WO2017217278A1 - Polishing pad, method for producing polishing pad and polishing method - Google Patents

Polishing pad, method for producing polishing pad and polishing method Download PDF

Info

Publication number
WO2017217278A1
WO2017217278A1 PCT/JP2017/020926 JP2017020926W WO2017217278A1 WO 2017217278 A1 WO2017217278 A1 WO 2017217278A1 JP 2017020926 W JP2017020926 W JP 2017020926W WO 2017217278 A1 WO2017217278 A1 WO 2017217278A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
polishing pad
carbon atoms
urethane prepolymer
polyol
Prior art date
Application number
PCT/JP2017/020926
Other languages
French (fr)
Japanese (ja)
Inventor
善之 小田
雄一郎 柴
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2018523673A priority Critical patent/JP6424986B2/en
Priority to CN201780036866.XA priority patent/CN109311138B/en
Publication of WO2017217278A1 publication Critical patent/WO2017217278A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/61Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention particularly relates to a polishing pad that can be suitably used for polishing glass substrates, silicon wafers, semiconductor devices and the like, a method for manufacturing the polishing pad, and a polishing method.
  • Liquid crystal display (LCD) glass substrates, hard disk (HDD) glass substrates, recording device glass disks, optical lenses, silicon wafers, semiconductor devices, and the like are required to have high surface flatness and in-plane uniformity.
  • the glass substrate for liquid crystal display is also required to have higher surface flatness of the processed surface as the liquid crystal display becomes larger. In this way, the demand for surface flatness of the processed surface has been advanced, and required performance such as polishing accuracy and polishing efficiency in the polishing process has been further increased.
  • a chemical mechanical polishing method a so-called CMP (Chemical Mechanical Polishing) method
  • CMP Chemical Mechanical Polishing
  • a free abrasive grain method is generally employed in which polishing is performed by supplying a slurry (polishing liquid) in which abrasive grains (polishing particles) are dispersed in an alkali solution or an acid solution during polishing. That is, the object to be polished (the processed surface thereof) is flattened by a mechanical action by the abrasive grains in the slurry and a chemical action by the alkali solution or the acid solution.
  • polishing performance such as polishing accuracy and polishing efficiency required for the CMP method, specifically, high polishing rate, non-scratch property, and high flatness are required. Is growing.
  • Patent Document 1 As a polishing pad using the above-mentioned CMP method, for example, a technique for optimizing the degree of wear and stabilizing the polishing performance has been reported (for example, see Patent Document 1). In addition, a fixed abrasive polishing pad that does not use the free abrasive method has been proposed due to waste liquid treatment and cost problems (see, for example, Patent Document 2).
  • a polishing pad using the above-mentioned free abrasive grain method for example, an attempt to achieve a high polishing rate, high flatness, and low scratch by optimizing a vinyl-based resin, for example, in order to respond to further advanced demands in recent years (for example, Patent Document 3), an attempt to reduce the occurrence of scratches by controlling the wear properties (see, for example, Patent Document 4), an attempt to improve the flatness and polishing rate by epoxy modification of urethane resin (for example, refer to Patent Document 5), and attempts to planarize using a special raw material as a raw material for urethane resin (for example, refer to Patent Document 6) have been proposed.
  • the problem to be solved by the present invention is to provide a polishing pad that has an excellent polishing rate and has a smooth surface with less scratches on the surface of the polished material after polishing and having excellent smoothness.
  • a foamed cured product of a urethane resin composition containing a main agent (i) and a curing agent (ii), and a polishing pad containing a specific amount of the polysiloxane compound in the urethane prepolymer (A) is used.
  • the present invention includes a main agent containing a urethane prepolymer (A) having an isocyanate group which is a reaction product of a polyol (a1) containing a polysiloxane compound represented by the following general formula (1) and a polyisocyanate (a2) ( i) and a polishing pad which is a foam cured product of a urethane resin composition containing a curing agent (ii), wherein the proportion of the polysiloxane compound in the raw material of the urethane prepolymer (A) is 1% by mass.
  • the present invention relates to a polishing pad characterized by the following.
  • R 1 and R 3 each independently represents an alkyl group having 1 to 5 carbon atoms
  • R 2 represents an alkylene group having 1 to 5 carbon atoms
  • n represents 1 to 200 carbon atoms. Indicates the average value of repeating units.
  • this invention is the main ingredient containing the urethane prepolymer (A) which has the isocyanate group obtained by making the polyol (a1) and polyisocyanate (a2) containing the polysiloxane compound shown by the said General formula (1) react.
  • a urethane resin composition containing a foaming agent (iii) containing (i), a curing agent (ii), and water (B) is mixed, poured into a mold, foamed and cured, and a foamed molded product is obtained.
  • the present invention relates to a method for producing a polishing pad, wherein the foamed molded product is taken out of a mold and sliced into a sheet.
  • the present invention relates to a method for polishing a material to be polished having a Vickers hardness of 1500 or less, wherein the polishing pad is used.
  • the polishing pad of the present invention has an excellent polishing rate, and in the material to be polished by using the polishing pad of the present invention, there is a polished material with less scratching and excellent surface smoothness. It is obtained.
  • the polishing pad of the present invention is an optical material such as a glass substrate for a liquid crystal display (LCD), a glass substrate for a hard disk (HDD), a glass disk for a recording device, an optical lens, a silicon wafer, a semiconductor device, and a glass for a smartphone cover. It is useful for high-precision polishing processing that requires high surface flatness and in-plane uniformity, such as a substrate; a magnetic substrate; a silicon wafer substrate; and a device substrate. It is particularly useful for polishing abrasives.
  • FIG. 1 is an AFM observation view of a material to be polished (silicon wafer) polished using the polishing pad (P1) obtained in Example 1.
  • FIG. FIG. 2 is an AFM observation view of the material to be polished (silicon wafer) polished using the polishing pad (P′1) obtained in Comparative Example 1.
  • FIG. 3 is an AFM observation view of the material to be polished (silicon wafer) polished using the polishing pad (P′2) obtained in Comparative Example 2.
  • the polishing pad of the present invention comprises a main component containing a urethane prepolymer (A) having an isocyanate group which is a reaction product of a polyol (a1) containing a polysiloxane compound represented by the following general formula (1) and a polyisocyanate (a2). It is a foamed cured product of a urethane resin composition containing (i) and a curing agent (ii).
  • a urethane prepolymer (A) having an isocyanate group which is a reaction product of a polyol (a1) containing a polysiloxane compound represented by the following general formula (1) and a polyisocyanate (a2) is used.
  • polysiloxane compound represented by the following general formula (1) is used as an essential component, and other polyols can be used as necessary.
  • polysiloxane compound one represented by the following general formula (1) is used.
  • R 1 and R 3 each independently represents an alkyl group having 1 to 5 carbon atoms
  • R 2 represents an alkylene group having 1 to 5 carbon atoms
  • n represents 1 to 200 carbon atoms. Indicates the average value of repeating units.
  • R 1 and R 3 are Are each preferably a methyl group or an ethyl group, R 2 is preferably a propylene group or a tetramethylene group, n is preferably in the range of 10 to 100, and more preferably in the range of 15 to 50.
  • polysiloxane compound for example, “X-22-176B”, “X-22-176DX”, “Silaplane FMDA11” manufactured by Shin-Etsu Chemical Co., Ltd. can be obtained as commercial products.
  • the ratio of the polysiloxane compound in the raw material of the urethane prepolymer (A) is such that a polished product with less scratches on the surface of the polished material after polishing and excellent smoothness can be obtained, and the polishing rate and mechanical strength can be obtained. And since the polishing pad excellent also in the life of the polishing pad is obtained, it is 1% by mass or less, preferably 0.5% by mass or less, and more preferably 0.3% by mass or less.
  • the polysiloxane compound is essential as a raw material for the urethane prepolymer (A), and the lower limit thereof is preferably 0.01% by mass or more, and more preferably 0.05% by mass or more. .
  • the polishing rate is lowered.
  • the reaction rate of the polysiloxane compound is lowered due to a compatibility problem, resulting in a decrease in mechanical strength of the obtained polishing pad and an unreacted silicone. This is not preferable because contamination of the object to be polished by the compound is concerned.
  • Examples of the other polyol include polyether polyol, polyester polyol, polycarbonate polyol, polybutadiene polyol, polyacryl polyol, dimer diol, polybutadiene polyol, and polyisoprene polyol.
  • polyether polyol is preferable because the polishing rate can be further improved, and polytetramethylene glycol is particularly preferable.
  • These other polyols can be used alone or in combination of two or more.
  • polyether polyol examples include polytetramethylene glycol obtained by ring-opening polymerization of tetrahydrofuran. Moreover, what carried out addition polymerization of the alkylene oxide by using the 1 type (s) or 2 or more types of the compound which has 2 or more of active hydrogen atoms as an initiator is mentioned.
  • Examples of the compound having two or more active hydrogen atoms include propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, glycerin, diethylene Examples include glycerin, trimethylolethane, trimethylolpropane, water, hexanetriol and the like.
  • Examples of the alkylene oxide include propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, and tetrahydrofuran. These polyether polyols can be used alone or in combination of two or more.
  • the polyether polyol is used as the other polyol, it is preferably used in the range of 20 to 99.9% by mass in the polyol (a1) from the viewpoint of the compatibility between the polysiloxane compound and the polyether polyol.
  • the range of 50 to 99.9% by mass is more preferable.
  • polyester polyol examples include a polyester polyol obtained by reacting a low molecular weight polyol and a polycarboxylic acid; a polyester polyol obtained by a ring-opening polymerization reaction of a cyclic ester compound such as ⁇ -caprolactone; Examples include polyester polyols obtained by polymerization. These polyester polyols can be used alone or in combination of two or more.
  • low molecular weight polyol examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, neopentyl glycol, 1,3-butanediol and the like having a molecular weight of about 50 to 300.
  • Aliphatic polyols such as cyclohexane dimethanol, and polyols having an aromatic structure such as bisphenol A and bisphenol F. Of these, 1,6-hexanediol and neopentyl glycol are preferable.
  • polycarboxylic acid examples include aliphatic polycarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid; terephthalic acid, isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid. And aromatic polycarboxylic acids such as anhydrides or esterified products thereof.
  • the polycarbonate polyol is obtained by esterifying carbonic acid and a carbonate ester with a polyhydric alcohol.
  • the polyhydric alcohol include 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and the like. These polycarbonate polyols can be used alone or in combination of two or more.
  • the number average molecular weight of the other polyol is preferably in the range of 200 to 5,000, more preferably in the range of 300 to 3,000, from the viewpoint of the polishing rate.
  • the number average molecular weight of the said other polyol shows the value measured on condition of the following by gel permeation chromatography (GPC) method.
  • Measuring device High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were connected in series. "TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000” (7.8 mm ID x 30 cm) x 1 "TSKgel G3000” (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID ⁇ 30 cm) ⁇ 1 detector: RI (differential refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection amount: 100 ⁇ L (tetrahydrofuran solution with a sample concentration of 0.4 mass%) Standard sample: A calibration curve was prepared using the following standard polystyrene.
  • polyisocyanate (a2) examples include polyisocyanates having an alicyclic structure such as cyclohexane diisocyanate, dicyclohexylmethane diisocyanate, and isophorone diisocyanate; 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane Aromatic polyisocyanates such as diisocyanate, crude diphenylmethane diisocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate; and aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, xylylene diisocyanate, and tetramethylxylylene diisocyanate.
  • polyisocyanates having an alicyclic structure such as cyclohe
  • aromatic polyisocyanate is preferable, and toluene diisocyanate or diphenylmethane diisocyanate is preferable because the high hardness of the polishing pad and the polishing rate can be further improved.
  • these polyisocyanates (a2) can be used alone or in combination of two or more.
  • the urethane prepolymer (A) is obtained by urethanating the polyol (a1) and the polyisocyanate (a2) by a known method, and has an isocyanate group.
  • the molar ratio (NCO / OH) between the hydroxyl group of the polyol (a1) and the isocyanate group of the polyisocyanate (a2) is that of the urethane prepolymer (A). Since the viscosity is appropriate (for example, 500 to 2000 mPa ⁇ s at 40 to 90 ° C. when manufactured by a casting machine), a polishing pad having a low scratch and an excellent polishing rate can be obtained. The range of 6.5 is preferable, and the range of 1.5 to 4 is more preferable.
  • the molar ratio (NCO / OH) when the molar ratio (NCO / OH) is less than 1.3, the viscosity of the urethane prepolymer (A) is extremely increased, and the flow rate becomes unstable or the mixing property is deteriorated in the production of the polishing pad. Deteriorating can lead to quality degradation.
  • the molar ratio (NCO / OH) is greater than 6.5, the amount of unreacted polyisocyanate increases and the viscosity becomes extremely low. Similarly, the flow rate becomes unstable and the pot life becomes extremely short. This makes it difficult to manufacture the polishing pad.
  • the isocyanate group equivalent of the urethane prepolymer (A) As the isocyanate group equivalent of the urethane prepolymer (A), a polished product with less scratches on the surface of the polished material after polishing and excellent smoothness can be obtained, and the polishing rate, mechanical strength and polishing pad life can be improved. Can be obtained from 200 to 800 g / eq. In the range of 250 to 600 g / eq. More preferably, it is the range.
  • the isocyanate group equivalent of the urethane prepolymer (A) was determined by dissolving the sample in dry toluene and adding an excess di-n-butylamine solution in accordance with the method specified in JIS-K-7301: 2003. The value obtained by reacting and back titrating the remaining di-n-butylamine with a hydrochloric acid standard solution is shown.
  • the curing agent (ii) contains a compound having a group containing an active hydrogen atom ([NH] group and / or [OH] group) that reacts with the isocyanate group of the urethane prepolymer (A).
  • aliphatic or cycloaliphatic amine compounds such as ethylenediamine, propanediamine, hexanediamine, and isophoronediamine; phenylenediamine, 3,3′-dichloro-4,4′-diaminodiphenylmethane, polyaminochlorophenylmethane compounds, and the like.
  • Aromatic amine compounds ethylene glycol, diethylene glycol, propanediol, butanediol, hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, bisphenol A, alkylene oxide adducts of bisphenol A, poly Chromatography ether polyols, polyester polyols, polycaprolactone polyols, and compounds having two or more hydroxyl groups such as polycarbonate polyols. These compounds can be used alone or in combination of two or more.
  • the curing agent (i) is a polishing material that has less scratches on the surface of the polished material after polishing and has excellent smoothness, and also has excellent polishing rate, mechanical strength, and polishing pad life. Since a pad is obtained, it is preferably used in the range of 10 to 50 parts by mass with respect to 100 parts by mass of the urethane prepolymer (A).
  • the urethane resin composition used in the present invention contains the main component (i) containing the urethane prepolymer (A) and the curing agent (ii) as essential components, but other additions as necessary. An agent can also be contained.
  • the other additives include a foaming agent (iii) containing water (B), a catalyst (C), a foam stabilizer (D), abrasive grains, a filler, a pigment, a thickener, and an antioxidant. UV absorbers, surfactants, flame retardants, plasticizers and the like. These additives can be used alone or in combination of two or more. Among these, when the polishing pad is obtained by the water foaming method using the urethane resin composition, it is preferable to use the foaming agent (iii) containing the water (B).
  • the water (B) serves as a foaming agent in the water foaming method, and examples thereof include ion-exchanged water and distilled water.
  • the amount of water (B) is preferably in the range of 0.01 to 1 part by mass with respect to 100 parts by mass of the urethane prepolymer (A).
  • the foaming agent (iii) may be used alone or in combination of two or more compounds having a group containing the active hydrogen atom used as the curing agent (ii) for the purpose of further improving water foamability. Can be contained.
  • the amount of water foaming can be further improved, so that 0.1 to 10 parts by mass with respect to 100 parts by mass of the urethane prepolymer (A). The range of parts is preferred.
  • the other additive preferably contains a catalyst (C) because stable foaming can be formed.
  • the catalyst (C) examples include N, N-dimethylaminoethyl ether, triethylenediamine, dimethylethanolamine, triethanolamine, N, N, N ′, N′-tetramethylhexamethylenediamine, and N-methylimidazole. And the like, and metal catalysts such as dioctyltin dilaurate. These catalysts can be used alone or in combination of two or more. Among these, N, N-dimethylaminoethyl ether is preferable because stable foaming can be formed.
  • the catalyst (C) may be contained in any of the main agent (i), the curing agent (ii), and the foaming agent (iii).
  • the amount used in the case of using the catalyst (C) is preferably in the range of 0.001 to 5 parts by mass with respect to 100 parts by mass of the urethane prepolymer (A) because stable foaming can be formed.
  • foam stabilizer (D) examples include “Toray Silicone SH-193”, “Toray Silicone SH-192”, “Toray Silicone SH-190” manufactured by Toray Dow Corning Co., Ltd., and the like. These foam stabilizers (D) can be used alone or in combination of two or more.
  • the foam stabilizer (D) may be contained in any of the main agent (i), the curing agent (ii) and the foaming agent (iii).
  • the amount used in the case of using the foam stabilizer (D) is in the range of 0.001 to 5 parts by mass with respect to 100 parts by mass of the urethane prepolymer (A) because fine bubbles can be stably formed. It is preferable that
  • a urethane resin composition containing the main agent (i), the curing agent (ii), and the foaming agent (iii) is mixed. Then, it is poured into a mold, foamed and cured to obtain a foamed molded product, and then the foamed molded product is taken out from the mold and sliced into a sheet to produce.
  • the main agent (i), the curing agent (ii), and the foaming agent (iii) are put into separate tanks of a mixed casting machine,
  • the main agent (i) is preferably heated to 40 to 80 ° C.
  • the curing agent (ii) is preferably heated to 40 to 120 ° C.
  • the foaming agent (iii) is heated to 30 to 70 ° C.
  • the method of heating and mixing each with a mixing caster is mentioned.
  • the above urethane resin composition is mixed by the mixed casting machine, and then each component is discharged from the mixed casting machine.
  • the obtained mixture is poured into a mold preheated to 40 to 120 ° C., the lid of the mold is closed, and foamed and cured at a temperature of 50 to 130 ° C. for 10 minutes to 10 hours, for example.
  • a foam molding is obtained.
  • the obtained foamed molded product is taken out, and after-curing is preferably performed at 100 to 120 ° C. for 8 to 20 hours.
  • a polishing pad is obtained by slicing the foamed molded product into a sheet with an appropriate thickness.
  • the thickness of the polishing pad after slicing is appropriately determined according to the application, but is, for example, in the range of 0.6 to 3 mm.
  • the main agent (i ′) (hereinafter referred to as “fine”) containing the main agent (i) containing fine bubbles by a gas loading method. (Abbreviated as “bubble-containing main agent (i ′)”), and the urethane composition containing the fine bubble-containing main agent (i ′) and the curing agent (ii) are mixed, injected into a mold, and cured. There is a method in which a molded product containing fine bubbles is obtained, and then the molded product is taken out of the mold and sliced into a sheet.
  • a non-reactive gas such as nitrogen, carbon dioxide, helium or argon is introduced into the main agent (i),
  • a method of introducing bubbles for example, there is a method of introducing bubbles.
  • the fine bubble-containing main agent (i ′) and the curing agent (ii) are put in separate tanks of a mixed casting machine, and the fine bubble-containing main agent is added.
  • (I ′) is preferably heated to 40 to 80 ° C.
  • the curing agent (ii) is preferably heated to 40 to 120 ° C., and each is mixed with a mixing caster.
  • each component is discharged from the mixing casting machine, and the resulting mixture is poured into a mold preheated to 40 to 120 ° C., and the lid of the mold is closed, for example, a temperature of 50 to 130 ° C. And foaming and curing for 10 minutes to 10 hours to obtain a foamed molded product. Thereafter, the obtained foamed molded product is taken out, and after-curing is preferably performed at 100 to 120 ° C. for 8 to 20 hours.
  • a polishing pad is obtained by slicing the foamed molded product into a sheet with an appropriate thickness.
  • the thickness of the polishing pad after slicing is appropriately determined according to the application, but is, for example, in the range of 0.6 to 3 mm.
  • the main agent (i) is foamed by a mechanical floss method to obtain a foam main agent (i ''), and the foam main agent ( i '') and a urethane composition containing a curing agent (ii) are mixed, poured into a mold, and cured to obtain a foamed molded product. Then, the foamed molded product is taken out of the mold, and is in the form of a sheet.
  • the method of slicing is mentioned.
  • a hollow plastic sphere having a diameter of 20 to 120 ⁇ m in the main agent (i) or the curing agent (ii).
  • the two liquids of the main agent and curing agent are mixed and cured to obtain a molded product containing hollow plastic spheres, and then sliced into a sheet.
  • the polishing pad of the present invention obtained by the above method has an excellent polishing rate, and in the material to be polished using the polishing pad of the present invention, the occurrence of scratches is small and the surface of the material to be polished is smooth. It is possible to obtain an excellent polished product.
  • the polishing pad obtained by using the urethane resin composition for a polishing pad of the present invention includes a glass substrate for a liquid crystal display (LCD), a glass substrate for a hard disk (HDD), a glass disk for a recording device, an optical lens, and a silicon wafer. It is useful for high-precision polishing processing that requires high surface flatness and in-plane uniformity such as semiconductor devices, and is useful for polishing materials to be polished having a Vickers hardness of 1500 or less. Useful for polishing.
  • the Vickers hardness is a kind of indentation hardness, but a rigid body (indenter) made of diamond is pushed into the test specimen, and is judged by the area of the indentation formed at that time.
  • a test method there is JIS-Z-2244.
  • the approximate Vickers hardness of each type of object to be polished is as follows. Silicon carbide (SiC): 2300 to 2500, sapphire: 2300, silicon: 1050, quartz glass: 950, various glasses: 500 to 700.
  • polishing pad of the present invention for example, in the case of polishing a silicon wafer, a slurry (a weakly basic colloidal silica aqueous solution) is dropped on the polishing pad and the object to be polished is adapted to the slurry. And a method of polishing by operating (rotating) a surface plate with a pad attached thereto. (CMP polishing method with loose abrasive grains).
  • Synthesis Example 1 Synthesis of urethane prepolymer (A1)) 2366 parts by mass of tolylene diisocyanate (TDI-80) was charged into a 5-liter 4-neck round bottom flask equipped with a nitrogen inlet tube, a condenser for cooling, a thermometer, and a stirrer, and stirring was started. Subsequently, 2028 parts of polytetramethylene glycol (number average molecular weight 1000) was charged and mixed, and the reaction was performed at 80 ° C. in a nitrogen atmosphere for 3 hours.
  • TDI-80 tolylene diisocyanate
  • Synthesis Example 3 Synthesis of urethane prepolymer (A3)
  • An isocyanate group-terminated urethane prepolymer (A3) was obtained in the same manner only by changing the number of blending parts in Synthesis Example 1.
  • the charge was 2366 parts by weight of tolylene diisocyanate, 1936 parts by weight of polytetramethylene glycol, 100 parts by weight of a polysiloxane compound (“X-22-176DX” manufactured by Shin-Etsu Chemical Co., Ltd .; one-end silicone diol, number average molecular weight; 3262) and 598 parts by mass of diethylene glycol.
  • Example 1 Production of polishing pad (P1)
  • the isocyanate group-terminated urethane prepolymer (A1) obtained in Synthesis Example 1 was temperature-controlled at 80 ° C. to obtain component A.
  • MOCA 3,3′-dichloro-4,4′-diaminophenylmethane
  • PPG3000 polypropylene glycol
  • ion-exchanged water 7.0 parts by mass of ion-exchanged water
  • bis (dimethylaminoethyl) ether A compound obtained by sufficiently stirring and mixing 4 parts by mass of a silicon foam stabilizer (“SH-193” manufactured by Toray Dow Corning Co., Ltd.) with temperature mixing at 35 ° C. was used as a C component (C compound).
  • C compound C compound
  • the A component, the B component, and the C component were charged in three tanks of a mixing type elastomer casting machine (model EA-404, manufactured by Toho Machine Industry Co., Ltd.).
  • the mixture was discharged at a blending ratio of 9 (weight ratio).
  • the injection amount was 1875 g.
  • ⁇ Discharge rate 7000 g / min ⁇
  • Mixer rotation speed 5000rpm (Mixer: Gear type)
  • the lid of the mold was closed and held at 80 ° C. for 45 minutes, and then the ingot molded product was taken out. Further, the obtained ingot molded article was after-cured at 110 ° C. for 16 hours.
  • the obtained ingot molded product was cut into a thickness of 1.5 mm with a slicer to obtain a sheet-like polishing pad (P1).
  • polishing pad obtained in Examples and Comparative Examples was attached to one side of the double-sided tape, the surface plate of the polishing machine was attached to the other side of the double-sided tape, and the polishing rate was measured with the following apparatus, conditions, and calculation formula.
  • Polishing conditions (Pad pretreatment) Dressing (pad flattening and dressing) was performed with a diamond dresser (# 100) until the lines drawn vertically and horizontally at intervals of 2 cm with a red pencil disappeared on the pad surface.
  • Table 1 shows the evaluation results of the polishing pads (P1), (P′1), and (P′2) obtained in Example 1, Comparative Example 1, and Comparative Example 2.
  • FIG. 1 shows the AFM observation result of the surface of the silicon wafer polished using the polishing pad (P1) obtained in Example 1.
  • FIG. 2 shows the AFM observation result of the surface of the silicon wafer polished using the polishing pad (P′1) obtained in Comparative Example 1.
  • FIG. 3 shows the AFM observation result of the surface of the silicon wafer polished using the polishing pad (P′2) obtained in Comparative Example 2.
  • Example 1 using the polishing pad of the present invention has an excellent polishing rate, and also in the scratch evaluation of the material to be polished using AFM, average surface roughness (Ra), maximum height difference (P ⁇ V) And the n-point average roughness (Rz) value was excellent, and it was confirmed that the surface of the polished material after polishing had high smoothness and few scratches.
  • Comparative Example 1 is an example in which one-end silicone diol, that is, the polysiloxane compound represented by the general formula (1) in the present invention is not used as the polyol which is a raw material of the urethane prepolymer.
  • the polishing rate is excellent, the values of average surface roughness (Ra), maximum height difference (PV), and n-point average roughness (Rz) are remarkably poor in scratch evaluation of materials to be polished using AFM. It was sufficient, and it was confirmed that the surface of the polished material after polishing had low smoothness and a lot of scratches were generated.
  • Comparative Example 2 is an example in which a one-terminal silicone diol, that is, a polysiloxane compound represented by the general formula (1) in the present invention is used outside the scope of the present invention as a polyol which is a raw material of the urethane prepolymer.
  • the polishing rate is insufficient, and also in the scratch evaluation of the material to be polished using AFM, the average surface roughness (Ra), the maximum height difference (PV), and the n-point average roughness (Rz) It was confirmed that the value was extremely insufficient, the surface of the polished material after polishing was low in smoothness, and many scratches were generated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention provides a polishing pad which is a cured foam of a urethane resin composition containing (i) a base material that contains a urethane prepolymer (A) having an isocyanate group, said urethane prepolymer (A) being a reaction product of a polyol (a1) containing a polysiloxane compound represented by general formula (1) and a polyisocyanate (a2) and (ii) a curing agent, and which is characterized in that the ratio of the polysiloxane compound in the starting material for the urethane prepolymer (A) is 1% by mass or less. This polishing pad has excellent polishing rate and enables the achievement of a polished article which has less scratches in the surface of a polished material after polishing, thereby having excellent smoothness.

Description

研磨パッド、研磨パッドの製造方法及び研磨方法Polishing pad, polishing pad manufacturing method and polishing method
 本発明は、特に、ガラス基板、シリコンウェハ、半導体デバイス等の研磨に好適に使用できる研磨パッド、研磨パッドの製造方法及び研磨方法に関する。 The present invention particularly relates to a polishing pad that can be suitably used for polishing glass substrates, silicon wafers, semiconductor devices and the like, a method for manufacturing the polishing pad, and a polishing method.
 液晶ディスプレイ(LCD)用ガラス基板、ハードディスク(HDD)用ガラス基板、記録装置用ガラスディスク、光学用レンズ、シリコンウェハ、半導体デバイス等は、高度な表面平坦性と面内均一性が要求される。 Liquid crystal display (LCD) glass substrates, hard disk (HDD) glass substrates, recording device glass disks, optical lenses, silicon wafers, semiconductor devices, and the like are required to have high surface flatness and in-plane uniformity.
 特に、前記半導体デバイスでは、半導体回路の集積度が急激に増大するにつれて高密度化を目的とした微細化や多層配線化が進み、加工面のより一層高度な表面平坦性が要求されている。また、前記液晶ディスプレイ用ガラス基板においても、液晶ディスプレイの大型化に伴い、加工面のより高度な表面平坦性が要求されている。このように加工面の表面平坦性の要求が高度化されており、研磨加工における研磨精度や研磨効率等の要求性能がさらに高まってきている。 In particular, in the semiconductor device, as the degree of integration of semiconductor circuits increases rapidly, miniaturization and multilayer wiring for the purpose of higher density have progressed, and a higher degree of surface flatness of the processed surface is required. In addition, the glass substrate for liquid crystal display is also required to have higher surface flatness of the processed surface as the liquid crystal display becomes larger. In this way, the demand for surface flatness of the processed surface has been advanced, and required performance such as polishing accuracy and polishing efficiency in the polishing process has been further increased.
 そこで、半導体デバイスや光デバイスの製造プロセスにおいて、優れた平坦性を有する表面を形成することができる研磨方法として、化学的機械的研磨法、いわゆるCMP(Chemical Mechanical Polishing)法が広く採用されている。 Therefore, a chemical mechanical polishing method, a so-called CMP (Chemical Mechanical Polishing) method, is widely used as a polishing method capable of forming a surface having excellent flatness in the manufacturing process of semiconductor devices and optical devices. .
 前記CMP法では、通常、研磨加工時に砥粒(研磨粒子)をアルカリ溶液または酸溶液に分散させたスラリー(研磨液)を供給して研磨を行う遊離砥粒方式が採用されている。すなわち、被研磨物(の加工面)は、スラリー中の砥粒による機械的作用と、アルカリ溶液または酸溶液による化学的作用とで平坦化される。ここで、加工面に要求される平坦性の高度化に伴い、CMP法に求められる研磨精度や研磨効率等の研磨性能、具体的には、高研磨レート、非スクラッチ性、高平坦性の要求が高まっている。前記CMP法の遊離砥粒方式を用いる研磨パッドとしては、例えば、摩耗の度合いを適正化し研磨性能の安定化を図る技術が報告されている(例えば、特許文献1参照。)。また、廃液処理やコスト問題から、遊離砥粒方式を用いない固定砥粒型研磨パッドも提案されている(例えば、特許文献2参照。)。 In the CMP method, a free abrasive grain method is generally employed in which polishing is performed by supplying a slurry (polishing liquid) in which abrasive grains (polishing particles) are dispersed in an alkali solution or an acid solution during polishing. That is, the object to be polished (the processed surface thereof) is flattened by a mechanical action by the abrasive grains in the slurry and a chemical action by the alkali solution or the acid solution. Here, with the advancement of flatness required for the processed surface, polishing performance such as polishing accuracy and polishing efficiency required for the CMP method, specifically, high polishing rate, non-scratch property, and high flatness are required. Is growing. As a polishing pad using the above-mentioned CMP method, for example, a technique for optimizing the degree of wear and stabilizing the polishing performance has been reported (for example, see Patent Document 1). In addition, a fixed abrasive polishing pad that does not use the free abrasive method has been proposed due to waste liquid treatment and cost problems (see, for example, Patent Document 2).
 前記遊離砥粒方式を用いる研磨パッドとしては、近年の更なる高度な要求に答えるべく、例えば、ビニル系樹脂の最適化で高研磨レート、高平坦性、及び低スクラッチを達成する試み(例えば、特許文献3参照。)、磨耗性を制御することでスクラッチの発生を少なくする試み(例えば、特許文献4参照。)、ウレタン樹脂をエポキシ改質することで平坦性や研磨速度を改良する試み(例えば、特許文献5参照。)、ウレタン樹脂の原料として特殊原料を用いて平坦化する試み(例えば、特許文献6参照。)等が提案されている。 As a polishing pad using the above-mentioned free abrasive grain method, for example, an attempt to achieve a high polishing rate, high flatness, and low scratch by optimizing a vinyl-based resin, for example, in order to respond to further advanced demands in recent years (for example, Patent Document 3), an attempt to reduce the occurrence of scratches by controlling the wear properties (see, for example, Patent Document 4), an attempt to improve the flatness and polishing rate by epoxy modification of urethane resin ( For example, refer to Patent Document 5), and attempts to planarize using a special raw material as a raw material for urethane resin (for example, refer to Patent Document 6) have been proposed.
 上述のように、産業界からは、高精密研磨に要求される高度化された高研磨レート、低スクラッチ性、及び高平坦性を満足する研磨パッドが強く求められ、様々な試みが行われているものの、未だ見出されていないのが実情である。 As described above, the industry strongly demands a polishing pad that satisfies the advanced high polishing rate, low scratch property, and high flatness required for high precision polishing, and various attempts have been made. However, the reality is that it has not been found yet.
特開2010- 76075号公報JP 2010-76075 A 特開2011-142249号公報JP 2011-142249 A 特開2014-192217号公報JP 2014-192217 A 特開2014-111296号公報JP 2014-1111296 A 特開2013-252584号公報JP 2013-252584 A 特開2015- 51498号公報JP2015-51498A
 本発明が解決しようとする課題は、優れた研磨レートを有し、かつ、研磨後の被研磨材表面のスクラッチが少なく平滑性に優れた研磨物が得られる研磨パッドを提供することである。 The problem to be solved by the present invention is to provide a polishing pad that has an excellent polishing rate and has a smooth surface with less scratches on the surface of the polished material after polishing and having excellent smoothness.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、ポリシロキサン化合物を含むポリオール(a1)とポリイソシアネート(a2)との反応物であるイソシアネート基を有するウレタンプレポリマー(A)を含む主剤(i)、及び、硬化剤(ii)を含有するウレタン樹脂組成物の発泡硬化物であり、前記ウレタンプレポリマー(A)中に前記ポリシロキサン化合物を特定量含有させた研磨パッドを用いることによって、上記課題を解決できることを見出し、本発明を完成させた。 As a result of diligent research to solve the above problems, the present inventors have obtained a urethane prepolymer (A) having an isocyanate group which is a reaction product of a polyol (a1) containing a polysiloxane compound and a polyisocyanate (a2). A foamed cured product of a urethane resin composition containing a main agent (i) and a curing agent (ii), and a polishing pad containing a specific amount of the polysiloxane compound in the urethane prepolymer (A) is used. As a result, the present inventors have found that the above problems can be solved and completed the present invention.
 すなわち、本発明は、下記一般式(1)で示されるポリシロキサン化合物を含むポリオール(a1)とポリイソシアネート(a2)との反応物であるイソシアネート基を有するウレタンプレポリマー(A)を含む主剤(i)、及び、硬化剤(ii)を含有するウレタン樹脂組成物の発泡硬化物である研磨パッドであって、前記ウレタンプレポリマー(A)原料中の前記ポリシロキサン化合物の割合が、1質量%以下であることを特徴とする研磨パッドに関するものである。 That is, the present invention includes a main agent containing a urethane prepolymer (A) having an isocyanate group which is a reaction product of a polyol (a1) containing a polysiloxane compound represented by the following general formula (1) and a polyisocyanate (a2) ( i) and a polishing pad which is a foam cured product of a urethane resin composition containing a curing agent (ii), wherein the proportion of the polysiloxane compound in the raw material of the urethane prepolymer (A) is 1% by mass. The present invention relates to a polishing pad characterized by the following.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R及びRはそれぞれ独立して炭素原子数1~5のアルキル基を示し、Rは炭素原子数1~5のアルキレン基を示し、nは1~200の繰り返し単位の平均値を示す。) (In Formula (1), R 1 and R 3 each independently represents an alkyl group having 1 to 5 carbon atoms, R 2 represents an alkylene group having 1 to 5 carbon atoms, and n represents 1 to 200 carbon atoms. Indicates the average value of repeating units.)
 また、本発明は、前記一般式(1)で示されるポリシロキサン化合物を含むポリオール(a1)とポリイソシアネート(a2)とを反応させて得られるイソシアネート基を有するウレタンプレポリマー(A)を含む主剤(i)、硬化剤(ii)、及び、水(B)を含有する発泡剤(iii)を含有するウレタン樹脂組成物を混合し、型内に注入し、発泡、硬化させて発泡成形物を得、次いで、前記発泡成形物を型から取り出し、シート状にスライスすることを特徴とする研磨パッドの製造方法に関するものである。 Moreover, this invention is the main ingredient containing the urethane prepolymer (A) which has the isocyanate group obtained by making the polyol (a1) and polyisocyanate (a2) containing the polysiloxane compound shown by the said General formula (1) react. A urethane resin composition containing a foaming agent (iii) containing (i), a curing agent (ii), and water (B) is mixed, poured into a mold, foamed and cured, and a foamed molded product is obtained. Next, the present invention relates to a method for producing a polishing pad, wherein the foamed molded product is taken out of a mold and sliced into a sheet.
 さらに、本発明は、前記研磨パッドを用いることを特徴とするビッカース硬度1500以下の被研磨材の研磨方法に関するものである。 Furthermore, the present invention relates to a method for polishing a material to be polished having a Vickers hardness of 1500 or less, wherein the polishing pad is used.
 本発明の研磨パッドは、優れた研磨レートを有し、かつ、本発明の研磨パッドを用いて研磨した被研磨材において、スクラッチの発生が少なく被研磨材表面の平滑性に優れた研磨物が得られるものである。 The polishing pad of the present invention has an excellent polishing rate, and in the material to be polished by using the polishing pad of the present invention, there is a polished material with less scratching and excellent surface smoothness. It is obtained.
 従って、本発明の研磨パッドは、液晶ディスプレイ(LCD)用ガラス基板、ハードディスク(HDD)用ガラス基板、記録装置用ガラスディスク、光学用レンズ、シリコンウェハ、半導体デバイス、スマートフォンのカバー用ガラス等の光学基板;磁性基板;シリコンウェハ基板;デバイス用基板など、高度な表面平坦性と面内均一性が要求される高い精度の研磨加工に有用であり、特にシリコンウェハ等のビッカース硬度が1500以下の被研磨剤の研磨に特に有用である。 Accordingly, the polishing pad of the present invention is an optical material such as a glass substrate for a liquid crystal display (LCD), a glass substrate for a hard disk (HDD), a glass disk for a recording device, an optical lens, a silicon wafer, a semiconductor device, and a glass for a smartphone cover. It is useful for high-precision polishing processing that requires high surface flatness and in-plane uniformity, such as a substrate; a magnetic substrate; a silicon wafer substrate; and a device substrate. It is particularly useful for polishing abrasives.
図1は実施例1で得られた研磨パッド(P1)を用いて研磨した被研磨材(シリコンウェハ)のAFM観察図である。FIG. 1 is an AFM observation view of a material to be polished (silicon wafer) polished using the polishing pad (P1) obtained in Example 1. FIG. 図2は比較例1で得られた研磨パッド(P’1)を用いて研磨した被研磨材(シリコンウェハ)のAFM観察図である。FIG. 2 is an AFM observation view of the material to be polished (silicon wafer) polished using the polishing pad (P′1) obtained in Comparative Example 1. 図3は比較例2で得られた研磨パッド(P’2)を用いて研磨した被研磨材(シリコンウェハ)のAFM観察図である。FIG. 3 is an AFM observation view of the material to be polished (silicon wafer) polished using the polishing pad (P′2) obtained in Comparative Example 2.
 本発明の研磨パッドは、下記一般式(1)で示されるポリシロキサン化合物を含むポリオール(a1)とポリイソシアネート(a2)との反応物であるイソシアネート基を有するウレタンプレポリマー(A)を含む主剤(i)、及び、硬化剤(ii)を含有するウレタン樹脂組成物の発泡硬化物である。 The polishing pad of the present invention comprises a main component containing a urethane prepolymer (A) having an isocyanate group which is a reaction product of a polyol (a1) containing a polysiloxane compound represented by the following general formula (1) and a polyisocyanate (a2). It is a foamed cured product of a urethane resin composition containing (i) and a curing agent (ii).
 前記主剤(i)としては、下記一般式(1)で示されるポリシロキサン化合物を含むポリオール(a1)とポリイソシアネート(a2)との反応物であるイソシアネート基を有するウレタンプレポリマー(A)を用いる。 As the main agent (i), a urethane prepolymer (A) having an isocyanate group which is a reaction product of a polyol (a1) containing a polysiloxane compound represented by the following general formula (1) and a polyisocyanate (a2) is used. .
 前記ポリオール(a1)としては、下記一般式(1)で示されるポリシロキサン化合物を必須として用い、必要に応じてその他のポリオールを用いることもできる。 As the polyol (a1), a polysiloxane compound represented by the following general formula (1) is used as an essential component, and other polyols can be used as necessary.
 前記ポリシロキサン化合物としては、下記一般式(1)で示されるものを用いる。 As the polysiloxane compound, one represented by the following general formula (1) is used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(1)中、R及びRはそれぞれ独立して炭素原子数1~5のアルキル基を示し、Rは炭素原子数1~5のアルキレン基を示し、nは1~200の繰り返し単位の平均値を示す。) (In Formula (1), R 1 and R 3 each independently represents an alkyl group having 1 to 5 carbon atoms, R 2 represents an alkylene group having 1 to 5 carbon atoms, and n represents 1 to 200 carbon atoms. Indicates the average value of repeating units.)
 前記ポリシロキサン化合物は、研磨後の被研磨材表面のスクラッチが少なく平滑性に優れた研磨物が得られ、かつ、優れた研磨レートを有する研磨パッドが得られることから、R及びRが、それぞれメチル基又はエチル基であることが好ましく、Rがプロピレン基又はテトラメチレン基であることが好ましく、nが10~100の範囲であることが好ましく、15~50の範囲がより好ましい。 Since the polysiloxane compound is capable of obtaining a polished article with less scratches on the surface of the polished material after polishing and having excellent smoothness and a polishing pad having an excellent polishing rate, R 1 and R 3 are Are each preferably a methyl group or an ethyl group, R 2 is preferably a propylene group or a tetramethylene group, n is preferably in the range of 10 to 100, and more preferably in the range of 15 to 50.
 前記ポリシロキサン化合物としては、例えば、信越化学工業株式会社製「X-22-176B」、「X-22-176DX」、「サイラプレーンFMDA11」等を市販品として入手することができる。 As the polysiloxane compound, for example, “X-22-176B”, “X-22-176DX”, “Silaplane FMDA11” manufactured by Shin-Etsu Chemical Co., Ltd. can be obtained as commercial products.
 また、前記ウレタンプレポリマー(A)原料中の前記ポリシロキサン化合物の割合は、研磨後の被研磨材表面のスクラッチが少なく平滑性に優れた研磨物が得られ、かつ、研磨レート、機械的強度及び研磨パッドのライフにも優れた研磨パッドが得られることから、1質量%以下であるが、0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましい。また、前記ポリシロキサン化合物は、前記ウレタンプレポリマー(A)の原料として必須であり、その下限は、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましい。 Moreover, the ratio of the polysiloxane compound in the raw material of the urethane prepolymer (A) is such that a polished product with less scratches on the surface of the polished material after polishing and excellent smoothness can be obtained, and the polishing rate and mechanical strength can be obtained. And since the polishing pad excellent also in the life of the polishing pad is obtained, it is 1% by mass or less, preferably 0.5% by mass or less, and more preferably 0.3% by mass or less. The polysiloxane compound is essential as a raw material for the urethane prepolymer (A), and the lower limit thereof is preferably 0.01% by mass or more, and more preferably 0.05% by mass or more. .
 ここで、前記ポリシロキサン化合物の割合が1質量%よりも多いと、研磨レートが低下する。また、前記ウレタンプレポリマー(A)を合成する際において、相溶性の問題から前記ポリシロキサン化合物の反応率が低下することによる、得られた研磨パッドの機械的強度の低下や、未反応のシリコーン化合物による被研磨体への汚染が懸念されるため好ましくない。 Here, if the ratio of the polysiloxane compound is more than 1% by mass, the polishing rate is lowered. Further, when synthesizing the urethane prepolymer (A), the reaction rate of the polysiloxane compound is lowered due to a compatibility problem, resulting in a decrease in mechanical strength of the obtained polishing pad and an unreacted silicone. This is not preferable because contamination of the object to be polished by the compound is concerned.
 前記その他のポリオールとしては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリブタジエンポリオール、ポリアクリルポリオール、ダイマージオール、ポリブタジエンポリオール、ポリイソプレンポリオール等が挙げられる。これらの中でも、研磨レートをより一層向上できることからポリエーテルポリオールが好ましく、特にポリテトラメチレングリコールが好ましい。これらのその他のポリオールは、単独で用いることも2種以上を併用することもできる。 Examples of the other polyol include polyether polyol, polyester polyol, polycarbonate polyol, polybutadiene polyol, polyacryl polyol, dimer diol, polybutadiene polyol, and polyisoprene polyol. Among these, polyether polyol is preferable because the polishing rate can be further improved, and polytetramethylene glycol is particularly preferable. These other polyols can be used alone or in combination of two or more.
 前記ポリエーテルポリオールとしては、例えば、テトラヒドロフランの開環重合により得られるポリテトラメチレングリコールが挙げられる。また、活性水素原子を2つ以上有する化合物の1種又は2種以上を開始剤として、アルキレンオキサイドを付加重合させたものが挙げられる。前記活性水素原子を2つ以上有する化合物としては、例えば、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、グリセリン、ジグリセリン、トリメチロールエタン、トリメチロールプロパン、水、ヘキサントリオール等が挙げられる。また、前記アルキレンオキサイドとしては、例えば、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトラヒドロフラン等が挙げられる。これらのポリエーテルポリオールは、単独で用いることも2種以上を併用することもできる。 Examples of the polyether polyol include polytetramethylene glycol obtained by ring-opening polymerization of tetrahydrofuran. Moreover, what carried out addition polymerization of the alkylene oxide by using the 1 type (s) or 2 or more types of the compound which has 2 or more of active hydrogen atoms as an initiator is mentioned. Examples of the compound having two or more active hydrogen atoms include propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, glycerin, diethylene Examples include glycerin, trimethylolethane, trimethylolpropane, water, hexanetriol and the like. Examples of the alkylene oxide include propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, and tetrahydrofuran. These polyether polyols can be used alone or in combination of two or more.
 前記その他のポリオールとして、前記ポリエーテルポリオールを用いる場合は、ポリシロキサン化合物とポリエーテルポリオールの相溶性の点から、前記ポリオール(a1)中に20~99.9質量%の範囲で用いることが好ましく、50~99.9質量%の範囲がより好ましい。 When the polyether polyol is used as the other polyol, it is preferably used in the range of 20 to 99.9% by mass in the polyol (a1) from the viewpoint of the compatibility between the polysiloxane compound and the polyether polyol. The range of 50 to 99.9% by mass is more preferable.
 前記ポリエステルポリオールとしては、例えば、低分子量のポリオールと、ポリカルボン酸とを反応して得られるポリエステルポリオール;ε-カプロラクトン等の環状エステル化合物を開環重合反応して得られるポリエステルポリオール;これらを共重合して得られるポリエステルポリオール等が挙げられる。これらのポリエステルポリオールは、単独で用いることも2種以上を併用することもできる。 Examples of the polyester polyol include a polyester polyol obtained by reacting a low molecular weight polyol and a polycarboxylic acid; a polyester polyol obtained by a ring-opening polymerization reaction of a cyclic ester compound such as ε-caprolactone; Examples include polyester polyols obtained by polymerization. These polyester polyols can be used alone or in combination of two or more.
 前記低分子量のポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ネオペンチルグリコール、1,3-ブタンジオール等の分子量が50~300程度である脂肪族ポリオール;シクロヘキサンジメタノール等の脂肪族環式構造を有するポリオール;ビスフェノールA及びビスフェノールF等の芳香族構造を有するポリオールが挙げられる。なかでも、1,6-ヘキサンジオール、ネオペンチルグリコールが好ましい。 Examples of the low molecular weight polyol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, neopentyl glycol, 1,3-butanediol and the like having a molecular weight of about 50 to 300. Aliphatic polyols such as cyclohexane dimethanol, and polyols having an aromatic structure such as bisphenol A and bisphenol F. Of these, 1,6-hexanediol and neopentyl glycol are preferable.
 前記ポリエステルポリオールの製造に使用可能な前記ポリカルボン酸としては、例えば、コハク酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族ポリカルボン酸;テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ポリカルボン酸;それらの無水物またはエステル化物等が挙げられる。 Examples of the polycarboxylic acid that can be used for the production of the polyester polyol include aliphatic polycarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid; terephthalic acid, isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid. And aromatic polycarboxylic acids such as anhydrides or esterified products thereof.
 また、前記ポリカーボネートポリオールは、炭酸及び炭酸エステルと、多価アルコールとをエステル化反応させて得られるものである。前記多価アルコールとしては、例えば、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等が挙げられる。これらのポリカーボネートポリオールは、単独で用いることも2種以上を併用することもできる。 The polycarbonate polyol is obtained by esterifying carbonic acid and a carbonate ester with a polyhydric alcohol. Examples of the polyhydric alcohol include 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and the like. These polycarbonate polyols can be used alone or in combination of two or more.
 前記その他のポリオールの数平均分子量としては、研磨レートの点から、200~5,000の範囲であることが好ましく、300~3,000の範囲であることがより好ましい。なお、前記その他のポリオールの数平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により、下記条件で測定した値を示す。 The number average molecular weight of the other polyol is preferably in the range of 200 to 5,000, more preferably in the range of 300 to 3,000, from the viewpoint of the polishing rate. In addition, the number average molecular weight of the said other polyol shows the value measured on condition of the following by gel permeation chromatography (GPC) method.
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
Measuring device: High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation)
Column: The following columns manufactured by Tosoh Corporation were connected in series.
"TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000" (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID × 30 cm) × 1 detector: RI (differential refractometer)
Column temperature: 40 ° C
Eluent: Tetrahydrofuran (THF)
Flow rate: 1.0 mL / min Injection amount: 100 μL (tetrahydrofuran solution with a sample concentration of 0.4 mass%)
Standard sample: A calibration curve was prepared using the following standard polystyrene.
(標準ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(Standard polystyrene)
"TSKgel standard polystyrene A-500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-1000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-2500" manufactured by Tosoh Corporation
"TSKgel standard polystyrene A-5000" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-1" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-2" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-4" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-10" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-20" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-40" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-80" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-128" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-288" manufactured by Tosoh Corporation
"TSKgel standard polystyrene F-550" manufactured by Tosoh Corporation
 前記ポリイソシアネート(a2)としては、例えば、シクロヘキサンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂環式構造を有するポリイソシアネート;4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネート、クルードジフェニルメタンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族ポリイソシアネートが挙げられる。これらの中でも、研磨パッドの高硬度性、及び、研磨レートをより一層向上できることから、芳香族ポリイソシアネートが好ましく、トルエンジイソシアネート、またはジフェニルメタンジイソシアネートが好ましい。また、これらのポリイソシアネート(a2)は、単独で用いることも2種以上を併用することもできる。 Examples of the polyisocyanate (a2) include polyisocyanates having an alicyclic structure such as cyclohexane diisocyanate, dicyclohexylmethane diisocyanate, and isophorone diisocyanate; 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane Aromatic polyisocyanates such as diisocyanate, crude diphenylmethane diisocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate; and aliphatic polyisocyanates such as hexamethylene diisocyanate, lysine diisocyanate, xylylene diisocyanate, and tetramethylxylylene diisocyanate. Among these, aromatic polyisocyanate is preferable, and toluene diisocyanate or diphenylmethane diisocyanate is preferable because the high hardness of the polishing pad and the polishing rate can be further improved. Moreover, these polyisocyanates (a2) can be used alone or in combination of two or more.
 前記ウレタンプレポリマー(A)は、前記ポリオール(a1)及び前記ポリイソシアネート(a2)を公知の方法によりウレタン化反応させて得られるものであり、イソシアネート基を有するものである。 The urethane prepolymer (A) is obtained by urethanating the polyol (a1) and the polyisocyanate (a2) by a known method, and has an isocyanate group.
 前記ウレタンプレポリマー(A)を得る際の、前記ポリオール(a1)が有する水酸基と前記ポリイソシアネート(a2)が有するイソシアネート基とのモル比(NCO/OH)は、前記ウレタンプレポリマー(A)の粘度が適正(例えば、注型機で製造する場合で40~90℃で500~2000mPa・s)であり、スクラッチが少なく、かつ、研磨レートに優れる研磨パッドが得られることから、1.3~6.5の範囲が好ましく、1.5~4の範囲がより好ましい。 When obtaining the urethane prepolymer (A), the molar ratio (NCO / OH) between the hydroxyl group of the polyol (a1) and the isocyanate group of the polyisocyanate (a2) is that of the urethane prepolymer (A). Since the viscosity is appropriate (for example, 500 to 2000 mPa · s at 40 to 90 ° C. when manufactured by a casting machine), a polishing pad having a low scratch and an excellent polishing rate can be obtained. The range of 6.5 is preferable, and the range of 1.5 to 4 is more preferable.
 ここで、前記モル比(NCO/OH)が、1.3未満であると、前記ウレタンプレポリマー(A)の粘度が極端に上昇し、研磨パッドの製造において流量が安定しなくなったり混合性が悪化したりすることで品質の低下につながる。一方、前記モル比(NCO/OH)が6.5よりも大きいと未反応のポリイソシアネートが増加し、極めて低粘度となり、同様に流量が安定しなくなったり、可使時間が極端に短くなったりすることで、研磨パッドの製造が困難となる。 Here, when the molar ratio (NCO / OH) is less than 1.3, the viscosity of the urethane prepolymer (A) is extremely increased, and the flow rate becomes unstable or the mixing property is deteriorated in the production of the polishing pad. Deteriorating can lead to quality degradation. On the other hand, if the molar ratio (NCO / OH) is greater than 6.5, the amount of unreacted polyisocyanate increases and the viscosity becomes extremely low. Similarly, the flow rate becomes unstable and the pot life becomes extremely short. This makes it difficult to manufacture the polishing pad.
 前記ウレタンプレポリマー(A)のイソシアネート基当量としては、研磨後の被研磨材表面のスクラッチが少なく平滑性に優れた研磨物が得られ、かつ、研磨レート、機械的強度及び研磨パッドのライフにも優れた研磨パッドが得られることから、200~800g/eq.の範囲であることが好ましく、250~600g/eq.の範囲であることがより好ましい。なお、前記ウレタンプレポリマー(A)のイソシアネート基当量は、JIS-K-7301:2003に規定の方法に準拠して、試料を乾燥トルエンに溶解し、過剰のジ-n-ブチルアミン溶液を加えて反応させ、残存するジ-n-ブチルアミンを塩酸標準溶液で逆滴定して求めた値を示す。 As the isocyanate group equivalent of the urethane prepolymer (A), a polished product with less scratches on the surface of the polished material after polishing and excellent smoothness can be obtained, and the polishing rate, mechanical strength and polishing pad life can be improved. Can be obtained from 200 to 800 g / eq. In the range of 250 to 600 g / eq. More preferably, it is the range. Incidentally, the isocyanate group equivalent of the urethane prepolymer (A) was determined by dissolving the sample in dry toluene and adding an excess di-n-butylamine solution in accordance with the method specified in JIS-K-7301: 2003. The value obtained by reacting and back titrating the remaining di-n-butylamine with a hydrochloric acid standard solution is shown.
 前記硬化剤(ii)としては、前記ウレタンプレポリマー(A)が有するイソシアネート基と反応する活性水素原子([NH]基及び/又は[OH]基)を含有する基を有する化合物を含有することが好ましく、例えば、エチレンジアミン、プロパンジアミン、ヘキサンジアミン、イソホロンジアミン等の脂肪族又は脂環式アミン化合物;フェニレンジアミン、3,3’-ジクロロ-4,4’-ジアミノジフェニルメタン、ポリアミノクロロフェニルメタン化合物等の芳香族アミン化合物;エチレングリコール、ジエチレングリコール、プロパンジオール、ブタンジオール、ヘキサンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物、ポリエーテルポリオール、ポリエステルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオール等の2個以上の水酸基を有する化合物などが挙げられる。これらの化合物は、単独で用いることも2種以上を併用することもできる。 The curing agent (ii) contains a compound having a group containing an active hydrogen atom ([NH] group and / or [OH] group) that reacts with the isocyanate group of the urethane prepolymer (A). Preferred are aliphatic or cycloaliphatic amine compounds such as ethylenediamine, propanediamine, hexanediamine, and isophoronediamine; phenylenediamine, 3,3′-dichloro-4,4′-diaminodiphenylmethane, polyaminochlorophenylmethane compounds, and the like. Aromatic amine compounds; ethylene glycol, diethylene glycol, propanediol, butanediol, hexanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, bisphenol A, alkylene oxide adducts of bisphenol A, poly Chromatography ether polyols, polyester polyols, polycaprolactone polyols, and compounds having two or more hydroxyl groups such as polycarbonate polyols. These compounds can be used alone or in combination of two or more.
 前記硬化剤(ii)が有する活性水素原子を含有する基と、前記ウレタンプレポリマー(A)が有するイソシアネート基とのモル比としては、研磨後の被研磨材表面のスクラッチが少なく平滑性に優れた研磨物が得られ、かつ、研磨レート、機械的強度及び研磨パッドのライフにも優れた研磨パッドが得られることから、[R値]=([前記硬化剤(ii)及び前記発泡剤(iii)中のイソシアネート基と反応する基の合計モル数]/[ウレタンプレポリマー(A)のイソシアネート基のモル数])=0.7~1.1の範囲が好ましく、0.8~1の範囲がより好ましい。 The molar ratio between the group containing active hydrogen atoms of the curing agent (ii) and the isocyanate group of the urethane prepolymer (A) is excellent in smoothness with little scratches on the surface of the polished material after polishing. In addition, a polishing pad excellent in polishing rate, mechanical strength, and life of the polishing pad can be obtained. Therefore, [R value] = ([the curing agent (ii) and the foaming agent ( iii) The total number of moles of the group reacting with the isocyanate group] / [number of moles of the isocyanate group of the urethane prepolymer (A)]) = preferably in the range of 0.7 to 1.1, 0.8 to 1 A range is more preferred.
 また、前記硬化剤(i)は、研磨後の被研磨材表面のスクラッチが少なく平滑性に優れた研磨物が得られ、かつ、研磨レート、機械的強度及び研磨パッドのライフにも優れた研磨パッドが得られることから、前記ウレタンプレポリマー(A)100質量部に対して10~50質量部の範囲で用いることが好ましい。 In addition, the curing agent (i) is a polishing material that has less scratches on the surface of the polished material after polishing and has excellent smoothness, and also has excellent polishing rate, mechanical strength, and polishing pad life. Since a pad is obtained, it is preferably used in the range of 10 to 50 parts by mass with respect to 100 parts by mass of the urethane prepolymer (A).
 本発明で使用するウレタン樹脂組成物は、前記ウレタンプレポリマー(A)を含む主剤(i)、及び、硬化剤(ii)を必須成分として含有するものであるが、必要に応じてその他の添加剤を含有することもできる。 The urethane resin composition used in the present invention contains the main component (i) containing the urethane prepolymer (A) and the curing agent (ii) as essential components, but other additions as necessary. An agent can also be contained.
 前記その他の添加剤としては、例えば、水(B)を含有する発泡剤(iii)、触媒(C)、整泡剤(D)、砥粒、充填剤、顔料、増粘剤、酸化防止剤、紫外線吸収剤、界面活性剤、難燃剤、可塑剤等が挙げられる。これらの添加剤は単独で用いることも2種以上を併用することもできる。これらの中でも、前記ウレタン樹脂組成物を使用して水発泡法により研磨パッドを得る場合には、前記水(B)を含有する発泡剤(iii)を用いることが好ましい。 Examples of the other additives include a foaming agent (iii) containing water (B), a catalyst (C), a foam stabilizer (D), abrasive grains, a filler, a pigment, a thickener, and an antioxidant. UV absorbers, surfactants, flame retardants, plasticizers and the like. These additives can be used alone or in combination of two or more. Among these, when the polishing pad is obtained by the water foaming method using the urethane resin composition, it is preferable to use the foaming agent (iii) containing the water (B).
 前記水(B)は、水発泡法における発泡剤の役割を果たすものであり、例えば、イオン交換水、蒸留水等が挙げられる。前記水(B)を用いる場合の使用量としては、前記ウレタンプレポリマー(A)100質量部に対して水(B)の割合が0.01~1質量部の範囲であることが好ましい。 The water (B) serves as a foaming agent in the water foaming method, and examples thereof include ion-exchanged water and distilled water. When the water (B) is used, the amount of water (B) is preferably in the range of 0.01 to 1 part by mass with respect to 100 parts by mass of the urethane prepolymer (A).
 なお、前記発泡剤(iii)には、水発泡性をより一層向上する目的で、前記硬化剤(ii)として用いる前記活性水素原子を含有する基を有する化合物を単独又は2種以上を併用して含有することができる。前記活性水素原子を含有する基を有する化合物を用いる場合の使用量としては、水発泡性をより一層向上できることから、前記ウレタンプレポリマー(A)100質量部に対して、0.1~10質量部の範囲であることが好ましい。 In addition, the foaming agent (iii) may be used alone or in combination of two or more compounds having a group containing the active hydrogen atom used as the curing agent (ii) for the purpose of further improving water foamability. Can be contained. When the compound having a group containing an active hydrogen atom is used, the amount of water foaming can be further improved, so that 0.1 to 10 parts by mass with respect to 100 parts by mass of the urethane prepolymer (A). The range of parts is preferred.
 また、前記その他の添加剤としては、安定した発泡を形成できることから、触媒(C)を含有することが好ましい。 The other additive preferably contains a catalyst (C) because stable foaming can be formed.
 前記触媒(C)としては、例えば、N,N-ジメチルアミノエチルエーテル、トリエチレンジアミン、ジメチルエタノールアミン、トリエタノールアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N-メチルイミダゾール等の三級アミン触媒;ジオクチルチンジラウレート等の金属触媒などが挙げられる。これらの触媒は単独で用いることも2種以上を併用することもできる。これらの中では、安定した発泡を成形できることから、N,N-ジメチルアミノエチルエーテルが好ましい。なお、前記触媒(C)は、前記主剤(i)、硬化剤(ii)及び発泡剤(iii)のいずれに含有されてもよい。 Examples of the catalyst (C) include N, N-dimethylaminoethyl ether, triethylenediamine, dimethylethanolamine, triethanolamine, N, N, N ′, N′-tetramethylhexamethylenediamine, and N-methylimidazole. And the like, and metal catalysts such as dioctyltin dilaurate. These catalysts can be used alone or in combination of two or more. Among these, N, N-dimethylaminoethyl ether is preferable because stable foaming can be formed. The catalyst (C) may be contained in any of the main agent (i), the curing agent (ii), and the foaming agent (iii).
 前記触媒(C)を用いる場合の使用量としては、安定した発泡を形成できることから、前記ウレタンプレポリマー(A)100質量部に対して、0.001~5質量部の範囲が好ましい。 The amount used in the case of using the catalyst (C) is preferably in the range of 0.001 to 5 parts by mass with respect to 100 parts by mass of the urethane prepolymer (A) because stable foaming can be formed.
 前記整泡剤(D)としては、例えば、東レ・ダウコーニング株式会社製「東レシリコーン SH-193」、「東レシリコーン SH-192」、「東レシリコーン SH-190」等が挙げられる。これらの整泡剤(D)は単独で用いることも2種以上を併用することもできる。なお、前記整泡剤(D)は、前記主剤(i)、硬化剤(ii)及び発泡剤(iii)のいずれに含有されてもよい。 Examples of the foam stabilizer (D) include “Toray Silicone SH-193”, “Toray Silicone SH-192”, “Toray Silicone SH-190” manufactured by Toray Dow Corning Co., Ltd., and the like. These foam stabilizers (D) can be used alone or in combination of two or more. The foam stabilizer (D) may be contained in any of the main agent (i), the curing agent (ii) and the foaming agent (iii).
 前記整泡剤(D)を用いる場合の使用量としては、微細な気泡を安定的に形成できることから、前記ウレタンプレポリマー(A)100質量部に対して、0.001~5質量部の範囲であることが好ましい。 The amount used in the case of using the foam stabilizer (D) is in the range of 0.001 to 5 parts by mass with respect to 100 parts by mass of the urethane prepolymer (A) because fine bubbles can be stably formed. It is preferable that
 前記ウレタン樹脂組成物を使用して研磨パッドを製造する方法としては、例えば、前記主剤(i)、前記硬化剤(ii)、及び、前記発泡剤(iii)を含有するウレタン樹脂組成物を混合し、金型に注入し、発泡、硬化させて発泡成形物を得、次いで、該発泡成形物を型から取り出し、シート状にスライスして製造する方法が挙げられる。 As a method for producing a polishing pad using the urethane resin composition, for example, a urethane resin composition containing the main agent (i), the curing agent (ii), and the foaming agent (iii) is mixed. Then, it is poured into a mold, foamed and cured to obtain a foamed molded product, and then the foamed molded product is taken out from the mold and sliced into a sheet to produce.
 前記ウレタン樹脂組成物を混合する方法としては、例えば、前記主剤(i)、前記硬化剤(ii)、及び、前記発泡剤(iii)を混合注型機のそれぞれ別々のタンクへ入れて、前記主剤(i)を好ましくは40~80℃に加温し、前記硬化剤(ii)は好ましくは40~120℃に加温し、場合によっては前記発泡剤(iii)を30~70℃に加温し、それぞれを混合注型機で混合する方法が挙げられる。 As a method of mixing the urethane resin composition, for example, the main agent (i), the curing agent (ii), and the foaming agent (iii) are put into separate tanks of a mixed casting machine, The main agent (i) is preferably heated to 40 to 80 ° C., the curing agent (ii) is preferably heated to 40 to 120 ° C., and in some cases, the foaming agent (iii) is heated to 30 to 70 ° C. The method of heating and mixing each with a mixing caster is mentioned.
 前記ウレタン樹脂組成物を使用して研磨パッドを製造する方法としては、具体的には、前述のウレタン樹脂組成物を前記混合注型機で混合した後、混合注型機からそれぞれの成分を吐出し、得られた混合物を40~120℃に予め加温した金型に注入し、前記金型の蓋を閉め、例えば、50~130℃の温度で10分~10時間、発泡、硬化させて発泡成形物を得る。その後、得られた発泡成形物を取出し、好ましくは100~120℃で8~20時間の条件にてアフターキュアを行う。 Specifically, as a method of manufacturing a polishing pad using the urethane resin composition, the above urethane resin composition is mixed by the mixed casting machine, and then each component is discharged from the mixed casting machine. The obtained mixture is poured into a mold preheated to 40 to 120 ° C., the lid of the mold is closed, and foamed and cured at a temperature of 50 to 130 ° C. for 10 minutes to 10 hours, for example. A foam molding is obtained. Thereafter, the obtained foamed molded product is taken out, and after-curing is preferably performed at 100 to 120 ° C. for 8 to 20 hours.
 次いで、前記発泡成形物を適切な厚さでシート状にスライスすることにより研磨パッドが得られる。スライス後の研磨パッドの厚さは、用途に応じて適宜決定されるが、例えば、0.6~3mmの範囲である。 Next, a polishing pad is obtained by slicing the foamed molded product into a sheet with an appropriate thickness. The thickness of the polishing pad after slicing is appropriately determined according to the application, but is, for example, in the range of 0.6 to 3 mm.
 また、前記ウレタン樹脂組成物を使用して研磨パッドを製造する他の方法としては、例えば、前記主剤(i)をガスローディング法により微細気泡を含有させた主剤(i’)(以下、「微細気泡含有主剤(i’)」と略記する。)を得、前記微細気泡含有主剤(i’)、及び、硬化剤(ii)を含有するウレタン組成物を混合し、型内に注入し、硬化させて微細気泡含有成形物を得、次いで、該成形物を型から取り出し、シート状にスライスする方法が挙げられる。 Further, as another method for producing a polishing pad using the urethane resin composition, for example, the main agent (i ′) (hereinafter referred to as “fine”) containing the main agent (i) containing fine bubbles by a gas loading method. (Abbreviated as “bubble-containing main agent (i ′)”), and the urethane composition containing the fine bubble-containing main agent (i ′) and the curing agent (ii) are mixed, injected into a mold, and cured. There is a method in which a molded product containing fine bubbles is obtained, and then the molded product is taken out of the mold and sliced into a sheet.
 前記主剤(i)から微細気泡含有主剤(i’)を得る方法としては、例えば、前記主剤(i)に対して、窒素、炭酸ガス、ヘリウム、アルゴン等の非反応性気体を導入し、機械的に気泡を導入する方法が挙げられる。 As a method for obtaining the fine bubble-containing main agent (i ′) from the main agent (i), for example, a non-reactive gas such as nitrogen, carbon dioxide, helium or argon is introduced into the main agent (i), For example, there is a method of introducing bubbles.
 前記ウレタン組成物を混合する方法としては、例えば、前記微細気泡含有主剤(i’)、及び、前記硬化剤(ii)を混合注型機のそれぞれ別々のタンクへ入れて、前記微細気泡含有主剤(i’)を好ましくは40~80℃に加温し、前記硬化剤(ii)は好ましくは40~120℃に加温し、それぞれを混合注型機で混合する。 As a method of mixing the urethane composition, for example, the fine bubble-containing main agent (i ′) and the curing agent (ii) are put in separate tanks of a mixed casting machine, and the fine bubble-containing main agent is added. (I ′) is preferably heated to 40 to 80 ° C., and the curing agent (ii) is preferably heated to 40 to 120 ° C., and each is mixed with a mixing caster.
 次いで、混合注型機からそれぞれの成分を吐出し、得られた混合物を40~120℃に予め加温した金型に注入し、前記金型の蓋を閉め、例えば、50~130℃の温度で10分~10時間、発泡、硬化させて発泡成形物を得る。その後、得られた発泡成形物を取出し、好ましくは100~120℃で8~20時間の条件にてアフターキュアを行う。 Next, each component is discharged from the mixing casting machine, and the resulting mixture is poured into a mold preheated to 40 to 120 ° C., and the lid of the mold is closed, for example, a temperature of 50 to 130 ° C. And foaming and curing for 10 minutes to 10 hours to obtain a foamed molded product. Thereafter, the obtained foamed molded product is taken out, and after-curing is preferably performed at 100 to 120 ° C. for 8 to 20 hours.
 次に、前記発泡成形物を適切な厚さでシート状にスライスすることにより研磨パッドが得られる。スライス後の研磨パッドの厚さは、用途に応じて適宜決定されるが、例えば、0.6~3mmの範囲である。 Next, a polishing pad is obtained by slicing the foamed molded product into a sheet with an appropriate thickness. The thickness of the polishing pad after slicing is appropriately determined according to the application, but is, for example, in the range of 0.6 to 3 mm.
 また、前記ウレタン組成物を使用して研磨パッドを製造する他の方法としては、例えば、前記主剤(i)をメカニカルフロス法により発泡させて発泡主剤(i’’)を得、前記発泡主剤(i’’)、及び、硬化剤(ii)を含有するウレタン組成物を混合し、型内に注入し、硬化させて発泡成形物を得、次いで、前記発泡成形物を型から取り出し、シート状にスライスする方法が挙げられる。 Further, as another method for producing a polishing pad using the urethane composition, for example, the main agent (i) is foamed by a mechanical floss method to obtain a foam main agent (i ''), and the foam main agent ( i '') and a urethane composition containing a curing agent (ii) are mixed, poured into a mold, and cured to obtain a foamed molded product. Then, the foamed molded product is taken out of the mold, and is in the form of a sheet. The method of slicing is mentioned.
 さらに、前記ウレタン樹脂組成物を使用して研磨パッドを製造する他の方法としては、例えば、前記主剤(i)または、硬化剤(ii)に直径20~120μmの中空状のプラスチック球体(マイクロバルーン)を含有させておき、主剤、硬化剤の2液を混合し、硬化させて中空プラスチック球体を含有する成形物を得、次いで、シート状にスライスする方法が挙げられる。 Further, as another method for producing a polishing pad using the urethane resin composition, for example, a hollow plastic sphere (microballoon) having a diameter of 20 to 120 μm in the main agent (i) or the curing agent (ii). ), The two liquids of the main agent and curing agent are mixed and cured to obtain a molded product containing hollow plastic spheres, and then sliced into a sheet.
 以上の方法により得られる本発明の研磨パッドは、優れた研磨レートを有し、かつ、本発明の研磨パッドを用いて研磨した被研磨材において、スクラッチの発生が少なく被研磨材表面の平滑性に優れた研磨物が得られるものである。 The polishing pad of the present invention obtained by the above method has an excellent polishing rate, and in the material to be polished using the polishing pad of the present invention, the occurrence of scratches is small and the surface of the material to be polished is smooth. It is possible to obtain an excellent polished product.
 従って、本発明の研磨パッド用ウレタン樹脂組成物を用いて得られる研磨パッドは、液晶ディスプレイ(LCD)用ガラス基板、ハードディスク(HDD)用ガラス基板、記録装置用ガラスディスク、光学用レンズ、シリコンウェハ、半導体デバイス等の高度な表面平坦性と面内均一性が要求されるような高い精度の研磨加工に有用であり、ビッカース硬度1500以下の被研磨材の研磨に有用であり、特にシリコンウェハの研磨に有用である。 Therefore, the polishing pad obtained by using the urethane resin composition for a polishing pad of the present invention includes a glass substrate for a liquid crystal display (LCD), a glass substrate for a hard disk (HDD), a glass disk for a recording device, an optical lens, and a silicon wafer. It is useful for high-precision polishing processing that requires high surface flatness and in-plane uniformity such as semiconductor devices, and is useful for polishing materials to be polished having a Vickers hardness of 1500 or less. Useful for polishing.
 なお、ビッカース硬度とは、押し込み硬さの一種であるが、ダイヤモンドでできた剛体(圧子)を披試験物に対し押し込み、そのときにできる圧痕の面積で判断する。試験方法としては、JIS-Z-2244がある。各種被研磨のおおよそのビッカース硬度はおおよそ次のとおりである。
 炭化珪素(SiC):2300~2500、サファイヤ:2300、シリコン:1050、石英ガラス:950、各種ガラス:500~700。
The Vickers hardness is a kind of indentation hardness, but a rigid body (indenter) made of diamond is pushed into the test specimen, and is judged by the area of the indentation formed at that time. As a test method, there is JIS-Z-2244. The approximate Vickers hardness of each type of object to be polished is as follows.
Silicon carbide (SiC): 2300 to 2500, sapphire: 2300, silicon: 1050, quartz glass: 950, various glasses: 500 to 700.
 本発明の研磨パッドを用いた研磨方法としては、例えば、シリコンウェハの研磨の場合、研磨パッド上にスラリー(弱塩基性のコロイダルシリカ水溶液)を滴下しつつ、被研磨体をスラリーと馴染んだパッドに加圧圧着させて、パッドを貼り付けた定盤を稼動(回転)させて研磨する方法などが挙げられる。(遊離砥粒によるCMP研磨法)。 As a polishing method using the polishing pad of the present invention, for example, in the case of polishing a silicon wafer, a slurry (a weakly basic colloidal silica aqueous solution) is dropped on the polishing pad and the object to be polished is adapted to the slurry. And a method of polishing by operating (rotating) a surface plate with a pad attached thereto. (CMP polishing method with loose abrasive grains).
 以下、実施例と比較例とにより、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples and comparative examples.
(合成例1:ウレタンプレポリマー(A1)の合成)
 窒素導入管、冷却用コンデンサー、温度計、攪拌機を備えた5リットル4ッ口丸底フラスコに、トリレンジイソシアネート(TDI-80)2366質量部を仕込み、攪拌を開始した。次いで、ポリテトラメチレングリコール(数平均分子量1000)2028部を仕込み混合し、窒素雰囲気化80℃で3時間反応を行った。次いでポリシロキサン化合物15質量部(信越化学工業株式会社製「X-22-176DX」;片末端シリコーンジオール、数平均分子量;3262)を仕込み混合し、窒素気流下80℃で3時間反応を行った。次いで、ジエチレングリコール591質量部を発熱に注意しながら3時間反応させ、NCO当量420のイソシアネート基末端ウレタンプレポリマー(A1)を得た。
(Synthesis Example 1: Synthesis of urethane prepolymer (A1))
2366 parts by mass of tolylene diisocyanate (TDI-80) was charged into a 5-liter 4-neck round bottom flask equipped with a nitrogen inlet tube, a condenser for cooling, a thermometer, and a stirrer, and stirring was started. Subsequently, 2028 parts of polytetramethylene glycol (number average molecular weight 1000) was charged and mixed, and the reaction was performed at 80 ° C. in a nitrogen atmosphere for 3 hours. Next, 15 parts by mass of a polysiloxane compound (“X-22-176DX” manufactured by Shin-Etsu Chemical Co., Ltd .; one-end silicone diol, number average molecular weight; 3262) was charged and mixed, and the reaction was performed at 80 ° C. for 3 hours in a nitrogen stream. . Next, 591 parts by mass of diethylene glycol was reacted for 3 hours while paying attention to heat generation to obtain an isocyanate group-terminated urethane prepolymer (A1) having an NCO equivalent of 420.
(合成例2:ウレタンプレポリマー(A2)の合成)
 窒素導入管、冷却用コンデンサー、温度計、攪拌機を備えた5リットル4ッ口丸底フラスコに、トリレンジイソシアネート(TDI-80)2366質量部を仕込み、攪拌を開始した。次いで、ポリテトラメチレングリコール(数平均分子量1000)2044質量部を仕込み混合し、窒素気流下80℃で3時間反応を行った。次いで、ジエチレングリコール590質量部を発熱に注意しながら3時間反応させ、NCO当量420のイソシアネート基末端ウレタンプレポリマー(A2)を得た。
(Synthesis Example 2: Synthesis of urethane prepolymer (A2))
2366 parts by mass of tolylene diisocyanate (TDI-80) was charged into a 5-liter 4-neck round bottom flask equipped with a nitrogen inlet tube, a condenser for cooling, a thermometer, and a stirrer, and stirring was started. Next, 2044 parts by mass of polytetramethylene glycol (number average molecular weight 1000) was charged and mixed, and reacted at 80 ° C. for 3 hours under a nitrogen stream. Next, 590 parts by mass of diethylene glycol was reacted for 3 hours while paying attention to heat generation to obtain an isocyanate group-terminated urethane prepolymer (A2) having an NCO equivalent of 420.
(合成例3:ウレタンプレポリマー(A3)の合成)
 合成例1の配合部数を変えるのみで同様の方法で、イソシアネート基末端ウレタンプレポリマー(A3)を得た。尚、仕込みは、トリレンジイソシアネート2366質量部、ポリテトラメチレングリコール1936質量部、ポリシロキサン化合物100質量部(信越化学工業株式会社製「X-22-176DX」;片末端シリコーンジオール、数平均分子量;3262)、ジエチレングリコール598質量部とした。
(Synthesis Example 3: Synthesis of urethane prepolymer (A3))
An isocyanate group-terminated urethane prepolymer (A3) was obtained in the same manner only by changing the number of blending parts in Synthesis Example 1. The charge was 2366 parts by weight of tolylene diisocyanate, 1936 parts by weight of polytetramethylene glycol, 100 parts by weight of a polysiloxane compound (“X-22-176DX” manufactured by Shin-Etsu Chemical Co., Ltd .; one-end silicone diol, number average molecular weight; 3262) and 598 parts by mass of diethylene glycol.
(実施例1:研磨パッド(P1)の製造)
 合成例1で得られたイソシアネート基末端ウレタンプレポリマー(A1)を80℃に温調し、A成分とした。次に、3,3’-ジクロロ-4,4’-ジアミノフェニルメタン(以下、「MBOCA」と略記する。)を120℃で溶融、温調し、B成分とした。
 更に、ポリプロピレングリコール(数平均分子量3000、官能基数;3、以下、「PPG3000」と略記する。)100質量部と、イオン交換水7.0質量部、ビス(ジメチルアミノエチル)エーテル0.6質量部とシリコン整泡剤(東レ・ダウコーニング株式会社製「SH-193」)4質量部を十分に攪拌混合したコンパウンドを35℃で温調し、C成分(Cコンパウンド)とした。
 次に、ミキシング型エラストマー注型機(EA-404型改造、東邦機械工業株式会社製)の3つのタンクに前記A成分、B成分、C成分をそれぞれ仕込んだ。次いで、80℃に温調した金型(内寸250×250×50mm)に、R値=0.9になる様、A成分/B成分/C成分=77.9/18.2/3.9(重量比)の配合比で混合吐出させた。尚、注入量は1875gになるよう注入した。
  ・吐出量=7000g/min
  ・ミキサー回転数=5000rpm (ミキサー:ギヤタイプ)
 その後、直ちに、金型の蓋を閉め、80℃で45分保持した後、インゴット成形品を取り出した。更に得られたインゴット成形品を110℃で16時間のアフターキュアを行った。
 得られたインゴット成形品をスライサーで厚さ1.5mmに切り出し、シート状の研磨パッド(P1)を得た。
(Example 1: Production of polishing pad (P1))
The isocyanate group-terminated urethane prepolymer (A1) obtained in Synthesis Example 1 was temperature-controlled at 80 ° C. to obtain component A. Next, 3,3′-dichloro-4,4′-diaminophenylmethane (hereinafter abbreviated as “MBOCA”) was melted at 120 ° C. and temperature-controlled to obtain B component.
Furthermore, 100 parts by mass of polypropylene glycol (number average molecular weight 3000, number of functional groups; 3, hereinafter abbreviated as “PPG3000”), 7.0 parts by mass of ion-exchanged water, 0.6 parts by mass of bis (dimethylaminoethyl) ether A compound obtained by sufficiently stirring and mixing 4 parts by mass of a silicon foam stabilizer (“SH-193” manufactured by Toray Dow Corning Co., Ltd.) with temperature mixing at 35 ° C. was used as a C component (C compound).
Next, the A component, the B component, and the C component were charged in three tanks of a mixing type elastomer casting machine (model EA-404, manufactured by Toho Machine Industry Co., Ltd.). Next, A component / B component / C component = 77.9 / 18.2 / 3. So that the R value = 0.9 in a mold (inner size 250 × 250 × 50 mm) adjusted to 80 ° C. The mixture was discharged at a blending ratio of 9 (weight ratio). The injection amount was 1875 g.
・ Discharge rate = 7000 g / min
・ Mixer rotation speed = 5000rpm (Mixer: Gear type)
Immediately thereafter, the lid of the mold was closed and held at 80 ° C. for 45 minutes, and then the ingot molded product was taken out. Further, the obtained ingot molded article was after-cured at 110 ° C. for 16 hours.
The obtained ingot molded product was cut into a thickness of 1.5 mm with a slicer to obtain a sheet-like polishing pad (P1).
(比較例1:研磨パッド(P’1)の製造)
 実施例1で用いたウレタンプレポリマー(A1)に代えて、合成例2で得られたウレタンプレポリマー(A2)を用いた以外は、実施例1と同様に行い、研磨パッド(P’1)を得た。
(Comparative Example 1: Production of polishing pad (P′1))
A polishing pad (P′1) was prepared in the same manner as in Example 1 except that the urethane prepolymer (A2) obtained in Synthesis Example 2 was used instead of the urethane prepolymer (A1) used in Example 1. Got.
(比較例2:研磨パッド(P’2)の製造)
 実施例1で用いたウレタンプレポリマー(A1)に代えて、合成例3で得られたウレタンプレポリマー(A3)を用いた以外は、実施例1と同様に行い、研磨パッド(P’2)を得た。
(Comparative Example 2: Production of polishing pad (P′2))
A polishing pad (P′2) was prepared in the same manner as in Example 1 except that instead of the urethane prepolymer (A1) used in Example 1, the urethane prepolymer (A3) obtained in Synthesis Example 3 was used. Got.
 上記の実施例及び比較例で得られた研磨パッドを用いて、下記の評価を行った。 The following evaluation was performed using the polishing pads obtained in the above Examples and Comparative Examples.
[研磨レートの評価方法]
 両面テープの片面に実施例及び比較例で得られた研磨パッドを貼付け、両面テープの他方片面に研磨機の定盤を貼付け、以下の装置、条件、計算式で研磨レートを測定した。
研磨機:FAM 18 GPAW(Speed Fam株式会社製 定盤直径=457m 水冷式)
研磨条件:
(パッド前処理) パッド表面に赤色鉛筆で2cm間隔で縦横に描いた線が消えるまで、ダイヤモンドドレッサー(#100)にてドレス処理(パッドの平坦化及び目立て)を行った。給水量200ml/分
(研磨対象)4インチ単結晶シリコンウェハ 厚み:540μm
(貼り付け方法) セラミックブロック/微多孔スウェードパッド(水吸着)シリコンウェハ
(研磨機冷却水) 20℃
(スラリー)コロイダルシリカ溶液 ニッタ・ハース株式会社製「N6501」20倍希釈
(スラリー流量)100ml/分 (循環式)
(定盤回転数)50rpm (連れ回り式)
(研磨圧力)18、30、42kPa
(研磨時間)20分
(研磨レート)研磨前後のポリウレタン研磨パッドの重量差から算出した。
 即ち、研磨レート(μm/min)=(研磨前のシリコンウェハの重量(g)-研磨後のシリコンウェハの重量(g))×10000/(単結晶シリコンの密度(g/cm)×シリコンウェハの面積(cm)×研磨時間(min))
 単結晶シリコンの密度=2.329g/cm
 シリコンウェハの面積=20.4cm
[Evaluation method of polishing rate]
The polishing pad obtained in Examples and Comparative Examples was attached to one side of the double-sided tape, the surface plate of the polishing machine was attached to the other side of the double-sided tape, and the polishing rate was measured with the following apparatus, conditions, and calculation formula.
Polishing machine: FAM 18 GPA (Speed Fam Co., Ltd., surface plate diameter = 457 m, water-cooled)
Polishing conditions:
(Pad pretreatment) Dressing (pad flattening and dressing) was performed with a diamond dresser (# 100) until the lines drawn vertically and horizontally at intervals of 2 cm with a red pencil disappeared on the pad surface. Water supply amount 200 ml / min (for polishing) 4 inch single crystal silicon wafer Thickness: 540 μm
(Attaching method) Ceramic block / microporous suede pad (water adsorption) silicon wafer (cooling water for polishing machine) 20 ° C
(Slurry) Colloidal silica solution “N6501” 20 times diluted by Nita Haas Co., Ltd. (slurry flow rate) 100 ml / min (circulation type)
(Surface plate speed) 50rpm (Turning type)
(Polishing pressure) 18, 30, 42 kPa
(Polishing time) 20 minutes (Polishing rate) Calculated from the weight difference of the polyurethane polishing pad before and after polishing.
That is, polishing rate (μm / min) = (weight of silicon wafer before polishing (g) −weight of silicon wafer after polishing (g)) × 10000 / (density of single crystal silicon (g / cm 3 ) × silicon Wafer area (cm 2 ) × polishing time (min))
Density of single crystal silicon = 2.329 g / cm 3
Silicon wafer area = 20.4 cm 2
[原子間力顕微鏡AFMによるスクラッチ(平滑性)評価方法]
 前記の研磨レート評価後のシリコンウェハ(最後の研磨条件は、42kPa、20分)の表面をAFMを用いて観察し、平均面粗さ(Ra)、最大高低差(P-V)、及びn点平均粗さ(Rz)を算出した。
機器:SPA300/SPI3800N(株式会社日立ハイテクサイエンス製)
(測定モード) DFM
(スキャナ) 80μmスキャナ
(カンチレバー) SI-DF20
(測定面積) 5×5μm
[Scratch (smoothness) evaluation method by atomic force microscope AFM]
The surface of the silicon wafer after the polishing rate evaluation (the last polishing condition is 42 kPa, 20 minutes) is observed using an AFM, and the average surface roughness (Ra), the maximum height difference (P−V), and n The point average roughness (Rz) was calculated.
Equipment: SPA300 / SPI3800N (manufactured by Hitachi High-Tech Science Corporation)
(Measurement mode) DFM
(Scanner) 80μm scanner (cantilever) SI-DF20
(Measurement area) 5 × 5 μm 2
 実施例1、比較例1、及び比較例2で得られた研磨パッド(P1)、(P’1)及び(P’2)の評価結果を表1に示す。 Table 1 shows the evaluation results of the polishing pads (P1), (P′1), and (P′2) obtained in Example 1, Comparative Example 1, and Comparative Example 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1で得られた研磨パッド(P1)を用いて研磨したシリコンウェハ表面のAFM観察結果を図1に示す。 FIG. 1 shows the AFM observation result of the surface of the silicon wafer polished using the polishing pad (P1) obtained in Example 1.
 比較例1で得られた研磨パッド(P’1)を用いて研磨したシリコンウェハ表面のAFM観察結果を図2に示す。 FIG. 2 shows the AFM observation result of the surface of the silicon wafer polished using the polishing pad (P′1) obtained in Comparative Example 1.
 比較例2で得られた研磨パッド(P’2)を用いて研磨したシリコンウェハ表面のAFM観察結果を図3に示す。 FIG. 3 shows the AFM observation result of the surface of the silicon wafer polished using the polishing pad (P′2) obtained in Comparative Example 2.
 本発明の研磨パッドを用いた実施例1は、優れた研磨レートを有するとともに、AFMを用いた被研磨材のスクラッチ評価においても、平均面粗さ(Ra)、最大高低差(P-V)、及びn点平均粗さ(Rz)の値に優れ、研磨後の被研磨材表面は平滑性が高く、スクラッチが少ないことが確認できた。 Example 1 using the polishing pad of the present invention has an excellent polishing rate, and also in the scratch evaluation of the material to be polished using AFM, average surface roughness (Ra), maximum height difference (P−V) And the n-point average roughness (Rz) value was excellent, and it was confirmed that the surface of the polished material after polishing had high smoothness and few scratches.
 それに対して、比較例1は、ウレタンプレポリマーの原料であるポリオールとして、片末端シリコーンジオール、即ち本発明における一般式(1)で示されるポリシロキサン化合物を用いない例である。研磨レートは優れるものの、AFMを用いた被研磨材のスクラッチ評価においては、平均面粗さ(Ra)、最大高低差(P-V)、及びn点平均粗さ(Rz)の値が著しく不十分であり、研磨後の被研磨材表面は平滑性が低く、スクラッチが多く発生していることが確認できた。 On the other hand, Comparative Example 1 is an example in which one-end silicone diol, that is, the polysiloxane compound represented by the general formula (1) in the present invention is not used as the polyol which is a raw material of the urethane prepolymer. Although the polishing rate is excellent, the values of average surface roughness (Ra), maximum height difference (PV), and n-point average roughness (Rz) are remarkably poor in scratch evaluation of materials to be polished using AFM. It was sufficient, and it was confirmed that the surface of the polished material after polishing had low smoothness and a lot of scratches were generated.
 また、比較例2は、ウレタンプレポリマーの原料であるポリオールとして、片末端シリコーンジオール、即ち本発明における一般式(1)で示されるポリシロキサン化合物を本発明の範囲外で用いた例である。研磨レートは不十分であり、また、AFMを用いた被研磨材のスクラッチ評価においても、平均面粗さ(Ra)、最大高低差(P-V)、及びn点平均粗さ(Rz)の値が著しく不十分であり、研磨後の被研磨材表面は平滑性が低く、スクラッチが多く発生していることが確認できた。 Further, Comparative Example 2 is an example in which a one-terminal silicone diol, that is, a polysiloxane compound represented by the general formula (1) in the present invention is used outside the scope of the present invention as a polyol which is a raw material of the urethane prepolymer. The polishing rate is insufficient, and also in the scratch evaluation of the material to be polished using AFM, the average surface roughness (Ra), the maximum height difference (PV), and the n-point average roughness (Rz) It was confirmed that the value was extremely insufficient, the surface of the polished material after polishing was low in smoothness, and many scratches were generated.

Claims (6)

  1.  下記一般式(1)で示されるポリシロキサン化合物を含むポリオール(a1)とポリイソシアネート(a2)との反応物であるイソシアネート基を有するウレタンプレポリマー(A)を含む主剤(i)、及び、硬化剤(ii)を含有するウレタン樹脂組成物の発泡硬化物である研磨パッドであって、
    前記ウレタンプレポリマー(A)原料中の前記ポリシロキサン化合物の割合が、1質量%以下であることを特徴とする研磨パッド。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びRはそれぞれ独立して炭素原子数1~5のアルキル基を示し、Rは炭素原子数1~5のアルキレン基を示し、nは1~200の繰り返し単位の平均値を示す。)
    Main agent (i) containing urethane prepolymer (A) having an isocyanate group, which is a reaction product of polyol (a1) and polyisocyanate (a2) containing a polysiloxane compound represented by the following general formula (1), and curing A polishing pad that is a foam cured product of a urethane resin composition containing an agent (ii),
    The polishing pad, wherein a ratio of the polysiloxane compound in the urethane prepolymer (A) raw material is 1% by mass or less.
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R 1 and R 3 each independently represents an alkyl group having 1 to 5 carbon atoms, R 2 represents an alkylene group having 1 to 5 carbon atoms, and n represents 1 to 200 carbon atoms. Indicates the average value of repeating units.)
  2.  前記ポリオール(a1)が、さらにポリテトラメチレングリコールを含むものである請求項1記載の研磨パッド。 The polishing pad according to claim 1, wherein the polyol (a1) further contains polytetramethylene glycol.
  3.  前記研磨パッドが、ビッカース硬度1500以下の被研磨材の研磨に用いるものである請求項1または2記載の研磨パッド。 The polishing pad according to claim 1 or 2, wherein the polishing pad is used for polishing an object to be polished having a Vickers hardness of 1500 or less.
  4.  下記一般式(1)で示されるポリシロキサン化合物を含むポリオール(a1)とポリイソシアネート(a2)とを反応させて得られるイソシアネート基を有するウレタンプレポリマー(A)を含む主剤(i)、硬化剤(ii)、及び、水(B)を含有する発泡剤(iii)を含有するウレタン樹脂組成物を混合し、型内に注入し、発泡、硬化させて発泡成形物を得、次いで、前記発泡成形物を型から取り出し、シート状にスライスすることを特徴とする研磨パッドの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、R及びRはそれぞれ独立して炭素原子数1~5のアルキル基を示し、Rは炭素原子数1~5のアルキレン基を示し、nは1~200の繰り返し単位の平均値を示す。)
    A main agent (i) containing a urethane prepolymer (A) having an isocyanate group obtained by reacting a polyol (a1) containing a polysiloxane compound represented by the following general formula (1) with a polyisocyanate (a2), a curing agent A urethane resin composition containing a foaming agent (iii) containing (ii) and water (B) is mixed, poured into a mold, foamed and cured to obtain a foamed molded product, and then the foaming A method for producing a polishing pad, which comprises taking out a molded product from a mold and slicing it into a sheet.
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (1), R 1 and R 3 each independently represents an alkyl group having 1 to 5 carbon atoms, R 2 represents an alkylene group having 1 to 5 carbon atoms, and n represents 1 to 200 carbon atoms. Indicates the average value of repeating units.)
  5.  下記一般式(1)で示されるポリシロキサン化合物を含むポリオール(a1)及びポリイソシアネート(a2)を反応させて得られるイソシアネート基を有するウレタンプレポリマー(A)を含む主剤(i)を機械発泡させて発泡主剤(i’)を得、前記発泡主剤(i’)、及び、硬化剤(ii)を含有するウレタン樹脂組成物を混合し、型内に注入し、硬化させて発泡成形物を得、次いで、前記発泡成形物を型から取り出し、シート状にスライスすることを特徴とする研磨パッドの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、R及びRはそれぞれ独立して炭素原子数1~5のアルキル基を示し、Rは炭素原子数1~5のアルキレン基を示し、nは1~200の繰り返し単位の平均値を示す。)
    The main component (i) containing a urethane prepolymer (A) having an isocyanate group obtained by reacting a polyol (a1) containing a polysiloxane compound represented by the following general formula (1) and a polyisocyanate (a2) is mechanically foamed. To obtain a foamed molded product by mixing the urethane resin composition containing the foamed main agent (i ′) and the curing agent (ii), injecting the mixture into a mold, and curing. Then, the foamed molded product is taken out from the mold and sliced into a sheet shape.
    Figure JPOXMLDOC01-appb-C000003
    (In Formula (1), R 1 and R 3 each independently represents an alkyl group having 1 to 5 carbon atoms, R 2 represents an alkylene group having 1 to 5 carbon atoms, and n represents 1 to 200 carbon atoms. Indicates the average value of repeating units.)
  6.  請求項1項記載の研磨パッドを用いることを特徴とするビッカース硬度1500以下の被研磨材の研磨方法。 A polishing method for a material to be polished having a Vickers hardness of 1500 or less, wherein the polishing pad according to claim 1 is used.
PCT/JP2017/020926 2016-06-16 2017-06-06 Polishing pad, method for producing polishing pad and polishing method WO2017217278A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018523673A JP6424986B2 (en) 2016-06-16 2017-06-06 Polishing pad, method of manufacturing polishing pad, and polishing method
CN201780036866.XA CN109311138B (en) 2016-06-16 2017-06-06 Polishing pad, method for manufacturing polishing pad, and polishing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016119855 2016-06-16
JP2016-119855 2016-06-16

Publications (1)

Publication Number Publication Date
WO2017217278A1 true WO2017217278A1 (en) 2017-12-21

Family

ID=60663457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020926 WO2017217278A1 (en) 2016-06-16 2017-06-06 Polishing pad, method for producing polishing pad and polishing method

Country Status (4)

Country Link
JP (1) JP6424986B2 (en)
CN (1) CN109311138B (en)
TW (1) TWI726115B (en)
WO (1) WO2017217278A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188476A1 (en) * 2018-03-30 2019-10-03 富士紡ホールディングス株式会社 Polishing pad, polishing pad production method, and method for polishing surface of optical material or semiconductor material
JP2019177455A (en) * 2018-03-30 2019-10-17 富士紡ホールディングス株式会社 Polishing pad, polishing pad manufacturing method, and method for polishing surface of optical material or semiconductor material
KR20200012107A (en) * 2018-07-26 2020-02-05 에스케이씨 주식회사 Polishing pad, preparation method thereof, and polishing method applying of the same
US20210094143A1 (en) * 2019-09-26 2021-04-01 Skc Co., Ltd. Polishing pad, method for manufacturing polishing pad, and polishing method applying polishing pad

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11628535B2 (en) 2019-09-26 2023-04-18 Skc Solmics Co., Ltd. Polishing pad, method for manufacturing polishing pad, and polishing method applying polishing pad
CN112571303B (en) * 2019-09-29 2023-03-28 Skc索密思株式会社 Polishing pad, method for manufacturing the same, and polishing method using the same
CN112571273B (en) * 2019-09-29 2023-11-24 Sk恩普士有限公司 Polishing pad, method for manufacturing the same, and polishing method using the same
US11759909B2 (en) * 2020-06-19 2023-09-19 Sk Enpulse Co., Ltd. Polishing pad, preparation method thereof and method for preparing semiconductor device using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052492A (en) * 2011-09-06 2013-03-21 Toyo Tire & Rubber Co Ltd Polishing pad, and method of manufacturing the same
JP2013086217A (en) * 2011-10-19 2013-05-13 Dic Corp Urethane resin composition for polishing pad, polyurethane polishing pad, and method of manufacturing polyurethane polishing pad

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5797981B2 (en) * 2011-09-06 2015-10-21 東洋ゴム工業株式会社 Polishing pad

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052492A (en) * 2011-09-06 2013-03-21 Toyo Tire & Rubber Co Ltd Polishing pad, and method of manufacturing the same
JP2013086217A (en) * 2011-10-19 2013-05-13 Dic Corp Urethane resin composition for polishing pad, polyurethane polishing pad, and method of manufacturing polyurethane polishing pad

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188476A1 (en) * 2018-03-30 2019-10-03 富士紡ホールディングス株式会社 Polishing pad, polishing pad production method, and method for polishing surface of optical material or semiconductor material
JP2019177455A (en) * 2018-03-30 2019-10-17 富士紡ホールディングス株式会社 Polishing pad, polishing pad manufacturing method, and method for polishing surface of optical material or semiconductor material
KR20200012107A (en) * 2018-07-26 2020-02-05 에스케이씨 주식회사 Polishing pad, preparation method thereof, and polishing method applying of the same
KR102129664B1 (en) 2018-07-26 2020-07-02 에스케이씨 주식회사 Polishing pad, preparation method thereof, and polishing method applying of the same
US20210094143A1 (en) * 2019-09-26 2021-04-01 Skc Co., Ltd. Polishing pad, method for manufacturing polishing pad, and polishing method applying polishing pad

Also Published As

Publication number Publication date
TWI726115B (en) 2021-05-01
TW201815858A (en) 2018-05-01
CN109311138A (en) 2019-02-05
CN109311138B (en) 2021-06-22
JPWO2017217278A1 (en) 2018-11-08
JP6424986B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP6424986B2 (en) Polishing pad, method of manufacturing polishing pad, and polishing method
JP5710353B2 (en) Polishing pad and manufacturing method thereof
JP5687118B2 (en) Polishing pad and manufacturing method thereof
JP5687119B2 (en) Polishing pad and manufacturing method thereof
KR20130043060A (en) Urethane resin composition for polishing pad and polyurethane polishing pad
JPWO2011001755A1 (en) Two-component urethane resin composition for polishing pad, polyurethane polishing pad, and method for producing polyurethane polishing pad
TW201641546A (en) Polishing pad and method of making the same
KR100963968B1 (en) Polishing pad and manufacturing method of the same
TWI787420B (en) Polishing pad
KR20150081350A (en) Polishing pad
TWI532758B (en) Urethane resin composition for polishing pad, polishing pad and manufacturing method thereof
JP6504385B2 (en) Polishing pad
TWI461450B (en) Two-package curing type polyurethane resin composition and methods for making urethane molded products for polishing pads
CN111212705B (en) Polishing pad and method for manufacturing the same
JP7135581B2 (en) Polishing pad and manufacturing method thereof
JP7395853B2 (en) Polishing pad and resin composition for polishing pad
TW201942175A (en) Polishing pad, polishing pad production method, and method for polishing surface of optical material or semiconductor material
JP2024041370A (en) Polishing pad, manufacturing method of polishing pad, and manufacturing method of polishing object
JP2021053760A (en) Polishing pad, manufacturing method thereof and manufacturing method of polished product
JP2010268012A (en) Polishing pad for cmp and polishing method using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523673

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813176

Country of ref document: EP

Kind code of ref document: A1