WO2017219419A1 - 液晶显示装置 - Google Patents

液晶显示装置 Download PDF

Info

Publication number
WO2017219419A1
WO2017219419A1 PCT/CN2016/090577 CN2016090577W WO2017219419A1 WO 2017219419 A1 WO2017219419 A1 WO 2017219419A1 CN 2016090577 W CN2016090577 W CN 2016090577W WO 2017219419 A1 WO2017219419 A1 WO 2017219419A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
sub
pixel
liquid crystal
display device
Prior art date
Application number
PCT/CN2016/090577
Other languages
English (en)
French (fr)
Inventor
孙振华
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/119,725 priority Critical patent/US10254582B2/en
Publication of WO2017219419A1 publication Critical patent/WO2017219419A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133533Colour selective polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133545Dielectric stack polarisers

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal display device.
  • LCD Liquid crystal display
  • PDAs personal digital assistants
  • digital cameras computer screens or laptop screens, etc.
  • liquid crystal displays which include a liquid crystal panel and a backlight module.
  • the working principle of the LCD display device is to use the optical rotation and birefringence of the liquid crystal, and the rotation of the liquid crystal is controlled by the voltage, so that the linearly polarized light passing through the lower polarizer is rotated accordingly, from the upper polarizer (the polarization direction of the upper polarizer) Vertically, the upper and lower polarizers plus the liquid crystal cell function as optical switches. Therefore, a polarizer must be attached to each of the upper and lower sides of the liquid crystal display panel.
  • a conventional polarizer is mainly an absorption type polymer polarizer, which mainly functions by adding a material having a polarizing effect to a polymer film layer.
  • the principle of the deviation of the light is: since the light wave is a transverse wave, the vibration direction of the light wave is perpendicular to the propagation direction, and the component of the light that is consistent with the polarization direction of the polarizer can pass through the polarizer and is perpendicular to the polarization direction of the polarizer.
  • the component is absorbed by the polarizer and cannot pass through the polarizer. Therefore, the light passes through the polarizer and becomes linearly polarized light.
  • the polymer polarizer can be roughly classified into two types according to the type of the light absorbing molecule.
  • One is an iodine-based polarizer, which has an optical property of easily obtaining high transmittance and high degree of polarization, but is capable of withstanding high temperature and high humidity.
  • the other type is a dye-based polarizer, which has an optical property that is not easy to obtain high transmittance and high degree of polarization, but has a high ability to withstand high temperature and high humidity. Therefore, it is necessary to provide a liquid crystal display device to solve the above problems.
  • the vibration direction of the light wave is perpendicular to the propagation direction, and the light is divided into a P component in which the vibration direction is in a plane formed by the incident light and the normal, that is, an incident component, and an S component perpendicular to a plane formed by the incident light and the normal line;
  • the interface When the interface is deflected, it will cause a change in the polarization state.
  • the reflected light will be completely linearly polarized, which is S-polarized light whose vibration direction is perpendicular to the incident surface, and the transmitted light is partially polarized. .
  • the S-polarized light and the P-polarized light can be completely separated.
  • the backlight is incident at a certain angle, and a polarizing function can be realized.
  • the polarizing film layer formed by it can perform polarization separation, but it also has some disadvantages.
  • the glass substrate, high and low refractive index materials need to meet certain conditions in each wavelength band, but since the same material has different refractive indexes for different wavelengths of light, the existence of material dispersion leads to multiple layers. The material requirements of the membrane structure are very demanding.
  • An object of the present invention is to provide a liquid crystal display device capable of improving the thermal stability, moisture resistance, and reliability of a polarizer of a liquid crystal display device, and reducing the material selection requirements and manufacturing difficulty of the polarizer of the liquid crystal display device.
  • the present invention provides a liquid crystal display device, comprising: a backlight module, an LCD panel disposed above the backlight module, and two polarizers disposed on two sides of the LCD panel;
  • the LCD panel includes: a first sub-pixel, a second sub-pixel, and a third sub-pixel arranged in an array, wherein the first sub-pixel, the second sub-pixel, and the third sub-pixel emit light of different colors;
  • Each of the polarizers includes: a plurality of polarizing units arranged corresponding to the arrays of the first, second, and third sub-pixels;
  • Each of the polarizing units is a multilayer film structure, including a transparent body, and a plurality of first film layers and a plurality of second film layers alternately stacked on the body;
  • the polarizing unit disposed corresponding to each sub-pixel satisfies the following formula in the wavelength range of the light emitted by the sub-pixel:
  • n H is the refractive index of the first film layer for light in the wavelength range
  • n L is the refractive index of the second film layer for the light in the wavelength range
  • n H is greater than n L
  • n G is the body
  • the refractive index of the light in the wavelength range, ⁇ G is the angle between the light in the wavelength range and the normal to the body.
  • the colors of the light emitted by the first sub-pixel, the second sub-pixel, and the third sub-pixel are red, green, and blue, respectively.
  • the polarizer is formed by evaporation, sputtering, or spin coating.
  • the sum of the number of layers of the first film layer and the second film layer included in each of the polarizing units is 20 to 100 layers.
  • the materials of the first film layer and the second film layer are both metals.
  • the first film layer and the second film layer each have an optical thickness of 100 nm to 400 nm.
  • the optical thickness ratio of the first film layer and the second film layer is 1:0.6-1.5.
  • the first film layer and the second film layer have the same optical thickness.
  • the optical thickness ratio of the first film layer and the second film layer is 1:1.5.
  • the material of the body is glass.
  • the present invention further provides a liquid crystal display device, comprising: a backlight module, an LCD panel disposed above the backlight module, and two polarizers disposed on two sides of the LCD panel;
  • the LCD panel includes: a first sub-pixel, a second sub-pixel, and a third sub-pixel arranged in an array, wherein the first sub-pixel, the second sub-pixel, and the third sub-pixel emit light of different colors;
  • Each of the polarizers includes: a plurality of polarizing units arranged corresponding to the arrays of the first, second, and third sub-pixels;
  • Each of the polarizing units is a multilayer film structure, including a transparent body, and a plurality of first film layers and a plurality of second film layers alternately stacked on the body;
  • the polarizing unit disposed corresponding to each sub-pixel satisfies the following formula in the wavelength range of the light emitted by the sub-pixel:
  • n H is the refractive index of the first film layer for light in the wavelength range
  • n L is the refractive index of the second film layer for the light in the wavelength range
  • n H is greater than n L
  • n G is the body
  • the refractive index of the light in the wavelength range, ⁇ G is the angle between the light in the wavelength range and the normal of the body;
  • the colors of the light emitted by the first sub-pixel, the second sub-pixel, and the third sub-pixel are respectively red, green, and blue;
  • the polarizer is formed by evaporation, sputtering or spin coating.
  • the present invention provides a liquid crystal display device, wherein a polarizer comprises an array of polarizing units, and the polarizing unit is a multilayer film structure including a transparent body and a plurality of layers stacked alternately on the body The first film layer and the second film layer of the layer, the light is repeatedly reflected by the interface in the multi-layer film structure, and the S-polarized light and the P-polarized light can be completely separated, thereby forming linearly polarized light and realizing a polarizing function.
  • a polarizer comprises an array of polarizing units
  • the polarizing unit is a multilayer film structure including a transparent body and a plurality of layers stacked alternately on the body The first film layer and the second film layer of the layer, the light is repeatedly reflected by the interface in the multi-layer film structure, and the S-polarized light and the P-polarized light can be completely separated, thereby forming linearly polarized light and realizing a polarizing function.
  • each of the polarizing units corresponds to one sub-pixel, and only needs to implement a polarizing function in a wavelength range of the light emitted by the sub-pixel, so that when the materials of the body, the first film layer, and the second film layer are selected It is only necessary to satisfy the polarization condition in the above wavelength range, and it is not necessary to satisfy the polarization condition in the entire visible light range, and the difficulty in selecting materials and the manufacturing difficulty of the multilayer film structure can be reduced, and the contrast of the liquid crystal display device can be improved.
  • FIG. 1 is a schematic structural view of a liquid crystal display device of the present invention
  • FIG. 2 is a schematic view showing the structure of a polarizing unit in the liquid crystal display device of the present invention.
  • a liquid crystal display device includes a backlight module 1 , an LCD panel 2 disposed above the backlight module 1 , and two polarizers 31 respectively disposed on two sides of the LCD panel 2 . ;
  • the LCD panel 2 includes: a first sub-pixel 21, a second sub-pixel 22, and a third sub-pixel 23 arranged in an array, the first sub-pixel 21, the second sub-pixel 22, and the third sub-pixel 23 Produce light of different colors;
  • Each of the polarizers 31 includes: a plurality of polarizing units 311 arranged in an array corresponding to the first, second, and third sub-pixels;
  • each of the polarizing units 311 is a multi-layer film structure, including a transparent body 301, and a plurality of first film layers 302 and a plurality of second film layers 303 alternately stacked on the body 301;
  • the polarizing unit 311 disposed corresponding to each sub-pixel satisfies the following formula in the wavelength range of the light emitted by the sub-pixel:
  • n H is the refractive index of the first film layer 302 for light in the wavelength range
  • n L is the refractive index of the second film layer 303 for the light in the wavelength range
  • n H is greater than n L
  • n G is the body 301.
  • the refractive index of the light in the wavelength range, ⁇ G is the angle between the light in the wavelength range and the normal to the body 301 in the body 301.
  • the colors of the light emitted by the first sub-pixel 21, the second sub-pixel 22, and the third sub-pixel 23 are red, green, and blue, respectively, and the polarizing unit 311 corresponding to the first sub-pixel 21 is disposed.
  • the above formula (1) is satisfied in the wavelength range of the red light, and the polarizing unit 311 provided corresponding to the second sub-pixel 22 satisfies the above formula (1) in the wavelength range of the green light, corresponding to the third sub-pixel 23 setting.
  • the polarizing unit 311 satisfies the above formula (1) in the wavelength range of the blue light.
  • the present invention splits the polarizer into a plurality of polarizing units corresponding to the respective sub-pixels, and then passes through the multilayer film structure respectively. Constructing a polarizing unit corresponding to each sub-pixel, each polarizing unit only needs The formula (1) can be satisfied in the wavelength range corresponding to the light emitted by the corresponding sub-pixel, and the formula (1) is not required to be satisfied in the entire visible light range, thereby reducing the difficulty of selecting the material of the multilayer film structure and improving the material selection accuracy. And the contrast of the liquid crystal display device.
  • the polarizer 31 may be formed by evaporation, sputtering or spin coating.
  • the green light wavelength ranges from 490 nm to 550 nm, that is, the center wavelength is 520 nm, and the bandwidth is 30 nm.
  • the polarizing unit 311 is The material of a film layer 302 and the second film layer 303 only needs to satisfy the formula (1) in the wavelength range of 520 ⁇ 30 nm, and the wavelength range is much smaller than that of the entire visible light range of 380-780 nm, and the material selection difficulty is difficult. It also decreases a lot.
  • the refractive index of the first film layer 302 is 1.2-1.5
  • the refractive index of the second film layer 303 is 1.7-2.3.
  • the optical thickness (the product of the refractive index and the physical thickness of the film layer) of the first film layer 302 and the second film layer 303 is 100 nm to 400 nm.
  • the optical thickness ratio of the first film layer 302 and the second film layer 303 is 1:0.6-1.5.
  • the optical thicknesses of the first film layer 302 and the second film layer 303 are substantially equivalent, and the thickness ratio thereof may be finely adjusted, for example, the optical thicknesses of the first film layer 302 and the second film layer 303.
  • the ratio is 1:1.5.
  • the first film layer 302 and the second film layer 303 are metal material film layers, and the polarizing film 31 of the metal material is respectively formed by evaporation or sputtering, and has a more contrast than the conventional polarizer.
  • the obvious advantages are that the thermal stability is good, the moisture resistance is good, the reliability is high, and the preparation method is relatively simple.
  • the material of the body 301 is glass.
  • the present invention provides a liquid crystal display device, wherein the polarizer comprises an array of polarizing units, and the polarizing unit is a multilayer film structure comprising a transparent body and a plurality of layers alternately stacked on the body.
  • the first film layer and the plurality of second film layers the light is deflected and reflected by the interface in the multilayer film structure, and the S-polarized light and the P-polarized light are completely separated, thereby forming linearly polarized light and realizing the polarizing function, further Ground, each polarizing unit corresponds to one sub-pixel, and only needs to realize the polarizing function in the wavelength range of the light emitted by the sub-pixel, so that only the materials of the body, the first film layer and the second film layer are selected.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种液晶显示装置,该液晶显示装置的偏光片(31)包括阵列排布的多个偏光单元(311),所述偏光单元(311)为多层膜结构,包括透明的本体(301)、及交替层叠于本体上的数层第一膜层(302)和数层第二膜层(303),通过多层膜结构实现偏光功能,并且每一个偏光单元(311)都只需要在其对应的子像素(21、22、23)发出的光线的波长范围内满足偏光条件,能够降低多层膜结构的选材难度和制作难度,提升液晶显示装置对比度。

Description

液晶显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种液晶显示装置。
背景技术
液晶显示装置(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。如:液晶电视、移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本电脑屏幕等,在平板显示领域中占主导地位。
现有市场上的液晶显示器大部分为背光型液晶显示器,其包括液晶面板及背光模组(Backlight Module)。LCD显示器件的工作原理是利用液晶的旋光性和双折射,通过电压控制液晶的转动,使经过下偏光片后的线偏振光随之发生旋转,从上偏光片(与上偏光片的偏振方向垂直)射出,从而上、下偏光片加上液晶盒起到光开关的作用。因此,液晶显示面板上下两侧还必须各贴附一片偏光片。
传统的偏光片主要为吸收型的高分子偏光片,其主要通过在高分子膜层中加入含有具有偏光作用的材料而起到偏振作用。其对光线起偏的原理为:由于光波为横波,光波的振动方向与传播方向垂直,光线上与偏光片的偏振方向一致的分量,则能够穿过偏光片,与偏光片的偏振方向垂直的分量,则被偏光片吸收,不能穿过偏光片,因此,光线通过偏光片后成为线偏振光。上述高分子偏光片按照光吸收分子的种类大致上又可以分为两类,一是碘系偏光片,具有容易获得高透过率、高偏振度的光学特性,但是耐高温高湿的能力较差,另一类是染料系偏光片,具有不容易获得高透过率、高偏振度的光学特性,但是耐高温高湿的能力较好,因此需要提出一种液晶显示装置解决上述问题。
光波的振动方向与传播方向垂直,将光线分为振动方向处于入射光与法线形成的平面即入射面内的P分量、及垂直于入射光与法线形成的平面的S分量;由于自然光经界面折反射时,将引起偏振态的改变,特别的,在以布鲁斯特角入射时,反射光将为完全线偏光,为振动方向与入射面垂直的S偏振光,而透射光为部分偏振光。那么,当光线多次这样的界面折反射,可将S偏振光与P偏振光完全分开。因此,通过构造多层膜结构,背光以一定角度入射,可实现偏光功能。对单一均匀的多层膜结构而言, 其构成的偏光膜层可完成偏振分离,但其也存在一些缺点。为了完成整个可见光波段的偏振分离,玻璃基板、高低折射率材料在各波段都需要满足一定的条件,但由于同一种材料对于不同波长的光线具有不同的折射率,材料色散的存在,导致多层膜结构的对材料的要求十分苛刻。
发明内容
本发明的目的在于提供一种液晶显示装置,能够提升液晶显示装置的偏光片的热稳定性、耐湿性、及可靠性,降低液晶显示装置的偏光片选材要求和制作难度。
为实现上述目的,本发明提供了一种液晶显示装置,包括:背光模组、设于背光模组上方的LCD面板、及分别设于所述LCD面板两侧的两个偏光片;
所述LCD面板包括:阵列排布的第一子像素、第二子像素、及第三子像素,所述第一子像素、第二子像素、及第三子像素发出不同颜色的光线;
所述每一偏光片均包括:分别对应第一、第二与第三子像素设置的阵列排布的多个偏光单元;
每一个偏光单元均为多层膜结构,包括透明的本体、及交替层叠于本体上的数层第一膜层和数层第二膜层;
对应每一个子像素设置的偏光单元在该子像素发出的光线的波长范围内都满足以下公式:
Figure PCTCN2016090577-appb-000001
其中,nH为第一膜层对该波长范围内的光线的折射率,nL为第二膜层对该波长范围内的光线的折射率,nH大于nL,nG为本体该对该波长范围内的光线的折射率,θG为该波长范围内的光线在本体内与本体的法线的夹角。
所述第一子像素、第二子像素、及第三子像素发出的光线的颜色分别为红色、绿色、及蓝色。
所述偏光片通过蒸镀、溅射或旋涂的方式形成。
每一个偏光单元包括的第一膜层和第二膜层的层数之和均为20至100层。
所述第一膜层和第二膜层的材料均为金属。
所述第一膜层和第二膜层光学厚度均为100nm-400nm。
所述第一膜层和第二膜层的光学厚度比为1:0.6-1.5。
所述第一膜层和第二膜层的光学厚度相同。
所述第一膜层和第二膜层的光学厚度比为1:1.5。
所述本体的材料为玻璃。
本发明还提供一种液晶显示装置,包括:背光模组、设于背光模组上方的LCD面板、及分别设于所述LCD面板两侧的两个偏光片;
所述LCD面板包括:阵列排布的第一子像素、第二子像素、及第三子像素,所述第一子像素、第二子像素、及第三子像素发出不同颜色的光线;
所述每一偏光片均包括:分别对应第一、第二与第三子像素设置的阵列排布的多个偏光单元;
每一个偏光单元均为多层膜结构,包括透明的本体、及交替层叠于本体上的数层第一膜层和数层第二膜层;
对应每一个子像素设置的偏光单元在该子像素发出的光线的波长范围内都满足以下公式:
Figure PCTCN2016090577-appb-000002
其中,nH为第一膜层对该波长范围内的光线的折射率,nL为第二膜层对该波长范围内的光线的折射率,nH大于nL,nG为本体该对该波长范围内的光线的折射率,θG为该波长范围内的光线在本体内与本体的法线的夹角;
其中,所述第一子像素、第二子像素、及第三子像素发出的光线的颜色分别为红色、绿色、及蓝色;
其中,所述偏光片通过蒸镀、溅射或旋涂的方式形成。
本发明的有益效果:本发明提供了一种液晶显示装置,其偏光片包括阵列排布的偏光单元,所述偏光单元为多层膜结构,包括透明的本体、及交替层叠于本体上的数层第一膜层和数层第二膜层,光线在多层膜结构中经多次的界面折反射,可将S偏振光与P偏振光完全分开,从而形成线偏振光,实现偏光功能,进一步地,每一个偏光单元对应一个子像素,并且只需要在该子像素发出的光线的波长范围内实现偏光功能即可,从而在选择本体、第一膜层、及第二膜层的材料时只需要使其在上述波长范围满足偏光条件即可,而不需要在整个可见光范围内均满足偏光条件,能够降低多层膜结构的选材难度和制作难度,提升液晶显示装置的对比度。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的液晶显示装置的结构示意图;
图2为本发明的液晶显示装置中的偏光单元的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种液晶显示装置,包括:背光模组1、设于背光模组1上方的LCD面板2、及分别设于所述LCD面板2两侧的两个偏光片31;
所述LCD面板2包括:阵列排布的第一子像素21、第二子像素22、及第三子像素23,所述第一子像素21、第二子像素22、及第三子像素23发出不同颜色的光线;
所述每一偏光片31均包括:分别对应第一、第二与第三子像素设置的阵列排布的多个偏光单元311;
请参阅图2,每一个偏光单元311均为多层膜结构,包括透明的本体301、及交替层叠于本体301上的数层第一膜层302和数层第二膜层303;
对应每一个子像素设置的偏光单元311在该子像素发出的光线的波长范围内都满足以下公式:
Figure PCTCN2016090577-appb-000003
其中,nH为第一膜层302对该波长范围内的光线的折射率,nL为第二膜层303对该波长范围内的光线的折射率,nH大于nL,nG为本体301该对该波长范围内的光线的折射率,θG为该波长范围内的光线在本体301内与本体301的法线的夹角。
优选地,所述第一子像素21、第二子像素22、及第三子像素23发出的光线的颜色分别为红色、绿色、及蓝色,对应于第一子像素21设置的偏光单元311在红光的波长范围内都满足上述公式(1),对应于第二子像素22设置的偏光单元311在绿光的波长范围内都满足上述公式(1),对应于第三子像素23设置的偏光单元311在蓝光的波长范围内都满足上述公式(1)。
需要说明的是,相比于现有技术由一个整体的多层膜结构形成的偏光片,本发明通过将偏光片拆分为对应各个子像素设置多个偏光单元,再通过多层膜结构分别构建对应各个子像素的偏光单元,各个偏光单元仅需要 在其对应的子像素发出的光线对应的波长范围内满足公式(1)即可,而不需要在整个可见光范围内满足公式(1),从而降低多层膜结构的选材难度,提升选材准确性和液晶显示装置的对比度。
可选地,所述偏光片31可通过蒸镀、溅射或旋涂的方式形成。
具体地,以对应于发出绿光的第二子像素22的偏光单元311为例,绿光波长范围为490nm至550nm,也即中心波长为520nm,带宽为30nm,此时,偏光单元311的第一膜层302和第二膜层303的材料仅需在520±30nm的波长范围内满足公式(1)即可,相比于整个可见光380-780nm的波长范围,其波长范围缩小很多,选材难度也随之降低很多。优选地,此时所述第一膜层302的折射率为1.2-1.5,所述第二膜层303的折射率为1.7-2.3。
具体地,所述第一膜层302和第二膜层303的光学厚度(折射率与膜层物理厚度之积)为100nm-400nm。
具体地,所述第一膜层302和第二膜层303的光学厚度比为1:0.6-1.5。可选地,所述第一膜层302和第二膜层303的光学厚度基本上相当,也可微调其厚度配比,例如,所述第一膜层302和第二膜层303的光学厚度比为1:1.5。
优选地,所述第一膜层302和第二膜层303为金属材料膜层,则金属材料的偏光片31通过蒸镀或溅射方式分别形成,相较于传统的偏光片,具有更为明显的优势,其优点在于热稳定性好,耐湿性好,可靠性程度高,且制备方法较为简单。
优选地,所述本体301的材料为玻璃。
综上所述,本发明提供了一种液晶显示装置,其偏光片包括阵列排布的偏光单元,所述偏光单元为多层膜结构,包括透明的本体、及交替层叠于本体上的数层第一膜层和数层第二膜层,光线在多层膜结构中经多次的界面折反射,可将S偏振光与P偏振光完全分开,从而形成线偏振光,实现偏光功能,进一步地,每一个偏光单元对应一个子像素,并且只需要在该子像素发出的光线的波长范围内实现偏光功能即可,从而在选择本体、第一膜层、及第二膜层的材料时只需要使其在上述波长范围满足偏光条件即可,而不需要在整个可见光范围内均满足偏光条件,能够降低多层膜结构的选材难度和制作难度,提升液晶显示装置的对比度。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (18)

  1. 一种液晶显示装置,包括:背光模组、设于背光模组上方的LCD面板、及分别设于所述LCD面板两侧的两个偏光片;
    所述LCD面板包括:阵列排布的第一子像素、第二子像素、及第三子像素,所述第一子像素、第二子像素、及第三子像素发出不同颜色的光线;
    所述每一偏光片均包括:分别对应第一、第二与第三子像素设置的阵列排布的多个偏光单元;
    每一个偏光单元均为多层膜结构,包括透明的本体、及交替层叠于本体上的数层第一膜层和数层第二膜层;
    对应每一个子像素设置的偏光单元在该子像素发出的光线的波长范围内都满足以下公式:
    Figure PCTCN2016090577-appb-100001
    其中,nH为第一膜层对该波长范围内的光线的折射率,nL为第二膜层对该波长范围内的光线的折射率,nH大于nL,nG为本体该对该波长范围内的光线的折射率,θG为该波长范围内的光线在本体内与本体的法线的夹角。
  2. 如权利要求1所述液晶显示装置,其中,所述第一子像素、第二子像素、及第三子像素发出的光线的颜色分别为红色、绿色、及蓝色。
  3. 如权利要求1所述的液晶显示装置,其中,所述偏光片通过蒸镀、溅射或旋涂的方式形成。
  4. 如权利要求1所述的液晶显示装置,其中,每一个偏光单元包括的第一膜层和第二膜层的层数之和均为20至100层。
  5. 如权利要求1所述的液晶显示装置,其中,所述第一膜层和第二膜层的材料均为金属。
  6. 如权利要求1所述的液晶显示装置,其中,所述第一膜层和第二膜层光学厚度均为100nm-400nm。
  7. 如权利要求1所述的液晶显示装置,其中,所述第一膜层和第二膜层的光学厚度比为1:0.6-1.5。
  8. 如权利要求7所述的液晶显示装置,其中,所述第一膜层和第二膜层的光学厚度相同。
  9. 如权利要求7所述的液晶显示装置,其中,所述第一膜层和第二膜层的光学厚度比为1:1.5。
  10. 如权利要求1所述的液晶显示装置,其中,所述本体的材料为玻璃。
  11. 一种液晶显示装置,包括:背光模组、设于背光模组上方的LCD面板、及分别设于所述LCD面板两侧的两个偏光片;
    所述LCD面板包括:阵列排布的第一子像素、第二子像素、及第三子像素,所述第一子像素、第二子像素、及第三子像素发出不同颜色的光线;
    所述每一偏光片均包括:分别对应第一、第二与第三子像素设置的阵列排布的多个偏光单元;
    每一个偏光单元均为多层膜结构,包括透明的本体、及交替层叠于本体上的数层第一膜层和数层第二膜层;
    对应每一个子像素设置的偏光单元在该子像素发出的光线的波长范围内都满足以下公式:
    Figure PCTCN2016090577-appb-100002
    其中,nH为第一膜层对该波长范围内的光线的折射率,nL为第二膜层对该波长范围内的光线的折射率,nH大于nL,nG为本体该对该波长范围内的光线的折射率,θG为该波长范围内的光线在本体内与本体的法线的夹角;
    其中,所述第一子像素、第二子像素、及第三子像素发出的光线的颜色分别为红色、绿色、及蓝色;
    其中,所述偏光片通过蒸镀、溅射或旋涂的方式形成。
  12. 如权利要求11所述的液晶显示装置,其中,每一个偏光单元包括的第一膜层和第二膜层的层数之和均为20至100层。
  13. 如权利要求11所述的液晶显示装置,其中,所述第一膜层和第二膜层的材料均为金属。
  14. 如权利要求11所述的液晶显示装置,其中,所述第一膜层和第二膜层光学厚度均为100nm-400nm。
  15. 如权利要求11所述的液晶显示装置,其中,所述第一膜层和第二膜层的光学厚度比为1:0.6-1.5。
  16. 如权利要求15所述的液晶显示装置,其中,所述第一膜层和第二膜层的光学厚度相同。
  17. 如权利要求15所述的液晶显示装置,其中,所述第一膜层和第二膜层的光学厚度比为1:1.5。
  18. 如权利要求11所述的液晶显示装置,其中,所述本体的材料为玻璃。
PCT/CN2016/090577 2016-06-20 2016-07-20 液晶显示装置 WO2017219419A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/119,725 US10254582B2 (en) 2016-06-20 2016-07-20 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610451260.XA CN105892139B (zh) 2016-06-20 2016-06-20 液晶显示装置
CN201610451260.X 2016-06-20

Publications (1)

Publication Number Publication Date
WO2017219419A1 true WO2017219419A1 (zh) 2017-12-28

Family

ID=56730194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090577 WO2017219419A1 (zh) 2016-06-20 2016-07-20 液晶显示装置

Country Status (3)

Country Link
US (1) US10254582B2 (zh)
CN (1) CN105892139B (zh)
WO (1) WO2017219419A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123996A (ja) * 2017-01-31 2018-08-09 東芝ライフスタイル株式会社 冷蔵庫

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050068622A1 (en) * 2003-09-30 2005-03-31 Konica Minolta Opto, Inc. Polarizing beam splitting film and polarizing beam splitting prism
CN1776505A (zh) * 2004-11-19 2006-05-24 索尼株式会社 反射偏振片与彩色液晶显示装置
CN101349827A (zh) * 2007-07-20 2009-01-21 瀚宇彩晶股份有限公司 偏振光发射元件
CN103837921A (zh) * 2012-11-20 2014-06-04 三星显示有限公司 偏光片和包括该偏光片的液晶显示器
CN105511147A (zh) * 2014-10-13 2016-04-20 三星电子株式会社 显示装置以及该显示装置的制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882774A (en) * 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
US7265834B2 (en) * 2002-07-13 2007-09-04 Autocloning Technology Ltd. Polarization analyzer
KR100483352B1 (ko) * 2004-07-27 2005-04-14 (주)파버나인 박판 편광판과 위상차판을 구비한 액정표시장치
TW200619691A (en) * 2004-12-03 2006-06-16 Hon Hai Prec Ind Co Ltd Polarizer and liquid crystal display by using thereof
KR20070024090A (ko) * 2005-08-26 2007-03-02 엘지전자 주식회사 프리즘 시트 및 액정 표시 소자에 사용되는 백라이트 장치
WO2008018247A1 (fr) * 2006-08-09 2008-02-14 Nippon Sheet Glass Company, Limited Élément polarisant à transmission, et plaque polarisante complexe utilisant l'élément
CN103529507B (zh) * 2012-07-06 2016-05-25 三菱电机株式会社 偏振光相位差板以及激光加工机
CN103792672B (zh) * 2014-02-14 2016-03-23 成都京东方光电科技有限公司 立体显示组件、液晶面板和显示装置
CN104698524B (zh) * 2015-02-13 2018-04-03 上海天马微电子有限公司 一种偏振片及其制备方法和图像显示面板、图像显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050068622A1 (en) * 2003-09-30 2005-03-31 Konica Minolta Opto, Inc. Polarizing beam splitting film and polarizing beam splitting prism
CN1776505A (zh) * 2004-11-19 2006-05-24 索尼株式会社 反射偏振片与彩色液晶显示装置
CN101349827A (zh) * 2007-07-20 2009-01-21 瀚宇彩晶股份有限公司 偏振光发射元件
CN103837921A (zh) * 2012-11-20 2014-06-04 三星显示有限公司 偏光片和包括该偏光片的液晶显示器
CN105511147A (zh) * 2014-10-13 2016-04-20 三星电子株式会社 显示装置以及该显示装置的制造方法

Also Published As

Publication number Publication date
US20180180936A1 (en) 2018-06-28
CN105892139B (zh) 2019-02-01
CN105892139A (zh) 2016-08-24
US10254582B2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
TWI288283B (en) Liquid crystal display device
JP5330529B2 (ja) 液晶表示装置
JPH04194820A (ja) 液晶表示装置
TW200827840A (en) Liquid crystal panel comprising liquid crystal cell having multigap structure, and liquid crystal display
WO2014121559A1 (zh) 光子晶体、彩膜基板、显示面板及显示装置
JPWO2010137372A1 (ja) 液晶表示装置
JP4928985B2 (ja) 液晶表示装置
JP2007034308A (ja) 液晶表示装置とその製造方法
TW200540473A (en) Liquid crystal display device and electronic apparatus
CN111201484B (zh) 堆叠体和包括其的液晶显示装置
JP2007286141A (ja) 円偏光素子、液晶パネル、および電子機器
JP2007304498A (ja) 液晶表示装置
US10353245B2 (en) Tunable terahertz achromatic wave plate and a terahertz achromatic range tuning method
WO2018064855A1 (zh) 圆偏光片、液晶显示器和电子装置
JP2006338005A5 (zh)
JP6738829B2 (ja) 反射型偏光子及び補償フィルムを含む光学積層体
TW201905505A (zh) 偏光式視角控制元件、偏光式視角控制顯示模組以及偏光式視角控制光源模組
TW200809326A (en) Liquid crystal display device and polarizing plate set for use in the same
JP2007298960A (ja) 液晶表示装置及びそれに用いる偏光板のセット
CN113311600B (zh) 显示装置
JP2010026091A (ja) 円偏光板、及び液晶表示装置
WO2017219419A1 (zh) 液晶显示装置
WO2017033496A1 (ja) タッチパネル付き液晶表示装置
WO2017193444A1 (zh) 液晶显示装置
JP2002031721A (ja) 複合偏光板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15119725

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905959

Country of ref document: EP

Kind code of ref document: A1