており、
     下記式(1)に基づき算出される、前記複合多孔質中空糸膜の長手方向に対する前記フッ素樹脂系高分子の分子鎖の配向度πが、0.4以上1.0未満であり、
     前記第1の層は、前記複合多孔質中空糸膜の長手方向に配向する柱状組織を有し、
     前記第2の層は、三次元網目組織を有し、前記第2の層の表面の平均孔径が5.0nm以上5.0μm以下である、複合多孔質中空糸膜。
      配向度π=(180°-H)/180° ・・・(1)
    (ただし、Hは広角X線回折像の円周方向における回折強度分布の半値幅(°)である。)
  2.  前記柱状組織の短手長さが0.5μm以上3μm以下、且つ、該柱状組織のアスペクト比が3以上である、請求項1に記載の複合多孔質中空糸膜。
  3.  前記柱状組織の太さ均一性が0.60以上である、請求項1または2に記載の複合多孔質中空糸膜。
  4.  前記半値幅Hが、広角X線回折測定によるポリフッ化ビニリデンの(110)面由来の結晶ピーク(2θ=20.4°)を円周方向にスキャンして得られる強度分布の半値幅である、請求項1~3のいずれか1項に記載の複合多孔質中空糸膜。
  5.  前記複合多孔質中空糸膜の長手方向に1cm間隔の測定点で広角X線回折測定を行った際に、80%以上の前記測定点で、前記配向度πが0.4以上1.0未満である、請求項1~4のいずれか1項に記載の複合多孔質中空糸膜。
  6.  前記柱状組織において、ラマン分光法によって得られるラマン配向パラメータの平均値νが3.0以上である、請求項1~5のいずれか1項に記載の複合多孔質中空糸膜。
  7.  前記フッ素樹脂系高分子がポリフッ化ビニリデンである、請求項1~6のいずれか1項に記載の複合多孔質中空糸膜。
  8.  前記第1の層における空隙率が50%以上80%以下である、請求項1~7のいずれか1項に記載の複合多孔質中空糸膜。
  9.  50kPa、25℃における純水透過性能が0.1m/m/hr以上であり、破断強度が25MPa以上である、請求項1~8のいずれか1項に記載の複合多孔質中空糸膜。
  10.  高さ方向における第1端と第2端とを有する筒状ケースと、
     前記筒状ケース内に収容される複数の請求項1~9のいずれか1項に記載の複合多孔質中空糸膜と、
     前記筒状ケースの中央より第2端側側面に位置する流体の流出入口と、
     前記筒状ケースの第1端側端面に位置する流体の流出入口とを備え、
     前記複合多孔質中空糸膜の中空部は、前記第2端側が開口し、前記第1端側が閉塞している、複合多孔質中空糸膜モジュール。
  11.  請求項10に記載の複合多孔質中空糸膜モジュールの運転方法であって、下記工程(A)及び工程(B)を同時に行う複合多孔質中空糸膜モジュールの運転方法。
    (A)前記第1端側端面に位置する流体の流出入口から被ろ過液を前記筒状ケース内に導入し、前記第2端側側面に位置する流体の流出入口から前記被ろ過液を前記筒状ケース外に排出する工程
    (B)前記複合多孔質中空糸膜の中空部から、前記第2端側へろ過液を取り出す工程
  12.  請求項10に記載の複合多孔質中空糸膜モジュールの運転方法であって、下記工程(B)及び工程(C)を同時に行う複合多孔質中空糸膜モジュールの運転方法。
    (B)前記複合多孔質中空糸膜の中空部から、前記第2端側へろ過液を取り出す工程
    (C)前記第2端側側面に位置する流体の流出入口から被ろ過液を前記筒状ケース内に導入し、前記第1端側端面に位置する流体の流出入口から前記被ろ過液を前記筒状ケース外に排出する工程
  13.  前記工程(B)及び下記工程(D)を繰り返し行う、請求項11または12に記載の複合多孔質中空糸膜モジュールの運転方法。
    (D)前記工程(B)の後に、前記第2端側の前記複合多孔質中空糸膜の中空部から、前記複合多孔質中空糸膜の外側へ流体をろ過する工程
  14.  前記工程(B)及び前記工程(D)を繰り返し行い、さらに下記工程(E)を行う、請求項13に記載の複合多孔質中空糸膜モジュールの運転方法。
    (E)前記第1端側端面に位置する流体の流出入口より気体を前記筒状ケース内に導入し、前記第2端側側面に位置する流体の流出入口から前記気体を前記筒状ケース外に排出する工程
PCT/JP2017/023295 2016-06-24 2017-06-23 複合多孔質中空糸膜、複合多孔質中空糸膜モジュール及び複合多孔質中空糸膜モジュールの運転方法 WO2017222063A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017534858A JP6547832B2 (ja) 2016-06-24 2017-06-23 複合多孔質中空糸膜、複合多孔質中空糸膜モジュール及び複合多孔質中空糸膜モジュールの運転方法
KR1020187037071A KR102274763B1 (ko) 2016-06-24 2017-06-23 복합 다공질 중공사막, 복합 다공질 중공사막 모듈 및 복합 다공질 중공사막 모듈의 운전 방법
CN201780039392.4A CN109328101B (zh) 2016-06-24 2017-06-23 复合多孔质中空纤维膜、复合多孔质中空纤维膜组件及其运行方法
US16/312,768 US11235989B2 (en) 2016-06-24 2017-06-23 Composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and operation method for composite porous hollow fiber membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-125526 2016-06-24
JP2016125526 2016-06-24

Publications (1)

Publication Number Publication Date
WO2017222063A1 true WO2017222063A1 (ja) 2017-12-28

Family

ID=60783870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023295 WO2017222063A1 (ja) 2016-06-24 2017-06-23 複合多孔質中空糸膜、複合多孔質中空糸膜モジュール及び複合多孔質中空糸膜モジュールの運転方法

Country Status (5)

Country Link
US (1) US11235989B2 (ja)
JP (1) JP6547832B2 (ja)
KR (1) KR102274763B1 (ja)
CN (1) CN109328101B (ja)
WO (1) WO2017222063A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066521A1 (ja) * 2018-09-28 2020-04-02 東レ株式会社 複合半透膜およびその製造方法
WO2020184097A1 (ja) * 2019-03-14 2020-09-17 東洋紡株式会社 中空糸膜モジュール

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102281508B1 (ko) * 2016-06-24 2021-07-26 도레이 카부시키가이샤 복합 다공질 중공사막, 복합 다공질 중공사막의 제조 방법, 복합 다공질 중공사막 모듈 및 복합 다공질 중공사막 모듈의 운전 방법
DE102016012730A1 (de) * 2016-10-24 2018-04-26 Fresenius Medical Care Deutschland Gmbh Verfahren zur Bestimmung einer Permeationseigenschaft von Hohlfasermembranen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031038A1 (fr) * 2001-10-04 2003-04-17 Toray Industries, Inc. Film de fibres creuses et son procede de production
WO2004081109A1 (ja) * 2003-03-13 2004-09-23 Kureha Chemical Industry Company Limited フッ化ビニリデン系樹脂多孔膜およびその製造方法
JP2006297383A (ja) * 2005-03-25 2006-11-02 Toray Ind Inc 中空糸膜およびその製造方法
WO2007010832A1 (ja) * 2005-07-20 2007-01-25 Kureha Corporation フッ化ビニリデン系樹脂中空糸多孔膜
JP2015142886A (ja) * 2014-01-31 2015-08-06 東レ株式会社 カートリッジ式中空糸膜モジュールおよび中空糸膜カートリッジのポッティング部成形用治具およびカートリッジ式中空糸膜モジュールの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003241797B2 (en) 2002-06-14 2008-10-09 Toray Industries, Inc. Porous membrane and method of manufacturing the porous membrane
CN100341935C (zh) * 2003-03-13 2007-10-10 株式会社吴羽 1,1-二氟乙烯类树脂多孔膜及其制造方法
CA2522227A1 (en) 2003-04-16 2004-10-28 Kureha Corporation Porous film of vinylidene fluoride resin and method for producing same
WO2005063366A2 (en) * 2003-12-22 2005-07-14 Entegris, Inc. Exchange devices with potted hollow conduits and methods of making
JP5109263B2 (ja) 2005-02-28 2012-12-26 東レ株式会社 フッ素樹脂系高分子分離膜およびその製造方法
US20140094076A1 (en) 2011-06-16 2014-04-03 James S. Mrozinski Microporous Materials With Fibrillar Mesh Structure and Methods of Making and Using the Same
KR101988694B1 (ko) 2012-06-28 2019-06-12 도레이 카부시키가이샤 분리막 엘리먼트
CN104755156B (zh) * 2012-10-31 2016-08-24 东丽株式会社 除污膜组件的运转方法
KR101648919B1 (ko) * 2014-07-25 2016-08-17 롯데케미칼 주식회사 고분자 수지 조성물 및 불화비닐리덴계 고분자 수지 성형품
WO2016104743A1 (ja) * 2014-12-26 2016-06-30 東レ株式会社 多孔質中空糸膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031038A1 (fr) * 2001-10-04 2003-04-17 Toray Industries, Inc. Film de fibres creuses et son procede de production
WO2004081109A1 (ja) * 2003-03-13 2004-09-23 Kureha Chemical Industry Company Limited フッ化ビニリデン系樹脂多孔膜およびその製造方法
JP2006297383A (ja) * 2005-03-25 2006-11-02 Toray Ind Inc 中空糸膜およびその製造方法
WO2007010832A1 (ja) * 2005-07-20 2007-01-25 Kureha Corporation フッ化ビニリデン系樹脂中空糸多孔膜
JP2015142886A (ja) * 2014-01-31 2015-08-06 東レ株式会社 カートリッジ式中空糸膜モジュールおよび中空糸膜カートリッジのポッティング部成形用治具およびカートリッジ式中空糸膜モジュールの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066521A1 (ja) * 2018-09-28 2020-04-02 東レ株式会社 複合半透膜およびその製造方法
WO2020184097A1 (ja) * 2019-03-14 2020-09-17 東洋紡株式会社 中空糸膜モジュール
JP2020146641A (ja) * 2019-03-14 2020-09-17 東洋紡株式会社 中空糸膜モジュール
JP7379835B2 (ja) 2019-03-14 2023-11-15 東洋紡エムシー株式会社 中空糸膜モジュール

Also Published As

Publication number Publication date
JPWO2017222063A1 (ja) 2019-02-07
CN109328101B (zh) 2021-06-04
CN109328101A (zh) 2019-02-12
US20190330085A1 (en) 2019-10-31
KR102274763B1 (ko) 2021-07-08
KR20190022546A (ko) 2019-03-06
US11235989B2 (en) 2022-02-01
JP6547832B2 (ja) 2019-07-24

Similar Documents

Publication Publication Date Title
JP6191790B1 (ja) 中空糸膜モジュールおよびその運転方法
WO2017222063A1 (ja) 複合多孔質中空糸膜、複合多孔質中空糸膜モジュール及び複合多孔質中空糸膜モジュールの運転方法
CN109195689B (zh) 中空丝膜组件
JP6245281B2 (ja) 多孔質中空糸膜
JP4835221B2 (ja) 中空糸膜およびその製造方法
WO2017222062A1 (ja) 複合多孔質中空糸膜、複合多孔質中空糸膜の製造方法、複合多孔質中空糸膜モジュール及び複合多孔質中空糸膜モジュールの運転方法
TWI403355B (zh) A fluororesin-based polymer separation membrane and a method for producing the same
KR102267825B1 (ko) 다공질 중공사막 및 그의 제조 방법
JP2018171557A (ja) 多孔質中空糸膜
WO2017038224A1 (ja) 多孔質中空糸膜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017534858

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037071

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815528

Country of ref document: EP

Kind code of ref document: A1