WO2017221543A1 - Battery cell, battery, and method for manufacturing battery cell - Google Patents

Battery cell, battery, and method for manufacturing battery cell Download PDF

Info

Publication number
WO2017221543A1
WO2017221543A1 PCT/JP2017/016316 JP2017016316W WO2017221543A1 WO 2017221543 A1 WO2017221543 A1 WO 2017221543A1 JP 2017016316 W JP2017016316 W JP 2017016316W WO 2017221543 A1 WO2017221543 A1 WO 2017221543A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
electrode
battery
plane
battery cell
Prior art date
Application number
PCT/JP2017/016316
Other languages
French (fr)
Japanese (ja)
Inventor
片山 真吾
飯島 竜太
雄治 坂野
菊地 敦
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2017221543A1 publication Critical patent/WO2017221543A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present technology relates to a battery cell including an electrode and a current collector, a battery including the battery cell, and a method for manufacturing the battery cell.
  • Batteries are widely used in home appliances, electric vehicles, hybrid vehicles and solar power generation facilities.
  • Examples of the battery include a vanadium redox secondary battery (see, for example, Patent Document 1) or a lithium ion secondary battery.
  • a vanadium redox secondary battery is configured by housing one or a plurality of battery cells in a case.
  • the battery cell includes a sheet-shaped outer bag and a flat plate current collector disposed on the inner surface of the outer bag. One plane of the current collector faces the inner surface of the exterior bag, and a first electrode is provided on the other plane of the current collector.
  • the current collector is a fixed portion provided along the periphery of the current collector, specifically, a frame-shaped fixed portion fixed to the side surface of the current collector and the inner surface of the outer bag, or the current collector
  • the outer peripheral bag is fixed to the inner surface of the outer bag by a frame-shaped fixing portion or the like fixed to the peripheral edge of the flat surface and the inner surface of the outer bag.
  • the battery cell further includes a second electrode facing the first electrode.
  • the first electrode and the second electrode include an active material containing vanadium ions or vanadium-containing ions, a carbon material as a conductive auxiliary agent, a binder, and an electrolytic solution.
  • a vanadium redox secondary battery performs charging / discharging using an oxidation-reduction reaction between the first electrode and the second electrode by setting the first electrode and the second electrode of the battery cell to opposite polarities.
  • the current collector when the current collector is fixed by the fixing portion, air may exist between one plane of the current collector and the inner surface of the outer bag, and the air enters between the first electrode and the current collector. As a result, the adhesion between the first electrode and the current collector may be reduced. In addition, the current collector may be deformed due to the air existing between one plane of the current collector and the inner surface of the outer bag, and the adhesion between the first electrode and the current collector may be reduced. When the adhesion between the first electrode and the current collector is lowered, there is a problem that the contact resistance is increased and the function as a battery is lowered.
  • the embodiments of the present disclosure have been made in view of such circumstances, and the object of the present disclosure is to suppress an increase in contact resistance by suppressing a decrease in adhesion between the electrode and the current collector, and to improve the function. It is providing the manufacturing method of the battery cell which can prevent a fall, a battery, and a battery cell.
  • a battery cell includes a sheet-shaped outer bag, a first through-hole penetrating the outer bag, and an inner surface of the outer bag.
  • a flat plate-like first current collector covering the first current collector, a flat plate-like first electrode provided on the other plane of the first current collector, and a peripheral edge of the first current collector, And a fixing portion for fixing the first current collector to the inner surface of the outer bag.
  • a flat plate current collector is provided on one plane of the first sheet body provided with a through hole, and the through hole is provided on one plane of the current collector.
  • An electrode is provided on the other plane of the current collector, a fixing portion for fixing the current collector on one plane of the first sheet body is provided along the periphery of the current collector, and is in a reduced pressure state.
  • seat body is joined to the peripheral part of a said 1st sheet
  • FIG. 3 is a plan view of the battery cell according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is explanatory drawing of the manufacturing method of a battery cell. It is explanatory drawing of the manufacturing method of a battery cell.
  • 6 is a cross-sectional view of a battery cell according to Embodiment 2.
  • FIG. 6 is a cross-sectional view of a battery according to Embodiment 3.
  • FIG. It is explanatory drawing of an assembly of a battery. 6 is a cross-sectional view of a battery according to Embodiment 4.
  • FIG. 6 is a partial cross-sectional view of a battery cell included in a battery according to Embodiment 5.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9.
  • FIG. 10 is a partial cross-sectional view of a battery cell included in a battery according to Embodiment 6.
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. It is explanatory drawing of the shape of the adhering sheet
  • FIG. 1 is a plan view of the battery cell according to Embodiment 1.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1 and 2
  • reference numeral 100 denotes a battery cell of a vanadium redox secondary battery.
  • the vanadium redox secondary battery is configured by housing one or a plurality of battery cells 100 in a case (not shown).
  • the battery cell 100 has the 1st electrode unit 1 which makes a negative electrode, and the 2nd electrode unit 2 which makes a positive electrode.
  • the battery 100 includes a non-conductive and electrolyte solution-impermeable outer package 101, and the outer package 101 is formed by a first sheet body and a second sheet body, which will be described later.
  • the first electrode unit 1 includes a first sheet body 10, a first current collector 11, a first sealant 12, and a first electrode 13.
  • the first sheet body 10 has a quadrangular shape and is non-conductive and non-permeable to electrolyte.
  • the first sheet body 10 forms part of the outer bag 101 of the battery cell 100.
  • a rectangular first through hole 10 a is provided at the center of the first sheet body 10.
  • the first current collector 11 has a rectangular flat plate shape, and the area of both planes of the first current collector 11 is wider than that of the first through hole 10a.
  • the 1st electrical power collector 11 is distribute
  • the first current collector 11 has a square shape, and includes a first conductor 11a whose one plane is in contact with the inner surface of the first sheet body 10, and a first covering sheet 11b that covers the other plane of the first conductor 11a. .
  • One plane of the first cover sheet 11b is in contact with the other plane of the first conductor 11a.
  • the first conductor 11a is preferably a highly conductive metal such as copper, aluminum, nickel or titanium.
  • the first covering sheet 11b has conductivity and electrolyte solution impermeability.
  • a sheet obtained by stacking a graphite sheet and a conductive sheet for adhesion, a conductive film, and a sheet-like conductive rubber are used. Also good.
  • the first conductor 11a may be coated with graphite.
  • the first sealant 12 is non-conductive and electrolyte-impermeable, has a rectangular frame shape, and extends along the inner circumference from the first cylindrical portion 12a and one axial end portion of the first cylindrical portion 12a. And a first edge portion 12b protruding inward.
  • the first cylindrical portion 12 a covers the side surface of the first current collector 11.
  • the 1st edge part 12b covers the peripheral part of the other plane of the 1st coating sheet 11b, and is adhering to this peripheral part.
  • the other end of the first cylindrical portion 12 a is fixed to the inner surface of the first sheet body 10.
  • the first sealant 12 is fixed by, for example, heat welding using a first sealant 12 made of a thermoplastic resin such as polyethylene or polypropylene. Further, the first sealant 12 is fixed by using, as the first sealant 12, a tape in which an adhesive material is disposed on both sides of the sheet base material or a tape only of an adhesive material having no sheet base material, and depending on its adhesiveness. Also good.
  • a first sealant 12 for example, polyimide is used, and as the adhesive material, an adhesive material such as a silicon resin type or an acrylic resin type is used.
  • the first electrode 13 has a rectangular flat plate shape, is provided on the other plane of the first covering sheet 11 b, that is, the other plane of the first current collector 11, and is located on the inner side of the first edge portion 12 b of the first sealant 12. is doing.
  • the area of both planes of the first electrode 13 is smaller than the first through hole 10 a of the first sheet body 10, and the first electrode 13 is disposed on the inner side of the through hole 10 a in the plan view of the cell 100.
  • One plane of the first electrode 13 is in contact with the first cover sheet 11b.
  • the first electrode 13 is obtained by applying a solution or a semi-solid material containing an active material, a carbon material as a conductive additive, a binder and a non-aqueous solvent to the first cover sheet 11b and volatilizing the non-aqueous solvent. It is formed by including an acidic electrolytic solution.
  • the non-aqueous solvent include N-methylpyrrolidone (NMP), methyl ethyl ketone (MEK), tetrahydrofuran (THF) and the like.
  • the first electrode 13 may be formed by blending an electrolytic solution, obtaining a kneaded material, rolling, and punching.
  • the vanadium ions or vanadium-containing ions contained in the active material of the first electrode 13 of the first electrode unit 1 functioning as the negative electrode are vanadium ions whose oxidation number changes between divalent and trivalent by an oxidation-reduction reaction. Preferably there is.
  • Examples of vanadium ions whose oxidation number varies between divalent and trivalent include V 2+ (II) and V 3+ (III).
  • vanadium compound that is an active material for the negative electrode examples include vanadium sulfate (II) (VSO 4 ⁇ nH 2 O) and vanadium sulfate (III) (V 2 (SO 4 ) 3 ⁇ nH 2 O). Mixtures of these may be used.
  • n is 0 or an integer of 1 to 10.
  • the electrolytic solution contained in the first electrode 13 is preferably an aqueous sulfuric acid solution.
  • the sulfuric acid aqueous solution for example, a sulfuric acid aqueous solution having a concentration of less than 90% by mass can be used.
  • the amount of the electrolytic solution is, for example, 70 mL of 2M (mol / L) sulfuric acid with respect to 100 g of the vanadium compound.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and a copolymer of vinylidene fluoride and hexafluoropropylene (PVDF / HFP).
  • carbon material examples include carbon black such as acetylene black and ketjen black (registered trademark), and graphite. The carbon material can use 1 type (s) or 2 or more types.
  • the first electrode unit 1 further has an ion exchange membrane 14.
  • One plane of the ion exchange membrane 14 is in contact with the other plane of the first electrode 13, and a peripheral portion of the one plane of the ion exchange membrane 14 is fixed to the first sealant 12.
  • the ion exchange membrane 14 transmits hydrogen ions.
  • the ion exchange membrane 14 may transmit sulfate ions in addition to hydrogen ions.
  • the ion exchange membrane 14 is an example of a diaphragm that transmits hydrogen ions, and instead of the ion exchange membrane 14, a porous membrane or the like that does not have ion selectivity but has ion permeability may be used.
  • the second electrode unit 2 has the same structure as the first electrode unit 1.
  • the second electrode unit 2 includes the first sheet body 10 of the first electrode unit 1, the first current collector 11, the first sealant 12, the second sheet body 20, and the first electrode 13. Two current collectors 21, a second sealant 22, and a second electrode 23 are provided. However, the second electrode unit 2 does not include a member corresponding to the ion exchange membrane 14 of the first electrode unit 1.
  • the second sheet body 20 forms a part of the outer bag 101 of the cell 100, and the thickness of the second sheet body 20 is the same as the thickness of the first sheet body 10. Similar to the first sheet body 10 of the first electrode unit 1, the second sheet body 20 is non-conductive and electrolyte-impermeable. Similar to the first sheet body 10 of the first electrode unit 1, the second sheet body 20 is provided with a second through hole 20 a in the center.
  • the second current collector 21 includes a second conductor 21a and a second cover sheet 21b, like the first current collector 11 of the first electrode unit 1. Further, like the first sealant 12 of the first electrode unit 1, the second sealant 22 is non-conductive and non-permeable to electrolyte, and has a second cylindrical portion 22a and a second edge portion 22b.
  • the second electrode 23 is formed in the same manner as the first electrode 13 of the first electrode unit 1 and contains an active material, a carbon material as a conductive additive, a binder, and an acidic electrolyte solution. Unlike the case, it contains an active material for a positive electrode. One plane of the second electrode 23 is in contact with the second covering sheet 21b.
  • the vanadium ion or the ion containing vanadium contained in the active material of the second electrode 23 of the second electrode unit 2 functioning as the positive electrode contains vanadium whose oxidation number changes between pentavalent and tetravalent by an oxidation-reduction reaction. It is preferably an ion.
  • the ion containing pentavalent and tetravalent vanadium oxidation number changes between, VO 2+ (IV), VO 2 + (V) are exemplified.
  • vanadium compound that is an active material for the positive electrode examples include vanadium oxide (IV) (VOSO 4 ⁇ nH 2 O) and vanadium oxide (V) ((VO 2 ) 2 SO 4 ⁇ nH 2 O). . Mixtures of these may be used.
  • n is an integer of 0 to 5.
  • the first electrode unit 1 and the second electrode unit 2 are arranged so that the first electrode 13 and the second electrode 23 face each other with the ion exchange membrane 14 interposed therebetween.
  • the other plane of the ion exchange membrane 14 is in contact with the other plane of the second electrode 23.
  • the peripheral edge portion of the first sheet body 10 and the peripheral edge portion of the second sheet body 20 are joined, and the outer bag 101 of the cell 100 is formed by the first sheet body 10 and the second sheet body 20.
  • the exterior bag 101 may be formed by folding a rectangular sheet into two and joining the opposing portions at the peripheral edge of the sheet.
  • the battery cell 100 is charged / discharged using the reactions of the formulas (1) and (2). Protons move between the first electrode 13 and the second electrode 23 via the ion exchange membrane 14 in the reactions of the formulas (1) and (2).
  • the portion exposed from the first through hole 10 a of the first sheet body 10 and the second conductor 20 a of the second current collector 21 are The part exposed from the 2nd through-hole 20a of the sheet
  • seat body 20 is connected with a load or a charger, etc., and the electronic exchange with the exterior is performed.
  • seat body 10, and between the 1st sealant 12 and the side surfaces of the 1st electrical power collector 11 is made into 1st. It can discharge
  • the second electrode unit 2 it is possible to suppress a decrease in adhesion between the second electrode 23 and the second current collector 21, reduce an increase in contact resistance, and prevent a decrease in function as a battery.
  • first current collector 11 Since one plane of the first current collector 11 is larger than the first through hole 10a, it is possible to prevent the first current collector 11 from falling out of the outer bag 101 from the first through hole 10a. Both planes of the first electrode 13 are smaller than the first through-hole 10a, and the first electrode 13 is located on the inner side of the through-hole 10a in the plan view of the cell 10, so that the pressure from the first through-hole 10a When the battery cell 100 is manufactured by adding the pressure, pressure can be applied to the entire first electrode 13. Thereby, the adhesiveness of the 1st electrode 13 and the 1st electrical power collector 11 can be improved. Similarly, the adhesion between the second electrode 23 and the second current collector 21 can be improved.
  • the first current collector 11 has a portion exposed from the first through hole 10a
  • the second current collector 21 has a portion exposed from the second through hole 20a.
  • Two electrodes 23 are opposed to each other. Therefore, the battery cells 100 can be electrically connected to an external load through the exposed portions of the first current collector 11 and the second current collector 21.
  • the first electrode 13 and the second electrode 23 can be configured with the same positive and negative electrode active materials, which facilitates battery design.
  • FIG. 3A the 1st electrical power collector 11 is distribute
  • the first electrode 13 is provided on the first covering sheet 11b, leaving the peripheral edge.
  • the first sealant 12 covers the side surface of the first current collector 11, and the edge portion 12b covers the peripheral portion of the other flat surface of the first covering sheet 11b.
  • the other end portion of the cylindrical portion 12a is fixed to one plane of the first sheet body 10, and the edge portion 12b is fixed to the first covering sheet 11b.
  • the ion exchange membrane 14 is disposed on the first electrode 13, and the peripheral edge is fixed to the edge 12 b of the first sealant 12.
  • the first electrode 13 contains an electrolytic solution before the ion exchange membrane 14 is fixed to the edge 12b. Accordingly, in the first electrode unit 1, the first electrode 13 is fixed to the edge portion 12 b of the ion exchange membrane 14 in a state where the electrolyte solution is contained.
  • the second electrode unit 2 is manufactured by the same procedure as that shown in FIGS. 3A to 3C.
  • the 2nd electrode 23 does not contain electrolyte solution at this time.
  • the second electrode unit 2 is placed on the first electrode unit 1 manufactured as described above so that the first electrode 13 and the second electrode 23 face each other with the ion exchange membrane 14 therebetween. Laminate. And in the 1st sheet
  • one plane of the first sheet body 10 corresponds to the inner surface.
  • the air which exists between the one plane of the 1st electrical power collector 11 and the inner surface of the 1st sheet body 10 is discharged
  • FIG. 5 is a cross-sectional view of battery cell 100 according to the second embodiment.
  • symbol is attached
  • the second current collector 21 has only the second conductor 21a made of titanium, and does not have the covering sheet 21b. Further, the second electrode unit 2 has a frame-shaped fixing sheet 25 instead of the second sealant 22.
  • the second conductor 21a is arranged on the inner surface of the second sheet body 20 so as to cover the second through-hole 20a by one plane.
  • the fixing sheet 25 is arranged along the edge of the second through hole 20a of the second sheet body 20 between the peripheral edge of the one plane of the second conductor 21a and the inner surface of the second sheet body 20, and is fixed. Yes.
  • the second electrode 23 is provided on the other plane of the second conductor 21 a and faces the first electrode 13 with the ion exchange membrane 14 interposed therebetween.
  • the air existing between the one plane of the second conductor 21a and the inner surface of the second sheet body 20 is discharged from the second through hole 20a to the outside of the second sheet body 20 and reduced. Can do.
  • the second conductor 21a is titanium and is not corroded by the electrolytic solution included in the second electrode 23.
  • the first electrode unit 1 is a positive electrode, and the first conductor 11a is made of titanium, does not have the first covering sheet 11b, and is replaced with the first sealant 12 in the same manner as the second electrode unit 2 described above. A fixing sheet similar to the above may be provided. At this time, the second electrode unit 2 forms a negative electrode.
  • Embodiment 3 relates to a battery in which a plurality of battery cells are stacked.
  • FIG. 6 is a cross-sectional view of battery 200 according to the third embodiment.
  • the battery 200 according to Embodiment 3 is a vanadium redox secondary battery, and includes three battery cells 100, 100, 100 housed in a case (not shown) and two conductive plates 3, 3.
  • the three battery cells 100, 100, 100 are arranged side by side so that the outer surfaces of the first sheet body 10 and the second sheet body 20 face each other and contact each other in the adjacent battery cells 100.
  • the second through hole 20a of the battery cell 100 on one end side in the juxtaposed direction (the lowermost side in FIG. 6) and the first through hole 10a of the battery cell 100 in the center are continuous.
  • the second through hole 20a of the battery cell 100 at the center is connected to the first through hole 10a of the battery cell 100 at the other end side in the stacking direction (the uppermost side in FIG. 6).
  • the conductive plate 3 may be any member having conductivity, and is formed from, for example, copper, aluminum or the like.
  • One conductive plate 3 includes one plane of the second current collector 21 and the second through hole 20a in the battery cell 100 on the one end side, and one plane of the first current collector 11 of the battery cell 100 in the center and the second through hole 20a. It is arranged in a space formed by one through hole 10a.
  • One surface of the one conductive plate 3 is in contact with the second current collector 21 in the battery cell 100 on the one end side, and the other surface is in contact with the first current collector 11 in the central battery cell 100.
  • the area of each plane of one conductive plate 3 is larger than the area of each plane of the first electrode 13 and the second electrode 23.
  • the other conductive plate 3 includes the second current collector 21 and the second through hole 20a in the central battery cell 100, and the first current collector 11 and the first through hole 10a in the battery cell 100 on the other end side. It is arranged in the space formed by. One surface of the other conductive plate 3 is in contact with the second current collector 21 in the central battery cell 100, and the other surface is in contact with the first current collector 11 in the battery cell 100 on the other end side. Yes.
  • the area of each plane of the other conductive plate 3 is larger than the area of each plane of the first electrode 13 and the second electrode 23.
  • each conductive plate 3 corresponds to the thickness of the first exterior sheet 10 or the second exterior sheet 20. Therefore, the thickness of the conductive member 3 is twice the thickness of the exterior bag 101.
  • the battery cells 100 can be electrically connected to each other by the two conductive plates 3 and 3.
  • the three battery cells 100, 100, 100 are connected in series.
  • a conductive member having another shape that is not a plate shape such as a foil shape may be provided.
  • the first current collector 11 in the battery cell 100 on the one end side and the second current collector 21 in the battery cell 100 on the other end side are connected to a load or a charger, etc. Is exchanged.
  • FIG. 7 is an explanatory diagram of assembling the battery 200.
  • the conductive plate 3 is arranged as a member that is thicker than that after the battery 200 is assembled and has a small area on each plane.
  • Each conductive plate 3 is thicker than the thickness of the first sheet body 10 or the second sheet body 20. Therefore, the thickness of the conductive member 3 is thicker than twice the thickness of the exterior bag.
  • the area of each plane of the conductive plate 3 before the assembly of the battery 200 is larger than the area of each plane of the first electrode 13 and the second electrode 23.
  • pressure is applied to the first electrode 13 and the second electrode 23 by applying pressure from both ends of the battery cells 100 in the juxtaposed direction. At this time, pressure is applied to the first electrode 13 and the second electrode 23 by the conductive plate 3, and the conductive plate 3 has the thickness and the area of both planes shown in FIG.
  • each battery cell 100 as in the first embodiment, the decrease in the adhesion between the first electrode 13 and the first current collector 11 is suppressed, and the increase in contact resistance is reduced. It is possible to prevent deterioration of the function as a battery. Moreover, the adhesiveness of the 2nd electrode 23 and the 2nd electrical power collector 21 can be improved similarly. Moreover, the capacity
  • the conductive plate 3 has a flat plate shape, and the thickness is equal to or greater than the thickness of the first sheet body 10 or the second sheet body 20 before and after the battery 200 is assembled.
  • the pressure can be favorably applied to the entire first electrode 13 and second electrode 23.
  • the battery 200 since the battery 200 includes the conductive plate 3, there is no need to separately provide a tab member to connect each battery cell 100 and to connect the tab member by pulling it out of the exterior bag.
  • the manufacturing process can be simplified.
  • the number of battery cells 100 is not limited to three, and the battery 200 may include two or less battery cells 100 or four or more battery cells 100.
  • FIG. 8 is a cross-sectional view of battery 200 according to the fourth embodiment.
  • symbol is attached
  • the arrangement of the first electrode unit 1 and the second electrode unit 2 is interchanged in the central battery cell 100 in the juxtaposed direction.
  • the second through hole 20a of the battery cell 100 at the center is opposed to the second through hole 20a of the battery cell 100 at one end side in the juxtaposition direction.
  • the 1st through-hole 10a of the battery cell 100 in the other end side of the juxtaposition direction and the 1st through-hole 10a of the battery cell 100 in the center are facing.
  • each conductive plate 3 is equal to or greater than the thickness of two sheets of the first sheet body 10 and the second sheet body 20.
  • One surface of one conductive plate 3 is in contact with the second current collector 21 in the battery cell 100 on the one end side, and the other surface is in contact with the second current collector 21 in the central battery cell 100.
  • One surface of the other conductive plate 3 is in contact with the first current collector 11 in the central battery cell 100, and the other surface is in contact with the first current collector 11 in the battery cell 100 on the other end side.
  • each conductive plate 3 electrically connects the battery cells 100, and the first current collectors 11 of the first electrode unit 1 forming a negative electrode and the second current collector of the second electrode unit 2 forming a positive electrode.
  • the bodies 21 are connected to each other, and the battery cells 100, 100, 100 are connected in parallel.
  • the battery 200 includes tabs 30 and 31.
  • the tab 30 is connected to the side surface of the other conductive plate 3.
  • the tab 31 is connected to the side surface of the one conductive plate 3.
  • the first current collector 11 and the tab 30 in the battery cell 100 on the one end side and the second current collector 21 and the tab 31 in the battery cell 100 on the other end side are respectively connected to different tabs.
  • the other tab is connected to a load, a charger, or the like, thereby exchanging electrons with the outside.
  • each battery cell 100 as in the first embodiment, the decrease in the adhesion between the first electrode 13 and the first current collector 11 is suppressed, and the increase in contact resistance is reduced.
  • the function as a battery can be prevented from being lowered.
  • the adhesiveness of the 2nd electrode 23 and the 2nd electrical power collector 21 can be improved similarly. Since the thickness of the conductive plate 3 is equal to or greater than the thickness of the first sheet body 10 and the second sheet body 20, the plurality of battery cells 100 are sandwiched in the juxtaposition direction as in the third embodiment. When pressure is applied, the pressure can be applied to the first electrode 13 and the second electrode 23 satisfactorily.
  • adjacent electrode units 100 are not in contact with the outer surface of the outer bag 101, but the outer bag 101 may be in contact with the tab 30 or the tab 31.
  • the number of battery cells 100 is not limited to three, and the battery 200 may include two or less battery cells 100 or four or more battery cells 100.
  • FIG. 9 is a partial cross-sectional view of battery cell 100 included in battery 200 according to Embodiment 5
  • FIG. 10 is a cross-sectional view taken along line XX of FIG.
  • symbol is attached
  • the first electrode unit 1 includes a frame-shaped fixing sheet 15 in addition to the first sealant 12.
  • seat 15 make a fixed part, respectively.
  • the fixing sheet 15 is disposed along the peripheral edge portion of the first current collector 11 between one plane of the first current collector 11 and the inner surface of the first sheet body 10.
  • the fixing sheet 15 is fixed to the peripheral edge portion of the first current collector 11 on one plane and the inner surface of the first sheet body 10.
  • the fixing of the fixing sheet 15 is performed by heat welding or adhesion, similarly to the fixing of the first sealant 12.
  • the first sheet body 10 is provided with a plurality of first through holes 10a (16 in FIG. 10) at positions corresponding to the inside of the fixing sheet 15.
  • first cylindrical portion 12 a of the first sealant 12 covers the side surface of the fixing sheet 15 in addition to the side surface of the first current collector 11.
  • seat 10 is discharged
  • seat 10 the air which exists between the one plane of the 1st electrical power collector 11 and the inner surface of the 1st sheet
  • seat 10 is discharged
  • the fall of the adhesiveness of the 1st electrode 13 and the 1st electrical power collector 11 is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented.
  • the first current collector 11 can be positioned by the fixing sheet 15. Moreover, since the 1st electrical power collector 11 is fixed with the 1st sealant 12 and the adhering sheet
  • the number of first through holes is not limited to 16 shown in FIG. 10, and may be 2 or more and 15 or less, or 17 or more.
  • FIG. 6 is a partial cross-sectional view of battery cell 100 included in battery 200 according to Embodiment 6, and FIG. 12 is a cross-sectional view taken along line XII-XII in FIG.
  • symbol is attached
  • the first electrode unit 1 has a fixing sheet 15 in addition to the first sealant 12.
  • seat 15 make a fixed part, respectively.
  • the fixing of the fixing sheet 15 is performed by heat welding or adhesion, similarly to the fixing of the first sealant 12.
  • the fixing sheet 15 has four linear frame sides 15a, 15b, 15c, and 15d, and the frame sides 15a and 15d are shorter than the frame sides 15b and 15c.
  • the frame side portions 15 a, 15 b, 15 c, and 15 d are positioned along the four sides of the first through hole 10 a between one plane of the first current collector 11 and the inner surface of the first sheet body 10.
  • the frame side portions 15a, 15b, 15c and 15d are separated from the cylindrical body 12a of the first sealant 12 by a predetermined distance.
  • the fixing sheet 15 is fixed to the peripheral edge portion of the first current collector 11 on one plane and the inner surface of the first sheet body 10.
  • One end portion of the frame side portion 15a is connected to one end portion of the frame side portion 15b so that the frame side portion 15a and the frame side portion 15b form a right angle.
  • the other end portion of the frame side portion 15b is connected to one end portion of the frame side portion 15c so that the frame side portion 15b and the frame side portion 15c form a right angle.
  • the other end portion of the frame side portion 15c is connected to one end portion of the frame side portion 15d so that the frame side portion 15c and the frame side portion 15d form a right angle.
  • the other end of the frame side 15a and the other end of the frame side 15d are spaced apart. Therefore, the fixing sheet 15 has a frame shape in which one corner of the quadrangle is cut out.
  • the first current collector 11 can be positioned by the frame side portions 15 a, 15 b, 15 c, and 15 d of the fixing sheet 15. Moreover, since the 1st electrical power collector 11 is fixed with the 1st sealant 12 and the adhering sheet
  • the amount can be reduced by discharging from 10a to the outside of the first sheet portion 10.
  • FIG. 13 is an explanatory diagram of the shape of the fixing sheet 15 in the battery cell 100 included in the battery 200 according to the seventh embodiment.
  • symbol is attached
  • the fixing sheet 15 includes linear extending portions 15e, 15f, and 15g in addition to the frame side portions 15a, 15b, 15c, and 15d.
  • the extended portions 15e, 15f, and 15g are shorter than the frame side portions 15b and 15c, and the extended portions 15f and 15g are shorter than the frame side portions 15a and 15d.
  • the extending portions 15e, 15f, and 15g are arranged along the three sides of the first through hole 10a, and are separated from the frame side portions 15a, 15b, and 15c by a predetermined distance.
  • One end portion of the extended portion 15e is connected to the other end portion of the frame side portion 15d so that the frame side portion 15d and the extended portion 15e form a right angle.
  • the other end of the extending portion 15e is connected to one end of the extending portion 15f so that the extending portions 15e and 15f form a right angle.
  • the other end of the extended portion 15f is connected to one end of the extended portion 15g so that the extended portions 15f and 15g form a right angle. Further, the other end portion of the extending portion 15g is separated from the frame side portion 15d.
  • the first current collector 11 can be positioned by the frame side portions 15a, 15b, 15c, 15d and the extending portions 15e, 15f, 15g. Moreover, since the 1st electrical power collector 11 is fixed with the 1st sealant 12 and the adhering sheet
  • Air can be discharged from the first through hole 10a to the outside of the first sheet body 10 and reduced. Thereby, the fall of the adhesiveness of the 1st electrode 13 and the 1st electrical power collector 11 is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented.
  • the shape of the sheet 15 is not limited to a rectangular shape, and may be a circular shape or a polygonal shape.
  • the shape of the second sheet body 20, the second through hole 20a, the second current collector 21, the second sealant 22, the second electrode 23, and the fixing sheet 25 is not limited to a square shape, and may be a circle or a polygon. It may be a shape.
  • first through hole 10a and the second through hole 20a are provided is not limited to the central portion of the first sheet body 10 or the second sheet body 20, respectively, and the first current collector 11 or the second Any position may be used as long as it is covered with the current collector 21.
  • the first electrode unit 1 may be a positive electrode and the second electrode unit 2 may be a negative electrode.
  • the second electrode unit 2 may have the same structure as the first electrode unit 1, and both the first electrode unit 1 and the second electrode unit 2 are It is good also as a structure.
  • the battery cell according to the embodiment of the present disclosure is disposed on the sheet-shaped outer bag, the first through-hole penetrating the outer bag, and the inner surface of the outer bag, and is formed in a single plane.
  • a flat plate-like first current collector covering the first through-hole, a flat plate-like first electrode provided on the other plane of the first current collector, and a periphery of the first current collector And a fixing portion for fixing the first current collector to the inner surface of the outer bag.
  • the air existing between one plane of the first current collector and the inner surface of the outer bag can be reduced by discharging the air from the first through hole to the outside of the outer bag.
  • the fixing portion has a frame shape, and is fixed to a peripheral portion of the other flat surface of the first current collector and an inner surface of the exterior bag.
  • the air existing between one plane of the first current collector and the inner surface of the outer bag and between the fixing portion and the side surface of the first current collector is removed from the first through hole. It can be discharged outside the bag and reduced. Thereby, the fall of the adhesiveness of a 1st electrode and a 1st electrical power collector is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented.
  • the fixing portion has a frame shape, and is fixed to a peripheral portion of one plane of the first current collector and an inner surface of the exterior bag.
  • the air existing between one plane of the first current collector and the inner surface of the outer bag can be reduced by discharging the air from the first through hole to the outside of the outer bag.
  • the one plane of the first current collector is larger than the first through hole, and both planes of the first electrode are smaller than the first through hole. It is characterized by that.
  • the present disclosure it is possible to prevent the first current collector from falling out of the outer bag from the first through hole. Further, when the first electrode is provided so as to correspond to the position of the first through hole, when the battery cell is manufactured by applying pressure from the first through hole, it is possible to apply the pressure to the entire first electrode satisfactorily. The adhesion between the first electrode and the first current collector can be improved.
  • a battery cell according to an embodiment of the present disclosure is characterized in that the exterior bag includes a plurality of the first through holes.
  • the air existing between one plane of the first current collector and the inner surface of the exterior bag can be discharged and reduced from the plurality of first through holes to the outside of the exterior bag. it can.
  • the fall of the adhesiveness of a 1st electrode and a 1st electrical power collector is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented.
  • the battery cell which concerns on one Embodiment of this indication is arranged in the 2nd through-hole which has penetrated the said exterior bag, and the inner surface of the said exterior bag, and is flat form which has covered the 2nd through-hole by one plane.
  • the first current collector has a portion exposed from the first through hole
  • the second current collector has a portion exposed from the second through hole.
  • One electrode and the second electrode face each other. Therefore, the battery cells can be electrically connected to an external load through the exposed portions of the first current collector and the second current collector.
  • the battery according to an embodiment of the present disclosure is characterized in that the battery cells described above are arranged side by side so that the outer surfaces of the exterior bags face each other in the adjacent battery cells.
  • the battery capacity can be increased by arranging a plurality of battery cells in parallel.
  • a battery according to an embodiment of the present disclosure includes, in the adjacent battery cells, a portion exposed from the first through hole in the first current collector of one of the battery cells, and another battery cell. A portion of the second current collector exposed from the second through hole is opposed to each other and is connected by a conductive member.
  • the battery cells can be electrically connected by the conductive member, and the battery cells can be connected in series.
  • portions exposed from the first through hole in the one plane of the first current collector face each other, or the second The portions exposed from the second through holes in the one plane of the current collector face each other and are connected by a conductive member.
  • the battery cells can be electrically connected to each other by the conductive member, and the battery cells can be connected in parallel.
  • the battery according to an embodiment of the present disclosure is characterized in that the conductive member has a flat plate shape and has a thickness that is twice or more the thickness of the exterior bag.
  • the pressure when a pressure is applied so as to sandwich a plurality of battery cells in the juxtaposed direction, the pressure can be favorably applied to the first electrode and the second electrode by the conductive member.
  • the battery according to an embodiment of the present disclosure is characterized in that the first electrode and the second electrode include an acidic electrolyte.
  • the battery according to an embodiment of the present disclosure is characterized in that the first electrode and the second electrode contain vanadium ions or ions containing vanadium as an active material.
  • the positive electrode and the negative electrode can be configured to have the same active material in the first electrode and the second electrode. Design becomes easy.
  • a flat plate current collector is provided on one plane of the first sheet body provided with a through hole, and the through hole is provided on one plane of the current collector.
  • An electrode is provided on the other plane of the current collector, a fixing portion for fixing the current collector on one plane of the first sheet body is provided along the periphery of the current collector, and is in a reduced pressure state.
  • seat body is joined to the peripheral part of a said 1st sheet
  • the air existing between one plane of the first current collector and the one plane of the first sheet body is discharged from the first through hole to the outside of the first sheet body and reduced. can do. Therefore, when the peripheral part of a 1st sheet body and a 2nd sheet body is joined in a pressure-reduced state, it can prevent that the 1st electrical power collector 11 deform
  • 10 1st sheet body, 10a: 1st through-hole, 11: 1st collector, 12: 1st sealant (fixing part), 13: 1st electrode, 14: Ion exchange membrane (diaphragm), 15, 25 : Fixing sheet (fixing part), 20: second sheet body, 20a: second through hole, 21: second current collector, 23: second electrode, 3: conductive plate (conductive member), 100: battery cell, 101: exterior bag, 200: battery

Abstract

Provided are a battery cell, battery, and method for manufacturing a battery cell with which it is possible to inhibit a decrease in adhesive performance between an electrode and a collector and reduce an increase in contact resistance, and prevent a decrease in functionality. A battery cell 100 provided with: a sheet-shaped exterior bag 101; a first through-hole 10a penetrating the exterior bag 101; a flat-plate-shaped first collector 11 disposed on the inner surface of the exterior bag 101, one flat surface of the first collector 11 covering the first through-hole 10a; a flat-plate-shaped first electrode 13 provided on the other flat surface of the first collector 11; and a first sealant 12 provided along the peripheral edge of the first collector 11, the first sealant 12 fixing the first collector 11 onto the inner surface of the exterior bag 101.

Description

電池セル、電池及び電池セルの製造方法Battery cell, battery and battery cell manufacturing method
 本技術は、電極及び集電体を備える電池セル、電池セルを備える電池及び電池セルの製造方法に関する。 The present technology relates to a battery cell including an electrode and a current collector, a battery including the battery cell, and a method for manufacturing the battery cell.
 電池は、家電製品、電気自動車、ハイブリッド自動車及び太陽光発電設備等に広く用いられている。この電池として、バナジウムレドックス二次電池(例えば、特許文献1参照)又はリチウムイオン二次電池等が挙げられる。 Batteries are widely used in home appliances, electric vehicles, hybrid vehicles and solar power generation facilities. Examples of the battery include a vanadium redox secondary battery (see, for example, Patent Document 1) or a lithium ion secondary battery.
 バナジウムレドックス二次電池は、一又は複数の電池セルをケースに収容することにより構成される。電池セルは、シート状の外装袋と、外装袋の内面に配された平板状の集電体とを備える。集電体の一平面は、外装袋の内面と対向しており、集電体の他平面には、第1電極が設けられている。 A vanadium redox secondary battery is configured by housing one or a plurality of battery cells in a case. The battery cell includes a sheet-shaped outer bag and a flat plate current collector disposed on the inner surface of the outer bag. One plane of the current collector faces the inner surface of the exterior bag, and a first electrode is provided on the other plane of the current collector.
 集電体は、該集電体の周縁に沿って設けられた固定部、具体的には、集電体の側面及び外装袋の内面に固着している額縁状の固定部、又は集電体の一平面の周縁部及び外装袋の内面に固着している枠状の固定部等により、外装袋の内面に固定される。 The current collector is a fixed portion provided along the periphery of the current collector, specifically, a frame-shaped fixed portion fixed to the side surface of the current collector and the inner surface of the outer bag, or the current collector The outer peripheral bag is fixed to the inner surface of the outer bag by a frame-shaped fixing portion or the like fixed to the peripheral edge of the flat surface and the inner surface of the outer bag.
 電池セルは、第1電極に対向する第2電極を更に備えている。第1電極及び第2電極は、バナジウムイオン又はバナジウムを含むイオンを含有する活物質、導電助剤としての炭素材料、バインダ及び電解液を含む。バナジウムレドックス二次電池は、電池セルの第1電極及び第2電極を互いに反対の極性とすることにより、第1電極及び第2電極間における酸化還元反応を利用して充放電を行う。 The battery cell further includes a second electrode facing the first electrode. The first electrode and the second electrode include an active material containing vanadium ions or vanadium-containing ions, a carbon material as a conductive auxiliary agent, a binder, and an electrolytic solution. A vanadium redox secondary battery performs charging / discharging using an oxidation-reduction reaction between the first electrode and the second electrode by setting the first electrode and the second electrode of the battery cell to opposite polarities.
特開2014-235833号公報JP 2014-235833 A
 しかしながら、固定部による集電体の固定において、集電体の一平面及び外装袋の内面間において、空気が存在している場合があり、該空気が第1電極及び集電体間に入ることにより、第1電極及び集電体の密着性が低下する虞がある。また、集電体の一平面及び外装袋の内面間に存在する空気のために集電体が変形し、第1電極及び集電体の密着性が低下する虞もある。第1電極及び集電体の密着性が低下した場合、接触抵抗が上昇し、電池としての機能が低下するという問題がある。 However, when the current collector is fixed by the fixing portion, air may exist between one plane of the current collector and the inner surface of the outer bag, and the air enters between the first electrode and the current collector. As a result, the adhesion between the first electrode and the current collector may be reduced. In addition, the current collector may be deformed due to the air existing between one plane of the current collector and the inner surface of the outer bag, and the adhesion between the first electrode and the current collector may be reduced. When the adhesion between the first electrode and the current collector is lowered, there is a problem that the contact resistance is increased and the function as a battery is lowered.
 本開示の実施形態は、斯かる事情に鑑みてなされたものであり、その目的とするところは、電極及び集電体の密着性の低下を抑制して接触抵抗の上昇を低減し、機能の低下を防止できる電池セル、電池及び電池セルの製造方法を提供することにある。 The embodiments of the present disclosure have been made in view of such circumstances, and the object of the present disclosure is to suppress an increase in contact resistance by suppressing a decrease in adhesion between the electrode and the current collector, and to improve the function. It is providing the manufacturing method of the battery cell which can prevent a fall, a battery, and a battery cell.
 本開示の一実施形態に係る電池セルは、シート状の外装袋と、該外装袋を貫通している第1貫通孔と、前記外装袋の内面に配され、一平面により前記第1貫通孔を覆っている平板状の第1集電体と、該第1集電体の他平面に設けられた平板状の第1電極と、前記第1集電体の周縁に沿って設けられ、前記第1集電体を前記外装袋の内面に固定する固定部とを備えることを特徴とする。 A battery cell according to an embodiment of the present disclosure includes a sheet-shaped outer bag, a first through-hole penetrating the outer bag, and an inner surface of the outer bag. A flat plate-like first current collector covering the first current collector, a flat plate-like first electrode provided on the other plane of the first current collector, and a peripheral edge of the first current collector, And a fixing portion for fixing the first current collector to the inner surface of the outer bag.
 本開示の一実施形態に係る電池セルの製造方法は、貫通孔が設けられた第1シート体の一平面に、平板状の集電体を、前記貫通孔を前記集電体の一平面により覆うように配し、電極を前記集電体の他平面に設け、前記集電体を前記第1シート体の一平面に固定する固定部を前記集電体の周縁に沿って設け、減圧状態下で、前記第1シート体の周縁部に第2シート体の周縁部を接合することを特徴とする。 In the battery cell manufacturing method according to an embodiment of the present disclosure, a flat plate current collector is provided on one plane of the first sheet body provided with a through hole, and the through hole is provided on one plane of the current collector. An electrode is provided on the other plane of the current collector, a fixing portion for fixing the current collector on one plane of the first sheet body is provided along the periphery of the current collector, and is in a reduced pressure state. Below, the peripheral part of a 2nd sheet | seat body is joined to the peripheral part of a said 1st sheet | seat body, It is characterized by the above-mentioned.
 本開示の実施形態によれば、電極及び集電体の密着性の低下を抑制して接触抵抗の上昇を低減し、機能の低下を防止できる。 According to the embodiment of the present disclosure, it is possible to suppress an increase in contact resistance by suppressing a decrease in adhesion between the electrode and the current collector, and to prevent a decrease in function.
実施の形態1に係る電池セルの平面図である。3 is a plan view of the battery cell according to Embodiment 1. FIG. 図1のII-II線による断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 電池セルの製造方法の説明図である。It is explanatory drawing of the manufacturing method of a battery cell. 電池セルの製造方法の説明図である。It is explanatory drawing of the manufacturing method of a battery cell. 実施の形態2に係る電池セルの断面図である。6 is a cross-sectional view of a battery cell according to Embodiment 2. FIG. 実施の形態3に係る電池の断面図である。6 is a cross-sectional view of a battery according to Embodiment 3. FIG. 電池の組み立ての説明図である。It is explanatory drawing of an assembly of a battery. 実施の形態4に係る電池の断面図である。6 is a cross-sectional view of a battery according to Embodiment 4. FIG. 実施の形態5に係る電池が備える電池セルの部分断面図である。6 is a partial cross-sectional view of a battery cell included in a battery according to Embodiment 5. FIG. 図9のX-X線による断面図である。FIG. 10 is a sectional view taken along line XX in FIG. 9. 実施の形態6に係る電池が備える電池セルの部分断面図である。FIG. 10 is a partial cross-sectional view of a battery cell included in a battery according to Embodiment 6. 図11のXII-XII線による断面図である。FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. 実施の形態7に係る電池が備える電池セルにおける固着シートの形状の説明図である。It is explanatory drawing of the shape of the adhering sheet | seat in the battery cell with which the battery which concerns on Embodiment 7 is provided.
 以下、本開示をその実施の形態を示す図面に基づいて詳述する。
(実施の形態1)
 図1は、実施の形態1に係る電池セルの平面図である。図2は、図1のII-II線による断面図である。図1及び図2中、100はバナジウムレドックス二次電池の電池セルである。バナジウムレドックス二次電池は、電池セル100を一つ又は複数個ケース(不図示)に収容することにより構成される。電池セル100は、負極をなす第1電極ユニット1と、正極をなす第2電極ユニット2とを有する。また、電池100は、非導電性且つ電解液非透過性の外装101を備え、外装101は、後述する第1シート体及び第2シート体により形成される。
Hereinafter, the present disclosure will be described in detail with reference to the drawings illustrating embodiments thereof.
(Embodiment 1)
1 is a plan view of the battery cell according to Embodiment 1. FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1 and 2, reference numeral 100 denotes a battery cell of a vanadium redox secondary battery. The vanadium redox secondary battery is configured by housing one or a plurality of battery cells 100 in a case (not shown). The battery cell 100 has the 1st electrode unit 1 which makes a negative electrode, and the 2nd electrode unit 2 which makes a positive electrode. In addition, the battery 100 includes a non-conductive and electrolyte solution-impermeable outer package 101, and the outer package 101 is formed by a first sheet body and a second sheet body, which will be described later.
 第1電極ユニット1は、第1シート体10と、第1集電体11と、第1シーラント12と、第1電極13とを備える。第1シート体10は、四角形状をなし、非導電性且つ電解液非透過性である。第1シート体10は、電池セル100の外装袋101の一部をなす。第1シート体10の中央部には、四角形状の第1貫通孔10aが設けられている。 The first electrode unit 1 includes a first sheet body 10, a first current collector 11, a first sealant 12, and a first electrode 13. The first sheet body 10 has a quadrangular shape and is non-conductive and non-permeable to electrolyte. The first sheet body 10 forms part of the outer bag 101 of the battery cell 100. A rectangular first through hole 10 a is provided at the center of the first sheet body 10.
 第1集電体11は、四角形平板状をなし、第1集電体11の両平面の面積は第1貫通孔10aよりも広い。第1集電体11は、一平面により第1貫通孔10aを覆うように第1シート体10の内面に配されている。第1集電体11は、四角形状をなし、一平面が第1シート体10の内面に接する第1導電体11aと、該第1導電体11aの他平面を覆う第1被覆シート11bを有する。第1被覆シート11bの一平面は、第1導電体11aの他平面に接している。 The first current collector 11 has a rectangular flat plate shape, and the area of both planes of the first current collector 11 is wider than that of the first through hole 10a. The 1st electrical power collector 11 is distribute | arranged to the inner surface of the 1st sheet | seat body 10 so that the 1st through-hole 10a may be covered by one plane. The first current collector 11 has a square shape, and includes a first conductor 11a whose one plane is in contact with the inner surface of the first sheet body 10, and a first covering sheet 11b that covers the other plane of the first conductor 11a. . One plane of the first cover sheet 11b is in contact with the other plane of the first conductor 11a.
 第1導電体11aは、銅、アルミニウム、ニッケル又はチタン等の高導電性の金属であることが好ましい。第1被覆シート11bは、導電性及び電解液非透過性を有しており、例えば、グラファイトシート及び接着用の導電性シートを重ねたシート、導電性フィルム及びシート状の導電性ゴムを用いてもよい。また、第1被覆シート11bに代えて第1導電体11aに黒鉛コーティングを施してもよい。 The first conductor 11a is preferably a highly conductive metal such as copper, aluminum, nickel or titanium. The first covering sheet 11b has conductivity and electrolyte solution impermeability. For example, a sheet obtained by stacking a graphite sheet and a conductive sheet for adhesion, a conductive film, and a sheet-like conductive rubber are used. Also good. Further, instead of the first cover sheet 11b, the first conductor 11a may be coated with graphite.
 第1シーラント12は、非導電性且つ電解液非透過性であり、四角形額縁状をなし、第1筒状部12aと、該第1筒状部12aの軸方向の一端部から内周に沿って内向きに突出している第1縁部12bとを有する。第1筒状部12aは、第1集電体11の側面を覆っている。第1縁部12bは、第1被覆シート11bの他平面の周縁部を覆い、該周縁部に固着している。第1筒状部12aの他端部は、第1シート体10の内面に固着されている。 The first sealant 12 is non-conductive and electrolyte-impermeable, has a rectangular frame shape, and extends along the inner circumference from the first cylindrical portion 12a and one axial end portion of the first cylindrical portion 12a. And a first edge portion 12b protruding inward. The first cylindrical portion 12 a covers the side surface of the first current collector 11. The 1st edge part 12b covers the peripheral part of the other plane of the 1st coating sheet 11b, and is adhering to this peripheral part. The other end of the first cylindrical portion 12 a is fixed to the inner surface of the first sheet body 10.
 第1シーラント12の固着は、例えば、ポリエチレン又はポリプロピレン等の熱可塑性樹脂製の第1シーラント12を用いて、熱溶着することにより行われる。また、第1シーラント12の固着は、第1シーラント12として、シート基材の両面に粘着材を配したテープ又はシート基材を有しない粘着材のみのテープを使用し、その粘着性により行ってもよい。シート基材としては例えば、ポリイミドが用いられ、粘着材は、シリコン樹脂系又はアクリル樹脂系等の粘着材が用いられる。 The first sealant 12 is fixed by, for example, heat welding using a first sealant 12 made of a thermoplastic resin such as polyethylene or polypropylene. Further, the first sealant 12 is fixed by using, as the first sealant 12, a tape in which an adhesive material is disposed on both sides of the sheet base material or a tape only of an adhesive material having no sheet base material, and depending on its adhesiveness. Also good. As the sheet base material, for example, polyimide is used, and as the adhesive material, an adhesive material such as a silicon resin type or an acrylic resin type is used.
 第1電極13は、四角形平板状をなし、第1被覆シート11bの他平面、即ち第1集電体11の他平面に設けられ、第1シーラント12の第1縁部12bよりも内側に位置している。第1電極13の両平面の面積は、第1シート体10の第1貫通孔10aよりも小さく、第1電極13は、セル100の平面視における貫通孔10aよりも内側に配されている。第1電極13の一平面は、第1被覆シート11bに接している。 The first electrode 13 has a rectangular flat plate shape, is provided on the other plane of the first covering sheet 11 b, that is, the other plane of the first current collector 11, and is located on the inner side of the first edge portion 12 b of the first sealant 12. is doing. The area of both planes of the first electrode 13 is smaller than the first through hole 10 a of the first sheet body 10, and the first electrode 13 is disposed on the inner side of the through hole 10 a in the plan view of the cell 100. One plane of the first electrode 13 is in contact with the first cover sheet 11b.
 第1電極13は、活物質、導電助剤としての炭素材料、バインダ及び非水系溶媒を含有する溶液又は半固体状物等を第1被覆シート11bに塗布し、非水系溶媒を揮発させた後、酸性の電解液を含ませることにより形成される。なお、非水系溶媒としては、N-メチルピロリドン(NMP)、メチルエチルケトン(MEK)、テトラヒドロフラン(THF)等が例示される。また、第1電極13は、電解液を配合して、混錬物を得て圧延成形し、打ち抜くことにより形成してもよい。 The first electrode 13 is obtained by applying a solution or a semi-solid material containing an active material, a carbon material as a conductive additive, a binder and a non-aqueous solvent to the first cover sheet 11b and volatilizing the non-aqueous solvent. It is formed by including an acidic electrolytic solution. Examples of the non-aqueous solvent include N-methylpyrrolidone (NMP), methyl ethyl ketone (MEK), tetrahydrofuran (THF) and the like. Alternatively, the first electrode 13 may be formed by blending an electrolytic solution, obtaining a kneaded material, rolling, and punching.
 負極として機能する第1電極ユニット1の第1電極13の活物質に含まれるバナジウムイオン又はバナジウムを含むイオンは、酸化還元反応によって、2価及び3価の間で酸化数が変化するバナジウムイオンであるのが好ましい。2価及び3価の間で酸化数が変化するバナジウムイオンとしては、V2+(II)、V3+(III )が例示される。 The vanadium ions or vanadium-containing ions contained in the active material of the first electrode 13 of the first electrode unit 1 functioning as the negative electrode are vanadium ions whose oxidation number changes between divalent and trivalent by an oxidation-reduction reaction. Preferably there is. Examples of vanadium ions whose oxidation number varies between divalent and trivalent include V 2+ (II) and V 3+ (III).
 負極用の活物質であるバナジウム化合物としては、硫酸バナジウム(II)(VSO4 ・nH2 O)、硫酸バナジウム(III )(V2 (SO4 )3 ・nH2 O)が挙げられる。これらの混合物を用いてもよい。nは、0又は1~10の整数である。 Examples of the vanadium compound that is an active material for the negative electrode include vanadium sulfate (II) (VSO 4 · nH 2 O) and vanadium sulfate (III) (V 2 (SO 4 ) 3 · nH 2 O). Mixtures of these may be used. n is 0 or an integer of 1 to 10.
 また、第1電極13に含まれる電解液は、硫酸水溶液であるのが好ましい。硫酸水溶液として、例えば濃度が90質量%未満の硫酸水溶液を用いることができる。電解液の量は、例えばバナジウム化合物100gに対して、2M(mol/L)の硫酸70mLである。 Further, the electrolytic solution contained in the first electrode 13 is preferably an aqueous sulfuric acid solution. As the sulfuric acid aqueous solution, for example, a sulfuric acid aqueous solution having a concentration of less than 90% by mass can be used. The amount of the electrolytic solution is, for example, 70 mL of 2M (mol / L) sulfuric acid with respect to 100 g of the vanadium compound.
 バインダとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)及びフッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(PVDF/HFP)等が挙げられる。 炭素材料としては、アセチレンブラック、ケッチェンブラック(登録商標)等のカーボンブラック、及びグラファイト等が挙げられる。炭素材料は1種又は2種以上を用いることができる。 Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and a copolymer of vinylidene fluoride and hexafluoropropylene (PVDF / HFP). Examples of the carbon material include carbon black such as acetylene black and ketjen black (registered trademark), and graphite. The carbon material can use 1 type (s) or 2 or more types.
 第1電極ユニット1は、更に、イオン交換膜14を有する。イオン交換膜14の一平面は、第1電極13の他平面に接しており、イオン交換膜14の一平面の周縁部は、第1シーラント12に固着されている。 The first electrode unit 1 further has an ion exchange membrane 14. One plane of the ion exchange membrane 14 is in contact with the other plane of the first electrode 13, and a peripheral portion of the one plane of the ion exchange membrane 14 is fixed to the first sealant 12.
 イオン交換膜14は、水素イオンを透過する。イオン交換膜14は、水素イオンに加えて硫酸イオンを透過してもよい。また、イオン交換膜14は、水素イオンを透過する隔膜の一例であり、イオン交換膜14に代えて、イオン選択性を有さず、イオン透過性を有する多孔質膜等を用いてもよい。 The ion exchange membrane 14 transmits hydrogen ions. The ion exchange membrane 14 may transmit sulfate ions in addition to hydrogen ions. Further, the ion exchange membrane 14 is an example of a diaphragm that transmits hydrogen ions, and instead of the ion exchange membrane 14, a porous membrane or the like that does not have ion selectivity but has ion permeability may be used.
 第2電極ユニット2は、第1電極ユニット1と同様の構造をなす。第2電極ユニット2は、第1電極ユニット1の第1シート体10と、第1集電体11と、第1シーラント12と、第1電極13と同様に、第2シート体20と、第2集電体21と、第2シーラント22と、第2電極23とを備える。ただし、第2電極ユニット2は、第1電極ユニット1のイオン交換膜14に相当する部材を備えていない。 The second electrode unit 2 has the same structure as the first electrode unit 1. The second electrode unit 2 includes the first sheet body 10 of the first electrode unit 1, the first current collector 11, the first sealant 12, the second sheet body 20, and the first electrode 13. Two current collectors 21, a second sealant 22, and a second electrode 23 are provided. However, the second electrode unit 2 does not include a member corresponding to the ion exchange membrane 14 of the first electrode unit 1.
 第2シート体20は、セル100の外装袋101の一部をなし、第2シート体20の厚さは、第1シート体10の厚さと同一である。第2シート体20は、第1電極ユニット1の第1シート体10と同様に、非導電性且つ電解液非透過性である。第2シート体20には、第1電極ユニット1の第1シート体10と同様に、中央部に第2貫通孔20aが設けられている。また、第2集電体21は、第1電極ユニット1の第1集電体11と同様に、第2導電体21a及び第2被覆シート21bを有する。更に第2シーラント22は、第1電極ユニット1の第1シーラント12と同様に、非導電性かつ電解液非透過性であり、第2筒状部22a及び第2縁部22bを有する。 The second sheet body 20 forms a part of the outer bag 101 of the cell 100, and the thickness of the second sheet body 20 is the same as the thickness of the first sheet body 10. Similar to the first sheet body 10 of the first electrode unit 1, the second sheet body 20 is non-conductive and electrolyte-impermeable. Similar to the first sheet body 10 of the first electrode unit 1, the second sheet body 20 is provided with a second through hole 20 a in the center. The second current collector 21 includes a second conductor 21a and a second cover sheet 21b, like the first current collector 11 of the first electrode unit 1. Further, like the first sealant 12 of the first electrode unit 1, the second sealant 22 is non-conductive and non-permeable to electrolyte, and has a second cylindrical portion 22a and a second edge portion 22b.
 第2電極23は、第1電極ユニット1の第1電極13と同様に形成され、活物質、導電助剤としての炭素材料、バインダ及び酸性の電解液を含有しているが、第1電極13と異なり、正極用の活物質を含有している。第2電極23の一平面は、第2被覆シート21bに接している。 The second electrode 23 is formed in the same manner as the first electrode 13 of the first electrode unit 1 and contains an active material, a carbon material as a conductive additive, a binder, and an acidic electrolyte solution. Unlike the case, it contains an active material for a positive electrode. One plane of the second electrode 23 is in contact with the second covering sheet 21b.
 正極として機能する第2電極ユニット2の第2電極23の活物質に含まれるバナジウムイオン又はバナジウムを含むイオンは、酸化還元反応によって、5価及び4価の間で酸化数が変化するバナジウムを含むイオンであるのが好ましい。5価及び4価の間で酸化数が変化するバナジウムを含むイオンとしては、VO2+(IV)、VO2 +(V )が例示される。 The vanadium ion or the ion containing vanadium contained in the active material of the second electrode 23 of the second electrode unit 2 functioning as the positive electrode contains vanadium whose oxidation number changes between pentavalent and tetravalent by an oxidation-reduction reaction. It is preferably an ion. The ion containing pentavalent and tetravalent vanadium oxidation number changes between, VO 2+ (IV), VO 2 + (V) are exemplified.
 正極用の活物質であるバナジウム化合物は、酸化硫酸バナジウム(IV)(VOSO4 ・nH2 O)、酸化硫酸バナジウム(V )((VO2 )SO4 ・nH2 O)を挙げることができる。これらの混合物を用いてもよい。nは、0~5の整数である。 Examples of the vanadium compound that is an active material for the positive electrode include vanadium oxide (IV) (VOSO 4 · nH 2 O) and vanadium oxide (V) ((VO 2 ) 2 SO 4 · nH 2 O). . Mixtures of these may be used. n is an integer of 0 to 5.
 第1電極ユニット1及び第2電極ユニット2は、第1電極13及び第2電極23がイオン交換膜14を介して対向するように配されている。イオン交換膜14の他平面は、第2電極23の他平面に当接している。第1シート体10の周縁部及び第2シート体20の周縁部は接合されており、第1シート体10及び第2シート体20によりセル100の外装袋101が形成される。
 なお、外装袋101は、一枚の矩形のシートを二つ折りにし、シートの周縁部において、対向部分を接合して形成してもよい。
The first electrode unit 1 and the second electrode unit 2 are arranged so that the first electrode 13 and the second electrode 23 face each other with the ion exchange membrane 14 interposed therebetween. The other plane of the ion exchange membrane 14 is in contact with the other plane of the second electrode 23. The peripheral edge portion of the first sheet body 10 and the peripheral edge portion of the second sheet body 20 are joined, and the outer bag 101 of the cell 100 is formed by the first sheet body 10 and the second sheet body 20.
The exterior bag 101 may be formed by folding a rectangular sheet into two and joining the opposing portions at the peripheral edge of the sheet.
 イオン交換膜14を介して対向する第1電極13及び第2電極23間において、下記式(1)及び(2)の反応が生じる。
正極:VOX2 ・nH2 O(s)⇔VO2 X・(n-1)H2 O(s)+HX+H+ +e- …(1)
負極:VX3 ・nH2 O(s)+H+e- ⇔VX2 ・nH2 O(s)+HX…(2)
 式中、Xは1価の陰イオンを表す。Xがm価の陰イオンである場合、結合係数(1/m)が考慮される。nはバナジウム化合物の種類に応じた種々の値をとり得る。
Reactions of the following formulas (1) and (2) occur between the first electrode 13 and the second electrode 23 facing each other through the ion exchange membrane 14.
Positive electrode: VOX 2 · nH 2 O (s) ⇔VO 2 X · (n−1) H 2 O (s) + HX + H + + e (1)
Negative electrode: VX 3 · nH 2 O (s) + H + + e ⇔VX 2 · nH 2 O (s) + HX (2)
In the formula, X represents a monovalent anion. When X is an m-valent anion, the coupling coefficient (1 / m) is considered. n can take various values depending on the type of vanadium compound.
 式(1)及び式(2)の反応を利用して電池セル100の充放電が行われる。式(1)及び式(2)の反応においてイオン交換膜14を介して第1電極13及び第2電極23間でプロトンが移動する。 The battery cell 100 is charged / discharged using the reactions of the formulas (1) and (2). Protons move between the first electrode 13 and the second electrode 23 via the ion exchange membrane 14 in the reactions of the formulas (1) and (2).
 ここで、第1集電体11の第1導電体11aにおいて、第1シート体10の第1貫通孔10aから露出する部分と、第2集電体21の第2導電体20aにおいて、第2シート体20の第2貫通孔20aから露出する部分とが、負荷又は充電器等と接続されることにより、外部との電子のやり取りが行われる。 Here, in the first conductor 11 a of the first current collector 11, the portion exposed from the first through hole 10 a of the first sheet body 10 and the second conductor 20 a of the second current collector 21 are The part exposed from the 2nd through-hole 20a of the sheet | seat body 20 is connected with a load or a charger, etc., and the electronic exchange with the exterior is performed.
 上記の構成によれば、第1集電体11の一平面及び第1シート体10の内面間と、第1シーラント12及び第1集電体11の側面間とに存在する空気を、第1貫通孔10aから第1シート体10の外部に排出して、低減することができる。これにより、第1電極13及び第1集電体11の密着性の低下を抑制して、接触抵抗の上昇を低減して、電池としての機能の低下を防止できる。 According to said structure, the air which exists between the one plane of the 1st electrical power collector 11 and the inner surface of the 1st sheet | seat body 10, and between the 1st sealant 12 and the side surfaces of the 1st electrical power collector 11 is made into 1st. It can discharge | emit to the exterior of the 1st sheet | seat body 10 from the through-hole 10a, and can reduce. Thereby, the fall of the adhesiveness of the 1st electrode 13 and the 1st electrical power collector 11 can be suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented.
 第2電極ユニット2においても、同様に、第2電極23及び第2集電体21の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。 Similarly, in the second electrode unit 2, it is possible to suppress a decrease in adhesion between the second electrode 23 and the second current collector 21, reduce an increase in contact resistance, and prevent a decrease in function as a battery.
 第1集電体11の一平面が第1貫通孔10aよりも大きいので、第1集電体11が第1貫通孔10aから外装袋101の外部に抜け落ちることを防止することができる。
 第1電極13の両平面は、第1貫通孔10aよりも小さく、セル10の平面視において、第1電極13が貫通孔10aよりも内側に位置しているので、第1貫通孔10aから圧力を加えて電池セル100を製造する場合、第1電極13全体に圧力を加えることができる。これにより、第1電極13及び第1集電体11の密着性を向上させることができる。第2電極23及び第2集電体21の密着性も同様に、向上させることができる。
Since one plane of the first current collector 11 is larger than the first through hole 10a, it is possible to prevent the first current collector 11 from falling out of the outer bag 101 from the first through hole 10a.
Both planes of the first electrode 13 are smaller than the first through-hole 10a, and the first electrode 13 is located on the inner side of the through-hole 10a in the plan view of the cell 10, so that the pressure from the first through-hole 10a When the battery cell 100 is manufactured by adding the pressure, pressure can be applied to the entire first electrode 13. Thereby, the adhesiveness of the 1st electrode 13 and the 1st electrical power collector 11 can be improved. Similarly, the adhesion between the second electrode 23 and the second current collector 21 can be improved.
 第1集電体11は、第1貫通孔10aから露出する部分を有し、第2集電体21は、第2貫通孔20aから露出する部分を有しており、第1電極13及び第2電極23が対向している。したがって、第1集電体11及び第2集電体21において露出した部分を介して、外部の負荷に、又は電池セル100同士を電気的に接続することができる。 The first current collector 11 has a portion exposed from the first through hole 10a, and the second current collector 21 has a portion exposed from the second through hole 20a. Two electrodes 23 are opposed to each other. Therefore, the battery cells 100 can be electrically connected to an external load through the exposed portions of the first current collector 11 and the second current collector 21.
 バナジウムイオン又はバナジウムを含むイオンを活物質として用いることにより、第1電極13及び第2電極23において、正極及び負極の活物質を同一として電池を構成でき、電池の設計が容易となる。 By using vanadium ions or ions containing vanadium as an active material, the first electrode 13 and the second electrode 23 can be configured with the same positive and negative electrode active materials, which facilitates battery design.
 以下、電池セル100の製造方法について説明する。図3及び図4は、電池セル100の製造方法の説明図である。まず、図3Aに示すように、第1集電体11を、一平面が第1貫通孔10aを覆うように、第1シート体10の一平面に配する。 Hereinafter, a method for manufacturing the battery cell 100 will be described. 3 and 4 are explanatory diagrams of a method for manufacturing the battery cell 100. FIG. First, as shown to FIG. 3A, the 1st electrical power collector 11 is distribute | arranged to one plane of the 1st sheet | seat body 10 so that one plane may cover the 1st through-hole 10a.
 次に、図3Bに示すように、第1被覆シート11b上において、周縁部を残して、第1電極13を設ける。その後、図3Cに示すように、第1シーラント12を、筒状部12aが、第1集電体11の側面を覆い、縁部12bが、第1被覆シート11bの他平面の周縁部を覆うように配する。このとき、筒状部12aの他端部は、第1シート体10の一平面に固着され、縁部12bは、第1被覆シート11bに固着される。 Next, as shown in FIG. 3B, the first electrode 13 is provided on the first covering sheet 11b, leaving the peripheral edge. Thereafter, as shown in FIG. 3C, the first sealant 12, the cylindrical portion 12a covers the side surface of the first current collector 11, and the edge portion 12b covers the peripheral portion of the other flat surface of the first covering sheet 11b. Arrange as follows. At this time, the other end portion of the cylindrical portion 12a is fixed to one plane of the first sheet body 10, and the edge portion 12b is fixed to the first covering sheet 11b.
 その後、図3Dに示すように、イオン交換膜14を第1電極13上に配して、周縁部を第1シーラント12の縁部12bに固着する。なお、第1電極13には、イオン交換膜14の縁部12bへの固着前に、電解液を含有させてある。したがって、第1電極ユニット1においては、第1電極13が電解液を含有した状態で、イオン交換膜14の縁部12bへの固着が行われることとなる。 Thereafter, as shown in FIG. 3D, the ion exchange membrane 14 is disposed on the first electrode 13, and the peripheral edge is fixed to the edge 12 b of the first sealant 12. The first electrode 13 contains an electrolytic solution before the ion exchange membrane 14 is fixed to the edge 12b. Accordingly, in the first electrode unit 1, the first electrode 13 is fixed to the edge portion 12 b of the ion exchange membrane 14 in a state where the electrolyte solution is contained.
 更に、図3A~図3Cに示す手順と同様の手順により第2電極ユニット2を作製する。なお、第2電極ユニット2においては、この時点において、第2電極23は電解液を含有していない。 Further, the second electrode unit 2 is manufactured by the same procedure as that shown in FIGS. 3A to 3C. In addition, in the 2nd electrode unit 2, the 2nd electrode 23 does not contain electrolyte solution at this time.
 その後、図4Eに示すように、上述のように作製した第1電極ユニット1に、第2電極ユニット2を、イオン交換膜14を介して第1電極13及び第2電極23が対向するように、積層する。そして、第1シート体10及び第2シート体20において、減圧状態下で、対向する一辺部分のみを残し、残りの三辺部分を固着する。これにより、開口102が形成される。その後、減圧状態下で、開口102から第2電極23に含浸させる電解液を注入し、第1シート体10及び第2シート体20の前記一辺部分同士を固着する。これにより、図4Fに示すように、電池セル100が作製される。なお、前記一辺部分同士の固着のみを減圧状態下で行ってもよい。ここで、第1シート体10の一平面は、内面に対応している。 Thereafter, as shown in FIG. 4E, the second electrode unit 2 is placed on the first electrode unit 1 manufactured as described above so that the first electrode 13 and the second electrode 23 face each other with the ion exchange membrane 14 therebetween. Laminate. And in the 1st sheet | seat body 10 and the 2nd sheet | seat body 20, only the one side part which opposes is left under a pressure-reduced state, and the remaining three side parts are fixed. Thereby, the opening 102 is formed. Thereafter, an electrolytic solution to be impregnated into the second electrode 23 is injected from the opening 102 under a reduced pressure state, and the one side portions of the first sheet body 10 and the second sheet body 20 are fixed to each other. Thereby, as shown to FIG. 4F, the battery cell 100 is produced. Note that only the fixing of the one side portions may be performed under reduced pressure. Here, one plane of the first sheet body 10 corresponds to the inner surface.
 上記の製造方法によれば、第1集電体11の一平面及び第1シート体10の内面間に存在する空気を、第1貫通孔10aから第1シート体10の外部に排出して、低減することができる。したがって、第1シート体10及び第2シート体20の周縁部を減圧状態で接合する際、空気により第1集電体11が変形することを防止できる。これにより、第1電極13及び第1集電体11の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。また、第2電極ユニット2においても、同様に、電池としての機能の低下を防止できる。 According to said manufacturing method, the air which exists between the one plane of the 1st electrical power collector 11 and the inner surface of the 1st sheet body 10 is discharged | emitted from the 1st through-hole 10a to the exterior of the 1st sheet body 10, Can be reduced. Therefore, when joining the peripheral part of the 1st sheet body 10 and the 2nd sheet body 20 in a pressure-reduced state, it can prevent that the 1st electrical power collector 11 deform | transforms with air. Thereby, the fall of the adhesiveness of the 1st electrode 13 and the 1st electrical power collector 11 is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented. Similarly, in the second electrode unit 2, it is possible to prevent the function of the battery from being lowered.
(実施の形態2)
 実施の形態2においては、実施の形態1と第2電極ユニット2の構造が異なる。図5は、実施の形態2に係る電池セル100の断面図である。実施の形態2に係る電池の構成について、実施の形態1と同様な構成については、同一の符号を付してその詳細な説明を省略する。
(Embodiment 2)
In the second embodiment, the structure of the second electrode unit 2 is different from that of the first embodiment. FIG. 5 is a cross-sectional view of battery cell 100 according to the second embodiment. About the structure of the battery which concerns on Embodiment 2, about the structure similar to Embodiment 1, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 実施の形態2に係る第2電極ユニット2において、第2集電体21は、チタン製の第2導電体21aのみを有し、被覆シート21bを有していない。また、第2電極ユニット2は、第2シーラント22に代えて、枠状の固着シート25を有する。 In the second electrode unit 2 according to Embodiment 2, the second current collector 21 has only the second conductor 21a made of titanium, and does not have the covering sheet 21b. Further, the second electrode unit 2 has a frame-shaped fixing sheet 25 instead of the second sealant 22.
 第2シート体20の内面に、第2導電体21aがその一平面により第2貫通孔20aを覆うように配されている。固着シート25は、第2導電体21aの一平面の周縁部及び第2シート体20の内面の間に、第2シート体20の第2貫通孔20aの縁に沿って配され、固着している。第2電極23は、第2導電体21aの他平面に設けられており、イオン交換膜14を介して第1電極13に対向している。 The second conductor 21a is arranged on the inner surface of the second sheet body 20 so as to cover the second through-hole 20a by one plane. The fixing sheet 25 is arranged along the edge of the second through hole 20a of the second sheet body 20 between the peripheral edge of the one plane of the second conductor 21a and the inner surface of the second sheet body 20, and is fixed. Yes. The second electrode 23 is provided on the other plane of the second conductor 21 a and faces the first electrode 13 with the ion exchange membrane 14 interposed therebetween.
 上記の構成においては、第2導電体21aの一平面及び第2シート体20の内面間に存在する空気を、第2貫通孔20aから第2シート体20の外部に排出して、低減することができる。これにより、第2電極23及び第2導電体21aの密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。また、第2導電体21aは、チタンであり、第2電極23が含む電解液に腐食されない。更に、実施の形態1と同様に、第1電極13及び第1集電体11の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。 In the above configuration, the air existing between the one plane of the second conductor 21a and the inner surface of the second sheet body 20 is discharged from the second through hole 20a to the outside of the second sheet body 20 and reduced. Can do. Thereby, the fall of the adhesiveness of the 2nd electrode 23 and the 2nd conductor 21a is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented. The second conductor 21a is titanium and is not corroded by the electrolytic solution included in the second electrode 23. Further, similarly to the first embodiment, it is possible to suppress a decrease in the adhesion between the first electrode 13 and the first current collector 11, reduce an increase in contact resistance, and prevent a decrease in function as a battery.
 なお、第1電極ユニット1を、正極とし、上記の第2電極ユニット2と同様に、第1導電体11aをチタン製とし、第1被覆シート11bを有さず、第1シーラント12に代えて、上記と同様の固着シートを備えることとしてもよい。このとき、第2電極ユニット2は負極をなすこととなる。 Note that the first electrode unit 1 is a positive electrode, and the first conductor 11a is made of titanium, does not have the first covering sheet 11b, and is replaced with the first sealant 12 in the same manner as the second electrode unit 2 described above. A fixing sheet similar to the above may be provided. At this time, the second electrode unit 2 forms a negative electrode.
(実施の形態3)
 実施の形態3は、電池セルを複数積層した電池に関する。図6は、実施の形態3に係る電池200の断面図である。実施の形態3に係る電池200は、バナジウムレドックス二次電池であり、図示しないケースに収容された3つの電池セル100,100,100と、二つの導電板3,3とを有している。実施の形態3に係る電池200の構成について、実施の形態1と同様な構成については、同一の符号を付してその詳細な説明を省略する。
(Embodiment 3)
Embodiment 3 relates to a battery in which a plurality of battery cells are stacked. FIG. 6 is a cross-sectional view of battery 200 according to the third embodiment. The battery 200 according to Embodiment 3 is a vanadium redox secondary battery, and includes three battery cells 100, 100, 100 housed in a case (not shown) and two conductive plates 3, 3. About the structure of the battery 200 which concerns on Embodiment 3, about the structure similar to Embodiment 1, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 3つの電池セル100,100,100は、隣り合う電池セル100において、夫々の第1シート体10及び第2シート体20の外面が対向し、接するように並設されている。並設方向の一端側(図6の最も下側)における電池セル100の第2貫通孔20aと、中央における電池セル100の第1貫通孔10aとは連なっている。また、前記中央における電池セル100の第2貫通孔20aと、積層方向の他端側(図6の最も上側)における電池セル100の第1貫通孔10aは連なっている。 The three battery cells 100, 100, 100 are arranged side by side so that the outer surfaces of the first sheet body 10 and the second sheet body 20 face each other and contact each other in the adjacent battery cells 100. The second through hole 20a of the battery cell 100 on one end side in the juxtaposed direction (the lowermost side in FIG. 6) and the first through hole 10a of the battery cell 100 in the center are continuous. In addition, the second through hole 20a of the battery cell 100 at the center is connected to the first through hole 10a of the battery cell 100 at the other end side in the stacking direction (the uppermost side in FIG. 6).
  導電板3は、導電性を有する部材であればよく、例えば、銅、アルミニウム等から形成される。
 一の導電板3は、前記一端側の電池セル100における第2集電体21の一平面及び第2貫通孔20aと、前記中央における電池セル100の第1集電体11の一平面及び第1貫通孔10aとにより形成されている空間に配されている。該一の導電板3の一面は、前記一端側の電池セル100における第2集電体21に接しており、他面は、前記中央の電池セル100における第1集電体11に接している。ここで、一の導電板3の各平面の面積は、第1電極13及び第2電極23夫々の各平面の面積よりも大きい。
The conductive plate 3 may be any member having conductivity, and is formed from, for example, copper, aluminum or the like.
One conductive plate 3 includes one plane of the second current collector 21 and the second through hole 20a in the battery cell 100 on the one end side, and one plane of the first current collector 11 of the battery cell 100 in the center and the second through hole 20a. It is arranged in a space formed by one through hole 10a. One surface of the one conductive plate 3 is in contact with the second current collector 21 in the battery cell 100 on the one end side, and the other surface is in contact with the first current collector 11 in the central battery cell 100. . Here, the area of each plane of one conductive plate 3 is larger than the area of each plane of the first electrode 13 and the second electrode 23.
 他の導電板3は、前記中央の電池セル100における第2集電体21及び第2貫通孔20aと、前記他端側における電池セル100の第1集電体11及び第1貫通孔10aとにより形成されている空間に配されている。該他の導電板3の一面は、前記中央の電池セル100における第2集電体21に接しており、他面は、前記他端側の電池セル100における第1集電体11に接している。ここで、他の導電板3の各平面の面積は、第1電極13及び第2電極23夫々の各平面の面積よりも大きい。 The other conductive plate 3 includes the second current collector 21 and the second through hole 20a in the central battery cell 100, and the first current collector 11 and the first through hole 10a in the battery cell 100 on the other end side. It is arranged in the space formed by. One surface of the other conductive plate 3 is in contact with the second current collector 21 in the central battery cell 100, and the other surface is in contact with the first current collector 11 in the battery cell 100 on the other end side. Yes. Here, the area of each plane of the other conductive plate 3 is larger than the area of each plane of the first electrode 13 and the second electrode 23.
 ここで、各導電板3の厚さは、第1外装シート10又は第2外装シート20二枚分の厚さに相当する。したがって、導電部材3の厚さは、外装袋101の厚さの2倍となる。 Here, the thickness of each conductive plate 3 corresponds to the thickness of the first exterior sheet 10 or the second exterior sheet 20. Therefore, the thickness of the conductive member 3 is twice the thickness of the exterior bag 101.
 二枚の導電板3,3により、電池セル100同士を電気的に接続することができる。また、負極をなす第1電極ユニット1の第1集電体11と、正極をなす第2電極ユニット2の第2集電体21が接続されているので、3つの電池セル100,100,100は直列に接続されていることとなる。
 なお、電池セル100同士を電気的に接続できれば、導電板3に代えて、箔状等の板状でない他の形状の導電部材を配してもよい。
The battery cells 100 can be electrically connected to each other by the two conductive plates 3 and 3. In addition, since the first current collector 11 of the first electrode unit 1 that forms the negative electrode and the second current collector 21 of the second electrode unit 2 that forms the positive electrode are connected, the three battery cells 100, 100, 100 Are connected in series.
In addition, as long as the battery cells 100 can be electrically connected to each other, instead of the conductive plate 3, a conductive member having another shape that is not a plate shape such as a foil shape may be provided.
 前記一端側の電池セル100における第1集電体11と、前記他端側の電池セル100における第2集電体21とが、負荷又は充電器等と接続されることにより、外部との電子のやり取りが行われる。 The first current collector 11 in the battery cell 100 on the one end side and the second current collector 21 in the battery cell 100 on the other end side are connected to a load or a charger, etc. Is exchanged.
 図7は、電池200の組み立ての説明図である。電池200の組み立てにおいて、導電板3は、電池200の組み立て後よりも、分厚く、各平面の面積が小さい部材として配する。なお、各導電板3は、第1シート体10又は第2シート体20二枚分の厚さよりも厚い。したがって、導電部材3の厚さは、外装袋の厚さの2倍よりも厚い。ここで、電池200の組み立て前における導電板3の各平面の面積は、第1電極13及び第2電極23夫々の各平面の面積よりも大きい。図7の白抜き矢印に示すように、電池セル100の並設方向の両端から圧力をかけることにより、第1電極13及び第2電極23に圧力が加わる。このとき、導電板3により第1電極13及び第2電極23に圧力が加わり、また、導電板3は、図6に示す厚さ及び両平面の面積となる。 FIG. 7 is an explanatory diagram of assembling the battery 200. In assembling the battery 200, the conductive plate 3 is arranged as a member that is thicker than that after the battery 200 is assembled and has a small area on each plane. Each conductive plate 3 is thicker than the thickness of the first sheet body 10 or the second sheet body 20. Therefore, the thickness of the conductive member 3 is thicker than twice the thickness of the exterior bag. Here, the area of each plane of the conductive plate 3 before the assembly of the battery 200 is larger than the area of each plane of the first electrode 13 and the second electrode 23. As indicated by the white arrows in FIG. 7, pressure is applied to the first electrode 13 and the second electrode 23 by applying pressure from both ends of the battery cells 100 in the juxtaposed direction. At this time, pressure is applied to the first electrode 13 and the second electrode 23 by the conductive plate 3, and the conductive plate 3 has the thickness and the area of both planes shown in FIG.
 上記の構成によれば、各電池セル100において、実施の形態1と同様に、第1電極13及び第1集電体11の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。また、第2電極23及び第2集電体21の密着性も同様に、向上させることができる。また、複数の電池セル100を並設することにより、電池200の容量を増大させることができる。 According to the above configuration, in each battery cell 100, as in the first embodiment, the decrease in the adhesion between the first electrode 13 and the first current collector 11 is suppressed, and the increase in contact resistance is reduced. It is possible to prevent deterioration of the function as a battery. Moreover, the adhesiveness of the 2nd electrode 23 and the 2nd electrical power collector 21 can be improved similarly. Moreover, the capacity | capacitance of the battery 200 can be increased by arranging the some battery cell 100 in parallel.
 更に、複数のセル100は、第1シート体10及び第2シート体20の外面同士が対向するように並設されているので、全体としてかさばることを防止できる。また、導電板3は、平板状をなし、電池200の組み立て前後において、厚さが第1シート体10又は第2シート体20二枚分の厚さ以上であるので、複数の電池セル100を並設方向において挟むように圧力を加えた場合に、第1電極13及び第2電極23全体に良好に圧力を加えることができる。また、電池200が導電板3を備えることにより、各電池セル100を接続するために別にタブ部材を設けて該タブ部材を外装袋の外側に引き出して接続する等の必要がなく、電池の構造及び製造工程を簡素化することができる。 Furthermore, since the plurality of cells 100 are arranged side by side so that the outer surfaces of the first sheet body 10 and the second sheet body 20 face each other, it can be prevented from being bulky as a whole. Further, the conductive plate 3 has a flat plate shape, and the thickness is equal to or greater than the thickness of the first sheet body 10 or the second sheet body 20 before and after the battery 200 is assembled. When the pressure is applied so as to be sandwiched in the juxtaposed direction, the pressure can be favorably applied to the entire first electrode 13 and second electrode 23. In addition, since the battery 200 includes the conductive plate 3, there is no need to separately provide a tab member to connect each battery cell 100 and to connect the tab member by pulling it out of the exterior bag. In addition, the manufacturing process can be simplified.
 なお、電池セル100の個数は3個に限定されず、電池200は、2個以下又は4個以上の電池セル100を備えていてもよい。 Note that the number of battery cells 100 is not limited to three, and the battery 200 may include two or less battery cells 100 or four or more battery cells 100.
(実施の形態4)
 実施の形態4においては、実施の形態3と電池の構造及び電極の極性が異なる。図8は、実施の形態4に係る電池200の断面図である。実施の形態4に係る電池の構成について、実施の形態1及び実施の形態3と同様な構成については、同一の符号を付してその詳細な説明を省略する。
(Embodiment 4)
The fourth embodiment is different from the third embodiment in the structure of the battery and the polarity of the electrodes. FIG. 8 is a cross-sectional view of battery 200 according to the fourth embodiment. About the structure of the battery which concerns on Embodiment 4, about the structure similar to Embodiment 1 and Embodiment 3, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 実施の形態4に係る電池200が備える電池セル100においては、並設方向の中央の電池セル100において、第1電極ユニット1及び第2電極ユニット2の配置が入れ替わっている。前記中央における電池セル100の第2貫通孔20aと、並設方向の一端側における電池セル100の第2貫通孔20aは対向している。また、並設方向の他端側における電池セル100の第1貫通孔10aと、中央における電池セル100の第1貫通孔10aとは対向している。 In the battery cell 100 included in the battery 200 according to Embodiment 4, the arrangement of the first electrode unit 1 and the second electrode unit 2 is interchanged in the central battery cell 100 in the juxtaposed direction. The second through hole 20a of the battery cell 100 at the center is opposed to the second through hole 20a of the battery cell 100 at one end side in the juxtaposition direction. Moreover, the 1st through-hole 10a of the battery cell 100 in the other end side of the juxtaposition direction and the 1st through-hole 10a of the battery cell 100 in the center are facing.
 各導電板3の厚さは、第1シート体10及び第2シート体20二枚分の厚さ以上である。一の導電板3の一面は、前記一端側の電池セル100における第2集電体21に接しており、他面は、前記中央の電池セル100における第2集電体21に接している。また、他の導電板3の一面は、前記中央の電池セル100における第1集電体11に接しており、他面は、前記他端側の電池セル100における第1集電体11に接している。したがって、各導電板3は、電池セル100同士を電気的に接続し、負極をなす第1電極ユニット1の第1集電体11同士と、正極をなす第2電極ユニット2の第2集電体21同士とが接続されており、電池セル100,100,100は並列に接続されている。 The thickness of each conductive plate 3 is equal to or greater than the thickness of two sheets of the first sheet body 10 and the second sheet body 20. One surface of one conductive plate 3 is in contact with the second current collector 21 in the battery cell 100 on the one end side, and the other surface is in contact with the second current collector 21 in the central battery cell 100. One surface of the other conductive plate 3 is in contact with the first current collector 11 in the central battery cell 100, and the other surface is in contact with the first current collector 11 in the battery cell 100 on the other end side. ing. Accordingly, each conductive plate 3 electrically connects the battery cells 100, and the first current collectors 11 of the first electrode unit 1 forming a negative electrode and the second current collector of the second electrode unit 2 forming a positive electrode. The bodies 21 are connected to each other, and the battery cells 100, 100, 100 are connected in parallel.
 また、電池200は、タブ30,31を備える。タブ30は、他の導電板3の側面に接続されている。また、タブ31は、一の導電板3の側面に接続されている。 Further, the battery 200 includes tabs 30 and 31. The tab 30 is connected to the side surface of the other conductive plate 3. The tab 31 is connected to the side surface of the one conductive plate 3.
 前記一端側の電池セル100における第1集電体11及びタブ30と、前記他端側の電池セル100における第2集電体21及びタブ31とが、例えば、夫々、別のタブに接続され、該別のタブが負荷又は充電器等と接続されることにより、外部との電子のやり取りが行われる。 For example, the first current collector 11 and the tab 30 in the battery cell 100 on the one end side and the second current collector 21 and the tab 31 in the battery cell 100 on the other end side are respectively connected to different tabs. The other tab is connected to a load, a charger, or the like, thereby exchanging electrons with the outside.
 上記の構成によれば、各電池セル100において、実施の形態1と同様に、第1電極13及び第1集電体11の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。また、第2電極23及び第2集電体21の密着性も同様に、向上させることができる。
 導電板3の厚さが第1シート体10及び第2シート体20二枚分の厚さ以上であるので、実施の形態3と同様に、複数の電池セル100を並設方向において挟むように圧力を加えた場合に、第1電極13及び第2電極23に良好に圧力を加えることができる。
According to the above configuration, in each battery cell 100, as in the first embodiment, the decrease in the adhesion between the first electrode 13 and the first current collector 11 is suppressed, and the increase in contact resistance is reduced. The function as a battery can be prevented from being lowered. Moreover, the adhesiveness of the 2nd electrode 23 and the 2nd electrical power collector 21 can be improved similarly.
Since the thickness of the conductive plate 3 is equal to or greater than the thickness of the first sheet body 10 and the second sheet body 20, the plurality of battery cells 100 are sandwiched in the juxtaposition direction as in the third embodiment. When pressure is applied, the pressure can be applied to the first electrode 13 and the second electrode 23 satisfactorily.
 なお、図8において、隣り合う電極ユニット100は、互いに外装袋101の外面が接していないが、外装袋101が接し、タブ30又はタブ31を挟んでいてもよい。
 また、電池セル100の個数は3個に限定されず、電池200は、2個以下又は4個以上の電池セル100を有していてもよい。
In FIG. 8, adjacent electrode units 100 are not in contact with the outer surface of the outer bag 101, but the outer bag 101 may be in contact with the tab 30 or the tab 31.
Further, the number of battery cells 100 is not limited to three, and the battery 200 may include two or less battery cells 100 or four or more battery cells 100.
(実施の形態5)
 実施の形態5においては、実施の形態1及び実施の形態3と電池セルの構造が異なる。図9は、実施の形態5に係る電池200が備える電池セル100の部分断面図であり、図10は、図9のX-X線による断面図である。実施の形態5に係る電池200の構成について、実施の形態1及び実施の形態3と同様な構成については、同一の符号を付してその詳細な説明を省略する。
(Embodiment 5)
In the fifth embodiment, the structure of the battery cell is different from the first and third embodiments. FIG. 9 is a partial cross-sectional view of battery cell 100 included in battery 200 according to Embodiment 5, and FIG. 10 is a cross-sectional view taken along line XX of FIG. About the structure of the battery 200 which concerns on Embodiment 5, about the structure similar to Embodiment 1 and Embodiment 3, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 実施の形態5に係る電池セル100において、第1電極ユニット1は、第1シーラント12に加えて、枠状の固着シート15を有する。ここで、第1シーラント12及び固着シート15は、夫々固定部をなす。固着シート15は、第1集電体11の一平面及び第1シート体10の内面間において、第1集電体11の周縁部に沿って配されている。固着シート15は、第1集電体11の一平面の周縁部及び第1シート体10の内面に固着されている。固着シート15の固着は、第1シーラント12の固着と同様に、熱溶着又は粘着により行われる。 In the battery cell 100 according to Embodiment 5, the first electrode unit 1 includes a frame-shaped fixing sheet 15 in addition to the first sealant 12. Here, the 1st sealant 12 and the adhering sheet | seat 15 make a fixed part, respectively. The fixing sheet 15 is disposed along the peripheral edge portion of the first current collector 11 between one plane of the first current collector 11 and the inner surface of the first sheet body 10. The fixing sheet 15 is fixed to the peripheral edge portion of the first current collector 11 on one plane and the inner surface of the first sheet body 10. The fixing of the fixing sheet 15 is performed by heat welding or adhesion, similarly to the fixing of the first sealant 12.
 また、第1シート体10には、前記固着シート15よりも内側に対応する位置に、複数の第1貫通孔10a(図10では、16個)が設けられている。 The first sheet body 10 is provided with a plurality of first through holes 10a (16 in FIG. 10) at positions corresponding to the inside of the fixing sheet 15.
 更に、第1シーラント12の第1筒状部12aは、第1集電体11の側面に加えて、固着シート15の側面も覆っている。 Furthermore, the first cylindrical portion 12 a of the first sealant 12 covers the side surface of the fixing sheet 15 in addition to the side surface of the first current collector 11.
 上記の構成によれば、第1集電体11の一平面及び第1シート10の内面間に存在する空気を、複数の第1貫通孔10aから第1シート10の外部に排出して、低減することができる。これにより、第1電極13及び第1集電体11の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。 固着シート15により、第1集電体11の位置決めが可能となる。また、第1シーラント12及び固着シート15により第1集電体11を固定するので、より強固に固定することができる。 According to said structure, the air which exists between the one plane of the 1st electrical power collector 11 and the inner surface of the 1st sheet | seat 10 is discharged | emitted from the some 1st through-hole 10a to the exterior of the 1st sheet | seat 10, and is reduced. can do. Thereby, the fall of the adhesiveness of the 1st electrode 13 and the 1st electrical power collector 11 is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented. The first current collector 11 can be positioned by the fixing sheet 15. Moreover, since the 1st electrical power collector 11 is fixed with the 1st sealant 12 and the adhering sheet | seat 15, it can fix more firmly.
 なお、第1貫通孔の個数は、図10に示す16個に限られず、2個以上15個以下、又は17個以上であってもよい。 The number of first through holes is not limited to 16 shown in FIG. 10, and may be 2 or more and 15 or less, or 17 or more.
(実施の形態6)
 実施の形態6においては、実施の形態1及び実施の形態3と電池セルの構造が異なる。図11は、実施の形態6に係る電池200が備える電池セル100の部分断面図であり、図12は、図11のXII-XII線による断面図である。実施の形態6に係る電池200の構成について、実施の形態1及び実施の形態3と同様な構成については、同一の符号を付してその詳細な説明を省略する。
(Embodiment 6)
In the sixth embodiment, the structure of the battery cell is different from the first and third embodiments. 11 is a partial cross-sectional view of battery cell 100 included in battery 200 according to Embodiment 6, and FIG. 12 is a cross-sectional view taken along line XII-XII in FIG. About the structure of the battery 200 which concerns on Embodiment 6, about the structure similar to Embodiment 1 and Embodiment 3, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 実施の形態6に係る電池セル100において、第1電極ユニット1は、第1シーラント12に加えて、固着シート15を有する。ここで、第1シーラント12及び固着シート15は、夫々固定部をなす。固着シート15の固着は、第1シーラント12の固着と同様に、熱溶着又は粘着により行われる。固着シート15は、4つの直線状の枠辺部15a,15b,15c,15dを有し、枠辺部15a,15dは、枠辺部15b,15cよりも短い。枠辺部15a,15b,15c,15dは、第1集電体11の一平面及び第1シート体10の内面間において、第1貫通孔10aの四辺に沿うように位置している。また、枠辺部15a,15b,15c,15dは、第1シーラント12の筒状体12aと所定距離離隔している。固着シート15は、第1集電体11の一平面の周縁部及び第1シート体10の内面に固着されている。 In the battery cell 100 according to Embodiment 6, the first electrode unit 1 has a fixing sheet 15 in addition to the first sealant 12. Here, the 1st sealant 12 and the adhering sheet | seat 15 make a fixed part, respectively. The fixing of the fixing sheet 15 is performed by heat welding or adhesion, similarly to the fixing of the first sealant 12. The fixing sheet 15 has four linear frame sides 15a, 15b, 15c, and 15d, and the frame sides 15a and 15d are shorter than the frame sides 15b and 15c. The frame side portions 15 a, 15 b, 15 c, and 15 d are positioned along the four sides of the first through hole 10 a between one plane of the first current collector 11 and the inner surface of the first sheet body 10. Further, the frame side portions 15a, 15b, 15c and 15d are separated from the cylindrical body 12a of the first sealant 12 by a predetermined distance. The fixing sheet 15 is fixed to the peripheral edge portion of the first current collector 11 on one plane and the inner surface of the first sheet body 10.
 枠辺部15aの一端部は、枠辺部15bの一端部に、枠辺部15a及び枠辺部15bが直角をなすように、接続されている。枠辺部15bの他端部は、枠辺部15cの一端部に、枠辺部15b及び枠辺部15cが直角をなすように、接続されている。枠辺部15cの他端部は、枠辺部15dの一端部に、枠辺部15c及び枠辺部15dが直角をなすように、接続されている。枠辺部15aの他端部及び枠辺部15dの他端部は、離隔している。したがって、固着シート15は、四角形の一の角を切り欠いたような枠状をなしている。 One end portion of the frame side portion 15a is connected to one end portion of the frame side portion 15b so that the frame side portion 15a and the frame side portion 15b form a right angle. The other end portion of the frame side portion 15b is connected to one end portion of the frame side portion 15c so that the frame side portion 15b and the frame side portion 15c form a right angle. The other end portion of the frame side portion 15c is connected to one end portion of the frame side portion 15d so that the frame side portion 15c and the frame side portion 15d form a right angle. The other end of the frame side 15a and the other end of the frame side 15d are spaced apart. Therefore, the fixing sheet 15 has a frame shape in which one corner of the quadrangle is cut out.
 上記の構成によれば、固着シート15の枠辺部15a,15b,15c,15dにより、第1集電体11の位置決めが可能となる。また、第1シーラント12及び固着シート15により第1集電体11を固定するので、より強固に固定することができる。
 更に、第1集電体11の一平面及び第1シート体10の内面間に存在する空気を第1貫通孔10aから第1シート部10の外部に排出して、低減することができる。また、第1集電体11の一平面及び第1シート体10の内面間において、枠辺部15a,15b,15c,15d及び第1筒状体12a間に存在する空気を、第1貫通孔10aから第1シート部10の外部に排出して、低減することができる。これにより、第1電極13及び第1集電体11の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。
According to the above configuration, the first current collector 11 can be positioned by the frame side portions 15 a, 15 b, 15 c, and 15 d of the fixing sheet 15. Moreover, since the 1st electrical power collector 11 is fixed with the 1st sealant 12 and the adhering sheet | seat 15, it can fix more firmly.
Furthermore, the air existing between one plane of the first current collector 11 and the inner surface of the first sheet body 10 can be reduced by discharging the air from the first through hole 10a to the outside of the first sheet portion 10. Further, the air existing between the frame side portions 15a, 15b, 15c, 15d and the first cylindrical body 12a between the one plane of the first current collector 11 and the inner surface of the first sheet body 10 is transferred to the first through hole. The amount can be reduced by discharging from 10a to the outside of the first sheet portion 10. Thereby, the fall of the adhesiveness of the 1st electrode 13 and the 1st electrical power collector 11 is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented.
(実施の形態7)
 実施の形態7においては、実施の形態6と固着シート15の構造が異なる。図13は、実施の形態7に係る電池200が備える電池セル100における固着シート15の形状の説明図である。実施の形態7に係る電池の構成について、実施の形態6と同様な構成については、同一の符号を付してその詳細な説明を省略する。
(Embodiment 7)
In the seventh embodiment, the structure of the fixing sheet 15 is different from that of the sixth embodiment. FIG. 13 is an explanatory diagram of the shape of the fixing sheet 15 in the battery cell 100 included in the battery 200 according to the seventh embodiment. About the structure of the battery which concerns on Embodiment 7, about the structure similar to Embodiment 6, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.
 固着シート15は、枠辺部15a,15b,15c,15dに加えて、直線状の延設部15e,15f,15gを有する。延設部15e,15f,15gは、枠辺部15b,15cよりも短く、延設部15f,15gは、枠辺部15a,15dよりも短い。延設部15e,15f,15gは、第1貫通孔10aの三辺に沿って配され、枠辺部15a,15b,15cと所定距離離隔している。 The fixing sheet 15 includes linear extending portions 15e, 15f, and 15g in addition to the frame side portions 15a, 15b, 15c, and 15d. The extended portions 15e, 15f, and 15g are shorter than the frame side portions 15b and 15c, and the extended portions 15f and 15g are shorter than the frame side portions 15a and 15d. The extending portions 15e, 15f, and 15g are arranged along the three sides of the first through hole 10a, and are separated from the frame side portions 15a, 15b, and 15c by a predetermined distance.
 延設部15eの一端部は、枠辺部15dの他端部に、枠辺部15d及び延設部15eが直角をなすように接続されている。延設部15eの他端部は、延設部15fの一端部に、延設部15e,15fが直角をなすように接続されている。延設部15fの他端部は、延設部15gの一端部に、延設部15f,15gが直角をなすように接続されている。また、延設部15gの他端部は、枠辺部15dと離隔している。 One end portion of the extended portion 15e is connected to the other end portion of the frame side portion 15d so that the frame side portion 15d and the extended portion 15e form a right angle. The other end of the extending portion 15e is connected to one end of the extending portion 15f so that the extending portions 15e and 15f form a right angle. The other end of the extended portion 15f is connected to one end of the extended portion 15g so that the extended portions 15f and 15g form a right angle. Further, the other end portion of the extending portion 15g is separated from the frame side portion 15d.
 上記の構成によれば、枠辺部15a,15b,15c,15d及び延設部15e,15f,15gにより、第1集電体11の位置決めが可能となる。また、第1シーラント12及び固着シート15により第1集電体11を固定するので、より強固に固定することができる。
 第1集電体11の一平面及び第1シート体10の内面間に存在する空気を第1貫通孔10aから第1シート体10の外部に排出して、低減することができる。また、第1集電体11及び第1シート体10間において、枠辺部15a,15b,15c,15dと、延設部15e,15f,15g及び第1筒状体12aとの間に存在する空気を第1貫通孔10aから第1シート体10の外部に排出して、低減することができる。これにより、第1電極13及び第1集電体11の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。
According to the above configuration, the first current collector 11 can be positioned by the frame side portions 15a, 15b, 15c, 15d and the extending portions 15e, 15f, 15g. Moreover, since the 1st electrical power collector 11 is fixed with the 1st sealant 12 and the adhering sheet | seat 15, it can fix more firmly.
The air existing between one plane of the first current collector 11 and the inner surface of the first sheet body 10 can be reduced by discharging the air from the first through hole 10a to the outside of the first sheet body 10. Moreover, between the 1st electrical power collector 11 and the 1st sheet | seat body 10, it exists between frame edge part 15a, 15b, 15c, 15d, extension part 15e, 15f, 15g, and the 1st cylindrical body 12a. Air can be discharged from the first through hole 10a to the outside of the first sheet body 10 and reduced. Thereby, the fall of the adhesiveness of the 1st electrode 13 and the 1st electrical power collector 11 is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented.
 なお、上記の実施の形態1から実施の形態7において、第1シート体10、第1貫通孔10a、第1集電体11、第1シーラント12、第1電極13、イオン交換膜14、固着シート15の形状は四角形状に限られず、円形又は多角形等の形状であってもよい。
 また、第2シート体20、第2貫通孔20a、第2集電体21、第2シーラント22、第2電極23、固着シート25の形状は、四角形状に限られず、円形又は多角形等の形状であってもよい。
 更に、第1貫通孔10a及び第2貫通孔20aが設けられている箇所は夫々、第1シート体10又は第2シート体20の中央部に限定されず、第1集電体11又は第2集電体21に覆われていれば、いかなる位置であってもよい。
In the first to seventh embodiments, the first sheet body 10, the first through hole 10a, the first current collector 11, the first sealant 12, the first electrode 13, the ion exchange membrane 14, and the fixing The shape of the sheet 15 is not limited to a rectangular shape, and may be a circular shape or a polygonal shape.
In addition, the shape of the second sheet body 20, the second through hole 20a, the second current collector 21, the second sealant 22, the second electrode 23, and the fixing sheet 25 is not limited to a square shape, and may be a circle or a polygon. It may be a shape.
Furthermore, the location where the first through hole 10a and the second through hole 20a are provided is not limited to the central portion of the first sheet body 10 or the second sheet body 20, respectively, and the first current collector 11 or the second Any position may be used as long as it is covered with the current collector 21.
 更に、実施の形態1、実施の形態3から実施の形態7までにおいて、第1電極ユニット1が正極をなし、第2電極ユニット2が負極をなすようにしてもよい。 Furthermore, in the first embodiment, the third embodiment to the seventh embodiment, the first electrode unit 1 may be a positive electrode and the second electrode unit 2 may be a negative electrode.
 更に、上記の実施の形態5から実施の形態7において、第2電極ユニット2を第1電極ユニット1と同様の構造にしてもよく、第1電極ユニット1及び第2電極ユニット2の両方を前記構造としてもよい。 Furthermore, in the above fifth to seventh embodiments, the second electrode unit 2 may have the same structure as the first electrode unit 1, and both the first electrode unit 1 and the second electrode unit 2 are It is good also as a structure.
 以上のように、本開示の一実施形態に係る電池セルは、シート状の外装袋と、該外装袋を貫通している第1貫通孔と、前記外装袋の内面に配され、一平面により前記第1貫通孔を覆っている平板状の第1集電体と、該第1集電体の他平面に設けられた平板状の第1電極と、前記第1集電体の周縁に沿って設けられ、前記第1集電体を前記外装袋の内面に固定する固定部とを備えることを特徴とする。 As described above, the battery cell according to the embodiment of the present disclosure is disposed on the sheet-shaped outer bag, the first through-hole penetrating the outer bag, and the inner surface of the outer bag, and is formed in a single plane. A flat plate-like first current collector covering the first through-hole, a flat plate-like first electrode provided on the other plane of the first current collector, and a periphery of the first current collector And a fixing portion for fixing the first current collector to the inner surface of the outer bag.
 本開示の一実施形態によれば、第1集電体の一平面及び外装袋の内面間に存在する空気を、第1貫通孔から外装袋の外部に排出して、低減することができる。これにより、第1電極及び第1集電体の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。 According to one embodiment of the present disclosure, the air existing between one plane of the first current collector and the inner surface of the outer bag can be reduced by discharging the air from the first through hole to the outside of the outer bag. Thereby, the fall of the adhesiveness of a 1st electrode and a 1st electrical power collector is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented.
 本開示の一実施形態に係る電池セルは、前記固定部は、額縁状をなしており、前記第1集電体の他平面の周縁部及び前記外装袋の内面に固着していることを特徴とする。 In the battery cell according to an embodiment of the present disclosure, the fixing portion has a frame shape, and is fixed to a peripheral portion of the other flat surface of the first current collector and an inner surface of the exterior bag. And
 本開示の一実施形態によれば、第1集電体の一平面及び外装袋の内面間と、固定部及び第1集電体の側面間に存在する空気とを、第1貫通孔から外装袋の外部に排出して、低減することができる。これにより、第1電極及び第1集電体の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。 According to an embodiment of the present disclosure, the air existing between one plane of the first current collector and the inner surface of the outer bag and between the fixing portion and the side surface of the first current collector is removed from the first through hole. It can be discharged outside the bag and reduced. Thereby, the fall of the adhesiveness of a 1st electrode and a 1st electrical power collector is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented.
 本開示の一実施形態に係る電池セルは、前記固定部は、枠状をなし、前記第1集電体の一平面の周縁部と、前記外装袋の内面とに固着していることを特徴とする。 In the battery cell according to an embodiment of the present disclosure, the fixing portion has a frame shape, and is fixed to a peripheral portion of one plane of the first current collector and an inner surface of the exterior bag. And
 本開示の一実施形態によれば、第1集電体の一平面及び外装袋の内面間に存在する空気を、第1貫通孔から外装袋の外部に排出して、低減することができる。これにより、第1電極及び第1集電体の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。 According to one embodiment of the present disclosure, the air existing between one plane of the first current collector and the inner surface of the outer bag can be reduced by discharging the air from the first through hole to the outside of the outer bag. Thereby, the fall of the adhesiveness of a 1st electrode and a 1st electrical power collector is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented.
 本開示の一実施形態に係る電池セルは、前記第1集電体の前記一平面は、前記第1貫通孔よりも大きく、前記第1電極の両平面は、前記第1貫通孔よりも小さいことを特徴とする。 In the battery cell according to an embodiment of the present disclosure, the one plane of the first current collector is larger than the first through hole, and both planes of the first electrode are smaller than the first through hole. It is characterized by that.
 本開示の一実施形態によれば、第1集電体が第1貫通孔から外装袋の外部に抜け落ちることを防止することができる。また、第1電極を第1貫通孔の位置に対応させて設けた場合、第1貫通孔から圧力を加えて電池セルを製造する際に、第1電極全体に良好に圧力を加えることができ、第1電極及び第1集電体の密着性を向上することができる。 According to one embodiment of the present disclosure, it is possible to prevent the first current collector from falling out of the outer bag from the first through hole. Further, when the first electrode is provided so as to correspond to the position of the first through hole, when the battery cell is manufactured by applying pressure from the first through hole, it is possible to apply the pressure to the entire first electrode satisfactorily. The adhesion between the first electrode and the first current collector can be improved.
 本開示の一実施形態に係る電池セルは、前記外装袋に複数の前記第1貫通孔を備えることを特徴とする。 A battery cell according to an embodiment of the present disclosure is characterized in that the exterior bag includes a plurality of the first through holes.
 本開示の一実施形態によれば、第1集電体の一平面及び外装袋の内面間に存在する空気を、複数の第1貫通孔から外装袋の外部に排出して、低減することができる。これにより、第1電極及び第1集電体の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。 According to an embodiment of the present disclosure, the air existing between one plane of the first current collector and the inner surface of the exterior bag can be discharged and reduced from the plurality of first through holes to the outside of the exterior bag. it can. Thereby, the fall of the adhesiveness of a 1st electrode and a 1st electrical power collector is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented.
 本開示の一実施形態に係る電池セルは、前記外装袋を貫通している第2貫通孔と、前記外装袋の内面に配され、一平面により前記第2貫通孔を覆っている平板状の第2集電体と、該第2集電体の他平面に設けられ、前記第1電極に対向しており、前記第1電極の反対極性の平板状の第2電極と、前記第1電極及び第2電極に挟まれている隔膜とを備えることを特徴とする。 The battery cell which concerns on one Embodiment of this indication is arranged in the 2nd through-hole which has penetrated the said exterior bag, and the inner surface of the said exterior bag, and is flat form which has covered the 2nd through-hole by one plane. A second current collector, a flat second electrode having a polarity opposite to that of the first electrode, provided on the other surface of the second current collector, facing the first electrode, and the first electrode; And a diaphragm sandwiched between the second electrodes.
 本開示の一実施形態によれば、第1集電体は、第1貫通孔から露出する部分を有し、第2集電体は、第2貫通孔から露出する部分を有することなり、第1電極及び第2電極が対向している。したがって、第1集電体及び第2集電体において露出した部分を介して、外部の負荷に、又は電池セル同士を電気的に接続することができる。 According to an embodiment of the present disclosure, the first current collector has a portion exposed from the first through hole, and the second current collector has a portion exposed from the second through hole. One electrode and the second electrode face each other. Therefore, the battery cells can be electrically connected to an external load through the exposed portions of the first current collector and the second current collector.
 本開示の一実施形態に係る電池は、上述の電池セルが、隣り合う前記電池セルにおいて前記外装袋の外面同士が対向するように並設されていることを特徴とする The battery according to an embodiment of the present disclosure is characterized in that the battery cells described above are arranged side by side so that the outer surfaces of the exterior bags face each other in the adjacent battery cells.
 本開示の一実施形態によれば、複数の電池セルを並設することにより、電池の容量を増大させることができる。 According to one embodiment of the present disclosure, the battery capacity can be increased by arranging a plurality of battery cells in parallel.
 本開示の一実施形態に係る電池は、隣り合う前記電池セルにおいて、一の前記電池セルの前記第1集電体における前記第1貫通孔から露出している部分と、他の前記電池セルの前記第2集電体における前記第2貫通孔から露出している部分とが対向し、導電部材により接続されていることを特徴とする。 A battery according to an embodiment of the present disclosure includes, in the adjacent battery cells, a portion exposed from the first through hole in the first current collector of one of the battery cells, and another battery cell. A portion of the second current collector exposed from the second through hole is opposed to each other and is connected by a conductive member.
 本開示の一実施形態によれば、導電部材により電池セル同士を電気的に接続し、電池セルを直列に接続することができる。また、導電部材により、各電池セルを接続するために別にタブ部材を設けて該タブ部材を外装袋の外側に引き出して接続する等の必要がなく、電池の構造及び製造工程を簡素化することができる。 According to an embodiment of the present disclosure, the battery cells can be electrically connected by the conductive member, and the battery cells can be connected in series. In addition, it is not necessary to provide a separate tab member for connecting each battery cell by the conductive member, and to draw out and connect the tab member to the outside of the outer bag, thereby simplifying the battery structure and manufacturing process. Can do.
 本開示の一実施形態に係る電池は、隣り合う前記電池セルにおいて、前記第1集電体の前記一平面における前記第1貫通孔から露出している部分同士が対向し、又は、前記第2集電体の前記一平面における前記第2貫通孔から露出している部分同士が対向し、導電部材により接続されていることを特徴とする。 In the battery according to an embodiment of the present disclosure, in the adjacent battery cells, portions exposed from the first through hole in the one plane of the first current collector face each other, or the second The portions exposed from the second through holes in the one plane of the current collector face each other and are connected by a conductive member.
 本開示の一実施形態によれば、導電部材により電池セル同士を電気的に接続することができ、電池セルを並列に接続することができる。 According to one embodiment of the present disclosure, the battery cells can be electrically connected to each other by the conductive member, and the battery cells can be connected in parallel.
 本開示の一実施形態に係る電池は、前記導電部材は、平板状をなし、厚さが前記外装袋の厚さの2倍以上であることを特徴とする。 The battery according to an embodiment of the present disclosure is characterized in that the conductive member has a flat plate shape and has a thickness that is twice or more the thickness of the exterior bag.
 本開示の一実施形態によれば、複数の電池セルを並設方向において挟むように圧力を加えた場合に、導電部材により第1電極及び第2電極に良好に圧力を加えることができる。 According to one embodiment of the present disclosure, when a pressure is applied so as to sandwich a plurality of battery cells in the juxtaposed direction, the pressure can be favorably applied to the first electrode and the second electrode by the conductive member.
 本開示の一実施形態に係る電池は、前記第1電極及び第2電極は、酸性の電解液を含むことを特徴とする。 The battery according to an embodiment of the present disclosure is characterized in that the first electrode and the second electrode include an acidic electrolyte.
 本開示の一実施形態に係る電池は、前記第1電極及び第2電極は、バナジウムイオン又はバナジウムを含むイオンを活物質として含有していることを特徴とする。 The battery according to an embodiment of the present disclosure is characterized in that the first electrode and the second electrode contain vanadium ions or ions containing vanadium as an active material.
 本開示の一実施形態によれば、バナジウムイオン又はバナジウムを含むイオンを活物質として用いることにより、第1電極及び第2電極において、正極及び負極の活物質を同一として電池を構成でき、電池の設計が容易となる。 According to one embodiment of the present disclosure, by using vanadium ions or ions containing vanadium as an active material, the positive electrode and the negative electrode can be configured to have the same active material in the first electrode and the second electrode. Design becomes easy.
 本開示の一実施形態に係る電池セルの製造方法は、貫通孔が設けられた第1シート体の一平面に、平板状の集電体を、前記貫通孔を前記集電体の一平面により覆うように配し、電極を前記集電体の他平面に設け、前記集電体を前記第1シート体の一平面に固定する固定部を前記集電体の周縁に沿って設け、減圧状態下で、前記第1シート体の周縁部に第2シート体の周縁部を接合することを特徴とする。 In the battery cell manufacturing method according to an embodiment of the present disclosure, a flat plate current collector is provided on one plane of the first sheet body provided with a through hole, and the through hole is provided on one plane of the current collector. An electrode is provided on the other plane of the current collector, a fixing portion for fixing the current collector on one plane of the first sheet body is provided along the periphery of the current collector, and is in a reduced pressure state. Below, the peripheral part of a 2nd sheet | seat body is joined to the peripheral part of a said 1st sheet | seat body, It is characterized by the above-mentioned.
 本開示の一実施形態によれば、第1集電体の一平面及び第1シート体の一平面間に存在する空気を、第1貫通孔から第1シート体の外部に排出して、低減することができる。したがって、第1シート体及び第2シート体の周縁部を減圧状態で接合した場合、空気により第1集電体11が変形することを防止できる。これにより、第1電極及び第1集電体の密着性の低下を抑制して、接触抵抗の上昇を低減し、電池としての機能の低下を防止できる。 According to an embodiment of the present disclosure, the air existing between one plane of the first current collector and the one plane of the first sheet body is discharged from the first through hole to the outside of the first sheet body and reduced. can do. Therefore, when the peripheral part of a 1st sheet body and a 2nd sheet body is joined in a pressure-reduced state, it can prevent that the 1st electrical power collector 11 deform | transforms with air. Thereby, the fall of the adhesiveness of a 1st electrode and a 1st electrical power collector is suppressed, the raise of contact resistance can be reduced, and the fall of the function as a battery can be prevented.
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. That is, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.
 10:第1シート体、10a:第1貫通孔、11:第1集電体、12:第1シーラント(固定部)、13:第1電極、14:イオン交換膜(隔膜)、15,25:固着シート(固定部)、20:第2シート体、20a:第2貫通孔、21:第2集電体、23:第2電極、3:導電板(導電部材)、100:電池セル、101:外装袋、200:電池
 
 
10: 1st sheet body, 10a: 1st through-hole, 11: 1st collector, 12: 1st sealant (fixing part), 13: 1st electrode, 14: Ion exchange membrane (diaphragm), 15, 25 : Fixing sheet (fixing part), 20: second sheet body, 20a: second through hole, 21: second current collector, 23: second electrode, 3: conductive plate (conductive member), 100: battery cell, 101: exterior bag, 200: battery

Claims (13)

  1.  シート状の外装袋と、
     該外装袋を貫通している第1貫通孔と、
     前記外装袋の内面に配され、一平面により前記第1貫通孔を覆っている平板状の第1集電体と、
     該第1集電体の他平面に設けられた平板状の第1電極と、
     前記第1集電体の周縁に沿って設けられ、前記第1集電体を前記外装袋の内面に固定する固定部と
     を備えることを特徴とする電池セル。
    A sheet-shaped outer bag,
    A first through hole penetrating the exterior bag;
    A flat plate-like first current collector disposed on the inner surface of the outer bag and covering the first through hole with a single plane;
    A flat plate-like first electrode provided on the other plane of the first current collector;
    A battery cell comprising: a fixing portion that is provided along a periphery of the first current collector and fixes the first current collector to an inner surface of the outer bag.
  2.  前記固定部は、額縁状をなしており、
     前記第1集電体の他平面の周縁部及び前記外装袋の内面に固着していることを特徴とする請求項1に記載の電池セル。
    The fixed part has a frame shape,
    2. The battery cell according to claim 1, wherein the battery cell is fixed to a peripheral portion of another plane of the first current collector and an inner surface of the exterior bag.
  3.  前記固定部は、枠状をなし、前記第1集電体の一平面の周縁部と、前記外装袋の内面とに固着していることを特徴とする請求項1に記載の電池セル。 2. The battery cell according to claim 1, wherein the fixing portion has a frame shape and is fixed to a peripheral portion of one plane of the first current collector and an inner surface of the outer bag.
  4.  前記第1集電体の前記一平面は、前記第1貫通孔よりも大きく、
     前記第1電極の両平面は、前記第1貫通孔よりも小さい
     ことを特徴とする請求項1から請求項3までのいずれか一つに記載の電池セル。
    The one plane of the first current collector is larger than the first through hole,
    4. The battery cell according to claim 1, wherein both flat surfaces of the first electrode are smaller than the first through hole. 5.
  5.  前記外装袋に複数の前記第1貫通孔を備えることを特徴とする請求項1から請求項3までのいずれか一つに記載の電池セル。 The battery cell according to any one of claims 1 to 3, wherein the outer bag is provided with a plurality of the first through holes.
  6.  前記外装袋を貫通している第2貫通孔と、
     前記外装袋の内面に配され、一平面により前記第2貫通孔を覆っている平板状の第2集電体と、
     該第2集電体の他平面に設けられ、前記第1電極に対向しており、前記第1電極の反対極性の平板状の第2電極と、
     前記第1電極及び第2電極に挟まれている隔膜と
     を備えることを特徴とする請求項1から請求項5までのいずれか一つに記載の電池セル。
    A second through-hole penetrating the exterior bag;
    A flat plate-like second current collector disposed on the inner surface of the outer bag and covering the second through-hole with a single plane;
    Provided on the other plane of the second current collector, facing the first electrode, a plate-like second electrode having a polarity opposite to that of the first electrode;
    A battery cell according to any one of claims 1 to 5, further comprising a diaphragm sandwiched between the first electrode and the second electrode.
  7.  請求項6に記載の電池セルが、隣り合う前記電池セルにおいて前記外装袋の外面同士が対向するように並設されている
     ことを特徴とする電池。
    The battery cell of Claim 6 is arranged in parallel so that the outer surfaces of the said exterior bag may oppose in the said adjacent battery cell.
  8.  隣り合う前記電池セルにおいて、一の前記電池セルの前記第1集電体における前記第1貫通孔から露出している部分と、他の前記電池セルの前記第2集電体における前記第2貫通孔から露出している部分とが対向し、導電部材により接続されていることを特徴とする請求項7に記載の電池。 In the adjacent battery cells, a portion exposed from the first through hole in the first current collector of one of the battery cells, and the second penetration in the second current collector of another battery cell. The battery according to claim 7, wherein a portion exposed from the hole faces and is connected by a conductive member.
  9.  隣り合う前記電池セルにおいて、前記第1集電体の前記一平面における前記第1貫通孔から露出している部分同士が対向し、又は、前記第2集電体の前記一平面における前記第2貫通孔から露出している部分同士が対向し、導電部材により接続されていることを特徴とする請求項7に記載の電池。 In the adjacent battery cells, the portions exposed from the first through hole in the one plane of the first current collector face each other, or the second current in the one plane of the second current collector. 8. The battery according to claim 7, wherein portions exposed from the through holes face each other and are connected by a conductive member.
  10.  前記導電部材は、平板状をなし、厚さが前記外装袋の厚さの2倍以上であることを特徴とする請求項8又は請求項9に記載の電池。 The battery according to claim 8 or 9, wherein the conductive member has a flat plate shape and has a thickness that is at least twice the thickness of the exterior bag.
  11.  前記第1電極及び第2電極は、酸性の電解液を含むことを特徴とする請求項7から請求項10までのいずれか一つに記載の電池。 The battery according to any one of claims 7 to 10, wherein the first electrode and the second electrode contain an acidic electrolytic solution.
  12.  前記第1電極及び第2電極は、バナジウムイオン又はバナジウムを含むイオンを活物質として含有していることを特徴とする請求項7から請求項11までのいずれか一つに記載の電池。 The battery according to any one of claims 7 to 11, wherein the first electrode and the second electrode contain vanadium ions or vanadium-containing ions as active materials.
  13.  貫通孔が設けられた第1シート体の一平面に、平板状の集電体を、前記貫通孔を前記集電体の一平面により覆うように配し、
     電極を前記集電体の他平面に設け、
     前記集電体を前記第1シート体の一平面に固定する固定部を前記集電体の周縁に沿って設け、
     減圧状態下で、前記第1シート体の周縁部に第2シート体の周縁部を接合する
     ことを特徴とする電池セルの製造方法。
     
    A flat plate current collector is arranged on one plane of the first sheet body provided with a through hole so as to cover the through hole with one plane of the current collector,
    An electrode is provided on the other plane of the current collector,
    A fixing portion for fixing the current collector to one plane of the first sheet body is provided along a peripheral edge of the current collector,
    The manufacturing method of the battery cell characterized by joining the peripheral part of a 2nd sheet | seat body to the peripheral part of the said 1st sheet | seat body in a pressure-reduced state.
PCT/JP2017/016316 2016-06-20 2017-04-25 Battery cell, battery, and method for manufacturing battery cell WO2017221543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-121963 2016-06-20
JP2016121963A JP2017228374A (en) 2016-06-20 2016-06-20 Battery cell, battery, and manufacturing method of battery cell

Publications (1)

Publication Number Publication Date
WO2017221543A1 true WO2017221543A1 (en) 2017-12-28

Family

ID=60783388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016316 WO2017221543A1 (en) 2016-06-20 2017-04-25 Battery cell, battery, and method for manufacturing battery cell

Country Status (2)

Country Link
JP (1) JP2017228374A (en)
WO (1) WO2017221543A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107477U (en) * 1983-01-11 1984-07-19 松下電器産業株式会社 flat battery
JPS60240053A (en) * 1984-05-14 1985-11-28 Fuji Elelctrochem Co Ltd Thin cell
JP2001283923A (en) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd Manufacturing method of battery
JP2007066806A (en) * 2005-09-01 2007-03-15 Nissan Motor Co Ltd Bipolar battery
JP2013062135A (en) * 2011-09-13 2013-04-04 Toyota Motor Corp Air cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107477U (en) * 1983-01-11 1984-07-19 松下電器産業株式会社 flat battery
JPS60240053A (en) * 1984-05-14 1985-11-28 Fuji Elelctrochem Co Ltd Thin cell
JP2001283923A (en) * 2000-03-30 2001-10-12 Matsushita Electric Ind Co Ltd Manufacturing method of battery
JP2007066806A (en) * 2005-09-01 2007-03-15 Nissan Motor Co Ltd Bipolar battery
JP2013062135A (en) * 2011-09-13 2013-04-04 Toyota Motor Corp Air cell

Also Published As

Publication number Publication date
JP2017228374A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP5618010B2 (en) Lithium secondary battery having multidirectional lead-tab structure
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
US20120288747A1 (en) Electrochemical device
JP6060599B2 (en) Assembled battery
WO2016204088A1 (en) Battery
JP2009129917A (en) Power storage device
JP2016186868A (en) battery
WO2017221543A1 (en) Battery cell, battery, and method for manufacturing battery cell
JP2007048668A (en) Battery and battery pack
WO2017073164A1 (en) Electrode unit, battery and method for producing electrode unit
JP2016186870A (en) Electrode unit, battery, and method for manufacturing electrode unit
WO2018029991A1 (en) Vanadium redox secondary battery and ion conductive film for batteries
WO2017203921A1 (en) Vanadium redox secondary battery and method for producing vanadium redox secondary battery
WO2018055857A1 (en) Vanadium redox secondary cell and separating membrane for same
JP2016186865A (en) Battery manufacturing method and battery
WO2017169162A1 (en) Vanadium redox secondary battery
JP2014032789A (en) Thin battery
JP2017183018A (en) Vanadium redox secondary battery
US20230143046A1 (en) Secondary battery
US20230207980A1 (en) Battery
JP2017183015A (en) Vanadium solid salt battery
WO2016158019A1 (en) Vanadium solid-salt battery
JP2016186866A (en) Electrode unit manufacturing method
JP2018166092A (en) Vanadium redox secondary battery, method for manufacturing diaphragm, method for manufacturing vanadium redox secondary battery, and diaphragm
JP2018170185A (en) Vanadium redox secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815014

Country of ref document: EP

Kind code of ref document: A1