WO2017216897A1 - 可変速増速機 - Google Patents

可変速増速機 Download PDF

Info

Publication number
WO2017216897A1
WO2017216897A1 PCT/JP2016/067764 JP2016067764W WO2017216897A1 WO 2017216897 A1 WO2017216897 A1 WO 2017216897A1 JP 2016067764 W JP2016067764 W JP 2016067764W WO 2017216897 A1 WO2017216897 A1 WO 2017216897A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
speed
variable speed
transmission
planetary gear
Prior art date
Application number
PCT/JP2016/067764
Other languages
English (en)
French (fr)
Inventor
義行 岡本
誠宏 中島
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to DE112016006978.2T priority Critical patent/DE112016006978B4/de
Priority to US16/093,005 priority patent/US11025180B2/en
Priority to JP2018523097A priority patent/JP6627184B2/ja
Priority to PCT/JP2016/067764 priority patent/WO2017216897A1/ja
Publication of WO2017216897A1 publication Critical patent/WO2017216897A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • H02P5/747Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors mechanically coupled by gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor

Definitions

  • the present invention relates to a variable speed step-up gear provided with an electric device composed of a constant-speed electric motor and a variable-speed electric motor, and a planetary gear transmission that changes the rotational driving force generated by the electric device and transmits it to an object to be driven.
  • Japanese Patent Application Laid-Open No. H10-228561 describes a device using a constant speed motor and a variable speed motor for shifting as an electric device and using a planetary gear transmission as a transmission device in order to accurately control the gear ratio.
  • the rotational speed of the output shaft of the planetary gear transmission connected to the rotating machine can be changed by changing the rotational speed of the variable speed electric motor.
  • the planetary gear carrier shaft that constitutes the planetary gear carrier of the planetary gear transmission is a hollow shaft
  • the internal gear carrier shaft that constitutes the internal gear carrier in the hollow portion of the planetary gear carrier shaft There is a structure that allows to pass through.
  • the constant speed rotor of the constant speed motor is connected to the internal gear carrier shaft
  • the variable speed rotor of the variable speed motor that is a hollow shaft is connected to the planetary gear carrier shaft.
  • vector control with a sensor that performs vector control using a rotation speed sensor that measures the rotation speed of the variable speed electric motor is known.
  • Vector control with a sensor is a method in which the rotation speed of a variable speed motor is detected by a rotation speed sensor attached to the variable speed motor, and the magnitude of a load is calculated with high accuracy from a current flowing through the variable speed motor by vector calculation. As a result, it is possible to accurately and accurately determine the magnitude of the load and the state of the rotational speed, and to generate the target rotational speed and torque.
  • a structure for detecting the rotational speed of the variable speed motor for example, a structure in which a disk having a plurality of slits formed on the outer peripheral surface of the hollow shaft is provided and the rotational speed is detected using a light emitting element and a light receiving element is conceivable.
  • this structure has problems such as a complicated structure.
  • the present invention includes an electric device composed of a constant speed motor having a constant speed rotor and a variable speed motor having a variable speed rotor, and a planetary gear transmission that shifts the rotational driving force generated by the electric device and transmits it to a drive target.
  • a variable speed gearbox having a configuration in which a constant speed rotor is inserted into a hollow portion of a variable speed rotor that is a hollow shaft, a variable speed gearbox that can more easily detect the rotational speed of the variable speed motor is provided. The purpose is to provide.
  • a variable speed step-up gear includes: an electric device that generates rotational driving force; and a transmission that shifts the rotational driving force generated by the electric device and transmits the rotational driving force to a drive target.
  • the transmission includes a sun gear that rotates about an axis, a sun gear shaft that is fixed to the sun gear and extends in the axial direction about the axis, meshes with the sun gear, and revolves about the axis.
  • a planetary gear rotating around its own center line, a plurality of teeth arranged in an annular shape around the axis, and meshing with the planetary gear, and a planetary gear carrier shaft extending in the axial direction around the axis
  • a planetary gear carrier that is revolved and supports the planetary gear so as to be capable of rotating about the center line of the planetary gear itself, and an internal gear carrier shaft that extends in the axial direction about the axis, and the internal gear is connected to the axis.
  • An internal gear carrier that is supported to be capable of rotating as a center, wherein the sun gear shaft forms an output shaft connected to the drive target, the internal gear carrier shaft forms a constant speed input shaft, and the planetary gear A gear carrier shaft forms a variable speed input shaft, and the electric device includes a variable speed motor having a variable speed rotor connected to the variable speed input shaft of the transmission, and the constant speed input shaft of the transmission.
  • a constant-speed motor having a constant-speed rotor connected to the shaft, and the variable-speed rotor and the planetary gear carrier shaft have a cylindrical shape with the axis as a center, and an axial insertion hole penetrating in the axial direction. Formed The constant speed rotor is inserted through the shaft insertion hole, and a rotation speed sensor that measures the rotation speed of the transmission gear, and vector control of the variable speed motor based on the rotation speed measured by the rotation speed sensor. And a control device for performing.
  • the rotation speed of the transmission gear can be measured more easily by measuring the rotation speed of the transmission gear instead of the rotation speed of the cylindrical variable speed rotor and the planetary gear carrier shaft using the rotation speed sensor.
  • a number sensor can be attached.
  • control device may calculate the rotation speed of the variable speed rotor from the rotation speed of the transmission gear based on a rotation speed ratio of the transmission gear and the variable speed rotor.
  • the rotation speed of the variable speed rotor can be calculated even when the rotation speed of the transmission gear is measured instead of the rotation speed of the variable speed rotor.
  • the rotational speed sensor is more easily configured by measuring the rotational speed of the transmission gear instead of the rotational speed of the variable speed rotor and the planetary gear carrier shaft that are cylindrical using the rotational speed sensor. Can be attached.
  • variable speed step-up gear 1 includes an electric device 50 that generates a rotational driving force, and a transmission device 10 that shifts the rotational driving force generated by the electric device 50 and transmits it to a drive target.
  • the variable speed increaser 1 can be applied to a fluid mechanical system such as a compressor system, for example.
  • the driving target of the variable speed increaser 1 of the present embodiment is the compressor C.
  • the transmission 10 is a planetary gear transmission.
  • the electric device 50 includes a constant speed motor 51 having a constant speed rotor 52 that rotates at a constant speed, and a variable speed motor 71 having a variable speed rotor 72 that rotates at an arbitrary rotational speed.
  • the constant speed rotor 52 and the variable speed rotor 72 are each connected to the transmission 10.
  • the electric device 50 is supported on the gantry 90 by the electric device support portion 50S.
  • the transmission 10 is supported on the gantry 90 by the transmission support 10S.
  • the transmission 10 is in mesh with the sun gear 11 that rotates about an axis Ar that extends in the horizontal direction, the sun gear shaft 12 that is fixed to the sun gear 11, and the sun gear 11.
  • a plurality of planetary gears 15 revolving around the axis Ar and rotating around the centerline Ap; an internal gear 17 in which a plurality of teeth are arranged in an annular shape around the axis Ar and meshed with the plurality of planetary gears 15;
  • a planetary gear carrier 21 that supports a plurality of planetary gears 15 so that they can revolve around an axis Ar and that can rotate around a centerline Ap of the planetary gear 15 itself, and an internal gear 17 that can rotate around an axis Ar. It has an internal gear carrier 31 to be supported and a speed change casing 41 covering these.
  • the direction in which the axis Ar extends is the axial direction, one side of the axial direction is the output side, and the opposite side of the output side is the input side.
  • the radial direction centered on the axis Ar is simply referred to as the radial direction.
  • the electric device 50 is disposed on the input side in the axial direction
  • the transmission 10 is disposed on the output side of the electric device 50.
  • the compressor C is disposed on the output side of the variable speed gear 1.
  • the sun gear shaft 12 has a cylindrical shape centered on the axis Ar, and extends from the sun gear 11 to the output side in the axial direction.
  • a flange 13 is formed at the output side end of the sun gear shaft 12.
  • a rotor of a compressor C as a driving target is connected to the flange 13.
  • the sun gear shaft 12 is supported by a sun gear bearing 42 disposed on the output side of the sun gear 11 so as to be rotatable about the axis Ar.
  • the sun gear bearing 42 is attached to the transmission casing 41.
  • the planetary gear carrier 21 includes a planetary gear shaft 22 provided for each of the plurality of planetary gears 15, a carrier body 23 that fixes the positions of the plurality of planetary gear shafts 22, and an output that extends in the axial direction about the axis Ar. And a side planetary gear carrier shaft 27o.
  • the output planetary gear carrier shaft 27o is fixed to the inside of the carrier body 23 in the radial direction.
  • the planetary gear shaft 22 penetrates the center line Ap of the planetary gear 15 in the axial direction, and supports the planetary gear 15 so as to be rotatable about the centerline.
  • the carrier body 23 extends radially outward from the plurality of planetary gear shafts 22.
  • the output-side planetary gear carrier shaft 27o extends from the carrier body 23 to the output side.
  • the output-side planetary gear carrier shaft 27o has a cylindrical shape with the axis line Ar as the center.
  • the output side planetary gear carrier shaft 27o is supported by a planetary gear carrier bearing 43 so as to be capable of rotating about the axis Ar.
  • the planetary gear carrier bearing 43 is attached to the transmission casing 41.
  • the sun gear shaft 12 is inserted into the inner peripheral side of the output side planetary gear carrier shaft 27o.
  • the planetary gear carrier 21 includes an input-side planetary gear carrier shaft 27i connected to the variable-speed rotor 72 of the variable-speed motor 71, a first transmission unit 25 that transmits the rotation of the input-side planetary gear carrier shaft 27i to the carrier body 23, and The second transmission unit 26 is provided.
  • the input-side planetary gear carrier shaft 27i is a hollow shaft having a cylindrical shape with the axis line Ar as the center.
  • the input-side planetary gear carrier shaft 27i is disposed on the input side of the transmission 10, and is supported by the planetary gear carrier bearing 44 so as to be rotatable about the axis Ar.
  • the planetary gear carrier bearing 44 is attached to the transmission casing 41.
  • An internal gear carrier shaft 37 that drives the internal gear carrier 31 of the transmission 10 is inserted through the inner peripheral side of the input-side planetary gear carrier shaft 27i.
  • An annular flange 28 is formed on the input side end of the input side planetary gear carrier shaft 27i so as to expand outward in the radial direction.
  • a carrier shaft gear 27g that meshes with the first transmission gear 25g of the first transmission portion 25 is formed at the output side end of the input side planetary gear carrier shaft 27i.
  • the first transmission unit 25 includes a first transmission shaft 25a supported so as to be capable of rotating about the axis At1, and a first transmission gear 25g fixed to the first transmission shaft 25a.
  • the first transmission shaft 25a is attached to the transmission casing 41 via a bearing (not shown).
  • the second transmission portion 26 includes a second transmission shaft 26a supported so as to be rotatable about the axis At2, and an input-side transmission gear 29i and an output-side transmission gear 29o fixed to the second transmission shaft 26a.
  • the second transmission shaft 26a is attached to the transmission casing 41 via a bearing (not shown).
  • the input side transmission gear 29 i and the output side transmission gear 29 o are fixed to both ends of the transmission shaft 25.
  • the input side transmission gear 29i meshes with the first transmission gear 25g.
  • the output-side transmission gear 29o meshes with a gear 23g formed on the outer periphery of the carrier body 23.
  • the internal gear carrier 31 has a carrier main body 33 to which the internal gear 17 is fixed, and an internal gear carrier shaft 37 that is fixed to the carrier main body 33 and extends in the axial direction about the axis Ar.
  • the carrier body 33 has a cylindrical shape centered on the axis Ar, a cylindrical portion 35 in which the internal gear 17 is fixed on the inner peripheral side, and an input side arm portion that extends radially inward from the input side end of the cylindrical portion 35. 36.
  • the internal gear carrier shaft 37 having a cylindrical shape with the axis line Ar as the center is disposed on the input side of the sun gear shaft 12 having a cylindrical shape with the axis line Ar as the center.
  • the input side arm portion 36 of the carrier body 33 is fixed to the internal gear carrier shaft 37.
  • the internal gear carrier shaft 37 is inserted into the inner peripheral side of the cylindrical input side planetary gear carrier shaft 27i.
  • the constant speed motor 51 rotates the internal gear carrier shaft 37 of the transmission 10.
  • the variable speed motor 71 rotates the input planetary gear carrier shaft 27 i of the transmission 10.
  • the electric device 50 includes a cooling fan 91 for cooling the constant speed electric motor 51 and a fan cover 92 that covers the cooling fan 91.
  • the internal gear carrier shaft 37 is a constant speed input shaft Ac that rotates at a constant speed by the driving force of the constant speed motor 51.
  • the input-side planetary gear carrier shaft 27 i is a variable speed input shaft Av that rotates at an arbitrary rotation speed by the driving force of the variable speed motor 71.
  • the variable speed gearbox 1 can change the rotation speed of the output shaft Ao of the transmission 10 connected to the drive target by changing the rotation speed of the variable speed motor 71.
  • the constant speed motor 51 is, for example, a four-pole three-phase induction motor.
  • the variable speed motor 71 is a six-pole three-phase induction motor having more poles than the constant speed motor 51.
  • the specifications of the constant speed motor 51 and the variable speed motor 71 are not limited to this, and the specifications can be changed as appropriate.
  • the constant speed motor 51 rotates around the axis line Ar, and is disposed on the outer peripheral side of the constant speed rotor 52 and the constant speed rotor 52 connected to the internal gear carrier shaft 37 that is the constant speed input shaft Ac of the transmission 10. And a constant speed motor casing 61 in which the constant speed stator 66 is fixed on the inner peripheral side.
  • the constant-speed rotor 52 has a constant-speed rotor shaft 53 that forms a columnar shape about the axis Ar, and a conductor 56 that is fixed to the outer periphery of the constant-speed rotor shaft 53.
  • a cooling fan 91 is fixed to the input side end of the constant speed rotor shaft 53.
  • the constant speed stator 66 is disposed on the radially outer side of the conductor 56 of the constant speed rotor 52.
  • the constant speed stator 66 is formed by a plurality of coils.
  • the constant-speed motor casing 61 has a cylindrical shape centered on the axis Ar, a casing main body 62 in which a constant-speed stator 66 is fixed on the inner peripheral side, and a lid that covers both ends of the cylindrical casing main body 62 in the axial direction. 63i, 63o.
  • Constant-speed rotor bearings 65i and 65o that support the constant-speed rotor shaft 53 so as to be capable of rotating about the axis Ar are attached to the respective lids 63i and 63o.
  • Each of the lids 63i and 63o is formed with a plurality of openings 64 penetrating in the axial direction at positions radially outside the constant speed rotor bearing 65i.
  • the input side end of the constant speed rotor shaft 53 protrudes from the input side lid 63 i of the constant speed motor casing 61 to the input side.
  • a cooling fan 91 is fixed to the input side end of the constant speed rotor shaft 53. When the constant speed rotor 52 rotates, the cooling fan 91 also rotates integrally with the constant speed rotor 52.
  • the fan cover 92 includes a cylindrical cover main body 93 disposed on the outer peripheral side of the cooling fan 91, and an air circulation plate 94 attached to an opening on the inlet side of the cover main body 93 and formed with a plurality of air holes. Have.
  • the fan cover 92 is fixed to the input side lid 63 i of the constant speed motor casing 61.
  • variable speed motor 71 rotates around the axis Ar, and is disposed on the outer peripheral side of the variable speed rotor 72 and the variable speed rotor 72 connected to the input side planetary gear carrier shaft 27i that is the variable speed input shaft Av.
  • a variable speed stator 86 and a variable speed motor casing 81 in which the variable speed stator 86 is fixed on the inner peripheral side are provided.
  • the variable speed rotor 72 has a variable speed rotor shaft 73 and a conductor 76 fixed to the outer periphery of the variable speed rotor shaft 73.
  • the variable speed rotor shaft 73 is a hollow shaft having a cylindrical shape centering on the axis Ar and having a shaft insertion hole 74 penetrating in the axial direction.
  • An internal gear carrier shaft 37 that is a constant speed input shaft Ac is inserted through the shaft insertion hole 74 of the variable speed rotor shaft 73.
  • An annular flange 73o is formed at the output side end of the variable speed rotor shaft 73 so as to expand outward in the radial direction.
  • the variable speed stator 86 is disposed on the radially outer side of the conductor 76 of the variable speed rotor 72.
  • the variable speed stator 86 is formed of a plurality of coils.
  • the variable speed motor casing 81 has a cylindrical shape centered on the axis Ar, a casing main body 82 in which a variable speed stator 86 is fixed on the inner peripheral side, and an output side that closes an output side end of the cylindrical casing main body 82. It has a lid 83o and an inlet side lid 83i that is arranged on the input side of the variable speed stator 86 and is fixed to the inner peripheral side of the cylindrical casing body 82.
  • Variable speed rotor bearings 85i and 85o for supporting the variable speed rotor shaft 73 so as to be capable of rotating about the axis Ar are attached to the respective lids 83i and 83o.
  • Each of the lids 83i, 83o is formed with a plurality of openings 84 penetrating in the axial direction at positions radially outside the variable speed rotor bearings 85i, 85o.
  • the space in 81 communicates with the space in the constant speed motor casing 61.
  • variable speed increaser 1 of the present embodiment the constant speed rotor 52, the variable speed rotor 72, and the sun gear shaft 12 are arranged on the same axis.
  • the constant speed motor 51 is set to rotate the constant speed rotor 52 (internal gear 17) in the second direction R ⁇ b> 2 in the circumferential direction of the axis Ar by supplying electric power to the constant speed motor 51.
  • the constant speed rotor 52 rotates in the second direction R2
  • the internal gear carrier shaft 37 and the internal gear carrier 31 rotate in the second direction R2.
  • the output shaft Ao of the transmission 10 is rotated in the first direction R1 opposite to the second direction R2 by the constant speed rotor 52 of the constant speed motor 51 rotating in the second direction R2 at the maximum rotation speed.
  • the forward rotation of the constant speed motor 51 is the second direction R2
  • the forward rotation of the output shaft Ao of the transmission 10 is the first direction R1.
  • the compressor C operates normally when the output shaft Ao rotates forward.
  • the rotation direction of the first direction R1 is a positive rotation direction
  • the rotation direction of the second direction R2 is a negative rotation direction.
  • the maximum rotation speed of the constant speed motor 51 is ⁇ 1800 rpm.
  • the variable speed electric motor 71 can rotationally drive the variable speed rotor 72 (planetary gear carrier 21) in the first direction R1 and the second direction R2 in the circumferential direction of the axis Ar. That is, the variable speed electric motor 71 can rotate forward and backward.
  • the variable speed motor 71 functions as a generator by rotating the variable speed rotor 72 in the second direction R2.
  • a state in which the variable speed motor 71 functions as a generator is referred to as a generator mode. That is, the variable speed rotor 72 of the variable speed motor 71 rotates in the second direction R2 in the generator mode.
  • the variable speed motor 71 functions as an electric motor by rotating the variable speed rotor 72 in the first direction R1.
  • a state in which the variable speed motor 71 functions as a motor is referred to as a motor mode. That is, the variable speed rotor 72 of the variable speed motor 71 rotates in the first direction R1 in the motor mode. As the variable speed rotor 72 rotates in the first direction R1, the planetary gear carrier 21 rotates in the first direction R1.
  • the variable speed gearbox 1 of the present embodiment includes a rotation speed sensor 131 that measures the rotation speed of the second transmission shaft 26a (second transmission gear 26g). The rotational speed measured by the rotational speed sensor 131 is transmitted to the control unit 120. The control unit 120 calculates the rotation speed of the variable speed electric motor 71 (variable speed rotor 72) using the rotation speed measured by the rotation speed sensor.
  • the rotation speed sensor 131 includes a detection shaft 132 that can be connected to the second transmission shaft 26a.
  • the detection shaft 132 of the rotation speed sensor 131 is connected to the end of the second transmission shaft 26a so that the second transmission shaft 26a and the detection shaft 132 are on the same straight line.
  • the rotation speed sensor 131 is fixed to the transmission casing 41.
  • the control unit 120 calculates the rotational speed ⁇ h of the variable speed rotor 72 using the rotational speed ratio ⁇ h / ⁇ t of the rotational speed ⁇ h of the variable speed rotor 72 and the rotational speed ⁇ t of the second transmission shaft 26a.
  • the rotation speed ratio ⁇ h / ⁇ t is determined from the number of teeth of the first transmission gear 25g and the second transmission gear 26g.
  • the variable speed gearbox 1 of the present embodiment includes a rotation speed control device 100 that controls the rotation speed of the variable speed motor 71, a variable speed motor switch 111 that sets the variable speed motor 71 in a power supply state and a power cut-off state, and A constant-speed motor switch 112 that puts the constant-speed motor 51 into a power supply state and a power-off state, a control unit 120 that controls operations of the rotation speed control device 100, the variable-speed motor switch 111, and the constant-speed motor switch 112; It has.
  • the control unit 120 is composed of a computer.
  • the control unit 120 receives an instruction from the operator directly or receives an instruction from the host control device, an interface 122 that gives an instruction to the variable speed motor switch 111, the rotation speed control device 100, and the constant speed motor switch 112.
  • a calculation unit 123 that creates instructions for the variable speed motor switch 111, the constant speed motor switch 112, and the rotation speed control device 100 in accordance with the instructions received by the reception unit 121.
  • variable speed motor switch 111 is electrically connected to the power line 110 and the rotation speed control device 100.
  • the rotation speed control device 100 is electrically connected to the variable speed motor 71.
  • the constant speed motor switch 112 is electrically connected to the power line 110 and the constant speed motor 51.
  • the variable speed motor switch 111 is turned on by an on instruction from the control unit 120 and turned off by an off instruction from the control unit 120.
  • the variable speed motor switch 111 When the variable speed motor switch 111 is turned on, power from the power line 110 is supplied to the variable speed motor 71 via the rotation speed control device 100, and the variable speed motor 71 is in a power supply state.
  • the variable speed motor switch 111 When the variable speed motor switch 111 is turned off, the power supply from the power line 110 to the rotation speed control device 100 and the variable speed motor 71 is cut off, and the variable speed motor 71 enters a power cut-off state.
  • the constant speed motor switch 112 is turned on by an on instruction from the control unit 120 and turned off by an off instruction from the control unit 120.
  • the constant speed motor switch 112 When the constant speed motor switch 112 is turned on, the power from the power line 110 is supplied to the constant speed motor 51, and the constant speed motor 51 enters a power supply state.
  • the constant-speed motor switch 112 When the constant-speed motor switch 112 is turned off, the power supply from the power line 110 to the constant-speed motor 51 is cut off, and the constant-speed motor 51 enters a power cut-off state.
  • the computing unit 120 computes the frequency to be supplied to the variable speed electric motor 71 using vector control with a sensor. Specifically, feedback control is performed using the rotational speed ⁇ h of the variable speed motor 71 calculated using the rotational speed ⁇ t of the second transmission shaft 26a (second transmission gear 26g) detected by the rotational speed sensor 131.
  • the vector control is a method in which the current flowing through the electric motor is divided into a current component that generates torque and a current component that generates magnetic flux, and each current component is controlled independently.
  • the rotation speed control device 100 includes a frequency conversion unit 101 that changes the frequency of power supplied from the power line 110 and a rotation direction change unit 102 that changes the rotation direction of the variable speed motor 71.
  • the frequency conversion unit 101 supplies the variable speed electric motor 71 with electric power having a frequency instructed by the control unit 120.
  • the variable speed rotor 72 of the variable speed motor 71 rotates at a rotational speed corresponding to this frequency.
  • the rotation speed of the planetary gear carrier 21 of the transmission 10 connected to the variable speed rotor 72 also changes.
  • the rotational speed of the sun gear shaft 12 that is the output shaft Ao of the transmission 10 also changes.
  • the rotation direction changing unit 102 is a device that changes the rotation direction of the variable speed motor 71 by using a circuit that replaces a plurality of (three in the present embodiment) power lines connected to the variable speed motor 71. . That is, the rotation direction changing unit 102 can rotate the variable speed rotor 72 forward and backward.
  • the rotational speed of the sun gear shaft 12 as the output shaft Ao is ⁇ s
  • the rotational speed of the internal gear carrier shaft 37 (constant speed motor 51) as the constant speed input shaft Ac is ⁇ i
  • the input side planetary gear as the variable speed input shaft Av.
  • the rotation speed of the carrier shaft 27i (variable speed motor 71) is ⁇ h.
  • the number of teeth of the sun gear 11 is Zs
  • the number of teeth of the internal gear 17 is Zi.
  • U is the ratio ⁇ s / ⁇ i between the rotational speed ⁇ s of the output shaft Ao and the rotational speed ⁇ i of the constant speed motor 51.
  • the ratio U between the rotational speed ⁇ s of the output shaft Ao and the rotational speed ⁇ i of the constant speed motor 51 is the same as the ratio Zi / Zs of the number of teeth Zi of the internal gear 17 and the number of teeth Zs of the sun gear 11. Also, let P be the ratio ⁇ c / ⁇ h of the rotational speed ⁇ c of the planetary gear carrier 21 and the rotational speed ⁇ h of the variable speed motor 71.
  • the rotational speed ⁇ i (rated rotational speed) of the constant speed rotor 52 is 1800 rpm.
  • the maximum speed ⁇ h (rated speed) of the variable speed rotor 72 is 900 rpm.
  • the ratio U (the number of teeth Zs of the sun gear 11 and the number of teeth Zi of the internal gear 17 and the ratio Zi / Zs) of the rotational speed ⁇ s of the output shaft Ao and the rotational speed ⁇ i of the constant speed motor 51 is 4.
  • a ratio P between the rotational speed ⁇ c of the planetary gear carrier 21 and the rotational speed ⁇ h of the variable speed motor 71 is set to 0.3.
  • the rotation direction of the constant speed rotor 52 (internal gear 17) is the rotation in the second direction R2 ( ⁇ 1800 rpm)
  • the rotation direction of the variable speed rotor 72 (the planetary gear carrier 21) is the rotation of the constant speed rotor 52.
  • the maximum rotational speed (900 rpm) in the opposite direction (rotation in the first direction R1), the rotational speed ⁇ s of the sun gear shaft 12 as the output shaft Ao is 8550 rpm. This rotational speed (8550 rpm) is the maximum rotational speed of the sun gear shaft 12.
  • the internal gear 17 corresponding to the constant speed input shaft Ac is rotated at ⁇ 1800 rpm
  • the planetary gear carrier 21 corresponding to the variable speed input shaft Av is rotated at 900 rpm.
  • the rotational speed ⁇ s of the output shaft Ao is the maximum rotational speed. Assuming that the variable speed range of the variable speed input shaft Av is from ⁇ 900 rpm to +900 rpm, the rotational speed ⁇ s of the output shaft Ao decreases as the rotational speed of the variable speed input shaft Av approaches ⁇ 900 rpm.
  • the variable speed motor 71 since the rotation speed ⁇ h of the variable speed motor 71 can be calculated using the rotation speed sensor 131, the variable speed motor 71 can be controlled using the vector control with sensor. As a result, it is possible to accurately and accurately determine the magnitude of the load and the state of the rotational speed, and to generate the target rotational speed and torque.
  • the rotational speed sensor 131 is connected to the second transmission shaft 26a instead of the variable speed rotor 72, which is a hollow shaft, and the input side planetary gear carrier shaft 27i.
  • the rotational speed sensor 131 is configured to measure the rotational speed of the second transmission gear 26g, not the rotational speed of the variable speed rotor 72 and the planetary gear carrier shaft 27i having a cylindrical shape. Thereby, the rotation speed sensor 131 can be attached more easily.
  • the rotational speed of the variable speed motor 71 can be detected at low cost using a general-purpose rotational speed sensor.
  • control unit 120 of the present embodiment calculates the rotational speed ⁇ h of the variable speed rotor 72 from the rotational speed ⁇ t of the second transmission gear 26g based on the rotational speed ratio of the second transmission gear 26g and the variable speed rotor 72.
  • the rotational speed ⁇ h of the variable speed rotor 72 can be calculated even when the rotational speed ⁇ t of the second transmission gear 26g is measured instead of the rotational speed ⁇ h of the variable speed rotor 72.
  • the internal gear carrier shaft 37 that is a rod-shaped shaft is inserted into the variable speed rotor shaft 73 that is a cylindrical shaft in which the shaft insertion hole 74 is formed. That is, the constant speed input shaft Ac having a large output is inserted into the variable speed rotor shaft 73 of the variable speed motor 71 having a smaller output than the constant speed motor 51. Thereby, the thing with a bigger output (horsepower) can be employ
  • the constant speed motor 51, the variable speed motor 71, the transmission, and the compressor C are arranged in order in a straight line, the entire apparatus can be made more compact.
  • the rotational speed sensor 131 is connected to the output side end of the second transmission shaft 26a, but the present invention is not limited to this.
  • the rotation speed sensor 131 may be connected to the input side end of the second transmission shaft 26a. Further, the rotation speed sensor 131 may be connected to the first transmission shaft 25a. In other words, the rotational speed sensor 131 can be connected to a rotating shaft that rotates at a predetermined rotational speed ratio with respect to the variable speed rotor 72.
  • a four-pole three-phase induction motor is exemplified as the constant-speed motor 51 suitable for rotating the compressor C at a high speed, and the rotation speed of the compressor C is variable within a certain range. Therefore, as a suitable variable speed motor 71, a six-pole three-phase induction motor is illustrated. However, when it is not necessary to rotate the drive target at a high speed, other types of electric motors may be used as the constant speed electric motor 51 and the variable speed electric motor 71.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Retarders (AREA)
  • Structure Of Transmissions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

回転駆動力を発生する電動装置と、電動装置で発生した回転駆動力を変速させて駆動対象に伝える遊星歯車変速装置と、を備え、太陽歯車軸が駆動対象に接続される出力軸を成し、内歯車キャリア軸が定速入力軸を成し、遊星歯車キャリア軸が可変速入力軸を成し、電動装置は、変速装置の可変速入力軸に接続されている可変速ロータを有する可変速電動機と、変速装置の定速入力軸に接続されている定速ロータを有する定速電動機と、からなり、可変速ロータ及び遊星歯車キャリア軸は、軸線を中心として円筒状を成し、軸方向に貫通した軸挿通孔が形成され、定速ロータは、軸挿通孔に挿通され、伝達歯車の回転数を測定する回転数センサと、回転数センサによって測定された回転数に基づいて可変速電動機のベクトル制御を行う制御装置と、を有する可変速増速機。

Description

可変速増速機
 本発明は、定速電動機と可変速電動機とからなる電動装置と、電動装置で発生した回転駆動力を変速させて駆動対象に伝える遊星歯車変速装置とを備える可変速増速機に関する。
 圧縮機等の回転機械を駆動する装置としては、回転駆動力を発生する電動装置と、電動装置で発生した回転駆動力を変速させて回転機械に伝える変速装置と、を備えているものがある。
 特許文献1には、変速比を正確に制御するために、電動装置として定速電動機と変速用の可変速電動機とを用い、変速装置として遊星歯車変速装置を用いたものが記載されている。この装置では、可変速電動機の回転数を変えることで、回転機械に接続される遊星歯車変速装置の出力軸の回転数を変えることができる。
 また、可変速増速機としては、遊星歯車変速装置の遊星歯車キャリアを構成する遊星歯車キャリア軸を中空軸とするとともに、遊星歯車キャリア軸の中空部に内歯車キャリアを構成する内歯車キャリア軸を挿通させる構造のものがある。
 この可変速増速機においては、定速電動機の定速ロータが内歯車キャリア軸に接続され、中空軸とされた可変速電動機の可変速ロータが遊星歯車キャリア軸に接続される。
日本国特許第4472350号公報
 ところで、可変速増速機を構成する可変速電動機の制御方法としては、可変速電動機の回転数を計測する回転数センサを用いてベクトル制御を行う、センサ付きベクトル制御が知られている。
 センサ付きベクトル制御は、可変速電動機の回転数を可変速電動機に取り付けた回転数センサによって検出するとともに、可変速電動機を流れる電流から負荷の大きさをベクトル演算によって精度高く算出する方法である。これにより、負荷の大きさや回転数の状況を精度良く的確に判断して、目標とする回転数やトルクを発生することができる。
 可変速電動機の回転数を検出する構造としては、例えば、中空軸の外周面に複数のスリットが形成されたディスクを設け、発光素子、受光素子を用いて回転数を検出する構造が考えられる。しかしながら、この構造の場合、構造が複雑になる等の課題がある。
 本発明は、定速ロータを有する定速電動機と可変速ロータを有する可変速電動機とからなる電動装置と、電動装置で発生した回転駆動力を変速させて駆動対象に伝える遊星歯車変速装置とを備え、中空軸とされた可変速ロータの中空部に定速ロータを挿通させる形態の可変速増速機において、より容易に可変速電動機の回転数を検出することができる可変速増速機を提供することを目的とする。
 本発明の第一の態様によれば、可変速増速機は、回転駆動力を発生する電動装置と、前記電動装置で発生した回転駆動力を変速させて駆動対象に伝える変速装置と、を備え、前記変速装置は、軸線を中心として自転する太陽歯車と、前記太陽歯車に固定され、前記軸線を中心として軸方向に延びる太陽歯車軸と、前記太陽歯車と噛み合い、前記軸線を中心として公転すると共に自身の中心線を中心として自転する遊星歯車と、前記軸線を中心として環状に複数の歯が並び、前記遊星歯車と噛み合う内歯車と、前記軸線を中心として軸方向に延びる遊星歯車キャリア軸、複数の前記遊星歯車相互の位置を固定するキャリア本体、及び前記遊星歯車キャリア軸の回転を前記キャリア本体に伝達する伝達歯車を有し、前記遊星歯車を前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持する遊星歯車キャリアと、前記軸線を中心として軸方向に延びる内歯車キャリア軸を有し、前記内歯車を、前記軸線を中心として自転可能に支持する内歯車キャリアと、を有し、前記太陽歯車軸が前記駆動対象に接続される出力軸を成し、前記内歯車キャリア軸が定速入力軸を成し、前記遊星歯車キャリア軸が可変速入力軸を成し、前記電動装置は、前記変速装置の前記可変速入力軸に接続されている可変速ロータを有する可変速電動機と、前記変速装置の前記定速入力軸に接続されている定速ロータを有する定速電動機と、からなり、前記可変速ロータ及び前記遊星歯車キャリア軸は、前記軸線を中心として円筒状を成し、軸方向に貫通した軸挿通孔が形成され、前記定速ロータは、前記軸挿通孔に挿通され、前記伝達歯車の回転数を測定する回転数センサと、前記回転数センサによって測定された回転数に基づいて前記可変速電動機のベクトル制御を行う制御装置と、を有する。
 このような構成によれば、回転数センサを用いて円筒状をなす可変速ロータ及び遊星歯車キャリア軸の回転数ではなく、伝達歯車の回転数を測定する構成としたことによって、より容易に回転数センサを取り付けることができる。
 上記可変速増速機において、前記制御装置は、前記伝達歯車と前記可変速ロータの回転数比に基づいて、前記伝達歯車の回転数から前記可変速ロータの回転数を算出してよい。
 このような構成によれば、可変速ロータの回転数ではなく、伝達歯車の回転数を計測する場合においても、可変速ロータの回転数を算出することができる。
 本発明によれば、回転数センサを用いて円筒状をなす可変速ロータ及び遊星歯車キャリア軸の回転数ではなく、伝達歯車の回転数を測定する構成としたことによって、より容易に回転数センサを取り付けることができる。
本発明に係る実施形態の可変速増速機の断面図である。 本発明に係る実施形態の変速装置の断面図である。 本発明に係る実施形態の電動装置の断面図である。 本発明に係る実施形態の変速装置の構成を示す模式図である。
 以下、本発明の実施形態の可変速増速機について、図面を参照して詳細に説明する。
 図1に示すように、本実施形態の可変速増速機1は、回転駆動力を発生する電動装置50と、電動装置50で発生した回転駆動力を変速させて駆動対象に伝える変速装置10と、を備えている。可変速増速機1は、例えば、圧縮機システム等の流体機械システムに適用することができる。
 本実施形態の可変速増速機1の駆動対象は圧縮機Cである。
 変速装置10は、遊星歯車変速装置である。
 電動装置50は、定速で回転する定速ロータ52を有する定速電動機51と、任意の回転数で回転する可変速ロータ72を有する可変速電動機71とを有している。定速ロータ52と可変速ロータ72は、それぞれ変速装置10と接続されている。
 電動装置50は、電動装置支持部50Sによって架台90に支持されている。変速装置10は、変速装置支持部10Sによって架台90に支持されている。これら支持部により、重量物である電動装置50及び変速装置10の確実な固定が可能となる。
 変速装置10は、図2に示すように、水平方向に延在する軸線Arを中心として自転する太陽歯車11と、太陽歯車11に固定されている太陽歯車軸12と、太陽歯車11と噛み合い、軸線Arを中心として公転すると共に自身の中心線Apを中心として自転する複数の遊星歯車15と、軸線Arを中心として環状に複数の歯が並び、複数の遊星歯車15と噛み合う内歯車17と、複数の遊星歯車15を、軸線Arを中心として公転可能に且つ遊星歯車15自身の中心線Apを中心として自転可能に支持する遊星歯車キャリア21と、内歯車17を軸線Arを中心として自転可能に支持する内歯車キャリア31と、これらを覆う変速ケーシング41と、を有している。
 以下、軸線Arが延びている方向を軸方向とし、軸方向の一方側を出力側、出力側の反対側を入力側とする。また、軸線Arを中心とする径方向を単に径方向という。本実施形態の可変速増速機1は、軸線方向の入力側に電動装置50が配置され、電動装置50の出力側に変速装置10が配置されている。圧縮機Cは、可変速増速機1の出力側に配置されている。
 太陽歯車軸12は、軸線Arを中心として円柱状を成し、太陽歯車11から軸方向の出力側に延びている。この太陽歯車軸12の出力側端部には、フランジ13が形成されている。このフランジ13には、例えば、駆動対象としての圧縮機Cのロータが接続される。太陽歯車軸12は、太陽歯車11の出力側に配置されている太陽歯車軸受42により、軸線Arを中心として自転可能に支持されている。太陽歯車軸受42は、変速ケーシング41に取り付けられている。
 遊星歯車キャリア21は、複数の遊星歯車15毎に設けられている遊星歯車軸22と、複数の遊星歯車軸22相互の位置を固定するキャリア本体23と、軸線Arを中心として軸方向に延びる出力側遊星歯車キャリア軸27oと、を有している。出力側遊星歯車キャリア軸27oは、キャリア本体23の径方向内側に固定されている。
 遊星歯車軸22は、遊星歯車15の中心線Apを軸方向に貫通し、遊星歯車15をその中心線を中心として自転可能に支持する。キャリア本体23は、複数の遊星歯車軸22から径方向外側に延在している。
 出力側遊星歯車キャリア軸27oは、キャリア本体23から出力側に延在している。出力側遊星歯車キャリア軸27oは、軸線Arを中心として円筒状を成している。
 出力側遊星歯車キャリア軸27oは、遊星歯車キャリア軸受43により、軸線Arを中心として自転可能に支持されている。遊星歯車キャリア軸受43は、変速ケーシング41に取り付けられている。出力側遊星歯車キャリア軸27oの内周側には、太陽歯車軸12が挿通されている。
 遊星歯車キャリア21は、可変速電動機71の可変速ロータ72に接続される入力側遊星歯車キャリア軸27iと、入力側遊星歯車キャリア軸27iの回転をキャリア本体23に伝達する第一伝達部25及び第二伝達部26を、有している。
 入力側遊星歯車キャリア軸27iは、軸線Arを中心として円筒状を成している中空軸である。入力側遊星歯車キャリア軸27iは、変速装置10の入力側に配置されており、遊星歯車キャリア軸受44により、軸線Arを中心として自転可能に支持されている。遊星歯車キャリア軸受44は、変速ケーシング41に取り付けられている。入力側遊星歯車キャリア軸27iの内周側には、変速装置10の内歯車キャリア31を駆動する内歯車キャリア軸37が挿通されている。
 入力側遊星歯車キャリア軸27iの入力側端には、径方向外側に向かって広がる環状のフランジ28が形成されている。
 入力側遊星歯車キャリア軸27iの出力側端には、第一伝達部25の第一伝達歯車25gに噛み合うキャリア軸歯車27gが形成されている。
 第一伝達部25は、軸線At1を中心として自転可能に支持されている第一伝達軸25aと、第一伝達軸25aに固定されている第一伝達歯車25gを有している。第一伝達軸25aは、軸受(図示せず)を介して変速ケーシング41に取り付けられている。
 第二伝達部26は、軸線At2を中心として自転可能に支持されている第二伝達軸26aと、第二伝達軸26aに固定されている入力側伝達歯車29i及び出力側伝達歯車29oと、を有している。
 第二伝達軸26aは、軸受(図示せず)を介して変速ケーシング41に取り付けられている。入力側伝達歯車29iと出力側伝達歯車29oとは、伝達軸25の両端に固定されている。
 入力側伝達歯車29iは、第一伝達歯車25gと噛み合っている。出力側伝達歯車29oは、キャリア本体23の外周に形成されている歯車23gと噛み合っている。これにより、入力側遊星歯車キャリア軸27iの回転は、第一伝達部25及び第二伝達部26を介してキャリア本体23に伝達される。
 内歯車キャリア31は、内歯車17が固定されているキャリア本体33と、キャリア本体33に固定され軸線Arを中心として軸方向に延びる内歯車キャリア軸37と、を有する。
 キャリア本体33は、軸線Arを中心として円筒状を成し、内周側に内歯車17が固定されている円筒部35と、円筒部35の入力側端から径方向内側に延びる入力側アーム部36と、を有する。
 軸線Arを中心として円柱状を成す内歯車キャリア軸37は、軸線Arを中心として円柱状を成す太陽歯車軸12の入力側に配置されている。キャリア本体33の入力側アーム部36は、内歯車キャリア軸37に固定されている。内歯車キャリア軸37は、円筒状の入力側遊星歯車キャリア軸27iの内周側に挿通されている。
 図3に示すように、定速電動機51は、変速装置10の内歯車キャリア軸37を回転駆動させる。可変速電動機71は、変速装置10の入力側遊星歯車キャリア軸27iを回転駆動させる。電動装置50は、定速電動機51を冷却するための冷却ファン91と、冷却ファン91を覆うファンカバー92と、を有する。
 内歯車キャリア軸37は、定速電動機51の駆動力によって定速で回転する定速入力軸Acである。入力側遊星歯車キャリア軸27iは、可変速電動機71の駆動力によって任意の回転数で回転する可変速入力軸Avである。
 可変速増速機1は、可変速電動機71の回転数を変えることによって、駆動対象に接続される変速装置10の出力軸Aoの回転数を変えることができる。
 本実施形態において、定速電動機51は、例えば、4極の三相誘導電動機である。また、可変速電動機71は、極数が定速電動機51よりも多い6極の三相誘導電動機である。なお、定速電動機51及び可変速電動機71の仕様はこれに限ることはなく、適宜仕様を変更することができる。
 定速電動機51は、軸線Arを中心として自転し、変速装置10の定速入力軸Acである内歯車キャリア軸37に接続される定速ロータ52と、定速ロータ52の外周側に配置されている定速ステータ66と、定速ステータ66が内周側に固定されている定速電動機ケーシング61と、を有している。
 定速ロータ52は、軸線Arを中心として円柱状を成す定速ロータ軸53と、定速ロータ軸53の外周に固定されている導体56と、を有する。定速ロータ軸53の入力側端には、冷却ファン91が固定されている。
 定速ステータ66は、定速ロータ52の導体56の径方向外側に配置されている。この定速ステータ66は、複数のコイルで形成されている。
 定速電動機ケーシング61は、軸線Arを中心として円筒状を成し、内周側に定速ステータ66が固定されているケーシング本体62と、円筒状のケーシング本体62の軸方向の両端を塞ぐ蓋63i,63oとを有している。各々の蓋63i,63oには、定速ロータ軸53を、軸線Arを中心として自転可能に支持する定速ロータ軸受65i,65oが取り付けられている。各々の蓋63i,63oには、定速ロータ軸受65iよりも径方向外側の位置で、軸方向に貫通する複数の開口64が形成されている。
 定速ロータ軸53の入力側端は、定速電動機ケーシング61の入力側の蓋63iから、入力側に突出している。定速ロータ軸53の入力側端に、冷却ファン91が固定されている。
 定速ロータ52が回転すると、冷却ファン91も定速ロータ52と一体的に回転する。ファンカバー92は、冷却ファン91の外周側に配置されている円筒状のカバー本体93と、カバー本体93の入口側の開口に取り付けられ、複数の空気孔が形成されている空気流通板94と、を有する。ファンカバー92は、定速電動機ケーシング61の入力側の蓋63iに固定されている。
 可変速電動機71は、軸線Arを中心として自転し、可変速入力軸Avである入力側遊星歯車キャリア軸27iに接続される可変速ロータ72と、可変速ロータ72の外周側に配置されている可変速ステータ86と、可変速ステータ86が内周側に固定されている可変速電動機ケーシング81と、を有している。
 可変速ロータ72は、可変速ロータ軸73と、可変速ロータ軸73の外周に固定されている導体76と、を有している。可変速ロータ軸73は、軸線Arを中心として円筒状を成し、軸方向に貫通した軸挿通孔74を有している中空軸である。可変速ロータ軸73の軸挿通孔74には、定速入力軸Acである内歯車キャリア軸37が挿通されている。可変速ロータ軸73の出力側端には、径方向外側に向かって広がる環状のフランジ73oが形成されている。
 可変速ステータ86は、可変速ロータ72の導体76の径方向外側に配置されている。可変速ステータ86は、複数のコイルで形成されている。
 可変速電動機ケーシング81は、軸線Arを中心として円筒状を成し、内周側に可変速ステータ86が固定されているケーシング本体82と、円筒状のケーシング本体82の出力側端を塞ぐ出力側蓋83oと、可変速ステータ86よりも入力側に配置され円筒状のケーシング本体82の内周側に固定されている入口側蓋83iと、を有している。各々の蓋83i,83oには、可変速ロータ軸73を、軸線Arを中心として自転可能に支持する可変速ロータ軸受85i,85oが取り付けられている。各々の蓋83i,83oには、可変速ロータ軸受85i,85oよりも径方向外側の位置で、軸方向に貫通する複数の開口84が形成されている。
 可変速電動機ケーシング81の各々の蓋83i,83oに形成されている複数の開口84、及び、定速電動機ケーシング61の各蓋63i,63oに形成されている複数の開口64により、可変速電動機ケーシング81内の空間と定速電動機ケーシング61内の空間とが連通している。
 また、本実施形態の可変速増速機1において、定速ロータ52と、可変速ロータ72と、太陽歯車軸12とは同一の軸線上に配置されている。
 図4に示すように、定速電動機51は、定速電動機51に電力を供給することによって定速ロータ52(内歯車17)を軸線Arの周方向の第二方向R2に回転させるように設定されている。定速ロータ52が第二方向R2に回転することによって、内歯車キャリア軸37及び内歯車キャリア31は、第二方向R2に回転する。
 変速装置10の出力軸Aoは、定速電動機51の定速ロータ52が第二方向R2に最大回転数で回転することにより、第二方向R2とは逆方向の第一方向R1に回転するように設定されている。即ち、定速電動機51の正回転は第二方向R2であり、変速装置10の出力軸Aoの正回転は、第一方向R1である。圧縮機Cは、出力軸Aoが正回転することにより、正常に作動する。
 なお、以下の説明においては、第一方向R1の回転方向をプラスの回転方向とし、第二方向R2の回転方向をマイナスの回転方向とする。例えば、定速電動機51の最大回転数は、-1800rpmである。
 可変速電動機71は、可変速ロータ72(遊星歯車キャリア21)を軸線Arの周方向の第一方向R1及び第二方向R2に回転駆動させることができる。即ち、可変速電動機71は、正回転及び逆回転が可能である。
 可変速電動機71は、可変速ロータ72を第二方向R2に回転させることによって発電機として機能する。可変速電動機71が発電機として機能する状態を発電機モードと呼ぶ。即ち、可変速電動機71の可変速ロータ72は、発電機モードにおいて第二方向R2に回転する。
 可変速電動機71は、可変速ロータ72を第一方向R1に回転させることによって電動機として機能する。可変速電動機71が電動機として機能する状態を電動機モードと呼ぶ。即ち、可変速電動機71の可変速ロータ72は、電動機モードにおいて第一方向R1に回転する。
 可変速ロータ72が第一方向R1に回転することによって、遊星歯車キャリア21は、第一方向R1に回転する。
 本実施形態の可変速増速機1は、第二伝達軸26a(第二伝達歯車26g)の回転数を計測する回転数センサ131を備えている。回転数センサ131によって測定された回転数は、制御部120に送信される。制御部120は、回転数センサによって測定された回転数を用いて、可変速電動機71(可変速ロータ72)の回転数を算出する。
 回転数センサ131は、第二伝達軸26aに接続可能な検出軸132を備えている。
 回転数センサ131の検出軸132は、第二伝達軸26aの端部に、第二伝達軸26aと検出軸132とが同一直線上となるように接続されている。回転数センサ131は、変速ケーシング41に固定されている。
 制御部120は、可変速ロータ72の回転数ωhと第二伝達軸26aの回転数ωtの回転数比ωh/ωtを用いて、可変速ロータ72の回転数ωhを算出する。回転数比ωh/ωtは、第一伝達歯車25g及び第二伝達歯車26gの歯数から定まる。
 本実施形態の可変速増速機1は、可変速電動機71の回転数を制御する回転数制御装置100と、可変速電動機71を電力供給状態と電力断状態とにする可変速電動機スイッチ111と、定速電動機51を電力供給状態と電力断状態とにする定速電動機スイッチ112と、回転数制御装置100、可変速電動機スイッチ111及び定速電動機スイッチ112の動作を制御する制御部120と、を備えている。
 制御部120は、コンピュータで構成されている。制御部120は、オペレータからの指示を直接受け付ける又は上位制御装置からの指示を受け付ける受付部121と、可変速電動機スイッチ111及び回転数制御装置100、定速電動機スイッチ112に指示を与えるインタフェース122と、受付部121で受け付けた指示等に応じて、可変速電動機スイッチ111、定速電動機スイッチ112及び回転数制御装置100に対する指示を作成する演算部123と、を有している。
 可変速電動機スイッチ111は、電源線110と回転数制御装置100とに電気的に接続されている。回転数制御装置100は、可変速電動機71と電気的に接続されている。定速電動機スイッチ112は、電源線110と定速電動機51とに電気的に接続されている。
 可変速電動機スイッチ111は、制御部120からのオン指示でオンになり、制御部120からのオフ指示でオフになる。可変速電動機スイッチ111がオンになると、電源線110からの電力が回転数制御装置100を介して可変速電動機71に供給され、可変速電動機71は電力供給状態になる。可変速電動機スイッチ111がオフになると、電源線110から回転数制御装置100及び可変速電動機71への電力供給が断たれ、可変速電動機71は電力断状態になる。
 定速電動機スイッチ112は、制御部120からのオン指示でオンになり、制御部120からのオフ指示でオフになる。定速電動機スイッチ112がオンになると、電源線110からの電力が定速電動機51に供給され、定速電動機51は電力供給状態になる。定速電動機スイッチ112がオフになると、電源線110から定速電動機51への電力供給が断たれ、定速電動機51は電力断状態になる。
 演算部120は、センサ付きベクトル制御を用いて、可変速電動機71に供給する周波数を演算する。具体的には、回転数センサ131によって検出された第二伝達軸26a(第二伝達歯車26g)の回転数ωtを用いて算出された可変速電動機71の回転数ωhを用いてフィードバック制御をおこなう。ここで、ベクトル制御とは、電動機を流れる電流を、トルクを発生する電流成分と磁束を発生する電流成分とに分解し、それぞれの電流成分を独立に制御する方式である。
 回転数制御装置100は、電源線110から供給される電力の周波数を変える周波数変換部101と、可変速電動機71の回転方向を変更する回転方向変更部102と、を備えている。
 周波数変換部101は、制御部120から指示された周波数の電力を可変速電動機71に供給する。可変速電動機71の可変速ロータ72は、この周波数に応じた回転数で回転する。このように、可変速ロータ72の回転数が変化するため、可変速ロータ72に接続されている変速装置10の遊星歯車キャリア21の回転数も変化する。この結果、変速装置10の出力軸Aoである太陽歯車軸12の回転数も変化する。
 回転方向変更部102は、可変速電動機71に接続されている複数(本実施形態の場合3本)の電源線を入れ替える回路を用いることによって、可変速電動機71の回転方向を変更する装置である。即ち、回転方向変更部102は、可変速ロータ72を正回転、及び逆回転させることができる。
 ここで、変速装置10の各歯車の歯数と、変速装置10の各軸の回転数との関係について、図4を用いて説明する。
 出力軸Aoとしての太陽歯車軸12の回転数をωs、定速入力軸Acとしての内歯車キャリア軸37(定速電動機51)の回転数をωi、可変速入力軸Avとしての入力側遊星歯車キャリア軸27i(可変速電動機71)の回転数をωhとする。また、太陽歯車11の歯数をZs、内歯車17の歯数をZiとする。
 また、出力軸Aoの回転数ωsと定速電動機51の回転数ωiの比ωs/ωiをUとする。出力軸Aoの回転数ωsと定速電動機51の回転数ωiの比Uは、内歯車17の歯数Ziと太陽歯車11の歯数Zsの比Zi/Zsと同じである。
 また、遊星歯車キャリア21の回転数ωcと可変速電動機71の回転数ωhの比ωc/ωhをPとする。
 各歯車の歯数と、変速装置10の各軸の回転数との関係は、以下の式(1)で表すことができる。
 ωs/ωi=P×ωh/ωi-(1-P×ωh/ωi )×U ・・・(1)
 仮に、定速電動機51が4極の誘導電動機で、電源周波数が60Hzの場合、定速ロータ52(定速入力軸Ac)の回転数ωi(定格回転数)は1800rpmとなる。また、可変速電動機71が8極の誘導電動機で、電源周波数が60Hzの場合、可変速ロータ72(可変速入力軸Av)の最高回転数ωh(定格回転数)は900rpmとなる。
 また、仮に、出力軸Aoの回転数ωsと定速電動機51の回転数ωiの比U(太陽歯車11の歯数Zsと内歯車17の歯数Ziと比Zi/Zs)を4とする。
 また、遊星歯車キャリア21の回転数ωcと可変速電動機71の回転数ωhの比Pを0.3とする。
 この場合、定速ロータ52(内歯車17)の回転の向きを第二方向R2の回転(-1800rpm)とし、可変速ロータ72(遊星歯車キャリア21)の回転の向きが定速ロータ52の回転と逆向き(第一方向R1の回転)の最高回転数(900rpm)であると、出力軸Aoである太陽歯車軸12の回転数ωsは、8550rpmとなる。この回転数(8550rpm)は、太陽歯車軸12の最高回転数である。
 即ち、本実施形態の変速装置10においては、定速入力軸Acに対応する内歯車17を-1800rpmで回転させ、可変速入力軸Avに対応する遊星歯車キャリア21を900rpmで回転させることによって、出力軸Aoの回転数ωsが最高回転数となる。
 可変速入力軸Avの可変速範囲が-900rpmから+900rpmであるとすると、可変速入力軸Avの回転数が-900rpmに近づくに従って、出力軸Aoの回転数ωsは低くなる。
 上記実施形態によれば、回転数センサ131を用いて可変速電動機71の回転数ωhを算出することができるため、センサ付きベクトル制御を使って可変速電動機71の制御が可能となる。これにより、負荷の大きさや回転数の状況を精度良く的確に判断して、目標とする回転数やトルクを発生することができる。
 また、回転数センサ131を中空軸である可変速ロータ72や、入力側遊星歯車キャリア軸27iではなく、第二伝達軸26aに接続した。換言すれば、回転数センサ131を円筒状をなす可変速ロータ72及び遊星歯車キャリア軸27iの回転数ではなく、第二伝達歯車26gの回転数を測定する構成とした。これにより、より容易に回転数センサ131を取り付けることができる。具体的には、汎用の回転数センサを用いて低コストで可変速電動機71の回転数を検出することができる。
 また、本実施形態の制御部120は第二伝達歯車26gと可変速ロータ72の回転数比に基づいて、第二伝達歯車26gの回転数ωtから可変速ロータ72の回転数ωhを算出する。これにより、可変速ロータ72の回転数ωhではなく、第二伝達歯車26gの回転数ωtを計測する場合においても、可変速ロータ72の回転数ωhを算出することができる。
 また、本実施形態では、軸挿通孔74が形成された円筒状の軸である可変速ロータ軸73に棒状の軸である内歯車キャリア軸37が挿通されている。即ち、出力の大きな定速入力軸Acが定速電動機51よりも出力の小さい可変速電動機71の可変速ロータ軸73に挿通されている。これにより、定速電動機51としてより大きな出力(馬力)のあるものを採用することができる。
 また、本実施形態では、定速電動機51、可変速電動機71、変速装置、圧縮機Cの順に直線状に配置していることにより、装置全体をよりコンパクトにすることができる。
 なお、上記実施形態では、回転数センサ131を第二伝達軸26aの出力側の端部に接続したがこれに限ることはない。回転数センサ131は、第二伝達軸26aの入力側の端部に接続してもよい。
 また、回転数センサ131は、第一伝達軸25aに接続してもよい。即ち、回転数センサ131は、可変速ロータ72に対して、所定の回転数比で回転する回転軸に接続することができる。
 また、上記実施形態では、圧縮機Cを高速回転させるために好適な定速電動機51として、4極の三相誘導電動機を例示し、圧縮機Cの回転数を一定の範囲内で可変速させるために好適な可変速電動機71として、6極の三相誘導電動機を例示している。しかしながら、駆動対象を高速回転させる必要がない場合には、定速電動機51や可変速電動機71として他のタイプの電動機を用いてもよい。
 1 可変速増速機
 10 変速装置
 11 太陽歯車
 12 太陽歯車軸
 15 遊星歯車
 17 内歯車
 21 遊星歯車キャリア
 22 遊星歯車軸
 25 第一伝達部
 25g 第一伝達歯車
 26 第二伝達部
 26g 第二伝達歯車
 27 遊星歯車キャリア軸
 27i 入力側遊星歯車キャリア軸
 27o 出力側遊星歯車キャリア軸
 31 内歯車キャリア
 37 内歯車キャリア軸
 41 変速ケーシング
 42 太陽歯車軸受
 50 電動装置
 51 定速電動機
 52 定速ロータ
 53 定速ロータ軸
 56 導体
 61 定速電動機ケーシング
 66 定速ステータ
 71 可変速電動機
 72 可変速ロータ
 73 可変速ロータ軸
 74 軸挿通孔
 76 導体
 81 可変速電動機ケーシング
 86 可変速ステータ
 100 回転数制御装置
 101 周波数変換部
 102 回転方向変更部
 110 電源線
 111 可変速電動機スイッチ
 112 定速電動機スイッチ
 120 制御部(制御装置)
 121 受付部
 122 インタフェース
 123 演算部
 131 回転数センサ
 Ac 定速入力軸
 Ao 出力軸
 Ar 軸線
 Av 可変速入力軸
 C 圧縮機
 R1 第一方向
 R2 第二方向

Claims (2)

  1.  回転駆動力を発生する電動装置と、
     前記電動装置で発生した回転駆動力を変速させて駆動対象に伝える変速装置と、
     を備え、
     前記変速装置は、
     軸線を中心として自転する太陽歯車と、
     前記太陽歯車に固定され、前記軸線を中心として軸方向に延びる太陽歯車軸と、
     前記太陽歯車と噛み合い、前記軸線を中心として公転すると共に自身の中心線を中心として自転する遊星歯車と、
     前記軸線を中心として環状に複数の歯が並び、前記遊星歯車と噛み合う内歯車と、
     前記軸線を中心として軸方向に延びる遊星歯車キャリア軸、複数の前記遊星歯車相互の位置を固定するキャリア本体、及び前記遊星歯車キャリア軸の回転を前記キャリア本体に伝達する伝達歯車を有し、前記遊星歯車を前記軸線を中心として公転可能に且つ前記遊星歯車自身の中心線を中心として自転可能に支持する遊星歯車キャリアと、
     前記軸線を中心として軸方向に延びる内歯車キャリア軸を有し、前記内歯車を、前記軸線を中心として自転可能に支持する内歯車キャリアと、
     を有し、
     前記太陽歯車軸が前記駆動対象に接続される出力軸を成し、前記内歯車キャリア軸が定速入力軸を成し、前記遊星歯車キャリア軸が可変速入力軸を成し、
     前記電動装置は、前記変速装置の前記可変速入力軸に接続されている可変速ロータを有する可変速電動機と、前記変速装置の前記定速入力軸に接続されている定速ロータを有する定速電動機と、からなり、
     前記可変速ロータ及び前記遊星歯車キャリア軸は、前記軸線を中心として円筒状を成し、軸方向に貫通した軸挿通孔が形成され、
     前記定速ロータは、前記軸挿通孔に挿通され、
     前記伝達歯車の回転数を測定する回転数センサと、
     前記回転数センサによって測定された回転数に基づいて前記可変速電動機のベクトル制御を行う制御装置と、を有する可変速増速機。
  2.  前記制御装置は、前記伝達歯車と前記可変速ロータの回転数比に基づいて、前記伝達歯車の回転数から前記可変速ロータの回転数を算出する請求項1に記載の可変速増速機。
PCT/JP2016/067764 2016-06-15 2016-06-15 可変速増速機 WO2017216897A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112016006978.2T DE112016006978B4 (de) 2016-06-15 2016-06-15 Beschleuniger variabler Geschwindigkeit mit zwei Motoren und Überlagerungsgetriebe
US16/093,005 US11025180B2 (en) 2016-06-15 2016-06-15 Variable speed accelerator
JP2018523097A JP6627184B2 (ja) 2016-06-15 2016-06-15 可変速増速機
PCT/JP2016/067764 WO2017216897A1 (ja) 2016-06-15 2016-06-15 可変速増速機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067764 WO2017216897A1 (ja) 2016-06-15 2016-06-15 可変速増速機

Publications (1)

Publication Number Publication Date
WO2017216897A1 true WO2017216897A1 (ja) 2017-12-21

Family

ID=60663545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067764 WO2017216897A1 (ja) 2016-06-15 2016-06-15 可変速増速機

Country Status (4)

Country Link
US (1) US11025180B2 (ja)
JP (1) JP6627184B2 (ja)
DE (1) DE112016006978B4 (ja)
WO (1) WO2017216897A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3330575B1 (en) * 2015-09-04 2021-05-26 Mitsubishi Heavy Industries Compressor Corporation Starting method for variable speed accelerator and starting control device for variable speed accelerator
WO2017145351A1 (ja) * 2016-02-26 2017-08-31 三菱重工コンプレッサ株式会社 可変速増速機
WO2017145367A1 (ja) * 2016-02-26 2017-08-31 三菱重工コンプレッサ株式会社 可変速増速機
WO2017199428A1 (ja) * 2016-05-20 2017-11-23 三菱重工コンプレッサ株式会社 可変速増速機
US10663039B2 (en) * 2016-06-15 2020-05-26 Mitsubishi Heavy Industries Compressor Corporation Variable speed accelerator and method for controlling variable speed accelerator
WO2018016021A1 (ja) * 2016-07-20 2018-01-25 三菱重工コンプレッサ株式会社 可変速増速機
JP2022121874A (ja) * 2021-02-09 2022-08-22 三菱重工コンプレッサ株式会社 可変速増速機、及び可変速増速機の始動方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460254A (ja) * 1990-06-29 1992-02-26 Mazda Motor Corp 自動変速機
JPH09211015A (ja) * 1996-02-01 1997-08-15 Tamagawa Seiki Co Ltd 差動遊星型複速センサ
JPH10238381A (ja) * 1997-02-25 1998-09-08 Denso Corp ハイブリッド車制御装置
WO2016010146A1 (ja) * 2014-07-18 2016-01-21 三菱重工コンプレッサ株式会社 可変電動機システム、及び電動装置

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB407760A (en) 1932-10-20 1934-03-29 George Ryder Adamson Improvements in electrically operated cranes, windlasses and the like
FR822746A (fr) 1936-06-15 1938-01-06 Messerschmitt Boelkow Blohm Dispositif pour entraîner une machine de travail au moyen de deux machines motrices
US3575805A (en) 1968-12-18 1971-04-20 Atomic Energy Commission Nuclear reactor control rod drive assembly
FR2094518A5 (ja) 1970-06-23 1972-02-04 Inst Francais Du Petrole
DE2236588A1 (de) 1972-07-26 1974-02-07 Mueller Fa Arnold Elektromotorischer antrieb mit stufenloser drehzahlregelung
JPS5970497A (ja) 1982-10-14 1984-04-20 Aida Eng Ltd プレス変速駆動装置
GB8801509D0 (en) 1988-01-22 1988-02-24 Prokopius J P Multifunction speed changing & reversing mechanism for gearboxes
JPH01176247U (ja) 1988-06-02 1989-12-15
JP2515645Y2 (ja) 1989-11-21 1996-10-30 アスモ 株式会社 減速機付モ−タ
JP3291871B2 (ja) 1993-11-10 2002-06-17 株式会社エクォス・リサーチ ハイブリッド型車両
US6018694A (en) 1996-07-30 2000-01-25 Denso Corporation Controller for hybrid vehicle
US5947854A (en) 1997-05-08 1999-09-07 Worksmart Energy Enterprises, Inc. Combined variable-speed drive and speed reducer for pumps and fans
JP3978930B2 (ja) 1999-04-30 2007-09-19 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JP3410056B2 (ja) 1999-11-19 2003-05-26 トヨタ自動車株式会社 車両のエンジン始動制御装置
JP3620501B2 (ja) 2000-05-08 2005-02-16 株式会社日立製作所 複合動力伝達機構および車両
EP1279543B1 (en) * 2001-07-23 2006-11-29 Nissan Motor Co., Ltd. Hybrid drivetrain for a vehicle
JP3578212B2 (ja) 2001-07-23 2004-10-20 日産自動車株式会社 駆動装置
JP4472350B2 (ja) * 2002-02-21 2010-06-02 株式会社荏原製作所 差動遊星歯車装置の始動装置
JP4029706B2 (ja) 2002-09-24 2008-01-09 日本精工株式会社 無段変速装置
JP4183481B2 (ja) 2002-11-01 2008-11-19 有限会社クチダギアリング 変速装置
DE10314234B3 (de) 2003-03-29 2004-10-28 Aurator Treuhandgesellschaft Mbh Vier-Wellen-Leistungsverzweigungsgetriebe
JP4337522B2 (ja) 2003-11-26 2009-09-30 スズキ株式会社 電動式船外機
JP3858904B2 (ja) 2004-03-11 2006-12-20 日産自動車株式会社 ハイブリッド変速機のエンジンクラッチ締結方法
US7462105B2 (en) 2004-07-26 2008-12-09 Thermo King Corporation Flexible drive interface
JP4239923B2 (ja) 2004-08-02 2009-03-18 日産自動車株式会社 電動力伝達装置
JP4779341B2 (ja) * 2004-11-18 2011-09-28 トヨタ自動車株式会社 自動変速機用ピストン
JP4943699B2 (ja) 2005-03-02 2012-05-30 株式会社神戸製鋼所 混練機および混練制御方法
JP3927584B2 (ja) * 2005-10-26 2007-06-13 三菱電機株式会社 自動車用動力制御装置
WO2007069567A1 (ja) 2005-12-12 2007-06-21 Kabushiki Kaisha Bridgestone インホイールモータシステム
JP4312767B2 (ja) 2006-02-13 2009-08-12 株式会社日本製鋼所 押出機用駆動装置
US7322891B1 (en) 2006-10-05 2008-01-29 Terry Prewitt Golf putting training device
JP2010242811A (ja) 2009-04-02 2010-10-28 Kuchida Gearing:Kk 変速装置
GB2489503A (en) 2011-03-31 2012-10-03 Ge Aviat Systems Ltd Rotary actuator and method of operation with failsafe mechanism
EP2754910B1 (en) 2011-09-07 2018-11-21 Mitsubishi Electric Corporation Gear coupling
JP5997581B2 (ja) 2012-10-24 2016-09-28 セイコーエプソン株式会社 電気機械装置、並びに、これを備える移動体およびロボット
WO2015129571A1 (ja) * 2014-02-28 2015-09-03 アイシン・エィ・ダブリュ株式会社 車両用制御装置
DE102014210870A1 (de) 2014-06-06 2015-12-17 Voith Patent Gmbh Maschinenanordnung zur Leistungsübertragung und Verfahren zum Steuern einer solchen Maschinenanordnung
DE102014225738A1 (de) 2014-12-12 2016-06-16 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Antriebsstrangs
WO2017037939A1 (ja) 2015-09-04 2017-03-09 三菱重工コンプレッサ株式会社 可変速増速機の始動方法及び可変速増速機の始動制御装置
EP3330575B1 (en) 2015-09-04 2021-05-26 Mitsubishi Heavy Industries Compressor Corporation Starting method for variable speed accelerator and starting control device for variable speed accelerator
EP3330569B1 (en) 2015-09-04 2020-11-04 Mitsubishi Heavy Industries Compressor Corporation Control method for variable speed electric motor system and control device for variable speed electric motor system
US10680539B2 (en) 2016-02-26 2020-06-09 Mitsubishi Heavy Industries Compressor Corporation Variable-speed speed increaser
WO2017145367A1 (ja) 2016-02-26 2017-08-31 三菱重工コンプレッサ株式会社 可変速増速機
WO2017145351A1 (ja) 2016-02-26 2017-08-31 三菱重工コンプレッサ株式会社 可変速増速機
US10605339B2 (en) 2016-02-26 2020-03-31 Mitsubishi Heavy Industries Compressor Corporation Variable speed accelerator and control method for variable speed accelerator
US10663039B2 (en) 2016-06-15 2020-05-26 Mitsubishi Heavy Industries Compressor Corporation Variable speed accelerator and method for controlling variable speed accelerator
WO2017216888A1 (ja) 2016-06-15 2017-12-21 三菱重工コンプレッサ株式会社 可変速増速機及び可変速増速機の始動方法
WO2018016021A1 (ja) 2016-07-20 2018-01-25 三菱重工コンプレッサ株式会社 可変速増速機
US20190107189A1 (en) 2016-07-20 2019-04-11 Mitsubishi Heavy Industries Compressor Corporation Method for designing transmission device, method for manufacturing transmission device, and method for manufacturing variable speed increaser
WO2018029804A1 (ja) 2016-08-10 2018-02-15 三菱重工コンプレッサ株式会社 可変速増速機
JP7014638B2 (ja) 2018-02-27 2022-02-01 三菱重工コンプレッサ株式会社 可変速増速機及び可変速増速機の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0460254A (ja) * 1990-06-29 1992-02-26 Mazda Motor Corp 自動変速機
JPH09211015A (ja) * 1996-02-01 1997-08-15 Tamagawa Seiki Co Ltd 差動遊星型複速センサ
JPH10238381A (ja) * 1997-02-25 1998-09-08 Denso Corp ハイブリッド車制御装置
WO2016010146A1 (ja) * 2014-07-18 2016-01-21 三菱重工コンプレッサ株式会社 可変電動機システム、及び電動装置

Also Published As

Publication number Publication date
DE112016006978T5 (de) 2019-03-14
JPWO2017216897A1 (ja) 2019-03-07
US11025180B2 (en) 2021-06-01
JP6627184B2 (ja) 2020-01-08
DE112016006978B4 (de) 2022-05-25
US20190181779A1 (en) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2017216897A1 (ja) 可変速増速機
JP6566285B2 (ja) 可変速増速機、及び可変速増速機の制御方法
JP6508853B2 (ja) 可変速増速機の始動方法及び可変速増速機の始動制御装置
JP6489628B2 (ja) 可変速電動機システムの制御方法及び可変速電動機システムの制御装置
JP6676164B2 (ja) 可変速増速機及び可変速増速機の始動方法
JP6582350B2 (ja) 可変速増速機の始動方法及び可変速増速機の始動制御装置
WO2017145377A1 (ja) 可変速増速機及び可変速増速機の制御方法
WO2018016097A1 (ja) 可変速増速機、可変速増速機の制御装置、及び可変速増速機の制御方法
WO2017145350A1 (ja) 可変速増速機
WO2018030087A1 (ja) 可変速増速機
WO2017145367A1 (ja) 可変速増速機
WO2018016019A1 (ja) 変速装置の設計方法、変速装置の製造方法、及び可変速増速機の製造方法
JP6590174B2 (ja) 可変速増速機
WO2018042485A1 (ja) 可変速増速機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523097

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16905452

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16905452

Country of ref document: EP

Kind code of ref document: A1