WO2017217633A1 - 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차 - Google Patents

배터리 모듈 및 이를 포함하는 배터리 팩, 자동차 Download PDF

Info

Publication number
WO2017217633A1
WO2017217633A1 PCT/KR2017/000976 KR2017000976W WO2017217633A1 WO 2017217633 A1 WO2017217633 A1 WO 2017217633A1 KR 2017000976 W KR2017000976 W KR 2017000976W WO 2017217633 A1 WO2017217633 A1 WO 2017217633A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
cooling
battery cell
battery
heat
Prior art date
Application number
PCT/KR2017/000976
Other languages
English (en)
French (fr)
Inventor
지호준
김세원
문정오
정병천
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17813458.1A priority Critical patent/EP3336957B1/en
Priority to PL17813458T priority patent/PL3336957T3/pl
Priority to US15/760,823 priority patent/US10749226B2/en
Priority to CN201780003538.XA priority patent/CN108140916B/zh
Priority to JP2018528260A priority patent/JP6564949B2/ja
Publication of WO2017217633A1 publication Critical patent/WO2017217633A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery module having a plurality of secondary batteries, a battery pack including the same, and an automobile, and more particularly, to a battery module capable of cooling a battery cell, a battery pack including the same, and an automobile.
  • Secondary batteries are highly applicable to various product groups and have electrical characteristics having high energy density. Such secondary batteries are applied to electric vehicles or hybrid vehicles, power storage devices, and the like, which are driven by electric driving sources as well as portable electronic devices.
  • the battery pack applied to an electric vehicle has a structure in which a plurality of battery modules including a plurality of battery cells are connected to obtain high power.
  • each battery cell is an electrode assembly, and may be repeatedly charged and discharged by an electrochemical reaction between components, including a positive electrode and a negative electrode current collector, a separator, an active material, an electrolyte, and the like.
  • the battery pack of the multi-module structure is manufactured in a form in which a plurality of secondary batteries are concentrated in a narrow space, it is important to easily release heat generated in each secondary battery.
  • heat is generated by an electrochemical reaction. If the heat of the battery module generated during the charging and discharging process is not effectively removed, thermal accumulation may occur. In addition, deterioration of the battery module is promoted, and in some cases, fire or explosion may occur.
  • a high output large capacity battery module and a battery pack to which it is mounted require a cooling device for cooling the battery cells embedded therein.
  • cooling fins are available in aluminum. Cooling fins that absorb heat from each battery cell are connected to one cooling plate to transfer heat to the cooling plate. The cooling plate transfers the heat transferred from the cooling fins back to the heat sink and the heat sink is cooled by the coolant or cooling air.
  • the cooling fin made of aluminum it is difficult to close contact with the battery cell.
  • the energy density of the battery module is gradually increasing, and in the case of a battery module having a high energy density, a large amount of heat is generated in each battery cell, so that only a fin having a constant thermal conductivity has a limitation in cooling the battery cell. .
  • the present invention to solve the above problems, to provide a battery module and a battery pack including the improved cooling efficiency, and a vehicle.
  • the present invention is to provide a battery module, a battery pack including the same, and a vehicle capable of improving the cooling efficiency of the edge portion and the sealing portion of the battery cell.
  • the present invention provides a battery module having a plurality of battery cells.
  • the battery module includes a plurality of battery cells including an accommodating part in which an electrode assembly is accommodated and a sealing part sealing the accommodating part, and heat conduction surrounding at least a part of the battery cell and in surface contact with the battery cell.
  • a seat, located inside the heat conductive sheet, at least a portion may include a side cooling fin in contact with the receiving portion of the battery cell and a cooling plate in contact with the heat conductive sheet.
  • At least a portion of the side cooling fins may contact the sealing portion of the battery cell, and at least some of the side cooling fins may contact the heat conductive sheet.
  • the side cooling fin may include an accommodation part accommodating the sealing part, a first ring part in contact with one side of the sealing part, and a second ring part in contact with the other side of the sealing part, wherein the first ring part And the second ring portion may be interconnected by the receiving portion.
  • the first ring portion and the second ring portion may each have an empty space, and at least one side may be provided in an open shape.
  • the first ring portion and the second ring portion may be provided in a symmetrical shape with respect to the receiving portion.
  • the sealing portion may be disposed in the receiving portion in a folded form.
  • At least a portion of the first ring portion and the second ring portion may be in contact with a side surface of the accommodating portion of the battery cell, the sealing portion, and the heat conductive sheet.
  • a portion of the thermal conductive sheet that contacts the first ring portion and the second ring portion may be provided in a rounded shape.
  • the thermally conductive sheet is provided as a graphite sheet
  • the side cooling fins may be provided in an aluminum material.
  • the battery cell, the side cooling fins and the cooling plate are sequentially arranged side by side along the first direction
  • the heat conductive sheet is a portion of the surface perpendicular to the first direction of the battery cell It may be provided to surround at least some of the side of the side cooling fins.
  • the battery module may further include a cooling pad positioned between the heat conductive sheet and the cooling plate and transferring heat of the heat conductive sheet to the cooling plate.
  • one surface of the cooling pad is coupled to the thermal conductive sheet
  • the other surface of the cooling pad is coupled to the cooling plate
  • the thermal conductive sheet coupled to the cooling pad may be provided in a round shape.
  • the battery module may further include a heat sink through which a cooling fluid flows and heat exchange with the cooling plate.
  • the present invention can provide a battery pack including the battery module described above.
  • the present invention can provide a vehicle including the battery pack described above.
  • the cooling efficiency of the battery cell may be improved by providing a heat conduction sheet surrounding the battery cell and side cooling fins contacting the sealing part and the edge part of the battery cell when the battery cell is cooled.
  • FIG. 1 is a perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view illustrating the battery cell of FIG. 1.
  • FIG. 3 is a combined perspective view illustrating the battery cell of FIG. 1.
  • FIG. 4 is a perspective view illustrating a state before coupling of a battery cell, a heat conductive sheet, a side cooling fin, a cooling plate, and a heat sink among a portion of the battery module of FIG. 1.
  • FIG. 5 is a front view illustrating a state in which the battery cell, the thermal conductive sheet, the side cooling fins, the cooling plate, and the heat sink of FIG. 1 are combined.
  • FIG. 6 is a front view illustrating a state before coupling of the battery cell, the thermal conductive sheet, the side cooling fins, the cooling plate, and the heat sink of FIG. 5.
  • FIG. 7 is a perspective view illustrating another embodiment of the battery module of FIG. 4.
  • FIG. 8 is a front view illustrating a battery cell, a thermal conductive sheet, a side cooling fin, a cooling pad, a cooling plate, and a heat sink in the battery module of FIG. 4.
  • FIG. 9 is a front view illustrating a state before coupling of the battery cell, the thermal conductive sheet, the side cooling fins, the cooling pad, the cooling plate, and the heat sink of FIG. 8.
  • FIG. 10 is a view schematically illustrating a direction in which heat is transferred in a battery module according to an embodiment of the present invention.
  • FIG. 1 is a perspective view of a battery module according to an embodiment of the present invention.
  • the battery module 10 has a plurality of battery cells 100.
  • the battery cell 100 may be provided as a secondary battery.
  • the battery cell 100 may be provided as a pouch type secondary battery.
  • the battery cell 100 of the present invention will be described with an example of being provided as a pouch type secondary battery.
  • the battery module 10 includes a battery cell 100, a thermal conductive sheet 200, a side cooling fin 300, a cooling plate 400, and a heat sink 600.
  • a plurality of battery cells 100 are provided.
  • the plurality of battery cells 100 are arranged side by side in a direction in which respective surfaces thereof face each other.
  • the plurality of battery cells 100 are positioned to face each other.
  • a direction in which the plurality of battery cells 100 are arranged side by side is referred to as a first direction 12.
  • the direction perpendicular to the first direction 12 is referred to as the second direction 14.
  • the direction perpendicular to both the first direction 12 and the second direction 14 is referred to as the third direction 16.
  • FIG. 2 is an exploded perspective view showing the battery cell of FIG. 1
  • FIG. 3 is a combined perspective view showing the battery cell of FIG. 1.
  • the battery cell 100 includes a pouch case 110, an electrode assembly 120, an electrode tab 130, and an electrode lead 140.
  • the pouch case 110 has an inner space 101. In the pouch case 110, an electrode assembly 120 and an electrolyte, which will be described later, are positioned. The central region of the pouch case 110 protrudes in the vertical direction.
  • the pouch case 110 includes an upper case 111 and a lower case 112.
  • the upper case 111 and the lower case 112 are combined with each other to form an inner space 101.
  • the central region of the upper case 111 has a concave shape protruding upward.
  • the lower case 112 is positioned below the upper case 111.
  • the central area of the lower case 112 has a concave shape protruding downward.
  • the inner space 101 of the pouch case 110 may be formed only in any one of the upper case 111 or the lower case 112.
  • the upper case 111 and the lower case 112 each have a sealing portion 160.
  • the sealing part 160 of the upper case 111 and the sealing part 160 of the lower case 112 may be provided to face each other.
  • the sealing part 160 of the upper case 111 and the sealing part 160 of the lower case 112 may be adhered to each other by an inner adhesive layer located inside.
  • the interior space 101 may be sealed through adhesion of the sealing unit 160.
  • the electrolyte and the electrode assembly 120 are accommodated in the inner space 101 of the pouch case 110.
  • the pouch case 110 may have an outer insulating layer, a metal layer, and an inner adhesive layer.
  • the external insulating layer can prevent the external moisture, gas and the like from penetrating into the interior.
  • the metal layer may improve the mechanical strength of the pouch case 110.
  • the metal layer may be provided with aluminum.
  • the metal layer may be provided with any one selected from iron, carbon, chromium, manganese alloys, alloys of iron nickel and nickel, aluminum or equivalents thereof. When the metal layer uses a material containing iron, the mechanical strength can be increased. If the metal layer is made of aluminum, the ductility may be good.
  • Aluminum may be provided as a preferred embodiment of the metal layer.
  • the outer insulating layer and the inner adhesive layer may be provided with a polymer material.
  • the electrode assembly 120 includes a positive electrode plate, a negative electrode plate, and a separator.
  • the electrode assembly 120 may be provided in a form in which one or more positive electrode plates and one or more negative electrode plates are disposed with a separator therebetween.
  • the electrode assembly 120 may be provided in a form in which a plurality of positive electrode plates and a plurality of negative electrode plates are alternately stacked. Alternatively, one positive electrode plate and one negative electrode plate may be provided in a wound form.
  • the electrode plates of the electrode assembly 120 include a current collector and an active material slurry coated on one or both surfaces of the current collector.
  • the active material slurry may be formed by stirring with a solvent such as a granular active material, an auxiliary conductor, a binder, and a plasticizer.
  • Each of the electrode plates may have a plain portion corresponding to a region where the active material slurry is not applied.
  • An electrode tab 130 corresponding to each electrode plate may be formed in the uncoated portion.
  • the electrode tab 130 extends in a form protruding from the electrode assembly 120.
  • the electrode tab 130 includes a positive electrode tab 131 and a negative electrode tab 132.
  • the positive electrode tab 131 may extend from the uncoated portion of the positive electrode plate, and the negative electrode tab 132 may extend from the uncoated portion of the negative electrode plate.
  • Each of the positive electrode tab 131 and the negative electrode tab 132 may be provided in the battery cell 100.
  • a plurality of positive electrode tabs 131 and negative electrode tabs 132 may be provided.
  • one positive electrode tab 131 and one negative electrode tab 132 may be included.
  • a plurality of positive electrode tabs 131 and negative electrode tabs 132 may be included.
  • the electrode assembly 120 includes a plurality of positive and negative plates, respectively, a plurality of positive electrode tabs 131 and negative electrode tabs 132 may also be included, and electrode tabs 130 may be provided for each electrode plate. .
  • the electrode lead 140 may electrically connect the battery cell 100 with other external devices.
  • the electrode lead 140 may include a positive lead 141 and a negative lead 142.
  • the electrode lead 140 may be provided to extend from the inside to the outside of the pouch case 110. Some regions of the electrode lead 140 may be interposed between the sealing portions 160.
  • the electrode lead 140 is connected to the electrode tab 130.
  • the electrode lead 140 of the present invention may be provided with a positive electrode lead 141 on one side of the pouch case 110 and a negative electrode lead 142 on the other side. Alternatively, both the positive lead 141 and the negative lead 142 may be provided on one side of the pouch case 110.
  • the battery cell 100 has an accommodating part 150 and a sealing part 160.
  • the accommodating part 150 is a part in which the electrode assembly 120 is accommodated in the battery cell 100.
  • the sealing unit 160 is a portion of the pouch case 110 that is sealed to four sides surrounding the storage unit 150.
  • the sealing unit 160 is coupled to the receiving unit 310 of the side cooling fin 300 to be described later, it may be provided in a folded form.
  • FIG. 4 is a perspective view illustrating a state before coupling of a battery cell, a heat conduction sheet, a side cooling fin, a cooling plate, and a heat sink among parts of the battery module of FIG. 1
  • FIG. 5 is a view of the battery cell, heat conduction sheet, and side cooling fin of FIG. 1.
  • a front plate showing a state in which a cooling plate and a heat sink are coupled
  • FIG. 6 is a front view showing a state before coupling of the battery cell, the thermal conductive sheet, the side cooling fins, the cooling plate, and the heat sink of FIG. 5.
  • the thermal conductive sheet 200 may transfer heat of the battery cell 100 to the cooling plate 400.
  • the plurality of thermally conductive sheets 200 may be provided.
  • the thermal conductive sheet 200 may be provided in a number corresponding to the number of battery cells 100.
  • the thermal conductive sheet 200 may be provided to surround at least a portion of the battery cell 100.
  • the thermal conductive sheet 200 may be in surface contact with the surface of the battery cell 100.
  • the heat conductive sheet 200 may be provided to surround two surfaces in the first direction and two surfaces in the third direction among the six surfaces of the pouch case 200.
  • the thermal conductive sheet 200 may have two surface directions formed along the second direction 14 of the battery cell 100 in an open form.
  • the thermally conductive sheet 200 may be provided of a material having good thermal conductivity.
  • the thermal conductive sheet 200 may be provided as a graphite sheet.
  • Graphite sheets are excellent in thermal conductivity and have electrical insulation properties.
  • heat to be generated in the battery cell 100 may be transferred to the cooling plate 400 well.
  • the thermally conductive sheet 200 may be provided as a silicon thermally conductive sheet.
  • the thermal conductive sheet 200 may be provided in the form of a thin film.
  • the thickness of the thermal conductive sheet 200 may be provided as 50 ⁇ m.
  • the thin conductive thermal conductive sheet 200 is thinner than the thickness of the cooling fin provided with a conventional metal material, so that the total volume of the battery module 10 is not increased.
  • it is possible to increase the volume of the battery cell 100 to occupy the total volume of the battery module 10 can improve the energy density.
  • the side cooling fin 300 may transfer the heat of the side surface 170 (hereinafter, referred to as an edge portion) and the sealing portion 160 of the accommodating part 150 of the battery cell 100 to the cooling plate 400.
  • the side cooling fin 300 is located inside the heat conductive sheet 200.
  • the battery cell 100 and the side cooling fins 300 may be located side by side along the third direction 16.
  • the plurality of side cooling fins 300 may be provided.
  • the side cooling fins 300 may be provided in a number corresponding to the number of battery cells 100.
  • the side cooling fin 300 may at least partially contact the sealing portion 160 of the battery cell 100 and the edge portion 170 of the battery cell 100, and at least some of the side cooling fins 300 may contact the thermal conductive sheet 200.
  • the side cooling fin 300 may be provided with a metal material.
  • the side cooling fin 300 may be provided of aluminum material.
  • the side cooling fin 300 may be provided of another metal material having good thermal conductivity.
  • the side cooling fin 300 includes a receiving part 310, a first ring part 330, and a second ring part 350.
  • the accommodation unit 310 may accommodate the sealing unit 160 of the battery cell 100.
  • the accommodating part 310 may have a concave shape space, and the sealing part 160 may be accommodated in the space.
  • the sealing part 160 accommodated in the accommodation part 310 may be inserted in a folded form.
  • the sealing unit 160 Since the sealing unit 160 is provided in a folded form, the total volume of the battery cell 100 may be reduced. In addition, the sealing portion 160 is inserted into the receiving portion 310 in a folded form, it is possible to fit. As an example, the accommodating part 310 and the sealing part 160 may be combined by an interference fit coupling. Through interference fitting, the coupling force of the battery cell 100 and the side cooling fins 310 may be increased.
  • the first ring portion 330 has a space extending in the second direction 14 inside. Cooling fluid may pass through the inner space of the first ring part 330. The cooling fluid may cool the first ring portion 330. As an example, the cooling fluid may be provided as air. A portion of the first ring portion 330 is in contact with the edge portion 170 and the sealing portion 160 of the battery cell 100, respectively, and the other portion is in contact with the thermal conductive sheet 200. An edge portion of the first ring portion 330 contacting the thermal conductive sheet 200 may be provided in a round shape. In addition, a portion of the thermal conductive sheet 200 that contacts the first ring portion 330 may be provided in a rounded shape. The first ring portion 330 may have an elliptical shape in cross section.
  • the contact portion between the first ring portion 330 and the heat conductive sheet 200 may be provided in a rounded shape, thereby preventing the heat conductive sheet 200 from being torn from an external impact.
  • the first ring portion 330 and the heat conductive sheet 200 may stably contact each other.
  • the second ring portion 350 has a space extending in the second direction 14 inside. Cooling fluid may pass through the inner space of the second ring part 350. The cooling fluid may cool the second ring part 350. As an example, the cooling fluid may be provided as air.
  • the first ring part 330 and the second ring part 350 may be coupled to each other by the receiving part 310. A portion of the second ring portion 350 is in contact with the edge portion 170 and the sealing portion 160 of the battery cell 100, respectively, and the other portion is in contact with the thermal conductive sheet 200. An edge portion of the second ring portion 350 contacting the thermal conductive sheet 200 may be provided in a round shape. In addition, a portion of the thermal conductive sheet 200 that contacts the second ring portion 350 may be provided in a rounded shape.
  • the second ring portion 350 may have an elliptical shape in cross section.
  • the first ring part 330 and the second ring part 350 may have shapes that are symmetrical with respect to the accommodation part 310.
  • a portion where the second ring portion 350 and the thermal conductive sheet 200 contact each other may be provided in a rounded shape, thereby preventing the thermal conductive sheet 200 from being torn from an external impact.
  • the second ring portion 350 and the thermal conductive sheet 200 may stably contact each other.
  • the side cooling fin 300 may be in contact with the edge portion 170, the sealing portion 160, and the thermally conductive sheet 200 of the battery cell 100 to transfer the heat of the battery cell 100 to the thermally conductive sheet 200. have.
  • the side cooling fin 300 having good thermal conductivity is positioned between the edge portion 170 and the sealing portion 160 of the battery cell 100 and the thermal conductive sheet 200, and in contact with each of the batteries.
  • the edge portion 170 and the sealing portion 160 of the heat can be transferred to the thermally conductive sheet 200 well.
  • the heat generated from the battery cell 100 is transferred to the cooling plate 400 through the heat conductive sheet 200, and at the same time, the heat is transferred to the battery cell 100 through the side cooling fins 300.
  • the cooling efficiency of the battery cell 100 may be improved by using a multi-path thermal conductivity method of transferring heat to the 400.
  • the cooling plate 400 may be transferred to improve the cooling efficiency of the battery cell 100.
  • the sealing portion 160 may be positioned in contact with a portion of the end of the heat conductive sheet 200. In this case, heat generated in the case of the edge portion 170 and the sealing portion 160 of the battery cell 100 described above may not be transferred to the heat conductive sheet 200 well. When the heat generated from the battery cell 100 is not transferred to the cooling plate 400 well, the cooling efficiency of the battery cell 100 may fall and affect the life of the battery cell 100.
  • the cooling plate 400 discharges heat transferred from the thermal conductive sheet 200 to the outside.
  • the cooling plate 400 is located under the battery cell 100.
  • the battery cell 100, the side cooling fins 300, a part of the thermal conductive sheet 200, and the cooling plate 400 may be sequentially positioned along the third direction 16.
  • the cooling plate 400 may be provided of a material having good thermal conductivity.
  • the cooling plate 400 may be provided of aluminum material.
  • the cooling plate 400 may be provided of another metal material having good thermal conductivity.
  • a plurality of receiving grooves 410 may be formed in the cooling plate 400.
  • the plurality of receiving grooves 410 may be provided in a number corresponding to the number of battery cells 100.
  • the plurality of receiving grooves 410 may be spaced apart by a predetermined distance along the first direction 12.
  • the receiving groove 410 may be provided to extend in the second direction 14.
  • the receiving groove 410 may be coupled to the battery cell 100 wrapped with the thermal conductive sheet 200.
  • the receiving groove 410 may be provided in a shape corresponding to the heat conductive sheet 200 surrounding the side cooling fin 300.
  • the accommodating groove 410 may improve the coupling force between the cooling plate 400 and the battery cell 100 in which the heat conductive sheet 200 is wrapped.
  • the heat sink 600 may exchange heat with the cooling plate 400.
  • the heat sink 600 is located below the third direction 16 of the cooling plate 400.
  • Heat sink 600 has a chamber.
  • the chamber may be provided with the same or larger cross-sectional area as the cooling plate 400.
  • the chamber may have a flow path (not shown) therein. Cooling fluid may flow through the flow path.
  • the cooling fluid may be provided as cooling water. Alternatively, the cooling fluid can be provided with air.
  • the chamber may be formed with an inlet tube through which the cooling fluid flows and an outlet tube through which the cooling fluid flows out (not shown).
  • the battery pack according to the present invention may include one or more battery modules 10 described above.
  • the battery pack may further include a case for accommodating the battery module 10 and various devices for controlling charge and discharge of the battery module 10.
  • a battery management system BMS
  • a current sensor e.g., a current sensor
  • a fuse e.g., a fuse
  • the battery module 10 according to the present invention may be applied to an automobile such as an electric vehicle or a hybrid vehicle.
  • An automobile according to the present invention may include one or more battery packs including the battery module 10 according to an embodiment of the present invention.
  • FIG. 7 is a perspective view illustrating another embodiment of the battery module of FIG. 4, and FIG. 8 is a view illustrating a state in which a battery cell, a thermal conductive sheet, a side cooling fin, a cooling pad, a cooling plate, and a heat sink are coupled among the battery modules of FIG. 4.
  • 9 is a front view illustrating a state before coupling of the battery cell, the thermal conductive sheet, the side cooling fins, the cooling pad, the cooling plate, and the heat sink of FIG. 8.
  • a battery module 10a may include a battery cell 100a, a thermal conductive sheet 200a, a side cooling fin 300a, a cooling plate 400a, and a cooling pad. 500a and heat sink 600a.
  • the battery cell 100a, the thermally conductive sheet 200a, the side cooling fins 300a, and the heat sink 600a of FIG. 7 are the battery cells 100, the thermal conductive sheet 200, the side cooling fins 300, and It may be provided substantially the same as the heat sink 600.
  • the cooling plate 400a may be provided in substantially the same manner as the cooling plate 400 of FIG. 1. However, unlike the cooling plate 400 of FIG. 1, the cooling plate 400a is not provided with a receiving groove 410.
  • the cooling plate 400a may be provided as a flat surface having a surface 520a in contact with the cooling pad 500a which will be described later. One surface of the cooling plate 400a contacts the cooling pad 500a, and the other surface contacts the heat sink 6000a.
  • the cooling pad 500a may transfer the heat transferred from the heat conductive sheet 200a to the cooling plate 400a.
  • the cooling pad 500a may fix the battery cell 100a wrapped with the thermal conductive sheet 200a.
  • One surface 510a of the cooling pad 500a may be coupled to the thermal conductive sheet 200a, and the other surface 520a of the cooling pad 500a may be coupled to the cooling plate 400.
  • the battery cell 100a, the side cooling fins 300a, the portion of the thermal conductive sheet 200a, the cooling pad 500a, and the cooling plate 400a may be sequentially positioned along the third direction 16.
  • the surface 510a that is coupled to the thermal conductive sheet 200 among the surfaces of the cooling pad 500a may be provided in a concave shape.
  • the surface of the cooling pad 500a is provided in a concave shape, thereby increasing the contact area with the thermal conductive sheet 200a and increasing the bonding force.
  • the surface 520a of the surface of the cooling pad 500a which contacts the heat sink 600 may be provided as a flat surface.
  • a plurality of cooling pads 500a may be provided.
  • the cooling pad 500a may be provided in a number corresponding to the number of battery cells 100a.
  • the cooling pad 500a may be provided as a contact thermal conductor material.
  • the cooling pad 500a may be provided to include a material having excellent thermal conductivity and adhesiveness.
  • the bonding force of each battery cell 100a and the cooling plate 400a may be improved.
  • the cooling pad 500a may be provided to transfer heat from the thermal conductive sheet 200a to the cooling plate 400a, thereby improving cooling efficiency of the battery cell 100a.
  • a coupling groove (not shown) may be formed to allow the cooling pad 500a to be inserted therein.
  • the coupling groove may be provided in a concave shape downward in the third direction 16.
  • FIG. 10 is a view schematically illustrating a direction in which heat is transferred in a battery module according to an embodiment of the present invention.
  • FIG. 10 a process of cooling the battery cell 100 in the battery module 10 according to an exemplary embodiment will be described.
  • the direction of the arrow in FIG. 10 indicates the direction in which heat is transferred.
  • the heat generated from the battery cell 100 may be transferred to the cooling plate through various paths to improve cooling efficiency.
  • heat generated in the battery cell 100 is transferred to the heat conductive sheet 200 in contact with the surface of the battery cell 100.
  • the heat transferred to the heat conductive sheet 200 is transferred to the cooling plate 400, and the cooling plate 400 exchanges heat with the heat sink 600 to release heat to the outside.
  • heat generated from the edge portion 170 and the sealing portion 160 of the battery cell 100 among the battery cells 100 is discharged to the outside in two paths.
  • the edge portion 170 and the sealing portion 160 of the battery cell 100 are in contact with the side cooling fin 300.
  • the side cooling fin 300 has a space therein. Cooling fluid may flow into the interior space. Heat of the edge portion 170 and the sealing portion 160 of the battery cell 100 may be discharged to the outside through the cooling fluid flowing in the inner space of the side cooling fin 300. That is, the heat transferred to the side cooling fin 300 may discharge the heat to the outside by the air cooling method.
  • the heat generated from the edge portion 170 and the sealing portion 160 of the battery cell 100 is transferred to the side cooling fin 300, the side cooling fin 300 heats the heat conducting sheet 200 To pass.
  • the heat transferred to the heat conductive sheet 200 may be discharged to the outside through the cooling plate 400 and the heat sink 600.
  • the present invention can effectively cool the heat of the battery cell 100 through the side cooling fin 300.
  • the side cooling fins 300 may be disposed inside the heat conduction sheet 200 and heat the edge portions 170 and the sealing portions 160 of the battery cells 100, which are not in direct contact with the heat conduction sheet 200. It can be cooled through it can improve the cooling efficiency of the battery cell (100).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 배터리 모듈 및 이를 포함하는 배터리 팩 그리고 자동차에 관한 것이다. 본 발명의 일 실시 예에 따른 배터리 모듈은 전극 조립체가 수납되는 수납부 및 상기 수납부를 실링하는 실링부를 가지는 복수개의 배터리 셀과 상기 배터리 셀의 적어도 일부를 감싸며, 상기 배터리 셀과 면 접촉하는 열전도 시트와 상기 열전도 시트의 내측에 위치하며, 적어도 일부분이 상기 배터리 셀의 수납부와 접촉하는 사이드 냉각 핀 및 상기 열전도 시트와 접촉하는 냉각 플레이트를 포함하는 배터리 모듈를 포함한다.

Description

배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
본 발명은 복수개의 이차전지를 가지는 배터리 모듈 및 이를 포함하는 배터리 팩 그리고 자동차에 관한 것으로, 보다 구체적으로는 배터리 셀을 냉각할 수 있는 배터리 모듈 및 이를 포함하는 배터리 팩 그리고 자동차에 관한 것이다.
본 출원은 2016년 06월 13일자로 출원된 한국 특허출원 번호 제10-2016-0073359호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
이차 전지는 다양한 제품군에 적용성이 높고, 높은 에너지 밀도를 가지는 전기적 특성을 가지고 있다. 이러한 이차 전지는 휴대용 전자 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기 차량 또는 하이브리드 차량, 전력 저장 장치 등에 적용되고 있다.
전기 차량 등에 적용되는 배터리 팩은 고출력을 얻기 위해 복수의 배터리 셀들을 포함하는 다수의 배터리 모듈을 연결한 구조를 가지고 있다. 그리고, 개개의 배터리 셀은 전극 조립체로서, 양극 및 음극 집전체, 세퍼레이터, 활물질, 전해액 등을 포함하여 구성 요소들 간의 전기 화학적 반응에 의하여 반복적인 충방전이 가능하다.
한편, 근래 에너지 저장원으로서의 활용을 비롯하여 대용량 구조에 대한 필요성이 높아지면서 다수의 이차 전지가 직렬 및/또는 병렬로 연결된 다수의 배터리 모듈을 집합시킨 멀티 모듈 구조의 배터리 팩에 대한 수요가 증가하고 있다.
멀티 모듈 구조의 배터리 팩은 다수의 이차 전지가 좁은 공간에 밀집되는 형태로 제조되기 때문에, 각 이차 전지에서 발생되는 열을 용이하게 방출하는 것이 중요하다. 이차 전지 배터리의 충전 또는 방전의 과정은 전기 화학적 반응에 의하여 열이 발생한다. 충방전 과정에서 발생한 배터리 모듈의 열이 효과적으로 제거되지 못하면, 열축적이 일어날 수 있다. 또한, 배터리 모듈의 열화가 촉진되고, 경우에 따라서는 발화 또는 폭발이 일어날 수 있다.
따라서, 고출력 대용량의 배터리 모듈 및 그것이 장착된 배터리 팩에는 그것에 내장되어 있는 배터리 셀들을 냉각시키는 냉각 장치가 반드시 필요하다.
일반적으로 냉각장치에는 대표적으로 공냉식과 수냉식, 두 가지를 들 수 있는데, 누전이나 이차 전지의 방수 문제 등으로 인해 공냉식이 수냉식보다 널리 이용되고 있다.
하나의 이차 전지 셀에 의해 생산할 수 있는 전력은 크지 않으므로 상용화된 배터리 모듈은 일반적으로 모듈 케이스 내에 복수 개의 배터리 셀들을 필요한 수만큼 적층시켜 패키징한다. 그리고 개개의 배터리 셀에서 전기가 생산되는 과정에서 발생된 열을 냉각시켜 이차 전지의 온도를 적정하게 유지하기 위해 배터리 셀들 중간에 방열부재로서 배터리 셀의 면적에 대응되는 복수 개의 냉각 핀들을 삽입한다. 냉각 핀은 알루미늄 재질로 제공된다. 각각의 배터리 셀에서 열을 흡수한 냉각 핀들은 하나의 냉각 플레이트에 연결되어 냉각 플레이트에 열을 전달한다. 냉각 플레이트는 냉각 핀으로부터 전달된 열을 다시 히트 싱크에 그 열을 전달하고 히트 싱크는 냉각수 또는 냉각 공기에 의해 냉각된다.
다만, 알루미늄 재질의 냉각 핀을 사용하는 경우, 배터리 셀과 긴밀한 접촉이 어렵다. 또한, 현재 배터리 모듈의 경우 에너지 밀도가 점차 높아지는 추세이며, 에너지 밀도가 높은 배터리 모듈의 경우 각각의 배터리 셀에서 발생되는 열의 양이 많아 일정한 열전도도를 가지는 냉각 핀만으로는 배터리 셀의 냉각에 한계가 있다.
본 발명은 상술한 문제점을 해결하고자, 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩, 그리고 자동차를 제공하기 위한 것이다.
또한, 본 발명은 배터리 셀의 에지부 및 실링부의 냉각 효율을 향상시킬 수 있는 배터리 모듈 및 이를 포함하는 배터리 팩, 그리고 자동차를 제공하기 위한 것이다.
본 발명은 여기에 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 복수의 배터리 셀을 가지는 배터리 모듈을 제공한다.
본 발명의 일 실시 예에 따르면, 상기 배터리 모듈은 전극 조립체가 수납되는 수납부 및 상기 수납부를 실링하는 실링부를 가지는 복수개의 배터리 셀, 상기 배터리 셀의 적어도 일부를 감싸며 상기 배터리 셀과 면 접촉하는 열전도 시트, 상기 열전도 시트의 내측에 위치하며, 적어도 일부분이 상기 배터리 셀의 수납부와 접촉하는 사이드 냉각 핀 및 상기 열전도 시트와 접촉하는 냉각 플레이트를 포함할 수 있다.
일 실시 예에 의하면, 상기 사이드 냉각 핀은 적어도 일부가 상기 배터리 셀의 실링부와 접촉하며, 적어도 일부는 상기 열전도 시트와 접촉할 수 있다.
일 실시 예에 의하면, 상기 사이드 냉각 핀은 상기 실링부가 수용되는 수용부, 상기 실링부의 일측면과 접촉하는 제1 링부 및 상기 실링부의 타측면과 접촉하는 제2 링부를 포함하되, 상기 제1 링부와 상기 제2 링부는 상기 수용부에 의해 상호 연결될 수 있다.
일 실시 예에 의하면, 상기 제1 링부 및 상기 제2 링부는 각각 내부가 빈 공간을 가지며, 적어도 일측이 개방된 형상으로 제공될 수 있다.
일 실시 예에 의하면, 상기 제1 링부와 상기 제2 링부는 상기 수용부를 중심으로 서로 대칭되는 형상으로 제공될 수 있다.
일 실시 예에 의하면, 상기 실링부는 폴딩된 형태로 상기 수용부에 배치될 수 있다.
일 실시 예에 의하면, 상기 제1 링부 및 상기 제2 링부는 각각 적어도 일부가 상기 배터리 셀의 수납부의 측면, 상기 실링부 그리고 상기 열전도 시트와 접촉할 수 있다.
일 실시 예에 의하면, 상기 열전도 시트 중 각각 상기 제1 링부 및 상기 제2 링부와 접촉하는 부분은 라운드진 형상으로 제공될 수 있다.
일 실시 예에 의하면, 상기 열전도 시트는 그라파이트 시트로 제공되며, 상기 사이드 냉각 핀은 알루미늄 재질로 제공될 수 있다.
일 실시 예에 의하면, 상기 배터리 셀, 상기 사이드 냉각 핀 그리고 상기 냉각 플레이트는 순차적으로 제1방향을 따라 나란하게 배치되며, 상기 열전도 시트는 상기 배터리 셀의 상기 제1방향과 수직한 면의 일부와 상기 사이드 냉각 핀의 측면 중 적어도 일부를 모두 감싸도록 제공될 수 있다.
일 실시 예에 의하면, 상기 배터리 모듈은 상기 열전도 시트와 상기 냉각 플레이트 사이에 위치하며, 상기 열전도 시트의 열을 상기 냉각 플레이트로 전달하는 냉각 패드를 더 포함할 수 있다.
일 실시 예에 의하면, 상기 냉각 패드의 일면은 상기 열전도 시트와 결합되며, 상기 냉각 패드의 타면은 상기 냉각 플레이트와 결합되며, 상기 냉각 패드와 결합되는 상기 열전도 시트는 라운드진 형상으로 제공될 수 있다.
일 실시 예에 의하면, 상기 배터리 모듈은 내부에 냉각 유체가 흐르며, 상기 냉각 플레이트와 열교환하는 히트 싱크를 더 포함할 수 있다.
본 발명은 상술한 배터리 모듈을 포함하는 배터리 팩을 제공할 수 있다.
본 발명은 상술한 배터리 팩을 포함하는 자동차를 제공할 수 있다.
본 발명의 일 실시 예에 의하면, 배터리 셀의 냉각 시 배터리 셀을 감싸는 열전도 시트와 배터리 셀의 실링부 및 에지부와 접촉하는 사이드 냉각 핀을 제공하여 배터리 셀의 냉각 효율을 향상 시킬 수 있다.
본 발명의 효과가 상술한 효과들로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시 예에 따른 배터리 모듈의 사시도이다.
도 2는 도 1의 배터리 셀을 보여주는 분해 사시도이다.
도 3은 도 1의 배터리 셀을 보여주는 결합 사시도이다.
도 4는 도 1의 배터리 모듈의 일부 중 배터리 셀, 열전도 시트, 사이드 냉각 핀, 냉각 플레이트 그리고 히트 싱크의 결합 전 상태를 보여주는 사시도이다.
도 5는 도 1의 배터리 셀, 열전도 시트, 사이드 냉각 핀, 냉각 플레이트 그리고 히트 싱크가 결합된 상태를 보여주는 정면도이다.
도 6은 도 5 의 배터리 셀, 열전도 시트, 사이드 냉각 핀, 냉각 플레이트 그리고 히트 싱크의 결합 전 상태를 보여주는 정면도이다.
도 7은 도 4의 배터리 모듈의 다른 실시 예를 보여주는 사시도이다.
도 8은 도 4의 배터리 모듈 중 배터리 셀, 열전도 시트, 사이드 냉각 핀, 냉각 패드, 냉각 플레이트 그리고 히트 싱크가 결합된 상태를 보여주는 정면도이다.
도 9는 도 8 의 배터리 셀, 열전도 시트, 사이드 냉각 핀, 냉각 패드, 냉각 플레이트 그리고 히트 싱크의 결합 전 상태를 보여주는 정면도이다.
도 10은 본 발명의 일 실시 예에 따른 배터리 모듈에서 열이 전달되는 방향을 개략적으로 보여주는 도면이다.
이하, 본 발명의 실시 예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시 예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시 예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시 예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. 따라서 도면에서의 요소의 형상은 보다 명확한 설명을 강조하기 위해 과장되게 도시된 부분도 있다. 또한, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
도 1은 본 발명의 일 실시 예에 따른 배터리 모듈의 사시도이다.
배터리 모듈(10)을 복수개의 배터리 셀(100)을 가진다. 배터리 셀(100)은 이차 전지로 제공될 수 있다. 일 예로 배터리 셀(100)은 파우치형 이차 전지로 제공될 수 있다. 이하, 본 발명의 배터리 셀(100)을 파우치형 이차 전지로 제공되는 것을 예로 들어 설명한다.
배터리 모듈(10)은 배터리 셀(100), 열전도 시트(200), 사이드 냉각 핀(300) 냉각 플레이트(400) 그리고 히트 싱크(600)를 포함한다.
배터리 셀(100)은 복수개가 제공된다. 복수개의 배터리 셀(100)은 각각의 면들이 마주보는 방향으로 나란하게 배치된다. 복수개의 배터리 셀(100)은 각각 서로 대면하여 위치한다. 이하, 복수개의 배터리 셀(100)이 나란하게 배치되는 방향을 제1방향(12)이라 한다. 상부에서 바라 볼 때, 제1방향(12)과 수직한 방향을 제2방향(14)이라 한다. 제1방향(12) 및 제2방향(14) 모두에 수직한 방향을 제3방향(16)이라 한다.
도 2는 도 1의 배터리 셀을 보여주는 분해 사시도이고, 도 3은 도 1의 배터리 셀을 보여주는 결합 사시도이다.
도 2 및 도 3을 참고하면, 배터리 셀(100)은 파우치 케이스(110), 전극 조립체(120), 전극 탭(130) 그리고 전극 리드(140)를 포함한다.
파우치 케이스(110)는 내부 공간(101)을 가진다. 파우치 케이스(110)의 내부에는 후술하는 전극 조립체(120) 및 전해액이 위치한다. 파우치 케이스(110)의 중앙 영역은 상하 방향으로 돌출되어 제공된다. 파우치 케이스(110)는 상부 케이스(111)와 하부 케이스(112)를 포함한다.
상부 케이스(111)와 하부 케이스(112)는 서로 조합되어 내부 공간(101)을 형성한다. 상부 케이스(111)의 중앙 영역은 상부 방향으로 돌출된 오목한 형태를 가진다. 하부 케이스(112)는 상부 케이스(111)의 하부에 위치한다. 하부 케이스(112)의 중앙 영역은 하부 방향으로 돌출된 오목한 형태를 가진다. 이와는 달리, 파우치 케이스(110)의 내부 공간(101)은 상부 케이스(111) 또는 하부 케이스(112) 중 어느 하나에만 형성될 수 있다.
상부 케이스(111)와 하부 케이스(112)는 각각 실링부(160)를 가진다. 상부 케이스(111)의 실링부(160)와 하부 케이스(112)의 실링부(160)는 서로 마주보는 형태로 제공될 수 있다. 상부 케이스(111)의 실링부(160) 및 하부 케이스(112)의 실링부(160)는 내측에 위치한 내부 접착층이 열융착 등에 의해 서로 접착 될 수 있다. 실링부(160)의 접착을 통해서 내부 공간(101)은 밀폐될 수 있다.
파우치 케이스(110)의 내부 공간(101)에는 전해액 및 전극 조립체(120)가 수납된다. 파우치 케이스(110)는 외부 절연층, 금속층, 그리고 내부 접착층을 가질 수 있다. 외부 절연층은 외부의 수분, 가스 등이 내부로 침투되는 것을 방지할 수 있다. 금속층은 파우치 케이스(110)의 기계적 강도를 향상시킬 수 있다. 금속층은 알루미늄으로 제공될 수 있다. 이와는 달리, 금속층은 철, 탄소, 크롬, 망간의 합금, 철 니켈 및 니켈의 합금, 알루미늄 또는 그 등가물 중 선택된 어느 하나로 제공될 수 있다. 금속층이 철이 함유된 재질을 사용하는 경우, 기계적 강도가 강해질 수 있다. 금속층이 알루미늄 재질로 사용하는 경우 연성이 좋을 수 있다. 금속층의 바람직한 실시예로 알루미늄이 제공될 수 있다. 외부 절연층 및 내부 접착층은 폴리머 재질로 제공될 수 있다.
전극 조립체(120)는 양극판, 음극판 그리고 분리막을 포함한다. 전극 조립체(120)는 하나 이상의 양극판 및 하나 이상의 음극판이 분리막을 사이에 두고 배치된 형태로 제공될 수 있다. 전극 조립체(120)는 다수의 양극판 및 다수의 음극판이 상호 교대로 적층된 형태로 제공될 수 있다. 이와는 달리, 하나의 양극판 및 음극판이 권취된 형태로 제공될 수 있다.
전극 조립체(120)의 전극판들은 집전체 및 집전체의 일면 또는 양면에 도포된 활물질 슬러리를 포함한다. 활물질 슬러리는 입상의 활물질, 보조도체, 바인더 그리고 가소제 등의 용매가 첨가된 상태에서 교반되어 형성될 수 있다. 각각의 전극판들은 활물질 슬러리가 도포되지 않는 영역에 해당하는 무지부를 가질 수 있다. 무지부에는 각각의 전극판에 대응되는 전극 탭(130)이 형성될 수 있다.
전극 탭(130)은 전극 조립체(120)로부터 돌출된 형태로 연장 형성된다. 전극 탭(130)은 양극 탭(131)과 음극 탭(132)을 포함한다. 양극 탭(131)은 양극판의 무지부에서 연장될 수 있으며, 음극 탭(132)은 음극판의 무지부에서 연장될 수 있다.
양극 탭(131)과 음극 탭(132)은 배터리 셀(100)에 각각 하나씩 구비될 수 있다. 이와는 달리 양극 탭(131)과 음극 탭(132)은 복수개 구비될 수도 있다. 일 예로 배터리 셀(100)의 전극 조립체(120)에 양극판과 음극판이 각각 1개만 포함된 경우, 양극 탭(131)과 음극 탭(132)은 각각 1개씩 포함될 수 있다. 이와 달리, 양극 탭(131)과 음극 탭(132)은 각각 다수 포함될 수 있다. 전극 조립체(120)에 양극판과 음극판이 각각 다수 포함된 경우, 양극 탭(131)과 음극 탭(132) 역시 다수 개 포함될 수 있으며, 1개의 전극판마다 각각 전극 탭(130)이 구비될 수 있다.
전극 리드(140)는 배터리 셀(100)을 외부의 다른 장치와 전기적으로 연결시킬 수 있다. 전극 리드(140)는 양극 리드(141)와 음극 리드(142)를 포함할 수 있다. 전극 리드(140)는 파우치 케이스(110)의 내측에서 외측까지 연장되는 형태로 제공될 수 있다. 전극 리드(140)의 일부 영역은 실링부(160) 사이에 개재될 수 있다. 전극 리드(140)는 전극 탭(130)과 연결된다. 본 발명의 전극 리드(140)는 파우치 케이스(110)의 일측에 양극 리드(141)가 제공되며, 타측에 음극 리드(142)가 제공될 수 있다. 이와는 달리, 양극 리드(141)와 음극 리드(142)는 파우치 케이스(110)의 일측에 모두 제공될 수 있다.
배터리 셀(100)은 수납부(150)와 실링부(160)를 가진다. 여기서, 수납부(150)는 배터리 셀(100)에서 전극 조립체(120)가 수납되는 부분이다. 실링부(160)는 파우치 케이스(110) 중 수납부(150)를 둘러싸는 네 측면으로 실링되는 부분이다. 실링부(160)는 후술하는 사이드 냉각 핀(300)의 수용부(310)에 결합되며, 폴딩된 형태로 제공될 수 있다.
도 4는 도 1의 배터리 모듈의 일부 중 배터리 셀, 열전도 시트, 사이드 냉각 핀, 냉각 플레이트 그리고 히트 싱크의 결합 전 상태를 보여주는 사시도이고, 도 5는 도 1의 배터리 셀, 열전도 시트, 사이드 냉각 핀, 냉각 플레이트 그리고 히트 싱크가 결합된 상태를 보여주는 정면도이며, 도 6은 도 5 의 배터리 셀, 열전도 시트, 사이드 냉각 핀, 냉각 플레이트 그리고 히트 싱크의 결합 전 상태를 보여주는 정면도이다.
도 4 내지 도 6을 참고하면, 열전도 시트(200)는 배터리 셀(100)의 열을 냉각 플레이트(400)로 전달할 수 있다. 열전도 시트(200)는 복수개 제공될 수 있다. 열전도 시트(200)는 배터리 셀(100)의 개수와 대응되는 개수로 제공될 수 있다. 열전도 시트(200)는 배터리 셀(100) 중 적어도 일부분을 감싸며 제공될 수 있다. 열전도 시트(200)는 배터리 셀(100)의 면과 면접촉 할 수 있다. 일 예로 열전도 시트(200)는 파우치 케이스(200)의 6 면중 제1방향의 두 면 및 제3방향의 두 면을 감싸며 제공될 수 있다. 열전도 시트(200)는 배터리 셀(100) 중 제2방향(14)을 따라 형성된 두 개의 면 방향은 개방된 형태로 제공될 수 있다. 열전도 시트(200)는 열전도도가 좋은 재질로 제공될 수 있다. 일 예로 열전도 시트(200)는 그라파이트 시트(Graphite sheet)로 제공될 수 있다. 그라파이트 시트는 열전도성이 우수하며, 전기적 절연성을 가진다. 열전도 시트(200)가 그라파이트 시트로 제공되는 경우, 배터리 셀(100)에서 발생될 열을 냉각 플레이트(400)로 잘 전달할 수 있다. 이와는 달리, 열전도 시트(200)는 실리콘 열전도 시트로 제공될 수 있다.
열전도 시트(200)는 박막의 형태로 제공될 수 있다. 일 예로 열전도 시트(200)의 두께는 50 ㎛로 제공될 수 있다. 이처럼, 열전도 시트(200)의 두께가 매우 얇게 제공되면, 배터리 모듈(10)의 전체 부피가 증가되지 않는다. 얇은 박막 형태의 열전도 시트(200)는 종래의 금속 재질로 제공되는 냉각 핀의 두께보다 그 두께가 얇아 배터리 모듈(10)의 전체 부피를 증가시키지 않는다. 또한, 배터리 모듈(10)의 전체 부피 대비 차지하는 배터리 셀(100)의 부피를 크게 할 수 있어 에너지 밀도를 향상 시킬 수 있다.
사이드 냉각 핀(300)은 배터리 셀(100)의 수납부(150)의 측면(170, 이하, 에지부라 한다) 및 실링부(160)의 열을 냉각 플레이트(400)로 전달 할 수 있다. 사이드 냉각 핀(300)은 열전도 시트(200)의 내측에 위치한다. 배터리 셀(100)과 사이드 냉각 핀(300)은 제3방향(16)을 따라 나란하게 위치할 수 있다. 사이드 냉각 핀(300)은 복수개 제공될 수 있다. 사이드 냉각 핀(300)은 배터리 셀(100)의 개수와 대응되는 개수로 제공될 수 있다. 사이드 냉각 핀(300)은 적어도 일부는 배터리 셀(100)의 실링부(160) 및 배터리 셀(100)의 에지부(170)와 접촉하며, 적어도 일부는 열전도 시트(200)와 접촉할 수 있다. 사이드 냉각 핀(300)은 금속 재질로 제공될 수 있다. 일 예로 사이드 냉각 핀(300)은 알루미늄 재질로 제공될 수 있다. 이와는 달리, 사이드 냉각 핀(300)은 열전도성이 좋은 다른 금속 재질로 제공될 수 있다.
사이드 냉각 핀(300)은 수용부(310), 제1 링부(330) 그리고 제2 링부(350)를 포함한다. 수용부(310)는 배터리 셀(100)의 실링부(160)가 수용될 수 있다. 수용부(310)는 오목한 형태의 공간을 가지며, 상기 공간에 실링부(160)가 수용될 수 있다. 수용부(310)에 수용되는 실링부(160)는 폴딩된 형태로 삽입될 수 있다.
실링부(160)가 폴딩된 형태로 제공되어, 배터리 셀(100)의 전체 부피가 감소할 수 있다. 또한, 실링부(160)가 폴딩된 형태로 수용부(310)에 삽입되어, 끼움 결합이 가능하다. 일 예로 수용부(310)와 실링부(160)는 억지 끼움 결합으로 결합될 수 있다. 억지 끼움 결합을 통해서, 배터리 셀(100)과 사이드 냉각 핀(310)의 결합력을 상승시킬 수 있다.
제1 링부(330)는 내측에 제2방향(14)을 따라 연장되는 공간을 가진다. 제1 링부(330)의 내부 공간에는 냉각 유체가 통과할 수 있다. 냉각 유체는 제1 링부(330)를 냉각 시킬 수 있다. 일 예로 냉각 유체는 공기로 제공될 수 있다. 제1 링부(330)의 일부는 배터리 셀(100)의 에지부(170) 및 실링부(160)와 각각 접촉하며, 다른 일부는 열전도 시트(200)와 접촉한다. 제1 링부(330) 중 열전도 시트(200)와 접촉하는 모서리 부분은 라운드 진 형태로 제공될 수 있다. 또한, 열전도 시트(200) 중 제1 링부(330)와 접촉하는 부분은 라운드진 형상으로 제공될 수 있다. 제1 링부(330)는 그 단면이 타원 형상으로 제공될 수 있다.
제1 링부(330)와 열전도 시트(200)가 접촉하는 부분이 라운드 진 형태로 제공되어, 열전도 시트(200)가 외부의 충격으로부터 찢어지는 것을 방지할 수 있다. 또한, 제1 링부(330)와 열전도 시트(200)가 안정적으로 접촉할 수 있다.
제2 링부(350)는 내측에 제2방향(14)을 따라 연장되는 공간을 가진다. 제2 링부(350)의 내부 공간에는 냉각 유체가 통과할 수 있다. 냉각 유체는 제2 링부(350)을 냉각 시킬 수 있다. 일 예로 냉각 유체는 공기로 제공될 수 있다. 제1 링부(330) 및 제2 링부(350)는 수용부(310)에 의해 상호 결합될 수 있다. 제2 링부(350)의 일부는 배터리 셀(100)의 에지부(170) 및 실링부(160)와 각각 접촉하며, 다른 일부는 열전도 시트(200)와 접촉한다. 제2 링부(350) 중 열전도 시트(200)와 접촉하는 모서리 부분은 라운드 진 형태로 제공될 수 있다. 또한, 열전도 시트(200) 중 제2 링부(350)와 접촉하는 부분은 라운드진 형상으로 제공될 수 있다. 제2 링부(350)는 그 단면이 타원 형상으로 제공될 수 있다. 제1 링부(330) 및 제2 링부(350)는 수용부(310)를 중심으로 서로 대칭되는 형상을 가질 수 있다.
제2 링부(350)와 열전도 시트(200)가 접촉하는 부분이 라운드 진 형태로 제공되어, 열전도 시트(200)가 외부의 충격으로부터 찢어지는 것을 방지할 수 있다. 또한, 제2 링부(350)와 열전도 시트(200)가 안정적으로 접촉할 수 있다.
사이드 냉각 핀(300)은 배터리 셀(100)의 에지부(170), 실링부(160), 열전도 시트(200)와 접촉하여, 배터리 셀(100)의 열을 열전도 시트(200)로 전달할 수 있다.
본 발명의 경우 열전도성이 좋은 사이드 냉각 핀(300)을 배터리 셀(100)의 에지부(170) 및 실링부(160)와 열전도 시트(200)의 사이에 위치하며, 이들과 각각 접촉하여 배터리의 에지부(170) 및 실링부(160)의 열을 열전도 시트(200)로 잘 전달 할 수 있다.
즉, 본 발명은 배터리 셀(100)에서 발생 된 열을 열전도 시트(200)를 통해서 냉각 플레이트(400)로 전달함과 동시에 배터리 셀(100)에 열을 사이드 냉각 핀(300)을 통해서 냉각 플레이트(400)로 열을 전달하는 다 경로 열전도 방식을 사용하여 배터리 셀(100)의 냉각 효율을 향상 시킬 수 있다.
특히, 본 발명의 경우 배터리 셀(100)의 면에서 발생된 열뿐만 아니라, 배터리 셀(100)의 에지부(170) 및 실링부(160) 등 배터리 셀(100)의 측면에서도 발생된 열을 냉각 플레이트(400)로 전달하여 배터리 셀(100)의 냉각 효율을 향상 시킬 수 있다.
만약 사이드 냉각 핀(300)이 제공되지 않는 경우, 열전도 시트(200)의 내부 중 에지부(170)의 대부분은 열전도 시트(200)와 접촉하지 않는다. 또한, 실링부(160)는 끝단의 일부가 열전도 시트(200)와 접촉하여 위치할 수 있다. 이 경우, 상술한 배터리 셀(100)의 에지부(170) 및 실링부(160)의 경우 발생되는 열이 열전도 시트(200)로 잘 전달 되지 않는다. 이렇게 배터리 셀(100)에서 발생된 열이 냉각 플레이트(400)로 잘 전달 되지 않는 경우 배터리 셀(100)의 냉각 효율이 떨어져 배터리 셀(100)의 수명에 영향을 줄 수 있다.
냉각 플레이트(400)는 열전도 시트(200)에서 전달된 열을 외부로 방출한다. 냉각 플레이트(400)는 배터리 셀(100)의 하부에 위치한다. 배터리 셀(100), 사이드 냉각 핀(300), 열전도 시트(200)의 일부, 그리고 냉각 플레이트(400)는 순차적으로 제3방향(16)을 따라서 위치할 수 있다. 냉각 플레이트(400)는 열전도성이 좋은 재질로 제공될 수 있다. 일 예로 냉각 플레이트(400)는 알루미늄 재질로 제공될 수 있다. 이와는 달리, 냉각 플레이트(400)는 열전도성이 좋은 다른 금속 재질로 제공될 수 있다.
냉각 플레이트(400)에는 복수개의 수용홈(410)이 형성될 수 있다. 복수개의 수용홈(410)은 배터리 셀(100)의 개수와 대응되는 개수로 제공될 수 있다. 복수개의 수용홈(410)은 제1방향(12)을 따라 일정거리 이격되어 위치 할 수 있다. 수용홈(410)은 제2방향(14)을 따라 길게 연장된 형태로 제공될 수 있다. 수용홈(410)은 열전도 시트(200)로 감싸진 배터리 셀(100)이 결합될 수 있다. 수용홈(410)은 사이드 냉각 핀(300)을 감싸는 열전도 시트(200)와 대응되는 형상으로 제공될 수 있다.
냉각 플레이트(400)에 형성된 수용홈(410)을 통해서, 냉각 플레이트(400)와 열전도 시트(200)의 접촉 면적을 증대할 수 있다. 또한, 수용홈(410)은 냉각 플레이트(400)와 열전도 시트(200)가 감싸진 배터리 셀(100)의 결합력을 향상시킬 수 있다.
히트 싱크(600)는 냉각 플레이트(400)와 열교환 할 수 있다. 히트 싱크(600)는 냉각 플레이트(400)의 제3방향(16) 하부에 위치한다.
히트 싱크(600)는 챔버를 가진다. 챔버는 냉각 플레이트(400)와 동일하거나 큰 단면적으로 제공될 수 있다. 챔버는 내부에 유로(미도시)가 형성될 수 있다. 유로에는 냉각 유체가 흐를 수 있다. 일 예로 냉각 유체는 냉각 수로 제공될 수 있다. 이와는 달리, 냉각 유체는 공기로 제공될 수 있다. 챔버에는 냉각 유체가 유입되는 유입관 및 냉각 유체가 유출되는 유출관(미도시)이 형성될 수 있다.
본 발명에 따른 배터리 팩은, 상술한 배터리 모듈(10)을 하나 이상 포함할 수 있다. 배터리 팩에는 배터리 모듈(10) 이외에, 이러한 배터리 모듈(10)을 수납하기 위한 케이스, 배터리 모듈(10)의 충방전을 제어하기 위한 각종 장치가 더 포함될 수 있다. 일 예로 BMS(Battery Management System), 전류 센서, 퓨즈 등이 더 포함될 수 있다.
본 발명에 따른 배터리 모듈(10)은, 전기 자동차나 하이브리드 자동차와 같은 자동차에 적용될 수 있다. 본 발명에 따른 자동차는 본 발명에 일 실시 예에 따른 배터리 모듈(10)을 포함하는 배터리 팩을 하나 이상 포함 할 수 있다.
도 7은 도 4의 배터리 모듈의 다른 실시 예를 보여주는 사시도이고, 도 8은 도 4의 배터리 모듈 중 배터리 셀, 열전도 시트, 사이드 냉각 핀, 냉각 패드, 냉각 플레이트 그리고 히트 싱크가 결합된 상태를 보여주는 정면도이며, 도 9는 도 8 의 배터리 셀, 열전도 시트, 사이드 냉각 핀, 냉각 패드, 냉각 플레이트 그리고 히트 싱크의 결합 전 상태를 보여주는 정면도이다.
도 7 내지 도 9을 참고하면, 본 발명의 다른 실시 예에 따른 배터리 모듈(10a)은 배터리 셀(100a), 열전도 시트(200a), 사이드 냉각 핀(300a), 냉각 플레이트(400a), 냉각 패드(500a) 그리고 히트 싱크(600a)를 포함한다.
도 7의 배터리 셀(100a), 열전도 시트(200a), 사이드 냉각 핀(300a) 그리고 히트 싱크(600a)는 도 1의 배터리 셀(100), 열전도 시트(200), 사이드 냉각 핀(300) 그리고 히트 싱크(600)와 대체로 동일하게 제공될 수 있다.
냉각 플레이트(400a)는 도 1의 냉각 플레이트(400)와 대체로 동일하게 제공될 수 있다. 다만, 냉각 플레이트(400a)는 도 1의 냉각 플레이트(400)와 달리 수용홈(410)이 제공되지 않는다. 냉각 플레이트(400a)는 후술하는 냉각 패드(500a)와 접촉하는 면(520a)이 평평한 면으로 제공될 수 있다. 냉각 플레이트(400a)의 일면은 냉각 패드(500a)와 접촉하며, 타면은 히트 싱크(6000a)와 접촉한다.
냉각 패드(500a)는 열전도 시트(200a)에서 전달된 열을 냉각 플레이트(400a)로 전달할 수 있다. 냉각 패드(500a)는 열전도 시트(200a)로 감싸진 배터리 셀(100a)을 고정할 수 있다. 냉각 패드(500a)의 일면(510a)은 열전도 시트(200a)와 결합되며, 냉각 패드(500a)의 타면(520a)은 냉각 플레이트(400)와 결합될 수 있다. 배터리 셀(100a), 사이드 냉각 핀(300a), 열전도 시트(200a)의 일부분, 냉각 패드(500a), 냉각 플레이트(400a)는 순차적으로 제3방향(16)을 따라 위치할 수 있다. 냉각 패드(500a)의 면 중 열전도 시트(200)와 결합되는 면(510a)은 오목한 형상으로 제공될 수 있다. 냉각 패드(500a)의 면이 오목한 형상으로 제공되어, 열전도 시트(200a)와의 접촉 면적을 증대하며, 결합력을 상승시킬 수 있다. 냉각 패드(500a)의 면 중 히트 싱크(600)와 접촉되는 면(520a)은 평평한 면으로 제공될 수 있다.
냉각 패드(500a)는 복수개 제공될 수 있다. 냉각 패드(500a)는 배터리 셀(100a)의 개수와 대응되는 개수로 제공될 수 있다. 냉각 패드(500a)는 접촉 열전도재(Therma interface material)로 제공될 수 있다. 이와는 달리, 냉각 패드(500a)는 열전도성이 우수하며, 접착성을 가지는 재질을 포함하도록 제공될 수 있다.
배터리 모듈(10a)에 냉각 패드(500a)를 제공함으로써, 각각의 배터리 셀(100a)과 냉각 플레이트(400a)의 결합력을 향상시킬 수 있다. 또한, 냉각 패드(500a)를 제공하여, 열전도 시트(200a)의 열을 냉각 플레이트(400a)로 전달할 수 있어 배터리 셀(100a)의 냉각 효율을 향상시킬 수 있다.
도면에 도시하지 않았으나, 이와는 달리 냉각 플레이트(400a)에는 냉각 패드(500a)가 삽입될 수 있도록 결합홈(미도시)이 형성될 수 있다. 결합홈은 제3방향(16)의 하부로 오목한 형상으로 제공될 수 있다. 냉각 플레이트(400a)에 결합홈이 제공되는 경우, 냉각 패드(500a)와 냉각 플레이트(400a)의 접촉 면적을 크게 할 수 있으며, 결합력을 상승시킬 수 있다.
도 10은 본 발명의 일 실시 예에 따른 배터리 모듈에서 열이 전달되는 방향을 개략적으로 보여주는 도면이다. 이하, 도 10을 참고하며, 본 발명의 일 실시 예에 따른 배터리 모듈(10)에서 배터리 셀(100)이 냉각되는 과정을 설명한다. 도 10 에서 화살표의 방향은 열이 전달되는 방향을 나타낸다.
본 발명의 경우 배터리 셀(100)에서 발생된 열을 다양한 경로를 통하여 냉각 플레이트로 전달하여 냉각 효율을 향상시킬 수 있다.
먼저, 배터리 셀(100)에서 발생된 열은 배터리 셀(100)의 면과 접촉하는 열전도 시트(200)로 전달된다. 열전도 시트(200)로 전달된 열은 냉각 플레이트(400)로 전달되며, 냉각 플레이트(400)는 히트 싱크(600)와 열교환하여 열을 외부로 방출한다.
또한, 배터리 셀(100) 중 배터리 셀(100)의 에지부(170) 및 실링부(160)에서 발생된 열은 두가지 경로로 외부로 방출한다.
첫 번째로, 배터리 셀(100)의 에지부(170) 및 실링부(160)는 사이드 냉각 핀(300)과 접촉한다. 사이드 냉각 핀(300)은 내부에 공간을 가진다. 내부의 공간으로는 냉각 유체가 흐를 수 있다. 사이드 냉각 핀(300)의 내부 공간에 흐르는 냉각 유체를 통해서 배터리 셀(100)의 에지부(170) 및 실링부(160)의 열을 외부로 방출할 수 있다. 즉, 사이드 냉각 핀(300)으로 전달된 열은 공랭 방식에 의해서 열을 외부로 배출할 수 있다.
두 번째로, 배터리 셀(100)의 에지부(170) 및 실링부(160)에서 발생된 열은 사이드 냉각 핀(300)으로 전달되며, 사이드 냉각 핀(300)은 열을 열전도 시트(200)로 전달한다. 열전도 시트(200)로 전달된 열을 냉각 플레이트(400) 및 히트 싱크(600)를 통해서 열을 외부로 배출할 있다.
상술한 바와 같이, 본 발명은 사이드 냉각 핀(300)을 통해서, 배터리 셀(100)의 열을 효과적으로 냉각 시킬 수 있다. 특히, 열전도 시트(200)의 내부에 위치하며, 열전도 시트(200)와 직접 접촉하지 않는 배터리 셀(100)의 에지부(170) 및 실링부(160)의 열을 사이드 냉각 핀(300)을 통해서 냉각 시킬 수 있어 배터리 셀(100)의 냉각 효율을 향상시킬 수 있다.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내어 설명하는 것이며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위내에서 변경 또는 수정이 가능하다. 저술한 실시예는 본 발명의 기술적 사상을 구현하기 위한 최선의 상태를 설명하는 것이며, 본 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.

Claims (15)

  1. 전극 조립체가 수납되는 수납부 및 상기 수납부를 실링하는 실링부를 가지는 복수개의 배터리 셀;
    상기 배터리 셀의 적어도 일부를 감싸며, 상기 배터리 셀과 면 접촉하는 열전도 시트;
    상기 열전도 시트의 내측에 위치하며, 적어도 일부분이 상기 배터리 셀의 수납부와 접촉하는 사이드 냉각 핀; 및
    상기 열전도 시트와 접촉하는 냉각 플레이트를 포함하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 사이드 냉각 핀은 적어도 일부가 상기 배터리 셀의 실링부와 접촉하며, 적어도 일부는 상기 열전도 시트와 접촉하는 배터리 모듈.
  3. 제1항에 있어서,
    상기 사이드 냉각 핀은,
    상기 실링부가 수용되는 수용부;
    상기 실링부의 일측면과 접촉하는 제1 링부; 및
    상기 실링부의 타측면과 접촉하는 제2 링부를 포함하되,
    상기 제1 링부와 상기 제2 링부는 상기 수용부에 의해 상호 연결되는 배터리 모듈.
  4. 제3항에 있어서,
    상기 제1 링부 및 상기 제2 링부는 각각 내부가 빈 공간을 가지며, 적어도 일측이 개방된 형상으로 제공되는 배터리 모듈.
  5. 제3항에 있어서,
    상기 제1 링부와 상기 제2 링부는 상기 수용부를 중심으로 서로 대칭되는 형상으로 제공되는 배터리 모듈.
  6. 제3항에 있어서,
    상기 실링부는 폴딩된 형태로 상기 수용부에 배치되는 배터리 모듈.
  7. 제3항에 있어서,
    상기 제1 링부 및 상기 제2 링부는 각각 적어도 일부가 상기 배터리 셀의 수납부의 측면, 상기 실링부 그리고 상기 열전도 시트와 접촉하는 배터리 모듈.
  8. 제7항에 있어서,
    상기 열전도 시트 중 각각 상기 제1 링부 및 상기 제2 링부와 접촉하는 부분은 라운드진 형상으로 제공되는 배터리 모듈.
  9. 제3항에 있어서,
    상기 열전도 시트는 그라파이트 시트로 제공되며,
    상기 사이드 냉각 핀은 알루미늄 재질로 제공되는 배터리 모듈.
  10. 제3항에 있어서,
    상기 배터리 셀, 상기 사이드 냉각 핀 그리고 상기 냉각 플레이트는 순차적으로 제1방향을 따라 나란하게 배치되며,
    상기 열전도 시트는 상기 배터리 셀의 상기 제1방향과 수직한 면의 일부와 상기 사이드 냉각 핀의 측면 중 적어도 일부를 모두 감싸도록 제공되는 배터리 모듈.
  11. 제3항에 있어서,
    상기 열전도 시트와 상기 냉각 플레이트 사이에 위치하며, 상기 열전도 시트의 열을 상기 냉각 플레이트로 전달하는 냉각 패드를 더 포함하는 배터리 모듈.
  12. 제11항에 있어서,
    상기 냉각 패드의 일면은 상기 열전도 시트와 결합되며, 상기 냉각 패드의 타면은 상기 냉각 플레이트와 결합되며, 상기 냉각 패드와 결합되는 상기 열전도 시트는 라운드진 형상으로 제공되는 배터리 모듈.
  13. 제3항에 있어서,
    내부에 냉각 유체가 흐르며, 상기 냉각 플레이트와 열교환하는 히트 싱크를 더 포함하는 배터리 모듈.
  14. 제1항 내지 제13항 중 어느 한 항에 따른 배터리 모듈을 포함하는 배터리 팩.
  15. 제14항의 배터리 팩을 포함하는 자동차.
PCT/KR2017/000976 2016-06-13 2017-01-26 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차 WO2017217633A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17813458.1A EP3336957B1 (en) 2016-06-13 2017-01-26 Battery module, and battery pack and vehicle comprising the same
PL17813458T PL3336957T3 (pl) 2016-06-13 2017-01-26 Moduł akumulatorowy i zestaw akumulatorów oraz pojazd je zawierający
US15/760,823 US10749226B2 (en) 2016-06-13 2017-01-26 Battery module, and battery pack and vehicle comprising the same
CN201780003538.XA CN108140916B (zh) 2016-06-13 2017-01-26 电池模块以及包括该电池模块的电池组和车辆
JP2018528260A JP6564949B2 (ja) 2016-06-13 2017-01-26 バッテリーモジュール及びこれを含むバッテリーパック、自動車

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0073359 2016-06-13
KR1020160073359A KR102051108B1 (ko) 2016-06-13 2016-06-13 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차

Publications (1)

Publication Number Publication Date
WO2017217633A1 true WO2017217633A1 (ko) 2017-12-21

Family

ID=60663625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000976 WO2017217633A1 (ko) 2016-06-13 2017-01-26 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차

Country Status (7)

Country Link
US (1) US10749226B2 (ko)
EP (1) EP3336957B1 (ko)
JP (1) JP6564949B2 (ko)
KR (1) KR102051108B1 (ko)
CN (1) CN108140916B (ko)
PL (1) PL3336957T3 (ko)
WO (1) WO2017217633A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3285327A4 (en) * 2015-10-08 2018-04-25 LG Chem, Ltd. Battery module

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101910244B1 (ko) * 2015-09-08 2018-12-28 주식회사 엘지화학 냉각 성능이 개선된 배터리 모듈
KR102353917B1 (ko) 2018-01-04 2022-01-19 주식회사 엘지에너지솔루션 열전도 패드를 구비한 배터리 모듈
DE102018104935B4 (de) * 2018-03-05 2023-02-09 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren, System und Batteriemodul zur Kühlung einer mittels Federwirkung kontaktierten Leistungselektronik
KR102176697B1 (ko) * 2018-06-29 2020-11-09 주식회사 엘지화학 단위체를 포함하는 배터리 모듈
KR20200003600A (ko) * 2018-07-02 2020-01-10 에스케이이노베이션 주식회사 배터리 모듈
KR102361272B1 (ko) * 2018-07-26 2022-02-09 주식회사 엘지에너지솔루션 냉각 효율이 향상된 배터리 모듈 및 이를 포함하는 배터리 팩
KR102409856B1 (ko) 2019-01-07 2022-06-15 주식회사 엘지에너지솔루션 전지 모듈, 및 이를 포함하는 전지팩
EP3796413B1 (en) * 2019-09-20 2024-01-10 Airbus S.A.S. Battery arrangement for integration in a vehicle
KR20210053054A (ko) * 2019-11-01 2021-05-11 에스케이이노베이션 주식회사 배터리 모듈
KR20210129489A (ko) * 2020-04-20 2021-10-28 에스케이이노베이션 주식회사 배터리 모듈
DE102021109895A1 (de) 2021-04-20 2022-10-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrisch oder teilelektrisch betriebenes Fahrzeug mit Mitteln zur Veränderung einer Güte einer thermischen Kopplung zwischen einem Batteriesystem und einem Strukturbauteil
WO2022260247A1 (ko) * 2021-06-08 2022-12-15 주식회사 엘지에너지솔루션 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩과 자동차 및, 이러한 배터리 모듈의 제조 방법
JP7429209B2 (ja) 2021-08-30 2024-02-07 プライムプラネットエナジー&ソリューションズ株式会社 蓄電装置
CN113921937B (zh) * 2021-09-03 2024-03-15 八方电气(苏州)股份有限公司 一种直冷散热锂电池模组结构
KR102455478B1 (ko) 2022-01-18 2022-10-17 에스케이씨하이테크앤마케팅(주) 열전도 아크릴 시트, 이의 제조방법 및 이를 포함하는 배터리 모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247024A (ja) * 2012-05-28 2013-12-09 Sharp Corp 電源装置
KR20140039350A (ko) * 2012-09-19 2014-04-02 주식회사 엘지화학 냉각 효율이 향상된 전지모듈
KR20140110233A (ko) * 2013-03-06 2014-09-17 엘지전자 주식회사 전기 자동차의 배터리 냉각 시스템
KR20150127863A (ko) * 2012-08-30 2015-11-18 에스케이이노베이션 주식회사 배터리 모듈
KR20160016516A (ko) * 2014-07-31 2016-02-15 주식회사 엘지화학 배터리 모듈

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100998845B1 (ko) 2007-11-09 2010-12-08 주식회사 엘지화학 방열특성의 전지모듈, 열교환 부재 및 이를 이용하는 중대형 전지팩
KR101259757B1 (ko) * 2009-12-04 2013-05-07 주식회사 엘지화학 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈 및 중대형 전지팩
CN102422480A (zh) * 2010-01-29 2012-04-18 松下电器产业株式会社 电池模块
KR101205181B1 (ko) * 2010-05-18 2012-11-27 주식회사 엘지화학 신규한 구조의 냉각부재와 이를 포함하는 전지모듈
KR101205180B1 (ko) * 2010-05-18 2012-11-27 주식회사 엘지화학 콤팩트하고 안정성이 우수한 냉각부재와 이를 포함하는 전지모듈
JP2012138315A (ja) * 2010-12-28 2012-07-19 Hitachi Ltd リチウムイオン電池モジュール
JP2013051099A (ja) * 2011-08-31 2013-03-14 Nissan Motor Co Ltd バッテリ温調用モジュール
US8968906B2 (en) 2011-09-20 2015-03-03 GM Global Technology Operations LLC Compact battery cooling design
KR101447057B1 (ko) * 2012-01-26 2014-10-07 주식회사 엘지화학 전지셀의 장착 및 방열을 위한 방열 지지부재를 포함하는 전지모듈
KR101547814B1 (ko) 2012-07-12 2015-08-27 주식회사 엘지화학 간접 공냉 구조를 포함하는 전지모듈
JP5623483B2 (ja) * 2012-09-18 2014-11-12 トヨタ自動車株式会社 電池、電池パック、電池の製造方法
JP5796785B2 (ja) * 2012-09-28 2015-10-21 株式会社Gsユアサ 蓄電装置
KR20140056835A (ko) * 2012-11-01 2014-05-12 주식회사 엘지화학 전지모듈 및 이를 포함하는 전지팩
JP6107091B2 (ja) * 2012-12-04 2017-04-05 日産自動車株式会社 組電池および組電池の製造方法
WO2014118955A1 (ja) * 2013-01-31 2014-08-07 株式会社日立製作所 電池モジュール
KR101814735B1 (ko) * 2013-05-29 2018-01-03 삼성에스디아이 주식회사 배터리 모듈
CN103840234A (zh) * 2014-03-14 2014-06-04 吉林大学 电池组液流叠层换热扁管束结构及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247024A (ja) * 2012-05-28 2013-12-09 Sharp Corp 電源装置
KR20150127863A (ko) * 2012-08-30 2015-11-18 에스케이이노베이션 주식회사 배터리 모듈
KR20140039350A (ko) * 2012-09-19 2014-04-02 주식회사 엘지화학 냉각 효율이 향상된 전지모듈
KR20140110233A (ko) * 2013-03-06 2014-09-17 엘지전자 주식회사 전기 자동차의 배터리 냉각 시스템
KR20160016516A (ko) * 2014-07-31 2016-02-15 주식회사 엘지화학 배터리 모듈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3336957A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3285327A4 (en) * 2015-10-08 2018-04-25 LG Chem, Ltd. Battery module
US10454083B2 (en) 2015-10-08 2019-10-22 Lg Chem, Ltd. Battery module

Also Published As

Publication number Publication date
KR102051108B1 (ko) 2019-12-02
EP3336957A4 (en) 2018-08-01
JP2019503040A (ja) 2019-01-31
US20180269548A1 (en) 2018-09-20
CN108140916A (zh) 2018-06-08
EP3336957A1 (en) 2018-06-20
PL3336957T3 (pl) 2019-06-28
JP6564949B2 (ja) 2019-08-21
US10749226B2 (en) 2020-08-18
KR20170140693A (ko) 2017-12-21
EP3336957B1 (en) 2019-01-09
CN108140916B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2017217633A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2017209365A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2018008866A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2018186616A1 (ko) 크래쉬 빔과 배수 구조를 갖는 배터리 팩
WO2018186566A1 (ko) 루버 핀 형상의 열전도 매개체를 구비한 배터리 팩
WO2017146379A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2017104938A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2017052041A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2017217641A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2016171345A1 (ko) 배터리 셀 냉각장치 및 이를 포함하는 배터리 모듈
WO2011083968A2 (ko) 냉각 효율성이 향상된 중대형 전지팩
WO2010044553A2 (ko) 냉각 효율성이 향상된 전지모듈 어셈블리
WO2017043889A1 (ko) 냉각 성능이 개선된 배터리 모듈
WO2020054998A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2017095003A1 (ko) 그립핑부가 구비되어 있는 카트리지를 포함하고 있는 전지모듈
WO2011013905A2 (ko) 냉각 효율성이 향상된 전지모듈
WO2017150802A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩, 자동차
WO2014014303A1 (ko) 전지모듈 어셈블리
WO2010131852A2 (ko) 탄성 가압부재를 포함하는 전지 카트리지, 및 이를 포함하는 전지모듈
WO2014077578A1 (ko) 전지모듈 냉각장치 및 이를 포함하는 전지모듈 어셈블리
WO2019235724A1 (ko) 개선된 냉각 구조를 갖는 배터리 모듈
WO2021210771A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021080115A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022149888A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15760823

Country of ref document: US

Ref document number: 2017813458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018528260

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE