WO2017215457A1 - 一种损伤补偿方法及装置 - Google Patents

一种损伤补偿方法及装置 Download PDF

Info

Publication number
WO2017215457A1
WO2017215457A1 PCT/CN2017/086986 CN2017086986W WO2017215457A1 WO 2017215457 A1 WO2017215457 A1 WO 2017215457A1 CN 2017086986 W CN2017086986 W CN 2017086986W WO 2017215457 A1 WO2017215457 A1 WO 2017215457A1
Authority
WO
WIPO (PCT)
Prior art keywords
compensation
signal
connector
compensation coefficient
digital
Prior art date
Application number
PCT/CN2017/086986
Other languages
English (en)
French (fr)
Inventor
杜治芸
蔡轶
周伟勤
袁磊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17812568.8A priority Critical patent/EP3474466B1/en
Publication of WO2017215457A1 publication Critical patent/WO2017215457A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a damage compensation method and apparatus.
  • CFP/CFP2 Code Division Multiple Access 2
  • ASIC Application Specific Integrated Circuit
  • CFP2-ACO C form-factor pluggable 2-analog coherent optics
  • CFP2-ACO C form-factor pluggable 2-analog coherent optics
  • CFP2-ACO is a standard for pluggable analog coherent optical module CFP2 technology, using CFP2 connector to connect ASIC And optical transceivers, however, the problem with this approach is that large echo interference and insertion loss occur at the connector interface and the internal wiring of the optical module, which brings non-negligible performance loss to the system.
  • the present invention provides a damage compensation scheme applied to an ASIC and an optical module in a separate scene, which can reduce the performance loss caused by echo interference and insertion loss generated at the interface of the connector and the internal trace of the optical module. It has become an urgent problem to be solved.
  • the embodiment of the invention provides a damage compensation method and device, which solves at least the problems in the prior art, and can reduce the performance of echo interference and insertion loss generated at the interface of the connector and the internal trace of the optical module. loss.
  • Embodiments of the present invention provide a damage compensation method, which is applied to ASIC and optical module separation.
  • the scenario includes the following methods:
  • the method further includes:
  • the second digital signal is a signal obtained by performing analog-to-digital conversion on a signal transmitted through the connector outputted by the optical transceiver.
  • the method further includes:
  • the second digital signal is a signal obtained by performing analog-to-digital conversion on a signal transmitted through the connector outputted by the optical transceiver.
  • the ASIC is connected to the optical transceiver by using the connector; and the determining, by the transmitting end, a first compensation coefficient for equalizing echo interference and compensating for insertion loss, including:
  • the first compensation coefficient used by the transmitting end to equalize the echo interference and compensate the insertion loss is determined by using a preset adaptive equalization algorithm, including:
  • w(n) is the first compensation coefficient at time n;
  • w(n+1) w(n)+ ⁇ *d(n) * *e(n);
  • d(n) is n time for the first a signal after the digital signal is subjected to analog-to-digital conversion after passing through the connector;
  • a value of the first compensation coefficient is determined based on the cost function J and the y(n).
  • the ASIC is connected to the optical transceiver by using the connector; and the determining, by the transmitting end, a first compensation coefficient for equalizing echo interference and compensating for insertion loss, including:
  • Two or more sets of compensation coefficients are obtained by using a preset frequency response characteristic
  • the first digital signal is pre-compensated based on each set of compensation coefficients, and a set of compensation coefficients having the best quality of the processed signal is determined as the first compensation coefficient.
  • the ASIC is connected to the optical transceiver by using the connector; and the determining, by the transmitting end, a first compensation coefficient for equalizing echo interference and compensating for insertion loss, including:
  • the first compensation coefficient of the transmitting end is determined by using a preset insertion training sequence, including:
  • the training sequence of length P transmitted by the transmitting end is x(i), x(i+1), ..., x(i+P-1), and the training of the length received by the input end of the connector is P.
  • the data is x 1 (i), x 1 (i+1), ..., x 1 (i+P-1);
  • the embodiment of the present invention further provides a damage compensation device, which is applied to a scenario in which an ASIC and an optical module are separated, and the device includes: a first determining module and a first compensation module; wherein
  • the first determining module is configured to determine a first compensation coefficient used by the transmitting end to equalize echo interference and compensate insertion loss
  • the first compensation module is configured to perform pre-compensation processing on the first digital signal based on the first compensation coefficient to obtain a first compensation signal, and perform digital-to-analog conversion on the first compensation signal. Input to the optical transceiver by the connector.
  • the device further includes a second compensation module and a second determining module;
  • the second determining module is configured to determine a second compensation coefficient used by the receiving end to equalize echo interference and compensate insertion loss
  • the second compensation module is configured to perform a compensation process on the second digital signal at the receiving end to obtain a second compensation signal based on the second compensation coefficient;
  • the second digital signal is a signal obtained by performing analog-to-digital conversion on a signal transmitted through the connector outputted by the optical transceiver.
  • the device further includes a second compensation module, configured to perform a compensation process on the second digital signal at the receiving end to obtain a second compensation signal based on the first compensation coefficient;
  • the second digital signal is a signal obtained by performing analog-to-digital conversion on a signal transmitted through the connector outputted by the optical transceiver.
  • the ASIC is connected to the optical transceiver through the connector
  • the first determining module is further configured to determine a first compensation coefficient of the transmitting end by using a preset adaptive equalization algorithm
  • w (n) is a first compensation coefficient at time n;
  • w (n + 1) w (n) + ⁇ * d (n) * * e (n);
  • d (n) is the first time n a signal after the digital signal is subjected to analog-to-digital conversion after passing through the connector;
  • a value of the first compensation coefficient is determined based on the cost function J and the y(n).
  • the ASIC is connected to the optical transceiver through the connector
  • the first determining module is further configured to obtain two groups by using a preset frequency response characteristic or Two or more compensation coefficients;
  • the first digital signal is pre-compensated based on each set of compensation coefficients, and a set of compensation coefficients having the best quality of the processed signal is determined as the first compensation coefficient.
  • the ASIC is connected to the optical transceiver through the connector
  • the first determining module is further configured to determine a first compensation coefficient of the transmitting end by using a preset insertion training sequence
  • the first determining module is specifically configured to determine that the training sequence of length P sent by the transmitting end is x(i), x(i+1), . . . , x(i+P-1), of the connector
  • the training data of length P received by the input is x 1 (i), x 1 (i+1), ..., x 1 (i+P-1);
  • a storage medium comprising a stored program, wherein the program is executed to perform the method of any of the above.
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the first compensation coefficient of the transmitting end is determined, and then the first digital signal of the transmitter is pre-compensated based on the first compensation coefficient to obtain a first compensation signal, so that the first compensation signal is obtained.
  • the pre-compensated processed signal is digital-to-analog converted and input to the optical transceiver via the connector; the second compensation coefficient for equalizing the echo interference and compensating for the insertion loss at the receiving end may also be determined simultaneously; based on the second compensation coefficient pair Compensating the second digital signal at the receiving end to obtain a second compensation signal; the second digital signal is for the optical transceiver Outputting a signal obtained by analog-to-digital conversion of a signal transmitted through the connector; thus, by precompensating the first digital signal at the transmitting end, and reducing the connector by compensating the second digital signal at the receiving end
  • the performance loss caused by the echo interference and the insertion loss generated at the interface and the internal wiring of the optical module is not affected by the physical characteristics of the optical channel transmission line because the local loss compensation is performed at the transmitting end and the receiving end respectively.
  • FIG. 1 is a schematic structural diagram of an optical communication system to which an impairment compensation method is applied according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart 1 of a method for compensating a damage of a transmitting end according to an embodiment of the present invention
  • FIG. 3 is a second schematic flowchart of a method for receiving damage at a receiving end according to an embodiment of the present invention
  • FIG. 4 is a first schematic diagram of a damage compensation method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram 1 of an adaptive equalization algorithm according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing performance comparison of a damage compensation system according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart 3 of a method for damage compensation according to an embodiment of the present invention.
  • FIG. 8 is a second schematic diagram of a damage compensation method according to an embodiment of the present invention.
  • FIG. 9 is a schematic flow chart 4 of a method for damage compensation according to an embodiment of the present invention.
  • FIG. 10 is a third schematic diagram of a damage compensation method according to an embodiment of the present invention.
  • Figure 11 is a schematic view showing the structure of a damage compensating device according to an embodiment of the present invention.
  • Return loss means that when a high-frequency signal is transmitted in a communication device, when a wave impedance is uneven, a reflection is formed on the signal, and the reflection not only causes an increase in transmission loss of the signal, but also a subsequent Signal interference causes transmission signal malformation, which has a great influence on transmission performance.
  • the attenuation caused by signal reflection is called return loss, and the interference caused by signal reflection is called echo interference.
  • Insertion loss refers to somewhere in the transmission system due to components or devices
  • the loss of load power that occurs during insertion which is expressed as the ratio of the power received before the component or device is inserted to the power received by the same load after insertion in decibels (dB).
  • the first compensation coefficient used by the transmitting end to equalize the echo interference and compensate the insertion loss is determined, and the first compensation signal is pre-compensated based on the first compensation coefficient to obtain the first compensation signal, so as to The first compensation signal is digital-to-analog converted and then input to the optical transceiver via a connector.
  • the embodiment of the present invention is applied to an optical communication system as shown in FIG. 1, which includes an integrated digital signal processor DSP (101, 104), a digital-to-analog converter DAC (102), and an analog-to-digital converter ADC (103).
  • DSP digital signal processor
  • DAC digital-to-analog converter
  • ADC analog-to-digital converter
  • ASIC integrated digital signal processor
  • connector 200
  • optical transceiver 300
  • the connector is used to connect a DAC and an optical transceiver and an ADC and an optical transceiver
  • the DAC is used to convert a digital signal into an analog signal
  • the ADC is for converting an analog signal into a digital signal
  • the optical transceiver is for implementing photoelectric conversion, and for transmitting and receiving optical signals.
  • the embodiment of the present invention provides a damage compensation method.
  • the damage includes echo interference and insertion loss.
  • the method is applied to a scenario where the ASIC and the optical module are separated. As shown in FIG. 2, the present invention is implemented.
  • the damage compensation methods in the example include:
  • Step 101 Determine a first compensation used by the transmitting end to equalize echo interference and compensate insertion loss. coefficient.
  • the ASIC is connected to the optical transceiver through the connector; the filter is pre-equalized and compensated for echo interference and insertion loss on the transmitting end side, and the coefficient of the filter is the first compensation coefficient. .
  • the manner of determining the first compensation coefficient of the transmitting end may include, but is not limited to, the following manners:
  • the first compensation coefficient of the transmitting end is determined by using a preset adaptive equalization algorithm, including:
  • e(n) u(n)-y(n); wherein u(n) is an n-time before the analog-to-digital conversion of the first digital signal and before passing through the connector
  • the signal, y(n) is the first output signal at time n, that is, the output signal of the filter at time n, which is an output signal in the simulation module, and is an intermediate signal;
  • w (n) is a first compensation coefficient at time n;
  • w (n + 1) w (n) + ⁇ * d (n) * * e (n);
  • d (n) is the first time n a signal after the digital signal is subjected to analog-to-digital conversion after passing through the connector;
  • a value of the first compensation coefficient is determined based on the cost function J and the y(n).
  • two or more sets of compensation coefficients are obtained by using a preset frequency response characteristic, and then the first digital signal is separately pre-compensated based on each set of compensation coefficients, and the processing is determined after the processing.
  • the best quality set of compensation coefficients is the first compensation coefficient; the quality described here can best be characterized by the largest eye diagram, or the best constellation, or the minimum bit error rate (BER). .
  • the first compensation coefficient of the transmitting end is determined by using a preset insertion training sequence, which specifically includes:
  • the training sequence of length P transmitted by the transmitting end is x(i), x(i+1), ..., x(i+P-1), and the training of the length received by the input end of the connector is P.
  • the data is x 1 (i), x 1 (i+1), ..., x 1 (i+P-1);
  • the compensation in order to make the compensation effect the best, the compensation can be performed simultaneously at the transmitting end and the receiving end, and the compensation coefficient of the receiving end can be set to be the same as that of the transmitting end, or the same as the transmitting end. The way to re-determine.
  • Step 102 Perform pre-compensation processing on the first digital signal based on the first compensation coefficient to obtain a first compensation signal, perform digital-to-analog conversion on the first compensation signal, and input to the optical transceiver via a connector.
  • the first compensation signal may be used to compensate the first digital signal based on the first compensation coefficient, and then the compensated signal is digital-to-analog converted and then input to the optical transceiver via the connector. Device.
  • the connector and the analog-to-digital converted signal output by the optical transceiver are compensated based on the compensation coefficient of the receiving end.
  • the first compensation coefficient is first determined at the transmitting end, and then the first digital signal of the transmitter is pre-compensated based on the first compensation coefficient to obtain a first compensation signal, so that the pre-compensated processed signal is performed.
  • Digital-to-analog conversion is input to the optical transceiver via the connector; at the same time, the second compensation coefficient can be determined at the receiving end, and then the transmitter is based on the second compensation coefficient Compensating the second digital signal to obtain a second compensation signal, wherein the second digital signal is a signal obtained by performing analog-to-digital conversion on a signal transmitted by the optical transceiver via the connector; thus, by compensating The processing reduces the performance loss caused by the echo interference and the insertion loss generated at the connector interface and the internal wiring of the optical module, and is not affected by the optical channel transmission because the local loss is compensated at the transmitting end and the receiving end respectively. The impact of the physical characteristics of the line.
  • the embodiment of the present invention provides a damage compensation method, and the method is applied to a scenario in which an ASIC and an optical module are separated.
  • the damage compensation method in the embodiment of the present invention includes:
  • Step 201 Determine a second compensation coefficient of the receiving end by using a preset adaptive equalization algorithm.
  • the ASIC is connected to the optical transceiver through the connector; the filter is used to equalize and compensate the echo interference and the insertion loss on the receiving end side, and the coefficient of the filter is the second compensation coefficient.
  • the adaptive equalization algorithm in this embodiment adopts a variant of the traditional least mean square error LMS algorithm; the LMS algorithm is an adaptive filtering algorithm that realizes the mean square error in the minimum sense.
  • the design criterion of the filter is to minimize the mean square error J(n) between the actual output y(n) of the filter and the expected response d(n), ie the minimum mean square error criterion.
  • the so-called adaptive implementation means that the tap coefficients W0, W1, ... WN-1 of the M-order FIR filter can be automatically adjusted according to the estimation error e(n) such that the cost function is minimized.
  • the LMS algorithm operation steps are as follows:
  • w(n) is the tap weight vector
  • e(n) is the estimation error of the filter at time n
  • is the step factor
  • d(n) is the desired signal
  • y(n) is the actual output of the filter.
  • x(n) is the input signal.
  • the resulting filter effect is equivalent to the effect of return loss and insertion loss, and the inverse is the compensated filter.
  • the adaptive equalization algorithm in this embodiment is shown in FIG. 5.
  • u(n) is the signal before passing through the connector
  • d(n) is the signal after passing through the connector
  • y(n) is the first at time n.
  • the output signal that is, the output signal of the filter at time n, is the signal output from the simulation module, which is an intermediate signal
  • Wm is the filter coefficient
  • m represents the order of the filter
  • the value of m can be performed according to actual needs. set up.
  • the training sequence can be sent at the originating end, and the data before the connector and the data after the connector are simultaneously acquired by the oscilloscope, and the correlation alignment is performed as the u(n) and d(n) of the adaptive equalization algorithm in this embodiment. );
  • w (n) is a first compensation coefficient at time n;
  • w (n + 1) w (n) + ⁇ * d (n) * * e (n);
  • d (n) is the first time n a signal after the digital signal is subjected to analog-to-digital conversion after passing through the connector;
  • a value of the second compensation coefficient is determined based on the cost function J and y(n).
  • the above adaptive equalization algorithm can achieve the same compensation effect, but the calculation step reduces the filter coefficient to reciprocate, which reduces the capital in hardware implementation. Source occupancy.
  • the calculation step is consistent with the conventional LMS algorithm calculation step.
  • the filter coefficient obtained when approaching 0 is the first compensation coefficient.
  • Step 202 Perform compensation processing on the second digital signal based on the second compensation coefficient to obtain a second compensation signal.
  • the second digital signal is a signal obtained by performing analog-to-digital conversion on a signal transmitted through the connector outputted by the optical transceiver.
  • the compensation processing on the transmitting end and the receiving end may be performed simultaneously, and the second compensation coefficient of the receiving end may be the same as or different from the first compensation coefficient of the transmitting end.
  • the compensation coefficients of the transmitting end and the receiving end are determined, and then the echo interference and the insertion loss of the transmitting end side and the receiving end side are respectively compensated based on the determined compensation coefficient; thus, the connector is greatly reduced.
  • the power consumption increases the flexibility of the optical module and reduces the cost of the coherent device, which is very suitable for popularization.
  • the embodiment of the present invention provides a damage compensation method, and the method is applied to a scenario in which an ASIC and an optical module are separated.
  • the damage compensation method in the embodiment of the present invention includes:
  • Step 301 Two or more sets of compensation coefficients are obtained by using a preset frequency response characteristic.
  • a preset frequency response characteristic is adopted, and a plurality of sets of compensation coefficients can be obtained by using signals before and after the connector, and Fourier transform and inverse transform, but the multiple groups The compensation coefficients are not all optimal and need to be further screened.
  • Step 302 Perform pre-compensation processing on the first digital signal based on each set of compensation coefficients, A set of compensation coefficients that determine the quality of the signal obtained after processing is the first compensation coefficient.
  • the first digital signal is pre-compensated based on the obtained multiple compensation coefficients by using a preset compensation algorithm, and the eye pattern is determined to be the largest, or the constellation is the best, or the bit error rate is the smallest, correspondingly The quality of the compensated signal is the best, and the corresponding compensation coefficient is the first compensation coefficient.
  • Step 303 Perform pre-compensation processing on the first digital signal based on the first compensation coefficient to obtain a first compensation signal, and perform digital-to-analog conversion on the first compensation signal, and then input to the optical transceiver via a connector.
  • the first compensation signal may be used to compensate the first digital signal based on the first compensation coefficient, and then the compensated signal is digital-to-analog converted and then input to the optical transceiver via the connector. Device.
  • Step 304 Perform compensation processing on the second digital signal of the receiving end based on the first compensation coefficient to obtain a second compensation signal;
  • the second digital signal is a signal transmitted by the connector and output by the optical transceiver. The signal obtained after analog-to-digital conversion.
  • the compensation coefficient of the receiving end is the same as that of the transmitting end; as shown in the processing of FIG.
  • the embodiment of the present invention provides a damage compensation method, and the method is applied to a scenario in which an ASIC and an optical module are separated.
  • the damage compensation method in the embodiment of the present invention includes:
  • Step 401 Determine a first compensation coefficient of the transmitting end by using a preset insertion training sequence.
  • the step specifically includes: determining that the training sequence of the length P sent by the transmitting end is x(i), x(i+1), . . . , x(i+P-1), the connector
  • the training data of length P received by the input is x 1 (i), x 1 (i+1), ..., x 1 (i+P-1); wherein i is an integer;
  • Step 402 Perform pre-compensation processing on the first digital signal based on the first compensation coefficient to obtain a first compensation signal, and perform digital-to-analog conversion on the first compensation signal, and then input to the optical transceiver via a connector.
  • the first compensation signal may be used to compensate the first digital signal based on the first compensation coefficient, and then the compensated signal is digital-to-analog converted and then input to the optical transceiver via the connector. Device.
  • Step 403 Determine a second compensation coefficient of the receiving end.
  • the second compensation coefficient of the receiving end is different from the first compensation coefficient, and one of the three methods for determining the compensation coefficient in the first embodiment may be used to determine the second compensation coefficient, as in the embodiment.
  • the manner in which the training sequence is inserted is inserted.
  • Step 404 Perform compensation processing on the second digital signal of the receiving end based on the second compensation coefficient to obtain a second compensation signal;
  • the second digital signal is a signal transmitted by the connector and output by the optical transceiver.
  • the present embodiment provides a damage compensation device, which is applied to a scenario in which an ASIC and an optical module are separated.
  • the device includes: a first determining module 11 and a first compensation module 12;
  • the first determining module 11 is configured to determine a first compensation coefficient used by the transmitting end to equalize echo interference and compensate insertion loss;
  • the first compensation module 12 is configured to perform pre-compensation processing on the first digital signal based on the first compensation coefficient to obtain a first compensation signal, perform digital-to-analog conversion on the first compensation signal, and input the light to the light through a connector. transceiver.
  • the ASIC is connected to the optical transceiver through the connector
  • the first determining module 11 is further configured to determine a first compensation coefficient of the transmitting end by using a preset adaptive equalization algorithm
  • w (n) is a first compensation coefficient at time n;
  • w (n + 1) w (n) + ⁇ * d (n) * * e (n);
  • d (n) is the first time n a signal after the digital signal is subjected to analog-to-digital conversion after passing through the connector;
  • a value of the first compensation coefficient is determined based on the cost function J and the y(n).
  • the ASIC is connected to the optical transceiver through the connector
  • the first determining module 11 is further configured to obtain two or more sets of compensation coefficients by using a preset frequency response characteristic
  • the first digital signal is pre-compensated based on each set of compensation coefficients, and a set of compensation coefficients having the best quality of the processed signal is determined as the first compensation coefficient.
  • the ASIC is connected to the optical transceiver through the connector
  • the first determining module 11 is further configured to determine a first compensation coefficient of the transmitting end by using a preset insertion training sequence
  • the first determining module 11 is specifically configured to determine that the training sequence of length P sent by the transmitting end is x(i), x(i+1), . . . , x(i+P-1), the connector
  • the training data of length P received by the input is x 1 (i), x 1 (i+1), ..., x 1 (i+P-1);
  • the device further includes a second compensation module 13 configured to perform a compensation process on the second digital signal at the receiving end to obtain a second compensation signal based on the first compensation coefficient;
  • the second digital signal is a signal obtained by performing analog-to-digital conversion on a signal transmitted through the connector outputted by the optical transceiver.
  • the device further includes a second compensation module 13 and a second determination module 14;
  • the second determining module 13 is configured to determine a second compensation coefficient used by the receiving end to equalize echo interference and compensate insertion loss
  • the second compensation module 14 is configured to perform a compensation process on the second digital signal at the receiving end to obtain a second compensation signal based on the second compensation coefficient;
  • the second digital signal is a signal obtained by performing analog-to-digital conversion on a signal transmitted through the connector outputted by the optical transceiver.
  • the first determining module 11, the first compensating module 12, the second determining module 13, and the second compensating module 14 in the damage compensating device may be configured by a central processing unit (CPU) in the terminal or the server. , Central Processing Unit) or digital signal processor (DSP, Digital Signal Processor), or Field Programmable Gate Array (FPGA), or Integrated Circuit (ASIC) implementation.
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA Field Programmable Gate Array
  • ASIC Integrated Circuit
  • the foregoing program may be stored in a computer readable storage medium, and the program, when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes: a mobile storage device A medium that can store program codes, such as a random access memory (RAM), a read-only memory (ROM), a magnetic disk, or an optical disk.
  • RAM random access memory
  • ROM read-only memory
  • magnetic disk or an optical disk.
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product, which is stored in a storage medium and includes a plurality of instructions for making
  • a computer device which may be a personal computer, server, or network device, etc.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a RAM, a ROM, a magnetic disk, or an optical disk.
  • the damage compensation method and apparatus provided by the embodiments of the present invention have the following beneficial effects: by pre-compensating the first digital signal at the transmitting end, and reducing the connector by compensating the second digital signal at the receiving end.
  • the performance loss caused by the echo interference and the insertion loss generated at the interface and the internal wiring of the optical module is not affected by the physical characteristics of the optical channel transmission line because the local loss compensation is performed at the transmitting end and the receiving end respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明实施例中公开了一种损伤补偿方法及装置;所述方法应用于专用集成电路(ASIC)及光模块分离的场景,所述方法包括:确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数;基于所述第一补偿系数对第一数字信号进行预补偿处理得到第一补偿信号,对所述第一补偿信号进行数模转换后经由连接器输入至光收发器。确定接收端用于均衡回波干扰和补偿***损耗的第二补偿系数;基于所述第二补偿系数对第二数字信号进行补偿处理得到第二补偿信号;所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。

Description

一种损伤补偿方法及装置 技术领域
本发明涉及光通信技术领域,尤其涉及一种损伤补偿方法及装置。
背景技术
现有大多数相干检测光模块,比如CFP/CFP2(C form-factor pluggable2),是将专用集成电路(ASIC,Application Specific Integrated Circuit)和光收发器封装在模块中,带来的问题是尺寸和功耗较大,成本高,且不太灵活。
为了降低相干设备成本,提高光模块的灵活性,将ASIC和光收发器分开,使用时,用连接器连接ASIC和光收发器。CFP2-ACO(C form-factor pluggable 2-analog coherent optics)标准即是基于这种思想;CFP2-ACO是针对可插拔的模拟相干光模块CFP2技术推出的标准,使用时用CFP2连接器连接ASIC和光收发器,然而此种方式带来的问题是,在连接器接口处及光模块内部走线上会产生较大的回波干扰和***损耗,给***带来不可忽略的性能损失。
综上所述,提供一种应用于ASIC及光模块分离场景下的损伤补偿方案,能够减小连接器接口处及光模块内部走线上产生的回波干扰和***损耗带来的性能损失,已成为亟待解决的问题。
发明内容
本发明实施例提供一种损伤补偿方法及装置,至少解决了现有技术中存在的问题,能够减小连接器接口处及光模块内部走线上产生的回波干扰和***损耗带来的性能损失。
本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种损伤补偿方法,应用于ASIC及光模块分离 的场景,所述方法包括:
确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数;
基于所述第一补偿系数对第一数字信号进行预补偿处理得到第一补偿信号,对所述第一补偿信号进行数模转换后经由连接器输入至光收发器。
上述方案中,所述方法还包括:
确定接收端的用于均衡回波干扰和补偿***损耗的第二补偿系数;
基于所述第二补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;
所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
上述方案中,所述方法还包括:
基于所述第一补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;
所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
上述方案中,所述ASIC通过所述连接器与所述光收发器相连;所述确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数,包括:
采用预设的自适应均衡算法的方式确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数,包括:
获取估计误差e(n),e(n)=u(n)-y(n);其中,u(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之前的信号,y(n)为n时刻的第一输出信号;
基于所述估计误差e(n)得到代价函数J,J=E{[u(n)-y(n)]^2};
获得
Figure PCTCN2017086986-appb-000001
其中w(n)为n时刻的第一补偿系数; w(n+1)=w(n)+μ*d(n)**e(n);d(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之后的信号;
基于所述代价函数J及所述y(n)确定所述第一补偿系数的值。
上述方案中,所述ASIC通过所述连接器与所述光收发器相连;所述确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数,包括:
采用预设的频响特性的方式得到两组或两组以上的补偿系数;
基于每组补偿系数分别对第一数字信号进行预补偿处理,确定处理后得到的信号的质量最好的一组补偿系数为第一补偿系数。
上述方案中,所述ASIC通过所述连接器与所述光收发器相连;所述确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数,包括:
采用预设的***训练序列的方式确定发送端的第一补偿系数,包括:
确定发送端发送的长为P的训练序列为x(i),x(i+1),…,x(i+P-1),所述连接器的输入端接收到的长为P的训练数据为x1(i),x1(i+1),…,x1(i+P-1);
对所述连接器的输入端接收到的训练数据进行傅里叶变换,得到X1(k)=FFT(x1);
确定连接器的输出端接收到的长为P的训练数据为x2(i),x2(i+1),…,x2(i+P-1),对其进行傅里叶变换得到X2(k)=FFT(x2);
确定传递函数为
Figure PCTCN2017086986-appb-000002
基于所述传递函数得到第一补偿系数
Figure PCTCN2017086986-appb-000003
本发明实施例还提供了一种损伤补偿装置,应用于ASIC及光模块分离的场景,所述装置包括:第一确定模块及第一补偿模块;其中,
所述第一确定模块,设置为确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数;
所述第一补偿模块,设置为基于所述第一补偿系数对第一数字信号进行预补偿处理得到第一补偿信号,对所述第一补偿信号进行数模转换后经 由连接器输入至光收发器。
上述方案中,所述装置还包括第二补偿模块及第二确定模块;其中,
所述第二确定模块,设置为确定接收端用于均衡回波干扰和补偿***损耗的第二补偿系数;
所述第二补偿模块,设置为基于所述第二补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;
所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
上述方案中,所述装置还包括第二补偿模块,设置为基于所述第一补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;
所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
上述方案中,所述ASIC通过所述连接器与所述光收发器相连;
所述第一确定模块,还设置为采用预设的自适应均衡算法的方式确定发送端的第一补偿系数;
所述第一确定模块,具体设置为获取估计误差e(n),e(n)=u(n)-y(n);其中,u(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之前的信号,y(n)为n时刻的第一输出信号;
基于所述估计误差e(n)得到代价函数J,J=E{[u(n)-y(n)]^2};
获得
Figure PCTCN2017086986-appb-000004
其中w(n)为n时刻的第一补偿系数;w(n+1)=w(n)+μ*d(n)**e(n);d(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之后的信号;
基于所述代价函数J及所述y(n)确定所述第一补偿系数的值。
上述方案中,所述ASIC通过所述连接器与所述光收发器相连;
所述第一确定模块,还设置为采用预设的频响特性的方式得到两组或 两组以上补偿系数;
基于每组补偿系数分别对第一数字信号进行预补偿处理,确定处理后得到的信号的质量最好的一组补偿系数为第一补偿系数。
上述方案中,所述ASIC通过所述连接器与所述光收发器相连;
所述第一确定模块,还设置为采用预设的***训练序列的方式确定发送端的第一补偿系数;
所述第一确定模块,具体设置为确定发送端发送的长为P的训练序列为x(i),x(i+1),…,x(i+P-1),所述连接器的输入端接收到的长为P的训练数据为x1(i),x1(i+1),…,x1(i+P-1);
对所述连接器的输入端接收到的训练数据进行傅里叶变换,得到X1(k)=FFT(x1);
确定连接器的输出端接收到的长为P的训练数据为x2(i),x2(i+1),…,x2(i+P-1),对其进行傅里叶变换得到X2(k)=FFT(x2);
确定传递函数为
Figure PCTCN2017086986-appb-000005
基于所述传递函数得到第一补偿系数
Figure PCTCN2017086986-appb-000006
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行上述任一项所述的方法。
根据本发明的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
本发明实施例中,在ASIC及光模块分离的场景下,确定发送端的第一补偿系数,然后基于第一补偿系数对发射机的第一数字信号进行预补偿处理得到第一补偿信号,使得经预补偿处理后的信号进行数模转换后经由连接器输入至光收发器;还可同时确定接收端的用于均衡回波干扰和补偿***损耗的第二补偿系数;基于所述第二补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;所述第二数字信号为对所述光收发器 输出的经由所述连接器传输后的信号进行模数转换后得到的信号;如此,通过对发送端的第一数字信号进行预补偿,通过对接收端的第二数字信号进行补偿,减小了连接器接口处及光模块内部走线上产生的回波干扰和***损耗带来的性能损失,且由于在发送端和接收端分别完成局部损耗的补偿,因此不受光信道传输线路物理特性的影响。
附图说明
图1为本发明实施例中损伤补偿方法应用的光通信***结构示意图;
图2为本发明实施例中发送端损伤补偿方法的流程示意图一;
图3为本发明实施例中接收端损伤补偿方法的流程示意图二;
图4为本发明实施例中损伤补偿方法的示意图一;
图5为本发明实施例中自适应均衡算法示意图一;
图6为本发明实施例中损伤补偿***性能对比示意图;
图7为本发明实施例中损伤补偿方法的流程示意图三;
图8为本发明实施例中损伤补偿方法的示意图二;
图9为本发明实施例中损伤补偿方法的流程示意图四;
图10为本发明实施例中损伤补偿方法的示意图三;
图11为本发明实施例中损伤补偿装置的组成结构示意图。
具体实施方式
回波损耗(return loss)是指当高频信号在通信设备中传输时,遇到波阻抗不均匀点时,对信号形成反射,这种反射不但导致信号的传输损耗增大,并且会对后续信号产生干扰造成传输信号畸形,对传输性能影响很大,这种由信号反射引起的衰减被称为回波损耗,由信号反射引起的干扰称为回波干扰。回波损耗的计算公式为R=-10lg(Pr/Pi),其中Pr是反射功率,Pi是入射功率。
***损耗(insertion loss)是指在传输***的某处由于元件或器件的 ***而发生的负载功率的损耗,它表示为该元件或器件***前所接收到的功率与***后同一负载所接收到的功率以分贝(dB)为单位的比值。***损耗的计算公式为G=-10lg(Po/Pi),其中Po是输出功率,Pi是入射功率。
发明人在实施本发明的过程中发现,在ASIC及光模块分离的场景下,若ASIC中DSP到光模块连接器单板内走线长度为30mm,那么延时t1=L/C铜=30*10^-3/(23*10^7)s,占用的周期数T=t1/(25*10^9)bps≈3,来回延迟为2*t1≈6个周期,在城域传输时,回波干扰和***损耗会给***带来约4~7.5dB的性能损失;然而,如何减小连接线接口处及光模块内部走线上产生的回波干扰和***损耗带来的性能损失,在光通信领域,对于该问题,尚无有效解决方案。
在本发明实施例中,确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数,基于所述第一补偿系数对第一数字信号进行预补偿处理得到第一补偿信号,以对所述第一补偿信号进行数模转换后经由连接器输入至光收发器。
下面结合附图及具体实施例对本发明作进一步详细的说明。
本发明实施例应用于如图1所示的光通信***,该***包括一片集成了数字信号处理器DSP(101,104)、数模转换器DAC(102)和模数转换器ADC(103)的ASIC(100),连接器(200)和光收发器(300);其中,所述连接器用于连接DAC和光收发器以及ADC和光收发器;所述DAC用于实现将数字信号转换成模拟信号,所述ADC用于将模拟信号转换成数字信号;所述光收发器用于实现光电转换,以及光信号的发射和接收。
实施例一
本发明实施例提供了一种损伤补偿方法,本发明实施例中所述损伤包括回波干扰和***损耗;所述方法应用于ASIC及光模块分离的场景,如图2所示,本发明实施例中损伤补偿方法包括:
步骤101:确定发送端用于均衡回波干扰和补偿***损耗的第一补偿 系数。
在具体实施时,所述ASIC通过所述连接器与所述光收发器相连;采用滤波器预均衡及补偿发送端侧的回波干扰和***损耗,而滤波器的系数即为第一补偿系数。
在实际应用过程中,确定发送端的第一补偿系数的方式可以包括但不限于以下方式:
1)采用预设的自适应均衡算法的方式确定发送端的第一补偿系数;
2)采用预设的频响特性的方式得到多组补偿系数,并从中选取使得发射机的输出信号质量最好的一组补偿系数作为第一补偿系数;
3)采用预设的***训练序列的方式确定发送端的第一补偿系数。
其中,对于第一种方式,采用预设的自适应均衡算法的方式确定发送端的第一补偿系数,包括:
获取估计误差e(n),e(n)=u(n)-y(n);其中,u(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之前的信号,y(n)为n时刻的第一输出信号,即n时刻滤波器的输出信号,为仿真模块(simulation)中输出的信号,为一个中间信号;
基于所述估计误差e(n)得到代价函数J,J=E{[u(n)-y(n)]^2};
获得
Figure PCTCN2017086986-appb-000007
其中w(n)为n时刻的第一补偿系数;w(n+1)=w(n)+μ*d(n)**e(n);d(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之后的信号;
基于所述代价函数J及所述y(n)确定所述第一补偿系数的值。
对于第二种方式,具体可为:采用预设的频响特性的方式得到两组或两组以上补偿系数,然后基于每组补偿系数分别对第一数字信号进行预补偿处理,确定处理后得到的信号的质量最好的一组补偿系数为第一补偿系数;这里所述的质量最好可以通过眼图最大、或星座图最好、或误码率(BER,Bit Error Rate)最小来表征。
对于第三种方式,采用预设的***训练序列的方式确定发送端的第一补偿系数,具体包括:
确定发送端发送的长为P的训练序列为x(i),x(i+1),…,x(i+P-1),所述连接器的输入端接收到的长为P的训练数据为x1(i),x1(i+1),…,x1(i+P-1);
对所述连接器的输入端接收到的训练数据进行傅里叶变换,得到X1(k)=FFT(x1);
确定连接器的输出端接收到的长为P的训练数据为x2(i),x2(i+1),…,x2(i+P-1),对其进行傅里叶变换得到X2(k)=FFT(x2);
确定传递函数为
Figure PCTCN2017086986-appb-000008
基于所述传递函数得到第一补偿系数
Figure PCTCN2017086986-appb-000009
基于本发明上述实施例,在实际应用中,为了使得补偿效果最好,可以在发送端和接收端分别同时进行补偿,而接收端的补偿系数可设置为与发送端的相同,或采用与发送端相同的方式重新确定。
步骤102:基于所述第一补偿系数对第一数字信号进行预补偿处理得到第一补偿信号,对所述第一补偿信号进行数模转换后经由连接器输入至光收发器。
这里,当确定了第一补偿系数后,可采用预设的补偿算法基于第一补偿系数对第一数字信号进行补偿,然后对令补偿后的信号进行数模转换后经由连接器输入至光收发器。
相应的,当同时对接收端的信号进行补偿处理时,基于接收端的补偿系数对光收发器输出的经连接器及模数转换后的信号进行补偿。
应用本发明上述实施例,在发送端先确定第一补偿系数,然后基于第一补偿系数对发射机的第一数字信号进行预补偿处理得到第一补偿信号,使得经预补偿处理后的信号进行数模转换后经由连接器输入至光收发器;同时,可在接收端确定第二补偿系数,然后基于第二补偿系数对发射机的 第二数字信号进行补偿处理得到第二补偿信号,所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号;如此,通过补偿处理,减小了连接器接口处及光模块内部走线上产生的回波干扰和***损耗带来的性能损失,且由于在发送端和接收端分别完成局部损耗的补偿,因此不受光信道传输线路物理特性的影响。
实施例二
本发明实施例提供了一种损伤补偿方法,所述方法应用于ASIC及光模块分离的场景,如图3、图4所示,本发明实施例中损伤补偿方法包括:
步骤201:采用预设的自适应均衡算法的方式确定接收端的第二补偿系数。
在本实施例中,ASIC通过所述连接器与所述光收发器相连;采用滤波器均衡及补偿接收端侧的回波干扰和***损耗,而滤波器的系数即为第二补偿系数。
在本实施例中的自适应均衡算法采用传统最小均方误差LMS算法的变式;LMS算法是实现均方误差最小意义下的自适应滤波算法。
滤波器的设计准则是使滤波器实际输出y(n)与期望响应d(n)之间的均方误差J(n)最小,即最小均方误差准则。
所谓自适应实现是指:M阶FIR滤波器的抽头系数W0,W1,…WN-1可以根据估计误差e(n)自动调节,使得代价函数最小。
滤波器在n时刻的估计误差为:e(n)=d(n)-y(n);(1)
代价函数J(n)=E{|e(n)|^2}=E{[d(n)-y(n)]^2};(2)
LMS算法运算步骤如下:
初始化设置w(n)(n=0,1,2…N-1)为任意值,(一般均为0),然后对每一次采样做以下各步的循环运算:
计算滤波器的输出
Figure PCTCN2017086986-appb-000010
计算估计误差e(n)=d(n)-y(n);
更新N个滤波器权重系数w(n+1)=w(n)+μ*u(n)**e(n);(4)
循环返回到b)。
上述式中w(n)为抽头权向量,e(n)为滤波器在n时刻的估计误差,μ为步长因子,d(n)为期望信号,y(n)为滤波器的实际输出,x(n)为输入信号。
得到的滤波器效果等效为回波损耗和***损耗的效果,求反即得补偿的滤波器。
在本实施例中的自适应均衡算法如图5所示,u(n)是经过连接器之前的信号,d(n)是经过连接器之后的信号,y(n)为n时刻的第一输出信号,即n时刻滤波器的输出信号,为仿真模块(simulation)中输出的信号,为一个中间信号,Wm为滤波器系数,m代表滤波器的阶数,m的值可依据实际需要进行设定。实际应用中,可在发端发送训练序列,用示波器同时采连接器之前的数据和连接器之后的数据,做相关对齐后,作为本实施例中自适应均衡算法的u(n)和d(n);
本步骤具体包括:获取估计误差e(n),e(n)=u(n)-y(n);其中,u(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之前的信号,本实施例中u(n)作为期望响应;基于所述估计误差e(n)得到代价函数J,J=E{[u(n)-y(n)]^2};
获得
Figure PCTCN2017086986-appb-000011
其中w(n)为n时刻的第一补偿系数;w(n+1)=w(n)+μ*d(n)**e(n);d(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之后的信号;
基于所述代价函数J及y(n)确定所述第二补偿系数的值。
采用上述自适应均衡算法和传统的LMS算法相比,能达到同样的补偿效果,但运算上少了滤波器系数求倒数这一步,在硬件实现时减少了资 源占用。
计算步骤和传统的LMS算法计算步骤一致,当代价函数最小,趋近于0时得到的滤波器系数即第一补偿系数。
步骤202:基于所述第二补偿系数对第二数字信号进行补偿处理得到第二补偿信号。
这里,所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
在本发明实施例中,对发送端及接收端的补偿处理可以同时进行,而接收端的第二补偿系数可与发送端的第一补偿系数相同也可以不同。
应用本发明上述实施例,确定了发送端及接收端的补偿系数,然后基于确定的补偿系数分别对发送端侧及接收端侧的回波干扰和***损耗进行补偿;如此,大大减小了连接器接口处及光模块内部走线上产生的回波干扰和***损耗带来的性能损失,且由于在发送端及接收端单独完成局部损耗的补偿,因此不受光信道传输线路物理特性的影响;如图6所示,经过均衡及补偿,***性能相比不做均衡及补偿性能有很大提升,与集成了ASIC和光收发器的光模块***性能相当,但相比集成光模块,降低了尺寸和功耗,提高了光模块的灵活性,能降低相干设备的成本,非常适合推广使用。
实施例三
本发明实施例提供了一种损伤补偿方法,所述方法应用于ASIC及光模块分离的场景,如图7所示,本发明实施例中损伤补偿方法包括:
步骤301:采用预设的频响特性的方式得到两组或两组以上补偿系数。
这里,在实际应用中采用预先设置的典型的频响特性的方式,利用经过所述连接器之前及之后的信号,以及傅里叶变换及逆变换,可以得到多组补偿系数,然而该多组补偿系数并非均是最优,需进一步筛选。
步骤302:基于每组补偿系数分别对第一数字信号进行预补偿处理, 确定处理后得到的信号的质量最好的一组补偿系数为第一补偿系数。
在实际应用中,利用预设的补偿算法,分别基于获得的多组补偿系数对第一数字信号进行预补偿处理,并确定眼图最大、或星座图最好、或误码率最小时,相应的补偿后的信号的质量最好,相应的补偿系数即为第一补偿系数。
步骤303:基于所述第一补偿系数对第一数字信号进行预补偿处理得到第一补偿信号,以对所述第一补偿信号进行数模转换后经由连接器输入至光收发器。
这里,当确定了第一补偿系数后,可采用预设的补偿算法基于第一补偿系数对第一数字信号进行补偿,然后对令补偿后的信号进行数模转换后经由连接器输入至光收发器。
步骤304:基于所述第一补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
在本实施例中,接收端的补偿系数与发送端的相同;如图8处理所示。
实施例四
本发明实施例提供了一种损伤补偿方法,所述方法应用于ASIC及光模块分离的场景,如图9、图10所示,本发明实施例中损伤补偿方法包括:
步骤401:采用预设的***训练序列的方式确定发送端的第一补偿系数。
在实际应用中,本步骤具体包括:确定发送端发送的长为P的训练序列为x(i),x(i+1),…,x(i+P-1),所述连接器的输入端接收到的长为P的训练数据为x1(i),x1(i+1),…,x1(i+P-1);其中,i为整数;
对所述连接器的输入端接收到的训练数据进行傅里叶变换,得到X1(k)=FFT(x1);
确定连接器的输出端接收到的长为P的训练数据为 x2(i),x2(i+1),…,x2(i+P-1),对其进行傅里叶变换得到X2(k)=FFT(x2);
确定传递函数为
Figure PCTCN2017086986-appb-000012
基于所述传递函数得到第一补偿系数
Figure PCTCN2017086986-appb-000013
步骤402:基于所述第一补偿系数对第一数字信号进行预补偿处理得到第一补偿信号,以对所述第一补偿信号进行数模转换后经由连接器输入至光收发器。
这里,当确定了第一补偿系数后,可采用预设的补偿算法基于第一补偿系数对第一数字信号进行补偿,然后对令补偿后的信号进行数模转换后经由连接器输入至光收发器。
步骤403:确定接收端的第二补偿系数。
在本实施例中,接收端的第二补偿系数与所述第一补偿系数不同,可采用实施例一中三种确定补偿系数的方式之一来确定第二补偿系数,如采用如本实施例中所述的***训练序列的方式。
步骤404:基于所述第二补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
实施例五
本实施例提供了一种损伤补偿装置,所述装置应用于ASIC及光模块分离的场景,如图11所示,所述装置包括:第一确定模块11及第一补偿模块12;其中,
所述第一确定模块11,设置为确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数;
所述第一补偿模块12,设置为基于所述第一补偿系数对第一数字信号进行预补偿处理得到第一补偿信号,对所述第一补偿信号进行数模转换后经由连接器输入至光收发器。
在一实施例中,所述ASIC通过所述连接器与所述光收发器相连;
所述第一确定模块11,还设置为采用预设的自适应均衡算法的方式确定发送端的第一补偿系数;
所述第一确定模块12,具体设置为获取估计误差e(n),e(n)=u(n)-y(n);其中,u(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之前的信号,y(n)为n时刻的第一输出信号;
基于所述估计误差e(n)得到代价函数J,J=E{[u(n)-y(n)]^2};
获得
Figure PCTCN2017086986-appb-000014
其中w(n)为n时刻的第一补偿系数;w(n+1)=w(n)+μ*d(n)**e(n);d(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之后的信号;
基于所述代价函数J及所述y(n)确定所述第一补偿系数的值。
在一实施例中,所述ASIC通过所述连接器与所述光收发器相连;
所述第一确定模块11,还设置为采用预设的频响特性的方式得到两组或两组以上补偿系数;
基于每组补偿系数分别对第一数字信号进行预补偿处理,确定处理后得到的信号的质量最好的一组补偿系数为第一补偿系数。
在一实施例中,所述ASIC通过所述连接器与所述光收发器相连;
所述第一确定模块11,还设置为采用预设的***训练序列的方式确定发送端的第一补偿系数;
所述第一确定模块11,具体设置为确定发送端发送的长为P的训练序列为x(i),x(i+1),…,x(i+P-1),所述连接器的输入端接收到的长为P的训练数据为x1(i),x1(i+1),…,x1(i+P-1);
对所述连接器的输入端接收到的训练数据进行傅里叶变换,得到X1(k)=FFT(x1);
确定连接器的输出端接收到的长为P的训练数据为 x2(i),x2(i+1),…,x2(i+P-1),对其进行傅里叶变换得到X2(k)=FFT(x2);
确定传递函数为
Figure PCTCN2017086986-appb-000015
基于所述传递函数得到第一补偿系数
Figure PCTCN2017086986-appb-000016
在一实施例中,所述装置还包括第二补偿模块13,设置为基于所述第一补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;
所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
在一实施例中,所述装置还包括第二补偿模块13及第二确定模块14;其中,
所述第二确定模块13,设置为确定接收端用于均衡回波干扰和补偿***损耗的第二补偿系数;
所述第二补偿模块14,设置为基于所述第二补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;
所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
在本发明实施例中,所述损伤补偿装置中的第一确定模块11、第一补偿模块12、第二确定模块13及第二补偿模块14,均可由终端或服务器中的中央处理器(CPU,Central Processing Unit)或数字信号处理器(DSP,Digital Signal Processor)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)、或集成电路(ASIC,Application Specific Integrated Circuit)实现。
这里需要指出的是:以上涉及损伤补偿装置的描述,与上述方法描述是类似的,同方法的有益效果描述,不做赘述。对于本发明所述服务器实施例中未披露的技术细节,请参照本发明方法实施例的描述。
本领域的技术人员可以理解:实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、随机存取存储器(RAM,Random Access Memory)、只读存储器(ROM,Read-Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、RAM、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
如上所述,本发明实施例提供的一种损伤补偿方法及装置具有以下有益效果:通过对发送端的第一数字信号进行预补偿,通过对接收端的第二数字信号进行补偿,减小了连接器接口处及光模块内部走线上产生的回波干扰和***损耗带来的性能损失,且由于在发送端和接收端分别完成局部损耗的补偿,因此不受光信道传输线路物理特性的影响。

Claims (13)

  1. 一种损伤补偿方法,应用于专用集成电路ASIC及光模块分离的场景,所述方法包括:
    确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数;
    基于所述第一补偿系数对第一数字信号进行预补偿处理得到第一补偿信号,对所述第一补偿信号进行数模转换后经由连接器输入至光收发器。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    确定接收端的用于均衡回波干扰和补偿***损耗的第二补偿系数;
    基于所述第二补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;
    所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    基于所述第一补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;
    所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
  4. 根据权利要求1所述的方法,其中,所述ASIC通过所述连接器与所述光收发器相连;所述确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数,包括:
    采用预设的自适应均衡算法的方式确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数,包括:
    获取估计误差e(n),e(n)=u(n)-y(n);其中,u(n)为n时刻对所述 第一数字信号进行模数转换后经过所述连接器之前的信号,y(n)为n时刻的第一输出信号;
    基于所述估计误差e(n)得到代价函数J,J=E{[u(n)-y(n)[^2};
    获得
    Figure PCTCN2017086986-appb-100001
    其中w(n)为n时刻的第一补偿系数;w(n+1)=w(n)+μ*d(n)**e(n);d(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之后的信号;
    基于所述代价函数J及所述y(n)确定所述第一补偿系数的值。
  5. 根据权利要求1所述的方法,其中,所述ASIC通过所述连接器与所述光收发器相连;所述确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数,包括:
    采用预设的频响特性的方式得到两组或两组以上的补偿系数;
    基于每组补偿系数分别对第一数字信号进行预补偿处理,确定处理后得到的信号的质量最好的一组补偿系数为第一补偿系数。
  6. 根据权利要求1所述的方法,其中,所述ASIC通过所述连接器与所述光收发器相连;所述确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数,包括:
    采用预设的***训练序列的方式确定发送端的第一补偿系数,包括:
    确定发送端发送的长为P的训练序列为x(i),x(i+1),...,x(i+P-1),所述连接器的输入端接收到的长为P的训练数据为x1(i),x1(i+1),...,x1(i+P-1);
    对所述连接器的输入端接收到的训练数据进行傅里叶变换,得到X1(k)=FFT(x1);
    确定连接器的输出端接收到的长为P的训练数据为x2(i),x2(i+1),...,x2(i+P-1),对其进行傅里叶变换得到X2(k)=FFT(x2);
    确定传递函数为
    Figure PCTCN2017086986-appb-100002
    基于所述传递函数得到第一补偿系数
    Figure PCTCN2017086986-appb-100003
  7. 一种损伤补偿装置,应用于专用集成电路ASIC及光模块分离的场景,所述装置包括:第一确定模块及第一补偿模块;其中,
    所述第一确定模块,设置为确定发送端用于均衡回波干扰和补偿***损耗的第一补偿系数;
    所述第一补偿模块,设置为基于所述第一补偿系数对第一数字信号进行预补偿处理得到第一补偿信号,对所述第一补偿信号进行数模转换后经由连接器输入至光收发器。
  8. 根据权利要求7所述的装置,其中,所述装置还包括第二补偿模块及第二确定模块;其中,
    所述第二确定模块,设置为确定接收端用于均衡回波干扰和补偿***损耗的第二补偿系数;
    所述第二补偿模块,设置为基于所述第二补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;
    所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
  9. 根据权利要求7所述的装置,其中,所述装置还包括第二补偿模块,设置为基于所述第一补偿系数对接收端的第二数字信号进行补偿处理得到第二补偿信号;
    所述第二数字信号为对所述光收发器输出的经由所述连接器传输后的信号进行模数转换后得到的信号。
  10. 根据权利要求7所述的装置,其中,所述ASIC通过所述连接器与所述光收发器相连;
    所述第一确定模块,还设置为采用预设的自适应均衡算法的方式确定发送端的第一补偿系数;
    所述第一确定模块,具体设置为获取估计误差e(n),e(n)=u(n)-y(n);其中,u(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之前的信号,y(n)为n时刻的第一输出信号;
    基于所述估计误差e(n)得到代价函数J,J=E{[u(n)-y(n)]^2};
    获得
    Figure PCTCN2017086986-appb-100004
    其中w(n)为n时刻的第一补偿系数;w(n+1)=w(n)+μ*d(n)**e(n);d(n)为n时刻对所述第一数字信号进行模数转换后经过所述连接器之后的信号;
    基于所述代价函数J及所述y(n)确定所述第一补偿系数的值。
  11. 根据权利要求7所述的装置,其中,所述ASIC通过所述连接器与所述光收发器相连;
    所述第一确定模块,还设置为采用预设的频响特性的方式得到两组或两组以上补偿系数;
    基于每组补偿系数分别对第一数字信号进行预补偿处理,确定处理后得到的信号的质量最好的一组补偿系数为第一补偿系数。
  12. 根据权利要求7所述的装置,其中,所述ASIC通过所述连接器与所述光收发器相连;
    所述第一确定模块,还设置为采用预设的***训练序列的方式确定发送端的第一补偿系数;
    所述第一确定模块,具体设置为确定发送端发送的长为P的训练序列为x(i),x(i+1),...,x(i+P-1),所述连接器的输入端接收到的长为P的训练数据为x1(i),x1(i+1),...,x1(i+P-1);
    对所述连接器的输入端接收到的训练数据进行傅里叶变换,得到X1(k)=FFT(x1);
    确定连接器的输出端接收到的长为P的训练数据为x2(i),x2(i+1),...,x2(i+P-1),对其进行傅里叶变换得到X2(k)=FFT(x2);
    确定传递函数为
    Figure PCTCN2017086986-appb-100005
    基于所述传递函数得到第一补偿系数
    Figure PCTCN2017086986-appb-100006
  13. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至6中任一项所述的方法。
PCT/CN2017/086986 2016-06-17 2017-06-02 一种损伤补偿方法及装置 WO2017215457A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17812568.8A EP3474466B1 (en) 2016-06-17 2017-06-02 Damage compensation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610440632.9A CN107517086B (zh) 2016-06-17 2016-06-17 一种损伤补偿方法及装置
CN201610440632.9 2016-06-17

Publications (1)

Publication Number Publication Date
WO2017215457A1 true WO2017215457A1 (zh) 2017-12-21

Family

ID=60664151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086986 WO2017215457A1 (zh) 2016-06-17 2017-06-02 一种损伤补偿方法及装置

Country Status (3)

Country Link
EP (1) EP3474466B1 (zh)
CN (1) CN107517086B (zh)
WO (1) WO2017215457A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114895962A (zh) * 2022-03-24 2022-08-12 扬州万方科技股份有限公司 一种基于微处理器的信号采集补偿的方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448901B (zh) * 2019-08-29 2022-04-05 华为技术有限公司 一种信道补偿方法及装置
CN112272351B (zh) * 2020-10-22 2022-07-08 浙江天则通信技术有限公司 一种反无源定位装置及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834816A (zh) * 2010-03-26 2010-09-15 京信通信***(中国)有限公司 基于射频拉远设备的自适应均衡装置
US20110255574A1 (en) * 2010-04-20 2011-10-20 Cisco Technology, Inc. Converter Device to Convert Between Different Small Form Factor Pluggable Standards
US20120301134A1 (en) * 2011-01-17 2012-11-29 Shahram Davari Network Device
CN104348553A (zh) * 2013-08-01 2015-02-11 深圳新飞通光电子技术有限公司 Cfp光收发模块

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9166700B2 (en) * 2010-03-21 2015-10-20 Alcatel Lucent Tunable receiver
EP2928091A1 (en) * 2014-03-31 2015-10-07 Alcatel Lucent Method of receiving a wavelength-division multiplexed optical upstream signal in an optical access network
JP6352068B2 (ja) * 2014-06-20 2018-07-04 日本オクラロ株式会社 光送受信機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834816A (zh) * 2010-03-26 2010-09-15 京信通信***(中国)有限公司 基于射频拉远设备的自适应均衡装置
US20110255574A1 (en) * 2010-04-20 2011-10-20 Cisco Technology, Inc. Converter Device to Convert Between Different Small Form Factor Pluggable Standards
US20120301134A1 (en) * 2011-01-17 2012-11-29 Shahram Davari Network Device
CN104348553A (zh) * 2013-08-01 2015-02-11 深圳新飞通光电子技术有限公司 Cfp光收发模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3474466A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114895962A (zh) * 2022-03-24 2022-08-12 扬州万方科技股份有限公司 一种基于微处理器的信号采集补偿的方法及装置
CN114895962B (zh) * 2022-03-24 2024-02-06 扬州万方科技股份有限公司 一种基于微处理器的信号采集补偿的方法及装置

Also Published As

Publication number Publication date
CN107517086B (zh) 2019-06-14
CN107517086A (zh) 2017-12-26
EP3474466A4 (en) 2020-01-22
EP3474466A1 (en) 2019-04-24
EP3474466B1 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
JP4968415B2 (ja) デジタルフィルタ装置、デジタルフィルタリング方法及びデジタルフィルタ装置の制御プログラム
CN114598393A (zh) 信号处理方法及装置、通信***
JP6458733B2 (ja) 光受信装置、光伝送システムおよび光受信方法
WO2017215457A1 (zh) 一种损伤补偿方法及装置
CN111314252B (zh) 一种用于高速串口收发机的自适应均衡方法及***
US8855182B2 (en) Optimization method of optimally setting emphasis and optimization device for optimally setting emphasis
US20180191448A1 (en) Adaptive Nonlinear Compensation In Direct Detect Optical Transmission
EP1538797A2 (en) Electrical backplane transmission using duobinary signaling
JP6378654B2 (ja) 空間多重光伝送システム及び空間多重光伝送方法
US7916779B1 (en) Adaptive decision feedback equalizer for high data rate serial link receiver
US11716149B2 (en) Optical receiving apparatus and coefficient optimization method
US9413573B2 (en) Receiver and gain control method thereof
US8699551B2 (en) System for FEXT cancellation of multi-channel transceivers with precoding
Glentis et al. Electronic dispersion compensation of fiber links using sparsity induced volterra equalizers
He et al. Noise power directed adaptive frequency domain least mean square algorithm with fast convergence for DMGD compensation in few-mode fiber transmission systems
US11362702B2 (en) Echo and near-end crosstalk cancellation system
RU2615493C1 (ru) Система, устройство и способ управления мощностью
JP7139909B2 (ja) 波形等化装置
US10333747B2 (en) Inclusive modeling and digital compensation for coupling impairments of high-speed coupled electrical microstrip traces in data center connections
CN109644019B (zh) 通过金属线对传输数据的方法和装置
US8144863B2 (en) Method and apparatus for echo cancellation
JP6434898B2 (ja) 光送受信システム
Sillekens et al. Experimental demonstration of learned time-domain digital back-propagation
CN107078978B (zh) 一种信号补偿方法和设备
WO2017128311A1 (zh) 一种信号处理方法、装置及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017812568

Country of ref document: EP

Effective date: 20190117