WO2017217693A1 - Photocatalytic functional filter - Google Patents

Photocatalytic functional filter Download PDF

Info

Publication number
WO2017217693A1
WO2017217693A1 PCT/KR2017/005950 KR2017005950W WO2017217693A1 WO 2017217693 A1 WO2017217693 A1 WO 2017217693A1 KR 2017005950 W KR2017005950 W KR 2017005950W WO 2017217693 A1 WO2017217693 A1 WO 2017217693A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
adsorbent
functional filter
layer
photocatalytic functional
Prior art date
Application number
PCT/KR2017/005950
Other languages
French (fr)
Korean (ko)
Inventor
김하나
이동일
김효중
이엽
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to JP2018565279A priority Critical patent/JP6726313B2/en
Priority to CN201780036766.7A priority patent/CN109310937B/en
Publication of WO2017217693A1 publication Critical patent/WO2017217693A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0028Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions provided with antibacterial or antifungal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0036Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions by adsorption or absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0038Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions with means for influencing the odor, e.g. deodorizing substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/08Special characteristics of binders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic

Definitions

  • a photocatalytic functional filter A photocatalytic functional filter.
  • One embodiment of the present invention provides a photocatalytic functional filter capable of adsorbing harmful substances in the air in a short time and rapidly decomposing the adsorbed harmful substances.
  • a photocatalyst layer, an adsorbent layer and a substrate layer sequentially include, wherein the photocatalyst layer has a hydrophilic first inorganic binder; And a photocatalyst, wherein the adsorbent layer comprises a second inorganic binder different from the first inorganic binder; And it provides a photocatalytic functional filter comprising an adsorbent.
  • the first inorganic binder may include one selected from the group consisting of a titanium dioxide (TiO 2 ) binder, colloidal silica, a silicon dioxide (SiO 2 ) -based binder, an alumina sol, a zirconia sol, and a combination thereof. .
  • the first inorganic binder may have a contact angle with respect to water of 0 ° to 20 °.
  • the photocatalyst may include metal oxides and metal particles.
  • the metal oxide may include one selected from the group consisting of titanium oxide, tungsten oxide, zinc oxide, niobium oxide, and combinations thereof.
  • the metal particles are made of tungsten, chromium, vanadium, molybdenum, copper, iron, cobalt, manganese, nickel, platinum, gold, silver, cerium, cadmium, zinc, magnesium, calcium, strontium, barium, and combinations thereof. It may include one selected from.
  • the photocatalyst may have a particle diameter of 20 nm to 100 nm.
  • the photocatalyst layer may include 50 to 100 parts by weight of the first inorganic binder based on 100 parts by weight of the photocatalyst.
  • the photocatalyst layer may have a thickness of 0.2 ⁇ m to 1 ⁇ m.
  • the second inorganic binder is tetraethyl orthosilicate (TEOS), trimethoxy (methyl) silane (Trimethoxy (methyl) silane), triethoxy (methyl) silane (triethoxy (methyl) silane) and a combination thereof It may include one selected from.
  • TEOS tetraethyl orthosilicate
  • trimethoxy (methyl) silane Trimethoxy (methyl) silane
  • Trimethoxy (methyl) silane Trimethoxy (methyl) silane
  • triethoxy (methyl) silane triethoxy (methyl) silane
  • the adsorbent may include one selected from the group consisting of activated carbon, zeolite, apatite, alumina, silica, and combinations thereof.
  • the adsorbent may have a particle diameter of 0.02 ⁇ m to 1 ⁇ m.
  • the adsorbent layer may include 50 to 100 parts by weight of the second inorganic binder based on 100 parts by weight of the adsorbent.
  • the thickness of the adsorbent layer may be 0.2um to 1um.
  • the substrate layer may include one selected from the group consisting of a nonwoven fabric, a polymer film, a glass substrate, and a combination thereof.
  • the photocatalyst functional filter can be easily trapped in the air by the adsorbent in a short time, and can be prevented from contamination of the substrate layer thanks to the deodorization, antibacterial, antiviral performance of the photocatalyst, even if the gas phase material is caught Reaction can be broken down into substances that are harmless to the human body.
  • the photocatalyst is advantageously dispersed on the surface of the photocatalyst functional filter to improve the decomposition efficiency of harmful substances in the air.
  • FIG. 1 schematically illustrates a cross section of an organic fiber of a photocatalytic functional nonwoven fabric in accordance with one embodiment of the present invention.
  • FIG. 2 schematically illustrates a photocatalyst according to an embodiment of the present invention.
  • a photocatalyst layer, an adsorbent layer and a substrate layer sequentially include, wherein the photocatalyst layer has a hydrophilic first inorganic binder; And a photocatalyst, wherein the adsorbent layer comprises a second inorganic binder different from the first inorganic binder; And it provides a photocatalytic functional filter comprising an adsorbent.
  • FIG. 1 schematically illustrates a cross section of a photocatalytic functional filter according to one embodiment of the invention.
  • the photocatalytic functional filter 100 sequentially includes a photocatalyst layer 110, an adsorbent layer 120, and a base layer 130.
  • the photocatalyst layer 110 includes a photocatalyst 150 and a first inorganic binder 140, and the adsorbent layer 120 includes a second inorganic binder 160 and an adsorbent 170.
  • the photocatalyst layer may be positioned on the outermost surface of the photocatalyst functional filter and distinguished from the adsorbent layer to improve the decomposition efficiency of harmful substances in the air.
  • the photocatalyst filter effectively captures and decomposes harmful substances in the air.
  • the photocatalyst layer should be able to easily react with harmful substances in the air, and the adsorbent layer should be able to be exposed to the surface of the photocatalytic functional filter as much as possible.
  • the photocatalyst functional filter can perform the above-described function excellently by appropriately controlling or designing the formation, composition, composition, etc. of the photocatalyst layer and the adsorbent layer.
  • the photocatalyst layer may be located on the outermost surface of the photocatalyst functional filter to improve the decomposition of harmful substances in the air.
  • the photocatalyst layer may have a thickness of about 0.2 ⁇ m to about 1 ⁇ m.
  • the thickness range of the photocatalyst layer By maintaining the thickness range of the photocatalyst layer, harmful substances in the air may be efficiently adsorbed and decomposed, and when the photocatalyst layer is less than the thickness range, the binding force of the photocatalyst and the photocatalyst layer may be lowered to reduce durability. However, it may not be possible to obtain a sufficient amount of photocatalyst for the photoreaction.
  • the adsorbent When the photocatalyst layer exceeds the thickness range, the adsorbent may not be exposed to the outside of the photocatalyst layer, thereby reducing the degree of adsorption of harmful substances in the air and having a high probability of cracking on the surface, thereby increasing durability of the photocatalyst layer. This may be lowered, and the problem of rising production costs may occur.
  • the photocatalyst layer includes a first inorganic binder having hydrophilicity.
  • the first inorganic binder may include one selected from the group consisting of a titanium dioxide (TiO 2 ) binder, colloidal silica, a silicon dioxide (SiO 2 ) -based binder, an alumina sol, a zirconia sol, and a combination thereof. .
  • the first inorganic binder allows the photocatalyst to adhere well to the photocatalyst functional filter.
  • the first inorganic binder includes a titanium dioxide (TiO 2 ) binder
  • the first inorganic binder has excellent compatibility with the photocatalyst.
  • the photocatalyst may be firmly attached to the surface of the photocatalyst functional filter without impairing the catalytic function of the photocatalyst.
  • the first inorganic binder may have a contact angle with respect to water of about 20 ° or less. Specifically, it may be about 0 ° to about 20 °.
  • the contact angle of the water was measured at 25 ° C. and 1 atm using a contact angle measuring apparatus (dataphysics, contact angle system OCA), and the contact angle was measured at room temperature and atmospheric pressure by setting the dosing volume to '2 uL'.
  • '2uL' is the volume of water dropped on the surface to measure the contact angle.
  • the contact angle of the first inorganic binder exceeds the above range, the hydrophilic surface is not formed, the photocatalyst performance may be reduced. Specifically, if the surface of the photocatalyst is not sufficiently hydrophilic, water molecules required for the photocatalytic reaction may not be effectively adsorbed, and as a result, the photocatalyst performance may be degraded. That is, when the contact angle of the first inorganic binder satisfies the above range, it is possible to easily ensure the expression of effective photocatalytic performance.
  • the first inorganic binder Since the first inorganic binder has hydrophilicity, it can effectively adsorb water molecules necessary for implementing photocatalytic performance by the hydrophilic surface, thereby maximizing photocatalytic performance than the non-hydrophilic binder.
  • the photocatalyst layer includes a photocatalyst.
  • the photocatalyst generally means a material capable of promoting a chemical reaction when exposed to light. For example, organic odor-causing substances, volatile organic compounds, and substances capable of promoting redox reactions related to decomposition or oxidation of organic base dyes.
  • the photocatalyst may include metal oxides and metal particles.
  • Figure 2 schematically shows the appearance of the photocatalyst according to an embodiment of the present invention.
  • the photocatalyst 150 may have a shape in which metal particles 210 are dispersed and attached to a surface of the metal oxide 220. Specifically, the photocatalyst 150 may be in the form of photo-deposition of the metal particles 210 on the surface of the metal oxide 220.
  • the metal oxide may include one selected from the group consisting of titanium oxide, tungsten oxide, zinc oxide, niobium oxide, and combinations thereof.
  • the metal oxide may include tungsten oxide, and in this case, it is possible to obtain an advantage in that it is excellent in exhibiting photocatalytic properties by reacting in visible light and inexpensive price.
  • the metal particles are made of tungsten, chromium, vanadium, molybdenum, copper, iron, cobalt, manganese, nickel, platinum, gold, silver, cerium, cadmium, zinc, magnesium, calcium, strontium, barium, and combinations thereof. It may include one selected from.
  • the metal particles may comprise platinum, in which case the advantage of exhibiting the highest photocatalytic performance can be obtained.
  • Each of the metal oxide and the metal particles is a spherical particle, and the term 'spherical particle' does not mean a particle having a mathematically perfect sphere shape, but means a particle having a projection image that is identical or similar to a circle or an ellipse. .
  • the metal oxide and the metal particles are each spherical particles, and as a result, the photocatalyst particles have a shape in which spherical metal particles are deposited on the surface of the spherical metal oxide particles.
  • the particle diameter of the metal particles may be several nanometers (nm), for example, about 3 nm to about 5 nm.
  • the particle diameter of the metal particles is very small compared to the particle diameter of the metal oxide, and the metal particles have a particle diameter in the above range, so that the metal particles may be photo-deposited to an appropriate content on the surface of the metal oxide, thereby exhibiting excellent photocatalytic activity.
  • the particle diameter of the metal particles can be derived by measuring the diameter of the projection image when the metal particles are projected with parallel light in a predetermined direction, which can be applied to the photocatalyst.
  • the photocatalyst may have a particle diameter of about 20 nm to about 100 nm, and specifically about 30 nm to about 60 nm.
  • the particle diameter of the photocatalyst particles can be derived by measuring SEM or TEM photographs. When the particle diameter of the photocatalyst particles satisfies the above range, high adhesion to the photocatalyst layer may be ensured, and the photocatalyst particles may be dispersed with an appropriate degree of dispersion to exhibit excellent photocatalytic activity.
  • the size of the photocatalyst particles is mainly determined by the particle diameter of the metal oxide. That is, when the photocatalyst particles have a particle size in the above range, the metal oxide of the photocatalyst particles may have a particle size within an error range of several nanometers (nm), for example, about 3 nm to about 5 nm in the above range. . In this case, the amount of metal particles photo-deposited on the surface of the metal oxide may be sufficient, and may exhibit excellent catalytic activity efficiency. In addition, the photocatalyst particles may be evenly distributed in the photocatalyst layer by having a particle diameter in the above range.
  • the photocatalyst layer may include about 50 parts by weight to about 100 parts by weight of the first inorganic binder based on 100 parts by weight of the photocatalyst.
  • the photocatalyst layer may include the first inorganic binder in the range of parts by weight, thereby implementing appropriate hardness and improving durability without inhibiting the function of the photocatalyst.
  • the weight part of the first inorganic binder is less than the range, there may occur a problem in that sufficient adhesion between the photocatalyst layer and the photocatalyst may not be secured, and when the weight part of the first inorganic binder is more than the range, Most of them may be covered by the first inorganic binder, which may cause a problem that the activity of the photocatalyst may be reduced.
  • the photocatalytic functional filter 100 includes an adsorbent layer 120 on one surface of the photocatalyst layer 110.
  • the adsorbent layer should be located between the photocatalyst layer and the substrate layer to easily adsorb harmful substances in the air, and should be compatible with the substrate layer and the photocatalyst layer.
  • the photocatalytic functional filter can perform the above-described function excellent by controlling the composition and components of the adsorbent.
  • the adsorbent layer may have a thickness of about 0.2um to about 1um.
  • the adsorbent layer maintains the thickness range so that harmful substances in the air can be efficiently adsorbed and have proper durability, and when the adsorbent layer is less than the thickness range, the adsorption performance may be lowered, and the adsorbent layer is in the thickness range. If exceeded, cracks may occur in the adsorbent layer, thereby reducing durability of the adsorbent layer, and the thicker the adsorbent layer, the higher the production cost.
  • the adsorbent layer includes a second inorganic binder different from the first inorganic binder of the photocatalyst layer.
  • the structure in which the adsorbent layer and the photocatalytic layer are separated can be maintained better than when the same kind of binder is used, and the second inorganic binder is included in the photocatalyst layer.
  • the adsorbent layer may realize uniform coating property and excellent durability without cracking by the second inorganic binder included in the adsorbent layer while maximizing photocatalytic efficiency due to the hydrophilic property of the first inorganic binder.
  • the second inorganic binder is composed of tetraethyl orthosilicate (TEOS), trimethoxy (methyl) silane (trimethoxy (methyl) silane), triethoxy (methyl) silane and a combination thereof It may include one selected from the group.
  • TEOS tetraethyl orthosilicate
  • trimethoxy (methyl) silane trimethoxy (methyl) silane
  • triethoxy (methyl) silane and a combination thereof It may include one selected from the group.
  • the second inorganic binder allows the adsorbent to adhere well to the photocatalytic functional filter.
  • the second inorganic binder includes a tetraethylosilicate (TEOS) binder
  • TEOS tetraethylosilicate
  • the adsorbent layer includes an adsorbent, and the adsorbent may include one selected from the group consisting of activated carbon, zeolite, apatite, alumina, silica, and combinations thereof.
  • the adsorbent may include one selected from the group consisting of activated carbon, zeolite, apatite, alumina, silica, and combinations thereof.
  • the adsorbent may have a porous structure.
  • the adsorbent may have a high surface area through the porous structure, the greater the surface area in terms of adsorption of harmful substances in the air may be advantageous.
  • the adsorbent may have a surface area of about 500 m 2 / g to about 1000 m 2 / g.
  • the adsorbent may be attached to at least a portion of the photocatalyst on the surface.
  • the adsorbent 170 of the adsorbent layer 120 has a structure partially exposed out of the layer. As a result, at least a portion of the adsorbent 170 may penetrate into the photocatalyst layer 110, thereby forming a structure attached to at least a portion of the photocatalyst 150. By adhering at least a portion of the photocatalyst to the surface of the adsorbent, the adsorption and decomposition rate of harmful substances in the air may be improved.
  • the adsorbent may have a particle diameter of about 0.02 ⁇ m to about 1 ⁇ m.
  • the particle size of the adsorbent particles satisfies the above range, high adhesion to the adsorbent layer can be ensured, and dispersed with an appropriate degree of dispersion can exhibit excellent adsorbability.
  • the adsorbent When the particle diameter of the adsorbent is less than the range, the adsorbent may be smaller than the photocatalyst particles, and in this case, the amount of the adsorbent exposed to the outside may be difficult to implement an effective adsorption performance, and the particle size of the adsorbent may be If it exceeds the range may cause a problem that the uniformity and durability of the adsorbent layer may be lowered.
  • the adsorbent has a surface area and a particle diameter at the same time satisfying the aforementioned range, the adsorption effect of harmful substances in the air and the hardness of the adsorbent layer. At the same time, the effect of improving mechanical properties such as durability can be greatly improved.
  • the adsorbent layer may include about 50 parts by weight to about 100 parts by weight of the second inorganic binder based on 100 parts by weight of the adsorbent.
  • the second inorganic binder By including the second inorganic binder in the weight part range, it is possible to implement appropriate hardness and improve durability without inhibiting the function of the adsorbent.
  • the weight part of the second inorganic binder When the weight part of the second inorganic binder is less than the range, a problem may occur in that sufficient adhesion between the adsorbent layer and the adsorbent may not be secured.
  • the weight part of the second inorganic binder is more than the range, the surface of the adsorbent may be In most cases, a problem may occur in which the adsorption performance may be reduced by being covered by the second inorganic binder.
  • the photocatalyst filter 100 includes a base layer 130 on one surface of the adsorbent layer 120.
  • the base layer may include, but is not limited to, one selected from the group consisting of nonwoven fabrics, polymer films, glass substrates, and combinations thereof.
  • the base layer may include a nonwoven fabric, and in this case, compatibility with the second inorganic binder is good, and the second inorganic binder has good adhesiveness to the nonwoven fabric and does not easily peel off even in physical impact. Durability of the photocatalytic functional filter can be improved.
  • IPA Isopropyl alcohol
  • TTIP titanium isopropoxide
  • Titanium dioxide photocatalyst (Pt / WO3) including platinum nanoparticles and a particle diameter of 30 nm to 60 nm is added to the titanium dioxide (TiO 2) binder sol and mixed, based on 100 parts by weight of the tungsten oxide photocatalyst, the titanium dioxide A photocatalyst coating solution containing 100 parts by weight of a (TiO 2) binder was prepared.
  • TEOS tetraethyl orthosilicate
  • An adsorbent comprising 100 parts by weight of the tetraethyl orthosilicate (TEOS) binder based on 100 parts by weight of the adsorbent by adding and mixing a plurality of zeolites having a particle diameter of 0.02 ⁇ m to 1 ⁇ m to the tetraethyl orthosilicate (TEOS) binder sol.
  • a coating solution was prepared.
  • a photocatalyst aqueous solution having a concentration of 10% by weight was prepared by adding a plurality of tungsten oxide photocatalysts (Pt / WO3) containing platinum nanoparticles in the aqueous solution and having a particle diameter of 30 nm to 60 nm.
  • the adsorbent coating solution prepared above was coated on one surface of a nonwoven fabric having a thickness of 1 mm and thermoset to form an adsorbent layer having a thickness of 500 nm. Then, the prepared photocatalyst coating solution was applied and thermally cured to form a photocatalyst layer having a thickness of 500 nm.
  • a non-woven fabric having a thickness of 1 mm was coated on one surface of the adsorbent coating solution and thermoset to form an adsorbent layer having a thickness of 500 nm to prepare a filter.
  • the photocatalyst coating solution prepared above was applied to one surface of a nonwoven fabric having a thickness of 1 mm and thermoset to form a photocatalyst layer having a thickness of 500 nm to prepare a filter.
  • One side of the nonwoven fabric having a thickness of 1 mm was coated with the adsorbent coating solution prepared above, and thermally cured to form an adsorbent layer having a thickness of 500 nm. Then, the prepared photocatalyst aqueous solution was applied and thermally cured to form a photocatalyst layer to prepare a filter.
  • thermosetting layer having a thickness of 500 nm to prepare a filter.
  • the mass of the adsorbent or photocatalyst peeled off by attaching a cellophane tape having a width of 5 cm and a length of 1.5 cm to the surface of the functional filter according to the Examples and Comparative Examples was measured, and the amount of the peeled was mixed with the Examples and Comparative Examples. It is good when the content is 3% or less relative to the mass of the adsorbent or photocatalyst, and when the content is more than 3%, the result is insufficient and the results are shown in Table 1 below.
  • the photocatalytic functional filter prepared according to Example 1 can be confirmed that the harmful gas decomposition performance of the harmful gas decomposition performance of more than 90, and at the same time excellent surface durability to implement the optimized properties as a photocatalytic functional filter.
  • Comparative Example 1 it can be seen that the filter treatment is performed only with the adsorbent coating liquid without the photocatalyst, and the harmful gas decomposition performance is significantly reduced.
  • Comparative Example 4 it is confirmed that tetraethyl orthosilicate (TEOS) contained in the adsorbent coating liquid is exposed to the surface, making it difficult to form a hydrophilic surface, thereby limiting the expression of photocatalytic performance.
  • TEOS tetraethyl orthosilicate
  • Comparative Example 3 it can be seen that the surface durability is reduced by including a photocatalyst aqueous solution instead of a photocatalyst binder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

The present invention comprises, in order: a photocatalytic layer; an adsorbent layer; and a substrate layer, wherein the photocatalytic layer comprises: a first inorganic binder having hydrophilicity; and a photocatalyst, and wherein the adsorbent layer comprises: a second inorganic binder which is different from the first inorganic binder; and a photocatalytic functional filter comprising an adsorbent.

Description

광촉매 기능성 필터Photocatalytic Functional Filter
광촉매 기능성 필터에 관한 것이다.A photocatalytic functional filter.
의료용 마스크, 자동차용 시트 등에 사용되는 일반적인 필터는 세균이나 가스상의 물질들을 붙잡아 거르는 기능을 갖고 있다. 다만, 이러한 일반적인 필터의 경우 세균 또는 가스상의 물질들을 자체적으로 분해하는 기능을 갖고 있지는 않다. 이에 광촉매만을 필터에 코팅한 경우, 자체적 분해 기능은 있으나 유해물질이 공기 중에서 확산되어 광촉매 표면에 흡착되기까지의 시간이 필요하기 때문에, 단시간에 효과를 보기에는 어렵고 흡착제만을 필터에 코팅한 경우, 단시간에 세균이나 가스상 물질을 제거할 수 있으나, 흡착제가 포화된 이후에는 그 효과를 볼 수가 없는 문제점을 가지고 있었다.Common filters used in medical masks, car seats, and the like have a function of catching and filtering bacteria or gaseous substances. However, such a general filter does not have a function of self-decomposing bacterial or gaseous substances. When only the photocatalyst is coated on the filter, it has a self-decomposition function, but since it takes time for harmful substances to diffuse in the air and adsorb onto the surface of the photocatalyst, it is difficult to see the effect in a short time, and when only the adsorbent is coated on the filter, Although bacteria or gaseous substances could be removed, the saturation of the adsorbent had a problem that the effect was not seen.
따라서, 광촉매 및 흡착제를 함께 사용하면서 필터의 효율을 높일 수 있는 방법에 대한 연구가 더 필요한 실정이다.Therefore, there is a need for further studies on how to increase the efficiency of the filter while using a photocatalyst and an adsorbent together.
본 발명의 일 구현예는 단시간에 공기 중의 유해물질을 흡착하고, 흡착된 유해물질을 빠르게 분해할 수 있는 광촉매 기능성 필터를 제공한다.One embodiment of the present invention provides a photocatalytic functional filter capable of adsorbing harmful substances in the air in a short time and rapidly decomposing the adsorbed harmful substances.
본 발명의 일 구현예에서, 광촉매층, 흡착제층 및 기재층을 순차적으로 포함하고, 상기 광촉매층은 친수성을 갖는 제1 무기 바인더; 및 광촉매를 포함하며, 상기 흡착제층은 상기 제1 무기 바인더와 상이한 제2 무기 바인더; 및 흡착제를 포함하는 광촉매 기능성 필터를 제공한다.In one embodiment of the present invention, a photocatalyst layer, an adsorbent layer and a substrate layer sequentially include, wherein the photocatalyst layer has a hydrophilic first inorganic binder; And a photocatalyst, wherein the adsorbent layer comprises a second inorganic binder different from the first inorganic binder; And it provides a photocatalytic functional filter comprising an adsorbent.
상기 제1 무기 바인더는 이산화티탄(TiO2) 바인더, 콜로이드 규산(colloidal silica), 이산화규소(SiO2)계 바인더, 알루미나 졸, 지르코니아 졸 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.The first inorganic binder may include one selected from the group consisting of a titanium dioxide (TiO 2 ) binder, colloidal silica, a silicon dioxide (SiO 2 ) -based binder, an alumina sol, a zirconia sol, and a combination thereof. .
상기 제1 무기 바인더는 물에 대한 접촉각이 0°내지 20°일 수 있다.The first inorganic binder may have a contact angle with respect to water of 0 ° to 20 °.
상기 광촉매는 금속 산화물 및 금속 입자를 포함할 수 있다.The photocatalyst may include metal oxides and metal particles.
상기 금속 산화물은 산화티탄, 산화텅스텐, 산화아연, 산화니오븀 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.The metal oxide may include one selected from the group consisting of titanium oxide, tungsten oxide, zinc oxide, niobium oxide, and combinations thereof.
상기 금속 입자는 텅스텐, 크롬, 바나듐, 몰리브데넘, 구리, 철, 코발트, 망간, 니켈, 백금, 금, 은, 세륨, 카드늄, 아연, 마그네슘, 칼슘, 스트론튬, 바륨 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.The metal particles are made of tungsten, chromium, vanadium, molybdenum, copper, iron, cobalt, manganese, nickel, platinum, gold, silver, cerium, cadmium, zinc, magnesium, calcium, strontium, barium, and combinations thereof. It may include one selected from.
상기 광촉매는 입경(particle diameter)이 20nm 내지 100nm 일 수 있다.The photocatalyst may have a particle diameter of 20 nm to 100 nm.
상기 광촉매층은 상기 광촉매 100중량부 기준, 상기 제1 무기 바인더 50 내지 100 중량부를 포함할 수 있다.The photocatalyst layer may include 50 to 100 parts by weight of the first inorganic binder based on 100 parts by weight of the photocatalyst.
상기 광촉매층의 두께가 0.2㎛ 내지 1㎛일 수 있다.The photocatalyst layer may have a thickness of 0.2 μm to 1 μm.
상기 제2 무기 바인더는 테트라에틸오소실리케이트(TEOS), 트리메톡시(메틸)실란(Trimethoxy(methyl)silane), 트리에톡시(메틸)실란(triethoxy(methyl)silane) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.The second inorganic binder is tetraethyl orthosilicate (TEOS), trimethoxy (methyl) silane (Trimethoxy (methyl) silane), triethoxy (methyl) silane (triethoxy (methyl) silane) and a combination thereof It may include one selected from.
상기 흡착제는 활성탄, 제올라이트, 아파타이트, 알루미나, 실리카 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.The adsorbent may include one selected from the group consisting of activated carbon, zeolite, apatite, alumina, silica, and combinations thereof.
상기 흡착제는 입경(particle diameter)이 0.02㎛ 내지 1㎛일 수 있다.The adsorbent may have a particle diameter of 0.02 μm to 1 μm.
상기 흡착제층은 상기 흡착제 100중량부 기준, 상기 제2 무기 바인더 50 내지 100 중량부를 포함할 수 있다.The adsorbent layer may include 50 to 100 parts by weight of the second inorganic binder based on 100 parts by weight of the adsorbent.
상기 흡착제층의 두께가 0.2um 내지 1um 일 수 있다.The thickness of the adsorbent layer may be 0.2um to 1um.
상기 기재층은 부직포, 폴리머 필름, 유리 기판 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.The substrate layer may include one selected from the group consisting of a nonwoven fabric, a polymer film, a glass substrate, and a combination thereof.
상기 광촉매 기능성 필터는 흡착제에 의해 공기 중 오염물질 등이 단시간 내에 쉽게 포집될 수 있고, 광촉매의 탈취, 향균, 항바이러스 성능 덕분에 기재층의 오염을 막을 수 있으며, 가스상 물질이 걸리진 경우에도 광반응에 의해 인체에 무해한 물질로 분해시킬 수 있다.The photocatalyst functional filter can be easily trapped in the air by the adsorbent in a short time, and can be prevented from contamination of the substrate layer thanks to the deodorization, antibacterial, antiviral performance of the photocatalyst, even if the gas phase material is caught Reaction can be broken down into substances that are harmless to the human body.
상기 광촉매는 광촉매 기능성 필터의 표면에 집중적으로 분산되어 공기 중 유해물질의 분해효율을 향상시킬 수 있는 이점이 있다.The photocatalyst is advantageously dispersed on the surface of the photocatalyst functional filter to improve the decomposition efficiency of harmful substances in the air.
도 1은 본 발명의 일 구현예에 따른 광촉매 기능성 부직포의 유기 섬유의 단면을 개략적으로 도시한 것이다.1 schematically illustrates a cross section of an organic fiber of a photocatalytic functional nonwoven fabric in accordance with one embodiment of the present invention.
도 2는 본 발명의 일 구현예에 따른 광촉매를 개략적으로 도시한 것이다.2 schematically illustrates a photocatalyst according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 후술하는 실시예들을 참조하면 명확해질 것이다 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. Advantages and features of the present invention, and methods for achieving the same will be apparent with reference to the following embodiments. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms. The present embodiments are merely provided to make the disclosure of the present invention complete, and to fully convey the scope of the invention to those skilled in the art, and the present invention is defined by the scope of the claims. It will be. Like reference numerals refer to like elements throughout.
도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다. In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. In the drawings, the thicknesses of layers and regions are exaggerated for clarity.
또한, 본 명세서에서 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상부에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 아울러, 층, 막, 영역, 판 등의 부분이 다른 부분 "아래에" 또는 "하부에" 있다고 할 때, 이는 다른 부분 "바로 아래에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 아래에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.In addition, in this specification, when a part such as a layer, film, region, plate, or the like is said to be "on" or "upper" another part, it is not only when the other part is "right over" but also when there is another part in the middle. Also includes. On the contrary, when a part is "just above" another part, there is no other part in the middle. In addition, when a part such as a layer, a film, an area, or a plate is "below" or "below" another part, it is not only when the part is "below" but also another part in the middle. Include. In contrast, when a part is "just below" another part, there is no other part in the middle.
본 발명의 일 구현예에서, 광촉매층, 흡착제층 및 기재층을 순차적으로 포함하고, 상기 광촉매층은 친수성을 갖는 제1 무기 바인더; 및 광촉매를 포함하며, 상기 흡착제층은 상기 제1 무기 바인더와 상이한 제2 무기 바인더; 및 흡착제를 포함하는 광촉매 기능성 필터를 제공한다.In one embodiment of the present invention, a photocatalyst layer, an adsorbent layer and a substrate layer sequentially include, wherein the photocatalyst layer has a hydrophilic first inorganic binder; And a photocatalyst, wherein the adsorbent layer comprises a second inorganic binder different from the first inorganic binder; And it provides a photocatalytic functional filter comprising an adsorbent.
도 1은 본 발명의 일 구현예에 따른 광촉매 기능성 필터의 단면을 개략적으로 도시한 것이다.1 schematically illustrates a cross section of a photocatalytic functional filter according to one embodiment of the invention.
도 1을 참조할 때, 상기 광촉매 기능성 필터(100)는 광촉매층(110), 흡착제층(120) 및 기재층(130)을 순차적으로 포함한다.Referring to FIG. 1, the photocatalytic functional filter 100 sequentially includes a photocatalyst layer 110, an adsorbent layer 120, and a base layer 130.
상기 광촉매층(110)은 광촉매(150) 및 제1 무기 바인더(140)를 포함하고, 상기 흡착제층(120)은 제2 무기 바인더(160) 및 흡착제(170)를 포함한다. The photocatalyst layer 110 includes a photocatalyst 150 and a first inorganic binder 140, and the adsorbent layer 120 includes a second inorganic binder 160 and an adsorbent 170.
종래의 필터의 경우, 별도의 층 구별 없이 흡착제 표면에 광촉매를 부착시켜 이용하였다. 이 경우 같은 양의 광촉매를 첨가하더라도 필터의 표면에 노출되는 광촉매의 양이 적어 공기중의 유기물 분해 효율이 저하될 수 있었다. In the case of the conventional filter, a photocatalyst was attached to the surface of the adsorbent without using a separate layer. In this case, even if the same amount of photocatalyst was added, the amount of photocatalyst exposed on the surface of the filter was small, and thus the efficiency of decomposition of organic matter in the air could be reduced.
이에, 본 발명에서는 상기 광촉매층을 상기 광촉매 기능성 필터의 최외각 표면에 위치시키고 상기 흡착제층과 구별하여 공기중의 유해물질 분해 효율을 향상시킬 수 있다. Therefore, in the present invention, the photocatalyst layer may be positioned on the outermost surface of the photocatalyst functional filter and distinguished from the adsorbent layer to improve the decomposition efficiency of harmful substances in the air.
상기 광촉매 필터는 효과적으로 공기 중의 유해물질을 포집 및 분해하는 역할을 한다. 이를 위해 상기 광촉매층은 공기중의 유해물질과 쉽게 반응할 수 있어야 하며, 상기 흡착제층은 상기 광촉매 기능성 필터의 표면에 최대한 노출될 수 있어야 한다. The photocatalyst filter effectively captures and decomposes harmful substances in the air. To this end, the photocatalyst layer should be able to easily react with harmful substances in the air, and the adsorbent layer should be able to be exposed to the surface of the photocatalytic functional filter as much as possible.
본 발명의 일 구현예에서, 상기 광촉매 기능성 필터는 상기 광촉매층과 흡착제층의 형성, 성분, 조성 등을 적절히 제어하거나 설계함으로써 전술한 기능을 우수하게 수행할 수 있다.In one embodiment of the present invention, the photocatalyst functional filter can perform the above-described function excellently by appropriately controlling or designing the formation, composition, composition, etc. of the photocatalyst layer and the adsorbent layer.
상기 광촉매층은 상기 광촉매 기능성 필터의 최외각 표면에 위치하여 공기중의 유해물질 분해 효과가 향상될 수 있다.The photocatalyst layer may be located on the outermost surface of the photocatalyst functional filter to improve the decomposition of harmful substances in the air.
구체적으로, 상기 광촉매층은 두께가 약 0.2㎛ 내지 약 1㎛일 수 있다. 상기 광촉매층이 상기 두께 범위를 유지함으로써 효율적으로 공기 중의 유해물질이 흡착되고 분해될 수 있으며, 상기 광촉매층이 상기 두께 범위 미만인 경우 상기 광촉매와 상기 광촉매층의 결합력이 저하되어 내구성이 저하될 수 있고, 광반응에 필요한 충분한 양의 광촉매를 확보할 수 없을 수 있다. 상기 광촉매층이 상기 두께 범위 초과인 경우 상기 흡착제가 상기 광촉매층 밖으로 노출되지 않아 공기 중의 유해물질이 흡착되는 정도가 저하될 수 있고, 표면에 크랙(crack)이 발생할 확률이 높아 상기 광촉매층의 내구성이 저하될 수 있으며, 생산 원가가 상승하는 문제가 발생할 수 있다. Specifically, the photocatalyst layer may have a thickness of about 0.2 μm to about 1 μm. By maintaining the thickness range of the photocatalyst layer, harmful substances in the air may be efficiently adsorbed and decomposed, and when the photocatalyst layer is less than the thickness range, the binding force of the photocatalyst and the photocatalyst layer may be lowered to reduce durability. However, it may not be possible to obtain a sufficient amount of photocatalyst for the photoreaction. When the photocatalyst layer exceeds the thickness range, the adsorbent may not be exposed to the outside of the photocatalyst layer, thereby reducing the degree of adsorption of harmful substances in the air and having a high probability of cracking on the surface, thereby increasing durability of the photocatalyst layer. This may be lowered, and the problem of rising production costs may occur.
상기 광촉매층은 친수성을 갖는 제1 무기 바인더를 포함한다. 상기 제1 무기 바인더는 이산화티탄(TiO2) 바인더, 콜로이드 규산(colloidal silica), 이산화규소(SiO2)계 바인더, 알루미나 졸, 지르코니아 졸 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. 상기 제1 무기 바인더는 상기 광촉매가 상기 광촉매 기능성 필터에 잘 부착될 수 있도록 하는 것으로 예를 들어, 제1 무기 바인더가 이산화티탄(TiO2) 바인더를 포함하는 경우 상기 광촉매와의 상용성이 우수하고, 상기 광촉매의 촉매 기능을 손상시키지 않으면서 상기 광촉매 기능성 필터의 표면에 단단하게 부착되도록 할 수 있다. The photocatalyst layer includes a first inorganic binder having hydrophilicity. The first inorganic binder may include one selected from the group consisting of a titanium dioxide (TiO 2 ) binder, colloidal silica, a silicon dioxide (SiO 2 ) -based binder, an alumina sol, a zirconia sol, and a combination thereof. . The first inorganic binder allows the photocatalyst to adhere well to the photocatalyst functional filter. For example, when the first inorganic binder includes a titanium dioxide (TiO 2 ) binder, the first inorganic binder has excellent compatibility with the photocatalyst. In addition, the photocatalyst may be firmly attached to the surface of the photocatalyst functional filter without impairing the catalytic function of the photocatalyst.
상기 제1 무기 바인더는 물에 대한 접촉각이 약 20°이하 일 수 있다. 구체적으로, 약 0(zero) ° 내지 약 20°일 수 있다. 상기 물에 대한 접촉각은 접촉각 측정 장비(dataphysics, Contact angle system OCA)을 이용하여 25℃ 및 1기압 상태에서, 계량체적(dosing volume)을 '2uL' 으로 설정하여 상온 대기압 상태에서 접촉각을 측정하였고, 상기 '2uL'은 접촉각을 측정하기 위하여 표면에 떨어뜨린 물의 부피이다. The first inorganic binder may have a contact angle with respect to water of about 20 ° or less. Specifically, it may be about 0 ° to about 20 °. The contact angle of the water was measured at 25 ° C. and 1 atm using a contact angle measuring apparatus (dataphysics, contact angle system OCA), and the contact angle was measured at room temperature and atmospheric pressure by setting the dosing volume to '2 uL'. '2uL' is the volume of water dropped on the surface to measure the contact angle.
상기 제1 무기 바인더의 접촉각이 상기 범위 초과인 경우, 친수성 표면이 형성되지 못한 것으로, 광촉매 성능이 저하될 수 있다. 구체적으로, 상기 광촉매의 표면이 충분한 친수성이 아니라면, 광촉매 반응에 필요한 물 분자가 효과적으로 흡착되지 못해 결과적으로 광촉매 성능이 저하될 수 있다. 즉, 상기 제1 무기 바인더의 접촉각이 상기 범위를 만족함으로써 효과적인 광촉매 성능 발현을 용이하게 확보할 수 있다. If the contact angle of the first inorganic binder exceeds the above range, the hydrophilic surface is not formed, the photocatalyst performance may be reduced. Specifically, if the surface of the photocatalyst is not sufficiently hydrophilic, water molecules required for the photocatalytic reaction may not be effectively adsorbed, and as a result, the photocatalyst performance may be degraded. That is, when the contact angle of the first inorganic binder satisfies the above range, it is possible to easily ensure the expression of effective photocatalytic performance.
상기 제1 무기 바인더는 친수성을 가짐으로써 친수성 표면에 의한 광촉매 성능 구현에 필요한 물 분자를 효과적으로 흡착할 수 있으므로, 비친수성의 바인더보다 광촉매 성능의 극대화를 구현할 수 있다. Since the first inorganic binder has hydrophilicity, it can effectively adsorb water molecules necessary for implementing photocatalytic performance by the hydrophilic surface, thereby maximizing photocatalytic performance than the non-hydrophilic binder.
상기 광촉매층은 광촉매를 포함한다. 상기 광촉매는 일반적으로 빛에 노출시킬 때 화학 반응을 촉진할 수 있는 물질을 의미한다. 예를 들어 유기 냄새 유발 물질, 휘발성 유기 화합물, 및 유기 기재 염색제의 분해 또는 산화에 관련되는 산화환원 반응들을 촉진시킬 수 있는 물질을 지칭한다. The photocatalyst layer includes a photocatalyst. The photocatalyst generally means a material capable of promoting a chemical reaction when exposed to light. For example, organic odor-causing substances, volatile organic compounds, and substances capable of promoting redox reactions related to decomposition or oxidation of organic base dyes.
구체적으로 상기 광촉매는 빛에 노출 시, 약 400㎚ 내지 약 700㎚ 파장대의 빛을 흡수하여 얻은 에너지로부터 생성된 전자와 정공이 퍼옥사이드 음이온 또는 하이드록시 라디칼 등을 생성하고, 이들이 공기중의 유해 물질을 분해 및 제거하여 공기 청정, 탈취 또는 향균 작용을 수행할 수 있다. Specifically, when the photocatalyst is exposed to light, electrons and holes generated from energy obtained by absorbing light in the wavelength range of about 400 nm to about 700 nm generate peroxide anions or hydroxy radicals, and they are harmful substances in the air. It can be decomposed and removed to perform air cleaning, deodorization or antibacterial action.
상기 광촉매는 금속 산화물 및 금속 입자를 포함할 수 있다.The photocatalyst may include metal oxides and metal particles.
도 2는 본 발명의 일 구현예에 따른 광촉매의 외관을 개략적으로 도시한 것이다.Figure 2 schematically shows the appearance of the photocatalyst according to an embodiment of the present invention.
도 2를 참조할 때, 상기 광촉매(150)는 금속 산화물(220)의 표면에 금속 입자(210)가 분산되어 부착된 형상일 수 있다. 구체적으로, 상기 광촉매 (150)는 상기 금속 산화물(220)의 표면에 상기 금속 입자(210)가 광-증착(photo-deposition)된 형태일 수 있다. Referring to FIG. 2, the photocatalyst 150 may have a shape in which metal particles 210 are dispersed and attached to a surface of the metal oxide 220. Specifically, the photocatalyst 150 may be in the form of photo-deposition of the metal particles 210 on the surface of the metal oxide 220.
상기 금속 산화물은 산화티탄, 산화텅스텐, 산화아연, 산화니오븀 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. The metal oxide may include one selected from the group consisting of titanium oxide, tungsten oxide, zinc oxide, niobium oxide, and combinations thereof.
예를 들어, 상기 금속 산화물은 산화텅스텐을 포함할 수 있고, 이 경우 가시광에서 반응하여 광촉매 특성을 나타내는 정도가 우수하고, 가격이 저렴한 장점을 얻을 수 있다. For example, the metal oxide may include tungsten oxide, and in this case, it is possible to obtain an advantage in that it is excellent in exhibiting photocatalytic properties by reacting in visible light and inexpensive price.
상기 금속 입자는 텅스텐, 크롬, 바나듐, 몰리브데넘, 구리, 철, 코발트, 망간, 니켈, 백금, 금, 은, 세륨, 카드늄, 아연, 마그네슘, 칼슘, 스트론튬, 바륨 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. The metal particles are made of tungsten, chromium, vanadium, molybdenum, copper, iron, cobalt, manganese, nickel, platinum, gold, silver, cerium, cadmium, zinc, magnesium, calcium, strontium, barium, and combinations thereof. It may include one selected from.
예를 들어, 상기 금속 입자는 백금을 포함할 수 있고, 이 경우 가장 높은 광촉매 성능을 나타낸다는 장점을 얻을 수 있다. For example, the metal particles may comprise platinum, in which case the advantage of exhibiting the highest photocatalytic performance can be obtained.
상기 금속 산화물 및 금속 입자 각각은 구형의 입자로서, '구형의 입자'란 수학적으로 완전한 구의 형상을 갖는 입자를 의미하는 것은 아니고, 투영상이 원 또는 타원과 동일 또는 유사한 형상을 나타내는 입자를 의미한다. 상기 금속 산화물 및 상기 금속 입자가 각각 구형의 입자이며, 그 결과 상기 광촉매 입자는 구형의 금속 산화물 입자 표면에 구형의 금속 입자가 증착된 형상을 갖게 된다. Each of the metal oxide and the metal particles is a spherical particle, and the term 'spherical particle' does not mean a particle having a mathematically perfect sphere shape, but means a particle having a projection image that is identical or similar to a circle or an ellipse. . The metal oxide and the metal particles are each spherical particles, and as a result, the photocatalyst particles have a shape in which spherical metal particles are deposited on the surface of the spherical metal oxide particles.
이때, 상기 금속 입자의 입경(particle diameter)은 수 나노미터(㎚)로서, 예를 들어 약 3㎚ 내지 약 5㎚일 수 있다. 상기 금속 입자의 입경은 상기 금속 산화물의 입경에 비해 매우 작으며, 상기 금속 입자가 상기 범위의 입경을 가짐으로써 상기 금속 산화물의 표면에 적절한 함량으로 광-증착되어 우수한 광촉매 활성을 나타낼 수 있다. In this case, the particle diameter of the metal particles may be several nanometers (nm), for example, about 3 nm to about 5 nm. The particle diameter of the metal particles is very small compared to the particle diameter of the metal oxide, and the metal particles have a particle diameter in the above range, so that the metal particles may be photo-deposited to an appropriate content on the surface of the metal oxide, thereby exhibiting excellent photocatalytic activity.
상기 금속 입자의 입경은 일정 방향의 평행한 빛으로 상기 금속 입자를 투영했을 때의 투영상의 지름을 측정함으로써 도출될 수 있고 이는 광촉매의 경우에도 적용될 수 있다.The particle diameter of the metal particles can be derived by measuring the diameter of the projection image when the metal particles are projected with parallel light in a predetermined direction, which can be applied to the photocatalyst.
상기 광촉매는 입경(particle diameter)이 약 20nm 내지 약 100nm 일 수 있고, 구체적으로 약 30nm 내지 약 60nm 일 수 있다. 상기 광촉매 입자의 입경은 SEM 또는 TEM 사진을 측정함으로써 도출될 수 있다. 상기 광촉매 입자의 입경이 상기 범위를 만족함으로써 상기 광촉매층에 대한 높은 부착성을 확보할 수 있고, 적절한 분산도를 가지면서 분산되어 우수한 광촉매 활성을 나타낼 수 있다. The photocatalyst may have a particle diameter of about 20 nm to about 100 nm, and specifically about 30 nm to about 60 nm. The particle diameter of the photocatalyst particles can be derived by measuring SEM or TEM photographs. When the particle diameter of the photocatalyst particles satisfies the above range, high adhesion to the photocatalyst layer may be ensured, and the photocatalyst particles may be dispersed with an appropriate degree of dispersion to exhibit excellent photocatalytic activity.
상기 금속 입자의 입경이 상기 금속 산화물의 입경에 비하여 매우 작은 점을 고려할 때, 상기 광촉매 입자의 크기, 즉 상기 광촉매 입자의 입경은 주로 상기 금속 산화물의 입경에 의해 결정되는 것으로 이해될 수 있다. 즉, 상기 광촉매 입자가 상기 범위의 입경을 갖는 경우, 상기 광촉매 입자의 금속 산화물은 상기 범위에서 수 나노미터(㎚), 예를 들어 약 3㎚ 내지 약 5㎚의 오차 범위 내의 입경을 가질 수 있다. 이 경우, 상기 금속 산화물의 표면에 광-증착된 금속 입자의 양이 충분할 수 있고, 우수한 촉매 활성 효율을 나타낼 수 있다. 또한, 상기 광촉매 입자가 상기 범위의 입경을 가짐으로써 광촉매층 내에서 고르게 분포될 수 있다. When considering that the particle diameter of the metal particles is very small compared to the particle diameter of the metal oxide, it can be understood that the size of the photocatalyst particles, that is, the particle diameter of the photocatalyst particles is mainly determined by the particle diameter of the metal oxide. That is, when the photocatalyst particles have a particle size in the above range, the metal oxide of the photocatalyst particles may have a particle size within an error range of several nanometers (nm), for example, about 3 nm to about 5 nm in the above range. . In this case, the amount of metal particles photo-deposited on the surface of the metal oxide may be sufficient, and may exhibit excellent catalytic activity efficiency. In addition, the photocatalyst particles may be evenly distributed in the photocatalyst layer by having a particle diameter in the above range.
상기 광촉매층은 상기 광촉매 100중량부 기준, 상기 제1 무기 바인더 약 50 중량부 내지 약 100 중량부를 포함할 수 있다. The photocatalyst layer may include about 50 parts by weight to about 100 parts by weight of the first inorganic binder based on 100 parts by weight of the photocatalyst.
상기 광촉매층이 상기 중량부 범위의 상기 제1 무기 바인더를 포함함으로써 상기 광촉매의 기능을 저해하지 않으면서 적절한 경도를 구현하고 내구성을 향상 시킬 수 있다. 상기 제1 무기 바인더의 중량부가 상기 범위 미만인 경우 상기 광촉매층과 상기 광촉매간의 충분한 부착력을 확보할 수 없는 문제가 발생할 수 있고, 상기 제1 무기 바인더의 중량부가 상기 범위 초과인 경우 상기 광촉매의 표면의 대부분이 상기 제1 무기 바인더에 의해 덮여 상기 광촉매의 활성이 저하될 수 있는 문제가 발생할 수 있다. The photocatalyst layer may include the first inorganic binder in the range of parts by weight, thereby implementing appropriate hardness and improving durability without inhibiting the function of the photocatalyst. When the weight part of the first inorganic binder is less than the range, there may occur a problem in that sufficient adhesion between the photocatalyst layer and the photocatalyst may not be secured, and when the weight part of the first inorganic binder is more than the range, Most of them may be covered by the first inorganic binder, which may cause a problem that the activity of the photocatalyst may be reduced.
도 1을 참조할 때, 상기 광촉매 기능성 필터(100)는 상기 광촉매층(110) 일면에 흡착제층(120)을 포함한다. 상기 흡착제층은 상기 광촉매층과 상기 기재층 사이에 위치하고 공기 중의 유해물질을 용이하게 흡착시킬 수 있어야 하고, 상기 기재층 및 상기 광촉매층과 상용성이 좋아야 한다. Referring to FIG. 1, the photocatalytic functional filter 100 includes an adsorbent layer 120 on one surface of the photocatalyst layer 110. The adsorbent layer should be located between the photocatalyst layer and the substrate layer to easily adsorb harmful substances in the air, and should be compatible with the substrate layer and the photocatalyst layer.
발명의 일 구현예에서, 상기 광촉매 기능성 필터는 상기 흡착제의 조성 및 성분을 제어하여 전술한 기능을 우수하게 수행할 수 있다.In one embodiment of the invention, the photocatalytic functional filter can perform the above-described function excellent by controlling the composition and components of the adsorbent.
구체적으로, 상기 흡착제층은 두께가 약 0.2um 내지 약 1um 일 수 있다. 상기 흡착제층이 상기 두께 범위를 유지함으로써 효율적으로 공기 중의 유해물질이 흡착되고 적절한 내구성을 가질 수 있으며, 상기 흡착제층이 상기 두께 범위 미만인 경우 흡착 성능이 저하될 수 있으며, 상기 흡착제층이 상기 두께 범위 초과인 경우 상기 흡착제층에 크랙(crack)이 발생하여 상기 흡착제층의 내구성이 저하될 수 있고, 상기 흡착제층이 두꺼울수록 생산원가가 상승할 수 있다. Specifically, the adsorbent layer may have a thickness of about 0.2um to about 1um. The adsorbent layer maintains the thickness range so that harmful substances in the air can be efficiently adsorbed and have proper durability, and when the adsorbent layer is less than the thickness range, the adsorption performance may be lowered, and the adsorbent layer is in the thickness range. If exceeded, cracks may occur in the adsorbent layer, thereby reducing durability of the adsorbent layer, and the thicker the adsorbent layer, the higher the production cost.
상기 흡착제층은 상기 광촉매층의 제1 무기 바인더와 상이한 제2 무기 바인더를 포함한다. 상기 제2 무기 바인더가 상기 제1 무기 바인더와는 상이한 것을 사용함으로써 서로 동일한 종류의 바인더를 사용하는 경우에 비해 상기 흡착제층 및 광촉매층이 분리된 구조를 잘 유지할 수 있고, 상기 광촉매층에 포함된 상기 제1 무기 바인더의 친수성 특성으로 광촉매 효율을 극대화 하는 동시에 상기 흡착제층에 포함된 제2 무기 바인더에 의해 상기 흡착제층은 크랙(crack)없이 균일한 코팅성 및 우수한 내구성을 구현할 수 있다.The adsorbent layer includes a second inorganic binder different from the first inorganic binder of the photocatalyst layer. By using the second inorganic binder different from the first inorganic binder, the structure in which the adsorbent layer and the photocatalytic layer are separated can be maintained better than when the same kind of binder is used, and the second inorganic binder is included in the photocatalyst layer. The adsorbent layer may realize uniform coating property and excellent durability without cracking by the second inorganic binder included in the adsorbent layer while maximizing photocatalytic efficiency due to the hydrophilic property of the first inorganic binder.
상기 제2 무기 바인더는, 테트라에틸오소실리케이트(TEOS), 트리메톡시(메틸)실란(Trimethoxy(methyl)silane), 트리에톡시(메틸)실란(triethoxy(methyl)silane) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. 상기 제2 무기 바인더는 상기 흡착제가 상기 광촉매 기능성 필터에 잘 부착될 수 있도록 하는 것으로 예를 들어, 상기 제2 무기 바인더가 테트라에틸오소실리케이트(TEOS) 바인더를 포함하는 경우 상기 흡착제 및 상기 제1 무기 바인더와의 상용성이 우수하고, 상기 흡착제의 흡착 기능을 손상시키지 않으면서 상기 광촉매 기능성 필터의 표면에 단단하게 부착되도록 할 수 있다.  The second inorganic binder is composed of tetraethyl orthosilicate (TEOS), trimethoxy (methyl) silane (trimethoxy (methyl) silane), triethoxy (methyl) silane and a combination thereof It may include one selected from the group. The second inorganic binder allows the adsorbent to adhere well to the photocatalytic functional filter. For example, when the second inorganic binder includes a tetraethylosilicate (TEOS) binder, the adsorbent and the first inorganic It is excellent in compatibility with the binder, and can be firmly attached to the surface of the photocatalytic functional filter without impairing the adsorption function of the adsorbent.
상기 흡착제층은 흡착제를 포함하며, 상기 흡착제는 활성탄, 제올라이트, 아파타이트, 알루미나, 실리카 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. 상기 종류의 흡착제를 사용함으로써 상기 제2 무기 바인더와 우수한 상용성을 확보할 수 있고, 공기 중의 유해물질을 빠르게 흡착할 수 있는 이점을 얻을 수 있다. The adsorbent layer includes an adsorbent, and the adsorbent may include one selected from the group consisting of activated carbon, zeolite, apatite, alumina, silica, and combinations thereof. By using this kind of adsorbent, excellent compatibility with the second inorganic binder can be ensured, and an advantage of quickly adsorbing harmful substances in the air can be obtained.
상기 흡착제는 다공성 구조를 가질 수 있다. 상기 흡착제는 다공성 구조를 통해 높은 표면적을 가질 수 있으며, 공기 중의 유해물질의 흡착 측면에서 표면적이 클수록 유리할 수 있다. 구체적으로, 상기 흡착제는 약 500㎡/g 내지 약 1000㎡/g의 표면적을 가질 수 있다. 상기 흡착제가 상기 범위의 표면적을 가짐으로써 공기 중의 유해물질이 상기 흡착제 표면에 더 빠르게 흡착되는 될 수 있다. The adsorbent may have a porous structure. The adsorbent may have a high surface area through the porous structure, the greater the surface area in terms of adsorption of harmful substances in the air may be advantageous. Specifically, the adsorbent may have a surface area of about 500 m 2 / g to about 1000 m 2 / g. By having the surface area of the adsorbent in the above range, harmful substances in the air can be adsorbed on the surface of the adsorbent faster.
또한, 상기 흡착제는 그 표면에 상기 광촉매 중 적어도 일부가 부착될 수 있다. In addition, the adsorbent may be attached to at least a portion of the photocatalyst on the surface.
구체적으로, 도 1을 참조할 때, 상기 흡착제층(120)의 흡착제(170)는 층 밖으로 일부 노출된 구조를 갖는다. 이로써, 상기 흡착제(170)의 적어도 일부는 상기 광촉매층(110)에 침투될 수 있고, 이로써 상기 광촉매(150) 중 적어도 일부와 부착된 구조를 형성할 수 있다. 상기 흡착제의 표면에 상기 광촉매 중 적어도 일부가 부착됨으로써 공기 중 유해물질의 흡착 및 분해 속도가 향상될 수 있다. Specifically, referring to FIG. 1, the adsorbent 170 of the adsorbent layer 120 has a structure partially exposed out of the layer. As a result, at least a portion of the adsorbent 170 may penetrate into the photocatalyst layer 110, thereby forming a structure attached to at least a portion of the photocatalyst 150. By adhering at least a portion of the photocatalyst to the surface of the adsorbent, the adsorption and decomposition rate of harmful substances in the air may be improved.
상기 흡착제는 입경(particle diameter)이 약 0.02㎛ 내지 약 1㎛일 수 있다. 상기 흡착제 입자의 입경이 상기 범위를 만족함으로써 상기 흡착제층에 대한 높은 부착성을 확보할 수 있고, 적절한 분산도를 가지면서 분산되어 우수한 흡착성을 나타낼 수 있다. 상기 흡착제의 입경이 상기 범위 미만인 경우 상기 흡착제가 상기 광촉매 입자보다 작아지게 되고, 이 경우 외부에 노출되는 흡착제의 양이 적어 효과적인 흡착 성능을 구현하기 어려운 문제가 발생할 수 있고, 상기 흡착제의 입경이 상기 범위 초과인 경우 상기 흡착제층의 균일도 및 내구성이 저하될 수 있는 문제가 발생할 수 있다.The adsorbent may have a particle diameter of about 0.02 μm to about 1 μm. When the particle size of the adsorbent particles satisfies the above range, high adhesion to the adsorbent layer can be ensured, and dispersed with an appropriate degree of dispersion can exhibit excellent adsorbability. When the particle diameter of the adsorbent is less than the range, the adsorbent may be smaller than the photocatalyst particles, and in this case, the amount of the adsorbent exposed to the outside may be difficult to implement an effective adsorption performance, and the particle size of the adsorbent may be If it exceeds the range may cause a problem that the uniformity and durability of the adsorbent layer may be lowered.
상기 흡착제는 표면적 및 입경이 각각 동시에 전술한 범위를 만족함으로써 공기중의 유해물질 흡착효과 및 흡착제층의 경도. 내구성 등의 기계적 물성 향상 효과를 동시에 크게 향상시킬 수 있다. The adsorbent has a surface area and a particle diameter at the same time satisfying the aforementioned range, the adsorption effect of harmful substances in the air and the hardness of the adsorbent layer. At the same time, the effect of improving mechanical properties such as durability can be greatly improved.
상기 흡착제층은 상기 흡착제 100 중량부 기준, 상기 제2 무기 바인더 약 50 중량부 내지 약 100 중량부를 포함할 수 있다. The adsorbent layer may include about 50 parts by weight to about 100 parts by weight of the second inorganic binder based on 100 parts by weight of the adsorbent.
상기 중량부 범위의 상기 제2 무기 바인더를 포함함으로써 상기 흡착제의 기능을 저해하지 않으면서 적절한 경도를 구현하고 내구성을 향상 시킬 수 있다. 상기 제2 무기 바인더의 중량부가 상기 범위 미만인 경우 상기 흡착제층과 상기 흡착제간의 충분한 부착력을 확보할 수 없는 문제가 발생할 수 있고, 상기 제2 무기 바인더의 중량부가 상기 범위 초과인 경우 상기 흡착제의 표면이 대부분 상기 제2 무기 바인더에 의해 덮여 흡착 성능이 저하될 수 있는 문제가 발생할 수 있다. By including the second inorganic binder in the weight part range, it is possible to implement appropriate hardness and improve durability without inhibiting the function of the adsorbent. When the weight part of the second inorganic binder is less than the range, a problem may occur in that sufficient adhesion between the adsorbent layer and the adsorbent may not be secured. When the weight part of the second inorganic binder is more than the range, the surface of the adsorbent may be In most cases, a problem may occur in which the adsorption performance may be reduced by being covered by the second inorganic binder.
도 1을 참조할 대, 상기 광촉매 필터(100)는 상기 흡착제층(120)의 일면에 기재층(130)을 포함한다. 상기 기재층은 부직포, 폴리머 필름, 유리 기판 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있고 이에 제한되는 것은 아니다. 예를 들어, 상기 기재층은 부직포를 포함할 수 있고, 이 경우 상기 제2 무기 바인더와 상용성이 좋고, 상기 제2 무기 바인더가 상기 부직포에 대한 접착성이 좋고 물리적 충격에도 쉽게 박리되지 않아 상기 광촉매 기능성 필터의 내구성이 향상될 수 있다. Referring to FIG. 1, the photocatalyst filter 100 includes a base layer 130 on one surface of the adsorbent layer 120. The base layer may include, but is not limited to, one selected from the group consisting of nonwoven fabrics, polymer films, glass substrates, and combinations thereof. For example, the base layer may include a nonwoven fabric, and in this case, compatibility with the second inorganic binder is good, and the second inorganic binder has good adhesiveness to the nonwoven fabric and does not easily peel off even in physical impact. Durability of the photocatalytic functional filter can be improved.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.The following presents specific embodiments of the present invention. However, the embodiments described below are merely for illustrating or explaining the present invention in detail, and thus the present invention is not limited thereto.
<제조예><Production example>
제조예Production Example 1: 이산화티탄( 1: titanium dioxide ( TiO2TiO2 ) 바인더의 제조) Preparation of Binder
이소프로필 알코올(IPA)과 티타늄 이소프로폭사이드(TTIP)을 비커에 넣고 혼합한 뒤 질산을 넣어 이산화티탄(TiO2) 바인더 졸을 제조하였다.Isopropyl alcohol (IPA) and titanium isopropoxide (TTIP) were added to a beaker, mixed, and nitric acid was added to prepare a titanium dioxide (TiO 2) binder sol.
제조예Production Example 2:  2: 광촉매Photocatalyst 코팅액의 제조 Preparation of Coating Liquid
상기 이산화티탄(TiO2) 바인더 졸에 백금 나노입자를 포함하고 입경이 30㎚ 내지 60㎚ 이내인 복수의 산화텅스텐 광촉매(Pt/WO3)를 첨가하고 혼합하여 산화텅스텐 광촉매 100 중량부 기준, 상기 이산화티탄(TiO2) 바인더 100 중량부 포함하는 광촉매 코팅액을 제조하였다.Titanium dioxide photocatalyst (Pt / WO3) including platinum nanoparticles and a particle diameter of 30 nm to 60 nm is added to the titanium dioxide (TiO 2) binder sol and mixed, based on 100 parts by weight of the tungsten oxide photocatalyst, the titanium dioxide A photocatalyst coating solution containing 100 parts by weight of a (TiO 2) binder was prepared.
제조예Production Example 3:  3: 테트라에틸오소실리케이트(TEOS)바인더의Of tetraethyl orthosilicate (TEOS) binder 제조 Produce
비커에 에탄올을 넣고, 테트라에틸 오소실리케이트(TEOS)를 혼합한 뒤 염산 및 증류수를 혼합한 용액을 준비하고, 이 용액을 테트라에틸 오소실리케이트(TEOS) 와 에탄올이 섞여있는 용액에 액적 형태로 주입하여 테트라에틸 오소실리케이트(TEOS) 바인더 졸을 제조하였다.Add ethanol to the beaker, mix tetraethyl orthosilicate (TEOS), prepare a solution of hydrochloric acid and distilled water, and inject the solution into the solution of tetraethyl orthosilicate (TEOS) and ethanol in the form of droplets A tetraethyl orthosilicate (TEOS) binder sol was prepared.
제조예Production Example 4: 흡착제 코팅액 제조 4: sorbent coating liquid
상기 테트라에틸 오소실리케이트(TEOS) 바인더 졸에 입경이 0.02㎛ 내지 1㎛ 이내인 복수의 제올라이트를 첨가하고 혼합하여 상기 흡착제 100 중량부 기준, 상기 테트라에틸 오소실리케이트(TEOS) 바인더 100 중량부를 포함하는 흡착제 코팅액을 제조하였다. An adsorbent comprising 100 parts by weight of the tetraethyl orthosilicate (TEOS) binder based on 100 parts by weight of the adsorbent by adding and mixing a plurality of zeolites having a particle diameter of 0.02 μm to 1 μm to the tetraethyl orthosilicate (TEOS) binder sol. A coating solution was prepared.
제조예Production Example 5:  5: 광촉매Photocatalyst 수용액 제조 Aqueous Solution Manufacturing
수용액에 백금 나노입자를 포함하고 입경이 30㎚ 내지 60㎚ 이내인 복수의 산화텅스텐 광촉매(Pt/WO3)를 첨가하여 10중량% 농도의 광촉매 수용액을 제조하였다.A photocatalyst aqueous solution having a concentration of 10% by weight was prepared by adding a plurality of tungsten oxide photocatalysts (Pt / WO3) containing platinum nanoparticles in the aqueous solution and having a particle diameter of 30 nm to 60 nm.
<< 실시예Example  And 비교예Comparative example >>
실시예Example 1 One
두께 1mm인 부직포 일면에 상기 제조된 흡착제 코팅액을 도포하고 열경화하여 두께 500nm인 흡착제층을 형성하고 그 다음 상기 제조된 광촉매 코팅액을 도포하고 열경화하여 두께 500nm인 광촉매층을 형성해 필터를 제작하였다. The adsorbent coating solution prepared above was coated on one surface of a nonwoven fabric having a thickness of 1 mm and thermoset to form an adsorbent layer having a thickness of 500 nm. Then, the prepared photocatalyst coating solution was applied and thermally cured to form a photocatalyst layer having a thickness of 500 nm.
비교예Comparative example 1 One
두께 1mm인 부직포 일면에 상기 제조된 흡착제 코팅액을 도포하고 열경화하여 두께 500nm인 흡착제층을 형성해 필터를 제작하였다.A non-woven fabric having a thickness of 1 mm was coated on one surface of the adsorbent coating solution and thermoset to form an adsorbent layer having a thickness of 500 nm to prepare a filter.
비교예Comparative example 2 2
두께 1mm인 부직포 일면에 상기 제조된 광촉매 코팅액을 도포하고 열경화하여 두께 500nm인 광촉매층을 형성해 필터를 제작하였다. The photocatalyst coating solution prepared above was applied to one surface of a nonwoven fabric having a thickness of 1 mm and thermoset to form a photocatalyst layer having a thickness of 500 nm to prepare a filter.
비교예Comparative example 3 3
두께 1mm인 부직포 일면에 상기 제조된 흡착제 코팅액을 도포하고 열경화하여 두께 500nm인 흡착제층을 형성하고 그 다음 상기 제조된 광촉매 수용액을 도포하고 열경화하여 광촉매층을 형성해 필터를 제작하였다. One side of the nonwoven fabric having a thickness of 1 mm was coated with the adsorbent coating solution prepared above, and thermally cured to form an adsorbent layer having a thickness of 500 nm. Then, the prepared photocatalyst aqueous solution was applied and thermally cured to form a photocatalyst layer to prepare a filter.
비교예4Comparative Example 4
두께 10mm인 부직포 일면에 상기 제조된 흡착제 코팅액 및 광촉매 수용액을 혼합하여 도포하고 열경화하여 두께 500nm인 열경화층을 형성해 필터를 제작하였다.On the one side of the nonwoven fabric having a thickness of 10mm, the adsorbent coating solution and the photocatalyst aqueous solution prepared above were mixed and applied to form a thermosetting layer having a thickness of 500 nm to prepare a filter.
<평가><Evaluation>
실험예Experimental Example 1: 유해 가스 분해 성능 측정 1: Hazardous Gas Decomposition Performance Measurement
스몰 챔버 테스트(Small chamber test)방법(ISO 18560-1:2014)에 의해 측정하며, 주입 가스 농도는 0.1ppm, 광원은 1000lux의 백색 엘이디(white LED)이다. 그 결과는 하기 표 1에 기재된 바와 같다.Measured by the Small chamber test method (ISO 18560-1: 2014), the injection gas concentration is 0.1ppm, the light source is 1000 lux white LED (white LED). The results are as described in Table 1 below.
실험예Experimental Example 2: 표면 내구성 평가 2: surface durability evaluation
실시예 및 비교예에 따른 기능성 필터의 표면에 가로 5cm 및 세로1.5cm인 셀로판테이프를 접착한 뒤 떼어내어 박리되는 흡착제 또는 광촉매의 질량을 측정하고, 박리된 양이 실시예 및 비교예에 혼합했던 흡착제 또는 광촉매의 질량 대비 3% 이하인 경우 양호로, 3% 초과인 경우 미흡으로 하고 그 결과를 하기 표1에 기재하였다. The mass of the adsorbent or photocatalyst peeled off by attaching a cellophane tape having a width of 5 cm and a length of 1.5 cm to the surface of the functional filter according to the Examples and Comparative Examples was measured, and the amount of the peeled was mixed with the Examples and Comparative Examples. It is good when the content is 3% or less relative to the mass of the adsorbent or photocatalyst, and when the content is more than 3%, the result is insufficient and the results are shown in Table 1 below.
유해가스 분해 정도 Hazardous Gas Decomposition 표면 내구성Surface durability
실시예1Example 1 9393 양호Good
비교예1Comparative Example 1 1414 양호Good
비교예2Comparative Example 2 8181 양호Good
비교예3Comparative Example 3 9393 미흡Inadequate
비교예4Comparative Example 4 2323 미흡Inadequate
실시예 1에 따라 제조된 광촉매 기능성 필터는 유해가스 분해 성능이 90이 넘을 정도로 우수한 유해가스 분해 기능을 구현하는 동시에 표면 내구성이 양호하여 광촉매 기능성 필터로서 최적화된 물성을 구현함을 확인할 수 있다.The photocatalytic functional filter prepared according to Example 1 can be confirmed that the harmful gas decomposition performance of the harmful gas decomposition performance of more than 90, and at the same time excellent surface durability to implement the optimized properties as a photocatalytic functional filter.
반면, 비교예 1 내지 4에 따라 제조된 기능성 필터는 90이상의 유해가스 분해 성능 및 양호한 표면 내구성을 동시에 충족하지 못한 것을 확인할 수 있다.On the other hand, it can be seen that the functional filters prepared according to Comparative Examples 1 to 4 did not meet the harmful gas decomposition performance and good surface durability of more than 90 at the same time.
구체적으로, 비교예 1의 경우, 광촉매 없이 흡착제 코팅액만으로 필터처리가 되어, 유해가스 분해성능이 현저히 저하됨을 확인할 수 있다. 비교예 4 경우, 흡착제 코팅액에 포함된 테트라에틸 오소실리케이트(TEOS)가 표면에 노출되어 친수성 표면 형성이 어려워 광촉매 성능 발현이 제한됨을 확인할 수 있다.Specifically, in the case of Comparative Example 1, it can be seen that the filter treatment is performed only with the adsorbent coating liquid without the photocatalyst, and the harmful gas decomposition performance is significantly reduced. In Comparative Example 4, it is confirmed that tetraethyl orthosilicate (TEOS) contained in the adsorbent coating liquid is exposed to the surface, making it difficult to form a hydrophilic surface, thereby limiting the expression of photocatalytic performance.
비교예 3의 경우, 광촉매 바인더 대신 광촉매 수용액을 포함하여 표면 내구성이 저하됨을 확인할 수 있다.In the case of Comparative Example 3, it can be seen that the surface durability is reduced by including a photocatalyst aqueous solution instead of a photocatalyst binder.
<부호의 설명><Description of the code>
100: 광촉매 기능성 필터100: photocatalytic functional filter
110: 광촉매층110: photocatalyst layer
120: 흡착제층120: adsorbent layer
130: 기재층130: substrate layer
140: 제1 무기 바인더140: first inorganic binder
150: 광촉매150: photocatalyst
160: 제2 무기 바인더160: second inorganic binder
170: 흡착제170: adsorbent
210: 금속 입자210: metal particles
220: 금속 산화물220: metal oxide

Claims (15)

  1. 광촉매층, 흡착제층 및 기재층을 순차적으로 포함하고,Sequentially comprising a photocatalyst layer, an adsorbent layer, and a substrate layer,
    상기 광촉매층은 친수성을 갖는 제1 무기 바인더; 및 광촉매를 포함하며,The photocatalyst layer comprises a first inorganic binder having hydrophilicity; And a photocatalyst,
    상기 흡착제층은 상기 제1 무기 바인더와 상이한 제2 무기 바인더; 및 흡착제를 포함하는The adsorbent layer may include a second inorganic binder different from the first inorganic binder; And adsorbents
    광촉매 기능성 필터.Photocatalytic functional filter.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 무기 바인더는 이산화티탄(TiO2) 바인더, 콜로이드 규산(colloidal silica), 이산화규소(SiO2)계 바인더, 알루미나 졸, 지르코니아 졸 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는The first inorganic binder includes one selected from the group consisting of titanium dioxide (TiO 2 ) binder, colloidal silica, silicon dioxide (SiO 2 ) -based binder, alumina sol, zirconia sol, and combinations thereof.
    광촉매 기능성 필터.Photocatalytic functional filter.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 무기 바인더는 물에 대한 접촉각이 0°내지 20°인The first inorganic binder has a contact angle with respect to water of 0 ° to 20 °
    광촉매 기능성 필터.Photocatalytic functional filter.
  4. 제1항에 있어서,The method of claim 1,
    상기 광촉매는 금속 산화물 및 금속 입자를 포함하는 The photocatalyst comprises a metal oxide and metal particles
    광촉매 기능성 필터.Photocatalytic functional filter.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 금속 산화물은 산화티탄, 산화텅스텐, 산화아연, 산화니오븀 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는The metal oxide includes one selected from the group consisting of titanium oxide, tungsten oxide, zinc oxide, niobium oxide, and combinations thereof.
    광촉매 기능성 필터. Photocatalytic functional filter.
  6. 제4항에 있어서, The method of claim 4, wherein
    상기 금속 입자는 텅스텐, 크롬, 바나듐, 몰리브데넘, 구리, 철, 코발트, 망간, 니켈, 백금, 금, 은, 세륨, 카드늄, 아연, 마그네슘, 칼슘, 스트론튬, 바륨 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는The metal particles are composed of tungsten, chromium, vanadium, molybdenum, copper, iron, cobalt, manganese, nickel, platinum, gold, silver, cerium, cadmium, zinc, magnesium, calcium, strontium, barium, and combinations thereof. Containing one selected from
    광촉매 기능성 필터. Photocatalytic functional filter.
  7. 제1항에 있어서,The method of claim 1,
    상기 광촉매는 입경(particle diameter)이 20nm 내지 100nm 인The photocatalyst has a particle diameter of 20 nm to 100 nm.
    광촉매 기능성 필터.Photocatalytic functional filter.
  8. 제1항에 있어서,The method of claim 1,
    상기 광촉매층은 상기 광촉매 100중량부 기준, 상기 제1 무기 바인더 50 내지 100 중량부를 포함하는The photocatalyst layer includes 50 to 100 parts by weight of the first inorganic binder, based on 100 parts by weight of the photocatalyst.
    광촉매 기능성 필터.Photocatalytic functional filter.
  9. 제1항에 있어서,The method of claim 1,
    상기 광촉매층의 두께가 0.2㎛ 내지 1㎛인The photocatalyst layer has a thickness of 0.2 μm to 1 μm.
    광촉매 기능성 필터.Photocatalytic functional filter.
  10. 제1항에 있어서,The method of claim 1,
    상기 제2 무기 바인더는 테트라에틸오소실리케이트(TEOS), 트리메톡시(메틸)실란(Trimethoxy(methyl)silane), 트리에톡시(메틸)실란(triethoxy(methyl)silane) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는The second inorganic binder is tetraethyl orthosilicate (TEOS), trimethoxy (methyl) silane (Trimethoxy (methyl) silane), triethoxy (methyl) silane (triethoxy (methyl) silane) and a combination thereof Containing one selected from
    광촉매 기능성 필터.Photocatalytic functional filter.
  11. 제1항에 있어서,The method of claim 1,
    상기 흡착제는 활성탄, 제올라이트, 아파타이트, 알루미나, 실리카 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는The adsorbent comprises one selected from the group consisting of activated carbon, zeolite, apatite, alumina, silica and combinations thereof
    광촉매 기능성 필터.Photocatalytic functional filter.
  12. 제1항에 있어서,The method of claim 1,
    상기 흡착제는 입경(particle diameter)이 0.02㎛ 내지 1㎛인The adsorbent has a particle diameter of 0.02 μm to 1 μm
    광촉매 기능성 필터.Photocatalytic functional filter.
  13. 제1항에 있어서,The method of claim 1,
    상기 흡착제층은 상기 흡착제 100중량부 기준, 상기 제2 무기 바인더 50 내지 100 중량부를 포함하는The adsorbent layer includes 50 to 100 parts by weight of the second inorganic binder, based on 100 parts by weight of the adsorbent.
    광촉매 기능성 필터.Photocatalytic functional filter.
  14. 제1항에 있어서,The method of claim 1,
    상기 흡착제층의 두께가 0.2um 내지 1um 인The adsorbent layer has a thickness of 0.2um to 1um
    광촉매 기능성 필터.Photocatalytic functional filter.
  15. 제1항에 있어서,The method of claim 1,
    상기 기재층은 부직포, 폴리머 필름, 유리 기판 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는The substrate layer includes one selected from the group consisting of a nonwoven fabric, a polymer film, a glass substrate, and a combination thereof.
    광촉매 기능성 필터.Photocatalytic functional filter.
PCT/KR2017/005950 2016-06-13 2017-06-08 Photocatalytic functional filter WO2017217693A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018565279A JP6726313B2 (en) 2016-06-13 2017-06-08 Photocatalytic functional filter
CN201780036766.7A CN109310937B (en) 2016-06-13 2017-06-08 Photocatalyst functional filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160073184A KR101930709B1 (en) 2016-06-13 2016-06-13 Photo catalyst functional filter
KR10-2016-0073184 2016-06-13

Publications (1)

Publication Number Publication Date
WO2017217693A1 true WO2017217693A1 (en) 2017-12-21

Family

ID=60664410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005950 WO2017217693A1 (en) 2016-06-13 2017-06-08 Photocatalytic functional filter

Country Status (4)

Country Link
JP (1) JP6726313B2 (en)
KR (1) KR101930709B1 (en)
CN (1) CN109310937B (en)
WO (1) WO2017217693A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020121204B3 (en) 2020-08-12 2021-10-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Self-disinfecting antiviral filter material, its manufacture and application, as well as air filter device with the filter material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328165B2 (en) * 2020-03-11 2023-08-16 シャープ株式会社 Photocatalyst dispersion, photocatalyst coated member, photocatalyst filter, and method for forming photocatalyst layer
CN111617633A (en) * 2020-07-02 2020-09-04 江苏博霖环保科技有限公司 Preparation method for composite degradation of VOCs (volatile organic compounds) by multi-shell photocatalyst and activated carbon
KR102285448B1 (en) 2020-11-13 2021-08-02 박성준 The ceramic foaming sponge filter in which the optical catalyst is coated with deposition and the manufacturing method thereof
KR20220065648A (en) 2020-11-13 2022-05-20 박성준 The ceramic foaming sponge filter in which the optical catalyst is coated with deposition and the manufacturing method thereof
KR102615265B1 (en) * 2022-02-17 2023-12-20 주식회사 대우컴프레셔 Photocatalytic filter, air treatment apparatus and method for manufacturing photocatalytic filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197827A (en) * 1999-01-08 2000-07-18 Kawasaki Steel Corp Material for atmospheric air cleaning
JP2003305371A (en) * 1996-09-20 2003-10-28 Hitachi Ltd Photocatalyst thin film and article equipped therewith
JP2006043581A (en) * 2004-08-04 2006-02-16 Matsushita Electric Ind Co Ltd Hygroscopic filter, its production method, recycle method, wetting apparatus and dehumidification apparatus
KR20150065196A (en) * 2013-12-04 2015-06-15 (주)엘지하우시스 Anti bacterial film, method for preparing the same and anti bacterial film applied article
KR20150121279A (en) * 2014-04-17 2015-10-29 (주)엘지하우시스 Environment-friendly functional film and the article applied the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830785B1 (en) * 1995-03-20 2004-12-14 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
WO1996029375A1 (en) * 1995-03-20 1996-09-26 Toto Ltd. Method of photocatalytically making the surface of base material ultrahydrophilic, base material having ultrahydrophilic and photocatalytic surface, and process for producing said material
CN1254365C (en) * 1996-09-20 2006-05-03 株式会社日立制作所 Thin photocatalytic film and articles provided with the same
JP3027739B2 (en) * 1998-03-20 2000-04-04 石原産業株式会社 Photocatalyst and method for producing the same
JP2001170497A (en) * 1999-12-14 2001-06-26 Cataler Corp Catalyst for cleaning air
KR100945311B1 (en) * 2009-09-04 2010-03-03 주식회사 무진하이테크 Visible ray reaction type hybrid photocatalyst filter and air cleaner
EP2719456A4 (en) * 2011-06-07 2015-03-04 Daicel Corp Photocatalytic coating film and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305371A (en) * 1996-09-20 2003-10-28 Hitachi Ltd Photocatalyst thin film and article equipped therewith
JP2000197827A (en) * 1999-01-08 2000-07-18 Kawasaki Steel Corp Material for atmospheric air cleaning
JP2006043581A (en) * 2004-08-04 2006-02-16 Matsushita Electric Ind Co Ltd Hygroscopic filter, its production method, recycle method, wetting apparatus and dehumidification apparatus
KR20150065196A (en) * 2013-12-04 2015-06-15 (주)엘지하우시스 Anti bacterial film, method for preparing the same and anti bacterial film applied article
KR20150121279A (en) * 2014-04-17 2015-10-29 (주)엘지하우시스 Environment-friendly functional film and the article applied the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020121204B3 (en) 2020-08-12 2021-10-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Self-disinfecting antiviral filter material, its manufacture and application, as well as air filter device with the filter material

Also Published As

Publication number Publication date
CN109310937A (en) 2019-02-05
JP2019520203A (en) 2019-07-18
KR101930709B1 (en) 2018-12-20
CN109310937B (en) 2021-11-23
JP6726313B2 (en) 2020-07-22
KR20170140845A (en) 2017-12-22

Similar Documents

Publication Publication Date Title
WO2017217693A1 (en) Photocatalytic functional filter
WO2016021888A1 (en) Photocatalyst functional film and method for manufacturing same
EP0633064B1 (en) Photocatalyst composite and process for producing the same
WO2016021889A1 (en) Photocatalyst functional film and method for manufacturing same
WO2020032519A1 (en) Method for preparing plasmonics implementation layer, and plasmonic antibacterial/sterilization filter using same
WO2017047980A1 (en) Photocatalyst functional nonwoven fabric, and method for producing same
JPH09225263A (en) Air pollutant removing filter, air pollutant removing fan and ventilator using the fan
WO2013176369A1 (en) Photocatalyst, preparation method thereof, and photocatalyst apparatus
WO1995015816A1 (en) Multi-functional material having photo-catalytic function and production method therefor
CZ20002151A3 (en) Preparation exhibiting photocatalytic activity and process for preparing thereof
WO2017111350A1 (en) Catalyst-coated filter in which activity of catalyst is increased by adding lithium cocatalyst
JP5624458B2 (en) Substrate protection method
CN109954488A (en) Substrate and its manufacturing method and photocatalysis apparatus with photochemical catalyst
JP4566586B2 (en) Method for producing photocatalyst body
WO2018194432A2 (en) Membrane including porous substrate layer and cnt/chitosan nanohybrid coating layer, and electrostatic dust collection system including same
WO2009131306A9 (en) A tungsten trioxide (wo3)-based gas sensor for sensing gaseous volatile organic compounds, and a production method therefor
WO2020040372A1 (en) Catalyst for purifying exhaust gas
KR102060521B1 (en) Water proofing material comprising visible light active photocatalyst for air cleaning
JPH10286456A (en) Adsorbing functional body
JP2003268945A (en) Interior finish material
WO2022014844A1 (en) Substrate comprising selectively reduced titanium dioxide, production method for same, and catalyst comprising same
JP2019048269A (en) Porous catalyzer membrane and gas treatment device using the same
WO2018143712A1 (en) Air filter and air purification module including same
WO2019045126A1 (en) Thin film getter and manufacturing method therefor
KR100482649B1 (en) Direct adhesion method of photocatalyst on substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565279

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813517

Country of ref document: EP

Kind code of ref document: A1