WO2017217561A1 - 에어 컨트롤러 - Google Patents

에어 컨트롤러 Download PDF

Info

Publication number
WO2017217561A1
WO2017217561A1 PCT/KR2016/006254 KR2016006254W WO2017217561A1 WO 2017217561 A1 WO2017217561 A1 WO 2017217561A1 KR 2016006254 W KR2016006254 W KR 2016006254W WO 2017217561 A1 WO2017217561 A1 WO 2017217561A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
disk
air controller
fixedly coupled
rotating shaft
Prior art date
Application number
PCT/KR2016/006254
Other languages
English (en)
French (fr)
Inventor
천성록
천승현
Original Assignee
천성록
천승현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 천성록, 천승현 filed Critical 천성록
Priority to CN201680086754.0A priority Critical patent/CN109642738B/zh
Priority to JP2018566401A priority patent/JP6711928B2/ja
Priority to PCT/KR2016/006254 priority patent/WO2017217561A1/ko
Publication of WO2017217561A1 publication Critical patent/WO2017217561A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/34Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes
    • F01D1/36Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes using fluid friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation

Definitions

  • the present invention relates to an air controller, and more particularly, to an apparatus capable of generating a flow of air by a rotating body and controlling the temperature of the air.
  • Tesla turbine is a bladeless turbine that consists of a set of disks.
  • the Tesla turbine is characterized in that when the disks rotate, the air inside the Tesla turbine moves to the edges of the disks. When the disk is rotated, air is sucked into the center of the disk, and according to the boundary layer effect, the air moves to the outside of the disk while drawing a spiral trajectory on the surface of the disk.
  • the boundary layer effect is that when a solid moves, the interface of the fluid adjacent to the surface of the solid also moves along the surface. When the solid and fluid are in contact with each other, there is an interface between the solid and the fluid at a portion of the solid surface. In this case, when the solid moves, the boundary surface also moves along the movement of the solid, wherein the force acting on the interface is not friction but adhesion. On the contrary, when the fluid moves on the surface of the solid material, the solid material is also moved by the adhesive force.
  • a blade for moving air and a heating element for heating air are separated from each other.
  • the operation structure of the hair dryer is as follows. When air is introduced, a flow of air is formed by a rotating means such as a blade, and the air is heated by a separate heating unit. The heated air is discharged out of the hair dryer through the discharge port.
  • a conventional general warmer may have a large volume of the warmer since the rotating means for providing the flow of air and the heating means for heating the air are separated from each other.
  • An air controller includes a housing having an inlet port through which air is introduced and a discharge port through which the drawn air is discharged, and laminated at a predetermined interval within the housing, and having a heat exchange part formed thereon. At least one disk, and drive means (rotary drive means) for rotating the disk.
  • the heat exchanger may be a heating element or a cooling body.
  • the inlet may be disposed in the extending direction of the rotation axis of the disk
  • the discharge port may be disposed in the extending direction of the tangent to the circumference of the disk.
  • an air hole through which air can be distributed may be formed in the center portion of the disc.
  • the rotating shaft for rotating the disk may be fixedly coupled to the central portion of the disk.
  • the driving means may include a plurality of stator coils and a plurality of permanent magnets (rotor) disposed to be electromagnetically coupled to each other.
  • Each of the permanent magnets may be fixedly coupled to the rotary shaft by predetermined connection means, and the stator coils may be fixedly coupled to the housing, respectively.
  • each of the slip rings may be configured to receive electricity through a brush.
  • the heat exchanger includes a heating element that generates heat when electricity is supplied, and the conductive shaft has two conductive terminals for providing electricity to the heating element, and each conductive terminal is fixed to both terminals of the heating element. May be combined.
  • each of the slip rings may include a slip electrode fixedly coupled to the rotating shaft, and each slip electrode may be electrically connected to the two conductive terminals.
  • the brush may be configured to supply electricity to the slip ring by sliding contact with the surface of the slip ring when the slip ring rotates.
  • the disk to which the heating means are coupled to its surface, can create a flow of air and simultaneously heat the air. Therefore, the air controller does not need a separate means for heating the air can be reduced the overall volume of the air controller. In addition, since the adhesive force between the disk and the air is used, the noise caused by the air flow is reduced.
  • FIG. 1 is a view showing an air controller according to an embodiment of the present invention.
  • FIG. 2 is an internal cross-sectional view of the warm air fan which is cut along the line XX ′ of FIG. 1.
  • FIG. 3 is a front view of the warm air fan shown in FIG. 2 from another viewpoint.
  • Figure 4 is a view showing a disk with a rotating shaft according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating only a portion 'B' of FIG. 2.
  • FIG. 6 is a view for explaining a coupling relationship between a rotating shaft, a conductive terminal, and slip rings of FIG. 5.
  • FIG. 7 is a flow chart of air in the warm air fan shown in FIG. 2.
  • FIG. 8 is a block diagram reclassifying each component of an air controller according to an embodiment of the present disclosure by function.
  • 9 is a view to help understand the connection between the parts belonging to the rotary assembly and the connection between the rotary assembly and the housing.
  • the present invention relates to an air controller capable of generating a flow of air by rotation of a disk and adjusting the temperature of the air by using a heat exchanger provided on the surface of the disk.
  • an air controller capable of generating a flow of air by rotation of a disk and adjusting the temperature of the air by using a heat exchanger provided on the surface of the disk.
  • FIG. 1 is a view showing a warm air fan according to an embodiment of the present invention.
  • the overall shape of the warm air fan 1 may be, for example, a whistle, and the center of the warm air fan 1 may be a hole having a hole such as a roll of tissue.
  • the hot air heater 1 includes a rotating part including one or more disks 20 and a rotating shaft 30, a housing 10, an inlet 11 for sucking air, and an outlet 12 for discharging air inside the housing. It may include.
  • the housing 10 is a case forming an outer surface of the warm air fan 1, and may also serve to protect internal components of the warm air fan 1.
  • the housing 10 may include an inlet 11 for introducing air into the housing 10 and a discharge port 12 through which air is discharged from the housing 10.
  • An outer box surrounding the housing 10 may be further provided outside the housing 10. For example, when the hot air fan 1 is used for a hair dryer, a separate enclosure may be provided on the outside of the hot air fan 1 so that the user can easily pick it up by hand.
  • One or more disks 20 may be stacked in the housing 10 at predetermined intervals.
  • the outer edge of the disk 20 may preferably be in the shape of a circle. In FIG. 1, the outer edge of the disk 20 is indicated by a dotted line.
  • the large surfaces of the disks 20 may ideally be all on one plane.
  • a resistive heating element for providing a heat exchange part may be disposed on the surface of the disk 20.
  • the rotation shaft 30, which is the center of rotation of the disk 20, may be fixed and coupled to the disk 20.
  • FIG. 2 is an internal cross-sectional view of the warm air fan 1 showing a state cut along X-X 'of FIG. 1, and FIG. 3 shows a front view of the warm air fan 1 from another viewpoint.
  • the warm air fan 1 may be provided with driving means, for example, a motor, for rotating the disk 20.
  • driving means for example, a motor
  • a portion 'A' of FIG. 2 is a portion shown to explain the driving means for rotating the disk 20.
  • the driving means is a rotary motor, it may be configured to include a rotating shaft 30, a bearing 31, a permanent magnet 32, and a stator coil 33.
  • the rotating shaft 30 may be coupled to a bearing 31 for rotatably supporting the rotating shaft 30 with respect to the housing 10.
  • An inlet 11 may be formed at an outer side of the bearing 31 to allow air to enter therein.
  • the permanent magnet 32 may be fixedly coupled to the rotating shaft 30 by a connecting means (eg, a rod) 34.
  • the permanent magnet 32 may rotate about the rotation shaft (30).
  • the stator coil 33 may be provided on an extended surface of the rotation surface of the permanent magnet 32.
  • the stator coil 33 may be attached to the wall of the housing 10.
  • the permanent magnet 32 and the stator coil 33 may serve as one rotary motor. Therefore, when a current flows through the stator coil 33 through the circuit board 40, the permanent magnet 32 rotates, and the rotating shaft 30 fixed to and connected to the permanent magnet 32 rotates, thereby rotating on the rotating shaft 30.
  • the fixedly connected disk 20 can be rotated.
  • electricity may be supplied to the circuit board 40 by the power supply 200.
  • the circuit board 40 may be provided with a control circuit 46 for controlling the operation of the driving means.
  • the operation principle of the motor provided as the driving means may follow the operation principle of the DC motor, AC motor or BLDC motor.
  • the present invention is not limited by the specific example of the drive means.
  • Part 'B' of Figure 2 is a portion showing the electricity supply connecting means for supplying electricity to heat the resistive heating element on the rotating disk 20 surface.
  • Slip rings 41 and 42 may be fixedly coupled to the rotation shaft 30.
  • the control circuit part 46 of the circuit board 40 formed in the housing 10 may supply electricity to the slip rings 41 and 42 through the brush 43.
  • the slip ring 41 may be a (+) terminal
  • the slip ring 42 may be a (-) terminal
  • the slip ring 41 is a (-) terminal
  • the slip ring 42 is (+). It may be a terminal.
  • the control circuit unit 46 may be configured using electronic components provided on the PCB substrate 40 fixedly coupled to the housing.
  • the outer surfaces of the slip rings 41 and 42 and the brush 43 may be composed of conductors to conduct electricity between them.
  • FIG 4 is a view showing one disk 20 together with the rotation shaft 30 according to an embodiment of the present invention.
  • two conductive terminals 51 and 52 may be fixedly provided on a part of the surface of the rotating shaft 30 that is fixedly coupled to the center of the disk 20.
  • an air hole 25 having a predetermined shape may be formed at a periphery of the rotation shaft 30 coupled to the center of the disk 20 as a passage of air introduced from the inlet 11.
  • the air hole 25 may be disposed adjacent to the space connecting the inlet port 11 on the left side and the inlet port 11 on the right side closest to each other.
  • the resistive heating element 21 may be disposed on the wide surface of the disk 20 as shown in FIG. 4.
  • the conductive terminals 51 and 52 may be fixedly coupled to both terminals 61 and 62 of the resistive heating element 21.
  • conductive terminals 51 and 52 may be coupled to both terminals 61 and 62 by soldering.
  • Each disk 20 in which the air holes 25 are formed may be fixedly coupled to the rotation shaft 30 by connecting bridges 71 and 72.
  • the connecting bridges 71 and 72 may be formed integrally with the disk 20.
  • the arrangement of the resistive heating element 21 may be made by a method such as attaching, laying, installing or printing the resistive heating element on the disk surface.
  • the conductive terminals 51 and 52 may be provided by bonding a thin metal foil to the surface of the rotation shaft 30, for example. As shown in FIG. 4, the conductive terminal 51 and the conductive terminal 52 may be insulated from each other.
  • the rotating shaft 30, and the disk 20 may be composed of an insulator.
  • the resistive heating element 21 and the conductive terminals 51 and 52 provided in the disk body may be a conductor.
  • the disk 20 body and the resistive heating element 21 may be a conductor, and an insulating film may be provided between the disk body and the resistive heating element 21.
  • the disk 20, the resistive heating element 21, the rotation shaft 30, and the two conductive terminals 51 and 52 are fixedly coupled to each other, when the rotation shaft 30 rotates, the disk 20 and the two conductive elements are rotated.
  • the terminals 51 and 52 become one with the rotation shaft and can rotate at the same angular speed. Therefore, the rotation speed of the disk 20 and the two conductive terminals 51 and 52 may be the same as the rotation speed of the rotation shaft 30. That is, if the rotating shaft 30 rotates at the angular velocity w1, each of the disks 20 may also rotate at the angular velocity w1 and the two conductive terminals 51 and 52 may also rotate at the angular velocity w1.
  • the disk 20, the resistive heating element 21, the rotating shaft 30, the conductive terminals 51 and 52, and the slip rings 41 and 42 are fixed to each other and rotated at the same angular speed so that the assembly thereof is 'rotated'. May be referred to.
  • the concept of the rotating unit may further include a rotor (ex: permanent magnet) included in the drive means (motor).
  • FIG. 5 is a view illustrating only a portion 'B' of FIG. 2
  • FIG. 6 is a diagram for describing a coupling relationship between a rotating shaft, a conductive terminal, and slip rings of FIG. 5.
  • the two brushes 43 shown in FIG. 5 may serve as mediators for providing the currents provided by the control circuit unit 46 to the rotating slip rings 41 and 42.
  • One end of the brush 43 in contact with the slip ring may slide along the surface of the slip ring when the slip ring rotates to contact the surface to supply current to the surface.
  • the other end of the brush is electrically connected to the control circuit unit 46 and may be fixedly coupled to the housing.
  • the main body of the slip rings 41 and 42 may be made of an insulator.
  • the surface of the slip rings 41 and 42 which contacts the brush 43 may be a conductor.
  • the slip rings 41 and 42 may have a bobbin-like shape, and a through hole through which the rotating shaft 30 may pass may be formed in the center of the slip rings 41 and 42.
  • the conductor formed on the outer surface of the slip ring 41 is electrically connected to the conductive terminal 51 formed on the surface of the rotating shaft 30, and the conductor formed on the outer surface of the slip ring 42 is formed on the surface of the rotating shaft 30. It may be electrically connected to the conductive terminal 52 formed.
  • a via for connecting the conductor formed on the outer surface of the slip ring to the conductive terminal formed on the surface of the rotating shaft may be formed in the cylindrical body of the slip ring.
  • the above electrical connection can be made by various conventional techniques.
  • the 'conductor' may be referred to as a 'slip electrode'.
  • the brush 43 may be a separate brush for supplying electricity to the slip rings 41 and 42, as described above, instead of the brush included in the driving means such as the rotary motor.
  • conductive terminals 51 and 52 may be formed on the surface of the rotation shaft 30 as shown in FIG. Then, as shown in (b) of Figure 6 by fitting the completed rotary shaft 30 to the slip ring (41, 42) can be provided with a structure as shown in (c) of FIG. Figure 6 is to help understand the relative coupling between the rotating shaft, the conductive terminal, and the slip ring, the process for making this structure is possible in other ways.
  • FIG. 7 is a flow chart of air in the warm air fan 1 shown in FIG. 2.
  • FIG. 7 adds a flow of air to that shown by omitting the reference numeral of FIG. 2 for convenience.
  • Reference numeral 301 denotes a flow path of air before being heated which is introduced through the inlet 11. That is, the dotted line 301 indicates the flow path of air before heat exchange.
  • the solid line at 302 denotes a flow path of air heated by the resistive heating element 21. That is, reference numeral 302 denotes a flow path of air after heat exchange.
  • air may flow between the respective disks 20. The heat-exchanged air flows toward the outer edges of the disks, and if the housing 10 and the discharge port 12 are provided as shown in FIG. 1, the air thus flowed out can be concentrated through the discharge port 12 and flow out. .
  • FIG. 8 is a block diagram reclassifying the components of the air controller 1 according to an embodiment of the present disclosure by function.
  • the air controller 1 may include a power supply unit 500, a control unit 501, a driving unit assembly 502, and a rotating unit assembly 503.
  • the power supply unit 500 may be the power supply 200 illustrated in FIG. 2.
  • the control unit 501 may receive power from the power supply unit 500 to supply electricity to the driving unit assembly 502, or supply electricity to the rotating unit assembly 503.
  • the controller 501 may include a circuit board 40 and a control circuit unit 46.
  • the drive assembly 502 may be adapted to mechanically rotate the rotor assembly 503.
  • the drive assembly 502 may include a bearing 31, a permanent magnet 32, a stator coil 33, and a connecting means 34. That is, the driving unit assembly 502 may be a concept including the driving means described above.
  • the connecting means 34 may be for fixing the rotation shaft 30 and the permanent magnet 32 mutually fixed.
  • the stator coil 33 of the driving unit assembly 502 may receive electricity from the control unit 501.
  • the rotary unit assembly 503 may refer to a set of components that rotate together at the same angular velocity as the rotary shaft 30.
  • the rotary part assembly 503 includes the disk 20, the surface heating element 21, the rotation shaft 30, the slip rings 41 and 42, the brush 43, the conductive terminals 51 and 52, and the connecting bridges 71 and 72. ) May be included.
  • the rotating unit assembly 503 may receive electricity from the control unit 501 through the brush 43. In this case, electricity may be supplied to the slip rings 41 and 42 through the brush 43. In addition, electricity may be supplied to the conductive terminals 51 and 52 and the surface heating element 21 which are electrically connected to the slip electrodes of the slip rings 41 and 42.
  • the brush 43 does not rotate at the same angular velocity as the rotation shaft 30, but is adapted to supply electricity to the slip rings 41 and 42 by sliding contact with the surfaces of the slip rings 41 and 42, so that the rotary part assembly 503 ) Can be included.
  • the plurality of disks 20 may be coupled to the rotation shaft 30.
  • a hole in which the rotating shaft 30 is fitted may be formed in the center of the disk so that the disk 20 is fixedly coupled to the rotating shaft 30.
  • a hole for fitting the rotary shaft 30 may be formed in the main bodies of the slip rings 41 and 42.
  • the permanent magnet 32 for rotating the rotary shaft 30 is fixed to the rotary shaft 30, the permanent magnet 32 may be formed with a hole for the rotary shaft 30 is fitted. At this time, the permanent magnet 32 may be formed thin to reduce the volume of the motor.
  • a shaft fixing part 300 for rotatably fixing the rotating shaft 30 with respect to the housing may be provided.
  • a hole for fitting the rotary shaft 30 may be formed in the central portion of the shaft fixing part 300.
  • the bearing 31 may be disposed around the hole to support the rotating shaft 30 and to allow the rotating shaft 30 to slide relative to the housing.
  • the shaft fixing part 300 may have an inlet 11 for introducing air into the housing 10 as shown.
  • the overall operation of the warm air fan 1 may be as follows.
  • the air When electricity is supplied to the warm air fan 1 and air enters the inlet port 11 formed on both sides of the housing 10, the air flows through the air passages 25 formed in the respective disks 20. It can spread inside the housing. At this time, the air around the disk 20 is heated and heated by the resistive heating element 21 provided on the surface of the disk 20, and the air may rotate by the adhesive force while the disk 20 rotates. The warmed air may be discharged out of the warm air fan 1 through the discharge port 12 formed in the housing 10 by the centrifugal force by the rotation.
  • the present invention in which a heating element is provided on the disk and heating of air and blowing of air at the same time, can be applied not only to heating of air but also to cooling of air.
  • a disk provided with a cooling body can be used similarly to a hot air blower.
  • the cooling body may be made of, for example, a Peltier element.
  • a blade such as a propeller or an impeller may be used instead of the disk shown in FIGS. 1 to 6. That is, the above-described heating element and cooling element may be provided on the blade surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cleaning And Drying Hair (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

공기가 인입되는 인입구 및 상기 인입된 공기가 토출되는 토출구를 갖는 하우징, 상기 하우징 내에 소정의 간격을 갖고 적층되어 있으며 그 표면에 열 교환부가 형성되어 있는 한 개 이상의 디스크, 및 상기 디스크를 회전시키는 구동수단을 포함하는 에어 컨트롤러를 공개한다.

Description

에어 컨트롤러
본 발명은 에어 컨트롤러에 관한 것으로서, 회전체에 의해 공기의 흐름을 발생시키며, 상기 공기의 온도를 조절할 수 있는 장치에 관한 것이다.
테슬라 터빈(Tesla turbine)은 블레이드가 없는 터빈으로서 한 세트의 디스크들로 구성되어 있다. 테슬라 터빈은 상기 디스크들이 회전할 때 테슬라 터빈의 내부의 공기가 상기 디스크들의 가장자리로 움직이도록 하는 것을 특징으로 한다. 디스크를 회전시키면 상기 디스크의 중심부로 공기가 흡입되고, 경계면 효과(boundary layer effect)에 따라 공기는 디스크의 표면상에서 나선 궤적을 그리면서 디스크의 외곽으로 이동하게 된다.
경계면 효과(boundary layer effect)란, 고체가 움직이게 되면 상기 고체의 표면에 인접해 있는 유체의 경계면도 상기 표면을 따라서 이동하게 된다는 것이다. 고체와 유체가 서로 접하고 있을 때, 고체 표면상의 일정 부분에 고체와 유체 간의 경계면이 존재한다. 이때, 고체가 움직이게 되면 상기 경계면도 상기 고체의 움직임을 따라서 이동하게 되는데, 이때 상기 경계면에 작용하는 힘은 마찰력(friction)이 아니라 점착력(adhesion)이다. 반대로 고체 물질의 표면 위를 유체가 이동할 때에, 고체 물질도 점착력에 의하여 이동하게 된다.
일반적으로 종래의 온풍기에서는, 공기를 이동시키는 블레이드와 공기를 가열시키는 가열요소가 서로 분리되어 있다. 예컨대, 헤어드라이어의 동작 구조를 살펴보면 다음과 같다. 공기가 인입되면 블레이드와 같은 회전 수단에 의해 공기의 흐름이 형성되고, 공기의 가열은 별도의 가열부에 의해 이루어진다. 가열된 공기는 토출구를 통해 헤어드라이어 밖으로 토출되게 된다. 종래의 일반적인 온풍기는 공기의 흐름을 제공하는 회전 수단과 공기를 가열시키는 가열 수단이 서로 분리되어 있기 때문에 온풍기의 부피가 커질 수 있다. 또한, 회전하는 블레이드와 공기 간의 마찰에 의하여 큰 소음이 발생한다는 문제가 있다.
본 발명에서는 테슬라 터빈에서 사용되는 기술을 이용하여 저소음의 에어 컨트롤러를 제공함으로써 상술한 문제를 해결하고자 한다.
본 발명의 일 관점에 따른 에어 컨트롤러는, 공기가 인입되는 인입구 및 상기 인입된 공기가 토출되는 토출구를 갖는 하우징, 상기 하우징 내에 소정의 간격을 갖고 적층되어 있으며, 그 표면에 열 교환부가 형성되어 있는 한 개 이상의 디스크, 및 상기 디스크를 회전시키는 구동수단(회전구동수단)을 포함한다.
이때, 상기 열 교환부는 발열체 또는 냉각체일 수 있다.
이때, 상기 인입구는 상기 디스크의 회전축의 연장방향에 배치되어 있고, 토출구는 상기 디스크의 원주에 대한 접선의 연장방향에 배치되어 있을 수 있다.
이때, 상기 디스크의 중앙부에는 공기가 유통될 수 있는 공기구멍이 형성되어 있을 수 있다.
이때, 상기 디스크를 회전시키기 위한 회전축이 상기 디스크의 중앙부에 고정 결합되어 있을 수 있다.
이때, 상기 구동수단은, 서로 전자기 결합되도록 배치된 복수 개의 고정자 코일과 복수 개의 영구자석(회전자)을 포함할 수 있다. 상기 각 영구자석은 미리 결정된 연결수단에 의해 각각 상기 회전축에 고정 결합되어 있고, 상기 고정자 코일은 각각 상기 하우징에 대해 고정 결합되어 있을 수 있다.
이때, 상기 회전축에는 두 개의 슬립링이 고정 결합되어 있으며, 각각의 상기 슬립링은 브러시를 통해 전기를 공급받도록 되어 있을 수 있다.
이때, 상기 열 교환부는 전기가 통하면 발열하는 발열체를 포함하며, 상기 회전축에는 상기 발열체에 전기를 제공하기 위한 두 개의 도전단자가 형성되어 있으며, 상기 각 도전단자는 상기 발열체의 양 단자에 각각 고정 결합되어 있을 수 있다.
이때, 각각의 상기 슬립링은, 상기 회전축에 고정 결합된 슬립전극을 포함하며, 상기 각 슬립전극은 상기 두 개의 도전단자와 각각 전기적으로 연결되도록 되어 있을 수 있다.
이때, 상기 브러시는, 상기 슬립링이 회전할 때, 상기 슬립링의 표면에 미끄러짐 접촉함으로써 상기 슬립링에 전기를 공급하도록 되어 있을 수 있다.
본 발명에 따르면, 가열 수단이 그 표면에 결합되어 있는 디스크가 공기의 흐름을 만들어내는 동시에 공기를 가열시킬 수 있다. 따라서 에어 컨트롤러에는 공기를 가열하기 위한 별도의 수단이 필요 없으므로 에어 컨트롤러의 전체적인 부피가 작아질 수 있다. 또한, 디스크와 공기 간의 점착력을 이용하므로 공기흐름 발생에 따른 소음이 줄어드는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 에어 컨트롤러를 나타낸 도면이다.
도 2는 도 1의 X-X'를 따라 절단한 모습을 나타내는 온풍기의 내부 단면도이다.
도 3은 도 2에 나타낸 온풍기의 정면도를 다른 관점에서 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 디스크를 회전축과 함께 나타낸 도면이다.
도 5는 도 2의 'B'부분만을 도시한 도면이다.
도 6은 도 5의 회전축, 도전단자, 슬립링들의 결합관계를 설명하기 위한 도면이다.
도 7은 도 2에 도시한 온풍기 내에서의 공기 흐름도이다.
도 8은 본 발명의 일 실시예에 따른 에어 컨트롤러의 각 부품을 기능별로 분류하여 재구성한 블록도이다.
도 9는 회전부 어셈블리에 속한 부품들 간의 연결관계 및 회전부 어셈블리와 하우징의 연결관계의 이해를 돕기 위한 도면이다.
이하, 본 발명의 실시예를 첨부한 도면을 참고하여 설명한다. 그러나 본 발명은 본 명세서에서 설명하는 실시예에 한정되지 않으며 여러 가지 다른 형태로 구현될 수 있다. 본 명세서에서 사용되는 용어는 실시예의 이해를 돕기 위한 것이며, 본 발명의 범위를 한정하고자 의도된 것이 아니다. 또한, 이하에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 발명은 디스크의 회전에 의해 공기의 흐름을 발생시키고, 상기 디스크의 표면에 제공된 열교환부를 이용하여 공기의 온도를 조절할 수 있는 에어 컨트롤러에 관한 것이다. 이하, 에어 컨트롤러 중 특히 온풍기를 예시하여 본 발명의 사상을 설명하지만, 본 발명의 사상이 온풍기에 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 온풍기를 나타낸 도면이다.
온풍기(1)의 전체적인 형태는 예컨대 호루라기와 같은 형태일 수 있으며, 온풍기(1)의 중심부의 형태는 두루마리 휴지와 같이 구멍이 뚫려있는 형태일 수 있다.
온풍기(1)는 한 개 이상의 디스크(20)와 회전축(30)을 포함하는 회전부, 하우징(10), 공기를 빨아들이는 인입구(11), 및 하우징 내부의 공기를 방출하는 토출구(12)를 포함할 수 있다. 하우징(10)은 온풍기(1)의 겉 표면을 이루는 케이스(case)이며, 온풍기(1)의 내부 구성 요소들을 보호하는 역할도 함께 할 수 있다. 하우징(10)에는 하우징(10) 내부로 공기를 인입하는 인입구(11) 및 하우징(10)으로부터 공기가 토출되는 토출구(12)가 형성되어 있을 수 있다. 하우징(10)의 외부에는 하우징(10)을 감싸는 추가적인 외함이 더 제공될 수도 있다. 예컨대 온풍기(1)가 헤어드라이어를 위해 사용되는 경우 온풍기(1)의 외부에는 사용자가 손으로 집기 편리하도록 하는 별도의 외함이 제공될 수 있다.
한 개 이상의 디스크(20)는 하우징(10) 내에 소정의 간격을 갖고 적층되어 있을 수 있다. 디스크(20)의 바깥쪽 가장자리는 바람직하게는 원의 형상을 하고 있을 수 있다. 도 1에서 디스크(20)의 바깥쪽 가장자리는 점선으로 표시하였다. 디스크(20)의 넓은 표면은 이상적으로는 모두 하나의 평면상에 존재할 수 있다. 그리고 디스크(20)의 표면에는 열교환부를 제공하기 위한 저항성 발열체가 배치되어 있을 수 있다.
디스크(20)의 중심부에는 디스크(20) 회전의 중심이 되는 회전축(30)이 디스크(20)에 고정되어 결합되어 있을 수 있다.
도 2는 도 1의 X-X'를 따라 절단한 모습을 나타내는 온풍기(1)의 내부 단면도이고, 도 3은 온풍기(1)의 정면도를 다른 관점에서 나타낸 것이다.
온풍기(1)에는 디스크(20)를 회전시키기 위한 구동수단, 예컨대 모터가 제공될 수 있다. 도 2의 'A' 부분은 디스크(20)를 회전시키기 위한 구동수단을 설명하기 위하여 나타낸 부분이다. 상기 구동수단이 회전모터인 경우에는 회전축(30), 베어링(31), 영구자석(32), 및 고정자 코일(33)을 포함하여 구성될 수 있다.
회전축(30)에는 회전축(30)을 하우징(10)에 대하여 회전 가능하게 지지하기 위한 베어링(31)이 결합되어 있을 수 있다. 베어링(31)의 바깥쪽에는 공기가 인입되도록 인입구(11)가 형성되어 있을 수 있다.
회전축(30)에는 연결수단(예컨대, 봉)(34)에 의해 영구자석(32)이 고정 결합되어 있을 수 있다. 영구자석(32)은 회전축(30)을 중심으로 회전할 수 있다. 영구자석(32)의 회전면의 연장면 상에는 고정자 코일(33)이 제공될 수 있다. 고정자 코일(33)은 하우징(10)의 벽면에 부착되어 있을 수 있다. 상기 영구자석(32)과 고정자 코일(33)이 한 개의 회전모터의 역할을 할 수 있다. 따라서 회로기판(40)을 통해 고정자 코일(33)에 전류를 흘리면 영구자석(32)이 회전하고, 영구자석(32)에 고정되어 연결되어 있는 회전축(30)이 회전함으로써, 회전축(30)에 고정 연결된 디스크(20)가 회전될 수 있다.
이때, 전원(200)에 의해 회로기판(40)에 전기가 공급될 수 있다. 회로기판(40)에는 구동수단의 동작을 제어하는 제어회로(46)가 제공될 수 있다.
본 발명의 실시예에 따라, 상기 구동수단으로서 제공되는 모터의 동작원리는 DC 모터, AC 모터 또는 BLDC 모터의 동작원리를 따를 수 있다. 본 발명이 상기 구동수단의 구체적인 예에 의해 제한되는 것은 아니다.
도 2의 'B'부분은 회전하는 디스크(20) 표면의 저항성 발열체를 가열하기 위해 전기를 공급하는 전기공급 연결수단을 나타낸 부분이다.
회전축(30)에는 슬립링(41, 42)이 고정되어 결합되어 있을 수 있다. 이때, 하우징(10)의 내부에 형성되어 있는 회로기판(40)의 제어회로부(46)가 브러시(brush)(43)를 통해 슬립링(41, 42)에 전기를 공급하도록 할 수 있다. 이때, 슬립링(41)이 (+)단자, 슬립링(42)이 (-)단자일 수 있으며, 다른 실시예에서는 슬립링(41)이 (-)단자, 슬립링(42)이 (+)단자일 수 있다. 제어회로부(46)는 하우징에 고정 결합된 PCB 기판(40) 상에 제공되는 전자부품들을 이용하여 구성될 수 있다. 슬립링(41, 42)의 외부표면과 브러시(43)는 상호 간에 전기를 도통시키기 위하여 도전체로 구성될 수 있다.
도 4는 본 발명의 일 실시예에 따른 한 개의 디스크(20)를 회전축(30)과 함께 나타낸 도면이다.
도 4를 참조하여 설명하면, 디스크(20)의 중심부에 고정 결합되어 있는 회전축(30)의 표면의 일부에는 두 개의 도전단자(51, 52)가 고정되어 제공될 수 있다. 그리고 디스크(20)의 중심부에 결합되어 있는 회전축(30)의 주변부에는 인입구(11)로부터 인입되는 공기의 통로로서, 미리 결정된 모양의 공기구멍(25)이 형성되어 있을 수 있다. 이때, 상기 공기구멍(25)은 도 2에 나타낸 좌측의 인입구(11)와 우측의 인입구(11)를 서로 가장 가까이 연결하는 공간에 인접하여 배치될 수도 있다.
디스크(20)의 넓은 표면에는 저항성 발열체(21)가 도 4와 같이 배치되어 있을 수 있다. 이때, 저항성 발열체(21)의 양 단자(61, 62)에는 도전단자(51, 52)가 고정 결합되어 있을 수 있다. 예컨대, 양 단자(61, 62)에는 도전단자(51, 52)가 납땜으로 상호 결합되어 있을 수 있다. 공기구멍(25)이 형성되어 있는 각 디스크(20)는 연결 브리지(71, 72)에 의해 회전축(30)에 고정 결합될 수 있다. 연결 브리지(71, 72)는 디스크(20)와 일체형으로 형성된 것일 수도 있다.
본 발명에서, 상기 저항성 발열체(21)의 배치는 상기 저항성 발열체를 디스크 표면에 부착, 포설, 설치, 또는 인쇄하는 것과 같은 방법으로 이루어질 수 있다.
도전단자(51, 52)는, 예컨대, 회전축(30)의 표면에 얇은 금속박을 결합하여 제공할 수 있다. 도 4에 도시된 것과 같이 도전단자(51)와 도전단자(52)는 서로 절연된 상태를 유지할 수 있다.
일 실시예에서 회전축(30), 및 디스크(20)는 절연체로 구성될 수 있다. 디스크 본체에 설치된 저항성 발열체(21) 및 도전단자(51, 52)는 도전체일 수 있다.
또는 다른 실시예에서 디스크(20) 본체와 저항성 발열체(21)는 전도체일 수 있으며, 디스크 본체와 저항성 발열체(21) 사이에는 절연막이 제공되어 있을 수도 있다.
디스크(20), 저항성 발열체(21), 회전축(30), 및 두 개의 도전단자(51, 52)는 서로 고정 결합되어 있기 때문에, 회전축(30)이 회전하게 되면 디스크(20)와 두 개의 도전단자(51, 52)는 회전축과 하나가 되어 동일한 각속도로 회전할 수 있다. 따라서 디스크(20)와 두 개의 도전단자(51, 52)의 회전속도는 회전축(30)의 회전속도와 동일할 수 있다. 즉, 회전축(30)이 각속도 w1로 회전한다면, 각각의 디스크(20)들도 각속도 w1로 회전할 수 있고 두 개의 도전단자(51, 52)도 각속도 w1로 회전할 수 있다. 디스크(20), 저항성 발열체(21), 회전축(30), 도전단자(51, 52), 및 슬립링(41, 42)은 서로에 대하여 고정되어 동일한 각속도로 회전되므로 이들의 집합체를 '회전부'라고 지칭할 수 있다. 이 회전부라는 개념에는 상기 구동수단(모터)에 포함된 회전자(ex: 영구자석)를 더 포함시킬 수도 있다.
도 5는 도 2의 'B'부분만을 도시한 도면이고, 도 6은 도 5의 회전축, 도전단자, 슬립링들의 결합관계를 설명하기 위한 도면이다.
도 5에 도시한 두 개의 브러시(43)는 제어회로부(46)를 이용하여 제공되는 전류를, 회전하는 슬립링(41, 42)에 제공하는 매개 역할을 할 수 있다. 브러시(43) 중 슬립링에 접하는 일 단부는 슬립링이 회전할 때에 슬립링의 표면을 따라 미끄러지면서 상기 표면에 접촉하여 상기 표면에 전류를 공급할 수 있다. 브러시의 타단부는 제어회로부(46)에 전기적으로 연결되어 있으며, 하우징에 대하여 고정결합되어 있을 수 있다.
슬립링(41, 42)의 본체는 절연체로 되어 있을 수 있다. 그리고 슬립링(41, 42) 중 브러시(43)에 접하는 표면은 도전체로 되어 있을 수 있다. 슬립링(41, 42)은 보빈과 같은 형상을 할 수 있으며, 슬립링(41, 42)의 중심부에는 회전축(30)이 관통될 수 있는 관통홀이 형성되어 있을 수 있다.
슬립링(41)의 외표면에 형성된 도전체는 회전축(30) 표면에 형성된 도전단자(51)에 전기적으로 연결되고, 슬립링(42)의 외표면에 형성된 도전체는 회전축(30) 표면에 형성된 도전단자(52)에 전기적으로 연결될 수 있다. 이를 위해 예컨대, 슬립링의 원통형 본체에는 슬립링의 외표면에 형성된 도전체를 회전축 표면에 형성된 도전단자에 연결하기 위한 비아(via)가 형성되어 있을 수도 있다. 그러나 상술한 전기적 연결은 다양한 종래 기술에 의해 이루어질 수 있다. 본 발명의 명세서에서 상기 '도전체'는 '슬립전극'으로 지칭될 수도 있다.
브러시(43)는, 상술한 회전모터와 같은 구동수단에 포함되는 브러시가 아니라, 상술한 바와 같이 각각 슬립링(41, 42)에 전기를 공급하기 위한 별도의 브러시일 수 있다.
이하 도 6을 참조하여 회전축, 도전단자, 및 슬립링들의 예시적 결합관계를 설명한다.
우선, 도 6의 (a)와 같이 회전축(30)의 표면에 도전단자(51, 52)가 형성될 수 있다. 그 다음, 도 6의 (b)와 같이 슬립링(41, 42)에 완성된 회전축(30)을 끼워서 결합하여 도 6의 (c)와 같은 구조가 제공될 수 있다. 도 6은 회전축, 도전단자, 및 슬립링들의 상대적인 결합관계에 대한 이해를 돕기 위한 것으로서, 이 구조를 만들기 위한 공정은 다른 방식으로도 가능하다.
도 7은 도 2에 도시한 온풍기(1) 내에서의 공기 흐름도이다.
도 7은 편의를 위해 도 2의 참조부호를 생략하여 도시한 것에 공기의 흐름을 추가한 것이다. 참조번호 301은 인입구(11)를 통해 인입되는 가열되기 전의 공기의 흐름경로를 나타낸 것이다. 즉, 참조번호 301의 점선은 열 교환되기 전의 공기의 흐름경로를 나타낸 것이다. 참조번호 302의 실선은 저항성 발열체(21)에 의해 공기가 가열된 공기의 흐름경로를 나타낸 것이다. 즉, 참조번호 302는 열 교환된 후의 공기의 흐름경로를 나타낸 것이다. 이러한 공기의 흐름과 같이 각각의 디스크(20)들의 사이로 공기가 흐를 수 있다. 열교환된 공기는 디스크들의 바깥 가장자리 방향으로 흘러나가는데, 도 1에 나타낸 것과 같은 하우징(10)과 토출구(12)를 제공하면 이렇게 흘러나온 공기들이 토출구(12)를 통해 집중되어 바깥으로 흘러 나갈 수 있다.
도 8은 본 발명의 일 실시예에 따른 에어 컨트롤러(1)의 각 구성요소들을 기능별로 분류하여 재구성한 블록도이다.
에어 컨트롤러(1)는 전원부(500), 제어부(501), 구동부 어셈블리(502), 및 회전부 어셈블리(503)를 포함할 수 있다.
전원부(500)는 도 2에 도시한 전원(200)일 수 있다.
제어부(501)는 전원부(500)로부터 전원을 공급받아 구동부 어셈블리(502)에 전기를 공급하거나, 회전부 어셈블리(503)에 전기를 공급할 수 있다. 제어부(501)는 회로기판(40) 및 제어회로부(46)를 포함할 수 있다.
구동부 어셈블리(502)는 회전부 어셈블리(503)를 기계적으로 회전시키도록 되어 있을 수 있다. 구동부 어셈블리(502)는 베어링(31), 영구자석(32), 고정자 코일(33), 및 연결수단(34)을 포함할 수 있다. 즉, 구동부 어셈블리(502)는 상술한 구동수단을 포함하는 개념일 수 있다. 이때, 연결수단(34)은 회전축(30)과 영구자석(32)을 상호 고정결합시키기 위한 것일 수 있다. 이때, 구동부 어셈블리(502) 중 고정자 코일(33)이 제어부(501)로부터 전기를 공급받을 수 있다.
회전부 어셈블리(503)는 회전축(30)과 동일한 각속도로 함께 회전하는 부품들의 집합을 의미할 수 있다. 회전부 어셈블리(503)는 디스크(20), 표면 발열체(21), 회전축(30), 슬립링(41, 42), 브러시(43), 도전단자(51, 52), 및 연결 브리지(71, 72)를 포함할 수 있다. 회전부 어셈블리(503)는 제어부(501)로부터 브러시(43)를 통해 전기를 공급받을 수 있다. 이때, 브러시(43)를 통해 슬립링(41, 42)에 전기가 공급될 수 있다. 그리고 슬립링(41, 42)의 슬립전극과 전기적으로 연결되어 있는 도전단자(51, 52) 및 표면 발열체(21)로 전기가 공급될 수 있다. 브러시(43)는 회전축(30)과 동일한 각속도로 회전하지는 않지만, 슬립링(41, 42)의 표면에 미끄러짐 접촉함으로써 슬립링(41, 42)에 전기를 공급하도록 되어 있기 때문에, 회전부 어셈블리(503)에 포함시킬 수도 있다.
도 9는 회전부 어셈블리(503)에 속한 부품들 간의 연결관계 및 회전부 어셈블리(503)와 하우징(10)의 연결관계의 이해를 돕기 위한 도면이다.
회전축(30)에는 복수 개의 디스크(20)가 결합될 수 있다. 이때, 도 9에 도시된 바와 같이 디스크 중심부에는 디스크(20)가 회전축(30)과 고정결합되도록 회전축(30)이 끼워질 구멍이 형성되어 있을 수 있다. 슬립링(42) 및 슬립링(41)이 차례로 회전축(30)과 고정결합되도록, 슬립링(41, 42)의 본체에는 회전축(30)이 끼워지기 위한 구멍이 형성되어 있을 수 있다. 회전축(30)을 회전시키기 위한 영구자석(32)이 회전축(30)과 고정결합되도록, 영구자석(32)에는 회전축(30)이 끼워지기 위한 구멍이 형성되어 있을 수 있다. 이때, 영구자석(32)은 모터의 부피를 줄이기 위해 얇게 형성되어 있을 수 있다. 나아가 회전축(30)을 하우징에 대하여 회전 가능하게 고정하기 위한 축 고정부(300)가 제공될 수 있다. 축 고정부(300)의 중앙부에는 회전축(30)을 끼우기 위한 구멍이 형성되어 있을 수 있다. 상기 구멍 주위로는 회전축(30)을 지지하고, 회전축(30)이 하우징에 대하여 상대적으로 미끄러짐 운동을 할 수 있도록 베어링(31)이 배치되어 있을 수 있다. 축 고정부(300)에는 공기가 하우징(10) 안으로 인입되기 위한 인입구(11)가 도시된 바와 같이 형성되어 있을 수 있다.
이하, 온풍기(1)의 전체적인 동작은 다음과 같을 수 있다.
온풍기(1)에 전기가 공급되고, 공기가 하우징(10)의 양쪽에 형성되어 있는 인입구(11)로 들어오게 되면, 각각의 디스크(20)에 형성되어 있는 공기통로(25)를 통해 공기가 하우징 내부로 퍼질 수 있다. 이때, 디스크(20)의 표면에 설치된 저항성 발열체(21)에 의해 디스크(20) 주변의 공기가 데워지며 가열되고, 디스크(20)가 회전하면서 공기가 점착력에 의해 회전할 수 있다. 이렇게 데워진 공기는 회전에 의한 원심력에 의해 하우징(10)에 형성되어 있는 토출구(12)를 통해 온풍기(1)의 밖으로 토출될 수 있다.
디스크에 발열체가 설치되어 공기의 가열과 공기의 송풍이 동시에 이루어지는 본 발명은, 공기의 가열에만 적용되는 것이 아니라 공기의 냉각에도 적용될 수 있다. 예컨대, 냉풍 발생장치의 경우, 온풍기와 마찬가지로 냉각체가 제공된 디스크를 이용할 수 있다. 냉각체는 예컨대 펠티어 소자와 같은 것으로 이루어질 수 있다. 이때, 냉각된 디스크의 표면을 따라 공기가 이동할 때, 공기가 냉각될 수 있다. 그 후, 냉각된 공기가 냉풍 발생장치의 토출구로 토출될 수 있다.
본 발명의 변형된 실시예에서는 도 1 내지 도 6에 도시한 디스크 대신에 프로펠러(propeller), 임펠러(impeller)와 같은 블레이드(blade)를 사용할 수도 있다. 즉 상술한 발열체 및 냉각체는 상기 블레이드 표면에 제공될 수 있다.
상술한 본 발명의 실시예들을 이용하여, 본 발명의 기술 분야에 속하는 자들은 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에 다양한 변경 및 수정을 용이하게 실시할 수 있을 것이다. 특허청구범위의 각 청구항의 내용은 본 명세서를 통해 이해할 수 있는 범위 내에서 인용관계가 없는 다른 청구항에 결합될 수 있다.

Claims (10)

  1. 하우징 내에 소정의 간격을 갖고 적층되어 있으며, 그 각 표면에 열 교환부가 형성되어 있는 한 개 이상의 디스크; 및
    상기 디스크를 회전시키는 구동수단
    을 포함하며,
    상기 디스크가 회전할 때에 상기 디스크의 중심부로부터 상기 디스크의 바깥쪽으로 이동하는 공기의 흐름을 이용하는,
    에어 컨트롤러.
  2. 제1항에 있어서,
    상기 하우징은 공기가 인입되는 인입구 및 상기 인입된 공기가 토출되는 토출구를 갖도록 되어 있는,
    에어 컨트롤러.
  3. 제2항에 있어서,
    상기 인입구는 상기 디스크의 회전축의 연장방향에 배치되어 있고,
    상기 토출구는 상기 디스크의 원주에 대한 접선의 연장방향에 배치되어 있는,
    에어 컨트롤러.
  4. 제1항에 있어서,
    상기 디스크의 중앙부에는 공기가 유통될 수 있는 공기구멍이 형성되어 있는, 에어 컨트롤러.
  5. 제1항에 있어서, 상기 디스크를 회전시키기 위한 회전축이 상기 디스크의 중앙부에 고정결합되어 있는, 에어 컨트롤러.
  6. 제5항에 있어서,
    상기 구동수단은, 서로 전자기 결합되도록 배치된 복수 개의 고정자 코일과 복수 개의 영구자석을 포함하며,
    상기 각 영구자석은 미리 결정된 연결수단에 의해 각각 상기 회전축에 고정 결합되어 있고,
    상기 고정자 코일은 각각 상기 하우징에 대해 고정 결합되어 있는,
    에어 컨트롤러.
  7. 제5항에 있어서,
    상기 회전축에는 두 개의 슬립링이 고정 결합되어 있으며,
    각각의 상기 슬립링은 브러시를 통해 전기를 공급받도록 되어 있는,
    에어 컨트롤러.
  8. 제7항에 있어서,
    상기 열 교환부는 전기가 통하면 발열하는 발열체를 포함하며,
    상기 회전축에는 상기 발열체에 전기를 제공하기 위한 두 개의 전기단자가 형성되어 있으며,
    상기 각 전기단자는 상기 발열체의 양 단자에 각각 고정 결합되어 있는,
    에어 컨트롤러.
  9. 제8항에 있어서,
    각각의 상기 슬립링은, 상기 회전축에 고정 결합된 슬립전극을 포함하며,
    상기 각 슬립전극은 상기 두 개의 전기단자와 각각 전기적으로 연결되도록 되어 있는,
    에어 컨트롤러.
  10. 제7항에 있어서,
    상기 브러시는, 상기 슬립링이 회전할 때, 상기 슬립링의 표면에 미끄러짐 접촉함으로써 전기를 공급하도록 되어 있는,
    에어 컨트롤러.
PCT/KR2016/006254 2016-06-13 2016-06-13 에어 컨트롤러 WO2017217561A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680086754.0A CN109642738B (zh) 2016-06-13 2016-06-13 空气调节器
JP2018566401A JP6711928B2 (ja) 2016-06-13 2016-06-13 エアコントローラ
PCT/KR2016/006254 WO2017217561A1 (ko) 2016-06-13 2016-06-13 에어 컨트롤러

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/006254 WO2017217561A1 (ko) 2016-06-13 2016-06-13 에어 컨트롤러

Publications (1)

Publication Number Publication Date
WO2017217561A1 true WO2017217561A1 (ko) 2017-12-21

Family

ID=60664169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006254 WO2017217561A1 (ko) 2016-06-13 2016-06-13 에어 컨트롤러

Country Status (3)

Country Link
JP (1) JP6711928B2 (ko)
CN (1) CN109642738B (ko)
WO (1) WO2017217561A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351596A (ja) * 2004-06-14 2005-12-22 Mitsubishi Materials Corp 調湿部材、これを備える空気調和機及び調湿部材の再生方法
US7043146B2 (en) * 2003-12-15 2006-05-09 Solomon Semaza All season heat fan with electric heating elements powered by rotating rings and ball bearings
KR20100009402A (ko) * 2008-07-18 2010-01-27 탁승호 저소음 송풍 모듈을 갖는 열풍장치
KR20110107932A (ko) * 2010-03-26 2011-10-05 김주영 유체 가열용 발열체 디스크 시스템
US20130101451A1 (en) * 2011-10-20 2013-04-25 The Bergquist-Torrington Company Double Inlet Centrifugal Blower with a Solid Center Plate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5393712U (ko) * 1976-12-28 1978-07-31
JPS5594484U (ko) * 1978-12-26 1980-06-30
JPS5641492A (en) * 1979-09-11 1981-04-18 Matsushita Electric Works Ltd Hair dryer fan
CN1022010C (zh) * 1990-02-16 1993-09-01 陶国珍 一种盘式永磁直流电机
JPH03116797U (ko) * 1990-03-12 1991-12-03
CN2338911Y (zh) * 1998-08-31 1999-09-15 高风利 永磁转子电动机
US9291170B2 (en) * 2013-06-28 2016-03-22 Intel Corporation Blower assembly for electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7043146B2 (en) * 2003-12-15 2006-05-09 Solomon Semaza All season heat fan with electric heating elements powered by rotating rings and ball bearings
JP2005351596A (ja) * 2004-06-14 2005-12-22 Mitsubishi Materials Corp 調湿部材、これを備える空気調和機及び調湿部材の再生方法
KR20100009402A (ko) * 2008-07-18 2010-01-27 탁승호 저소음 송풍 모듈을 갖는 열풍장치
KR20110107932A (ko) * 2010-03-26 2011-10-05 김주영 유체 가열용 발열체 디스크 시스템
US20130101451A1 (en) * 2011-10-20 2013-04-25 The Bergquist-Torrington Company Double Inlet Centrifugal Blower with a Solid Center Plate

Also Published As

Publication number Publication date
JP6711928B2 (ja) 2020-06-17
JP2019518171A (ja) 2019-06-27
CN109642738B (zh) 2021-03-09
CN109642738A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN102292897B (zh) 用于轴向场装置的扇块式定子
WO2016093559A1 (ko) 로터 조립체 및 이를 포함하는 모터
CN107134893B (zh) 空调用鼓风机电动机组件
GB2485185A (en) Axial gap electrical machine having integrated stator
CN101199101A (zh) 包含线圈端部支撑板的伸出极转子以及包含该转子的旋转电动机
US7348697B2 (en) System for ventilating a motor
EP3127222B1 (en) Induction motor
CN110034629A (zh) 驱动装置
WO2003002918A2 (en) Cooler for electronic devices
CN108933489A (zh) 导体及其形成方法
CN113169635A (zh) 具有解耦多重绕组的智能马达的电气滤波***以及相关的智能马达
CN209805603U (zh) 异步起动同步磁阻电机转子组件结构、电机
JPS61231859A (ja) Dcモータ
WO2017213451A1 (ko) 드론용 모터 및 이를 포함하는 드론
WO2017217561A1 (ko) 에어 컨트롤러
JP7503448B2 (ja) アキシャルギャップ型のミニファンモータ
CN104847680A (zh) 风扇装置
KR101761885B1 (ko) 에어 컨트롤러
WO2014178475A1 (ko) 블로워
WO2015020380A1 (en) Hair dryer
EP3316392B1 (en) Battery cooling apparatus
JPH08149858A (ja) 静電モータ
CN111386018B (zh) 电子设备的散热组件和电子设备
WO2016208972A1 (ko) 배터리 냉각장치
WO2016108581A1 (ko) 전동기 하우징용 커버

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905545

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566401

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16905545

Country of ref document: EP

Kind code of ref document: A1