WO2017212778A1 - Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor - Google Patents

Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor Download PDF

Info

Publication number
WO2017212778A1
WO2017212778A1 PCT/JP2017/014853 JP2017014853W WO2017212778A1 WO 2017212778 A1 WO2017212778 A1 WO 2017212778A1 JP 2017014853 W JP2017014853 W JP 2017014853W WO 2017212778 A1 WO2017212778 A1 WO 2017212778A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium dioxide
particles
thermochromic
shell layer
forming
Prior art date
Application number
PCT/JP2017/014853
Other languages
French (fr)
Japanese (ja)
Inventor
保彦 高向
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016113148A external-priority patent/JP2019135273A/en
Priority claimed from JP2016113146A external-priority patent/JP2019135272A/en
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017212778A1 publication Critical patent/WO2017212778A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides

Definitions

  • the present invention relates to thermochromic vanadium dioxide-containing particles and a production method thereof, and a thermochromic film and a production method thereof. More specifically, the present invention relates to excellent storage stability, high thermochromic responsiveness and thermochromic repeat resistance.
  • the present invention relates to thermochromic vanadium dioxide-containing particles having the same, a method for producing the same, a thermochromic film using the particles, and a method for producing the same.
  • the near-infrared light shielding film By applying the near-infrared light shielding film to the body window or the window glass of the building, it is possible to reduce the load on the cooling equipment such as the air conditioner in the vehicle, which is an effective means for saving energy.
  • an optical film containing a conductor such as ITO (tin-doped indium oxide) as an infrared absorbing substance is disclosed.
  • Japanese Patent Application Laid-Open No. 2010-222233 discloses a near-infrared light shielding film including a functional plastic film having an infrared reflection layer and an infrared absorption layer.
  • the reflective layer stack in which a large number of low refractive index layers and high refractive index layers are alternately stacked, and selectively reflects near infrared light by adjusting the thickness of each refractive index layer.
  • a near infrared light shielding film is proposed in International Publication No. 2013/065679.
  • the near-infrared light shielding film having such a structure is preferably used due to its high near-infrared light shielding effect in a low-latitude zone near the equator where the illuminance of sunlight is high.
  • a low-latitude zone near the equator where the illuminance of sunlight is high.
  • incident light is uniformly shielded even when it is desired to capture sunlight as much as possible in the vehicle or indoors.
  • thermochromic material that controls the optical properties of near-infrared light shielding and transmission by temperature to the near-infrared light shielding film.
  • a typical material is vanadium dioxide (hereinafter also referred to as “VO 2 ”). It is known that vanadium dioxide causes a phase transition in a temperature range of around 68 ° C. and exhibits thermochromic properties.
  • thermochromic film utilizing the characteristics of vanadium dioxide can shield near infrared light that causes heat at a high temperature and transmit near infrared light at a low temperature.
  • near-infrared light is shielded to suppress the temperature rise in the room, and when the wintertime is cold, external light energy can be taken in.
  • the vanadium dioxide particles having thermochromic properties are easily oxidized, the particles prevent the water molecules and oxygen molecules involved in the oxidation reaction from coming into contact with the vanadium dioxide particle surface and causing the oxidation reaction.
  • a method for improving the oxidation resistance by coating the surface with a specific substance has been studied.
  • Patent Document 1 discloses vanadium dioxide-containing particles in which the surface of vanadium dioxide particles is coated with another amorphous metal oxide.
  • chemical stability is certainly improved by the method described in Patent Document 1, as a result of further investigation by the present inventors, it was found that thermochromic reproducibility due to temperature change is insufficient. did. This is because the volume change of vanadium dioxide particles accompanying the phase transition also affects the amorphous metal oxide layer covering the surface, resulting in structural destruction as vanadium dioxide-containing particles, resulting in thermochromic properties. Is estimated to have decreased.
  • Patent Document 2 discloses a method of linking an organically modified long chain molecular material to the surface of vanadium dioxide particles.
  • Patent Document 2 discloses vanadium dioxide-containing particles obtained by connecting organically modified long-chain molecules to the vanadium dioxide particle surface and then coating with an amorphous metal oxide.
  • the method described in Patent Document 2 deteriorates the thermochromic repeatability. This is because the organically modified long-chain molecules are chemically linked to the surface of the vanadium dioxide particles, resulting in internal heterogeneity due to the volume change of the vanadium dioxide-containing particles that accompanies the phase transition. It was speculated that the repeatability was further deteriorated.
  • thermochromic response accompanied by a change in infrared transmittance even at the same phase transition temperature. It was found that sex became slow. These have a significant effect on the structural phase transition of vanadium dioxide particles caused by heat by chemically linking the surface of the minute vanadium dioxide particles with other amorphous metal oxides and organically modified long-chain molecular materials. The rate of change is slow, and it takes time to develop the heat shielding effect, and it is presumed that the thermochromic response is lowered.
  • the present invention has been made in view of the above-mentioned problems and circumstances, and the solution is to provide thermochromic vanadium dioxide-containing particles having excellent storage stability, high thermochromic responsiveness and thermochromic repeatability, and It is providing a manufacturing method, a thermochromic film using the same, and its manufacturing method.
  • thermochromic vanadium dioxide-containing particle having a core-shell structure, 1) A core-shell structure having vanadium dioxide particles in the core part, and a shell structure formed on the surface of the first shell layer A made of an organic compound having at least a hydroxy group that modifies the core part surface;
  • Thermochromic vanadium dioxide-containing particles hereinafter referred to as Embodiment 1, which has a laminated structure (core-shell structure 1) formed in this order with a second shell layer A containing a metal oxide Also called).
  • the first shell layer having vanadium dioxide particles in the core portion and containing at least one amorphous metal oxide on the core portion surface as the shell structure formed on the surface thereof Thermochromic vanadium dioxide-containing particles (hereinafter referred to as “implementation”) having a laminated structure (core-shell structure 2) in which B and the second shell layer B containing a hydrophobic organic compound are formed in this order.
  • implantation having a laminated structure (core-shell structure 2) in which B and the second shell layer B containing a hydrophobic organic compound are formed in this order.
  • Thermochromic vanadium dioxide-containing particles having a core-shell structure, wherein the core-shell structure is the following core-shell structure 1 or core-shell structure 2 .
  • Core-shell structure 1 contains a first shell layer A made of an organic compound having at least a hydroxy group, which has vanadium dioxide particles in the core part and modifies the surface of the vanadium dioxide particles, and an amorphous metal oxide.
  • Core-shell structure 2 first shell layer B having vanadium dioxide particles in the core portion and containing at least one amorphous metal oxide on the surface of the vanadium dioxide particles, and a hydrophobic organic compound A multilayer structure having a second shell layer B containing
  • the amorphous metal oxide contained in the second shell layer A forming the core-shell structure 1 or the first shell layer B forming the core-shell structure 2 is silicon oxide, titanium oxide, zinc oxide.
  • the organic compound contained in the first shell layer A forming the core-shell structure 1 has an amino group or a nitrogen-containing heterocyclic group together with a hydroxy group.
  • Thermochromic vanadium dioxide-containing particles have an amino group or a nitrogen-containing heterocyclic group together with a hydroxy group.
  • thermochromic vanadium dioxide-containing particles according to one item.
  • the hydrophobic organic compound contained in the third shell layer A forming the core-shell structure 1 is at least one selected from a hydrophobic alkyl group or a hydrophobic aryl group, silazane, silicon alkoxide, alcohol, aldehyde, and carboxylic acid.
  • the hydrophobic organic compound contained in the second shell layer B forming the core-shell structure 2 is at least selected from a hydrophobic alkyl group or a hydrophobic aryl group, silazane, silicon alkoxide, alcohol, aldehyde and carboxylic acid.
  • the thermochromic vanadium dioxide-containing particles according to item 1 or 2 which are compounds having one kind of group.
  • thermochromic vanadium dioxide-containing particles according to any one of items 1 to 6, further comprising a compound containing an element having an effect of adjusting a phase transition temperature.
  • thermochromic vanadium dioxide-containing particles which produces the thermochromic vanadium dioxide-containing particles according to any one of items 1 to 5,
  • a forming step of the first shell layer A a step of forming a shell layer by adding and dispersing an organic compound having at least a hydroxy group to an aqueous dispersion containing vanadium dioxide particles as core particles;
  • a step of forming the second shell layer A a step of forming an amorphous metal oxide forming precursor, an alkali and an alcohol to form a shell layer having an amorphous metal oxide
  • a process for producing thermochromic vanadium dioxide-containing particles characterized by comprising:
  • thermochromic vanadium dioxide-containing particles for producing the thermochromic vanadium dioxide-containing particles according to item 4 or 5
  • a step of forming the first shell layer A a step of forming the first shell layer A by adding and dispersing an organic compound having at least a hydroxy group in an aqueous dispersion containing vanadium dioxide particles as core particles;
  • the step of forming the second shell layer A includes the step of forming the second shell layer A having an amorphous metal oxide by adding an amorphous metal oxide forming precursor, alkali and alcohol,
  • the method for producing thermochromic vanadium dioxide-containing particles is characterized in that the step of forming the third shell layer A includes any one of the following steps (3-1) and (3-2).
  • Step (3-1) The aqueous medium of the aqueous dispersion containing the vanadium dioxide particles forming the second shell layer A is replaced with an organic solvent containing no hydroxy group by ultrafiltration, and then has a silazane group.
  • Forming a third shell layer A by surface modification with a hydrophobic organic compound Step (3-2): treatment with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid in the presence of high-temperature high-pressure water in a subcritical state, or a subcritical state
  • thermochromic vanadium dioxide-containing particles for producing the thermochromic vanadium dioxide-containing particles according to item 1, item 2 or item 6,
  • a first shell having an amorphous metal oxide by adding an amorphous metal oxide forming precursor, an alkali and an alcohol to an aqueous dispersion containing vanadium dioxide particles as core particles.
  • the method for producing thermochromic vanadium dioxide-containing particles is characterized in that the step of forming the second shell layer B includes one of the following steps (2-1) and (2-2).
  • Forming a second shell layer B by surface modification with a hydrophobic organic compound Step (2-2): treatment with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid in the presence of high-temperature high-pressure water in a subcritical state, or a subcritical state
  • thermochromic film comprising the thermochromic vanadium dioxide-containing particles according to any one of items 1 to 7.
  • thermochromic film according to item 11 further comprising a hydrophobic binder.
  • thermochromic film containing thermochromic vanadium dioxide-containing particles A vanadium dioxide-containing particle is produced by the method for producing a thermochromic vanadium dioxide-containing particle according to any one of items 8 to 10, and the vanadium dioxide-containing particle is mixed with at least a hydrophobic binder. And the manufacturing method of the thermochromic film characterized by manufacturing by apply
  • thermochromic vanadium dioxide-containing particle having excellent storage stability, high thermochromic responsiveness and thermochromic repeat resistance, a production method thereof, a thermochromic film using the same, and a production method thereofcan be provided.
  • the core portion according to the first embodiment is composed of vanadium dioxide particles, and the surface of the core particles has a hydroxy group in an ionic bond.
  • the core-shell structure 1 is configured so as to be covered with the second shell layer A containing an amorphous metal oxide. Thermochromic vanadium dioxide (VO 2 ) -containing particles were also obtained.
  • the first shell layer A is formed by modifying the organic compound having a hydroxy group so as to include vanadium dioxide particles that are easily oxidized. Subsequently, by forming the second shell layer A with an amorphous metal oxide having characteristics excellent in gas barrier properties, it is possible to achieve both storage stability and thermochromic response.
  • thermochromic responsiveness as used in the present invention is a characteristic that can be obtained by the following method.
  • One surface of the heat insulation space is made of glass, a thermometer is arranged at a distance of 10 mm from the glass surface in the heat insulation space, and sunlight or similar light energy is irradiated from the outside with a constant energy, and the temperature of the temperature sensor Is defined as the time required for the temperature to rise 1 ° C. Therefore, it can be determined that the longer this time is, the better the thermochromic response is, and the property that the temperature rise in the heat insulation space can be delayed in order to reduce the infrared light transmittance early.
  • thermochromic vanadium dioxide-containing particles according to the first embodiment of the present invention, more preferably, the thermochromic vanadium dioxide-containing particles having the above-described form are formed on the second shell layer A containing an amorphous metal oxide. Further, the reproducibility of thermochromic characteristics can be further improved by chemically bonding a hydrophobic organic compound to form the third shell layer A. This is because the volume change of thermochromic vanadium dioxide (VO 2 ) -containing particles accompanying the phase transition affects the second shell layer A having an amorphous metal oxide, but a hydrophobic organic compound is bound to the outermost part.
  • thermochromic vanadium dioxide (VO 2 ) -containing particles affects the second shell layer A having an amorphous metal oxide, but a hydrophobic organic compound is bound to the outermost part.
  • the third shell layer A becomes a capping layer, the particle surface structure is homogenized, and the structure fracture resistance due to the particle surface is improved even when subjected to many volume changes. As a result, it is speculated that the reproducibility of thermochromic characteristics has been improved.
  • the surface of the vanadium dioxide particles having thermochromic properties having the property of being easily oxidized is treated with an amorphous metal oxide.
  • the volume change of the vanadium dioxide (VO 2 ) -containing particles accompanying the phase transition also affects the first shell layer B having the amorphous metal oxide, but the second shell that binds the hydrophobic organic compound to the outermost part.
  • the second shell layer B becomes a capping layer, the surface structure of the vanadium dioxide particles is homogenized, and the structure fracture resistance due to the particle surface is improved even when subjected to many volume changes.
  • thermochromic vanadium dioxide-containing particles of the present invention have a core-shell structure, and the core-shell structure is the following core-shell structure 1 or core-shell structure 2.
  • Core-shell structure 1 contains a first shell layer A made of an organic compound having at least a hydroxy group, which has vanadium dioxide particles in the core part and modifies the surface of the vanadium dioxide particles, and an amorphous metal oxide.
  • a multilayer structure having a second shell layer A in this order (Embodiment 1).
  • Core-shell structure 2 first shell layer B having vanadium dioxide particles in the core portion and containing at least one amorphous metal oxide on the surface of the vanadium dioxide particles, and a hydrophobic organic compound A multilayer structure having a second shell layer B containing s in this order (Embodiment 2).
  • This feature is a technical feature common to or corresponding to the claimed invention.
  • thermochromic vanadium dioxide-containing particles according to Embodiment 1 of the present invention is the core-shell structure 1 described above.
  • silicon oxide, titanium oxide, zinc oxide, hafnium oxide, as an amorphous metal oxide that forms the second shell layer A from the viewpoint of more manifesting the intended effect of the present invention. It is preferable to use at least one selected from cerium oxide and molybdenum oxide in that an amorphous metal oxide can be stably formed without using a high-temperature firing step, by a sol-gel reaction.
  • thermochromic film of Embodiment 1 of this invention it is vanadium dioxide that the 1st shell layer A applies the organic compound which has adsorption groups, such as an amino group or a nitrogen-containing heterocyclic group, with a hydroxyl group. Adsorption performance to the particle surface is enhanced, and the hydroxy groups present simultaneously function to bind to the amorphous metal oxide constituting the second shell layer A formed thereon. By setting it as such a structure, storage stability and thermochromic responsiveness can further be improved.
  • adsorption groups such as an amino group or a nitrogen-containing heterocyclic group
  • the third shell layer A further containing a hydrophobic organic compound is formed on the surface of the second shell layer A, as described above.
  • the shell layer A becomes a capping layer, homogenizing the surface structure of the particles, and even if subjected to volume changes due to environmental changes, etc., it can improve the resistance to structural destruction caused by the particle surface, and repeat the thermochromic properties Reproducibility can be improved.
  • the hydrophobic organic compound contained in the third shell layer A includes a hydrophobic alkyl group or a hydrophobic aryl group, silazane, silicon alkoxide, alcohol, aldehyde, and carboxyl. It is preferable to select a compound having at least one group selected from acids in that the reproducibility of thermochromic properties can be improved.
  • thermochromic film of Embodiment 1 of this invention contains the compound containing the element which has an adjustment
  • thermochromic film of Embodiment 1 of this invention while containing the said thermochromic vanadium dioxide containing particle
  • grains comprised from the core particle / 1st shell layer A / 2nd shell layer A which is Embodiment 1 of this invention as a formation process of the 1st shell layer A
  • the first shell layer A and the second shell layer A are formed by adding and dispersing an organic compound having at least a hydroxy group in an aqueous dispersion containing vanadium dioxide particles as core particles.
  • thermochromic vanadium dioxide-containing particles composed of core particles / first shell layer A / second shell layer A / third shell layer A, which is another configuration of Embodiment 1 of the present invention.
  • a step of forming the first shell layer A by adding and dispersing an organic compound having at least a hydroxy group in an aqueous dispersion containing vanadium dioxide particles as core particles, as a step of forming the first shell layer A;
  • a step of forming the second shell layer A includes a step of forming an amorphous metal oxide forming precursor, an alkali and an alcohol to form the second shell layer A having an amorphous metal oxide, and
  • the aqueous medium of the aqueous dispersion containing the vanadium dioxide particles forming the second shell layer A contains a hydroxy group by ultrafiltration.
  • a surface modification with a hydrophobic organic compound having a silazane group to form the third shell layer A, or a silicon alkoxide, an alcohol in the presence of high-temperature high-pressure water in a subcritical state, Presence of high-temperature high-pressure water in a supercritical state after treatment with a hydrophobic organic compound having at least one group selected from aldehydes and carboxylic acids, or pretreatment in the presence of high-temperature high-pressure water in a subcritical state
  • forming a third shell layer A by surface modification with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid Vanadium dioxide-containing particles that can exhibit the effect can be produced.
  • thermochromic vanadium dioxide-containing particles according to Embodiment 2 of the present invention are characterized in that the core / shell structure is the core / shell structure 2.
  • thermochromic vanadium dioxide-containing particles silicon oxide, oxidation is used as the amorphous metal oxide for forming the first shell layer B from the viewpoint of more manifesting the intended effect of the present invention.
  • At least one selected from titanium, zinc oxide, hafnium oxide, cerium oxide, and molybdenum oxide can be formed by a sol-gel reaction, and an amorphous metal oxide can be stably formed without using a high-temperature baking step. It is preferable in that it can be performed.
  • thermochromic vanadium dioxide-containing particles of Embodiment 2 of the present invention as the hydrophobic organic compound contained in the second shell layer B, a hydrophobic alkyl group or a hydrophobic aryl group, silazane, silicon alkoxide, alcohol It is preferable to select a compound having at least one group selected from aldehydes and carboxylic acids from the viewpoint of improving the repeated resistance to thermochromic properties.
  • thermochromic vanadium dioxide-containing particles of Embodiment 2 of the present invention by containing a compound containing an element having a phase transition temperature adjusting action, by adjusting and optimizing the phase transition temperature, It is more preferable because it can reduce energy consumption by reducing both the load on the cooling facility in summer and the load on the heating facility in winter.
  • grains in Embodiment 2 of this invention as a formation process of 1st shell layer B, an amorphous metal is added to the aqueous dispersion containing the vanadium dioxide particle
  • the aqueous medium of the aqueous dispersion containing vanadium dioxide particles formed with an organic solvent was replaced with an organic solvent not containing a hydroxy group by ultrafiltration, and then surface-modified with a hydrophobic organic compound having a silazane group to form a second shell Step (2-1) for forming layer B, or silicon alkoxide, alcohol, aldehyde in the presence of high-temperature high-pressure water in a subcritical state And a pretreatment in the presence of high-temperature high-pressure water in a subcritical state after treatment with a hydrophobic organic compound having at least one group selected from carboxylic acid and in the presence of high-temperature high-pressure water in a supercritical state
  • thermochromic film of this invention while containing the vanadium dioxide containing particle
  • the particles constituting the vanadium dioxide-containing particles are referred to as “vanadium dioxide particles”, and a structure in which a shell layer is formed on the surface of the vanadium dioxide particles to form the core-shell particles is “thermochromic vanadium dioxide-containing particles”.
  • thermochromic vanadium dioxide-containing particles may be simply referred to as vanadium dioxide-containing particles or the vanadium dioxide-containing particles of the present invention.
  • shown in the present invention i is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • thermochromic vanadium dioxide-containing particles have an organic compound having at least a hydroxy group that has a core-shell structure, has vanadium dioxide particles in the core, and modifies the surface of the vanadium dioxide particles. It has the 1st shell layer A which consists of, and the 2nd shell layer A containing an amorphous metal oxide in this order, It is characterized by the above-mentioned.
  • thermochromic vanadium dioxide-containing particles of Embodiment 2 of the present invention have a core-shell structure, have vanadium dioxide particles in the core part, and contain an amorphous metal oxide on the surface of the core part.
  • the first shell layer B and the second shell layer B containing a hydrophobic organic compound are arranged in this order.
  • thermochromic vanadium dioxide-containing particles according to Embodiment 1 and Embodiment 2 of the present invention, details of materials used for the preparation of the thermochromic vanadium dioxide-containing particles and the manufacturing method will be described.
  • Embodiment 1 of the vanadium dioxide-containing particles of the present invention includes a first shell layer A made of an organic compound having vanadium dioxide particles in the core and at least a hydroxy group that modifies the surface of the vanadium dioxide particles, and an amorphous state.
  • the multilayer structure has the second shell layer A containing the metal oxide in this order.
  • the surface of the second shell layer A has the third shell layer A containing the hydrophobic organic compound. It is a configuration.
  • thermochromic vanadium dioxide-containing particles having a core-shell structure 1 which is Embodiment 1 of the present invention.
  • FIG. 1A shows the particle structure of vanadium dioxide-containing particles (1a) having a core-shell structure 1 according to Embodiment 1 of the present invention, where the vanadium dioxide-containing particles (1a) are vanadium dioxide particles.
  • the first shell layer A (3A) is formed of an organic compound having at least a hydroxy group on the outer periphery thereof, and the second shell layer A (4A) containing an amorphous metal oxide is formed on the outermost part. It is the structure formed.
  • FIG. 1B shows a vanadium dioxide-containing particle (1b) having a core / shell configuration 1 according to another configuration of Embodiment 1 of the present invention, and the second of the vanadium dioxide-containing particles (1a) having the configuration described in FIG. 1A.
  • a configuration in which a third shell layer A (5A) containing a hydrophobic organic compound is further formed on the surface of the shell layer A (4A) is shown.
  • the core-shell structure 2 of vanadium dioxide-containing particles according to Embodiment 2 of the present invention has a first shell containing vanadium dioxide particles in the core part and containing an amorphous metal oxide on the surface of the vanadium dioxide particles.
  • the layer B has a second shell layer B containing a hydrophobic organic compound on the first shell layer B.
  • FIG. 2 is a schematic cross-sectional view showing an example of the particle configuration of the core-shell structure 2 according to Embodiment 2 with the thermochromic vanadium dioxide-containing particles of the present invention.
  • FIG. 2 shows a cross-sectional structure of a vanadium dioxide-containing particle (1) having a core / shell structure 2, which is Embodiment 2 of the present invention, and the vanadium dioxide-containing particle (1) comprises vanadium dioxide as a core particle (2).
  • 1st shell layer B (3B) which consists of particle
  • the structure covered with the second shell layer B (4B) is shown.
  • the vanadium dioxide particles constituting the core particles of the vanadium dioxide-containing particles having the core-shell structure 1 are not particularly limited as their crystal forms, but are thermochromic (automatic dimming). It is particularly preferable to use rutile-type vanadium dioxide particles (VO 2 particles) from the viewpoint that can be efficiently expressed.
  • the vanadium dioxide particles according to the present invention may contain other crystal-type VO 2 particles such as an A phase or a B phase as long as the purpose is not impaired.
  • the number average particle diameter of the primary particles and secondary particles of vanadium dioxide particles in the optical functional layer described later in detail is preferably 200 nm or less, more preferably in the range of 1 to 180 nm, Preferably, it is in the range of 5 to 100 nm.
  • the number average particle size of the primary and secondary particles of vanadium dioxide containing particles having a core / shell structure is preferably 250 nm or less, more preferably in the range of 1 to 200 nm, and still more preferably 10 to Within the range of 150 nm.
  • the average particle diameter of the vanadium dioxide particles can be determined by the following method.
  • the particles are photographed at 10,000 to 100,000 times using a transmission electron microscope (TEM).
  • the diameter of the photographed vanadium dioxide particles is measured to obtain an arithmetic average.
  • the number of vanadium dioxide particles to be measured is preferably in the range of 100 to 200.
  • grain is not a perfect spherical shape, it calculates
  • the aspect ratio (major axis / uniaxial ratio) of the vanadium dioxide particles and vanadium dioxide-containing particles is preferably in the range of 1.0 to 3.0.
  • the vanadium dioxide particles constituting the core particles having such characteristics have a sufficiently small aspect ratio and isotropic shape, the dispersibility when added to a solution is good.
  • the single crystal since the single crystal has a sufficiently small particle size, it can exhibit better thermochromic properties than conventional fine particles.
  • the vanadium dioxide-containing particles according to Embodiment 1 of the present invention preferably contain a compound containing an element having an effect of adjusting the phase transition temperature, and in particular, the vanadium dioxide particles constituting the core particles adjust the phase transition temperature. It is preferable to contain a compound containing an element having an action.
  • vanadium dioxide particles constituting the core particle according to the present invention in addition to vanadium dioxide (VO 2 ), for example, tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin ( Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine ( At least one element selected from the group consisting of F) and phosphorus (P) may be included as a phase transition temperature regulator.
  • the addition of such an element is effective in that the phase transition characteristics (particularly the phase transition temperature) of the vanadium dioxide particles can be controlled.
  • the total amount of such additives with respect to the finally obtained vanadium dioxide particles is sufficient to be about 0.1 to 5.0 atomic% with respect to the vanadium (V) atom.
  • the concentration of vanadium dioxide particles in the optical functional layer constituting the thermochromic film to be described later is not particularly limited, but is preferably in the range of 5 to 60% by mass with respect to the total mass of the optical functional layer. More preferably, it is in the range of 5 to 40% by mass, and still more preferably in the range of 5 to 30% by mass.
  • the method for producing vanadium dioxide particles includes a method of pulverizing a VO 2 sintered body synthesized by a solid phase method, and a vanadium compound such as divanadium pentoxide (V 2 O 5 ) or ammonium vanadate as a raw material.
  • a aqueous synthesis method in which particles are grown while synthesizing VO 2 in a liquid phase using an aqueous solution instead of an organic solvent is preferably used.
  • the water-based synthesis method is preferable in that the average primary particle size is small and variation in particle size can be suppressed.
  • examples of the aqueous synthesis method include a hydrothermal synthesis method and an aqueous synthesis method using a supercritical state.
  • Details of an aqueous synthesis method using a supercritical state also referred to as a supercritical hydrothermal synthesis method.
  • a supercritical hydrothermal synthesis method also referred to as a supercritical hydrothermal synthesis method.
  • the hydrothermal synthesis method is applied and the aqueous synthesis method is used to prepare an aqueous dispersion containing vanadium dioxide particles, and the vanadium dioxide particles in the aqueous dispersion are dried.
  • an optical functional layer in which the number average particle diameter of the primary particles and the secondary particles of the vanadium dioxide-containing particles is 200 nm or less is formed. be able to.
  • fine TiO 2 particles that become the core of particle growth are added as core particles, and vanadium dioxide particles are produced by growing the core particles. You can also.
  • the following shows the production process of vanadium dioxide particles by a typical hydrothermal synthesis method.
  • a substance (I) containing vanadium (V), hydrazine (N 2 H 4 ) or a hydrate thereof (N 2 H 4 .nH 2 O), and water are mixed to prepare a solution (A).
  • This solution may be an aqueous solution in which the substance (I) is dissolved in water, or a suspension in which the substance (I) is dispersed in water.
  • the substance (I) examples include divanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ), vanadium trichloride (VOCl 3 ), sodium metavanadate (NaVO 3 ), and the like. .
  • the substance (I) is not particularly limited as long as it is a compound containing pentavalent vanadium (V). Hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .nH 2 O) function as a reducing agent for the substance (I) and have a property of being easily dissolved in water.
  • the solution (A) may further contain a substance (II) containing the element to be added.
  • the element to be added include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium ( Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F), or phosphorus (P).
  • thermochromic properties of the vanadium dioxide particles in particular, the transition temperature can be controlled.
  • the solution (A) may further contain a substance (III) having oxidizing property or reducing property.
  • the substance (III) include hydrogen peroxide (H 2 O 2 ).
  • hydrothermal reaction treatment is performed using the prepared solution (A).
  • “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa).
  • the hydrothermal reaction treatment is performed, for example, in an autoclave apparatus.
  • Single crystal fine particles containing vanadium dioxide (VO 2 ) are obtained by the hydrothermal reaction treatment.
  • the conditions of the hydrothermal reaction treatment are set as appropriate, but the temperature of the hydrothermal reaction treatment is, for example, within the range of 250 to 350 ° C. Preferably, it is in the range of 250 to 300 ° C, more preferably in the range of 250 to 280 ° C.
  • the hydrothermal reaction treatment time is preferably in the range of 1 hour to 5 days, for example. Increasing the time can control the particle size and the like of the obtained single crystal fine particles, but an excessively long processing time increases the energy consumption.
  • thermochromic vanadium dioxide VO 2
  • the first shell layer A according to Embodiment 1 of the present invention is formed on the surface of the vanadium dioxide particles described above by an organic compound having at least a hydroxy group that is ionically modified with the surface.
  • ionic bonding refers to the property of adsorbing on the surface of vanadium dioxide particles with positive or negative charge attraction.
  • the organic compound modified in an ionic bond according to the present invention is preferably a compound having an amino group or a nitrogen-containing heterocyclic group together with a hydroxy group.
  • the amino group or the nitrogen-containing heterocyclic group expresses a high adsorbing ability as an adsorbing group on the surface of the vanadium dioxide particles, and the hydroxy group is an amorphous material that is a constituent material of the second shell layer A formed on the first shell layer A. It is a functional group that functions to bind to a metal oxide.
  • the organic compound having a hydroxy group according to the present invention is preferably a compound having an amino group or a nitrogen-containing heterocyclic group together with a hydroxy group (—OH), and the compound is not particularly limited.
  • the following compounds can be exemplified.
  • a nitrogen-containing heterocyclic group together with a hydroxy group for example, pyrrolidine, pyrrole, piperidine, pyridine, imidazole, pyrazole, oxazole, thiazole, imidazoline, pyrazine, morpholine, thiazine, indole, benzimidazole, etc.
  • the group can be mentioned.
  • an aqueous dispersion containing vanadium dioxide particles as core particles contains an organic compound having at least a hydroxy group, more preferably an amino group or nitrogen containing together with a hydroxy group.
  • the first shell layer A can be formed on the surface of the vanadium dioxide particles by adding an organic compound having a heterocyclic group and performing a dispersion treatment for a predetermined time.
  • a dispersion method applicable to the formation of the first shell layer A is not particularly limited.
  • a mixing / dispersing method using a stirring type disperser a mixing / dispersing method using a bead mill, a beadless mill, a ball mill, or a three-roll method.
  • examples thereof include a mixing / dispersing method, a mixing / dispersing method using a rotating / revolving mixer, and the like can be appropriately selected and applied.
  • the second shell layer A constituting the vanadium dioxide-containing particles according to Embodiment 1 contains an amorphous metal oxide.
  • amorphous as used in the present invention means that when the formed second shell layer A is subjected to XRD analysis (X-ray diffraction method), it is measured with little three-dimensional regularity as atoms and molecules constituting the solid. In the X-ray diffraction spectrum, only a halo pattern is observed, and it is defined as a layer that does not show a specific diffraction line peak indicating crystallinity.
  • Examples of the XRD measuring apparatus used in the above measurement include an X-ray diffractometer manufactured by Shimadzu Corporation (XRD-7000, XRD-6100, etc.), an X-ray diffractometer manufactured by Rigaku Corporation (XRD measuring apparatus RINT2200, RINT-TTR2, SWRD). Etc.).
  • the second shell layer A can be obtained by performing hydrolysis and polycondensation in the liquid phase using a sol-gel reaction to obtain the second shell layer A composed of an amorphous metal oxide.
  • the sol-gel reaction here is one of chemical operations for synthesizing ceramics and the like by converting an alkoxide sol into a gel state by heating or the like in a general sense.
  • Examples of the amorphous metal oxide applicable to the present invention include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti.
  • the second shell formed by silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), zinc oxide (ZnO), hafnium oxide (HfO 2 ), cerium oxide (CeO 2 ), and molybdenum oxide (MoO 2 ).
  • the layer A is preferable in that high transparency is obtained.
  • the second shell layer A is formed on the first shell layer A by using a sol-gel method in a liquid phase system.
  • a sol-gel method silicon oxide ( When forming SiO 2 ) by a sol-gel method, an alkoxide (silica precursor) such as TEOS (tetraethoxysilane) is added as an amorphous metal oxide forming precursor together with an alkali and alcohol under basic conditions.
  • TEOS tetraethoxysilane
  • the formation of the second shell layer A can be performed under acidic conditions as required.
  • a strongly basic condition is more effective for a dense silica layer. Obtainable.
  • the configuration in which the third shell layer A containing the hydrophobic organic compound is further formed on the second shell layer A described above is highly repetitive. It is more preferable at the point which can obtain tolerance.
  • the third shell layer A is formed of a hydrophobic organic compound.
  • the hydrophobic organic compound is at least selected from a hydrophobic alkyl group or a hydrophobic aryl group, silazane, silicon alkoxide, alcohol, aldehyde, and carboxylic acid. It is preferable that it is a compound which has 1 type of group.
  • hydrophobic alkyl group examples include linear, branched or unsaturated alkyl groups having 1 to 23 carbon atoms which may have an unsaturated group. Examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, a pentadecyl group, a hexadecyl group, and an octadecyl group.
  • hydrophobic aryl group examples include phenyl, tolyl, xylyl, naphthyl, and azulene groups.
  • silazanes include trimethylsilyl chloride, hexamethyldisilazane, trimethylsilyltrifluoromethanesulfonate, triethylsilyl chloride, t-butyldimethylsilyl chloride, triisopropylsilyl chloride, 1,3-dichloro-1, Examples include 1,3,3-tetraisopropyldisiloxane, chloromethyltrimethylsilane, triethylsilane, t-butyldimethylsilane, trimethylsilylacetylene hesilamethyldisilane, allyltrimethylsilane, and trimethylvinylsilane.
  • the said compound can also be obtained as a commercial item (for example, Shin-Etsu Silicone Co., Ltd., silylating agent).
  • silicon alkoxide Specific examples of the silicon alkoxide applicable to the present invention include the following compounds.
  • Silanes include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxy.
  • Examples include silane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis (trimethoxysilyl) hexane, trifluoropropyltrimethoxysilane, and the like.
  • the said compound can also be obtained as a commercial item (for example, Shin-Etsu Silicone Co., Ltd., silane).
  • silane coupling agent having an organic functional group and an alkoxy group in one molecule can be used, for example, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3-acryloxypropylmethyl.
  • the said compound can also be obtained as a commercial item (for example, Shin-Etsu Silicone Co., Ltd., a silane coupling agent).
  • Alcohols examples include linear or branched alcohols having 1 to 23 carbon atoms, such as methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, Examples include decanol, dodecanol, pentadecanol, octadecanol, icosanol, docosanol, and tricodanol.
  • aldehydes examples include linear or branched aldehydes having 1 to 23 carbon atoms, such as methanal (formaldehyde), etanal (acetaldehyde), propanal (propionaldehyde). ), Butanal, pentanal, hexanal, octanal, decanal, dodecanal, pentadecanal, octadecanal, icosanal, docosanal, tricodanal, acrolein, benzaldehyde, vanillin, glyoxal and the like.
  • Carboxylic acid examples include saturated fatty acids, unsaturated fatty acids, aromatic carboxylic acids, and dicarboxylic acids.
  • saturated fatty acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, etc. it can.
  • unsaturated fatty acids include oleic acid, linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid, and the like.
  • aromatic carboxylic acid examples include benzoic acid, phthalic acid, salicylic acid, gallic acid, cinnamic acid, and the like.
  • dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid and the like.
  • the dispersion containing vanadium dioxide particles on which the second shell layer A is formed is subjected to hydroxy filtration by ultrafiltration.
  • a method of forming the third shell layer A as the outermost layer by replacing the dispersion medium with an organic solvent having no group and then treating with a hydrophobic organic compound, for example, a hydrophobic compound having a silazane group, is described. be able to.
  • a silicon alkoxide in the presence of high-temperature high-pressure water in a subcritical state is used for the dispersion containing vanadium dioxide particles that have formed the second shell layer A.
  • High-temperature high-pressure water in a supercritical state after treatment with a hydrophobic organic compound having at least one group selected from alcohol, aldehyde and carboxylic acid, or pre-treatment in the presence of high-temperature high-pressure water in a subcritical state In the presence of, a method of forming the third shell layer A by treating with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid can be mentioned.
  • thermochromic vanadium dioxide-containing particles (1a) having the structure defined in Embodiment 1 shown in FIG. 1A
  • the vanadium dioxide particles that are the core particles (2) are prepared by the above-described method.
  • the material for forming the first shell layer A (3A) and the constituent material for the second shell layer A (4A) are sequentially added to the vanadium dioxide particles that are the core particles (2) in an aqueous environment.
  • the vanadium dioxide-containing particles (1a) can be prepared by coating each by the sol-gel method described in the above.
  • the first shell layer A (3A) is prepared by adding and dispersing at least an organic compound having a hydroxy group in an aqueous dispersion containing vanadium dioxide particles as the core particles (2). And forming the second shell layer A, the amorphous metal oxide forming precursor, the alkali and the alcohol are added to form the second shell layer A (4A) having the amorphous metal oxide. And a process.
  • the vanadium dioxide-containing particles (1b) according to Embodiment 1 shown in FIG. 1B are characterized by being manufactured according to the following two methods.
  • grains (1b) is the vanadium dioxide particle
  • an amorphous metal oxide forming precursor, an alkali and an alcohol are added to form an amorphous Forming a second shell layer A (4A) having a metal oxide, and then substituting with an organic solvent not containing a hydroxy group by ultrafiltration, and then, as a step (3-1), a hydrophobic having a silazane group
  • the third shell layer A (5A) composed of the hydrophobic organic compound
  • ultrafiltration is performed on the aqueous dispersion containing vanadium dioxide particles formed up to the second shell layer A (4A).
  • the third shell layer A (5A) is formed by replacing the water contained in the aqueous dispersion with an organic solvent containing no hydroxy group and then treating with a hydrophobic organic compound having a silazane group.
  • a hydrophobic compound (silylating agent) having a silazane group has a characteristic that it readily reacts with a compound containing a hydroxy group such as water or alcohol and easily decomposes, and forms the third shell layer A (5A). Before, the dispersion medium of the dispersion is replaced with an organic solvent that does not contain a hydroxy group.
  • the organic solvent applied by the above method is preferably a solvent in which the vanadium dioxide particles formed up to the second shell layer A (4A) do not aggregate and settle and are miscible with water or alcohol.
  • a solvent in which the vanadium dioxide particles formed up to the second shell layer A (4A) do not aggregate and settle and are miscible with water or alcohol Specifically, acetonitrile, PGMAc (propylene glycol monomethyl ether acetate), ethylamine, 2-pyrrolidone, NMP (N-methyl-2-pyrrolidone), pyridine, dioxolane, 2-methyldioxolane, ethylene carbonate, ⁇ -butyrolactone, THF (Tetrahydrofuran), morpholine, DMF (dimethylformamide), DMSO (dimethylsulfoxide) and the like.
  • FIG. 3 is a schematic flow diagram showing an example of a solvent substitution processing device (ultrafiltration device) that can be used for production of vanadium dioxide-containing particles.
  • the solvent displacement treatment apparatus (50) shown in FIG. 3 is a preparation kettle (51) for storing a mixed solution (52) containing vanadium dioxide particles formed up to the second shell layer A (4A), a solvent for dilution. (58), a solvent stock pot (57), a solvent supply line (59) for adding the solvent (58) to the adjustment pot (51), and a mixed solution containing vanadium dioxide particles in the preparation pot (51)
  • the ultrafiltration part (55) is arrange
  • aqueous dispersion containing vanadium dioxide particles formed up to the second shell layer A (4A) prepared by the above method is stored in the preparation kettle (51) as a mixed solution (52), and the circulation pump (54) is used.
  • the water in the mixed solution is discharged from the discharge port (56) and concentrated to a predetermined concentration.
  • concentration As a standard of concentration, it is preferable to concentrate up to 20% by volume with respect to the initial volume. It is preferable to avoid excessive concentration beyond this because particle aggregation occurs as the particle density increases. In this concentration operation, it is important not to dry the mixed solution (52).
  • step (I) and step (II) are preferably repeated twice or more to adjust the water content to a range of 0.1 to 5.0% by mass.
  • a solvent dispersion (52) containing vanadium particles is prepared.
  • the third shell layer A (5A) can be formed by treating the vanadium dioxide particles thus treated with a hydrophobic organic compound having a silazane group.
  • ultrafiltration method used in the above solvent replacement treatment examples include, for example, No. of Research Disclosure. 10208 (1972), no. 13122 (1975) and no. 16351 (1977) and the like can be referred to.
  • the setting of the pressure difference and the flow rate that are important in the operating conditions can be set with reference to the characteristic curve described in Haruhiko Oya, “Membrane Utilization Technology Handbook”, Koshobo Publishing (1978), p275, for example.
  • Ultrafiltration membranes include flat plate type, spiral type, cylindrical type, hollow fiber type, hollow fiber type, etc. in which organic membranes are incorporated as modules. Asahi Kasei Corporation, Daicel Chemical Co., Ltd., Toray Industries, Inc. ) Commercially available from Nitto Denko. Moreover, as a film
  • Vivaflow 50 (effective filtration area 50 cm 2 , molecular weight cut-off 5000) manufactured by Sartorius steady as a filtration membrane, a flow rate of 300 mL / min (min), a liquid pressure of 100 kPa, and ultrafiltration at room temperature
  • examples include an ultrafiltration device (Pericon 2 cassette manufactured by Nihon Millipore Corporation) having a filtration membrane made of polyethersulfone and having a molecular weight cut off of 300,000.
  • the second production method of vanadium dioxide-containing particles has at least a hydroxy group in an aqueous dispersion containing vanadium dioxide particles (2) as core particles.
  • the organic compound is added and dispersed to form the first shell layer A (3A)
  • the amorphous metal oxide forming precursor, the alkali, and the alcohol are added to the second shell layer A having the amorphous metal oxide ( 4A), and then, as shown in step (3-2), a hydrophobic having at least one group selected from silicon alkoxide, alcohol, aldehyde, and carboxylic acid in the presence of high-temperature high-pressure water in a subcritical state
  • High temperature and high pressure water in supercritical state after pretreatment in the presence of high temperature and high pressure water in subcritical state
  • the third shell layer A (5A) is formed by treatment with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid, and the vanadium dioxide-containing
  • the vanadium dioxide particles formed up to the second shell layer A (4A) are subjected to silicon alkoxide, alcohol, aldehyde under conditions where water exists in a high temperature and high pressure state. And a hydrophobic organic compound having at least one substituent selected from carboxylic acids, thereby obtaining vanadium dioxide-containing particles (1b) having the surface formed with the third shell layer A (5A) made of the hydrophobic organic compound.
  • treatment for activating the surface of the vanadium dioxide particles formed up to the second shell layer A (4A) or vanadium dioxide particles formed up to the second shell layer A (4A) in advance is performed.
  • a step of pretreatment in the presence of water in a subcritical state may be included.
  • the water in a high temperature and high pressure state is a high temperature and high pressure water in a subcritical or supercritical state, that is, sub-critical water (sub-CW), or super Super-critical water (SCW).
  • subcritical water refers to water in which the temperature or pressure is slightly lower than the supercritical point of water. For example, in terms of temperature, from a region of 150 ° C. or higher to a critical temperature of 374 ° C.
  • the temperature is set lower than the critical temperature of water, and the pressure is set to a region where the critical pressure of water is 22 MPa or higher.
  • the pressure of the raw material mixture containing vanadium dioxide particles formed up to the second shell layer A supplied to a reaction system is Vanadium dioxide having a critical pressure of 22.12 MPa or higher (for example, 30 MPa or 35 MPa) and formed up to the second shell layer A heated to the vicinity of a predetermined reaction temperature, such as heated to approximately 150 ° C.
  • the raw material mixture containing particles is supplied to a reactor (reaction under subcritical water) set to a reaction temperature of 250 ° C., or a reactor (super-reactor) set to a reaction temperature of 390 ° C.
  • a reactor reaction under subcritical water
  • a reactor super-reactor
  • a typical subcritical water region has a critical pressure of 22 MPa or higher, and a region of 180 ° C. or higher to a critical temperature of 374 ° C., or a temperature of 200 ° C. or higher to a critical temperature of 374 ° C. Or a region from a temperature of 250 ° C. or higher to a critical temperature of 374 ° C., a region of 300 ° C. or higher to a critical temperature of 374 ° C., or the like.
  • the subcritical water region has a pressure range of 10.0 MPa or higher to a critical pressure of 22 MPa, or a pressure range of 15.0 MPa or higher to a critical pressure of 22 MPa, or a pressure of 18.0 MPa or higher to a critical pressure of 22 MPa.
  • a region or a region from a pressure of 20.0 MPa or more to a critical pressure of 22 MPa may also be included.
  • the treatment temperature is, for example, 150 to 374 ° C., preferably 200 to 374 ° C., more preferably 230 to It is 374 ° C, more preferably 280 to 360 ° C.
  • the processing pressure is, for example, 15 to 50 MPa, preferably 18 to 45 MPa, more preferably 20 to 40 MPa, and further preferably 20 to 35 MPa.
  • the processing temperature is in the range of 280 to 320 ° C. and the processing pressure is in the range of 20 to 25 MPa.
  • the reaction temperature is, for example, in the range of 375 to 500 ° C., preferably It is within the range of 375 to 450 ° C, more preferably within the range of 375 to 420 ° C, and even more preferably within the range of 375 to 400 ° C.
  • the reaction temperature is in the range of 375 to 395 ° C., preferably in the range of 375 to 390 ° C., more preferably in the range of 375 to 385 ° C., and particularly preferably in the range of 375 to 380 ° C.
  • the reaction pressure is, for example, in the range of 20 to 50 MPa, preferably in the range of 21 to 45 MPa, more preferably in the range of 22 to 40 MPa, and still more preferably in the range of 22 to 35 MPa.
  • a batch type (batch type) or a semi-batch type (semi-batch type) can be used, but preferably a flow type such as a pressure resistant tube type or a tank type. It is preferable to use a continuous method using a reactor (flow reactor), particularly a continuous method using a tubular reactor.
  • a reactor flow reactor
  • FIG. 4 is a schematic configuration diagram showing an example of a flow reactor applicable to the second production method in the vanadium dioxide-containing particles (1b) according to Embodiment 1.
  • the flow-type reactor (100) is preheated with preheated water (102, also referred to as high-pressure raw material water) such as distilled water, deionized water, or pure water, and then stored.
  • preheated water 102, also referred to as high-pressure raw material water
  • a water supply path (105) for supplying water to be subcritical water or supercritical water from the preheating water tank (hot water supply source tank (deionized hot water supply tank)) and the second shell layer A (4A) were formed.
  • a raw material supply path (107) for supplying a high-pressure raw material liquid (101) containing vanadium dioxide particles is provided, and the high-pressure raw material liquid (101) is subjected to pretreatment by passing through a heater section (H). , Joins the water supply path (105).
  • the mixed liquid of the heated high-pressure raw material liquid (101) and the high-temperature high-pressure water (102) is a hydrophobic organic compound solution supplied from the hydrophobic organic compound supply path (106) in the shell forming part (M).
  • the third shell layer A (5A) made of a hydrophobic organic compound is formed on the second shell layer A (4A) of the vanadium dioxide particles under high temperature and high pressure.
  • the hydrophobic organic compound solution (103) is composed of a hydrophobic compound having the characteristics of the present invention and an organic solvent that dissolves the hydrophobic compound, as long as the organic solvent dissolves the hydrophobic compound.
  • an organic solvent that dissolves the hydrophobic compound, as long as the organic solvent dissolves the hydrophobic compound.
  • alcohols, ketones, esters, and aromatics are preferable.
  • MEK methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • EA methyl isobutyl ketone
  • BA butyl acetate
  • toluene xylene and the like.
  • a pressurizing means for pressurizing water to a subcritical pressure or a critical pressure or higher that is, a high pressure A pump (P) and heating means (H) for heating the high-pressure water or the like to a predetermined temperature equal to or higher than the subcritical temperature or higher than the critical temperature, that is, a heating furnace (heater) are sequentially provided.
  • the mixture obtained by mixing in the above-mentioned merging section is introduced into a reactor arranged in the isothermal zone of the shell forming section (M).
  • the reactor is covered with a molten salt bath jacket or the like, has a constant temperature zone, and is adjusted to have a predetermined reaction temperature.
  • the temperature can be monitored by, for example, a temperature sensor equipped with a thermocouple.
  • the generated core-shell type vanadium dioxide-containing particles (104) pass through the cooling part (C, water cooling jacket), the recovery part (G), the pressure regulating valve, for example, the back pressure valve (V), and vanadium dioxide. Move to the contained particle storage tank.
  • the core-shell type vanadium dioxide-containing particles (1b) formed up to the third shell layer A (5A) according to the production method of the present invention are usually cooled to room temperature after the reaction.
  • a method for separating the prepared vanadium dioxide-containing particles (1b) from the reaction mixture a known method may be used, or a physical method or a chemical method may be used. Since the surface of the vanadium dioxide-containing particles obtained by the present invention is modified with a hydrophobic organic compound, various physical properties can be imparted by the modifying group, and they are isolated by utilizing the properties of the modifying group. You can also.
  • the obtained vanadium dioxide-containing particles can be appropriately subjected to filtration treatment to remove agglomerates, and are further subjected to centrifugal treatment, decantation treatment, washing treatment with distilled water, pure water, and the like.
  • the metal oxide particles can be washed by using a dilute alkaline aqueous solution such as a dilute KOH aqueous solution, repeating the redispersion treatment and the centrifugal separation treatment, or performing ultrafiltration.
  • the metal oxide particles of the present invention thus obtained can be obtained in the form of a powder by drying by a known method, for example, freeze-drying.
  • Embodiment 2 of the vanadium dioxide-containing particles (1) of the present invention has vanadium dioxide particles in the core part (2), as shown in FIG. 2, and at least one layer of amorphous on the surface of the vanadium dioxide particles.
  • the first shell layer B (3B) containing the metal oxide and the second shell layer B (4B) containing the hydrophobic organic compound are arranged in this order.
  • compositions, additives, and manufacturing method of the vanadium dioxide particles constituting the core particles applied to the embodiment 2 of the vanadium dioxide-containing particles of the present invention are the same as those of the embodiment 1 described in detail above. Can be applied. Therefore, detailed description thereof is omitted here.
  • the first shell layer B constituting the vanadium dioxide-containing particles according to Embodiment 2 contains an amorphous metal oxide.
  • the amorphous metal oxide used for forming the first shell layer B according to Embodiment 2 is an amorphous metal oxide used for forming the second shell layer A of vanadium dioxide-containing particles according to Embodiment 1 described in detail above.
  • the compound similar to an oxide can be mentioned.
  • the formation method of the 1st shell layer B can also be formed by the method similar to the formation method of the 2nd shell layer A of the vanadium dioxide containing particle
  • a second shell layer B (4B) containing a hydrophobic organic compound is further formed on the first shell layer B (3B).
  • the hydrophobic organic compound used to form the second shell layer B (4B) according to Embodiment 2 constitutes the third shell layer A (5A) of the vanadium dioxide-containing particles of Embodiment 1 described in detail above. Examples thereof include the same compounds as the hydrophobic organic compound used in the above.
  • the formation method of 2nd shell layer B (4B) can also be formed by the method similar to the formation method of 3rd shell layer A (5A) of the vanadium dioxide containing particle
  • thermochromic vanadium dioxide-containing particles (Method for producing thermochromic vanadium dioxide-containing particles according to Embodiment 2)
  • grains which concern on Embodiment 2 the manufacturing method of the thermochromic vanadium dioxide containing particle
  • thermochromic film of the present invention is characterized by containing at least the thermochromic vanadium dioxide-containing particles of Embodiment 1 or Embodiment 2, and further preferably contains a hydrophobic binder as a binder resin.
  • thermochromic film referred to in the present invention is a film having a characteristic that its optical characteristics reversibly change according to environmental temperature changes.
  • thermochromic film The typical structural example of the thermochromic film of this invention is demonstrated with reference to figures.
  • FIG. 5 is an example of a basic configuration of the thermochromic film of the present invention, and is a schematic sectional view showing a configuration in which an optical functional layer is formed on a transparent substrate.
  • thermochromic film (11) shown in FIG. 5 has a configuration having an optical functional layer (13) on a transparent substrate (12).
  • the core-shell type thermochromic vanadium dioxide-containing particles of the present invention are present in a dispersed state in the hydrophobic binder (B1).
  • vanadium dioxide-containing particles primary particles (VO S ) in which vanadium dioxide-containing particles exist independently and aggregates (also referred to as aggregates) of two or more vanadium dioxide-containing particles are formed.
  • Secondary particles (VO M ) are present.
  • an aggregate of two or more vanadium dioxide-containing particles is collectively referred to as a secondary particle, but is also referred to as a secondary particle aggregate or a secondary aggregate particle as necessary.
  • the number average particle diameter of all the primary particles (VO S ) and secondary particles (VO M ) of the vanadium dioxide-containing particles is preferably 200 nm or less.
  • the average particle size of the vanadium dioxide-containing particles in the optical functional layer can be determined according to the following method.
  • the side surface of the optical functional layer (13) constituting the thermochromic film (11) is trimmed with a microtome to expose a cross section as shown in FIG.
  • the exposed cross section is photographed at a magnification of 10,000 to 100,000 times using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the particle diameters of all the vanadium dioxide-containing particles (primary particles and secondary particles) present in a certain region of the photographed cross section are measured.
  • the number of vanadium dioxide-containing particles to be measured is preferably in the range of 100 to 200.
  • the photographed particles include primary particles (VO S ) that are single particles and secondary particles (VO M ) that are aggregates of two or more particles, and contain vanadium dioxide.
  • the particle diameter of the primary particles (VO S ) of the particles is the diameter of each independent particle. If it is not spherical, the projected area of the particle is converted into a circle, and the diameter is taken as the particle diameter. On the other hand, for the secondary particles (VO M ) of vanadium dioxide-containing particles in which two or more particles are aggregated, the projected area of the entire aggregate is obtained, the projected area is converted into a circle, and the diameter Is the particle diameter.
  • thermochromic film of the present invention preferably has a near-infrared light shielding layer having a function of shielding at least part of the light wavelength range of 700 to 1000 nm in addition to the optical functional layer. It is.
  • thermochromic film of the present invention is a hybrid configuration in which the optical functional layer also functions as a resin base material.
  • FIG. 6 is a schematic sectional drawing which shows another example of the basic composition of the thermochromic film (11) of this invention.
  • the thermochromic film shown in FIG. 5 has a configuration in which the transparent substrate (12) and the optical functional layer (13) are independent, whereas the thermochromic film shown in FIG.
  • a hydrophobic binder (B2) is used as a polymer that has a hybrid optical functional layer (12 + 13) that is an embodiment of the above-described structure and constitutes a transparent substrate, and in the hydrophobic binder (B2), carbon dioxide is added.
  • a hybrid optical functional layer (12 + 13) having a material function is formed.
  • thermochromic film (11) shown in FIG. 7A to FIG. 7C is based on the structure shown in FIG. 5 described above, and on the transparent substrate (12), together with the optical functional layer (13), further shields against near infrared light. It is a thermochromic film (11) which has a layer (14), and is a schematic sectional drawing which shows the typical layer arrangement
  • thermochromic film (11) shown in FIG. 7A has an optical functional layer (13), a near-infrared light shielding layer (14), and a transparent substrate (12) laminated in this order from the light incident side (L). It is the composition which is.
  • thermochromic film (11) shown in FIG. 7B is an example in which the optical functional layer (13) according to the present invention is disposed between the transparent substrate (12) and the near infrared light shielding layer (14).
  • the thermochromic film (11) shown in FIG. 7C has a near-infrared light shielding layer (14) on the light incident side (L) of the transparent substrate (12), and the near-infrared light of the transparent substrate (12).
  • the optical functional layer (13) according to the present invention is disposed on the surface opposite to the surface on which the shielding layer (14) is provided.
  • thermochromic film of the present invention various functional layers may be provided as necessary in addition to the constituent layers described above.
  • the total thickness of the thermochromic film of the present invention is not particularly limited, but is in the range of 10 to 1500 ⁇ m, preferably in the range of 20 to 1000 ⁇ m, more preferably in the range of 30 to 500 ⁇ m, Particularly preferably, it is in the range of 40 to 300 ⁇ m.
  • the visible light transmittance measured by JIS R3106 is preferably 30% or more, more preferably 50% or more, and further preferably 60% or more. It is.
  • thermochromic film (11) of the present invention comprises a transparent substrate (12), an optical functional layer (13) containing vanadium dioxide-containing particles, a binder resin, and 700- A configuration having a near-infrared light shielding layer (14) having a function of shielding at least part of the light wavelength range of 1000 nm is preferable.
  • the optical functional layer which is a component of the thermochromic film of the present invention, a resin base material provided if necessary, and the near-infrared light shielding layer will be described.
  • the optical functional layer according to the present invention mainly contains the vanadium dioxide-containing particles of the present invention and a binder resin.
  • concentration of the vanadium dioxide-containing particles in the optical functional layer is not particularly limited, but is generally preferably in the range of 5 to 60% by mass, more preferably 5 to 40% by mass with respect to the total mass of the optical functional layer. And more preferably in the range of 5 to 30% by mass.
  • the primary particle number ratio of the vanadium dioxide-containing particles in the optical functional layer is preferably 30% by number or more of the total number of primary particles and secondary particles, and more preferably. Is 50% by number or more, and particularly preferably 70% by number or more. The ideal upper limit is 100% by number, but the practical maximum value is 95% by number or less.
  • the method for measuring the particle number ratio can be obtained by the same method as the method for measuring the average particle size of the vanadium dioxide-containing particles.
  • thermochromic film of the present invention a hydrophilic binder can be applied as a binder for holding the vanadium dioxide-containing particles according to the present invention.
  • the hydrophilic binder referred to in the present invention is defined as a resin having a dissolution amount of 1.0 g or more at a liquid temperature of 25 ° C. with respect to 100 g of water.
  • hydrophilic binder As the hydrophilic binder applicable to the present invention, it is preferable to apply a water-soluble polymer.
  • hydrophilic polymers applicable to the present invention include polyvinyl alcohol (abbreviation: PVA), polyethyleneimine, gelatins (for example, hydrophilic polymers represented by gelatin described in JP-A-2006-343391, etc.) ), Starch, guar gum, alginate, methyl cellulose, ethyl cellulose, hydroxyalkyl cellulose, carboxyalkyl cellulose, poly (meth) acrylamide, polyethyleneimine, polyethylene glycol, polyalkylene oxide, polyvinyl pyrrolidone (abbreviation: PVP), polyvinyl methyl ether, Carboxyvinyl polymer, poly (meth) acrylic acid, sodium poly (meth) acrylate, naphthalene sulfonic acid condensate, proteins such as albumin and casein, sodium alginate Dextrin,
  • thermochromic film of the present invention it is particularly preferable to apply a hydrophobic binder as a binder for the purpose of holding vanadium dioxide-containing particles.
  • the hydrophobic binder as used in the present invention refers to a resin having a dissolution amount of less than 1.0 g at a liquid temperature of 25 ° C. with respect to 100 g of water, and more preferably a resin having a dissolution amount of less than 0.5 g. More preferably, the resin has a dissolution amount of less than 0.25 g.
  • the hydrophobic binder applicable to the present invention is preferably a hydrophobic polymer or a resin polymerized in the curing process using a hydrophobic binder monomer.
  • hydrophobic polymer examples include olefin polymers such as polyethylene (abbreviation: PE), polypropylene (abbreviation: PP), ethylene-propylene copolymer, and poly (4-methyl-1-pentene).
  • PE polyethylene
  • PP polypropylene
  • ethylene-propylene copolymer examples include poly (4-methyl-1-pentene).
  • Acrylate copolymers such as vinyl chloride and chlorinated vinyl resins; polystyrene (abbreviation: PS), styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene- Styrenic polymers such as styrene block copolymers; Polyesters such as polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (PEN); Polyamides such as nylon 6, nylon 66, nylon 610; Polyacetal (PA); Polycarbonate (abbreviation: PC); Polyphenylene oxide; Polyphenylene sulfide; Polyetheretherketone; Polysulfone; Polyethersulfone; Polyoxybenzylene; Polyamideimide; ABS resin (acrylonitrile-butadiene blended with polybutadiene rubber and acrylic rubber) -Styrene resin
  • PS polysty
  • hydrophobic binder applicable to the present invention, a resin that is polymerized in a curing process using a monomer of a hydrophobic binder can be exemplified, and typical hydrophobic binder materials include those of active energy rays.
  • a compound that is cured by irradiation specifically, a radical polymerizable compound that is cured by a polymerization reaction of a radical active species and a cationic polymerizable compound that is cured by a cationic polymerization reaction of a cationic active species.
  • radical polymerizable compound examples include a compound having an ethylenically unsaturated bond capable of radical polymerization.
  • examples of the compound having an ethylenically unsaturated bond capable of radical polymerization include acrylic acid, methacrylic acid, itaconic acid, and crotonic acid.
  • Unsaturated carboxylic acids such as isocrotonic acid, maleic acid and their salts, esters, urethanes, amides and anhydrides, acrylonitrile, styrene, various unsaturated polyesters, unsaturated polyethers, unsaturated polyamides, unsaturated urethanes Radical polymerizable compounds such as Specifically, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, butoxyethyl acrylate, carbitol acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, bis (4-acryloxypolyethoxyphenyl) propane, neopentyl glycol Diacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol
  • cationic polymerizable compound various known cationic polymerizable monomers can be used.
  • cationic polymerizable monomers JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937, Examples thereof include epoxy compounds, vinyl ether compounds, oxetane compounds and the like exemplified in JP-A-2001-220526.
  • a photopolymerization initiator is appropriately selected from all known photopolymerization initiators published in “Applications and Markets of UV / EB Curing Technology” (CMC Publishing Co., Ltd., edited by Yoneho Tabata / edited by Radtech Research Association). Can be used.
  • an optical functional layer forming coating solution containing a solvent dispersion containing vanadium dioxide particles together with each constituent material is applied on a transparent substrate, for example, and then an active energy ray such as an ultraviolet ray or an electron beam is applied. Irradiate.
  • the composition constituting the optical functional layer thin film thus formed is rapidly polymerized and cured.
  • an ultraviolet LED when irradiating ultraviolet rays, for example, an ultraviolet LED, an ultraviolet laser, a mercury arc lamp, a xenon arc lamp, a low-pressure mercury lamp, a fluorescent lamp, a carbon arc lamp, a tungsten-halogen radiation lamp, and Sunlight can be used.
  • an electron beam it is usually cured with an electron beam having an energy of 300 eV or less, but it can also be cured instantaneously with an irradiation dose of 1 to 5 Mrad.
  • a solvent dispersion containing vanadium dioxide particles in a hydrophobic resin that is a constituent material of a transparent substrate After preparing a dope for film formation by adding and dissolving a solvent, a hybrid optical functional layer that also serves as a resin substrate is prepared by a solution casting method that has been used in the conventional film formation using the dope.
  • a forming method can also be preferably used.
  • hydrophobic binder examples include resin materials that are conventionally used in the formation of thermochromic films, such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • Polyester polyethylene (abbreviation: PE), polypropylene (abbreviation: PP), cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose Cellulose esters such as nitrates and derivatives thereof, polyvinylidene chloride, polyvinyl alcohol (abbreviation: PVA), polyethylene vinyl alcohol, syndiotactic polystyrene, polyester Carbonate (abbreviation: PC), norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon And cycloolefin resins such as polymethyl methacrylate (abbreviation: PMMA), acrylics
  • the solvent is not particularly limited, and examples thereof include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2- Trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2- Examples include propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, and the like.
  • a hybrid optical functional layer that also serves as a transparent substrate is formed by a solution casting method.
  • ⁇ Other additives for optical function layer> Various conventionally known additives can be applied to the optical functional layer according to the present invention as long as the effects of the present invention are not impaired.
  • Examples of applicable additives include ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, JP-A-62-261476, etc. No. 74192, JP-A-57-87989, JP-A-60-72785, JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc.
  • Anti-fading agents various anionic, cationic or nonionic surfactants, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61- Fluorescent brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate described in Japanese Patent No.
  • adjusters such as um, antifoaming agents, lubricants such as diethylene glycol, preservatives, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic Examples include various known additives such as particles, thickeners, lubricants, infrared absorbers, dyes, and pigments.
  • the transparent substrate applicable to the thermochromic film of the present invention is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. However, flexibility and production suitability (manufacturing process suitability) can be exemplified. From this point of view, a transparent resin film is preferable. “Transparent” in the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the thickness of the transparent substrate is preferably in the range of 30 to 200 ⁇ m, more preferably in the range of 30 to 100 ⁇ m, and still more preferably in the range of 35 to 70 ⁇ m. If the thickness of the transparent substrate is 30 ⁇ m or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 ⁇ m or less, the followability to the curved glass surface when bonding to the glass substrate is ensured. can do.
  • the transparent substrate applicable to the thermochromic film of the present invention is not particularly limited as long as it is transparent, but various resin films are preferably used.
  • polyolefin films for example, cycloolefin, polyethylene) , Polypropylene, etc.
  • polyester film eg, polyethylene terephthalate, polyethylene naphthalate, etc.
  • polyvinyl chloride e.g., polyvinyl chloride
  • triacetyl cellulose film e.g, cycloolefin film (abbreviation: COP)
  • polyester film eg, Polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN) and the like
  • triacetyl cellulose film abbreviation: TAC
  • a polyester film is preferable, and an unstretched polyester film stretched at least in one direction or a biaxially stretched polyester film can also be used. From the viewpoint of suppressing expansion, a stretched film is preferable, and a biaxially stretched polyester film is more preferable. In particular, when the laminated glass provided with the thermochromic film of the present invention is used as glass for automobiles, a stretched film is more preferable.
  • the transparent base material according to the present invention has a thermal shrinkage within a range of 0.1 to 3.0% at a temperature of 150 ° C. from the viewpoint of preventing generation of wrinkles of the thermochromic film and cracking of the optical functional layer. Preferably, it is in the range of 1.5 to 3.0%, more preferably 1.9 to 2.7%.
  • the transparent resin film is preferably provided with an undercoat layer by applying an undercoat layer coating solution inline on one or both sides during the film formation process.
  • undercoating during the film forming process is referred to as in-line undercoating.
  • thermochromic film of the present invention a configuration in which a near-infrared light shielding layer having a function of shielding at least a part in the light wavelength range of 700 to 1000 nm is provided in addition to the optical functional layer.
  • JP 2012-131130 A, JP 2012-139948 A, JP 2012-185342 A, JP 2013-080178 A for details of the near-infrared light shielding layer applicable to the present invention, for example, JP 2012-131130 A, JP 2012-139948 A, JP 2012-185342 A, JP 2013-080178 A. Reference can be made to the constituent elements and formation method of the near-infrared light shielding layer described in JP-A-2014-089347 and the like.
  • thermochromic film (Manufacturing method 1: Aqueous formation method)
  • the thermochromic vanadium dioxide-containing particles of the present invention and a hydrophilic binder are used, and an optical functional layer is formed by an aqueous wet coating method which is one of the aqueous forming methods. It is a manufacturing method.
  • Specific examples of the wet coating method include a roller coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419, US Pat. No. 2,761791, and the like. Examples thereof include a slide hopper coating method and an extrusion coating method.
  • thermochromic vanadium dioxide-containing particles of the present invention are mixed in an organic solvent to prepare a non-aqueous dispersion, and then a hydrophobic binder is further added, followed by coating and drying to form an optical functional layer. It is also preferable to form a thermochromic film.
  • thermochromic film by the wet coating method described above.
  • a specific production method is the same as the production method of the water-based thermochromic film.
  • thermochromic film As another method for producing a thermochromic film using an organic solvent, first, vanadium dioxide particles were dispersed without drying an aqueous dispersion obtained by dispersing vanadium dioxide-containing particles obtained by an aqueous synthesis method. An organic solvent is added to the aqueous dispersion, the vanadium dioxide-containing particles are moved from the aqueous phase to the organic phase, and the organic phase is separated and extracted. A method of producing a thermochromic film by mixing an organic phase with a hydrophobic binder, coating and drying to form an optical functional layer is also preferred. As a method for transferring the vanadium dioxide-containing particles from the aqueous phase to the organic phase, a general liquid separation operation is performed.
  • thermochromic film of this invention As a use of the thermochromic film of this invention, it can be set as the structure pasted on glass, The glass which bonded this film can be used for a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc. The glass bonded together can be used for other purposes.
  • the glass bonded with the thermochromic film is preferably used for construction or for vehicles, and can be used for automobile windshield, side glass, rear glass, roof glass, and the like.
  • the glass member to which the thermochromic film is bonded examples include inorganic glass and organic glass (for example, resin glazing).
  • examples of the inorganic glass include float plate glass, heat ray absorbing plate glass, polished plate glass, mold plate glass, netted plate glass, lined plate glass, and colored glass such as green glass.
  • the organic glass is a synthetic resin glass substituted for inorganic glass.
  • examples of the organic glass (resin glazing) include a polycarbonate plate and a poly (meth) acrylic resin plate.
  • the poly (meth) acrylic resin plate examples include a polymethyl (meth) acrylate plate.
  • thermochromic film 101 aqueous
  • aqueous Preparation of vanadium dioxide-containing particles 1
  • 0.833 g of ammonium vanadate (NH 4 VO 3 , manufactured by Wako Pure Chemical Industries, special grade) was mixed with 10 mL of pure water, and further hydrazine hydrate (N 2 H 4 ⁇ H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.).
  • a 5% by mass aqueous solution of (special grade) was slowly added dropwise to prepare a solution (A) having a pH value of 9.2 at 23 ° C.
  • the prepared solution (A) is placed in a commercially available autoclave for hydrothermal reaction treatment (HU-25 type, manufactured by Sanai Kagaku Co., which has a 25 mL volume Teflon (registered trademark) inner cylinder in a SUS body), and 100
  • An aqueous dispersion containing vanadium dioxide particles (abbreviation: VO 2 particles) (I) as core particles was prepared by performing a hydrothermal reaction treatment at 8 ° C. for 8 hours and subsequently at 270 ° C. for 24 hours.
  • aqueous dispersion containing the vanadium dioxide particles (I) 50 mL was added to 10 g of the aqueous dispersion containing the vanadium dioxide particles (I), the pH was adjusted to 11.0 with 28% aqueous ammonia, and tetraethoxysilane (abbreviation: abbreviated as: 1.5 g of TEOS) was added and maintained at 25 ° C. for 4 hours to form an amorphous metal oxide layer composed of SiO 2 corresponding to the second shell layer A on the surface of the vanadium dioxide particles (I).
  • the core-shell type vanadium dioxide-containing particles 1 were prepared, and then prepared as a dispersion.
  • the dispersion of the vanadium dioxide-containing particles 1 was adjusted to have a particle concentration of 3% by mass as the particle concentration.
  • thermochromic film 101 Dispersion of 3% by mass of vanadium dioxide-containing particles 1 128 parts by mass 3% by mass of boric acid aqueous solution 10 parts by mass 5% by mass of hydrophilic binder resin S1 aqueous solution (PVA105, manufactured by Kuraray Co., Ltd.) 60 parts by mass Formation)
  • the transparent base material which is a polyethylene terephthalate film (Toyobo A4300, double-sided easy-adhesion layer) having a thickness of 50 ⁇ m
  • the layer thickness after drying the prepared coating solution 1 for forming an optical functional layer using an extrusion coater. Is applied by wet coating under conditions of 1.5 ⁇ m, and then dried by blowing hot air at 110 ° C. for 2 minutes to form an optical functional layer, thereby producing a thermochromic film 101 having the configuration shown in FIG. did.
  • thermochromic film 102 aqueous
  • a thermochromic film 102 was produced in the same manner except that the vanadium dioxide-containing particles 2 prepared by the following method were used in place of the vanadium dioxide-containing particles 1.
  • TEOS tetraethoxysilane
  • an amorphous metal oxide layer composed of SiO 2 is formed as the second shell layer A on the first shell layer A of the vanadium dioxide particles (I), and the core-shell type vanadium dioxide-containing particles 2 was prepared.
  • grains 2 were disperse
  • thermochromic film 103 aqueous
  • grains 2 used for preparation of the said thermochromic film 102 except having changed the compound A14 into the compound A1 which has a hydroxyl group and an amino group as a formation material of the 1st shell layer A, it carries out similarly.
  • Vanadium dioxide-containing particles 3 were prepared.
  • thermochromic film 102 In producing the thermochromic film 102, a thermochromic film 103 was produced in the same manner except that the vanadium dioxide-containing particles 3 prepared above were used instead of the vanadium dioxide-containing particles 2.
  • thermochromic films 104-106 aqueous
  • vanadium dioxide-containing particles 3 for producing the thermochromic film 103 vanadium dioxide was similarly used except that the compound A1 was changed to the compound A2, the compound A4, and the compound A8, respectively, as the forming material of the first shell layer A.
  • Containing particles 4-6 were prepared.
  • Thermochromic films 104 to 106 were prepared in the same manner except that the above prepared vanadium dioxide-containing particles 4 to 6 were used in place of the vanadium dioxide containing particles 3 in the production of the thermochromic film 103.
  • thermochromic film 107 aqueous
  • a thermochromic film 107 was produced in the same manner except that the vanadium dioxide-containing particles 7 prepared by the following method were used in place of the vanadium dioxide-containing particles 3.
  • Second shell layer A Similarly to the preparation of the vanadium dioxide-containing particles 3, 50 mL of ethanol was added to 10 g of the dispersion containing vanadium dioxide particles formed up to the first shell layer A, and the pH was adjusted with 1 mol / L nitric acid (HNO 3 ).
  • the second shell layer composed of TiO 2 by adding titanium tetraisopropoxide (Ti [OCH (CH 3 ) 2 ] 4 ) under strong stirring and reacting at 80 ° C. for 6 hours. A was formed.
  • thermochromic film 108 aqueous
  • a thermochromic film 108 was produced in the same manner except that the vanadium dioxide-containing particles 8 prepared by the following method were used in place of the vanadium dioxide-containing particles 3.
  • a stirring blade was 7.85 m using a homomixer (Primix Co., Ltd., TK homomixer Mark II).
  • a dispersion of vanadium dioxide-containing particles 8 was prepared by rotating at a peripheral speed of / sec and stirring to disperse the particles to a particle concentration of 3% by mass.
  • thermochromic film 103 In producing the thermochromic film 103, a thermochromic film 109 was produced in the same manner except that the coating solution 9 for forming an optical functional layer having the following configuration was used.
  • thermochromic films 110 to 112 hydrophobic system
  • the compound A1 was changed to the compound A2, the compound A4, and the compound A8 as the forming material of the first shell layer A, respectively.
  • Thermochromic films 110 to 112 were produced in the same manner except that the prepared vanadium dioxide-containing particles 10 to 12 were used.
  • the vanadium dioxide-containing particles 13 are prepared using a flow reactor, which is a flow reactor shown in FIG. 4, according to the following method. did.
  • the vanadium dioxide-containing particles 3 were dispersed in purified water to prepare an aqueous slurry of 0.02 mol / L vanadium dioxide-containing particles 3.
  • a toluene solution (0.12 mol) of hexanoic acid as Compound B2 was prepared.
  • the flow rates of preheated water, vanadium dioxide-containing particles 3 slurry, and the toluene solution of compound B2 were 12 mL / min, 3 mL / min, and 3 mL / min, respectively.
  • the inside of the system was set to 30 MPa by a back pressure valve.
  • the cartridge heater was energized to heat the preheated water to a predetermined temperature.
  • the cooling water circulation device was turned on to start cooling. After confirming that the temperature of each part was stabilized, the pump which sent purified water was switched to the slurry of vanadium dioxide containing particle
  • the recovery unit line was returned to the opposite line, and heating of the electric furnace and the flexible heater was stopped. Thereafter, the liquid feed pump 2 was switched from an aqueous solution containing vanadium dioxide-containing particles 3 to purified water, and the reaction was terminated. After confirming that the temperature in the tube was 100 ° C. or lower, the back pressure valve was opened to return the pressure in the system to normal pressure. The cooling water circulation device was turned off and the cooling was stopped.
  • the product was transferred from the syringe-type collection container to a beaker, and the product was washed out of the container with 20 mL of toluene. Thereafter, the water phase and the toluene phase were separated, and the vanadium dioxide-containing particles 13 that were transferred to the toluene phase were adjusted to 3% by mass to prepare vanadium dioxide-containing particles 13.
  • thermochromic film 109 a thermochromic film 113 was produced in the same manner except that the vanadium dioxide-containing particles 13 prepared above were used instead of the vanadium dioxide-containing particles 9.
  • thermochromic film 114 Hydrophobic
  • acetonitrile is added and the original liquid is added.
  • the process of returning to the liquid volume was repeated 4 times, and the solvent was replaced with acetonitrile.
  • compound B3 hexamethyldisilazane, SZ-31, manufactured by Shin-Etsu Silicone
  • a third shell layer A composed of a hydrophobic organic compound was formed, and a solvent dispersion containing vanadium dioxide-containing particles 14 was prepared.
  • thermochromic film 113 a thermochromic film 114 was produced in the same manner except that the vanadium dioxide-containing particles 14 prepared above were used instead of the vanadium dioxide-containing particles 13.
  • thermochromic film 115 Hydrophobic
  • Vanadium dioxide-containing particles 15 Preparation of vanadium dioxide-containing particles 15
  • tungsten (W) was added as a transition temperature adjusting agent at the time of core particle preparation so that vanadium atoms were 99 atm% and tungsten (W) was 1 atm% to dope tungsten.
  • Vanadium dioxide-containing particles 15 were prepared in the same manner except that the core particles (II) were used.
  • thermochromic film Details of each additive used for producing each thermochromic film described above are as follows.
  • thermochromic film ⁇ Hydrophobic organic compound>
  • Compound B1 Hexyltriethoxysilane (trade name: KBE-3063, manufactured by Shin-Etsu Silicone)
  • Compound B2 hexanoic acid (caproic acid, CH 3 (CH 2 ) 4 COOH)
  • Compound B3 Hexamethyldisilazane (trade name; SZ-31 manufactured by Shin-Etsu Silicone)
  • ⁇ Binder resin> S1: Hydrophilic binder Kuraray Poval PVA105 (polyvinyl alcohol resin, Kuraray Co., Ltd.)
  • O1 Hydrophobic binder Byron 200 (Amorphous polyester resin, manufactured by Toyobo Co., Ltd.)
  • ⁇ Evaluation of thermochromic film> Next, each of the thermochromic films prepared above was subjected to the following evaluations.
  • thermochromic films prepared above at 25 ° C. and 80 ° C. (50% RH) are in the infrared region using a spectral transmittance meter V-770 manufactured by JASCO Corporation. Each transmittance at 1500 nm was measured, and the change rate of the spectral transmittance between temperatures was determined according to the following formula (1).
  • each thermochromic film was subjected to a forced deterioration treatment for 3 days in a high-temperature and high-humidity environment of 60 ° C. and 90% RH, and the rate of change in spectral transmittance between temperatures similar to the above was determined.
  • the reduction rate (%) of the rate of change before and after the forced deterioration treatment was determined by (2), and the storage stability was evaluated according to the following evaluation criteria. Even after storage in a high-temperature and high-humidity environment of 60 ° C. and 90% RH, it was determined that the durability was excellent if the reduction rate was small.
  • the rate of change (%) and rate of decrease (%) were determined by the following method.
  • the rate of change (%) [spectral transmittance lambda 1500 at / 25 ° C. (spectral transmittance lambda 1500 in the spectral transmittance lambda 1500 -80 ° C. at 25 ° C.)] ⁇ 100
  • Reduction rate (%) [1 ⁇ (change rate after forced deterioration processing) / (change rate before forced deterioration processing)] ⁇ 100 ⁇ : Reduction rate is less than 2.0% ⁇ : Reduction rate is 2.0% or more and less than 5.0% ⁇ : Reduction rate is 5.0% or more and less than 10.0% Yes x: Decrease rate is 10.0% or more [Evaluation of thermochromic response] Each thermochromic film was bonded to a glass substrate only on one side of a space of 20 cm ⁇ 20 cm ⁇ 20 cm closed with a vacuum heat insulating material, and arranged so that the inside became a thermochromic film.
  • thermometer is installed at a position 19 cm away from the glass surface on which the thermochromic film is bonded inside the heat insulation space, and a halogen lamp of 150 W from a position 10 cm away from the outside where the glass substrate on which the thermochromic film is bonded is disposed. Turned on. The time (second / ° C.) required for the temperature to rise by 1 ° C. after the halogen lamp was turned on was measured, and the thermochromic response was evaluated according to the following criteria.
  • thermochromic film was subjected to 1000 times of repeated temperature changes at 80 ° C. and ⁇ 20 ° C. (storage time: 10 minutes at each temperature) using a thermal shock apparatus TSA-103EL manufactured by Espec.
  • the change rate of the spectral transmittance before and after the temperature change treatment is measured according to the equation (1) by the same method as the evaluation of the storage stability, and then the reduction rate is calculated from the equation (2). Repeatedly evaluated the resistance. If the rate of decrease in the rate of change before and after 1000 iterations was small, it was determined that the repeat resistance was excellent.
  • Reduction rate is less than 2.0% ⁇ : Reduction rate is 2.0% or more and less than 5.0% ⁇ : Reduction rate is 5.0% or more and less than 10.0% Yes x: Decrease rate is 10.0% or more Table I shows the results obtained above.
  • thermochromic film of the present invention has high durability, excellent thermochromic responsiveness, and good repeatability compared to the comparative example. I understand.
  • thermochromic film 201 aqueous
  • NH 4 VO 3 ammonium vanadate
  • N 2 H 4 ⁇ H 2 O hydrazine hydrate
  • a 5% by mass aqueous solution of (special grade) was slowly added dropwise to prepare a solution (A) having a pH value of 9.2 at 23 ° C.
  • the prepared solution (A) is placed in a commercially available autoclave for hydrothermal reaction treatment (HU-25 type, manufactured by Sanai Kagaku Co., which has a 25 mL volume Teflon (registered trademark) inner cylinder in a SUS body), and 100 Hydrothermal reaction treatment was performed at 270 ° C. for 8 hours and then at 270 ° C. for 24 hours to prepare an aqueous dispersion containing vanadium dioxide particles (I) as core particles.
  • HU-25 type manufactured by Sanai Kagaku Co., which has a 25 mL volume Teflon (registered trademark) inner cylinder in a SUS body
  • TEOS tetraethoxysilane
  • thermochromic film 202 aqueous
  • a thermochromic film 202 was produced in the same manner except that the vanadium dioxide-containing particles 22 prepared by the following method were used in place of the vanadium dioxide-containing particles 21.
  • thermochromic film 203 aqueous
  • a thermochromic film 203 was produced in the same manner except that the vanadium dioxide-containing particles 23 prepared by the following method were used in place of the vanadium dioxide-containing particles 21.
  • Compound B1 hexyltriethoxysilane, KBE-3063, manufactured by Shin-Etsu Silicone
  • a hydrophobic organic compound and ethanol are added and reacted at 80 ° C. for 2 hours to form a hydrophobic property on the first shell layer B.
  • the 2nd shell layer B comprised from an organic compound was formed, and the vanadium dioxide containing particle
  • a stirring blade was 7.85 m using a homomixer (Primix Co., Ltd., TK homomixer Mark II).
  • a dispersion of vanadium dioxide-containing particles 23 was prepared by rotating at a peripheral speed of / sec and stirring to disperse the particles to a particle concentration of 3% by mass.
  • thermochromic film 204 aqueous
  • vanadium dioxide-containing particles 24 prepared by the following method were used in place of the vanadium dioxide-containing particles 23 used to produce the thermochromic film 203.
  • Compound B1 hexyltriethoxysilane, KBE-3063, manufactured by Shin-Etsu Silicone
  • a hydrophobic organic compound and ethanol are added and reacted at 80 ° C. for 2 hours to form a first shell layer made of TiO 2
  • the 2nd shell layer B comprised from a hydrophobic organic compound was formed, and the vanadium dioxide containing particle
  • a stirring blade was 7.85 m using a homomixer (Primix Co., Ltd., TK homomixer Mark II).
  • a dispersion of vanadium dioxide-containing particles 24 was prepared by rotating at a peripheral speed of / sec and stirring to disperse the particles to a particle concentration of 3% by mass.
  • amorphous metal oxide layer is formed, and then compound B1 (hexyltriethoxysilane, KBE-3063, manufactured by Shin-Etsu Silicone) and ethanol are added as a hydrophobic organic compound and reacted at 80 ° C. for 2 hours. Then, a second shell layer B composed of a hydrophobic organic compound was formed on the first shell layer B to prepare vanadium dioxide-containing particles 25. .
  • thermochromic film 203 In producing the thermochromic film 203, a thermochromic film 205 was produced in the same manner except that the coating solution for forming an optical functional layer having the following configuration was used.
  • TEOS tetraethoxysilane
  • the vanadium dioxide-containing particles 26 are prepared using the dispersion containing the vanadium dioxide particles on which the first shell layer B is formed, using the flow type reactor shown in FIG. 4 according to the following method. did.
  • the vanadium dioxide particles on which the first shell layer B was formed were dispersed in purified water to prepare a 0.02 mol / L vanadium dioxide particle water slurry.
  • a toluene solution (0.12 mol) of compound B2 (hexanoic acid) was prepared as a hydrophobic organic compound forming the second shell layer B.
  • the flow rates of the preheated water, the vanadium dioxide particle slurry, and the toluene solution of Compound B2 were 12 mL / min, 3 mL / min, and 3 mL / min, respectively.
  • the inside of the system was set to 30 MPa by a back pressure valve.
  • the cartridge heater was energized to heat the preheated water to a predetermined temperature.
  • the cooling water circulation device was turned on to start cooling. After confirming that the temperature of each part was stable, the pump that had sent purified water was switched to a vanadium dioxide particle slurry and a toluene solution of compound B2 and sent.
  • the recovery unit line was returned to the opposite line, and heating of the electric furnace and the flexible heater was stopped. Thereafter, the liquid feed pump was switched from an aqueous solution containing vanadium dioxide particles to purified water to complete the reaction. After confirming that the temperature in the tube was 100 ° C. or lower, the back pressure valve was opened to return the pressure in the system to normal pressure. The cooling water circulation device was turned off and the cooling was stopped.
  • the product was transferred from the syringe-type collection container to a beaker, and the product was washed out of the container with 20 mL of toluene. Thereafter, the aqueous phase and the toluene phase were separated, and the vanadium dioxide-containing particles 26 were prepared by adjusting the vanadium dioxide-containing particles transferred to the toluene phase to 3% by mass.
  • thermochromic film 205 a thermochromic film 206 was produced in the same manner except that the prepared vanadium dioxide-containing particles 26 were used instead of the vanadium dioxide-containing particles 25.
  • thermochromic film 205 In the production of the thermochromic film 205, a thermochromic film 207 was produced in the same manner except that the vanadium dioxide-containing particles 27 prepared above were used in place of the vanadium dioxide-containing particles 25.
  • thermochromic film 208 Hydrophobic
  • a thermochromic film 208 was produced in the same manner except that the vanadium dioxide-containing particles 28 prepared by the following method were used in place of the vanadium dioxide-containing particles 27.
  • thermochromic film Details of each additive used for producing the thermochromic film are as follows.
  • thermochromic film ⁇ Hydrophobic organic compound>
  • Compound B1 Hexyltriethoxysilane (trade name: KBE-3063, manufactured by Shin-Etsu Silicone)
  • Compound B2 hexanoic acid (caproic acid, CH 3 (CH 2 ) 4 COOH)
  • Compound B3 Hexamethyldisilazane (trade name; SZ-31 manufactured by Shin-Etsu Silicone)
  • ⁇ Binder resin> S1: Hydrophilic binder Kuraray Poval PVA105 (polyvinyl alcohol resin, Kuraray Co., Ltd.)
  • O1 Hydrophobic binder Byron 200 (Amorphous polyester resin, manufactured by Toyobo Co., Ltd.)
  • ⁇ Evaluation of thermochromic film> Next, for each of the thermochromic films prepared above, the storage stability and the repeated resistance were evaluated in the same manner as in the method described in Example 1, and the obtained results are shown in Table II.
  • thermochromic film of the present invention has high durability and good repeatability compared to the comparative example.
  • thermochromic vanadium dioxide-containing particles of the present invention have excellent storage stability, high thermochromic response and thermochromic repeatability, and the thermochromic film containing the thermochromic vanadium dioxide-containing particles is It can be used for automobiles, railway vehicles, aircraft, ships and buildings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention addresses the problem of providing: thermochromic vanadium dioxide-containing particles that have superior storage stability, high thermochromic responsiveness, and thermochromic repetitive durability; a production method therefor; a thermochromic film using said thermochromic vanadium dioxide-containing particles; and a production method therefor. The thermochromic vanadium dioxide-containing particles according to the present invention are each characterized by having a core-shell structure, wherein said core-shell structure has a vanadium dioxide particle in the core, and has, on the surface of the vanadium dioxide particle, (1) a configuration in which a first shell layer A which modifies said surface with an organic compound having at least a hydroxy group and a second shell layer B containing an amorphous metal oxide are formed in this order, or (2) a configuration in which a first shell layer B containing at least one layer of an amorphous metal oxide and a second shell layer B containing a hydrophobic organic compound are formed in this order.

Description

サーモクロミック性二酸化バナジウム含有粒子、その製造方法、サーモクロミックフィルム及びその製造方法Thermochromic vanadium dioxide-containing particles, method for producing the same, thermochromic film, and method for producing the same
 本発明は、サーモクロミック性二酸化バナジウム含有粒子及びその製造方法と、サーモクロミックフィルム及びその製造方法に関するものであり、より詳しくは、優れた保存性と、高いサーモクロミック応答性及びサーモクロミック繰り返し耐性を有するサーモクロミック性二酸化バナジウム含有粒子とその製造方法と、それを用いたサーモクロミックフィルムとその製造方法に関する。 The present invention relates to thermochromic vanadium dioxide-containing particles and a production method thereof, and a thermochromic film and a production method thereof. More specifically, the present invention relates to excellent storage stability, high thermochromic responsiveness and thermochromic repeat resistance. The present invention relates to thermochromic vanadium dioxide-containing particles having the same, a method for producing the same, a thermochromic film using the particles, and a method for producing the same.
 近年、車窓から入り込む太陽光の影響によって人肌で感じる熱さを遮り、高い断熱性又は遮熱性を備えたガラスやガラスに貼合するフィルムが市場に流通している。最近では、電気自動車等の普及に伴い、車内の冷房効率を高める観点から、ガラスに適用する近赤外光(熱線)遮蔽フィルムの開発が盛んに行われている。 In recent years, glass and films that are bonded to glass with high heat insulation or heat shielding properties that block the heat felt by human skin due to the influence of sunlight entering from the car window are on the market. Recently, with the widespread use of electric vehicles and the like, development of near-infrared light (heat ray) shielding films applied to glass has been actively conducted from the viewpoint of increasing the cooling efficiency in the vehicle.
 近赤外光遮蔽フィルムを車体や建物の窓ガラスに適用することにより、車内のエア・コンディショナー等の冷房設備への負荷を低減することができ、省エネルギー対策として有効な手段である。 By applying the near-infrared light shielding film to the body window or the window glass of the building, it is possible to reduce the load on the cooling equipment such as the air conditioner in the vehicle, which is an effective means for saving energy.
 このような近赤外線遮蔽フィルムとしては、赤外線吸収性物質としてITO(スズドープ酸化インジウム)などの導電体を含む光学フィルムが開示されている。また、特開2010-222233号公報には、赤外線反射層と赤外線吸収層とを有する機能性プラスチックフィルムを含む近赤外光遮蔽フィルムが開示されている。 As such a near-infrared shielding film, an optical film containing a conductor such as ITO (tin-doped indium oxide) as an infrared absorbing substance is disclosed. Japanese Patent Application Laid-Open No. 2010-222233 discloses a near-infrared light shielding film including a functional plastic film having an infrared reflection layer and an infrared absorption layer.
 一方、低屈折率層と高屈折率層とを交互に多数積層させた反射層積層体を有し、当該各屈折率層の層厚を調整することにより、近赤外光を選択的に反射する近赤外光遮蔽フィルムが、国際公開第2013/065679号で提案されている。 On the other hand, it has a reflective layer stack in which a large number of low refractive index layers and high refractive index layers are alternately stacked, and selectively reflects near infrared light by adjusting the thickness of each refractive index layer. A near infrared light shielding film is proposed in International Publication No. 2013/065679.
 このような構成よりなる近赤外光遮蔽フィルムは、太陽光の照度が高い赤道近傍の低緯度地帯では、その高い近赤外光遮蔽効果により、好ましく利用されている。しかしながら、中緯度~高緯度地帯の冬場においては、逆に、太陽光をできるだけ車内や室内に取り込みたい場合にも、一律に入射光線を遮蔽してしまうという問題がある。 The near-infrared light shielding film having such a structure is preferably used due to its high near-infrared light shielding effect in a low-latitude zone near the equator where the illuminance of sunlight is high. However, in winter in the mid-latitude to high-latitude zones, conversely, there is a problem that incident light is uniformly shielded even when it is desired to capture sunlight as much as possible in the vehicle or indoors.
 上記問題に対し、近赤外光遮蔽フィルムに対し、近赤外光の遮蔽や透過の光学的性質を温度により制御するサーモクロミック材料を適用する方法の検討がなされている。その代表な材料として、二酸化バナジウム(以下、「VO」とも記す。)が挙げられる。二酸化バナジウムは、68℃前後の温度領域で相転移を起こし、サーモクロミック性を示すことが知られている。 In order to solve the above-described problems, a method of applying a thermochromic material that controls the optical properties of near-infrared light shielding and transmission by temperature to the near-infrared light shielding film has been studied. A typical material is vanadium dioxide (hereinafter also referred to as “VO 2 ”). It is known that vanadium dioxide causes a phase transition in a temperature range of around 68 ° C. and exhibits thermochromic properties.
 すなわち、この二酸化バナジウムの特性を利用したサーモクロミックフィルムにより、高温になると熱の原因となる近赤外光を遮蔽し、低い温度では近赤外光を透過する特性を発現することが可能となる。これにより、夏場の暑い時は近赤外光を遮蔽して室内の温度上昇を抑制し、冬場の寒い時は、外部からの光エネルギーを取り込むことができるようになる。 That is, the thermochromic film utilizing the characteristics of vanadium dioxide can shield near infrared light that causes heat at a high temperature and transmit near infrared light at a low temperature. . As a result, when the summertime is hot, near-infrared light is shielded to suppress the temperature rise in the room, and when the wintertime is cold, external light energy can be taken in.
 しかしながら、上記サーモクロミック性を有する二酸化バナジウム粒子は、酸化されやすい性質を有するため、酸化反応に関与する水分子や酸素分子が、二酸化バナジウム粒子表面に接触して酸化反応が生じないように、粒子表面を特定の物質で被覆して、耐酸化性を向上させる方法が検討されている。 However, since the vanadium dioxide particles having thermochromic properties are easily oxidized, the particles prevent the water molecules and oxygen molecules involved in the oxidation reaction from coming into contact with the vanadium dioxide particle surface and causing the oxidation reaction. A method for improving the oxidation resistance by coating the surface with a specific substance has been studied.
 例えば、特許文献1には、他のアモルファス状金属酸化物で二酸化バナジウム粒子表面を被覆した二酸化バナジウム含有粒子が開示されている。特許文献1で記載されている方法では、確かに化学的な安定性は向上するが、本発明者が更に検討を進めた結果、温度変化によるサーモクロミック繰り返し再現性が不十分であることが判明した。これは、相転移に伴う二酸化バナジウム粒子の体積変化が、その表面を被覆しているアモルファス状金属酸化物層へも影響を及ぼし、二酸化バナジウム含有粒子として構造破壊が生じ、その結果、サーモクロミック性が低下したと推定される。 For example, Patent Document 1 discloses vanadium dioxide-containing particles in which the surface of vanadium dioxide particles is coated with another amorphous metal oxide. Although the chemical stability is certainly improved by the method described in Patent Document 1, as a result of further investigation by the present inventors, it was found that thermochromic reproducibility due to temperature change is insufficient. did. This is because the volume change of vanadium dioxide particles accompanying the phase transition also affects the amorphous metal oxide layer covering the surface, resulting in structural destruction as vanadium dioxide-containing particles, resulting in thermochromic properties. Is estimated to have decreased.
 また、特許文献2では、有機修飾の長鎖分子材料を二酸化バナジウム粒子の表面に連結する方法が開示されている。 Patent Document 2 discloses a method of linking an organically modified long chain molecular material to the surface of vanadium dioxide particles.
 詳しくは、特許文献2には、有機修飾の長鎖分子を二酸化バナジウム粒子表面に連結した上で、アモルファス状金属酸化物の被覆を行った二酸化バナジウム含有粒子が開示されている。しかしながら、特許文献2で記載されている方法では、サーモクロミック繰り返し再現性が劣化することが判明した。これは、二酸化バナジウム粒子表面に有機修飾の長鎖分子が化学的に連結しているため、相転移に伴う二酸化バナジウム含有粒子の体積変化により、内部で不均一化が生じ、その結果、サーモクロミック繰り返し再現性をさらに劣化させてしまっていると推測した。 Specifically, Patent Document 2 discloses vanadium dioxide-containing particles obtained by connecting organically modified long-chain molecules to the vanadium dioxide particle surface and then coating with an amorphous metal oxide. However, it has been found that the method described in Patent Document 2 deteriorates the thermochromic repeatability. This is because the organically modified long-chain molecules are chemically linked to the surface of the vanadium dioxide particles, resulting in internal heterogeneity due to the volume change of the vanadium dioxide-containing particles that accompanies the phase transition. It was speculated that the repeatability was further deteriorated.
 これら提案されている各方法では、確かに化学的な安定性は向上するが、本発明者が更に検討を進めた結果、同じ相転移温度であっても赤外線透過率の変化を伴うサーモクロミック応答性が遅くなることが判明した。これらは、微小な二酸化バナジウム粒子の表面に、他のアモルファス状金属酸化物や有機修飾の長鎖分子材料を化学的に連結させることにより、二酸化バナジウム粒子の熱による構造相転移に大きな影響を与え、その変化速度が遅くなり、遮熱効果を発現するまでに時間を要する結果になり、サーモクロミック応答性が低下したものと推測される。 Although each of these proposed methods certainly improves the chemical stability, as a result of further studies by the present inventors, a thermochromic response accompanied by a change in infrared transmittance even at the same phase transition temperature. It was found that sex became slow. These have a significant effect on the structural phase transition of vanadium dioxide particles caused by heat by chemically linking the surface of the minute vanadium dioxide particles with other amorphous metal oxides and organically modified long-chain molecular materials. The rate of change is slow, and it takes time to develop the heat shielding effect, and it is presumed that the thermochromic response is lowered.
 従って、酸化等に対する耐性(保存性)を備え、かつサーモクロミック応答性やサーモクロミック繰り返し再現性に対し優れた特性を有する二酸化バナジウム含有粒子と、それを用いたサーモクロミックフィルムの開発が切望されている。 Therefore, the development of vanadium dioxide-containing particles that have resistance to oxidation (preservation) and have excellent properties for thermochromic responsiveness and thermochromic repeatability and thermochromic films using the same is desired. Yes.
国際公開第2015/161313号International Publication No. 2015/161313 特表2015-513508号公報Special table 2015-513508 gazette
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、優れた保存性と、高いサーモクロミック応答性及びサーモクロミック繰り返し再現性を有するサーモクロミック性二酸化バナジウム含有粒子とその製造方法と、それを用いたサーモクロミックフィルムとその製造方法を提供することである。 The present invention has been made in view of the above-mentioned problems and circumstances, and the solution is to provide thermochromic vanadium dioxide-containing particles having excellent storage stability, high thermochromic responsiveness and thermochromic repeatability, and It is providing a manufacturing method, a thermochromic film using the same, and its manufacturing method.
 本発明者は、上記課題を解決すべく上記問題の原因等について検討した結果、コア・シェル構造を有するサーモクロミック性二酸化バナジウム含有粒子であって、
 1)コア・シェル構造として、コア部に二酸化バナジウム粒子を有し、その表面に形成するシェル構造として、コア部表面を修飾する少なくともヒドロキシ基を有する有機化合物からなる第1シェル層Aと、アモルファス状金属酸化物を含有する第2シェル層Aとをこの順で形成されている積層構造(コア・シェル構造1)であることを特徴とするサーモクロミック性二酸化バナジウム含有粒子(以下、実施態様1ともいう。)、
 又は2)コア・シェル構造として、コア部に二酸化バナジウム粒子を有し、その表面に形成するシェル構造として、コア部表面上に、少なくとも1層のアモルファス状金属酸化物を含有する第1シェル層Bと疎水性有機化合物を含有する第2シェル層Bとをこの順で形成されている積層構造(コア・シェル構造2)であることを特徴とするサーモクロミック性二酸化バナジウム含有粒子(以下、実施態様2ともいう。)により、
 優れた保存性と、高いサーモクロミック応答性及びサーモクロミック繰り返し再現性を有するサーモクロミック性二酸化バナジウム含有粒子を実現することができることを見いだし、本発明に至った。
As a result of examining the cause of the above problems to solve the above problems, the present inventor is a thermochromic vanadium dioxide-containing particle having a core-shell structure,
1) A core-shell structure having vanadium dioxide particles in the core part, and a shell structure formed on the surface of the first shell layer A made of an organic compound having at least a hydroxy group that modifies the core part surface; Thermochromic vanadium dioxide-containing particles (hereinafter referred to as Embodiment 1), which has a laminated structure (core-shell structure 1) formed in this order with a second shell layer A containing a metal oxide Also called).
Or 2) As the core-shell structure, the first shell layer having vanadium dioxide particles in the core portion and containing at least one amorphous metal oxide on the core portion surface as the shell structure formed on the surface thereof Thermochromic vanadium dioxide-containing particles (hereinafter referred to as “implementation”) having a laminated structure (core-shell structure 2) in which B and the second shell layer B containing a hydrophobic organic compound are formed in this order. (Also referred to as aspect 2)
It has been found that thermochromic vanadium dioxide-containing particles having excellent storage stability, high thermochromic response and thermochromic repeatability can be realized, and the present invention has been achieved.
 すなわち、本発明の上記課題は、下記の手段により解決される。 That is, the above-mentioned problem of the present invention is solved by the following means.
 1.コア・シェル構造を有するサーモクロミック性二酸化バナジウム含有粒子であって、前記コア・シェル構造が、下記コア・シェル構造1又はコア・シェル構造2であることを特徴とするサーモクロミック性二酸化バナジウム含有粒子。 1. Thermochromic vanadium dioxide-containing particles having a core-shell structure, wherein the core-shell structure is the following core-shell structure 1 or core-shell structure 2 .
 コア・シェル構造1:コア部に二酸化バナジウム粒子を有し、かつ、当該二酸化バナジウム粒子の表面を修飾する少なくともヒドロキシ基を有する有機化合物からなる第1シェル層Aとアモルファス状金属酸化物を含有する第2シェル層Aとをこの順で有する多層構造。 Core-shell structure 1: contains a first shell layer A made of an organic compound having at least a hydroxy group, which has vanadium dioxide particles in the core part and modifies the surface of the vanadium dioxide particles, and an amorphous metal oxide. A multilayer structure having the second shell layer A in this order.
 コア・シェル構造2:コア部に二酸化バナジウム粒子を有し、かつ、当該二酸化バナジウム粒子の表面上に、少なくとも1層のアモルファス状金属酸化物を含有する第1シェル層Bと、疎水性有機化合物を含有する第2シェル層Bとをこの順で有する多層構造。 Core-shell structure 2: first shell layer B having vanadium dioxide particles in the core portion and containing at least one amorphous metal oxide on the surface of the vanadium dioxide particles, and a hydrophobic organic compound A multilayer structure having a second shell layer B containing
 2.前記コア・シェル構造1を形成する前記第2シェル層A、又は前記コア・シェル構造2を形成する前記第1シェル層Bが含有するアモルファス状金属酸化物が、酸化珪素、酸化チタン、酸化亜鉛、酸化ハフニウム、酸化セリウム及び酸化モリブデンから選ばれる少なくとも1種であることを特徴とする第1項に記載のサーモクロミック性二酸化バナジウム含有粒子。 2. The amorphous metal oxide contained in the second shell layer A forming the core-shell structure 1 or the first shell layer B forming the core-shell structure 2 is silicon oxide, titanium oxide, zinc oxide. 2. The thermochromic vanadium dioxide-containing particles according to item 1, which are at least one selected from hafnium oxide, cerium oxide, and molybdenum oxide.
 3.前記コア・シェル構造1を形成する第1シェル層Aが含有する有機化合物が、ヒドロキシ基と共に、アミノ基又は窒素含有ヘテロ環基を有することを特徴とする第1項又は第2項に記載のサーモクロミック性二酸化バナジウム含有粒子。 3. 3. The organic compound contained in the first shell layer A forming the core-shell structure 1 has an amino group or a nitrogen-containing heterocyclic group together with a hydroxy group. Thermochromic vanadium dioxide-containing particles.
 4.前記コア・シェル構造1を形成する第2シェル層Aの表面上に、更に疎水性有機化合物を含有する第3シェル層Aを有することを特徴とする第1項から第3項までのいずれか一項に記載のサーモクロミック性二酸化バナジウム含有粒子。 4. Any one of Items 1 to 3, further comprising a third shell layer A containing a hydrophobic organic compound on the surface of the second shell layer A forming the core-shell structure 1. The thermochromic vanadium dioxide-containing particles according to one item.
 5.前記コア・シェル構造1を形成する第3シェル層Aが含有する疎水性有機化合物が、疎水性アルキル基又は疎水性アリール基と、シラザン、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1種の基とを有する化合物であることを特徴とする第4項に記載のサーモクロミック性二酸化バナジウム含有粒子。 5. The hydrophobic organic compound contained in the third shell layer A forming the core-shell structure 1 is at least one selected from a hydrophobic alkyl group or a hydrophobic aryl group, silazane, silicon alkoxide, alcohol, aldehyde, and carboxylic acid. The thermochromic vanadium dioxide-containing particles according to item 4, wherein the thermochromic vanadium dioxide-containing particles are compounds having a seed group.
 6.前記コア・シェル構造2を形成する前記第2シェル層Bが含有する疎水性有機化合物が、疎水性アルキル基又は疎水性アリール基と、シラザン、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1種の基とを有する化合物であることを特徴とする第1項又は第2項に記載のサーモクロミック性二酸化バナジウム含有粒子。 6. The hydrophobic organic compound contained in the second shell layer B forming the core-shell structure 2 is at least selected from a hydrophobic alkyl group or a hydrophobic aryl group, silazane, silicon alkoxide, alcohol, aldehyde and carboxylic acid. 3. The thermochromic vanadium dioxide-containing particles according to item 1 or 2, which are compounds having one kind of group.
 7.更に、相転移温度の調整作用を有する元素を含む化合物を含有することを特徴とする第1項から第6項までのいずれか一項に記載のサーモクロミック性二酸化バナジウム含有粒子。 7. The thermochromic vanadium dioxide-containing particles according to any one of items 1 to 6, further comprising a compound containing an element having an effect of adjusting a phase transition temperature.
 8.第1項から第5項までのいずれか一項に記載のサーモクロミック性二酸化バナジウム含有粒子を製造するサーモクロミック性二酸化バナジウム含有粒子の製造方法であって、
 第1シェル層Aの形成工程として、コア粒子として二酸化バナジウム粒子を含有する水分散液に、少なくともヒドロキシ基を有する有機化合物を添加・分散してシェル層を形成する工程と、
 第2シェル層Aの形成工程として、アモルファス状金属酸化物形成前駆体とアルカリとアルコールを添加してアモルファス状金属酸化物を有するシェル層を形成する工程と、
を有することを特徴とするサーモクロミック性二酸化バナジウム含有粒子の製造方法。
8). A method for producing thermochromic vanadium dioxide-containing particles, which produces the thermochromic vanadium dioxide-containing particles according to any one of items 1 to 5,
As a forming step of the first shell layer A, a step of forming a shell layer by adding and dispersing an organic compound having at least a hydroxy group to an aqueous dispersion containing vanadium dioxide particles as core particles;
As a step of forming the second shell layer A, a step of forming an amorphous metal oxide forming precursor, an alkali and an alcohol to form a shell layer having an amorphous metal oxide,
A process for producing thermochromic vanadium dioxide-containing particles, characterized by comprising:
 9.第4項又は第5項に記載のサーモクロミック性二酸化バナジウム含有粒子を製造するサーモクロミック性二酸化バナジウム含有粒子の製造方法であって、
 第1シェル層Aの形成工程として、コア粒子として二酸化バナジウム粒子を含有する水分散液に、少なくともヒドロキシ基を有する有機化合物を添加・分散して第1シェル層Aを形成する工程と、
 第2シェル層Aの形成工程として、アモルファス状金属酸化物形成前駆体とアルカリとアルコールを添加してアモルファス状金属酸化物を有する第2シェル層Aを形成する工程とを有し、
 かつ、第3シェル層Aの形成工程として、下記工程(3-1)又は(3-2)のいずれかの工程を有することを特徴とするサーモクロミック性二酸化バナジウム含有粒子の製造方法。
9. A method for producing thermochromic vanadium dioxide-containing particles for producing the thermochromic vanadium dioxide-containing particles according to item 4 or 5,
As a step of forming the first shell layer A, a step of forming the first shell layer A by adding and dispersing an organic compound having at least a hydroxy group in an aqueous dispersion containing vanadium dioxide particles as core particles;
The step of forming the second shell layer A includes the step of forming the second shell layer A having an amorphous metal oxide by adding an amorphous metal oxide forming precursor, alkali and alcohol,
The method for producing thermochromic vanadium dioxide-containing particles is characterized in that the step of forming the third shell layer A includes any one of the following steps (3-1) and (3-2).
 工程(3-1):第2シェル層Aを形成した二酸化バナジウム粒子を含有する水分散液の水媒体を、限外濾過によりヒドロキ基を含有しない有機溶媒に置換し、次いで、シラザン基を有する疎水性有機化合物で表面修飾して第3シェル層Aを形成する工程、
 工程(3-2):亜臨界状態にある高温高圧水の存在下でシリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で処理する、又は、亜臨界状態にある高温高圧水の存在下で前処理した後、超臨界状態にある高温高圧水の存在下で、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で表面修飾して第3シェル層Aを形成する工程。
Step (3-1): The aqueous medium of the aqueous dispersion containing the vanadium dioxide particles forming the second shell layer A is replaced with an organic solvent containing no hydroxy group by ultrafiltration, and then has a silazane group. Forming a third shell layer A by surface modification with a hydrophobic organic compound;
Step (3-2): treatment with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid in the presence of high-temperature high-pressure water in a subcritical state, or a subcritical state A hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid in the presence of high-temperature high-pressure water in a supercritical state after pretreatment in the presence of high-temperature high-pressure water in A step of surface modification to form the third shell layer A.
 10.第1項、第2項又は第6項に記載のサーモクロミック性二酸化バナジウム含有粒子を製造するサーモクロミック性二酸化バナジウム含有粒子の製造方法であって、
 第1シェル層Bの形成工程として、コア粒子として二酸化バナジウム粒子を含有する水分散液に、アモルファス状金属酸化物形成前駆体とアルカリとアルコールを添加してアモルファス状金属酸化物を有する第1シェル層Bを形成する工程とを有し、
 かつ、第2シェル層Bの形成工程として、下記工程(2-1)又は(2-2)のいずれかの工程を有することを特徴とするサーモクロミック性二酸化バナジウム含有粒子の製造方法。
10. A method for producing thermochromic vanadium dioxide-containing particles for producing the thermochromic vanadium dioxide-containing particles according to item 1, item 2 or item 6,
As a forming step of the first shell layer B, a first shell having an amorphous metal oxide by adding an amorphous metal oxide forming precursor, an alkali and an alcohol to an aqueous dispersion containing vanadium dioxide particles as core particles. Forming a layer B,
The method for producing thermochromic vanadium dioxide-containing particles is characterized in that the step of forming the second shell layer B includes one of the following steps (2-1) and (2-2).
 工程(2-1):第1シェル層Bを形成した二酸化バナジウム粒子を含有する水分散液の水媒体を、限外濾過によりヒドロキシ基を含有しない有機溶媒に置換し、次いで、シラザン基を有する疎水性有機化合物で表面修飾して第2シェル層Bを形成する工程、
 工程(2-2):亜臨界状態にある高温高圧水の存在下でシリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で処理する、又は、亜臨界状態にある高温高圧水の存在下で前処理した後、超臨界状態にある高温高圧水の存在下で、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で表面修飾して第2シェル層Bを形成する工程。
Step (2-1): The aqueous medium of the aqueous dispersion containing vanadium dioxide particles forming the first shell layer B is replaced with an organic solvent not containing a hydroxy group by ultrafiltration, and then has a silazane group. Forming a second shell layer B by surface modification with a hydrophobic organic compound;
Step (2-2): treatment with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid in the presence of high-temperature high-pressure water in a subcritical state, or a subcritical state A hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid in the presence of high-temperature high-pressure water in a supercritical state after pretreatment in the presence of high-temperature high-pressure water in A step of surface modification to form the second shell layer B.
 11.第1項から第7項までのいずれか一項に記載のサーモクロミック性二酸化バナジウム含有粒子を含有することを特徴とするサーモクロミックフィルム。 11. A thermochromic film comprising the thermochromic vanadium dioxide-containing particles according to any one of items 1 to 7.
 12.更に疎水性バインダーを含有することを特徴とする第11項に記載のサーモクロミックフィルム。 12. The thermochromic film according to item 11, further comprising a hydrophobic binder.
 13.サーモクロミック性二酸化バナジウム含有粒子を含有するサーモクロミックフィルムの製造方法であって、
 第8項から第10項までのいずれか一項に記載のサーモクロミック性二酸化バナジウム含有粒子の製造方法により二酸化バナジウム含有粒子を製造し、さらに当該二酸化バナジウム含有粒子と、少なくとも疎水性バインダーとを混合して、塗布・乾燥することにより製造することを特徴とするサーモクロミックフィルムの製造方法。
13. A method for producing a thermochromic film containing thermochromic vanadium dioxide-containing particles,
A vanadium dioxide-containing particle is produced by the method for producing a thermochromic vanadium dioxide-containing particle according to any one of items 8 to 10, and the vanadium dioxide-containing particle is mixed with at least a hydrophobic binder. And the manufacturing method of the thermochromic film characterized by manufacturing by apply | coating and drying.
 本発明の上記手段により、優れた保存性と、高いサーモクロミック応答性及びサーモクロミック繰り返し耐性を有するサーモクロミック性二酸化バナジウム含有粒子とその製造方法と、それを用いたサーモクロミックフィルムとその製造方法を提供することができる。 By the above means of the present invention, a thermochromic vanadium dioxide-containing particle having excellent storage stability, high thermochromic responsiveness and thermochromic repeat resistance, a production method thereof, a thermochromic film using the same, and a production method thereof Can be provided.
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明のサーモクロミック特性を有する二酸化バナジウム(VO)含有粒子においては、第1の実施態様であるコア部を二酸化バナジウム粒子で構成し、そのコア粒子表面を、イオン結合的にヒドロキシ基を有する有機化合物で修飾して第1シェル層Aを形成した後、アモルファス状金属酸化物を含む第2シェル層Aで被覆する構成のコア・シェル構造1により、サーモクロミック応答性が早く、保存安定性も確保されたサーモクロミック性二酸化バナジウム(VO)含有粒子を得ることができた。 In the vanadium dioxide (VO 2 ) -containing particles having the thermochromic characteristics of the present invention, the core portion according to the first embodiment is composed of vanadium dioxide particles, and the surface of the core particles has a hydroxy group in an ionic bond. After the first shell layer A is formed by modification with an organic compound, the core-shell structure 1 is configured so as to be covered with the second shell layer A containing an amorphous metal oxide. Thermochromic vanadium dioxide (VO 2 ) -containing particles were also obtained.
 前述のとおり、サーモクロミック性を有する二酸化バナジウム粒子は、酸化されやすい性質を有するため、酸化反応に関与する水分子や酸素分子から、二酸化バナジウム粒子表面を保護する必要が有り、本願発明では、第1のステップとして、ヒドロキシ基を有する有機化合物により酸化を受けやすい二酸化バナジウム粒子を内包する形態で修飾して第1シェル層Aを形成する。次いで、その上に、ガスバリアー性に優れた特性を有するアモルファス状金属酸化物により第2シェル層Aを形成することにより、保存安定性とサーモクロミック応答性の両立を図ることができる。 As described above, since vanadium dioxide particles having thermochromic properties are easily oxidized, it is necessary to protect the surface of vanadium dioxide particles from water molecules and oxygen molecules involved in the oxidation reaction. As a first step, the first shell layer A is formed by modifying the organic compound having a hydroxy group so as to include vanadium dioxide particles that are easily oxidized. Subsequently, by forming the second shell layer A with an amorphous metal oxide having characteristics excellent in gas barrier properties, it is possible to achieve both storage stability and thermochromic response.
 本発明でいうサーモクロミック応答性とは、下記の方法で求めることができる特性である。断熱空間の1面をガラスで構成し、該ガラス面から断熱空間内の10mmの距離に温度計を配置し、外部から一定のエネルギーで太陽光または類似の光エネルギーを照射し、温度センサーの温度が1℃上昇するのに要する時間と定義する。従って、この時間が長い程サーモクロミック応答性に優れており、赤外光透過率を早期に低減させるために断熱空間内の温度上昇を遅くできる特性を有していると判断することができる。 The thermochromic responsiveness as used in the present invention is a characteristic that can be obtained by the following method. One surface of the heat insulation space is made of glass, a thermometer is arranged at a distance of 10 mm from the glass surface in the heat insulation space, and sunlight or similar light energy is irradiated from the outside with a constant energy, and the temperature of the temperature sensor Is defined as the time required for the temperature to rise 1 ° C. Therefore, it can be determined that the longer this time is, the better the thermochromic response is, and the property that the temperature rise in the heat insulation space can be delayed in order to reduce the infrared light transmittance early.
 本発明の第1の実施態様であるサーモクロミック性二酸化バナジウム含有粒子においては、更に好ましくは、上記形態のサーモクロミック性二酸化バナジウム含有粒子に対し、アモルファス状金属酸化物を含む第2シェル層A上に、疎水性有機化合物を化学的に結合して第3シェル層Aを形成することにより、サーモクロミック特性の繰り返し再現性を更に向上させることができる。これは、相転移に伴うサーモクロミック性二酸化バナジウム(VO)含有粒子の体積変化は、アモルファス状金属酸化物を有する第2シェル層Aへも影響するが、最外部に疎水性有機化合物を結合させる第3シェル層を形成することにより、第3シェル層Aがキャッピング層となり、粒子表面構造を均質化して、多数回の体積変化を受けても、粒子表面起因の構造破壊耐性を向上させることができ、その結果、サーモクロミック特性の繰り返し再現性が向上したものと推測している。 In the thermochromic vanadium dioxide-containing particles according to the first embodiment of the present invention, more preferably, the thermochromic vanadium dioxide-containing particles having the above-described form are formed on the second shell layer A containing an amorphous metal oxide. Further, the reproducibility of thermochromic characteristics can be further improved by chemically bonding a hydrophobic organic compound to form the third shell layer A. This is because the volume change of thermochromic vanadium dioxide (VO 2 ) -containing particles accompanying the phase transition affects the second shell layer A having an amorphous metal oxide, but a hydrophobic organic compound is bound to the outermost part. By forming the third shell layer to be formed, the third shell layer A becomes a capping layer, the particle surface structure is homogenized, and the structure fracture resistance due to the particle surface is improved even when subjected to many volume changes. As a result, it is speculated that the reproducibility of thermochromic characteristics has been improved.
 また、本発明のサーモクロミック特性を有する二酸化バナジウム(VO)含有粒子においては、第2の実施態様として、酸化されやすい性質を有するサーモクロミック性を有する二酸化バナジウム粒子の表面を、アモルファス状金属酸化物で構成する第1シェル層Bで被覆し、さらに、疎水性有機化合物から構成される第2シェル層Bで被覆する構成であるコア・シェル構造2とすることにより、優れた保存安定性を達成するとともに、サーモクロミック繰り返し再現性が向上することを見出した。 In addition, in the vanadium dioxide (VO 2 ) -containing particles having thermochromic properties of the present invention, as a second embodiment, the surface of the vanadium dioxide particles having thermochromic properties having the property of being easily oxidized is treated with an amorphous metal oxide. By providing the core-shell structure 2 that is coated with the first shell layer B composed of a product and further coated with the second shell layer B composed of a hydrophobic organic compound, excellent storage stability is achieved. It has been found that thermochromic repeatability is improved with the achievement.
 通常、相転移に伴う二酸化バナジウム(VO)含有粒子の体積変化は、アモルファス状金属酸化物を有する第1シェル層Bへも影響するが、最外部に疎水性有機化合物を結合させる第2シェル層Bを形成することにより、第2シェル層Bがキャッピング層となり、二酸化バナジウム粒子の表面構造を均質化して、多数回の体積変化を受けても、粒子表面起因の構造破壊耐性が向上させることができ、その結果、様々な温湿度変化を受けたのちでも、サーモクロミック特性の変動が少なくなり、優れたサーモクロミック特性の繰り返し耐性を実現することができたものと推測している。 Usually, the volume change of the vanadium dioxide (VO 2 ) -containing particles accompanying the phase transition also affects the first shell layer B having the amorphous metal oxide, but the second shell that binds the hydrophobic organic compound to the outermost part. By forming the layer B, the second shell layer B becomes a capping layer, the surface structure of the vanadium dioxide particles is homogenized, and the structure fracture resistance due to the particle surface is improved even when subjected to many volume changes. As a result, it is estimated that even after being subjected to various temperature and humidity changes, fluctuations in the thermochromic characteristics are reduced, and excellent repeatability of the thermochromic characteristics can be realized.
本発明のコア・シェル型のサーモクロミック性二酸化バナジウム含有粒子の第1の実施態様(コア・シェル構造1)の一例を示す概略断面図Schematic sectional view showing an example of the first embodiment (core-shell structure 1) of the core-shell type thermochromic vanadium dioxide-containing particles of the present invention 本発明のコア・シェル型のサーモクロミック性二酸化バナジウム含有粒子の第1の実施態様(コア・シェル構造1)の他の一例を示す概略断面図(第1の実施態様)Schematic sectional view showing another example of the first embodiment (core-shell structure 1) of the core-shell type thermochromic vanadium dioxide-containing particles of the present invention (first embodiment) 本発明のコア・シェル型のサーモクロミック性二酸化バナジウム含有粒子の第2の実施態様(コア・シェル構造2)の一例を示す概略断面図Schematic sectional view showing an example of the second embodiment (core-shell structure 2) of the core-shell type thermochromic vanadium dioxide-containing particles of the present invention サーモクロミック性二酸化バナジウム含有粒子の製造に用いる溶媒置換処理装置(限外濾過装置)の一例を示す概略フロー図Schematic flow chart showing an example of a solvent substitution treatment device (ultrafiltration device) used for production of thermochromic vanadium dioxide-containing particles 本発明のサーモクロミック性二酸化バナジウム含有粒子の製造に適用可能なフロー型リアクターの一例を示す概略構成図Schematic configuration diagram showing an example of a flow reactor applicable to the production of thermochromic vanadium dioxide-containing particles of the present invention 本発明のサーモクロミックフィルムの基本的な構成の一例を示す概略断面図Schematic sectional view showing an example of the basic configuration of the thermochromic film of the present invention 本発明のサーモクロミックフィルムの基本的な構成の他の一例を示す概略断面図Schematic sectional view showing another example of the basic configuration of the thermochromic film of the present invention 近赤外光遮蔽層を有する本発明のサーモクロミックフィルムの層配置の一例を示す概略断面図Schematic sectional view showing an example of the layer arrangement of the thermochromic film of the present invention having a near infrared light shielding layer 近赤外光遮蔽層を有する本発明のサーモクロミックフィルムの層配置の他の一例を示す概略断面図Schematic sectional view showing another example of the layer arrangement of the thermochromic film of the present invention having a near infrared light shielding layer 近赤外光遮蔽層を有する本発明のサーモクロミックフィルムの層配置の他の一例を示す概略断面図Schematic sectional view showing another example of the layer arrangement of the thermochromic film of the present invention having a near infrared light shielding layer
 本発明のサーモクロミック性二酸化バナジウム含有粒子は、コア・シェル構造を有し、前記コア・シェル構造が、下記コア・シェル構造1又はコア・シェル構造2であることを特徴とする。 The thermochromic vanadium dioxide-containing particles of the present invention have a core-shell structure, and the core-shell structure is the following core-shell structure 1 or core-shell structure 2.
 コア・シェル構造1:コア部に二酸化バナジウム粒子を有し、かつ、当該二酸化バナジウム粒子の表面を修飾する少なくともヒドロキシ基を有する有機化合物からなる第1シェル層Aとアモルファス状金属酸化物を含有する第2シェル層Aとをこの順で有する多層構造(実施態様1)。 Core-shell structure 1: contains a first shell layer A made of an organic compound having at least a hydroxy group, which has vanadium dioxide particles in the core part and modifies the surface of the vanadium dioxide particles, and an amorphous metal oxide. A multilayer structure having a second shell layer A in this order (Embodiment 1).
 コア・シェル構造2:コア部に二酸化バナジウム粒子を有し、かつ、当該二酸化バナジウム粒子の表面上に、少なくとも1層のアモルファス状金属酸化物を含有する第1シェル層Bと、疎水性有機化合物を含有する第2シェル層Bとをこの順で有する多層構造(実施態様2)。 Core-shell structure 2: first shell layer B having vanadium dioxide particles in the core portion and containing at least one amorphous metal oxide on the surface of the vanadium dioxide particles, and a hydrophobic organic compound A multilayer structure having a second shell layer B containing s in this order (Embodiment 2).
 この特徴は、各請求項に係る発明に共通する又は対応する技術的特徴である。 This feature is a technical feature common to or corresponding to the claimed invention.
 本発明の実施態様1のサーモクロミック性二酸化バナジウム含有粒子は、上記コア・シェル構造1であることを一つの特徴とする。 One feature of the thermochromic vanadium dioxide-containing particles according to Embodiment 1 of the present invention is the core-shell structure 1 described above.
 本発明の実施態様1においては、本発明の目的とする効果をより発現できる観点から、第2シェル層Aを形成するアモルファス状金属酸化物として、酸化珪素、酸化チタン、酸化亜鉛、酸化ハフニウム、酸化セリウム及び酸化モリブデンから選ばれる少なくとも1種とすることが、ゾルゲル反応で形成でき、高温の焼成工程を用いなくても安定してアモルファス状金属酸化物を形成することができる点で好ましい。 In Embodiment 1 of the present invention, silicon oxide, titanium oxide, zinc oxide, hafnium oxide, as an amorphous metal oxide that forms the second shell layer A, from the viewpoint of more manifesting the intended effect of the present invention. It is preferable to use at least one selected from cerium oxide and molybdenum oxide in that an amorphous metal oxide can be stably formed without using a high-temperature firing step, by a sol-gel reaction.
 また、本発明の実施態様1のサーモクロミックフィルムにおいては、第1シェル層Aが、ヒドロキシ基と共に、アミノ基又は窒素含有ヘテロ環基等の吸着基を有する有機化合物を適用することが、二酸化バナジウム粒子表面への吸着性能が高くなり、同時に存在するヒドロキシ基は、その上に形成する第2シェル層Aを構成するアモルファス状金属酸化物と結合させるために機能する。このような構成とすることにより、保存安定性及びサーモクロミック応答性を更に向上させることができる。 Moreover, in the thermochromic film of Embodiment 1 of this invention, it is vanadium dioxide that the 1st shell layer A applies the organic compound which has adsorption groups, such as an amino group or a nitrogen-containing heterocyclic group, with a hydroxyl group. Adsorption performance to the particle surface is enhanced, and the hydroxy groups present simultaneously function to bind to the amorphous metal oxide constituting the second shell layer A formed thereon. By setting it as such a structure, storage stability and thermochromic responsiveness can further be improved.
 また、本発明の実施態様1のサーモクロミックフィルムにおいては、第2シェル層Aの表面上に、更に疎水性有機化合物を含有する第3シェル層Aを形成することにより、前述のとおり、第3シェル層Aがキャッピング層となり、粒子の表面構造を均質化して、環境変化等により多数回の体積変化を受けても、粒子表面起因の構造破壊耐性を向上させることができ、サーモクロミック特性の繰り返し再現性を向上させることができる。 In the thermochromic film of Embodiment 1 of the present invention, the third shell layer A further containing a hydrophobic organic compound is formed on the surface of the second shell layer A, as described above. The shell layer A becomes a capping layer, homogenizing the surface structure of the particles, and even if subjected to volume changes due to environmental changes, etc., it can improve the resistance to structural destruction caused by the particle surface, and repeat the thermochromic properties Reproducibility can be improved.
 また、本発明の実施態様1のサーモクロミックフィルムにおいては、第3シェル層Aが含有する疎水性有機化合物として、疎水性アルキル基又は疎水性アリール基と、シラザン、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1種の基とを有する化合物を選択することが、よりサーモクロミック特性の繰り返し再現性を向上させることができる点で好ましい。 In the thermochromic film of Embodiment 1 of the present invention, the hydrophobic organic compound contained in the third shell layer A includes a hydrophobic alkyl group or a hydrophobic aryl group, silazane, silicon alkoxide, alcohol, aldehyde, and carboxyl. It is preferable to select a compound having at least one group selected from acids in that the reproducibility of thermochromic properties can be improved.
 また、本発明の実施態様1のサーモクロミックフィルムにおいては、相転移温度の調整作用を有する元素を含む化合物を含有することが、相転移温度を調整して最適化することで、夏場の冷房設備への負荷と冬場の暖房設備への負荷の双方を減少させてより省エネルギー対策をすることができる点からより好ましい。 Moreover, in the thermochromic film of Embodiment 1 of this invention, it contains the compound containing the element which has an adjustment | control effect | action of a phase transition temperature. It is more preferable from the point that it is possible to reduce both the load on the heater and the load on the heating equipment in the winter and to take more energy saving measures.
 また、本発明の実施態様1のサーモクロミックフィルムにおいては、上記記載のサーモクロミック性二酸化バナジウム含有粒子を含むとともに、疎水性バインダーを含有することが、二酸化バナジウム粒子との相溶性を高め、ヘイズが低く、サーモクロミック応答性をより向上させることができる点から好ましい。 Moreover, in the thermochromic film of Embodiment 1 of this invention, while containing the said thermochromic vanadium dioxide containing particle | grains and containing a hydrophobic binder, compatibility with a vanadium dioxide particle | grain is improved, and a haze is carried out. It is preferable because it is low and the thermochromic responsiveness can be further improved.
 また、本発明の実施態様1であるコア粒子/第1シェル層A/第2シェル層Aから構成されるサーモクロミック性二酸化バナジウム含有粒子の製造方法においては、第1シェル層Aの形成工程として、コア粒子として二酸化バナジウム粒子を含有する水分散液に、少なくともヒドロキシ基を有する有機化合物を添加・分散して第1シェル層Aを形成する工程と、第2シェル層Aの形成工程とし、アモルファス状金属酸化物形成前駆体とアルカリとアルコールを添加してアモルファス状金属酸化物を有する第2シェル層Aを形成する工程とを有することを特徴とする。 Moreover, in the manufacturing method of the thermochromic vanadium dioxide containing particle | grains comprised from the core particle / 1st shell layer A / 2nd shell layer A which is Embodiment 1 of this invention, as a formation process of the 1st shell layer A The first shell layer A and the second shell layer A are formed by adding and dispersing an organic compound having at least a hydroxy group in an aqueous dispersion containing vanadium dioxide particles as core particles. And a step of forming a second shell layer A having an amorphous metal oxide by adding a metal-like metal oxide forming precursor, an alkali and an alcohol.
 また、本発明の実施態様1の他の構成である、コア粒子/第1シェル層A/第2シェル層A/第3シェル層Aから構成されるサーモクロミック性二酸化バナジウム含有粒子の製造方法においては、第1シェル層Aの形成工程として、コア粒子として二酸化バナジウム粒子を含有する水分散液に、少なくともヒドロキシ基を有する有機化合物を添加・分散して第1シェル層Aを形成する工程と、第2シェル層Aの形成工程として、アモルファス状金属酸化物形成前駆体とアルカリとアルコールを添加してアモルファス状金属酸化物を有する第2シェル層Aを形成する工程とを有し、かつ、第3シェル層Aの形成工程として、第2シェル層Aを形成した二酸化バナジウム粒子を含有する水分散液の水媒体を、限外濾過によりヒドロキ基を含有しない有機溶媒に置換し、次いで、シラザン基を有する疎水性有機化合物で表面修飾して第3シェル層Aを形成する工程、又は亜臨界状態にある高温高圧水の存在下でシリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で処理する、又は、亜臨界状態にある高温高圧水の存在下で前処理した後、超臨界状態にある高温高圧水の存在下で、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で表面修飾して第3シェル層Aを形成する工程を有することを特徴とし、本発明の目的効果を発揮することができる二酸化バナジウム含有粒子を製造することができる。 In the method for producing thermochromic vanadium dioxide-containing particles composed of core particles / first shell layer A / second shell layer A / third shell layer A, which is another configuration of Embodiment 1 of the present invention. Is a step of forming the first shell layer A by adding and dispersing an organic compound having at least a hydroxy group in an aqueous dispersion containing vanadium dioxide particles as core particles, as a step of forming the first shell layer A; A step of forming the second shell layer A includes a step of forming an amorphous metal oxide forming precursor, an alkali and an alcohol to form the second shell layer A having an amorphous metal oxide, and As the formation process of the three shell layer A, the aqueous medium of the aqueous dispersion containing the vanadium dioxide particles forming the second shell layer A contains a hydroxy group by ultrafiltration. Or a surface modification with a hydrophobic organic compound having a silazane group to form the third shell layer A, or a silicon alkoxide, an alcohol, in the presence of high-temperature high-pressure water in a subcritical state, Presence of high-temperature high-pressure water in a supercritical state after treatment with a hydrophobic organic compound having at least one group selected from aldehydes and carboxylic acids, or pretreatment in the presence of high-temperature high-pressure water in a subcritical state And forming a third shell layer A by surface modification with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid. Vanadium dioxide-containing particles that can exhibit the effect can be produced.
 また、本発明の実施態様2のサーモクロミック性二酸化バナジウム含有粒子は、当該コア・シェル構造が、前記コア・シェル構造2であることを一つの特徴とする。 Further, the thermochromic vanadium dioxide-containing particles according to Embodiment 2 of the present invention are characterized in that the core / shell structure is the core / shell structure 2.
 本発明の実施態様2のサーモクロミック性二酸化バナジウム含有粒子においては、本発明の目的とする効果をより発現できる観点から、第1シェル層Bを形成するアモルファス状金属酸化物として、酸化珪素、酸化チタン、酸化亜鉛、酸化ハフニウム、酸化セリウム及び酸化モリブデンから選ばれる少なくとも1種とすることが、ゾルゲル反応で形成でき、高温の焼成工程を用いなくても安定してアモルファス状金属酸化物を形成することができる点で好ましい。 In the thermochromic vanadium dioxide-containing particles according to Embodiment 2 of the present invention, silicon oxide, oxidation is used as the amorphous metal oxide for forming the first shell layer B from the viewpoint of more manifesting the intended effect of the present invention. At least one selected from titanium, zinc oxide, hafnium oxide, cerium oxide, and molybdenum oxide can be formed by a sol-gel reaction, and an amorphous metal oxide can be stably formed without using a high-temperature baking step. It is preferable in that it can be performed.
 また、本発明の実施態様2のサーモクロミック性二酸化バナジウム含有粒子においては、第2シェル層Bが含有する疎水性有機化合物として、疎水性アルキル基又は疎水性アリール基と、シラザン、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1種の基とを有する化合物を選択することが、より優れたサーモクロミック特性の繰り返し耐性を向上させることができる点で好ましい。 Further, in the thermochromic vanadium dioxide-containing particles of Embodiment 2 of the present invention, as the hydrophobic organic compound contained in the second shell layer B, a hydrophobic alkyl group or a hydrophobic aryl group, silazane, silicon alkoxide, alcohol It is preferable to select a compound having at least one group selected from aldehydes and carboxylic acids from the viewpoint of improving the repeated resistance to thermochromic properties.
 また、本発明の実施態様2のサーモクロミック性二酸化バナジウム含有粒子においては、相転移温度の調整作用を有する元素を含む化合物を含有することが、相転移温度を調節して最適化することで、夏場の冷房設備への負荷と冬場の暖房設備への負荷の双方を減少させてより省エネルギー対策をすることができる点からより好ましい。 Further, in the thermochromic vanadium dioxide-containing particles of Embodiment 2 of the present invention, by containing a compound containing an element having a phase transition temperature adjusting action, by adjusting and optimizing the phase transition temperature, It is more preferable because it can reduce energy consumption by reducing both the load on the cooling facility in summer and the load on the heating facility in winter.
 また、本発明の実施態様2におけるサーモクロミック性二酸化バナジウム含有粒子の製造方法においては、第1シェル層Bの形成工程として、コア粒子である二酸化バナジウム粒子を含有する水分散液に、アモルファス状金属酸化物形成前駆体とアルカリとアルコールを添加してアモルファス状金属酸化物を有する第1シェル層Bを形成する工程を有し、かつ、第2シェル層Bの形成工程として、第1シェル層Bを形成した二酸化バナジウム粒子を含有する水分散液の水媒体を、限外濾過によりヒドロキシ基を含有しない有機溶媒に置換し、次いで、シラザン基を有する疎水性有機化合物で表面修飾して第2シェル層Bを形成する工程(2-1)、又は亜臨界状態にある高温高圧水の存在下でシリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で処理する、又は、亜臨界状態にある高温高圧水の存在下で前処理した後、超臨界状態にある高温高圧水の存在下で、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で表面修飾して第2シェル層Bを形成する工程(2-2)のいずれかの工程を有することを特徴とし、本発明の目的効果を発揮することができる二酸化バナジウム含有粒子を製造することができる。 Moreover, in the manufacturing method of the thermochromic vanadium dioxide containing particle | grains in Embodiment 2 of this invention, as a formation process of 1st shell layer B, an amorphous metal is added to the aqueous dispersion containing the vanadium dioxide particle | grains which are core particles. A step of forming a first shell layer B having an amorphous metal oxide by adding an oxide-forming precursor, an alkali and an alcohol, and as a step of forming the second shell layer B, the first shell layer B The aqueous medium of the aqueous dispersion containing vanadium dioxide particles formed with an organic solvent was replaced with an organic solvent not containing a hydroxy group by ultrafiltration, and then surface-modified with a hydrophobic organic compound having a silazane group to form a second shell Step (2-1) for forming layer B, or silicon alkoxide, alcohol, aldehyde in the presence of high-temperature high-pressure water in a subcritical state And a pretreatment in the presence of high-temperature high-pressure water in a subcritical state after treatment with a hydrophobic organic compound having at least one group selected from carboxylic acid and in the presence of high-temperature high-pressure water in a supercritical state And the step (2-2) of forming the second shell layer B by surface modification with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid. Thus, it is possible to produce vanadium dioxide-containing particles capable of exhibiting the object effects of the present invention.
 また、本発明のサーモクロミックフィルムにおいては、上記実施態様1又は実施態様2に係る二酸化バナジウム含有粒子を含有するとともに、疎水性バインダーを含有することが、二酸化バナジウム粒子との相溶性を高め、ヘイズやサーモクロミック繰り返し耐性をより向上させることができる点から好ましい。 Moreover, in the thermochromic film of this invention, while containing the vanadium dioxide containing particle | grains which concern on the said Embodiment 1 or Embodiment 2, containing a hydrophobic binder raises compatibility with a vanadium dioxide particle, and a haze. And the thermochromic repeat resistance can be further improved.
 本発明においては、二酸化バナジウム含有粒子を構成する粒子を「二酸化バナジウム粒子」と称し、その二酸化バナジウム粒子の表面にシェル層を形成し、コア・シェル粒子とした構成を「サーモクロミック性二酸化バナジウム含有粒子」と称する。なお、以下の説明において、サーモクロミック性二酸化バナジウム含有粒子を、単に二酸化バナジウム含有粒子、あるいは本発明の二酸化バナジウム含有粒子ということもある。 In the present invention, the particles constituting the vanadium dioxide-containing particles are referred to as “vanadium dioxide particles”, and a structure in which a shell layer is formed on the surface of the vanadium dioxide particles to form the core-shell particles is “thermochromic vanadium dioxide-containing particles”. Referred to as “particles”. In the following description, the thermochromic vanadium dioxide-containing particles may be simply referred to as vanadium dioxide-containing particles or the vanadium dioxide-containing particles of the present invention.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本発明iにおいて示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In addition, “˜” shown in the present invention i is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《サーモクロミック性二酸化バナジウム含有粒子》
 本発明の実施態様1のサーモクロミック性二酸化バナジウム含有粒子は、コア・シェル構造を有し、コア部に二酸化バナジウム粒子を有し、当該二酸化バナジウム粒子の表面を修飾する少なくともヒドロキシ基を有する有機化合物からなる第1シェル層Aと、アモルファス状金属酸化物を含有する第2シェル層Aと、をこの順で有することを特徴とする。
<Thermochromic vanadium dioxide-containing particles>
The thermochromic vanadium dioxide-containing particles according to Embodiment 1 of the present invention have an organic compound having at least a hydroxy group that has a core-shell structure, has vanadium dioxide particles in the core, and modifies the surface of the vanadium dioxide particles. It has the 1st shell layer A which consists of, and the 2nd shell layer A containing an amorphous metal oxide in this order, It is characterized by the above-mentioned.
 また、本発明の実施態様2のサーモクロミック性二酸化バナジウム含有粒子は、コア・シェル構造を有し、コア部に二酸化バナジウム粒子を有し、そのコア部表面上に、アモルファス状金属酸化物を含有する第1シェル層Bと、疎水性有機化合物を含有する第2シェル層Bと、をこの順で有することを特徴とする。 Further, the thermochromic vanadium dioxide-containing particles of Embodiment 2 of the present invention have a core-shell structure, have vanadium dioxide particles in the core part, and contain an amorphous metal oxide on the surface of the core part. The first shell layer B and the second shell layer B containing a hydrophobic organic compound are arranged in this order.
 以下、本発明の実施態様1及び実施態様2のサーモクロミック性二酸化バナジウム含有粒子の構造、サーモクロミック性二酸化バナジウム含有粒子の調製に用いる材料及び製造方法の詳細について説明する。 Hereinafter, the structure of the thermochromic vanadium dioxide-containing particles according to Embodiment 1 and Embodiment 2 of the present invention, details of materials used for the preparation of the thermochromic vanadium dioxide-containing particles and the manufacturing method will be described.
 [二酸化バナジウム含有粒子の構造]
 〔実施態様1の二酸化バナジウム含有粒子の構造〕
 本発明の二酸化バナジウム含有粒子の実施態様1は、コア部に二酸化バナジウム粒子を有し、当該二酸化バナジウム粒子の表面を修飾する少なくともヒドロキシ基を有する有機化合物からなる第1シェル層Aと、アモルファス状金属酸化物を含有する第2シェル層Aをこの順で有する多層構造であり、更に好ましい構成としては、第2シェル層Aの表面に、疎水性有機化合物を含有する第3シェル層Aを有する構成である。
[Structure of vanadium dioxide-containing particles]
[Structure of Vanadium Dioxide-Containing Particles of Embodiment 1]
Embodiment 1 of the vanadium dioxide-containing particles of the present invention includes a first shell layer A made of an organic compound having vanadium dioxide particles in the core and at least a hydroxy group that modifies the surface of the vanadium dioxide particles, and an amorphous state. The multilayer structure has the second shell layer A containing the metal oxide in this order. As a more preferable structure, the surface of the second shell layer A has the third shell layer A containing the hydrophobic organic compound. It is a configuration.
 図1A及び図1Bは、本発明の実施態様1であるコア・シェル構造1のサーモクロミック性二酸化バナジウム含有粒子の構造の一例を示す概略断面図である。 1A and 1B are schematic cross-sectional views showing an example of the structure of thermochromic vanadium dioxide-containing particles having a core-shell structure 1 which is Embodiment 1 of the present invention.
 図1Aは、本発明の実施態様1のコア・シェル構造1の二酸化バナジウム含有粒子(1a)の粒子構成を示しており、二酸化バナジウム含有粒子(1a)は、コア粒子(2)を二酸化バナジウム粒子で構成し、その外周部に少なくともヒドロキシ基を有する有機化合物により第1シェル層A(3A)を形成し、更に最外部に、アモルファス状金属酸化物を含有する第2シェル層A(4A)が形成されている構成である。 FIG. 1A shows the particle structure of vanadium dioxide-containing particles (1a) having a core-shell structure 1 according to Embodiment 1 of the present invention, where the vanadium dioxide-containing particles (1a) are vanadium dioxide particles. The first shell layer A (3A) is formed of an organic compound having at least a hydroxy group on the outer periphery thereof, and the second shell layer A (4A) containing an amorphous metal oxide is formed on the outermost part. It is the structure formed.
 図1Bは、本発明の実施態様1の他の構成のコア・シェル構成1の二酸化バナジウム含有粒子(1b)を示しており、図1Aで説明した構成の二酸化バナジウム含有粒子(1a)の第2シェル層A(4A)の表面に、更に、疎水性有機化合物を含有する第3シェル層A(5A)を形成した構成を示している。 FIG. 1B shows a vanadium dioxide-containing particle (1b) having a core / shell configuration 1 according to another configuration of Embodiment 1 of the present invention, and the second of the vanadium dioxide-containing particles (1a) having the configuration described in FIG. 1A. A configuration in which a third shell layer A (5A) containing a hydrophobic organic compound is further formed on the surface of the shell layer A (4A) is shown.
 〔実施態様2の二酸化バナジウム含有粒子の構造〕
 本発明の実施態様2に係る二酸化バナジウム含有粒子のコア・シェル構造2は、コア部に二酸化バナジウム粒子を有し、当該二酸化バナジウム粒子の表面上に、アモルファス状金属酸化物を含有する第1シェル層Bを有し、更に第1シェル層B上に疎水性有機化合物を含有する第2シェル層Bを有する構成である。
[Structure of Vanadium Dioxide-Containing Particles of Embodiment 2]
  The core-shell structure 2 of vanadium dioxide-containing particles according to Embodiment 2 of the present invention has a first shell containing vanadium dioxide particles in the core part and containing an amorphous metal oxide on the surface of the vanadium dioxide particles. The layer B has a second shell layer B containing a hydrophobic organic compound on the first shell layer B.
 図2は、本発明のサーモクロミック性二酸化バナジウム含有粒子で実施態様2に係るコア・シェル構造2の粒子構成の一例を示す概略断面図である。 FIG. 2 is a schematic cross-sectional view showing an example of the particle configuration of the core-shell structure 2 according to Embodiment 2 with the thermochromic vanadium dioxide-containing particles of the present invention.
 図2は、本発明の実施態様2であるコア・シェル構成2の二酸化バナジウム含有粒子(1)の断面構造を示しており、二酸化バナジウム含有粒子(1)は、コア粒子(2)を二酸化バナジウム粒子で構成し、その外周部にアモルファス状金属酸化物を含有する第1シェル層B(3B)が形成され、更に、第1シェル層B(3B)の表面が、疎水性有機化合物を含有する第2シェル層B(4B)で被覆されている構成を示している。 FIG. 2 shows a cross-sectional structure of a vanadium dioxide-containing particle (1) having a core / shell structure 2, which is Embodiment 2 of the present invention, and the vanadium dioxide-containing particle (1) comprises vanadium dioxide as a core particle (2). 1st shell layer B (3B) which consists of particle | grains and contains an amorphous metal oxide in the outer peripheral part is formed, and also the surface of 1st shell layer B (3B) contains a hydrophobic organic compound The structure covered with the second shell layer B (4B) is shown.
 [二酸化バナジウム含有粒子の構成材料]
 〔コア・シェル構造1の二酸化バナジウム含有粒子の構成材料〕
 (二酸化バナジウム粒子:コア粒子)
 本発明の実施態様1において、コア・シェル構造1である二酸化バナジウム含有粒子のコア粒子を構成する二酸化バナジウム粒子としては、その結晶形として特に制限はないが、サーモクロミック性(自動調光性)を効率よく発現させることができる観点から、ルチル型の二酸化バナジウム粒子(VO粒子)を用いることが、特に好ましい。
[Constituent material of vanadium dioxide-containing particles]
[Constituent material of vanadium dioxide-containing particles of core / shell structure 1]
(Vanadium dioxide particles: Core particles)
In Embodiment 1 of the present invention, the vanadium dioxide particles constituting the core particles of the vanadium dioxide-containing particles having the core-shell structure 1 are not particularly limited as their crystal forms, but are thermochromic (automatic dimming). It is particularly preferable to use rutile-type vanadium dioxide particles (VO 2 particles) from the viewpoint that can be efficiently expressed.
 ルチル型のVO粒子は、転移温度以下では、単斜晶系(monoclinic)の構造を有するため、M相とも呼ばれる。本発明に係る二酸化バナジウム粒子においては、目的を損なわない範囲で、A相、又はB相などの他の結晶型のVO粒子を含んでもよい。 Since the rutile VO 2 particles have a monoclinic structure below the transition temperature, they are also called the M phase. The vanadium dioxide particles according to the present invention may contain other crystal-type VO 2 particles such as an A phase or a B phase as long as the purpose is not impaired.
 本発明においては、詳細は後述する光学機能層中における二酸化バナジウム粒子の一次粒子及び二次粒子の数平均粒径が、200nm以下であることが好ましく、1~180nmの範囲内がより好ましく、さらに好ましくは、5~100nmの範囲内である。 In the present invention, the number average particle diameter of the primary particles and secondary particles of vanadium dioxide particles in the optical functional layer described later in detail is preferably 200 nm or less, more preferably in the range of 1 to 180 nm, Preferably, it is in the range of 5 to 100 nm.
 また、コア・シェル構造とした二酸化バナジウム含有粒子の一次粒子及び二次粒子の数平均粒径は、250nm以下であることが好ましく、1~200nmの範囲内がより好ましく、さらに好ましくは、10~150nmの範囲内である。 The number average particle size of the primary and secondary particles of vanadium dioxide containing particles having a core / shell structure is preferably 250 nm or less, more preferably in the range of 1 to 200 nm, and still more preferably 10 to Within the range of 150 nm.
 二酸化バナジウム粒子の平均粒径は、下記の方法により求めることができる。当該粒子を、透過型電子顕微鏡(TEM)を用いて、1万~10万倍で撮影する。撮影した二酸化バナジウム粒子について、その直径を測定して、算術平均を求める。この時、測定する二酸化バナジウム粒子は、100~200個の範囲内であることが好ましい。なお、当該粒子が完全な球形でない場合には、当該粒子の投影面積を円相当径とした時の直径として求める。また、二酸化バナジウム粒子及び二酸化バナジウム含有粒子のアスペクト比(長軸/単軸比)としては、1.0~3.0の範囲内であることが好ましい。 The average particle diameter of the vanadium dioxide particles can be determined by the following method. The particles are photographed at 10,000 to 100,000 times using a transmission electron microscope (TEM). The diameter of the photographed vanadium dioxide particles is measured to obtain an arithmetic average. At this time, the number of vanadium dioxide particles to be measured is preferably in the range of 100 to 200. In addition, when the said particle | grain is not a perfect spherical shape, it calculates | requires as a diameter when the projected area of the said particle | grain is made into a circle equivalent diameter. The aspect ratio (major axis / uniaxial ratio) of the vanadium dioxide particles and vanadium dioxide-containing particles is preferably in the range of 1.0 to 3.0.
 このような特徴をもつコア粒子を構成する二酸化バナジウム粒子では、アスペクト比が十分に小さく、形状が等方的であるので、溶液に添加した場合の分散性が良好である。加えて、単結晶の粒径が十分に小さいので、従来の微粒子に比べて、良好なサーモクロミック性を発揮することができる。 Since the vanadium dioxide particles constituting the core particles having such characteristics have a sufficiently small aspect ratio and isotropic shape, the dispersibility when added to a solution is good. In addition, since the single crystal has a sufficiently small particle size, it can exhibit better thermochromic properties than conventional fine particles.
 〈相転移温度の調整作用を有する元素〉
 本発明の実施態様1に係る二酸化バナジウム含有粒子においては、相転移温度の調整作用を有する元素を含む化合物を含有することが好ましく、特に、コア粒子を構成する二酸化バナジウム粒子が相転移温度の調整作用を有する元素を含む化合物を含有することが好ましい。
<Elements that adjust the phase transition temperature>
The vanadium dioxide-containing particles according to Embodiment 1 of the present invention preferably contain a compound containing an element having an effect of adjusting the phase transition temperature, and in particular, the vanadium dioxide particles constituting the core particles adjust the phase transition temperature. It is preferable to contain a compound containing an element having an action.
 すなわち、本発明に係るコア粒子を構成する二酸化バナジウム粒子では、二酸化バナジウム(VO)の他に、例えば、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)及びリン(P)からなる群から選定された、少なくとも一つの元素を、相転移温度調節剤として含んでいても良い。このような元素の添加により、二酸化バナジウム粒子の相転移特性(特に、相転移温度)を制御することができる点で有効である。なお、最終的に得られる二酸化バナジウム粒子に対する、そのような添加物の総量は、バナジウム(V)原子に対して、0.1~5.0原子%程度で十分である。 That is, in the vanadium dioxide particles constituting the core particle according to the present invention, in addition to vanadium dioxide (VO 2 ), for example, tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin ( Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine ( At least one element selected from the group consisting of F) and phosphorus (P) may be included as a phase transition temperature regulator. The addition of such an element is effective in that the phase transition characteristics (particularly the phase transition temperature) of the vanadium dioxide particles can be controlled. The total amount of such additives with respect to the finally obtained vanadium dioxide particles is sufficient to be about 0.1 to 5.0 atomic% with respect to the vanadium (V) atom.
 また、後述するサーモクロミックフィルムを構成する光学機能層における二酸化バナジウム粒子の濃度としては、特に制限はないが、おおむね光学機能層全質量に対し、5~60質量%の範囲内であることが好ましく、より好ましくは5~40質量%の範囲内であり、さらに好ましくは5~30質量%の範囲内である。 Further, the concentration of vanadium dioxide particles in the optical functional layer constituting the thermochromic film to be described later is not particularly limited, but is preferably in the range of 5 to 60% by mass with respect to the total mass of the optical functional layer. More preferably, it is in the range of 5 to 40% by mass, and still more preferably in the range of 5 to 30% by mass.
 〈二酸化バナジウム粒子の製造方法〉
 一般に、二酸化バナジウム粒子の製造方法は、固相法により合成されたVO焼結体を粉砕する方法と、五酸化二バナジウム(V)やバナジン酸アンモニウムなどのバナジウム化合物を原料として、有機溶媒ではなく水溶液を使用した液相でVOを合成しながら粒子成長させる水系合成法が好ましく用いられる。
<Method for producing vanadium dioxide particles>
In general, the method for producing vanadium dioxide particles includes a method of pulverizing a VO 2 sintered body synthesized by a solid phase method, and a vanadium compound such as divanadium pentoxide (V 2 O 5 ) or ammonium vanadate as a raw material. An aqueous synthesis method in which particles are grown while synthesizing VO 2 in a liquid phase using an aqueous solution instead of an organic solvent is preferably used.
 水系合成法は、平均一次粒子径が小さく、粒径のばらつきを抑制することができる点で好ましい。 The water-based synthesis method is preferable in that the average primary particle size is small and variation in particle size can be suppressed.
 更に、水系合成法としては、水熱合成法と、超臨界状態を用いた水系合成法が挙げられ、超臨界状態を用いた水系合成法(超臨界水熱合成法ともいう。)の詳細については、例えば、特開2010-58984号公報の段落番号(0011)、同(0015)~(0018)に記載されている製造方法を参照することができる。 Furthermore, examples of the aqueous synthesis method include a hydrothermal synthesis method and an aqueous synthesis method using a supercritical state. Details of an aqueous synthesis method using a supercritical state (also referred to as a supercritical hydrothermal synthesis method). For example, reference can be made to the production methods described in paragraph numbers (0011) and (0015) to (0018) of JP-A No. 2010-58984.
 上記水系合成法の中でも、本発明においては、水熱合成法を適用し、かつ、水系合成法により二酸化バナジウム粒子を含む水系分散液として調製し、水系分散液中の二酸化バナジウム粒子を乾燥させることなく、溶媒を置換する工程により二酸化バナジウム粒子を含む溶剤分散液を調製し、二酸化バナジウム粒子が離間している分散状態で疎水系バインダー樹脂溶液と混合して、光学機能層形成用塗布液を調製する。この状態の光学機能層形成用塗布液を用いて、光学機能層を形成することにより、二酸化バナジウム含有粒子の一次粒子及び二次粒子の数平均粒径が200nm以下である光学機能層を形成することができる。また、二酸化バナジウム粒子の製造方法として、必要に応じて、粒子成長の核となる微小なTiO等の微粒子を核粒子として添加し、その核粒子を成長させることにより二酸化バナジウム粒子を製造することもできる。 Among the above aqueous synthesis methods, in the present invention, the hydrothermal synthesis method is applied and the aqueous synthesis method is used to prepare an aqueous dispersion containing vanadium dioxide particles, and the vanadium dioxide particles in the aqueous dispersion are dried. Prepare a solvent dispersion containing vanadium dioxide particles by the process of replacing the solvent, and mix with a hydrophobic binder resin solution in a dispersed state where the vanadium dioxide particles are separated to prepare a coating solution for forming an optical functional layer To do. By forming the optical functional layer using the coating liquid for forming the optical functional layer in this state, an optical functional layer in which the number average particle diameter of the primary particles and the secondary particles of the vanadium dioxide-containing particles is 200 nm or less is formed. be able to. In addition, as a method for producing vanadium dioxide particles, if necessary, fine TiO 2 particles that become the core of particle growth are added as core particles, and vanadium dioxide particles are produced by growing the core particles. You can also.
 次いで、本発明に好適な水熱合成法による二酸化バナジウム粒子の製造方法について、その詳細をさらに説明する。 Next, the details of the method for producing vanadium dioxide particles by the hydrothermal synthesis method suitable for the present invention will be further described.
 以下に、代表的な水熱合成法による二酸化バナジウム粒子の製造工程を示す。 The following shows the production process of vanadium dioxide particles by a typical hydrothermal synthesis method.
 (工程1)
 バナジウム(V)を含む物質(I)と、ヒドラジン(N)又はその水和物(N・nHO)と、水とを混ぜて溶液(A)を調製する。この溶液は、物質(I)が水中に溶解した水溶液であっても良いし、物質(I)が水中に分散した懸濁液であっても良い。
(Process 1)
A substance (I) containing vanadium (V), hydrazine (N 2 H 4 ) or a hydrate thereof (N 2 H 4 .nH 2 O), and water are mixed to prepare a solution (A). This solution may be an aqueous solution in which the substance (I) is dissolved in water, or a suspension in which the substance (I) is dispersed in water.
 物質(I)としては、例えば、五酸化二バナジウム(V)、バナジン酸アンモニウム(NHVO)、三塩化酸化バナジウム(VOCl)、メタバナジン酸ナトリウム(NaVO)等が挙げられる。なお、物質(I)としては、五価のバナジウム(V)を含む化合物であれば、特に限定されない。ヒドラジン(N)及びその水和物(N・nHO)は、物質(I)の還元剤として機能するものであって、水に容易に溶解する性質を有する。 Examples of the substance (I) include divanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ), vanadium trichloride (VOCl 3 ), sodium metavanadate (NaVO 3 ), and the like. . The substance (I) is not particularly limited as long as it is a compound containing pentavalent vanadium (V). Hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .nH 2 O) function as a reducing agent for the substance (I) and have a property of being easily dissolved in water.
 溶液(A)は、最終的に得られる二酸化バナジウム(VO)の単結晶微粒子に元素を添加するため、添加する元素を含む物質(II)が更に含有していてもよい。添加する元素としては、例えば、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)又はリン(P)が挙げられる。 In the solution (A), an element is added to the finally obtained single crystal fine particles of vanadium dioxide (VO 2 ). Therefore, the solution (A) may further contain a substance (II) containing the element to be added. Examples of the element to be added include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium ( Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F), or phosphorus (P).
 これらの元素を、最終的に得られる二酸化バナジウム(VO)含有の単結晶微粒子に添加することにより、二酸化バナジウム粒子のサーモクロミック性、特に、転移温度を制御することができる。 By adding these elements to the finally obtained vanadium dioxide (VO 2 ) -containing single crystal fine particles, the thermochromic properties of the vanadium dioxide particles, in particular, the transition temperature can be controlled.
 また、この溶液(A)は、酸化性又は還元性を有する物質(III)が更に含有されていてもよい。物質(III)としては、例えば、過酸化水素(H)が挙げられる。酸化性又は還元性を有する物質Cを添加することにより、溶液のpHを調整したり、物質(I)であるバナジウム(V)を含む物質を均一に溶解させたりすることができる。 Further, the solution (A) may further contain a substance (III) having oxidizing property or reducing property. Examples of the substance (III) include hydrogen peroxide (H 2 O 2 ). By adding the substance C having oxidizing property or reducing property, the pH of the solution can be adjusted, or the substance containing vanadium (V) as the substance (I) can be uniformly dissolved.
 (工程2)
 次に、調製した溶液(A)を用いて、水熱反応処理を行う。ここで、「水熱反応」とは、温度と圧力が、水の臨界点(374℃、22MPa)よりも低い熱水(亜臨界水)中において生じる化学反応を意味する。水熱反応処理は、例えば、オートクレーブ装置内で行われる。水熱反応処理により、二酸化バナジウム(VO)含有の単結晶微粒子が得られる。
(Process 2)
Next, a hydrothermal reaction treatment is performed using the prepared solution (A). Here, “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa). The hydrothermal reaction treatment is performed, for example, in an autoclave apparatus. Single crystal fine particles containing vanadium dioxide (VO 2 ) are obtained by the hydrothermal reaction treatment.
 水熱反応処理の条件(例えば、反応物の量、処理温度、処理圧力、処理時間等。)は、適宜設定されるが、水熱反応処理の温度は、例えば、250~350℃の範囲内であり、好ましくは250~300℃の範囲内であり、より好ましくは250~280℃の範囲内である。温度を低くすることにより、得られる単結晶微粒子の粒径を小さくすることができるが、過度に粒径が小さいと、結晶性が低くなる。また、水熱反応処理の時間は、例えば1時間~5日の範囲内であることが好ましい。時間を長くすることにより、得られる単結晶微粒子の粒径等を制御することができるが、過度に長い処理時間では、エネルギー消費量が多くなる。 The conditions of the hydrothermal reaction treatment (for example, the amount of reactants, the treatment temperature, the treatment pressure, the treatment time, etc.) are set as appropriate, but the temperature of the hydrothermal reaction treatment is, for example, within the range of 250 to 350 ° C. Preferably, it is in the range of 250 to 300 ° C, more preferably in the range of 250 to 280 ° C. By reducing the temperature, the particle diameter of the obtained single crystal fine particles can be reduced, but if the particle diameter is excessively small, the crystallinity is lowered. The hydrothermal reaction treatment time is preferably in the range of 1 hour to 5 days, for example. Increasing the time can control the particle size and the like of the obtained single crystal fine particles, but an excessively long processing time increases the energy consumption.
 以上の工程1及び工程2を経て、サーモクロミック性を有する二酸化バナジウム(VO)含有の単結晶微粒子を含む分散液が得られる。 Through the above steps 1 and 2, a dispersion liquid containing single crystal fine particles containing thermochromic vanadium dioxide (VO 2 ) is obtained.
 (第1シェル層A)
 本発明の実施態様1に係る第1シェル層Aは、上記説明した二酸化バナジウム粒子の表面に、当該表面とイオン結合的に修飾する少なくともヒドロキシ基を有する有機化合物により形成する。ここでいうイオン結合的とは、プラスマイナスの電荷引力で二酸化バナジウム粒子表面に吸着する特性をいう。
(First shell layer A)
The first shell layer A according to Embodiment 1 of the present invention is formed on the surface of the vanadium dioxide particles described above by an organic compound having at least a hydroxy group that is ionically modified with the surface. The term “ionic bonding” as used herein refers to the property of adsorbing on the surface of vanadium dioxide particles with positive or negative charge attraction.
 本発明に係るイオン結合的に修飾する有機化合物は、更にはヒドロキシ基と共に、アミノ基又は窒素含有ヘテロ環基を有する化合物であることが好ましい。アミノ基又は窒素含有ヘテロ環基は、二酸化バナジウム粒子表面への吸着基として高い吸着能を発現し、ヒドロキシ基は第1シェル層A上に形成する第2シェル層Aの構成材料であるアモルファス状金属酸化物と結合するために機能する官能基である。 The organic compound modified in an ionic bond according to the present invention is preferably a compound having an amino group or a nitrogen-containing heterocyclic group together with a hydroxy group. The amino group or the nitrogen-containing heterocyclic group expresses a high adsorbing ability as an adsorbing group on the surface of the vanadium dioxide particles, and the hydroxy group is an amorphous material that is a constituent material of the second shell layer A formed on the first shell layer A. It is a functional group that functions to bind to a metal oxide.
 本発明に係るヒドロキシ基を有する有機化合物は、ヒドロキシ基(-OH)と共に、アミノ基又は窒素含有ヘテロ環基を有する化合物であることが好ましく、その化合物としては特に制限はないが、一例としては、下記の化合物を例示することができる。 The organic compound having a hydroxy group according to the present invention is preferably a compound having an amino group or a nitrogen-containing heterocyclic group together with a hydroxy group (—OH), and the compound is not particularly limited. The following compounds can be exemplified.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記化合物の他に、ヒドロキシ基と共に、窒素含有ヘテロ環基として、例えば、ピロリジン、ピロール、ピペリジン、ピリジン、イミダゾール、ピラゾール、オキサゾール、チアゾール、イミダゾリン、ピラジン、モルホリン、チアジン、インドール、ベンズイミダゾール等の各基を挙げることができる。 In addition to the above compound, as a nitrogen-containing heterocyclic group together with a hydroxy group, for example, pyrrolidine, pyrrole, piperidine, pyridine, imidazole, pyrazole, oxazole, thiazole, imidazoline, pyrazine, morpholine, thiazine, indole, benzimidazole, etc. The group can be mentioned.
 実施態様1に係る第1シェル層Aの形成方法としては、コア粒子として二酸化バナジウム粒子を含有する水分散液に、少なくともヒドロキシ基を有する有機化合物、より好ましくはヒドロキシ基と共に、アミノ基又は窒素含有ヘテロ環基を有する有機化合物を添加して、所定時間分散処理を施すことにより、二酸化バナジウム粒子表面に、第1シェル層Aを形成することができる。 As a method for forming the first shell layer A according to Embodiment 1, an aqueous dispersion containing vanadium dioxide particles as core particles contains an organic compound having at least a hydroxy group, more preferably an amino group or nitrogen containing together with a hydroxy group. The first shell layer A can be formed on the surface of the vanadium dioxide particles by adding an organic compound having a heterocyclic group and performing a dispersion treatment for a predetermined time.
 第1シェル層Aの形成に適用可能な分散方法としては、特に制限はなく、例えば、撹拌型の分散機による混合・分散法、ビーズミル、ビーズレスミル、ボールミルによる混合・分散法、3本ロールによる混合・分散法、自転・公転ミキサーによる混合・分散法などが挙げられ、適宜選択して適用することができる。 A dispersion method applicable to the formation of the first shell layer A is not particularly limited. For example, a mixing / dispersing method using a stirring type disperser, a mixing / dispersing method using a bead mill, a beadless mill, a ball mill, or a three-roll method. Examples thereof include a mixing / dispersing method, a mixing / dispersing method using a rotating / revolving mixer, and the like can be appropriately selected and applied.
 (第2シェル層A)
 実施態様1に係る二酸化バナジウム含有粒子を構成する第2シェル層Aは、アモルファス状金属酸化物を含有することを特徴とする。
(Second shell layer A)
The second shell layer A constituting the vanadium dioxide-containing particles according to Embodiment 1 contains an amorphous metal oxide.
 本発明でいうアモルファスとは、形成した第2シェル層AのXRD解析(X線回折法)を行った際に、固体を構成する原子や分子等として三次元的な規則性が少なく、測定されたX線回折スペクトラムにおいて、ハローパターンのみが観測され、結晶性を示す特定の回折線ピークを示さない状態の層であると定義する。 The term “amorphous” as used in the present invention means that when the formed second shell layer A is subjected to XRD analysis (X-ray diffraction method), it is measured with little three-dimensional regularity as atoms and molecules constituting the solid. In the X-ray diffraction spectrum, only a halo pattern is observed, and it is defined as a layer that does not show a specific diffraction line peak indicating crystallinity.
 上記測定で用いるXRD測定装置としては、例えば、島津製作所社製のX線回折装置(XRD-7000、XRD-6100等)、リガク社製X線回折装置(XRD測定装置 RINT2200、RINT-TTR2、SWRD等)等を挙げることができる。 Examples of the XRD measuring apparatus used in the above measurement include an X-ray diffractometer manufactured by Shimadzu Corporation (XRD-7000, XRD-6100, etc.), an X-ray diffractometer manufactured by Rigaku Corporation (XRD measuring apparatus RINT2200, RINT-TTR2, SWRD). Etc.).
 第2シェル層Aは、ゾル-ゲル反応を用いて、液相で加水分解と縮重合までを行うことにより、アモルファス状金属酸化物より構成される第2シェル層Aを得ることができる。ここでいうゾル-ゲル反応とは、一般的な意味でアルコキシド系ゾルを加熱等によりゲル状態とし、セラミックスなどを合成する化学操作の一つである。 The second shell layer A can be obtained by performing hydrolysis and polycondensation in the liquid phase using a sol-gel reaction to obtain the second shell layer A composed of an amorphous metal oxide. The sol-gel reaction here is one of chemical operations for synthesizing ceramics and the like by converting an alkoxide sol into a gel state by heating or the like in a general sense.
 本発明に適用可能なアモルファス状金属酸化物としては、例えば、TiO、ITO(酸化インジウムスズ)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO、IGZO、In等が挙げられる。その中でも、酸化ケイ素(SiO)、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化ハフニウム(HfO)、酸化セリウム(CeO)、酸化モリブデン(MoO)が、形成する第2シェル層Aとして高い透明性が得られる点で好ましい。 Examples of the amorphous metal oxide applicable to the present invention include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti. 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO) , ICO (Indium Cerium Oxide), Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , IGZO, In 2 O 3 and the like can be mentioned. Among them, the second shell formed by silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), zinc oxide (ZnO), hafnium oxide (HfO 2 ), cerium oxide (CeO 2 ), and molybdenum oxide (MoO 2 ). The layer A is preferable in that high transparency is obtained.
 実施態様1に係る第2シェル層Aの形成方法としては、液相系でゾル-ゲル法を用いて、第1シェル層A上に第2シェル層Aを形成するが、例えば、酸化ケイ素(SiO)をゾル-ゲル法で形成する場合、アモルファス状金属酸化物形成前駆体として、TEOS(テトラエトキシシラン)等のアルコキシド(シリカ前駆体)を、アルカリとアルコールと共に、塩基性条件で、加水分解・重縮合反応を行うことによって、アルコールを脱離させて、アモルファス状金属酸化物より構成される第2シェル層Aを形成することにより、実施態様1で規定する構成の二酸化バナジウム含有粒子を調製することができる。 As a method for forming the second shell layer A according to Embodiment 1, the second shell layer A is formed on the first shell layer A by using a sol-gel method in a liquid phase system. For example, silicon oxide ( When forming SiO 2 ) by a sol-gel method, an alkoxide (silica precursor) such as TEOS (tetraethoxysilane) is added as an amorphous metal oxide forming precursor together with an alkali and alcohol under basic conditions. By performing the decomposition / polycondensation reaction, alcohol is eliminated and the second shell layer A composed of the amorphous metal oxide is formed, whereby the vanadium dioxide-containing particles having the structure defined in Embodiment 1 are obtained. Can be prepared.
 また、第2シェル層Aの形成は、必要に応じて、酸性条件下でも行うことができるが、シリカ層を形成する場合には、一般に、強塩基性条件の方が、密なシリカ層を得ることができる。 Further, the formation of the second shell layer A can be performed under acidic conditions as required. However, when forming a silica layer, generally, a strongly basic condition is more effective for a dense silica layer. Obtainable.
 (第3シェル層A)
 実施態様1に係る二酸化バナジウム含有粒子においては、その他の構成として、上記説明した第2シェル層A上に、更に、疎水性有機化合物を含有する第3シェル層Aを形成する構成が、高い繰り返し耐性を得ることができる点で、より好ましい。
(Third shell layer A)
In the vanadium dioxide-containing particles according to Embodiment 1, as another configuration, the configuration in which the third shell layer A containing the hydrophobic organic compound is further formed on the second shell layer A described above is highly repetitive. It is more preferable at the point which can obtain tolerance.
 第3シェル層Aは疎水性有機化合物により形成するが、更には、疎水性有機化合物が、疎水性アルキル基又は疎水性アリール基と、シラザン、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1種の基とを有する化合物であることが好ましい。 The third shell layer A is formed of a hydrophobic organic compound. Further, the hydrophobic organic compound is at least selected from a hydrophobic alkyl group or a hydrophobic aryl group, silazane, silicon alkoxide, alcohol, aldehyde, and carboxylic acid. It is preferable that it is a compound which has 1 type of group.
 (1)疎水性アルキル基
 疎水性アルキル基としては、直鎖、分岐、あるいは不飽和基を有してもよい炭素数が1~23までのアルキル基を挙げることができる。例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、ペンタデキル基、ヘキサデシル基、オクタデシル基等を挙げることができる。
(1) Hydrophobic alkyl group Examples of the hydrophobic alkyl group include linear, branched or unsaturated alkyl groups having 1 to 23 carbon atoms which may have an unsaturated group. Examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a decyl group, a dodecyl group, a pentadecyl group, a hexadecyl group, and an octadecyl group.
 (2)疎水性アリール基
 疎水性アリール基としては、フェニル基、トリル基、キシリル基、ナフチル基、アズレン基等を挙げることができる。
(2) Hydrophobic aryl group Examples of the hydrophobic aryl group include phenyl, tolyl, xylyl, naphthyl, and azulene groups.
 (3)シラザン(シリル化剤)
 本発明に適用可能なシラザンの具体例としては、トリメチルシリルクロライド、ヘキサメチルジシラザン、トリメチルシリルトリフロロメタンスルホネート、トリエチルシリルクロライド、t-ブチルジメチルシリルクロライド、トリイソプロピルシリルクロライド、1,3-ジクロロー1,1,3,3-テトライソプロピルジシロキサン、クロロメチルトリメチルシラン、トリエチルシラン、t-ブチルジメチルシラン、トリメチルシリルアセチレンヘシラメチルジシラン、アリルトリメチルシラン、トリメチルビニルシラン等を挙げることができる。上記化合物は、市販品(例えば、信越シリコーン(株)、シリル化剤)として入手することもできる。
(3) Silazane (silylating agent)
Specific examples of silazanes applicable to the present invention include trimethylsilyl chloride, hexamethyldisilazane, trimethylsilyltrifluoromethanesulfonate, triethylsilyl chloride, t-butyldimethylsilyl chloride, triisopropylsilyl chloride, 1,3-dichloro-1, Examples include 1,3,3-tetraisopropyldisiloxane, chloromethyltrimethylsilane, triethylsilane, t-butyldimethylsilane, trimethylsilylacetylene hesilamethyldisilane, allyltrimethylsilane, and trimethylvinylsilane. The said compound can also be obtained as a commercial item (for example, Shin-Etsu Silicone Co., Ltd., silylating agent).
 (4)シリコンアルコキシド
 本発明に適用可能なシリコンアルコキシドの具体例としては、以下の化合物を挙げることができる。
(4) Silicon alkoxide Specific examples of the silicon alkoxide applicable to the present invention include the following compounds.
 シランとしては、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトシキシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン等を挙げることができる。なお、上記化合物は、市販品(例えば、信越シリコーン(株)、シラン)として入手することもできる。 Silanes include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxy. Examples include silane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, 1,6-bis (trimethoxysilyl) hexane, trifluoropropyltrimethoxysilane, and the like. In addition, the said compound can also be obtained as a commercial item (for example, Shin-Etsu Silicone Co., Ltd., silane).
 また、1つの分子中に有機官能基とアルコキシ基を有するシランカップリング剤も用いることができ、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、p-スチリルトリメトキシシラン、3-クリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等を挙げることができる。なお、上記化合物は、市販品(例えば、信越シリコーン(株)、シランカップリング剤)として入手することもできる。 Also, a silane coupling agent having an organic functional group and an alkoxy group in one molecule can be used, for example, vinyltrimethoxysilane, vinyltriethoxysilane, p-styryltrimethoxysilane, 3-acryloxypropylmethyl. Dimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-triethoxysilyl-N- (1 , 3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane and the like. In addition, the said compound can also be obtained as a commercial item (for example, Shin-Etsu Silicone Co., Ltd., a silane coupling agent).
 (5)アルコール
 アルコールとしては、直鎖、あるいは分岐してもよい炭素数が1~23までのアルコール類を挙げることができ、例えば、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、デカノール、ドデカノール、ペンタデカノール、オクタデカノール、イコサノール、ドコサノール、トリコダノール等を挙げることができる。
(5) Alcohol Examples of the alcohol include linear or branched alcohols having 1 to 23 carbon atoms, such as methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, Examples include decanol, dodecanol, pentadecanol, octadecanol, icosanol, docosanol, and tricodanol.
 (6)アルデヒド
 アルデヒドとしては、直鎖、あるいは分岐してもよい炭素数が1~23までのアルデヒド類を挙げることができ、例えば、メタナール(ホルムアルデヒド)、エタナール(アセトアルデヒド)、プロパナール(プロピオンアルデヒド)、ブタナール、ペンタナール、ヘキサナール、オクタナール、デカナール、ドデカナール、ペンタデカナール、オクタデカナール、イコサナール、ドコサナール、トリコダナール、アクロレイン、ベンズアルデヒド、バニリン、グリオキサール等を挙げることができる。
(6) Aldehyde Examples of aldehydes include linear or branched aldehydes having 1 to 23 carbon atoms, such as methanal (formaldehyde), etanal (acetaldehyde), propanal (propionaldehyde). ), Butanal, pentanal, hexanal, octanal, decanal, dodecanal, pentadecanal, octadecanal, icosanal, docosanal, tricodanal, acrolein, benzaldehyde, vanillin, glyoxal and the like.
 (7)カルボン酸
 カルボン酸としては、飽和脂肪酸、不飽和脂肪酸、芳香族カルボン酸、ジカルボン酸等を挙げることができる。
(7) Carboxylic acid Examples of the carboxylic acid include saturated fatty acids, unsaturated fatty acids, aromatic carboxylic acids, and dicarboxylic acids.
 例えば、飽和脂肪酸としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等を挙げることができる。 For example, saturated fatty acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, etc. it can.
 また、不飽和脂肪酸としては、オレイン酸、リノール酸、リノレン酸、アラキドン酸、エイコサペンタエン酸等を挙げることができる。 Further, examples of unsaturated fatty acids include oleic acid, linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid, and the like.
 また、芳香族カルボン酸としては、安息香酸、フタル酸、サリチル酸、没食子酸、ケイ皮酸等を挙げることができる。 In addition, examples of the aromatic carboxylic acid include benzoic acid, phthalic acid, salicylic acid, gallic acid, cinnamic acid, and the like.
 また、ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸等を挙げることができる。 Further, examples of the dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid and the like.
 本発明に係る上記疎水性有機化合物から構成される第3シェル層Aを形成する第1の方法は、第2シェル層Aを形成した二酸化バナジウム粒子を含む分散液に対し、限外濾過によりヒドロキシ基を有していない有機溶媒に分散媒を置換した後、疎水性有機化合物、例えば、シラザン基を有する疎水性化合物で処理を行って、最外層に第3シェル層Aを形成する方法を挙げることができる。 In the first method of forming the third shell layer A composed of the hydrophobic organic compound according to the present invention, the dispersion containing vanadium dioxide particles on which the second shell layer A is formed is subjected to hydroxy filtration by ultrafiltration. A method of forming the third shell layer A as the outermost layer by replacing the dispersion medium with an organic solvent having no group and then treating with a hydrophobic organic compound, for example, a hydrophobic compound having a silazane group, is described. be able to.
 また、第3シェル層Aを形成する第2の方法としては、第2シェル層Aを形成した二酸化バナジウム粒子を含む分散液に対し、亜臨界状態にある高温高圧水の存在下でシリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で処理する、又は、亜臨界状態にある高温高圧水の存在下で前処理した後、超臨界状態にある高温高圧水の存在下で、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で処理して第3シェル層Aを形成する方法を挙げることができる。 As a second method for forming the third shell layer A, a silicon alkoxide in the presence of high-temperature high-pressure water in a subcritical state is used for the dispersion containing vanadium dioxide particles that have formed the second shell layer A. High-temperature high-pressure water in a supercritical state after treatment with a hydrophobic organic compound having at least one group selected from alcohol, aldehyde and carboxylic acid, or pre-treatment in the presence of high-temperature high-pressure water in a subcritical state In the presence of, a method of forming the third shell layer A by treating with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid can be mentioned.
 (実施態様1であるコア・シェル構造1のサーモクロミック性二酸化バナジウム含有粒子の製造方法)
 〈製造方法1〉
 図1Aで示す実施態様1で規定する構成のサーモクロミック性二酸化バナジウム含有粒子(1a)の製造方法1としては、上記記載した方法によりコア粒子(2)である二酸化バナジウム粒子を調製した後、常法に従い、水系環境下でコア粒子(2)である二酸化バナジウム粒子に対し、第1シェル層A(3A)の形成材料及び第2シェル層A(4A)の構成材料を順次添加して、上記で説明したようなゾル-ゲル法によりそれぞれ被覆して、二酸化バナジウム含有粒子(1a)を調製することができる。
(Method for Producing Thermochromic Vanadium Dioxide-Containing Particles with Core-Shell Structure 1 as Embodiment 1)
<Manufacturing method 1>
As the production method 1 of the thermochromic vanadium dioxide-containing particles (1a) having the structure defined in Embodiment 1 shown in FIG. 1A, the vanadium dioxide particles that are the core particles (2) are prepared by the above-described method. In accordance with the method, the material for forming the first shell layer A (3A) and the constituent material for the second shell layer A (4A) are sequentially added to the vanadium dioxide particles that are the core particles (2) in an aqueous environment. The vanadium dioxide-containing particles (1a) can be prepared by coating each by the sol-gel method described in the above.
 すなわち、第1シェル層Aの形成工程としてはコア粒子(2)として二酸化バナジウム粒子を含有する水分散液に、少なくともヒドロキシ基を有する有機化合物を添加・分散して第1シェル層A(3A)を形成する工程と、第2シェル層Aの形成工程として、アモルファス状金属酸化物形成前駆体とアルカリとアルコールを添加してアモルファス状金属酸化物を有する第2シェル層A(4A)を形成する工程とを有することを特徴とする。 That is, as the formation process of the first shell layer A, the first shell layer A (3A) is prepared by adding and dispersing at least an organic compound having a hydroxy group in an aqueous dispersion containing vanadium dioxide particles as the core particles (2). And forming the second shell layer A, the amorphous metal oxide forming precursor, the alkali and the alcohol are added to form the second shell layer A (4A) having the amorphous metal oxide. And a process.
 〈製造方法2〉
 一方、実施態様1で規定するコア・シェル構造1の二酸化バナジウム含有粒子の他の製造方法2としては、図1Bに示す構成の二酸化バナジウム含有粒子(1b)において、第3シェル層A(5A)を形成する方法に技術的特徴を有しており、以下に第3シェル層A(5A)の形成方法の詳細について説明する。
<Manufacturing method 2>
On the other hand, as another production method 2 of the vanadium dioxide-containing particles having the core / shell structure 1 defined in the embodiment 1, in the vanadium dioxide-containing particles (1b) having the configuration shown in FIG. 1B, the third shell layer A (5A) The method of forming the third has a technical feature, and the details of the method of forming the third shell layer A (5A) will be described below.
 図1Bに示す実施態様1に係る二酸化バナジウム含有粒子(1b)は、下記に示す2つの方法に従って製造することを特徴とする。 The vanadium dioxide-containing particles (1b) according to Embodiment 1 shown in FIG. 1B are characterized by being manufactured according to the following two methods.
 (1)二酸化バナジウム含有粒子(1b)の第1の製造方法
 二酸化バナジウム含有粒子(1b)の第1の製造方法は、水熱合成法等により合成したコア粒子(2)である二酸化バナジウム粒子を含有する水分散液に、少なくともヒドロキシ基を有する有機化合物を添加、分散して第1シェル層A(3A)を形成した後、アモルファス状金属酸化物形成前駆体とアルカリとアルコールを添加してアモルファス状金属酸化物を有する第2シェル層A(4A)を形成し、次いで、限外濾過によりヒドロキ基を含有しない有機溶媒に置換し、次いで、工程(3-1)として、シラザン基を有する疎水性有機化合物で処理して第3シェル層A(5A)を形成して、サーモクロミック性を有する二酸化バナジウム含有粒子(1b)を製造する方法である。
(1) 1st manufacturing method of vanadium dioxide containing particle | grains (1b) The 1st manufacturing method of vanadium dioxide containing particle | grains (1b) is the vanadium dioxide particle | grains which are the core particle | grains (2) synthesize | combined by the hydrothermal synthesis method etc. After adding and dispersing at least an organic compound having a hydroxy group to the aqueous dispersion to form the first shell layer A (3A), an amorphous metal oxide forming precursor, an alkali and an alcohol are added to form an amorphous Forming a second shell layer A (4A) having a metal oxide, and then substituting with an organic solvent not containing a hydroxy group by ultrafiltration, and then, as a step (3-1), a hydrophobic having a silazane group This is a method for producing vanadium dioxide-containing particles (1b) having thermochromic properties by forming a third shell layer A (5A) by treatment with a conductive organic compound.
 すなわち、疎水性有機化合物により構成される第3シェル層A(5A)を形成する方法として、第2シェル層A(4A)まで形成した二酸化バナジウム粒子を含有する水分散液に対し、限外濾過により、水分散液が含有する水を、ヒドロキシ基を含有しない有機溶媒に置換し、次いでシラザン基を有する疎水性有機化合物で処理して第3シェル層A(5A)を形成する方法である。 That is, as a method for forming the third shell layer A (5A) composed of the hydrophobic organic compound, ultrafiltration is performed on the aqueous dispersion containing vanadium dioxide particles formed up to the second shell layer A (4A). Thus, the third shell layer A (5A) is formed by replacing the water contained in the aqueous dispersion with an organic solvent containing no hydroxy group and then treating with a hydrophobic organic compound having a silazane group.
 シラザン基を有する疎水性化合物(シリル化剤)は、水やアルコールのようなヒドロキシ基を含む化合物とすぐに反応して分解しやすい特性であり、第3シェル層A(5A)の形成を行う前に、ヒドロキシ基を含有しない有機溶媒に、分散液の分散媒を置換する。 A hydrophobic compound (silylating agent) having a silazane group has a characteristic that it readily reacts with a compound containing a hydroxy group such as water or alcohol and easily decomposes, and forms the third shell layer A (5A). Before, the dispersion medium of the dispersion is replaced with an organic solvent that does not contain a hydroxy group.
 上記方法で適用する有機溶媒としては、第2シェル層A(4A)まで形成した二酸化バナジウム粒子が凝集沈降せず、また、水、アルコールに混和する溶媒が好ましい。具体的には、アセトニトリル、PGMAc(プロピレングリコールモノメチルエーテルアセテート)、エチルアミン、2-ピロリドン、NMP(N-メチル-2-ピロリドン)、ピリジン、ジオキソラン、2-メチルジオキソラン、エチレンカーボネート、γ-ブチロラクトン、THF(テトラヒドロフラン)、モルホリン、DMF(ジメチルフォルムアミド)、DMSO(ジメチルスルフォキシド)等を挙げることができる。 The organic solvent applied by the above method is preferably a solvent in which the vanadium dioxide particles formed up to the second shell layer A (4A) do not aggregate and settle and are miscible with water or alcohol. Specifically, acetonitrile, PGMAc (propylene glycol monomethyl ether acetate), ethylamine, 2-pyrrolidone, NMP (N-methyl-2-pyrrolidone), pyridine, dioxolane, 2-methyldioxolane, ethylene carbonate, γ-butyrolactone, THF (Tetrahydrofuran), morpholine, DMF (dimethylformamide), DMSO (dimethylsulfoxide) and the like.
 次いで、上記製造方法2に適用可能な溶媒置換処理方法の一例である限外濾過方法を用いた製造方法の具体例について、図を交えて説明する。 Next, a specific example of a production method using an ultrafiltration method, which is an example of a solvent replacement treatment method applicable to the production method 2, will be described with reference to the drawings.
 図3は、二酸化バナジウム含有粒子の製造に用いることができる溶媒置換処理装置(限外濾過装置)の一例を示す概略フロー図である。 FIG. 3 is a schematic flow diagram showing an example of a solvent substitution processing device (ultrafiltration device) that can be used for production of vanadium dioxide-containing particles.
 図3に示す溶媒置換処理装置(50)は、第2シェル層A(4A)まで形成した二酸化バナジウム粒子を含有する混合溶液(52)を貯留するための調製釜(51)、希釈用の溶媒(58)を貯留している溶媒ストック釜(57)、溶媒(58)を調整釜(51)に添加する溶媒供給ライン(59)、調製釜(51)中の二酸化バナジウム粒子を含有する混合溶液(52)を、循環ポンプ(54)により循環させる循環ライン(53)、循環ライン(53)の経路内に濃縮手段として、限外濾過部(55)が配置されている構成である。 The solvent displacement treatment apparatus (50) shown in FIG. 3 is a preparation kettle (51) for storing a mixed solution (52) containing vanadium dioxide particles formed up to the second shell layer A (4A), a solvent for dilution. (58), a solvent stock pot (57), a solvent supply line (59) for adding the solvent (58) to the adjustment pot (51), and a mixed solution containing vanadium dioxide particles in the preparation pot (51) The ultrafiltration part (55) is arrange | positioned as a concentration means in the path | route of the circulation line (53) which circulates (52) with the circulation pump (54), and a circulation line (53).
 以下、手順を追って、限外濾過処理のフローについて説明する。 Hereinafter, the flow of the ultrafiltration process will be described following the procedure.
 〈工程(I)〉
 調製釜(51)に、混合溶液(52)として、上記方法で調製した第2シェル層A(4A)まで形成した二酸化バナジウム粒子を含む水系分散液を貯留して、循環ポンプ(54)を用いて循環させながら、限外濾過部(55)で、混合溶液中の水分を排出口(56)より排出して、所定の濃度まで濃縮する。濃縮の目安としては、初期体積に対し20体積%まで濃縮することが好ましい。これ以上の過度の濃縮を行うと、粒子密度の上昇に伴い粒子凝集が生じるため、避けることが好ましい。また、この濃縮操作においては、混合溶液(52)を乾燥させないことが重要である。
<Process (I)>
An aqueous dispersion containing vanadium dioxide particles formed up to the second shell layer A (4A) prepared by the above method is stored in the preparation kettle (51) as a mixed solution (52), and the circulation pump (54) is used. In the ultrafiltration section (55), the water in the mixed solution is discharged from the discharge port (56) and concentrated to a predetermined concentration. As a standard of concentration, it is preferable to concentrate up to 20% by volume with respect to the initial volume. It is preferable to avoid excessive concentration beyond this because particle aggregation occurs as the particle density increases. In this concentration operation, it is important not to dry the mixed solution (52).
 〈工程(II)〉
 次いで、20体積%まで濃縮した混合溶液(52)に対し、溶媒ストック釜(57)より、溶媒供給ライン(59)を経由して、溶媒(58)を80質量%相当添加し、十分に撹拌混合して、第一次の溶媒置換した混合溶液(52)を調製する。
<Process (II)>
Next, 80% by mass of the solvent (58) is added to the mixed solution (52) concentrated to 20% by volume from the solvent stock kettle (57) via the solvent supply line (59), and sufficiently stirred. Mixing is performed to prepare a mixed solution (52) with a primary solvent substitution.
 〈工程(III)〉
 次いで、上記工程(I)と同様にして、循環ポンプ(54)により循環させながら、限外濾過部(55)で、混合溶液(52)中の媒体(水+溶媒)を系外に排出(56)して、再び20体積%の濃度まで第2回目の濃縮を行う。
<Process (III)>
Next, in the same manner as in the above step (I), the medium (water + solvent) in the mixed solution (52) is discharged out of the system by the ultrafiltration unit (55) while being circulated by the circulation pump (54) ( 56), and the second concentration is performed again to a concentration of 20% by volume.
 〈工程(IV)〉
 次いで、上記工程(II)と同様にして、濃縮した混合溶液(52)に対し、溶媒ストック釜(57)より溶媒供給ライン(59)を経由して、溶媒(58)を80質量%相当添加し、十分に撹拌混合して、二酸化バナジウム粒子を水相から有機相に移動させ、有機相を抽出する。
<Process (IV)>
Next, in the same manner as in the above step (II), 80% by mass of the solvent (58) is added to the concentrated mixed solution (52) from the solvent stock kettle (57) via the solvent supply line (59). The mixture is sufficiently stirred and mixed to move the vanadium dioxide particles from the aqueous phase to the organic phase, and the organic phase is extracted.
 〈工程(V)〉
 最終的には、工程(I)及び工程(II)による濃縮及び溶媒希釈操作を、好ましくは2回以上繰り返して、水分含有量を0.1~5.0質量%の範囲内に調整した二酸化バナジウム粒子を含有する溶媒分散液(52)を調製する。次いで、このように処理した二酸化バナジウム粒子に対し、シラザン基を有する疎水性有機化合物を用いて処理することにより、第3シェル層A(5A)を形成することができる。
<Process (V)>
Finally, the concentration and solvent dilution operations in step (I) and step (II) are preferably repeated twice or more to adjust the water content to a range of 0.1 to 5.0% by mass. A solvent dispersion (52) containing vanadium particles is prepared. Next, the third shell layer A (5A) can be formed by treating the vanadium dioxide particles thus treated with a hydrophobic organic compound having a silazane group.
 上記溶媒置換処理で用いる限外濾過方法としては、例えば、リサーチ・ディスクロージャー(Research Disclosure)のNo.10208(1972)、No.13122(1975)及びNo.16351(1977)などに記載されている方法を参照することができる。 Examples of the ultrafiltration method used in the above solvent replacement treatment include, for example, No. of Research Disclosure. 10208 (1972), no. 13122 (1975) and no. 16351 (1977) and the like can be referred to.
 操作条件において重要な圧力差や流量の設定は、例えば、大矢春彦著「膜利用技術ハンドブック」幸書房出版(1978)、p275に記載の特性曲線を参考に設定することができる。 The setting of the pressure difference and the flow rate that are important in the operating conditions can be set with reference to the characteristic curve described in Haruhiko Oya, “Membrane Utilization Technology Handbook”, Koshobo Publishing (1978), p275, for example.
 限外濾過膜は、有機膜をモジュールとして組み込まれた平板型、スパイラル型、円筒型、中空糸型、ホローファイバー型などが旭化成(株)、ダイセル化学(株)、(株)東レ、(株)日東電工などから市販されている。また、耐溶媒性を備えている膜としては、日本ガイシ(株)や(株)ノリタケなどから市販されているセラミック膜が挙げられる。 Ultrafiltration membranes include flat plate type, spiral type, cylindrical type, hollow fiber type, hollow fiber type, etc. in which organic membranes are incorporated as modules. Asahi Kasei Corporation, Daicel Chemical Co., Ltd., Toray Industries, Inc. ) Commercially available from Nitto Denko. Moreover, as a film | membrane provided with solvent resistance, the ceramic membrane marketed from NGK Co., Ltd., Noritake Co., Ltd., etc. is mentioned.
 また、例えば、濾過膜としてSartorius stedim社製ビバフロー50(有効濾過面積50cm、分画分子量5000)を用い、流速300mL/min(分)、液圧100kPa、室温で限外濾過を行う方法や、ポリエーテルスルホン製で分画分子量が30万の濾過膜を有する限外濾過装置(日本ミリポア株式会社製 ペリコン2カセット)等を挙げることができる。 In addition, for example, using a Vivaflow 50 (effective filtration area 50 cm 2 , molecular weight cut-off 5000) manufactured by Sartorius steady as a filtration membrane, a flow rate of 300 mL / min (min), a liquid pressure of 100 kPa, and ultrafiltration at room temperature, Examples include an ultrafiltration device (Pericon 2 cassette manufactured by Nihon Millipore Corporation) having a filtration membrane made of polyethersulfone and having a molecular weight cut off of 300,000.
 (2)二酸化バナジウム含有粒子(1b)の第2の製造方法
 二酸化バナジウム含有粒子の第2の製造方法は、コア粒子として二酸化バナジウム粒子(2)を含有する水分散液に、少なくともヒドロキシ基を有する有機化合物を添加、分散して第1シェル層A(3A)を形成した後、アモルファス状金属酸化物形成前駆体とアルカリとアルコールを添加してアモルファス状金属酸化物を有する第2シェル層A(4A)を形成し、次いで、工程(3-2)で示すように、亜臨界状態にある高温高圧水の存在下でシリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で処理する、又は、亜臨界状態にある高温高圧水の存在下で前処理した後、超臨界状態にある高温高圧水の存在下で、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で処理して第3シェル層A(5A)を形成して、二酸化バナジウム含有粒子(1b)を製造する方法である。
(2) Second production method of vanadium dioxide-containing particles (1b) The second production method of vanadium dioxide-containing particles has at least a hydroxy group in an aqueous dispersion containing vanadium dioxide particles (2) as core particles. After the organic compound is added and dispersed to form the first shell layer A (3A), the amorphous metal oxide forming precursor, the alkali, and the alcohol are added to the second shell layer A having the amorphous metal oxide ( 4A), and then, as shown in step (3-2), a hydrophobic having at least one group selected from silicon alkoxide, alcohol, aldehyde, and carboxylic acid in the presence of high-temperature high-pressure water in a subcritical state High temperature and high pressure water in supercritical state after pretreatment in the presence of high temperature and high pressure water in subcritical state The third shell layer A (5A) is formed by treatment with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid, and the vanadium dioxide-containing particles (1b) are formed. It is a manufacturing method.
 以下、二酸化バナジウム含有粒子(1b)の第2の製造方法の詳細について説明する。 Hereinafter, the detail of the 2nd manufacturing method of vanadium dioxide containing particle | grains (1b) is demonstrated.
 二酸化バナジウム含有粒子(1b)の第2の製造方法では、第2シェル層A(4A)まで形成した二酸化バナジウム粒子を、高温高圧状態にある水が存在する条件下で、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも一つの置換基を有する疎水性有機化合物と反応させることで、疎水性有機化合物による第3シェル層A(5A)を表面に形成した二酸化バナジウム含有粒子(1b)を得る方法であるが、その場合、事前に、第2シェル層A(4A)まで形成した二酸化バナジウム粒子の表面を活性化する処理、又は、第2シェル層A(4A)まで形成した二酸化バナジウム粒子を亜臨界状態にある水の存在下で前処理する工程を含んでもよい。 In the second production method of the vanadium dioxide-containing particles (1b), the vanadium dioxide particles formed up to the second shell layer A (4A) are subjected to silicon alkoxide, alcohol, aldehyde under conditions where water exists in a high temperature and high pressure state. And a hydrophobic organic compound having at least one substituent selected from carboxylic acids, thereby obtaining vanadium dioxide-containing particles (1b) having the surface formed with the third shell layer A (5A) made of the hydrophobic organic compound. In this case, in this case, treatment for activating the surface of the vanadium dioxide particles formed up to the second shell layer A (4A) or vanadium dioxide particles formed up to the second shell layer A (4A) in advance is performed. A step of pretreatment in the presence of water in a subcritical state may be included.
 本発明に係る第2の製造方法において、高温高圧状態にある水とは、亜臨界又は超臨界状態にある高温高圧水、すなわち、亜臨界水(sub-critical water:sub-CW)、又は超臨界水(super-critical water:SCW)である。水の臨界温度は374.2℃、水の臨界圧力は22.12MPaであるので、これを参考に反応温度・反応圧力を選択できる。具体的には、亜臨界水とは、水の超臨界点より僅かながら温度又は圧力が低い状態にある水を指しており、例えば、温度でいうと150℃以上の領域から臨界温度374℃までというように、その温度が水の臨界温度より低く設定し、圧力は水の臨界圧力22MPa又はそれ以上の圧力である領域とする方法が挙げられる。 In the second production method according to the present invention, the water in a high temperature and high pressure state is a high temperature and high pressure water in a subcritical or supercritical state, that is, sub-critical water (sub-CW), or super Super-critical water (SCW). Since the critical temperature of water is 374.2 ° C. and the critical pressure of water is 22.12 MPa, the reaction temperature and reaction pressure can be selected with reference to this. Specifically, subcritical water refers to water in which the temperature or pressure is slightly lower than the supercritical point of water. For example, in terms of temperature, from a region of 150 ° C. or higher to a critical temperature of 374 ° C. Thus, there is a method in which the temperature is set lower than the critical temperature of water, and the pressure is set to a region where the critical pressure of water is 22 MPa or higher.
 一つの具体的な態様では、反応を行う系(例えば、恒温ゾーンにあるリアクター(反応器))に供給する第2シェル層Aまで形成した二酸化バナジウム粒子を含む原料混合液の圧力を、水の臨界圧力22.12MPa又はそれ以上のもの(例えば、30MPa又は35MPaなど)とし、おおよそ150℃にまで加温されたといったように所定反応温度近傍にまで加熱した第2シェル層Aまで形成した二酸化バナジウム粒子を含む原料混合液を、反応温度として250℃になるように設定されたリアクター(亜臨界水下での反応)に供給、又は、反応温度として390℃になるように設定されたリアクター(超臨界水下での反応)に供給するといった方法で、反応場である亜臨界又は超臨界状態にある高温高圧水が存在する条件を達成できる。 In one specific embodiment, the pressure of the raw material mixture containing vanadium dioxide particles formed up to the second shell layer A supplied to a reaction system (for example, a reactor (reactor) in a constant temperature zone) is Vanadium dioxide having a critical pressure of 22.12 MPa or higher (for example, 30 MPa or 35 MPa) and formed up to the second shell layer A heated to the vicinity of a predetermined reaction temperature, such as heated to approximately 150 ° C. The raw material mixture containing particles is supplied to a reactor (reaction under subcritical water) set to a reaction temperature of 250 ° C., or a reactor (super-reactor) set to a reaction temperature of 390 ° C. To the reaction under critical water), the conditions under which high-temperature and high-pressure water in the subcritical or supercritical state, which is the reaction field, exist can be achieved. .
 典型的な亜臨界水の領域は、圧力が臨界圧力22MPa又はそれ以上であり、かつ、180℃以上の温度から臨界温度374℃の領域、又は、200℃以上の温度から臨界温度374℃の領域、又は、250℃以上の温度から臨界温度374℃の領域、300℃以上の温度から臨界温度374℃の領域などが挙げられる。もちろん、亜臨界水の領域は、10.0MPa以上の圧力から臨界圧力22MPaの領域、又は、15.0MPa以上の圧力から臨界圧力22MPaの領域、又は、18.0MPa以上の圧力から臨界圧力22MPaの領域、又は、20.0MPa以上の圧力から臨界圧力22MPaの領域なども含まれてよい。 A typical subcritical water region has a critical pressure of 22 MPa or higher, and a region of 180 ° C. or higher to a critical temperature of 374 ° C., or a temperature of 200 ° C. or higher to a critical temperature of 374 ° C. Or a region from a temperature of 250 ° C. or higher to a critical temperature of 374 ° C., a region of 300 ° C. or higher to a critical temperature of 374 ° C., or the like. Of course, the subcritical water region has a pressure range of 10.0 MPa or higher to a critical pressure of 22 MPa, or a pressure range of 15.0 MPa or higher to a critical pressure of 22 MPa, or a pressure of 18.0 MPa or higher to a critical pressure of 22 MPa. A region or a region from a pressure of 20.0 MPa or more to a critical pressure of 22 MPa may also be included.
 本発明で用いられる第2シェル層A(4A)まで形成した二酸化バナジウム粒子の前処理においては、その処理温度としては、例えば、150~374℃、好ましくは200~374℃、より好ましくは230~374℃、さらに好ましくは280~360℃である。 In the pretreatment of the vanadium dioxide particles formed up to the second shell layer A (4A) used in the present invention, the treatment temperature is, for example, 150 to 374 ° C., preferably 200 to 374 ° C., more preferably 230 to It is 374 ° C, more preferably 280 to 360 ° C.
 また、その処理圧力としては、例えば、15~50MPa、好ましくは18~45MPa、より好ましくは20~40MPa、さらに好ましくは20~35MPaである。典型的な場合では、処理温度としては280~320℃MPの範囲内であり、処理圧力としては、20~25MPaの範囲内である。 The processing pressure is, for example, 15 to 50 MPa, preferably 18 to 45 MPa, more preferably 20 to 40 MPa, and further preferably 20 to 35 MPa. In a typical case, the processing temperature is in the range of 280 to 320 ° C. and the processing pressure is in the range of 20 to 25 MPa.
 また、第2シェル層A(4A)まで形成した二酸化バナジウム粒子上へ第3シェル層A(5A)を形成する反応においては、反応温度としては、例えば、375~500℃の範囲内、好ましくは375~450℃の範囲内、より好ましくは375~420℃の範囲内、さらに好ましくは375~400℃の範囲内である。例えば、条件の一例としては、反応温度が375~395℃の範囲内、好ましくは375~390℃の範囲内、より好ましくは375~385℃の範囲内、特に好ましくは375~380℃の範囲内で、その反応圧力としては、例えば、20~50MPaの範囲内、好ましくは21~45MPaの範囲内、より好ましくは22~40MPaの範囲内、さらに好ましくは22~35MPaの範囲内である。 In the reaction for forming the third shell layer A (5A) on the vanadium dioxide particles formed up to the second shell layer A (4A), the reaction temperature is, for example, in the range of 375 to 500 ° C., preferably It is within the range of 375 to 450 ° C, more preferably within the range of 375 to 420 ° C, and even more preferably within the range of 375 to 400 ° C. For example, as an example of the conditions, the reaction temperature is in the range of 375 to 395 ° C., preferably in the range of 375 to 390 ° C., more preferably in the range of 375 to 385 ° C., and particularly preferably in the range of 375 to 380 ° C. The reaction pressure is, for example, in the range of 20 to 50 MPa, preferably in the range of 21 to 45 MPa, more preferably in the range of 22 to 40 MPa, and still more preferably in the range of 22 to 35 MPa.
 第3シェル層A(5A)を形成する方法としては、バッチ式(回分式)、セミバッチ式(半回分式)で行うこともできるが、好ましくは耐圧性の管型又は槽型などのフロー型リアクター(流通型反応器)を用いる連続法を使用すること、特には管型のリアクターを利用する連続法を使用することが好ましい。 As a method for forming the third shell layer A (5A), a batch type (batch type) or a semi-batch type (semi-batch type) can be used, but preferably a flow type such as a pressure resistant tube type or a tank type. It is preferable to use a continuous method using a reactor (flow reactor), particularly a continuous method using a tubular reactor.
 以下に、第2の製造方法に適用可能な典型的なフロー型リアクターの構成を、図を交えて説明する。 Hereinafter, the configuration of a typical flow reactor applicable to the second manufacturing method will be described with reference to the drawings.
 図4は、実施態様1に係る二酸化バナジウム含有粒子(1b)において、第2の製造方法に適用可能なフロー型リアクターの一例を示す概略構成図である。 FIG. 4 is a schematic configuration diagram showing an example of a flow reactor applicable to the second production method in the vanadium dioxide-containing particles (1b) according to Embodiment 1.
 図4に示すように、フロー型のリアクター(100)は、蒸留水、脱イオン水、又は純水等の予熱水(102、高圧原料水ともいう。)をあらかじめ加温した上で溜めておく予熱水槽(熱水供給源槽(脱イオン熱水供給槽))から亜臨界水又は超臨界水となる水を供給する水供給路(105)と、第2シェル層A(4A)まで形成した二酸化バナジウム粒子を含む高圧原料液(101)を供給する原料供給路(107)を備えており、該高圧原料液(101)は、ヒーター部(H)を通ることにより、前処理を受けた後、水供給路(105)に合流する。次に、加熱した高圧原料液(101)と高温高圧水(102)との混合液は、シェル形成部(M)で、疎水性有機化合物供給路(106)より供給される疎水性有機化合物溶液(103)と合流し、高温高圧下での二酸化バナジウム粒子の第2シェル層A(4A)上に疎水性有機化合物による第3シェル層A(5A)が形成される。 As shown in FIG. 4, the flow-type reactor (100) is preheated with preheated water (102, also referred to as high-pressure raw material water) such as distilled water, deionized water, or pure water, and then stored. A water supply path (105) for supplying water to be subcritical water or supercritical water from the preheating water tank (hot water supply source tank (deionized hot water supply tank)) and the second shell layer A (4A) were formed. A raw material supply path (107) for supplying a high-pressure raw material liquid (101) containing vanadium dioxide particles is provided, and the high-pressure raw material liquid (101) is subjected to pretreatment by passing through a heater section (H). , Joins the water supply path (105). Next, the mixed liquid of the heated high-pressure raw material liquid (101) and the high-temperature high-pressure water (102) is a hydrophobic organic compound solution supplied from the hydrophobic organic compound supply path (106) in the shell forming part (M). The third shell layer A (5A) made of a hydrophobic organic compound is formed on the second shell layer A (4A) of the vanadium dioxide particles under high temperature and high pressure.
 なお、疎水性有機化合物溶液(103)は、本発明の特徴を有する疎水性化合物とそれを溶解する有機溶媒で構成されるが、当該有機溶媒としては、疎水性化合物を溶解するものであれば特に制限はないが、例えば、アルコール類、ケトン類、エステル類、芳香族類が好ましい。具体的には、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、アセトン、メチルエチルケトン(略称:MEK)、メチルイソブチルケトン(略称:MIBK)、シクロヘキサノン、シクロペンタノン、酢酸エチル(略称:EA)、酢酸ブチル(略称:BA)、トルエン、キシレン等が挙げられる。 The hydrophobic organic compound solution (103) is composed of a hydrophobic compound having the characteristics of the present invention and an organic solvent that dissolves the hydrophobic compound, as long as the organic solvent dissolves the hydrophobic compound. Although there is no particular limitation, for example, alcohols, ketones, esters, and aromatics are preferable. Specifically, methanol, ethanol, propanol, isopropanol, butanol, acetone, methyl ethyl ketone (abbreviation: MEK), methyl isobutyl ketone (abbreviation: MIBK), cyclohexanone, cyclopentanone, ethyl acetate (abbreviation: EA), butyl acetate ( Abbreviations: BA), toluene, xylene and the like.
 上記水供給路(105)、原料供給路(107)、及び疎水性有機化合物供給路(106)には、それぞれ水を亜臨界圧力や臨界圧力以上に加圧するための加圧手段、すなわち、高圧ポンプ(P)と、この高圧水などを亜臨界温度以上又は臨界温度以上の所定の温度に加熱するための加熱手段(H)、すなわち、加熱炉(ヒーター)とが順に設けてある。 In the water supply path (105), the raw material supply path (107), and the hydrophobic organic compound supply path (106), a pressurizing means for pressurizing water to a subcritical pressure or a critical pressure or higher, that is, a high pressure A pump (P) and heating means (H) for heating the high-pressure water or the like to a predetermined temperature equal to or higher than the subcritical temperature or higher than the critical temperature, that is, a heating furnace (heater) are sequentially provided.
 上記合流部で混合して得られた混合物は、シェル形成部(M)の等温ゾーンに配置されたリアクターに導入されることになる。リアクターは、溶融塩浴ジャケットなどで覆われて、恒温ゾーンとなっており、所定の反応温度となるように調整されている。温度は、例えば、熱電対を備えた温度センサーなどによりモニターできる。次に、生成したコア・シェル型の二酸化バナジウム含有粒子(104)は、冷却部(C、水冷ジャケット)、回収部(G)、圧力調整弁、例えば、背圧弁(V)を通り、二酸化バナジウム含有粒子貯留槽へと移動する。 The mixture obtained by mixing in the above-mentioned merging section is introduced into a reactor arranged in the isothermal zone of the shell forming section (M). The reactor is covered with a molten salt bath jacket or the like, has a constant temperature zone, and is adjusted to have a predetermined reaction temperature. The temperature can be monitored by, for example, a temperature sensor equipped with a thermocouple. Next, the generated core-shell type vanadium dioxide-containing particles (104) pass through the cooling part (C, water cooling jacket), the recovery part (G), the pressure regulating valve, for example, the back pressure valve (V), and vanadium dioxide. Move to the contained particle storage tank.
 本発明に係る製造方法に従い第3シェル層A(5A)まで形成したコア・シェル型の二酸化バナジウム含有粒子(1b)は、反応後、通常、室温にまで冷却される。調製した二酸化バナジウム含有粒子(1b)を反応混合物から分離する方法は、公知の方法を用いてもよく、物理的な方法や化学的な方法を利用して行うこともできる。本発明で得られる二酸化バナジウム含有粒子は、その表面が疎水性有機化合物で修飾されているので、その修飾基により様々な物性を付与可能であり、当該修飾基の性質を利用して単離することもできる。 The core-shell type vanadium dioxide-containing particles (1b) formed up to the third shell layer A (5A) according to the production method of the present invention are usually cooled to room temperature after the reaction. As a method for separating the prepared vanadium dioxide-containing particles (1b) from the reaction mixture, a known method may be used, or a physical method or a chemical method may be used. Since the surface of the vanadium dioxide-containing particles obtained by the present invention is modified with a hydrophobic organic compound, various physical properties can be imparted by the modifying group, and they are isolated by utilizing the properties of the modifying group. You can also.
 得られた二酸化バナジウム含有粒子は、適宜、必要に応じて、濾過処理することにより、凝集物を除去することができるし、さらに、遠心処理、デカンテーション処理、蒸留水、純水などによる洗浄処理、希KOH水溶液などの希アルカリ水溶液などを使用し再分散化処理と遠心分離処理を繰り返す、また限外濾過を施すなどして金属酸化物粒子を洗浄できる。こうして得られる本発明の金属酸化物粒子は、既知の方法で乾燥し、例えば、凍結乾燥することにより、粉末の形で取得することもできる。 The obtained vanadium dioxide-containing particles can be appropriately subjected to filtration treatment to remove agglomerates, and are further subjected to centrifugal treatment, decantation treatment, washing treatment with distilled water, pure water, and the like. The metal oxide particles can be washed by using a dilute alkaline aqueous solution such as a dilute KOH aqueous solution, repeating the redispersion treatment and the centrifugal separation treatment, or performing ultrafiltration. The metal oxide particles of the present invention thus obtained can be obtained in the form of a powder by drying by a known method, for example, freeze-drying.
 〔実施態様2の二酸化バナジウム含有粒子の構造〕
 本発明の二酸化バナジウム含有粒子(1)の実施態様2は、図2で示すように、コア部(2)に二酸化バナジウム粒子を有し、当該二酸化バナジウム粒子の表面上に、少なくとも1層のアモルファス状金属酸化物を含有する第1シェル層B(3B)と、疎水性有機化合物を含有する第2シェル層B(4B)とをこの順で有する構成である。
[Structure of Vanadium Dioxide-Containing Particles of Embodiment 2]
Embodiment 2 of the vanadium dioxide-containing particles (1) of the present invention has vanadium dioxide particles in the core part (2), as shown in FIG. 2, and at least one layer of amorphous on the surface of the vanadium dioxide particles. The first shell layer B (3B) containing the metal oxide and the second shell layer B (4B) containing the hydrophobic organic compound are arranged in this order.
 (二酸化バナジウム粒子(コア粒子)の構成と製造方法)
 本発明の二酸化バナジウム含有粒子の実施態様2に適用するコア粒子を構成する二酸化バナジウム粒子の構成、添加剤及び製造方法は、前述でその詳細を説明した実施態様1のコア粒子と同様のものを適用することができる。したがって、ここでは、その詳細な記載は省略する。
(Configuration and production method of vanadium dioxide particles (core particles))
The composition, additives, and manufacturing method of the vanadium dioxide particles constituting the core particles applied to the embodiment 2 of the vanadium dioxide-containing particles of the present invention are the same as those of the embodiment 1 described in detail above. Can be applied. Therefore, detailed description thereof is omitted here.
 (第1シェル層B)
 実施態様2に係る二酸化バナジウム含有粒子を構成する第1シェル層Bは、アモルファス状金属酸化物を含有することを特徴とする。
(First shell layer B)
The first shell layer B constituting the vanadium dioxide-containing particles according to Embodiment 2 contains an amorphous metal oxide.
 実施態様2に係る第1シェル層Bの形成に用いるアモルファス状金属酸化物は、先にその詳細を説明した実施態様1に係る二酸化バナジウム含有粒子の第2シェル層Aの形成に用いるアモルファス状金属酸化物と同様の化合物を挙げることができる。また、第1シェル層Bの形成方法も、実施態様1に記載した二酸化バナジウム含有粒子の第2シェル層Aの形成方法と同様の方法で形成することができる。 The amorphous metal oxide used for forming the first shell layer B according to Embodiment 2 is an amorphous metal oxide used for forming the second shell layer A of vanadium dioxide-containing particles according to Embodiment 1 described in detail above. The compound similar to an oxide can be mentioned. Moreover, the formation method of the 1st shell layer B can also be formed by the method similar to the formation method of the 2nd shell layer A of the vanadium dioxide containing particle | grains described in Embodiment 1. FIG.
 (第2シェル層B)
 実施態様2に係る二酸化バナジウム含有粒子においては、上記第1シェル層B(3B)上に、更に、疎水性有機化合物を含有する第2シェル層B(4B)を形成することを特徴とし、このような構成とすることにより、高い繰り返し耐性を得ることができる。
(Second shell layer B)
In the vanadium dioxide-containing particles according to Embodiment 2, a second shell layer B (4B) containing a hydrophobic organic compound is further formed on the first shell layer B (3B). By adopting such a configuration, high repetition resistance can be obtained.
 実施態様2に係る第2シェル層B(4B)の形成に用いる疎水性有機化合物は、先のその詳細を説明した実施態様1の二酸化バナジウム含有粒子の第3シェル層A(5A)を構成するのに用いる疎水性有機化合物と同様の化合物を挙げることができる。また、第2シェル層B(4B)の形成方法も、実施態様1に記載した二酸化バナジウム含有粒子の第3シェル層A(5A)の形成方法と同様の方法で形成することができる。 The hydrophobic organic compound used to form the second shell layer B (4B) according to Embodiment 2 constitutes the third shell layer A (5A) of the vanadium dioxide-containing particles of Embodiment 1 described in detail above. Examples thereof include the same compounds as the hydrophobic organic compound used in the above. Moreover, the formation method of 2nd shell layer B (4B) can also be formed by the method similar to the formation method of 3rd shell layer A (5A) of the vanadium dioxide containing particle | grains described in Embodiment 1. FIG.
 (実施態様2に係るサーモクロミック性二酸化バナジウム含有粒子の製造方法)
 実施態様2に係るサーモクロミック性二酸化バナジウム含有粒子については、先にその詳細を説明した、実施態様1に係るサーモクロミック性二酸化バナジウム含有粒子の製造方法を、特に制限なく適用することができる。
(Method for producing thermochromic vanadium dioxide-containing particles according to Embodiment 2)
About the thermochromic vanadium dioxide containing particle | grains which concern on Embodiment 2, the manufacturing method of the thermochromic vanadium dioxide containing particle | grains which demonstrated the detail previously and which concerns on Embodiment 1 can be applied without a restriction | limiting especially.
 《サーモクロミックフィルム》
 本発明のサーモクロミックフィルムは、少なくとも実施態様1又は実施態様2のサーモクロミック性二酸化バナジウム含有粒子を含有することを特徴とし、さらにバインダー樹脂として疎水性バインダーを含有することが好ましい。
《Thermochromic film》
The thermochromic film of the present invention is characterized by containing at least the thermochromic vanadium dioxide-containing particles of Embodiment 1 or Embodiment 2, and further preferably contains a hydrophobic binder as a binder resin.
 本発明でいうサーモクロミックフィルムとは、環境の温度変化に応じて光学特性が可逆的に変化する特性を有するフィルムである。 The thermochromic film referred to in the present invention is a film having a characteristic that its optical characteristics reversibly change according to environmental temperature changes.
 〔サーモクロミックフィルムの構成〕
 本発明のサーモクロミックフィルムの代表的な構成例について、図を参照して説明する。
[Configuration of thermochromic film]
The typical structural example of the thermochromic film of this invention is demonstrated with reference to figures.
 図5は、本発明のサーモクロミックフィルムの基本的な構成の一例で、透明基材上に、光学機能層が形成されている構成を示す概略断面図である。 FIG. 5 is an example of a basic configuration of the thermochromic film of the present invention, and is a schematic sectional view showing a configuration in which an optical functional layer is formed on a transparent substrate.
 図5に示すサーモクロミックフィルム(11)は、透明基材(12)上に、光学機能層(13)を有している構成である。この光学機能層(13)では、疎水性バインダー(B1)中に、本発明のコア・シェル型のサーモクロミック性二酸化バナジウム含有粒子が分散された状態で存在している。二酸化バナジウム含有粒子としては、二酸化バナジウム含有粒子がそれぞれ独立して存在している一次粒子(VO)と、2個以上の二酸化バナジウム含有粒子の集合体(凝集体ともいう)を構成している、二次粒子(VO)が存在している。本発明では、2個以上の二酸化バナジウム含有粒子の集合体を総括して二次粒子と称するが、必要に応じ二次粒子凝集体、又は二次凝集粒子ともいう。 The thermochromic film (11) shown in FIG. 5 has a configuration having an optical functional layer (13) on a transparent substrate (12). In the optical functional layer (13), the core-shell type thermochromic vanadium dioxide-containing particles of the present invention are present in a dispersed state in the hydrophobic binder (B1). As vanadium dioxide-containing particles, primary particles (VO S ) in which vanadium dioxide-containing particles exist independently and aggregates (also referred to as aggregates) of two or more vanadium dioxide-containing particles are formed. Secondary particles (VO M ) are present. In the present invention, an aggregate of two or more vanadium dioxide-containing particles is collectively referred to as a secondary particle, but is also referred to as a secondary particle aggregate or a secondary aggregate particle as necessary.
 本発明に係る光学機能層(13)中においては、二酸化バナジウム含有粒子の一次粒子(VO)及び二次粒子(VO)の全粒子による数平均粒子径が、200nm以下であることが好ましい。 In the optical functional layer (13) according to the present invention, the number average particle diameter of all the primary particles (VO S ) and secondary particles (VO M ) of the vanadium dioxide-containing particles is preferably 200 nm or less. .
 本発明において、光学機能層中における二酸化バナジウム含有粒子の平均粒子径は、以下の方法に従って求めることができる。 In the present invention, the average particle size of the vanadium dioxide-containing particles in the optical functional layer can be determined according to the following method.
 はじめに、サーモクロミックフィルム(11)を構成する光学機能層(13)の側面をミクロトームによりトリミングして、図5に示すような断面を露出させる。次いで、露出した断面を、透過型電子顕微鏡(TEM)を用いて、倍率として1万~10万倍で撮影する。撮影した断面の一定領域内に存在している全ての二酸化バナジウム含有粒子(一次粒子及び二次粒子)について、その粒子径を測定する。この時、測定する二酸化バナジウム含有粒子は、100~200個の範囲内であることが好ましい。撮影した粒子には、図5に示すように単一粒子である一次粒子(VO)と、2粒子以上の凝集体である二次粒子(VO)とが含まれており、二酸化バナジウム含有粒子の一次粒子(VO)の粒子径は、各独立している粒子の直径を測定する。もし、球形でない場合には、粒子の投影面積を円換算し、その直径をもって粒子径とする。一方、2個以上の粒子が凝集して存在している二酸化バナジウム含有粒子の二次粒子(VO)については、凝集体全体の投影面積を求めたのち、投影面積を円換算し、その直径をもって粒子径とする。 First, the side surface of the optical functional layer (13) constituting the thermochromic film (11) is trimmed with a microtome to expose a cross section as shown in FIG. Next, the exposed cross section is photographed at a magnification of 10,000 to 100,000 times using a transmission electron microscope (TEM). The particle diameters of all the vanadium dioxide-containing particles (primary particles and secondary particles) present in a certain region of the photographed cross section are measured. At this time, the number of vanadium dioxide-containing particles to be measured is preferably in the range of 100 to 200. As shown in FIG. 5, the photographed particles include primary particles (VO S ) that are single particles and secondary particles (VO M ) that are aggregates of two or more particles, and contain vanadium dioxide. The particle diameter of the primary particles (VO S ) of the particles is the diameter of each independent particle. If it is not spherical, the projected area of the particle is converted into a circle, and the diameter is taken as the particle diameter. On the other hand, for the secondary particles (VO M ) of vanadium dioxide-containing particles in which two or more particles are aggregated, the projected area of the entire aggregate is obtained, the projected area is converted into a circle, and the diameter Is the particle diameter.
 以上のようにして求めた一次粒子(VO)と二次粒子(VO)の各直径について、数平均直径を求める。切り出した断面部には粒子分布のバラつきがあるため、このような測定を、異なる断面領域10か所について行い、全体の数平均直径を求め、これを本発明でいう数平均粒子径(nm)とした。 For each diameter of the above manner determined primary particles (VO S) and the secondary particles (VO M), determining the number average diameter. Since the cut-out cross-sectional portion has a variation in particle distribution, such measurement is performed for 10 different cross-sectional regions to obtain the whole number-average diameter, which is referred to in the present invention as the number-average particle size (nm). It was.
 本発明のサーモクロミックフィルムにおいては、前記光学機能層に加えて、700~1000nmの光波長範囲内の少なくとも一部を遮蔽する機能を有する近赤外光遮蔽層を有することが好ましい構成の一つである。 The thermochromic film of the present invention preferably has a near-infrared light shielding layer having a function of shielding at least part of the light wavelength range of 700 to 1000 nm in addition to the optical functional layer. It is.
 また、本発明のサーモクロミックフィルムの好ましい態様の他の構成は、光学機能層が樹脂基材機能を兼ねたハイブリッド構成である。 Further, another configuration of the preferred embodiment of the thermochromic film of the present invention is a hybrid configuration in which the optical functional layer also functions as a resin base material.
 図6は、本発明のサーモクロミックフィルム(11)の基本的な構成の他の一例を示す概略断面図である。図5で示すサーモクロミックフィルムでは、透明基材(12)と光学機能層(13)が独立している構成を有しているのに対し、図6で示すサーモクロミックフィルムは、それぞれが同一層で構成されている態様であるハイブリッド光学機能層(12+13)を有し、透明基材を構成しているポリマーに、疎水性バインダー(B2)を用い、当該疎水性バインダー(B2)中に、二酸化バナジウム含有粒子が独立して存在している二酸化バナジウム含有粒子の一次粒子(VO)と、2個以上の二酸化バナジウム含有粒子の二次粒子(VO)が分散されて、単層で透明基材機能を兼ね備えたハイブリッド光学機能層(12+13)を形成している。 FIG. 6: is a schematic sectional drawing which shows another example of the basic composition of the thermochromic film (11) of this invention. The thermochromic film shown in FIG. 5 has a configuration in which the transparent substrate (12) and the optical functional layer (13) are independent, whereas the thermochromic film shown in FIG. A hydrophobic binder (B2) is used as a polymer that has a hybrid optical functional layer (12 + 13) that is an embodiment of the above-described structure and constitutes a transparent substrate, and in the hydrophobic binder (B2), carbon dioxide is added. A primary layer (VO S ) of vanadium dioxide-containing particles in which vanadium-containing particles exist independently and a secondary particle (VO M ) of two or more vanadium dioxide-containing particles are dispersed to form a transparent layer in a single layer. A hybrid optical functional layer (12 + 13) having a material function is formed.
 図7A~図7Cに示すサーモクロミックフィルム(11)は、それぞれ前述の図5に示す構成を基本とし、透明基材(12)上に、光学機能層(13)とともに、更に近赤外光遮蔽層(14)を有するサーモクロミックフィルム(11)で、その代表的な層配置を示す概略断面図である。 The thermochromic film (11) shown in FIG. 7A to FIG. 7C is based on the structure shown in FIG. 5 described above, and on the transparent substrate (12), together with the optical functional layer (13), further shields against near infrared light. It is a thermochromic film (11) which has a layer (14), and is a schematic sectional drawing which shows the typical layer arrangement | positioning.
 図7Aで示すサーモクロミックフィルム(11)は、光線入射側(L)より、光学機能層(13)、近赤外光遮蔽層(14)及び透明基材(12)を、順に積層配置されている構成である。 The thermochromic film (11) shown in FIG. 7A has an optical functional layer (13), a near-infrared light shielding layer (14), and a transparent substrate (12) laminated in this order from the light incident side (L). It is the composition which is.
 図7Bで示すサーモクロミックフィルム(11)では、透明基材(12)と近赤外光遮蔽層(14)との間に、本発明に係る光学機能層(13)を配置した例であり、図7Cで示すサーモクロミックフィルム(11)は、透明基材(12)の光線入射側(L)に近赤外光遮蔽層(14)を配置し、透明基材(12)の近赤外光遮蔽層(14)を設けた面とは反対側の面に本発明に係る光学機能層(13)を配置した例である。 The thermochromic film (11) shown in FIG. 7B is an example in which the optical functional layer (13) according to the present invention is disposed between the transparent substrate (12) and the near infrared light shielding layer (14). The thermochromic film (11) shown in FIG. 7C has a near-infrared light shielding layer (14) on the light incident side (L) of the transparent substrate (12), and the near-infrared light of the transparent substrate (12). This is an example in which the optical functional layer (13) according to the present invention is disposed on the surface opposite to the surface on which the shielding layer (14) is provided.
 本発明のサーモクロミックフィルムとしては、上記説明した各構成層の他に、必要に応じて、各種機能層を設けてもよい。 As the thermochromic film of the present invention, various functional layers may be provided as necessary in addition to the constituent layers described above.
 本発明のサーモクロミックフィルムの総厚としては、特に制限はないが、10~1500μmの範囲内であり、好ましくは20~1000μmの範囲内であり、さらに好ましくは30~500μmの範囲内であり、特に好ましくは40~300μmの範囲内である。 The total thickness of the thermochromic film of the present invention is not particularly limited, but is in the range of 10 to 1500 μm, preferably in the range of 20 to 1000 μm, more preferably in the range of 30 to 500 μm, Particularly preferably, it is in the range of 40 to 300 μm.
 本発明のサーモクロミックフィルムの光学特性として、JIS R3106(1998)で測定される可視光透過率としては、好ましくは30%以上であり、より好ましくは50%以上であり、さらに好ましくは60%以上である。 As the optical characteristics of the thermochromic film of the present invention, the visible light transmittance measured by JIS R3106 (1998) is preferably 30% or more, more preferably 50% or more, and further preferably 60% or more. It is.
 〔サーモクロミックフィルムの各構成材料〕
 本発明のサーモクロミックフィルム(11)は、図7A~図7Cで示したように、透明基材(12)、二酸化バナジウム含有粒子と、バインダー樹脂を含有する光学機能層(13)、及び700~1000nmの光波長範囲内の少なくとも一部を遮蔽する機能を有する近赤外光遮蔽層(14)を有する構成であることが好ましい。
[Component materials of thermochromic film]
As shown in FIGS. 7A to 7C, the thermochromic film (11) of the present invention comprises a transparent substrate (12), an optical functional layer (13) containing vanadium dioxide-containing particles, a binder resin, and 700- A configuration having a near-infrared light shielding layer (14) having a function of shielding at least part of the light wavelength range of 1000 nm is preferable.
 以下、本発明のサーモクロミックフィルムの構成要素である光学機能層、必要により設ける樹脂基材、近赤外光遮蔽層の詳細について説明する。 Hereinafter, details of the optical functional layer, which is a component of the thermochromic film of the present invention, a resin base material provided if necessary, and the near-infrared light shielding layer will be described.
 (光学機能層)
 本発明に係る光学機能層は、主には、本発明の二酸化バナジウム含有粒子と、バインダー樹脂とを含有している。光学機能層における二酸化バナジウム含有粒子の濃度としては、特に制限はないが、おおむね光学機能層全質量に対し、5~60質量%の範囲内であることが好ましく、より好ましくは5~40質量%の範囲内であり、さらに好ましくは5~30質量%の範囲内である。
(Optical function layer)
The optical functional layer according to the present invention mainly contains the vanadium dioxide-containing particles of the present invention and a binder resin. The concentration of the vanadium dioxide-containing particles in the optical functional layer is not particularly limited, but is generally preferably in the range of 5 to 60% by mass, more preferably 5 to 40% by mass with respect to the total mass of the optical functional layer. And more preferably in the range of 5 to 30% by mass.
 本発明のサーモクロミックフィルムにおいては、光学機能層中における二酸化バナジウム含有粒子の一次粒子の粒子個数比率が、一次粒子及び二次粒子の総粒子数の30個数%以上であることが好ましく、さらに好ましくは50個数%以上であり、特に好ましくは70個数%以上である。理想的な上限は100個数%であるが、現実的な最大値としては、95個数%以下である。上記粒子個数比率の測定法は、前記の二酸化バナジウム含有粒子の平均粒子径を測定する方法と同様の方法で求めることができる。 In the thermochromic film of the present invention, the primary particle number ratio of the vanadium dioxide-containing particles in the optical functional layer is preferably 30% by number or more of the total number of primary particles and secondary particles, and more preferably. Is 50% by number or more, and particularly preferably 70% by number or more. The ideal upper limit is 100% by number, but the practical maximum value is 95% by number or less. The method for measuring the particle number ratio can be obtained by the same method as the method for measuring the average particle size of the vanadium dioxide-containing particles.
 〈親水性バインダー〉
 本発明のサーモクロミックフィルムでは、本発明に係る二酸化バナジウム含有粒子を保持するバインダーとして、親水性バインダーを適用することができる。
<Hydrophilic binder>
In the thermochromic film of the present invention, a hydrophilic binder can be applied as a binder for holding the vanadium dioxide-containing particles according to the present invention.
 本発明でいう親水性バインダーとは、100gの水に対し、液温25℃での溶解量が1.0g以上である樹脂であると定義する。 The hydrophilic binder referred to in the present invention is defined as a resin having a dissolution amount of 1.0 g or more at a liquid temperature of 25 ° C. with respect to 100 g of water.
 本発明に適用可能な親水性バインダーとしては、水溶性高分子を適用することが好ましい。本発明に適用可能な親水性ポリマーの具体例としては、ポリビニルアルコール(略称:PVA)、ポリエチレンイミン、ゼラチン類(例えば、特開2006-343391号公報記載のゼラチンを代表とする親水性高分子等。)、デンプン、グアーガム、アルギン酸塩、メチルセルロース、エチルセルロース、ヒドロキシアルキルセルロース、カルボキシアルキルセルロース、ポリ(メタ)アクリルアミド、ポリエチレンイミン、ポリエチレングリコール、ポリアルキレンオキサイド、ポリビニルピロリドン(略称:PVP)、ポリビニルメチルエーテル、カルボキシビニルポリマー、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウム、ナフタリンスルホン酸縮合物や、アルブミン、カゼイン等のタンパク質、アルギン酸ソーダ、デキストリン、デキストラン、デキストラン硫酸塩等の糖誘導体などを挙げることができる。 As the hydrophilic binder applicable to the present invention, it is preferable to apply a water-soluble polymer. Specific examples of hydrophilic polymers applicable to the present invention include polyvinyl alcohol (abbreviation: PVA), polyethyleneimine, gelatins (for example, hydrophilic polymers represented by gelatin described in JP-A-2006-343391, etc.) ), Starch, guar gum, alginate, methyl cellulose, ethyl cellulose, hydroxyalkyl cellulose, carboxyalkyl cellulose, poly (meth) acrylamide, polyethyleneimine, polyethylene glycol, polyalkylene oxide, polyvinyl pyrrolidone (abbreviation: PVP), polyvinyl methyl ether, Carboxyvinyl polymer, poly (meth) acrylic acid, sodium poly (meth) acrylate, naphthalene sulfonic acid condensate, proteins such as albumin and casein, sodium alginate Dextrin, dextran, such as sugar derivatives such as dextran sulfate and the like.
 〈疎水性バインダー〉
 本発明のサーモクロミックフィルムは、二酸化バナジウム含有粒子を保持することを目的で、バインダーとして疎水性バインダーを適用することが、特に好ましい。
<Hydrophobic binder>
In the thermochromic film of the present invention, it is particularly preferable to apply a hydrophobic binder as a binder for the purpose of holding vanadium dioxide-containing particles.
 本発明でいう疎水性バインダーとは、100gの水に対し、液温25℃での溶解量が1.0g未満である樹脂をいい、さらに好ましくは、溶解量が0.5g未満の樹脂であり、さらに好ましくは、溶解量が0.25g未満の樹脂である。 The hydrophobic binder as used in the present invention refers to a resin having a dissolution amount of less than 1.0 g at a liquid temperature of 25 ° C. with respect to 100 g of water, and more preferably a resin having a dissolution amount of less than 0.5 g. More preferably, the resin has a dissolution amount of less than 0.25 g.
 本発明に適用可能な疎水性バインダーとしては、疎水性ポリマー、又は疎水性バインダーのモノマーを用いて硬化処理工程でポリマー化した樹脂、であることが好ましい。 The hydrophobic binder applicable to the present invention is preferably a hydrophobic polymer or a resin polymerized in the curing process using a hydrophobic binder monomer.
 本発明に適用可能な疎水性ポリマーとしては、例えば、ポリエチレン(略称:PE)、ポリプロピレン(略称:PP)、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)等のオレフィン系ポリマー、アクリル酸エステル系共重合体;塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系ポリマー;ポリスチレン(略称:PS)、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレンブロック共重合体等のスチレン系ポリマー;ポリエチレンテレフタレート(略称:PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)等のポリエステル;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール(PA);ポリカーボネート(略称:PC);ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリサルホン;ポリエーテルサルホン;ポリオキシベンジレン;ポリアミドイミド;ポリブタジエン系ゴム、アクリル系ゴムを配合したABS樹脂(アクリロニトリル-ブタジエン-スチレン樹脂)やASA樹脂(アクリロニトリル-スチレン-アクリレート樹脂)、セルロース系樹脂、ブチラール系樹脂等が挙げられる。 Examples of the hydrophobic polymer applicable to the present invention include olefin polymers such as polyethylene (abbreviation: PE), polypropylene (abbreviation: PP), ethylene-propylene copolymer, and poly (4-methyl-1-pentene). Acrylate copolymers; halogen-containing polymers such as vinyl chloride and chlorinated vinyl resins; polystyrene (abbreviation: PS), styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene- Styrenic polymers such as styrene block copolymers; Polyesters such as polyethylene terephthalate (abbreviation: PET), polybutylene terephthalate, polyethylene naphthalate (PEN); Polyamides such as nylon 6, nylon 66, nylon 610; Polyacetal (PA); Polycarbonate (abbreviation: PC); Polyphenylene oxide; Polyphenylene sulfide; Polyetheretherketone; Polysulfone; Polyethersulfone; Polyoxybenzylene; Polyamideimide; ABS resin (acrylonitrile-butadiene blended with polybutadiene rubber and acrylic rubber) -Styrene resin), ASA resin (acrylonitrile-styrene-acrylate resin), cellulose resin, butyral resin, and the like.
 また、本発明に適用可能な疎水性バインダーとして、疎水性バインダーのモノマーを用い、硬化処理工程でポリマー化する樹脂を挙げることができ、その代表的な疎水性バインダー材料としては、活性エネルギー線の照射により硬化する化合物であり、具体的にはラジカル活性種の重合反応により硬化するラジカル重合性化合物や、カチオン活性種のカチオン重合反応により硬化するカチオン重合性化合物を挙げることができる。 In addition, as a hydrophobic binder applicable to the present invention, a resin that is polymerized in a curing process using a monomer of a hydrophobic binder can be exemplified, and typical hydrophobic binder materials include those of active energy rays. A compound that is cured by irradiation, specifically, a radical polymerizable compound that is cured by a polymerization reaction of a radical active species and a cationic polymerizable compound that is cured by a cationic polymerization reaction of a cationic active species.
 ラジカル重合性化合物は、ラジカル重合可能なエチレン性不飽和結合を有する化合物が挙げられ、ラジカル重合可能なエチレン性不飽和結合を有する化合物の例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等の不飽和カルボン酸及びそれらの塩、エステル、ウレタン、アミドやその無水物、アクリロニトリル、スチレン、さらに種々の不飽和ポリエステル、不飽和ポリエーテル、不飽和ポリアミド、不飽和ウレタン等のラジカル重合性化合物が挙げられる。具体的には、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレート、ブトキシエチルアクリレート、カルビトールアクリレート、シクロヘキシルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、ビス(4-アクリロキシポリエトキシフェニル)プロパン、ネオペンチルグリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート、N-メチロールアクリルアミド、ジアセトンアクリルアミド、エポキシアクリレート等のアクリル酸誘導体、メチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ラウリルメタクリレート、アリルメタクリレート、グリシジルメタクリレート、ベンジルメタクリレート、ジメチルアミノメチルメタクリレート、1,6-ヘキサンジオールジメタクリレート、エチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、トリメチロールエタントリメタクリレート、トリメチロールプロパントリメタクリレート、2,2-ビス(4-メタクリロキシポリエトキシフェニル)プロパン等のメタクリル誘導体、その他、アリルグリシジルエーテル、ジアリルフタレート、トリアリルトリメリテート等のアリル化合物の誘導体が挙げられる。 Examples of the radical polymerizable compound include a compound having an ethylenically unsaturated bond capable of radical polymerization. Examples of the compound having an ethylenically unsaturated bond capable of radical polymerization include acrylic acid, methacrylic acid, itaconic acid, and crotonic acid. , Unsaturated carboxylic acids such as isocrotonic acid, maleic acid and their salts, esters, urethanes, amides and anhydrides, acrylonitrile, styrene, various unsaturated polyesters, unsaturated polyethers, unsaturated polyamides, unsaturated urethanes Radical polymerizable compounds such as Specifically, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, butoxyethyl acrylate, carbitol acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, bis (4-acryloxypolyethoxyphenyl) propane, neopentyl glycol Diacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, pentaerythritol triacrylate, pentaerythritol Tetraacrylate, dipentaery Acrylic acid derivatives such as lithol tetraacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, oligoester acrylate, N-methylolacrylamide, diacetoneacrylamide, epoxy acrylate, methyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate , Lauryl methacrylate, allyl methacrylate, glycidyl methacrylate, benzyl methacrylate, dimethylaminomethyl methacrylate, 1,6-hexanediol dimethacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, trimethylol Methacryl derivatives such as tan trimethacrylate, trimethylolpropane trimethacrylate, 2,2-bis (4-methacryloxypolyethoxyphenyl) propane, and other derivatives of allyl compounds such as allyl glycidyl ether, diallyl phthalate, triallyl trimellitate Is mentioned.
 カチオン重合性化合物としては、公知の各種カチオン重合性のモノマーが使用できる。例えば、特開平6-9714号公報、特開2001-31892号公報、特開2001-40068号公報、特開2001-55507号公報、特開2001-310938号公報、特開2001-310937号公報、特開2001-220526号公報に例示されているエポキシ化合物、ビニルエーテル化合物、オキセタン化合物などが挙げられる。 As the cationic polymerizable compound, various known cationic polymerizable monomers can be used. For example, JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937, Examples thereof include epoxy compounds, vinyl ether compounds, oxetane compounds and the like exemplified in JP-A-2001-220526.
 多くの場合、上記各化合物とともに光重合開始剤を含有することが好ましい。光重合開始剤としては、「UV・EB硬化技術の応用と市場」(シーエムシー出版、田畑米穂監修/ラドテック研究会編集)などに掲載されているあらゆる公知の光重合開始剤から適宜選択して用いることができる。 In many cases, it is preferable to contain a photopolymerization initiator together with the above compounds. The photopolymerization initiator is appropriately selected from all known photopolymerization initiators published in “Applications and Markets of UV / EB Curing Technology” (CMC Publishing Co., Ltd., edited by Yoneho Tabata / edited by Radtech Research Association). Can be used.
 本発明においては、各構成材料とともに、二酸化バナジウム粒子を含む溶媒分散液を含む光学機能層形成用塗布液を、例えば、透明基材上に塗布した後、紫外線又は電子線等の活性エネルギー線を照射する。これにより形成した光学機能層薄膜を構成する組成物は速やかにポリマー化して硬化する。 In the present invention, an optical functional layer forming coating solution containing a solvent dispersion containing vanadium dioxide particles together with each constituent material is applied on a transparent substrate, for example, and then an active energy ray such as an ultraviolet ray or an electron beam is applied. Irradiate. The composition constituting the optical functional layer thin film thus formed is rapidly polymerized and cured.
 活性エネルギー線を放射する光源としては、紫外線を照射する場合には、例えば、紫外線LED、紫外線レーザー、水銀アークランプ、キセノンアークランプ、低圧水銀灯、蛍光ランプ、炭素アークランプ、タングステン-ハロゲン輻射ランプ及び太陽光を使用することができる。電子線により硬化させる場合には、通常300eVの以下のエネルギーの電子線で硬化させるが、1~5Mradの照射量で瞬時に硬化させることも可能である。 As a light source that emits an active energy ray, when irradiating ultraviolet rays, for example, an ultraviolet LED, an ultraviolet laser, a mercury arc lamp, a xenon arc lamp, a low-pressure mercury lamp, a fluorescent lamp, a carbon arc lamp, a tungsten-halogen radiation lamp, and Sunlight can be used. In the case of curing with an electron beam, it is usually cured with an electron beam having an energy of 300 eV or less, but it can also be cured instantaneously with an irradiation dose of 1 to 5 Mrad.
 一方、本発明に係る光学機能層の他の形成方法としては、図6にその構成を例示したように、透明基材の構成材料である疎水性樹脂に、二酸化バナジウム粒子を含む溶媒分散液及び溶媒を添加、溶解して、成膜用ドープを調製した後、当該ドープを用いて従来公知のフィルム成膜で用いられている溶液流延法により、樹脂基材を兼ねたハイブリッド光学機能層を形成する方法も好適に用いることができる。 On the other hand, as another method for forming the optical functional layer according to the present invention, as exemplified in FIG. 6, a solvent dispersion containing vanadium dioxide particles in a hydrophobic resin that is a constituent material of a transparent substrate, and After preparing a dope for film formation by adding and dissolving a solvent, a hybrid optical functional layer that also serves as a resin substrate is prepared by a solution casting method that has been used in the conventional film formation using the dope. A forming method can also be preferably used.
 上記方法で適用可能な疎水性バインダーとしては、従来サーモクロミックフィルムの形成で用いられている樹脂材料を挙げることができ、例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン(略称:PE)、ポリプロピレン(略称:PP)、セルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類及びそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール(略称:PVA)、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート(略称:PC)、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート(略称:PMMA)、アクリル及びポリアリレート類、アートン(商品名JSR社製)及びアペル(商品名三井化学社製)等のシクロオレフィン系樹脂等を挙げることができる。 Examples of the hydrophobic binder that can be applied by the above method include resin materials that are conventionally used in the formation of thermochromic films, such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), and the like. Polyester, polyethylene (abbreviation: PE), polypropylene (abbreviation: PP), cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propionate (abbreviation: CAP), cellulose acetate phthalate, cellulose Cellulose esters such as nitrates and derivatives thereof, polyvinylidene chloride, polyvinyl alcohol (abbreviation: PVA), polyethylene vinyl alcohol, syndiotactic polystyrene, polyester Carbonate (abbreviation: PC), norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone (abbreviation: PES), polyphenylene sulfide, polysulfones, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon And cycloolefin resins such as polymethyl methacrylate (abbreviation: PMMA), acrylics and polyarylates, Arton (trade name, manufactured by JSR) and Appel (trade name, manufactured by Mitsui Chemicals).
 また、溶媒としては、特に制限はないが、例えば、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができる。 The solvent is not particularly limited, and examples thereof include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2- Trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2- Examples include propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, and the like.
 上記各構成材料を混合、調製したドープを用いて、溶液流延法により透明基材を兼ねたハイブリッド光学機能層を成膜する。 Using the dope prepared by mixing and preparing the above constituent materials, a hybrid optical functional layer that also serves as a transparent substrate is formed by a solution casting method.
 〈光学機能層のその他の添加剤〉
 本発明に係る光学機能層には、本発明の目的とする効果を損なわない範囲で、従来公知の各種の添加剤を適用することができる。適用可能な添加剤としては、例えば、特開昭57-74193号公報、特開昭57-87988号公報、及び特開昭62-261476号公報等に記載の紫外線吸収剤、特開昭57-74192号公報、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、及び特開平3-13376号公報等に記載されている退色防止剤、アニオン、カチオン又はノニオンの各種界面活性剤、特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、及び特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、熱安定剤、酸化防止剤、難燃剤、結晶核剤、無機粒子、有機粒子、減粘剤、滑剤、赤外線吸収剤、色素、顔料等、公知の各種添加剤などが挙げられる。
<Other additives for optical function layer>
Various conventionally known additives can be applied to the optical functional layer according to the present invention as long as the effects of the present invention are not impaired. Examples of applicable additives include ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, JP-A-62-261476, etc. No. 74192, JP-A-57-87989, JP-A-60-72785, JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc. Anti-fading agents, various anionic, cationic or nonionic surfactants, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61- Fluorescent brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate described in Japanese Patent No. 242871 and JP-A-4-219266 PH adjusters such as um, antifoaming agents, lubricants such as diethylene glycol, preservatives, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic Examples include various known additives such as particles, thickeners, lubricants, infrared absorbers, dyes, and pigments.
 (透明基材)
 本発明のサーモクロミックフィルムに適用可能な透明基材は、透明であれば特に制限はなく、ガラス、石英、透明樹脂フィルム等を挙げることができるが、フレキシブル性付与及び生産適性(製造工程適性)の観点からは、透明樹脂フィルムであることが好ましい。本発明でいう「透明」とは、可視光領域における平均光線透過率が50%以上であることをいい、好ましくは60%以上、より好ましくは70%以上、特に好ましくは80%以上である。
(Transparent substrate)
The transparent substrate applicable to the thermochromic film of the present invention is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. However, flexibility and production suitability (manufacturing process suitability) can be exemplified. From this point of view, a transparent resin film is preferable. “Transparent” in the present invention means that the average light transmittance in the visible light region is 50% or more, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
 本発明において、透明基材の厚さは、30~200μmの範囲内であることが好ましく、より好ましくは30~100μmの範囲内であり、更に好ましくは35~70μmの範囲内である。透明基材の厚さが30μm以上であれば、取り扱い中にシワ等が発生しにくくなり、また厚さが200μm以下であれば、ガラス基材と貼り合わせる際のガラス曲面への追従性を確保することができる。 In the present invention, the thickness of the transparent substrate is preferably in the range of 30 to 200 μm, more preferably in the range of 30 to 100 μm, and still more preferably in the range of 35 to 70 μm. If the thickness of the transparent substrate is 30 μm or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 μm or less, the followability to the curved glass surface when bonding to the glass substrate is ensured. can do.
 本発明のサーモクロミックフィルムに適用可能な透明基材としては、透明であれば特に制限されることはないが、種々の樹脂フィルムを用いることが好ましく、例えば、ポリオレフィンフィルム(例えば、シクロオレフィン、ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、トリアセチルセルロースフィルム等を用いることができ、好ましくは、シクロオレフィンフィルム(略称:COP)、ポリエステルフィルム(例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等)、トリアセチルセルロースフィルム(略称:TAC)である。 The transparent substrate applicable to the thermochromic film of the present invention is not particularly limited as long as it is transparent, but various resin films are preferably used. For example, polyolefin films (for example, cycloolefin, polyethylene) , Polypropylene, etc.), polyester film (eg, polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, triacetyl cellulose film, etc., preferably cycloolefin film (abbreviation: COP), polyester film (eg, Polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN) and the like, and triacetyl cellulose film (abbreviation: TAC).
 本発明に係る透明基材としてはポリエステルフィルムが好ましく、さらには、未延伸、少なくとも一方に延伸されたポリエステルフィルム、又は二軸延伸ポリエステルフィルムを用いることもできるが、その中でも、強度の向上、熱膨張抑制の点から延伸フィルムが好ましく、更には二軸延伸ポリエステルフィルムが好ましい。特に、本発明のサーモクロミックフィルムを具備した合わせガラスを自動車用のガラスとして用いる場合、延伸フィルムがより好ましい。 As the transparent substrate according to the present invention, a polyester film is preferable, and an unstretched polyester film stretched at least in one direction or a biaxially stretched polyester film can also be used. From the viewpoint of suppressing expansion, a stretched film is preferable, and a biaxially stretched polyester film is more preferable. In particular, when the laminated glass provided with the thermochromic film of the present invention is used as glass for automobiles, a stretched film is more preferable.
 本発明に係る透明基材は、サーモクロミックフィルムのシワの発生や光学機能層の割れを防止する観点から、温度150℃において、熱収縮率が0.1~3.0%の範囲内であることが好ましく、1.5~3.0%の範囲内であることがより好ましく、1.9~2.7%であることがさらに好ましい。 The transparent base material according to the present invention has a thermal shrinkage within a range of 0.1 to 3.0% at a temperature of 150 ° C. from the viewpoint of preventing generation of wrinkles of the thermochromic film and cracking of the optical functional layer. Preferably, it is in the range of 1.5 to 3.0%, more preferably 1.9 to 2.7%.
 透明樹脂フィルムは、成膜過程で片面又は両面にインラインで下引層塗布液を塗布して、下引層を設けることが好ましい。本発明においては、成膜工程中での下引塗布をインライン下引という。 The transparent resin film is preferably provided with an undercoat layer by applying an undercoat layer coating solution inline on one or both sides during the film formation process. In the present invention, undercoating during the film forming process is referred to as in-line undercoating.
 (近赤外遮蔽層)
 本発明のサーモクロミックフィルムにおいては、光学機能層に加え、700~1000nmの光波長範囲内の少なくとも一部を遮蔽する機能を有する近赤外光遮蔽層を設ける構成が好ましい態様である。
(Near-infrared shielding layer)
In the thermochromic film of the present invention, a configuration in which a near-infrared light shielding layer having a function of shielding at least a part in the light wavelength range of 700 to 1000 nm is provided in addition to the optical functional layer.
 本発明に適用可能な近赤外光遮蔽層の詳細については、例えば、特開2012-131130号公報、特開2012-139948号公報、特開2012-185342号公報、特開2013-080178号公報、特開2014-089347号公報等に記載されている近赤外光遮蔽層の構成要素及び形成方法等を参考にすることができる。 For details of the near-infrared light shielding layer applicable to the present invention, for example, JP 2012-131130 A, JP 2012-139948 A, JP 2012-185342 A, JP 2013-080178 A. Reference can be made to the constituent elements and formation method of the near-infrared light shielding layer described in JP-A-2014-089347 and the like.
 〔サーモクロミックフィルムの製造方法〕
 (製造方法1:水系形成法)
 本発明のサーモクロミックフィルムの製造方法としては、本発明のサーモクロミック性二酸化バナジウム含有粒子と、親水性バインダーを用い、水系形成法の一つである水系湿式塗布法により光学機能層を形成して製造する方法である。湿式塗布法として具体的には、ローラーコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、スライド型カーテン塗布法、又は米国特許第2761419号明細書、米国特許第2761791号明細書などに記載のスライドホッパー塗布法、エクストルージョンコート法などが挙げられる。
[Method for producing thermochromic film]
(Manufacturing method 1: Aqueous formation method)
As a method for producing the thermochromic film of the present invention, the thermochromic vanadium dioxide-containing particles of the present invention and a hydrophilic binder are used, and an optical functional layer is formed by an aqueous wet coating method which is one of the aqueous forming methods. It is a manufacturing method. Specific examples of the wet coating method include a roller coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419, US Pat. No. 2,761791, and the like. Examples thereof include a slide hopper coating method and an extrusion coating method.
 (製造方法2:溶液流延法)
 また、図6で示すような樹脂基材を兼ねたハイブリッド光学機能層を形成する場合は、溶液流延法を適用することができ、具体的な成膜方法としては、例えば、特開2013-067074号公報、特開2013-123868号公報、特開2013-202979号公報、特開2014-066958号公報、特開2014-095729号公報、特開2014-159082号公報等に記載されている溶液流延成膜法に従って形成することができる。
(Production method 2: Solution casting method)
Further, when forming a hybrid optical functional layer that also serves as a resin substrate as shown in FIG. 6, a solution casting method can be applied. Solutions described in JP067074, JP2013-123868, JP2013-202979, JP2014-066958, JP2014-095729, JP2014-159082, etc. It can be formed according to a cast film forming method.
 (製造方法3:有機溶媒系形成法1)
 本発明においては、有機溶媒に、本発明のサーモクロミック性二酸化バナジウム含有粒子を混合して非水系の分散液を調製した後、さらに疎水系バインダーを添加し、塗布・乾燥することで光学機能層を形成し、サーモクロミックフィルムを作製することも好ましい。
(Production method 3: Organic solvent system formation method 1)
In the present invention, the thermochromic vanadium dioxide-containing particles of the present invention are mixed in an organic solvent to prepare a non-aqueous dispersion, and then a hydrophobic binder is further added, followed by coating and drying to form an optical functional layer. It is also preferable to form a thermochromic film.
 この場合についても、上記記載の湿式塗布法でサーモクロミックフィルムを作製することが好ましい。具体的な作製方法は、水系のサーモクロミックフィルムの作製方法と同様である。 Also in this case, it is preferable to produce a thermochromic film by the wet coating method described above. A specific production method is the same as the production method of the water-based thermochromic film.
 (製造方法4:有機溶媒系形成法2)
 有機溶媒を用いてサーモクロミックフィルムを製造する他の方法として、まず、水系合成法により得られた、二酸化バナジウム含有粒子を分散させた水分散液を乾燥させることなく、二酸化バナジウム粒子を分散させた水分散液に有機溶媒を加え、二酸化バナジウム含有粒子を水相から有機相に移動させ、当該有機相を分離抽出する。そして、有機相に疎水性バインダーを混合して塗布・乾燥することで光学機能層を形成し、サーモクロミックフィルムを製造する方法も好ましい。二酸化バナジウム含有粒子を水相から有機相に移動させる方法としては、一般的な分液操作によって行われる。
(Production method 4: Organic solvent system formation method 2)
As another method for producing a thermochromic film using an organic solvent, first, vanadium dioxide particles were dispersed without drying an aqueous dispersion obtained by dispersing vanadium dioxide-containing particles obtained by an aqueous synthesis method. An organic solvent is added to the aqueous dispersion, the vanadium dioxide-containing particles are moved from the aqueous phase to the organic phase, and the organic phase is separated and extracted. A method of producing a thermochromic film by mixing an organic phase with a hydrophobic binder, coating and drying to form an optical functional layer is also preferred. As a method for transferring the vanadium dioxide-containing particles from the aqueous phase to the organic phase, a general liquid separation operation is performed.
 《サーモクロミックフィルムの用途》
 本発明のサーモクロミックフィルムの用途としては、ガラスに後貼りする構成とすることができ、このフィルムを貼合したガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。フィルムを貼合したガラスは、これらの用途以外にも使用できる。
《Uses of thermochromic film》
As a use of the thermochromic film of this invention, it can be set as the structure pasted on glass, The glass which bonded this film can be used for a motor vehicle, a rail vehicle, an aircraft, a ship, a building, etc. The glass bonded together can be used for other purposes.
 その中でも、サーモクロミックフィルムを貼合したガラスは、建築用又は車両に用いることが好ましく、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。 Among them, the glass bonded with the thermochromic film is preferably used for construction or for vehicles, and can be used for automobile windshield, side glass, rear glass, roof glass, and the like.
 サーモクロミックフィルムを貼合するガラス部材としては、無機ガラス及び有機ガラス(例えば、樹脂グレージング。)が挙げられる。無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス、及びグリーンガラス等の着色ガラス等が挙げられる。上記有機ガラスは、無機ガラスに代用される合成樹脂ガラスである。上記有機ガラス(樹脂グレージング)としては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。 Examples of the glass member to which the thermochromic film is bonded include inorganic glass and organic glass (for example, resin glazing). Examples of the inorganic glass include float plate glass, heat ray absorbing plate glass, polished plate glass, mold plate glass, netted plate glass, lined plate glass, and colored glass such as green glass. The organic glass is a synthetic resin glass substituted for inorganic glass. Examples of the organic glass (resin glazing) include a polycarbonate plate and a poly (meth) acrylic resin plate. Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 実施例1
 《サーモクロミックフィルムの作製》
 〔サーモクロミックフィルム101の作製:水系〕
 (二酸化バナジウム含有粒子1の調製)
 純水10mLに、バナジン酸アンモニウム(NHVO、和光純薬社製、特級)0.433gを混合し、更に、ヒドラジン水和物(N・HO、和光純薬社製、特級)の5質量%水溶液をゆっくり滴下し、23℃におけるpH値が9.2の溶液(A)を調製した。調製した溶液(A)を、市販の水熱反応処理用オートクレーブ(三愛科学社製HU-25型、SUS製本体に25mL容積のテフロン(登録商標)製内筒を備える構成)内に入れ、100℃で8時間、引き続き270℃で24時間の、水熱反応処理を施して、コア粒子である二酸化バナジウム粒子(略称:VO粒子)(I)を含む水系分散液を調製した。
Example 1
《Preparation of thermochromic film》
[Preparation of thermochromic film 101: aqueous]
(Preparation of vanadium dioxide-containing particles 1)
0.433 g of ammonium vanadate (NH 4 VO 3 , manufactured by Wako Pure Chemical Industries, special grade) was mixed with 10 mL of pure water, and further hydrazine hydrate (N 2 H 4 · H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.). A 5% by mass aqueous solution of (special grade) was slowly added dropwise to prepare a solution (A) having a pH value of 9.2 at 23 ° C. The prepared solution (A) is placed in a commercially available autoclave for hydrothermal reaction treatment (HU-25 type, manufactured by Sanai Kagaku Co., which has a 25 mL volume Teflon (registered trademark) inner cylinder in a SUS body), and 100 An aqueous dispersion containing vanadium dioxide particles (abbreviation: VO 2 particles) (I) as core particles was prepared by performing a hydrothermal reaction treatment at 8 ° C. for 8 hours and subsequently at 270 ° C. for 24 hours.
 次いで、二酸化バナジウム粒子(I)を含む水系分散液の10gに、50mLのエタノールを添加し、28%のアンモニア水でpHを11.0に調整した後、強撹拌下でテトラエトキシシラン(略称:TEOS)を1.5g添加し、25℃で4時間維持して、二酸化バナジウム粒子(I)表面に、第2シェル層Aに相当するSiOで構成されるアモルファス状金属酸化物層を形成して、コア・シェル型の二酸化バナジウム含有粒子1を調製しした後、分散液として調製した。二酸化バナジウム含有粒子1の分散液は、粒子濃度として3質量%となるように粒子濃度を調整した。 Next, 50 mL of ethanol was added to 10 g of the aqueous dispersion containing the vanadium dioxide particles (I), the pH was adjusted to 11.0 with 28% aqueous ammonia, and tetraethoxysilane (abbreviation: abbreviated as: 1.5 g of TEOS) was added and maintained at 25 ° C. for 4 hours to form an amorphous metal oxide layer composed of SiO 2 corresponding to the second shell layer A on the surface of the vanadium dioxide particles (I). The core-shell type vanadium dioxide-containing particles 1 were prepared, and then prepared as a dispersion. The dispersion of the vanadium dioxide-containing particles 1 was adjusted to have a particle concentration of 3% by mass as the particle concentration.
 (光学機能層形成用塗布液1の調製)
 下記の各構成材料を順次添加、混合及び溶解して、水系の光学機能層形成用塗布液1を調製した。
(Preparation of coating solution 1 for forming an optical functional layer)
The following constituent materials were sequentially added, mixed and dissolved to prepare an aqueous optical functional layer forming coating solution 1.
 3質量%の二酸化バナジウム含有粒子1の分散液     128質量部
 3質量%のホウ酸水溶液                 10質量部
 5質量%の親水性バインダー樹脂S1水溶液(PVA105、クラレ社製)60質量部
 (光学機能層の形成)
 厚さが50μmのポリエチレンテレフタレートフィルム(東洋紡製A4300、両面易接着層)である透明基材上に、押出コーターを用いて、上記調製した光学機能層形成用塗布液1を、乾燥後の層厚が1.5μmとなる条件で湿式塗布を行い、次いで110℃の温風を2分間吹きつけて乾燥させて、光学機能層を形成して、図5に記載の構成のサーモクロミックフィルム101を作製した。
Dispersion of 3% by mass of vanadium dioxide-containing particles 1 128 parts by mass 3% by mass of boric acid aqueous solution 10 parts by mass 5% by mass of hydrophilic binder resin S1 aqueous solution (PVA105, manufactured by Kuraray Co., Ltd.) 60 parts by mass Formation)
On the transparent base material which is a polyethylene terephthalate film (Toyobo A4300, double-sided easy-adhesion layer) having a thickness of 50 μm, the layer thickness after drying the prepared coating solution 1 for forming an optical functional layer using an extrusion coater. Is applied by wet coating under conditions of 1.5 μm, and then dried by blowing hot air at 110 ° C. for 2 minutes to form an optical functional layer, thereby producing a thermochromic film 101 having the configuration shown in FIG. did.
 〔サーモクロミックフィルム102の作製:水系〕
 上記サーモクロミックフィルム101の作製において、二酸化バナジウム含有粒子1に代えて、下記の方法で調製した二酸化バナジウム含有粒子2を用いた以外は同様にして、サーモクロミックフィルム102を作製した。
[Preparation of thermochromic film 102: aqueous]
In producing the thermochromic film 101, a thermochromic film 102 was produced in the same manner except that the vanadium dioxide-containing particles 2 prepared by the following method were used in place of the vanadium dioxide-containing particles 1.
 (二酸化バナジウム含有粒子2の調製)
 上記二酸化バナジウム含有粒子1の調製で用いたコア粒子である二酸化バナジウム粒子(I)を含む水系分散液10gに、ヒドロキシ基を有する有機化合物として化合物A14を0.2g添加し、ホモミキサー(プライミクス株式会社製、T.K.ホモミキサーMarkII)を用い、撹拌羽根を7.85m/秒の周速で回転させて撹拌分散して、コア粒子である二酸化バナジウム粒子(I)上に、第1シェル層Aを形成した。次いで、50mLのエタノールを添加し、28%のアンモニア水でpHを11.0に調整した後、強撹拌下でテトラエトキシシラン(略称:TEOS)を1.5g添加し、25℃で4時間維持して、二酸化バナジウム粒子(I)の第1シェル層A上に、第2シェル層AとしてSiOで構成されるアモルファス状金属酸化物層を形成して、コア・シェル型の二酸化バナジウム含有粒子2を調製した。なお、二酸化バナジウム含有粒子2は、粒子濃度が3質量%となるように分散して分散液とした。
(Preparation of vanadium dioxide-containing particles 2)
0.2 g of compound A14 as an organic compound having a hydroxy group was added to 10 g of an aqueous dispersion containing vanadium dioxide particles (I), which are core particles used in the preparation of the vanadium dioxide-containing particles 1, and homomixer (Primix Co., Ltd.) Using a company-made TK homomixer Mark II), the stirring blades were rotated at a peripheral speed of 7.85 m / second and dispersed by stirring to form the first shell on the vanadium dioxide particles (I) as the core particles. Layer A was formed. Next, 50 mL of ethanol was added, pH was adjusted to 11.0 with 28% ammonia water, 1.5 g of tetraethoxysilane (abbreviation: TEOS) was added under strong stirring, and maintained at 25 ° C. for 4 hours. Then, an amorphous metal oxide layer composed of SiO 2 is formed as the second shell layer A on the first shell layer A of the vanadium dioxide particles (I), and the core-shell type vanadium dioxide-containing particles 2 was prepared. In addition, the vanadium dioxide containing particle | grains 2 were disperse | distributed so that particle | grain concentration might be 3 mass%, and was set as the dispersion liquid.
 〔サーモクロミックフィルム103の作製:水系〕
 上記サーモクロミックフィルム102の作製に用いた二酸化バナジウム含有粒子2の調製において、第1シェル層Aの形成材料として、化合物A14を、ヒドロキシ基とアミノ基を有する化合物A1に変更した以外は同様にして二酸化バナジウム含有粒子3を調製した。
[Preparation of thermochromic film 103: aqueous]
In preparation of the vanadium dioxide containing particle | grains 2 used for preparation of the said thermochromic film 102, except having changed the compound A14 into the compound A1 which has a hydroxyl group and an amino group as a formation material of the 1st shell layer A, it carries out similarly. Vanadium dioxide-containing particles 3 were prepared.
 上記サーモクロミックフィルム102の作製において、二酸化バナジウム含有粒子2に代えて、上記調製した二酸化バナジウム含有粒子3を用いた以外は同様にして、サーモクロミックフィルム103を作製した。 In producing the thermochromic film 102, a thermochromic film 103 was produced in the same manner except that the vanadium dioxide-containing particles 3 prepared above were used instead of the vanadium dioxide-containing particles 2.
 〔サーモクロミックフィルム104~106の作製:水系〕
 上記サーモクロミックフィルム103の作製の二酸化バナジウム含有粒子3の調製において、第1シェル層Aの形成材料として、化合物A1を、それぞれ化合物A2、化合物A4、化合物A8に変更した以外は同様にして二酸化バナジウム含有粒子4~6を調製した。
[Preparation of thermochromic films 104-106: aqueous]
In the preparation of the vanadium dioxide-containing particles 3 for producing the thermochromic film 103, vanadium dioxide was similarly used except that the compound A1 was changed to the compound A2, the compound A4, and the compound A8, respectively, as the forming material of the first shell layer A. Containing particles 4-6 were prepared.
 上記サーモクロミックフィルム103の作製において、二酸化バナジウム含有粒子3に代えて、上記調製した二酸化バナジウム含有粒子4~6をそれぞれ用いた以外は同様にして、サーモクロミックフィルム104~106を作製した。 Thermochromic films 104 to 106 were prepared in the same manner except that the above prepared vanadium dioxide-containing particles 4 to 6 were used in place of the vanadium dioxide containing particles 3 in the production of the thermochromic film 103.
 〔サーモクロミックフィルム107の作製:水系〕
 上記サーモクロミックフィルム103の作製において、二酸化バナジウム含有粒子3に代えて、下記の方法により調製した二酸化バナジウム含有粒子7を用いた以外は同様にして、サーモクロミックフィルム107を作製した。
[Preparation of thermochromic film 107: aqueous]
In producing the thermochromic film 103, a thermochromic film 107 was produced in the same manner except that the vanadium dioxide-containing particles 7 prepared by the following method were used in place of the vanadium dioxide-containing particles 3.
 (二酸化バナジウム含有粒子7の調製)
 上記サーモクロミックフィルム103の作製に用いた二酸化バナジウム含有粒子3の調製において、第2シェル層Aの形成方法を、下記の第2シェル層Aの形成方法に変更した以外は同様にして二酸化バナジウム含有粒子7を調製した。
(Preparation of vanadium dioxide-containing particles 7)
In the preparation of the vanadium dioxide-containing particles 3 used for the production of the thermochromic film 103, the method for forming the second shell layer A was changed to the method for forming the second shell layer A described below. Particle 7 was prepared.
 〈第2シェル層Aの形成〉
 上記二酸化バナジウム含有粒子3の調製と同様にして、第1シェル層Aまで形成した二酸化バナジウム粒子を含む分散液の10gに、50mLのエタノール添加し、1モル/Lの硝酸(HNO)でpHを3.0にし、強撹拌下でチタンテトライソプロポキシド(Ti[OCH(CH)を添加して、80℃で6時間反応させ、TiOから構成される第2シェル層Aを形成した。
<Formation of second shell layer A>
Similarly to the preparation of the vanadium dioxide-containing particles 3, 50 mL of ethanol was added to 10 g of the dispersion containing vanadium dioxide particles formed up to the first shell layer A, and the pH was adjusted with 1 mol / L nitric acid (HNO 3 ). The second shell layer composed of TiO 2 by adding titanium tetraisopropoxide (Ti [OCH (CH 3 ) 2 ] 4 ) under strong stirring and reacting at 80 ° C. for 6 hours. A was formed.
 〔サーモクロミックフィルム108の作製:水系〕
 前記サーモクロミックフィルム103の作製において、二酸化バナジウム含有粒子3に代えて、下記の方法で調製した二酸化バナジウム含有粒子8を用いた以外は同様にして、サーモクロミックフィルム108を作製した。
[Preparation of thermochromic film 108: aqueous]
In producing the thermochromic film 103, a thermochromic film 108 was produced in the same manner except that the vanadium dioxide-containing particles 8 prepared by the following method were used in place of the vanadium dioxide-containing particles 3.
 (二酸化バナジウム含有粒子8の調製)
 上記サーモクロミックフィルム103に記載の二酸化バナジウム含有粒子3を含む分散液を用い、当該分散液に、疎水性有機化合物として化合物B1(ヘキシルトリエトキシシラン、KBE-3063、信越シリコーン社製)とエタノールを添加して、80℃で2時間反応させて、第2シェル層A上に、疎水性有機化合物より構成される第3シェル層Aを形成した。
(Preparation of vanadium dioxide-containing particles 8)
Using a dispersion containing the vanadium dioxide-containing particles 3 described in the thermochromic film 103, a compound B1 (hexyltriethoxysilane, KBE-3063, manufactured by Shin-Etsu Silicone) and ethanol as a hydrophobic organic compound were added to the dispersion. The resulting mixture was reacted at 80 ° C. for 2 hours to form a third shell layer A composed of a hydrophobic organic compound on the second shell layer A.
 次いで、遠心沈降及び純水で洗浄を行った後、純水とドデシルベンゼンスルホン酸ナトリウムを加え、ホモミキサー(プライミクス株式会社製、T.K.ホモミキサーMarkII)を用い、撹拌羽根を7.85m/秒の周速で回転させて撹拌して、粒子濃度として3質量%となるように分散させた二酸化バナジウム含有粒子8の分散液を調製した。 Next, after centrifugal sedimentation and washing with pure water, pure water and sodium dodecylbenzenesulfonate were added, and a stirring blade was 7.85 m using a homomixer (Primix Co., Ltd., TK homomixer Mark II). A dispersion of vanadium dioxide-containing particles 8 was prepared by rotating at a peripheral speed of / sec and stirring to disperse the particles to a particle concentration of 3% by mass.
 〔サーモクロミックフィルム109の作製:疎水系〕
 上記サーモクロミックフィルム103に記載の二酸化バナジウム含有粒子3を含む分散液を用い、当該分散液に、疎水性有機化合物として化合物B1(ヘキシルトリエトキシシラン、KBE-3063、信越ポリマー社製)とエタノールを添加して、80℃で2時間反応させて、第2シェル層上に、疎水性有機化合物より構成される第3シェル層Aを形成した。
[Production of Thermochromic Film 109: Hydrophobic]
Using the dispersion containing the vanadium dioxide-containing particles 3 described in the thermochromic film 103, compound B1 (hexyltriethoxysilane, KBE-3063, manufactured by Shin-Etsu Polymer Co., Ltd.) and ethanol are used as the hydrophobic organic compound in the dispersion. The mixture was added and reacted at 80 ° C. for 2 hours to form a third shell layer A composed of a hydrophobic organic compound on the second shell layer.
 次いで、遠心沈降及びエタノールで洗浄を行った後、メチルエチルケトンを添加し、ホモミキサー(プライミクス株式会社製、T.K.ホモミキサーMarkII)を用い、撹拌羽根を7.85m/秒の周速で回転させて撹拌して、濃度で3質量%となるように分散させた二酸化バナジウム含有粒子9の分散液を調製した。 Next, after centrifugal sedimentation and washing with ethanol, methyl ethyl ketone was added, and the stirring blade was rotated at a peripheral speed of 7.85 m / sec using a homomixer (Primix Co., Ltd., TK homomixer Mark II). Then, a dispersion liquid of vanadium dioxide-containing particles 9 dispersed to a concentration of 3% by mass was prepared.
 前記サーモクロミックフィルム103の作製において、以下に示す構成の光学機能層形成用塗布液9を用いた以外は同様にして、サーモクロミックフィルム109を作製した。 In producing the thermochromic film 103, a thermochromic film 109 was produced in the same manner except that the coating solution 9 for forming an optical functional layer having the following configuration was used.
 (光学機能層形成用塗布液9の調製)
 3質量%の二酸化バナジウム含有粒子9の分散液     128質量部
 5質量%の疎水性バインダー樹脂O1(バイロン200、東洋紡社製)メチルエチルケトン溶液                   65質量部
 〔サーモクロミックフィルム110~112の作製:疎水系〕
 上記サーモクロミックフィルム109の作製で用いた二酸化バナジウム含有粒子9の調製において、第1シェル層Aの形成材料として、化合物A1を、それぞれ化合物A2、化合物A4、化合物A8に変更した以外は同様にして調製した二酸化バナジウム含有粒子10~12を用いた以外は同様にして、サーモクロミックフィルム110~112を作製した。
(Preparation of coating solution 9 for forming an optical functional layer)
Dispersion of 3% by mass of vanadium dioxide-containing particles 9 128 parts by mass 5% by mass of hydrophobic binder resin O1 (Byron 200, manufactured by Toyobo Co., Ltd.) 65 parts by mass of methyl ethyl ketone solution [Production of thermochromic films 110 to 112: hydrophobic system]
In the preparation of the vanadium dioxide-containing particles 9 used in the production of the thermochromic film 109, except that the compound A1 was changed to the compound A2, the compound A4, and the compound A8 as the forming material of the first shell layer A, respectively. Thermochromic films 110 to 112 were produced in the same manner except that the prepared vanadium dioxide-containing particles 10 to 12 were used.
 〔サーモクロミックフィルム113の作製:疎水系〕
 上記サーモクロミックフィルム103に記載の二酸化バナジウム含有粒子3を含む分散液を用い、下記の方法に従って、図4に記載の流通式反応器であるフロー型リアクターを用いて、二酸化バナジウム含有粒子13を調製した。
[Production of Thermochromic Film 113: Hydrophobic]
Using the dispersion containing the vanadium dioxide-containing particles 3 described in the thermochromic film 103, the vanadium dioxide-containing particles 13 are prepared using a flow reactor, which is a flow reactor shown in FIG. 4, according to the following method. did.
 精製水に二酸化バナジウム含有粒子3を分散させ、0.02モル/Lの二酸化バナジウム含有粒子3の水スラリーを調製した。第3シェル層Aを形成する疎水性有機化合物として、化合物B2であるヘキサン酸のトルエン溶液(0.12モル)を調製した。予熱水、二酸化バナジウム含有粒子3スラリー、化合物B2のトルエン溶液の流量は、それぞれ12mL/min、3mL/min、3mL/minとした。次に背圧弁により系内を30MPaに設定した。 The vanadium dioxide-containing particles 3 were dispersed in purified water to prepare an aqueous slurry of 0.02 mol / L vanadium dioxide-containing particles 3. As a hydrophobic organic compound for forming the third shell layer A, a toluene solution (0.12 mol) of hexanoic acid as Compound B2 was prepared. The flow rates of preheated water, vanadium dioxide-containing particles 3 slurry, and the toluene solution of compound B2 were 12 mL / min, 3 mL / min, and 3 mL / min, respectively. Next, the inside of the system was set to 30 MPa by a back pressure valve.
 次いで、カートリッジヒーターに通電し、予熱水を所定温度まで加熱した。通電と同時に、冷却水循環装置の電源を入れ、冷却を開始させた。各部の温度が安定したことを確認した後、精製水を送液していたポンプを、二酸化バナジウム含有粒子3のスラリー、化合物B2のトルエン溶液に切り替えて送液した。 Next, the cartridge heater was energized to heat the preheated water to a predetermined temperature. Simultaneously with energization, the cooling water circulation device was turned on to start cooling. After confirming that the temperature of each part was stabilized, the pump which sent purified water was switched to the slurry of vanadium dioxide containing particle | grains 3, and the toluene solution of compound B2, and it sent.
 所定時間後、回収部のラインを反対側のラインに戻し、電気炉とフレキシブルヒーターの加熱を停止させた。その後、送液ポンプ2を二酸化バナジウム含有粒子3含有の水溶液から精製水に切り替え、反応を終了させた。管内の温度が100℃以下になったことを確認し、背圧弁を開放して系内の圧力を常圧に戻した。冷却水循環装置の電源を切り、冷却を停止させた。 After a predetermined time, the recovery unit line was returned to the opposite line, and heating of the electric furnace and the flexible heater was stopped. Thereafter, the liquid feed pump 2 was switched from an aqueous solution containing vanadium dioxide-containing particles 3 to purified water, and the reaction was terminated. After confirming that the temperature in the tube was 100 ° C. or lower, the back pressure valve was opened to return the pressure in the system to normal pressure. The cooling water circulation device was turned off and the cooling was stopped.
 生成物をシリンジ型回収容器からビーカーに移し、トルエン20mLで容器内から生成物を洗い出した。その後、水相とトルエン相を分離し、トルエン相に移行した二酸化バナジウム含有粒子が3質量%になるように調整して、二酸化バナジウム含有粒子13を調製した。 The product was transferred from the syringe-type collection container to a beaker, and the product was washed out of the container with 20 mL of toluene. Thereafter, the water phase and the toluene phase were separated, and the vanadium dioxide-containing particles 13 that were transferred to the toluene phase were adjusted to 3% by mass to prepare vanadium dioxide-containing particles 13.
 次いで、前記サーモクロミックフィルム109の作製において、二酸化バナジウム含有粒子9に代えて、上記調製した二酸化バナジウム含有粒子13を用いた以外は同様にして、サーモクロミックフィルム113を作製した。 Subsequently, in producing the thermochromic film 109, a thermochromic film 113 was produced in the same manner except that the vanadium dioxide-containing particles 13 prepared above were used instead of the vanadium dioxide-containing particles 9.
 〔サーモクロミックフィルム114の作製:疎水系〕
 上記サーモクロミックフィルム103に記載の二酸化バナジウム含有粒子3を含む分散液を、限外濾過機(ビバフロー株式会社)を用いて、体積を5分の1に濃縮した後、アセトニトリルを加え、もとの液量に戻すという作業を4回繰り返して、溶媒をアセトニトリル置換した後、疎水性有機化合物として、化合物B3(ヘキサメチルジシラザン、SZ-31、信越シリコーン社製)を添加して撹拌しながら1時間反応させて、疎水性有機化合物から構成される第3シェル層Aを形成して、二酸化バナジウム含有粒子14を含む溶媒分散液を調製した。
[Preparation of Thermochromic Film 114: Hydrophobic]
After the dispersion containing the vanadium dioxide-containing particles 3 described in the thermochromic film 103 is concentrated to 1/5 using an ultrafilter (Vivaflow Co., Ltd.), acetonitrile is added and the original liquid is added. The process of returning to the liquid volume was repeated 4 times, and the solvent was replaced with acetonitrile. Then, compound B3 (hexamethyldisilazane, SZ-31, manufactured by Shin-Etsu Silicone) was added as a hydrophobic organic compound and stirred. By reacting for a period of time, a third shell layer A composed of a hydrophobic organic compound was formed, and a solvent dispersion containing vanadium dioxide-containing particles 14 was prepared.
 次いで、前記サーモクロミックフィルム113の作製において、二酸化バナジウム含有粒子13に代えて、上記調製した二酸化バナジウム含有粒子14を用いた以外は同様にして、サーモクロミックフィルム114を作製した。 Next, in the production of the thermochromic film 113, a thermochromic film 114 was produced in the same manner except that the vanadium dioxide-containing particles 14 prepared above were used instead of the vanadium dioxide-containing particles 13.
 〔サーモクロミックフィルム115の作製:疎水系〕
 上記サーモクロミックフィルム114の作製において、二酸化バナジウム含有粒子14に代えて、下記の方法により調製した二酸化バナジウム含有粒子15を用いた以外は同様にして、サーモクロミックフィルム115を作製した。
[Preparation of Thermochromic Film 115: Hydrophobic]
In producing the thermochromic film 114, a thermochromic film 115 was produced in the same manner except that the vanadium dioxide-containing particles 15 prepared by the following method were used in place of the vanadium dioxide-containing particles 14.
 (二酸化バナジウム含有粒子15の調製)
 前記二酸化バナジウム含有粒子14の調製において、コア粒子調製時に、転移温度調整剤としてタングステン(W)を、バナジウム原子が99atm%、タングステン(W)が1atm%となるように添加して、タングステンをドープしたコア粒子(II)を用い以外は同様にして、二酸化バナジウム含有粒子15を調製した。
(Preparation of vanadium dioxide-containing particles 15)
In the preparation of the vanadium dioxide-containing particles 14, tungsten (W) was added as a transition temperature adjusting agent at the time of core particle preparation so that vanadium atoms were 99 atm% and tungsten (W) was 1 atm% to dope tungsten. Vanadium dioxide-containing particles 15 were prepared in the same manner except that the core particles (II) were used.
 上記記載の各サーモクロミックフィルムの作製に用いた各添加剤の詳細は、以下のとおりである。 Details of each additive used for producing each thermochromic film described above are as follows.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 〈疎水性有機化合物〉
 化合物B1:ヘキシルトリエトキシシラン(商品名;KBE-3063 信越シリコーン社製)
 化合物B2:ヘキサン酸(カプロン酸、CH(CHCOOH)
 化合物B3:ヘキサメチルジシラザン(商品名;SZ-31 信越シリコーン社製)
 〈バインダー樹脂〉
 S1:親水性バインダー クラレポバールPVA105(ポリビニルアルコール樹脂 クラレ社製)
 O1:疎水性バインダー バイロン200(非晶性ポリエステル樹脂 東洋紡社製)
 《サーモクロミックフィルムの評価》
 次いで、上記作製した各サーモクロミックフィルムについて、下記の各評価を行った。
<Hydrophobic organic compound>
Compound B1: Hexyltriethoxysilane (trade name: KBE-3063, manufactured by Shin-Etsu Silicone)
Compound B2: hexanoic acid (caproic acid, CH 3 (CH 2 ) 4 COOH)
Compound B3: Hexamethyldisilazane (trade name; SZ-31 manufactured by Shin-Etsu Silicone)
<Binder resin>
S1: Hydrophilic binder Kuraray Poval PVA105 (polyvinyl alcohol resin, Kuraray Co., Ltd.)
O1: Hydrophobic binder Byron 200 (Amorphous polyester resin, manufactured by Toyobo Co., Ltd.)
<Evaluation of thermochromic film>
Next, each of the thermochromic films prepared above was subjected to the following evaluations.
 〔保存性の評価〕
 上記作製した各サーモクロミックフィルムの25℃及び80℃の環境下(50%RH)における、それぞれの分光透過率を、日本分光社製の分光透過率計V-770を用い、赤外領域である1500nmにおける各透過率を測定し、下式(1)に従って温度間での分光透過率の変化率を求めた。
[Evaluation of preservability]
The spectral transmittances of the thermochromic films prepared above at 25 ° C. and 80 ° C. (50% RH) are in the infrared region using a spectral transmittance meter V-770 manufactured by JASCO Corporation. Each transmittance at 1500 nm was measured, and the change rate of the spectral transmittance between temperatures was determined according to the following formula (1).
 次いで、各サーモクロミックフィルムを60℃・90%RHの高温高湿環境下で3日間の強制劣化処理を施した後、上記と同様の温度間での分光透過率の変化率を求め、下式(2)により強制劣化処理前後での変化率の減少率(%)を求め、下記の評価基準に従って保存性を評価した。60℃・90%RHの高温高湿環境下で保存した後でも、減少率が小さければ耐久性に優れていると判定した。 Next, each thermochromic film was subjected to a forced deterioration treatment for 3 days in a high-temperature and high-humidity environment of 60 ° C. and 90% RH, and the rate of change in spectral transmittance between temperatures similar to the above was determined. The reduction rate (%) of the rate of change before and after the forced deterioration treatment was determined by (2), and the storage stability was evaluated according to the following evaluation criteria. Even after storage in a high-temperature and high-humidity environment of 60 ° C. and 90% RH, it was determined that the durability was excellent if the reduction rate was small.
 なお、変化率(%)と減少率(%)は下記の方法により求めた。 The rate of change (%) and rate of decrease (%) were determined by the following method.
 式(1)
   変化率(%)=〔(25℃における分光透過率λ1500-80℃における分光透過率λ1500)/25℃における分光透過率λ1500〕×100
 式(2)
   減少率(%)=〔1-(強制劣化処理後の変化率)/(強制劣化処理前の変化率)〕×100
 ◎:減少率が、2.0%未満である
 ○:減少率が、2.0%以上、5.0%未満である
 △:減少率が、5.0%以上、10.0%未満である
 ×:減少率が、10.0%以上である
 〔サーモクロミック応答性の評価〕
 真空断熱材で閉ざされた20cm×20cm×20cmの空間の一面のみに、各サーモクロミックフィルムをガラス基材に貼合し、内側がサーモクロミックフィルムとなるように配置した。サーモクロミックフィルムを貼合したガラス面より断熱空間内側の19cm離れた位置に温度計を設置し、サーモクロミックフィルムを貼合したガラス基材を配置した外側より、10cm離れた位置より150Wのハロゲンランプを点灯した。ハロゲンランプ点灯から温度が1℃上昇するのに要した時間(秒/℃)を測定し、下記の基準に従ってサーモクロミック応答性の評価を行った。
Formula (1)
The rate of change (%) = [spectral transmittance lambda 1500 at / 25 ° C. (spectral transmittance lambda 1500 in the spectral transmittance lambda 1500 -80 ° C. at 25 ° C.)] × 100
Formula (2)
Reduction rate (%) = [1− (change rate after forced deterioration processing) / (change rate before forced deterioration processing)] × 100
◎: Reduction rate is less than 2.0% ○: Reduction rate is 2.0% or more and less than 5.0% △: Reduction rate is 5.0% or more and less than 10.0% Yes x: Decrease rate is 10.0% or more [Evaluation of thermochromic response]
Each thermochromic film was bonded to a glass substrate only on one side of a space of 20 cm × 20 cm × 20 cm closed with a vacuum heat insulating material, and arranged so that the inside became a thermochromic film. A thermometer is installed at a position 19 cm away from the glass surface on which the thermochromic film is bonded inside the heat insulation space, and a halogen lamp of 150 W from a position 10 cm away from the outside where the glass substrate on which the thermochromic film is bonded is disposed. Turned on. The time (second / ° C.) required for the temperature to rise by 1 ° C. after the halogen lamp was turned on was measured, and the thermochromic response was evaluated according to the following criteria.
 ◎:温度上昇時間(秒/℃)が、300秒以上である
 ○:温度上昇時間(秒/℃)が、120秒以上、300秒未満である
 △:温度上昇時間(秒/℃)が、60秒以上、120秒未満である
 ×:温度上昇時間(秒/℃)が、60秒未満である
 〔繰り返し耐性の評価〕
 各サーモクロミックフィルムに対し、エスペック社製の冷熱衝撃装置TSA-103ELを用いて、80℃と-20℃の繰り返し温度変化(各温度で保管時間:10分)を1000回行った。
◎: Temperature rise time (second / ° C) is 300 seconds or more ○: Temperature rise time (second / ° C) is 120 seconds or more and less than 300 seconds △: Temperature rise time (second / ° C) 60 seconds or more and less than 120 seconds x: Temperature rise time (second / ° C.) is less than 60 seconds [Evaluation of repeated resistance]
Each thermochromic film was subjected to 1000 times of repeated temperature changes at 80 ° C. and −20 ° C. (storage time: 10 minutes at each temperature) using a thermal shock apparatus TSA-103EL manufactured by Espec.
 次いで、上記保存性の評価と同様の方法で、温度変化処理前後における分光透過率の変化率を式(1)に従って測定し、次いで、式(2)より減少率を算出し、下記の評価基準に従って繰り返し耐性を評価した。1000回の繰り返し処理前後における変化率の減少率が小さければ、繰り返し耐性に優れていると判定した。 Next, the change rate of the spectral transmittance before and after the temperature change treatment is measured according to the equation (1) by the same method as the evaluation of the storage stability, and then the reduction rate is calculated from the equation (2). Repeatedly evaluated the resistance. If the rate of decrease in the rate of change before and after 1000 iterations was small, it was determined that the repeat resistance was excellent.
 ◎:減少率が、2.0%未満である
 ○:減少率が、2.0%以上、5.0%未満である
 △:減少率が、5.0%以上、10.0%未満である
 ×:減少率が、10.0%以上である
 以上により求めた結果を、表Iに示す。
◎: Reduction rate is less than 2.0% ○: Reduction rate is 2.0% or more and less than 5.0% △: Reduction rate is 5.0% or more and less than 10.0% Yes x: Decrease rate is 10.0% or more Table I shows the results obtained above.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表Iに記載の結果より明らかなように、本発明のサーモクロミックフィルムは、比較例に対し、高い耐久性を有し、サーモクロミック応答性に優れており、かつ繰り返し耐性が良好であることが分かる。 As is clear from the results shown in Table I, the thermochromic film of the present invention has high durability, excellent thermochromic responsiveness, and good repeatability compared to the comparative example. I understand.
 実施例2
 《サーモクロミックフィルムの作製》
 〔サーモクロミックフィルム201の作製:水系〕
 (二酸化バナジウム含有粒子21の調製)
 純水10mLに、バナジン酸アンモニウム(NHVO、和光純薬社製、特級)0.433gを混合し、更に、ヒドラジン水和物(N・HO、和光純薬社製、特級)の5質量%水溶液をゆっくり滴下し、23℃におけるpH値が9.2の溶液(A)を調製した。調製した溶液(A)を、市販の水熱反応処理用オートクレーブ(三愛科学社製HU-25型、SUS製本体に25mL容積のテフロン(登録商標)製内筒を備える構成)内に入れ、100℃で8時間、引き続き270℃で24時間、水熱反応処理を施して、コア粒子である二酸化バナジウム粒子(I)を含む水系分散液を調製した。
Example 2
《Preparation of thermochromic film》
[Preparation of thermochromic film 201: aqueous]
(Preparation of vanadium dioxide-containing particles 21)
0.433 g of ammonium vanadate (NH 4 VO 3 , manufactured by Wako Pure Chemical Industries, special grade) was mixed with 10 mL of pure water, and further hydrazine hydrate (N 2 H 4 · H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.). A 5% by mass aqueous solution of (special grade) was slowly added dropwise to prepare a solution (A) having a pH value of 9.2 at 23 ° C. The prepared solution (A) is placed in a commercially available autoclave for hydrothermal reaction treatment (HU-25 type, manufactured by Sanai Kagaku Co., which has a 25 mL volume Teflon (registered trademark) inner cylinder in a SUS body), and 100 Hydrothermal reaction treatment was performed at 270 ° C. for 8 hours and then at 270 ° C. for 24 hours to prepare an aqueous dispersion containing vanadium dioxide particles (I) as core particles.
 次いで、二酸化バナジウム粒子(I)を含む水系分散液の10gに、50mLのエタノールを添加し、28%のアンモニア水でpHを11.0に調整した後、強撹拌下でテトラエトキシシラン(略称:TEOS)を1.5g添加し、25℃で4時間維持して、二酸化バナジウム粒子(I)表面に、第1シェル層BとしてSiOで構成されるアモルファス状金属酸化物層を形成して、コア・シェル型の二酸化バナジウム含有粒子21を調製し、粒子濃度として3質量%となるように分散させた二酸化バナジウム含有粒子21の分散液を調製した。 Next, 50 mL of ethanol was added to 10 g of the aqueous dispersion containing the vanadium dioxide particles (I), the pH was adjusted to 11.0 with 28% aqueous ammonia, and tetraethoxysilane (abbreviation: abbreviated as: TEOS) was added at 1.5 g and maintained at 25 ° C. for 4 hours to form an amorphous metal oxide layer composed of SiO 2 as the first shell layer B on the surface of the vanadium dioxide particles (I), Core-shell type vanadium dioxide-containing particles 21 were prepared, and a dispersion of vanadium dioxide-containing particles 21 in which the particle concentration was 3% by mass was prepared.
 (光学機能層形成用塗布液21の調製)
 下記の各構成材料を順次添加、混合及び溶解して、水系の光学機能層形成用塗布液21を調製した。
(Preparation of coating solution 21 for forming an optical functional layer)
The following constituent materials were sequentially added, mixed and dissolved to prepare an aqueous optical functional layer forming coating solution 21.
 3質量%の二酸化バナジウム含有粒子21の分散液    128質量部
 3質量%のホウ酸水溶液                 10質量部
 5質量%の親水性バインダー樹脂S1水溶液(PVA105、クラレ社製)60質量部
 (光学機能層の形成)
 厚さが50μmのポリエチレンテレフタレートフィルム(東洋紡製A4300、両面易接着層)である透明基材上に、押出コーターを用いて、上記調製した光学機能層形成用塗布液21を、乾燥後の層厚が1.5μmとなる条件で湿式塗布を行い、次いで110℃の温風を2分間吹きつけて乾燥させて光学機能層を形成し、図5に記載の構成のサーモクロミックフィルム201を作製した。
Dispersion of 3% by mass of vanadium dioxide-containing particles 21 128 parts by mass 3% by mass of boric acid aqueous solution 10 parts by mass 5% by mass of hydrophilic binder resin S1 aqueous solution (PVA105, manufactured by Kuraray) 60 parts by mass (of the optical functional layer) Formation)
On the transparent base material which is a polyethylene terephthalate film (A4300 manufactured by Toyobo Co., Ltd., double-sided easy-adhesion layer) having a thickness of 50 μm, the layer thickness after drying the coating liquid 21 for forming an optical functional layer prepared above using an extrusion coater Was applied under the condition of 1.5 μm, then hot air of 110 ° C. was blown for 2 minutes to dry to form an optical functional layer, and a thermochromic film 201 having the structure shown in FIG. 5 was produced.
 〔サーモクロミックフィルム202の作製:水系〕
 上記サーモクロミックフィルム201の作製において、二酸化バナジウム含有粒子21に代えて、下記の方法で調製した二酸化バナジウム含有粒子22を用いた以外は同様にして、サーモクロミックフィルム202を作製した。
[Preparation of thermochromic film 202: aqueous]
In producing the thermochromic film 201, a thermochromic film 202 was produced in the same manner except that the vanadium dioxide-containing particles 22 prepared by the following method were used in place of the vanadium dioxide-containing particles 21.
 (二酸化バナジウム含有粒子22の調製)
 上記二酸化バナジウム含有粒子21の調製で用いたコア粒子である二酸化バナジウム粒子(I)を含む水系分散液の10gに、10mLのエタノールとシランカップリング剤である化合物R1(KBM-403:3-グリシドキシプロピルトリメトキシシラン、信越シリコーン社製)を0.5g添加し、ホモミキサー(プライミクス株式会社製、T.K.ホモミキサーMarkII)を用い、撹拌羽根を7.85m/秒の周速で回転させて撹拌し、60℃で2時間反応させて下地層を形成した。次いで、40mLのエタノールを添加し、28%のアンモニア水でpHを11.0に調整した後、強撹拌下でテトラエトキシシラン(略称:TEOS)を1.5g添加し、25℃で4時間維持して、二酸化バナジウム粒子(I)の下地層上に、第1シェル層BとしてSiOで構成されるアモルファス状金属酸化物層を形成して、コア・シェル型の二酸化バナジウム含有粒子22を調製し、粒子濃度として3質量%となるように分散させた二酸化バナジウム含有粒子22の分散液を調製した。
(Preparation of vanadium dioxide-containing particles 22)
To 10 g of the aqueous dispersion containing the vanadium dioxide particles (I) as the core particles used in the preparation of the vanadium dioxide-containing particles 21, 10 mL of ethanol and the compound R1 (KBM-403: 3-glycol as a silane coupling agent) were added. 0.5 g of Sidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd.) was added and a stirring blade was used at a peripheral speed of 7.85 m / sec using a homomixer (Primix Co., Ltd., TK homomixer Mark II). The mixture was rotated and stirred, and reacted at 60 ° C. for 2 hours to form an underlayer. Next, 40 mL of ethanol was added, pH was adjusted to 11.0 with 28% ammonia water, 1.5 g of tetraethoxysilane (abbreviation: TEOS) was added under strong stirring, and maintained at 25 ° C. for 4 hours. Then, on the underlayer of the vanadium dioxide particles (I), an amorphous metal oxide layer composed of SiO 2 is formed as the first shell layer B to prepare the core / shell type vanadium dioxide-containing particles 22. Then, a dispersion liquid of vanadium dioxide-containing particles 22 dispersed so as to have a particle concentration of 3% by mass was prepared.
 〔サーモクロミックフィルム203の作製:水系〕
 上記サーモクロミックフィルム201の作製において、二酸化バナジウム含有粒子21に代えて、下記の方法で調製した二酸化バナジウム含有粒子23を用いた以外は同様にして、サーモクロミックフィルム203を作製した。
[Preparation of thermochromic film 203: aqueous]
In producing the thermochromic film 201, a thermochromic film 203 was produced in the same manner except that the vanadium dioxide-containing particles 23 prepared by the following method were used in place of the vanadium dioxide-containing particles 21.
 (二酸化バナジウム含有粒子23の調製)
 上記二酸化バナジウム含有粒子21の調製で用いたコア粒子である二酸化バナジウム粒子(I)を含む水系分散液の10gに、50mLのエタノールを添加し、28%のアンモニア水でpHを11.0に調整した後、強撹拌下でテトラエトキシシラン(略称:TEOS)を1.5g添加し、25℃で4時間維持して、二酸化バナジウム粒子(I)表面に、第1シェル層BとしてSiOで構成されるアモルファス状金属酸化物層を形成した。
(Preparation of vanadium dioxide-containing particles 23)
50 mL of ethanol is added to 10 g of the aqueous dispersion containing the vanadium dioxide particles (I) that are the core particles used in the preparation of the vanadium dioxide-containing particles 21, and the pH is adjusted to 11.0 with 28% ammonia water. After that, 1.5 g of tetraethoxysilane (abbreviation: TEOS) is added under strong stirring and maintained at 25 ° C. for 4 hours to form SiO 2 as the first shell layer B on the surface of the vanadium dioxide particles (I). An amorphous metal oxide layer was formed.
 次いで、疎水性有機化合物として化合物B1(ヘキシルトリエトキシシラン、KBE-3063、信越シリコーン社製)とエタノールを添加して、80℃で2時間反応させて、第1シェル層B上に、疎水性有機化合物より構成される第2シェル層Bを形成して、二酸化バナジウム含有粒子23を得た。 Next, Compound B1 (hexyltriethoxysilane, KBE-3063, manufactured by Shin-Etsu Silicone) as a hydrophobic organic compound and ethanol are added and reacted at 80 ° C. for 2 hours to form a hydrophobic property on the first shell layer B. The 2nd shell layer B comprised from an organic compound was formed, and the vanadium dioxide containing particle | grains 23 were obtained.
 次いで、遠心沈降及び純水で洗浄を行った後、純水とドデシルベンゼンスルホン酸ナトリウムを加え、ホモミキサー(プライミクス株式会社製、T.K.ホモミキサーMarkII)を用い、撹拌羽根を7.85m/秒の周速で回転させて撹拌して、粒子濃度として3質量%となるように分散させた二酸化バナジウム含有粒子23の分散液を調製した。 Next, after centrifugal sedimentation and washing with pure water, pure water and sodium dodecylbenzenesulfonate were added, and a stirring blade was 7.85 m using a homomixer (Primix Co., Ltd., TK homomixer Mark II). A dispersion of vanadium dioxide-containing particles 23 was prepared by rotating at a peripheral speed of / sec and stirring to disperse the particles to a particle concentration of 3% by mass.
 〔サーモクロミックフィルム204の作製:水系〕
 上記サーモクロミックフィルム203の作製に用いた二酸化バナジウム含有粒子23に代えて、下記の方法により調製した二酸化バナジウム含有粒子24を用いた以外は同様にして、サーモクロミックフィルム204を作製した。
[Preparation of thermochromic film 204: aqueous]
A thermochromic film 204 was produced in the same manner except that the vanadium dioxide-containing particles 24 prepared by the following method were used in place of the vanadium dioxide-containing particles 23 used to produce the thermochromic film 203.
 (二酸化バナジウム含有粒子24の調製)
 二酸化バナジウム粒子(I)を含む分散液10gに、50mLのエタノール添加し、1モル/Lの硝酸(HNO)でpHを3.0に調整し、強撹拌下でチタンテトライソプロポキシド(Ti[OCH(CH)を添加して、80℃で6時間反応させ、TiOから構成される第1シェル層Bを形成した。
(Preparation of vanadium dioxide-containing particles 24)
To 10 g of the dispersion containing vanadium dioxide particles (I), 50 mL of ethanol was added, the pH was adjusted to 3.0 with 1 mol / L nitric acid (HNO 3 ), and titanium tetraisopropoxide (Ti [OCH (CH 3 ) 2 ] 4 ) was added and reacted at 80 ° C. for 6 hours to form a first shell layer B composed of TiO 2 .
 次いで、疎水性有機化合物として化合物B1(ヘキシルトリエトキシシラン、KBE-3063、信越シリコーン社製)とエタノールを添加して、80℃で2時間反応させて、TiOより構成される第1シェル層B上に、疎水性有機化合物より構成される第2シェル層Bを形成して、二酸化バナジウム含有粒子24を得た。 Next, Compound B1 (hexyltriethoxysilane, KBE-3063, manufactured by Shin-Etsu Silicone) as a hydrophobic organic compound and ethanol are added and reacted at 80 ° C. for 2 hours to form a first shell layer made of TiO 2 On B, the 2nd shell layer B comprised from a hydrophobic organic compound was formed, and the vanadium dioxide containing particle | grains 24 were obtained.
 次いで、遠心沈降及び純水で洗浄を行った後、純水とドデシルベンゼンスルホン酸ナトリウムを加え、ホモミキサー(プライミクス株式会社製、T.K.ホモミキサーMarkII)を用い、撹拌羽根を7.85m/秒の周速で回転させて撹拌して、粒子濃度として3質量%となるように分散させた二酸化バナジウム含有粒子24の分散液を調製した。 Next, after centrifugal sedimentation and washing with pure water, pure water and sodium dodecylbenzenesulfonate were added, and a stirring blade was 7.85 m using a homomixer (Primix Co., Ltd., TK homomixer Mark II). A dispersion of vanadium dioxide-containing particles 24 was prepared by rotating at a peripheral speed of / sec and stirring to disperse the particles to a particle concentration of 3% by mass.
 〔サーモクロミックフィルム205の作製:疎水系〕
 上記二酸化バナジウム含有粒子21の調製で用いたコア粒子である二酸化バナジウム粒子(I)を含む水系分散液の10gに、50mLのエタノールを添加し、28%のアンモニア水でpHを11.0に調整した後、強撹拌下でテトラエトキシシラン(略称:TEOS)を1.5g添加し、25℃で4時間維持して、二酸化バナジウム粒子(I)表面に、第1シェル層BとしてSiOで構成されるアモルファス状金属酸化物層を形成し、次いで、疎水性有機化合物として化合物B1(ヘキシルトリエトキシシラン、KBE-3063、信越シリコーン社製)とエタノールを添加して、80℃で2時間反応させて、第1シェル層B上に、疎水性有機化合物より構成される第2シェル層Bを形成して、二酸化バナジウム含有粒子25を調製した。
[Preparation of Thermochromic Film 205: Hydrophobic]
50 mL of ethanol is added to 10 g of the aqueous dispersion containing the vanadium dioxide particles (I) that are the core particles used in the preparation of the vanadium dioxide-containing particles 21, and the pH is adjusted to 11.0 with 28% ammonia water. After that, 1.5 g of tetraethoxysilane (abbreviation: TEOS) is added under strong stirring and maintained at 25 ° C. for 4 hours to form SiO 2 as the first shell layer B on the surface of the vanadium dioxide particles (I). Then, an amorphous metal oxide layer is formed, and then compound B1 (hexyltriethoxysilane, KBE-3063, manufactured by Shin-Etsu Silicone) and ethanol are added as a hydrophobic organic compound and reacted at 80 ° C. for 2 hours. Then, a second shell layer B composed of a hydrophobic organic compound was formed on the first shell layer B to prepare vanadium dioxide-containing particles 25. .
 次いで、遠心沈降及びエタノールで洗浄を行った後、メチルエチルケトンを添加し、ホモミキサー(プライミクス株式会社製、T.K.ホモミキサーMarkII)を用い、撹拌羽根を7.85m/秒の周速で回転させて撹拌して、粒子濃度として3質量%となるように分散させた二酸化バナジウム含有粒子25の分散液を調製した。 Next, after centrifugal sedimentation and washing with ethanol, methyl ethyl ketone was added, and the stirring blade was rotated at a peripheral speed of 7.85 m / sec using a homomixer (Primix Co., Ltd., TK homomixer Mark II). And a dispersion of vanadium dioxide-containing particles 25 dispersed to a particle concentration of 3% by mass was prepared.
 前記サーモクロミックフィルム203の作製において、以下に示す構成の光学機能層形成用塗布液を用いる以外は同様にして、サーモクロミックフィルム205を作製した。 In producing the thermochromic film 203, a thermochromic film 205 was produced in the same manner except that the coating solution for forming an optical functional layer having the following configuration was used.
 (光学機能層形成用塗布液の調製)
 3質量%の二酸化バナジウム含有粒子25の分散液    128質量部
 5質量%の疎水性バインダー樹脂O1(バイロン200、東洋紡社製)メチルエチルケトン溶液                   65質量部
 〔サーモクロミックフィルム206の作製:疎水系〕
 上記二酸化バナジウム含有粒子21の調製で用いたコア粒子である二酸化バナジウム粒子(I)を含む水系分散液の10gに、50mLのエタノールを添加し、28%のアンモニア水でpHを11.0に調整した後、強撹拌下でテトラエトキシシラン(略称:TEOS)を1.5g添加し、25℃で4時間維持して、二酸化バナジウム粒子(I)表面に、第1シェル層BとしてSiOで構成されるアモルファス状金属酸化物層を形成した二酸化バナジウム粒子を含む分散液を調製した。
(Preparation of coating solution for optical functional layer formation)
Dispersion of 3% by mass of vanadium dioxide-containing particles 25 128 parts by mass 5% by mass of hydrophobic binder resin O1 (Byron 200, manufactured by Toyobo Co., Ltd.) 65 parts by mass of methyl ethyl ketone solution [Preparation of thermochromic film 206: hydrophobic system]
50 mL of ethanol is added to 10 g of the aqueous dispersion containing the vanadium dioxide particles (I) that are the core particles used in the preparation of the vanadium dioxide-containing particles 21, and the pH is adjusted to 11.0 with 28% ammonia water. After that, 1.5 g of tetraethoxysilane (abbreviation: TEOS) is added under strong stirring and maintained at 25 ° C. for 4 hours to form SiO 2 as the first shell layer B on the surface of the vanadium dioxide particles (I). A dispersion containing vanadium dioxide particles formed with an amorphous metal oxide layer was prepared.
 次いで、第1シェル層Bを形成した二酸化バナジウム粒子を含む分散液を用い、下記の方法に従って、図4に記載の流通式反応器であるフロー型リアクターを用いて、二酸化バナジウム含有粒子26を調製した。 Next, the vanadium dioxide-containing particles 26 are prepared using the dispersion containing the vanadium dioxide particles on which the first shell layer B is formed, using the flow type reactor shown in FIG. 4 according to the following method. did.
 精製水に上記第1シェル層Bを形成した二酸化バナジウム粒子を分散させ、0.02モル/Lの二酸化バナジウム粒子水スラリーを調製した。ついで、第2シェル層Bを形成する疎水性有機化合物として、化合物B2(ヘキサン酸)のトルエン溶液(0.12モル)を調製した。予熱水、二酸化バナジウム粒子スラリー、化合物B2のトルエン溶液の流量は、それぞれ12mL/min、3mL/min、3mL/minとした。次に背圧弁により系内を30MPaに設定した。 The vanadium dioxide particles on which the first shell layer B was formed were dispersed in purified water to prepare a 0.02 mol / L vanadium dioxide particle water slurry. Next, a toluene solution (0.12 mol) of compound B2 (hexanoic acid) was prepared as a hydrophobic organic compound forming the second shell layer B. The flow rates of the preheated water, the vanadium dioxide particle slurry, and the toluene solution of Compound B2 were 12 mL / min, 3 mL / min, and 3 mL / min, respectively. Next, the inside of the system was set to 30 MPa by a back pressure valve.
 次いで、カートリッジヒーターに通電し、予熱水を所定温度まで加熱した。通電と同時に、冷却水循環装置の電源を入れ、冷却を開始させた。各部の温度が安定したことを確認した後、精製水を送液していたポンプを、二酸化バナジウム粒子スラリー、化合物B2のトルエン溶液に切り替えて送液した。 Next, the cartridge heater was energized to heat the preheated water to a predetermined temperature. Simultaneously with energization, the cooling water circulation device was turned on to start cooling. After confirming that the temperature of each part was stable, the pump that had sent purified water was switched to a vanadium dioxide particle slurry and a toluene solution of compound B2 and sent.
 所定時間後、回収部のラインを反対側のラインに戻し、電気炉とフレキシブルヒーターの加熱を停止させた。その後、送液ポンプを二酸化バナジウム粒子含有の水溶液から精製水に切り替え、反応を終了させた。管内の温度が100℃以下になったことを確認し、背圧弁を開放して系内の圧力を常圧に戻した。冷却水循環装置の電源を切り、冷却を停止させた。 After a predetermined time, the recovery unit line was returned to the opposite line, and heating of the electric furnace and the flexible heater was stopped. Thereafter, the liquid feed pump was switched from an aqueous solution containing vanadium dioxide particles to purified water to complete the reaction. After confirming that the temperature in the tube was 100 ° C. or lower, the back pressure valve was opened to return the pressure in the system to normal pressure. The cooling water circulation device was turned off and the cooling was stopped.
 生成物をシリンジ型回収容器からビーカーに移し、トルエン20mLで容器内から生成物を洗い出した。その後、水相とトルエン相を分離し、トルエン相に移行した二酸化バナジウム含有粒子が3質量%になるように調整して、二酸化バナジウム含有粒子26を調製した。 The product was transferred from the syringe-type collection container to a beaker, and the product was washed out of the container with 20 mL of toluene. Thereafter, the aqueous phase and the toluene phase were separated, and the vanadium dioxide-containing particles 26 were prepared by adjusting the vanadium dioxide-containing particles transferred to the toluene phase to 3% by mass.
 次いで、上記サーモクロミックフィルム205の作製において、二酸化バナジウム含有粒子25に代えて、上記調製した二酸化バナジウム含有粒子26を用いた以外は同様にして、サーモクロミックフィルム206を作製した。 Next, in the production of the thermochromic film 205, a thermochromic film 206 was produced in the same manner except that the prepared vanadium dioxide-containing particles 26 were used instead of the vanadium dioxide-containing particles 25.
 〔サーモクロミックフィルム207の作製:疎水系〕
 上記二酸化バナジウム含有粒子21の調製で用いたコア粒子である二酸化バナジウム粒子(I)を含む水系分散液の10gに、50mLのエタノールを添加し、28%のアンモニア水でpHを11.0に調整した後、強撹拌下でテトラエトキシシラン(略称:TEOS)を1.5g添加し、25℃で4時間維持して、二酸化バナジウム粒子(I)表面に、第1シェル層BとしてSiOで構成されるアモルファス状金属酸化物層を形成した。
[Production of Thermochromic Film 207: Hydrophobic]
50 mL of ethanol is added to 10 g of the aqueous dispersion containing the vanadium dioxide particles (I) that are the core particles used in the preparation of the vanadium dioxide-containing particles 21, and the pH is adjusted to 11.0 with 28% ammonia water. After that, 1.5 g of tetraethoxysilane (abbreviation: TEOS) is added under strong stirring and maintained at 25 ° C. for 4 hours to form SiO 2 as the first shell layer B on the surface of the vanadium dioxide particles (I). An amorphous metal oxide layer was formed.
 次いで、第1シェル層Bまで形成した二酸化バナジウム粒子を含む分散液を、限外濾過機(ビバフロー株式会社)を用いて、体積を5分の1に濃縮した後、アセトニトリルを加え、もとの液量に戻すという作業を4回繰り返して、溶媒をアセトニトリル置換した後、疎水性有機化合物として、化合物B3(ヘキサメチルジシラザン、SZ-31、信越シリコーン社製)を添加して撹拌しながら1時間反応させて、疎水性有機化合物から構成される第2シェル層Bを形成して、二酸化バナジウム含有粒子27を含む溶媒分散液を調製した。 Next, after the dispersion containing the vanadium dioxide particles formed up to the first shell layer B was concentrated to 1/5 using an ultrafilter (Vivaflow Co., Ltd.), acetonitrile was added, The process of returning to the liquid volume was repeated 4 times, and the solvent was replaced with acetonitrile. Then, compound B3 (hexamethyldisilazane, SZ-31, manufactured by Shin-Etsu Silicone) was added as a hydrophobic organic compound and stirred. By reacting for a period of time, a second shell layer B composed of a hydrophobic organic compound was formed, and a solvent dispersion containing vanadium dioxide-containing particles 27 was prepared.
 上記サーモクロミックフィルム205の作製において、二酸化バナジウム含有粒子25に代えて、上記調製した二酸化バナジウム含有粒子27を用いた以外は同様にして、サーモクロミックフィルム207を作製した。 In the production of the thermochromic film 205, a thermochromic film 207 was produced in the same manner except that the vanadium dioxide-containing particles 27 prepared above were used in place of the vanadium dioxide-containing particles 25.
 〔サーモクロミックフィルム208の作製:疎水系〕
 上記サーモクロミックフィルム207の作製において、二酸化バナジウム含有粒子27に代えて、下記の方法により調製した二酸化バナジウム含有粒子28を用いた以外は同様にして、サーモクロミックフィルム208を作製した。
[Production of Thermochromic Film 208: Hydrophobic]
In producing the thermochromic film 207, a thermochromic film 208 was produced in the same manner except that the vanadium dioxide-containing particles 28 prepared by the following method were used in place of the vanadium dioxide-containing particles 27.
 (二酸化バナジウム含有粒子28の調製)
 前記二酸化バナジウム含有粒子27の調製において、コア粒子(I)である二酸化バナジウム粒子調製時に、転移温度調整剤としてタングステン(W)を、バナジウム原子が99atm%、タングステン(W)が1atm%となるように添加して、タングステンをドープしたコア粒子(II)を用い以外は同様にして、二酸化バナジウム含有粒子28を調製した。
(Preparation of vanadium dioxide-containing particles 28)
In the preparation of the vanadium dioxide-containing particles 27, when preparing the vanadium dioxide particles as the core particles (I), tungsten (W) is used as a transition temperature adjusting agent, vanadium atoms are 99 atm%, and tungsten (W) is 1 atm%. The vanadium dioxide-containing particles 28 were prepared in the same manner except that the core particles (II) doped with tungsten were used.
 上記サーモクロミックフィルムの作製に用いた各添加剤の詳細は、以下のとおりである。 Details of each additive used for producing the thermochromic film are as follows.
 〈疎水性有機化合物〉
 化合物B1:ヘキシルトリエトキシシラン(商品名;KBE-3063 信越シリコーン社製)
 化合物B2:ヘキサン酸(カプロン酸、CH(CHCOOH)
 化合物B3:ヘキサメチルジシラザン(商品名;SZ-31 信越シリコーン社製)
 〈バインダー樹脂〉
 S1:親水性バインダー クラレポバールPVA105(ポリビニルアルコール樹脂 クラレ社製)
 O1:疎水性バインダー バイロン200(非晶性ポリエステル樹脂 東洋紡社製)
 《サーモクロミックフィルムの評価》
 次いで、上記作製した各サーモクロミックフィルムについて、実施例1に記載の方法と同様にして、保存性の評価及び繰り返し耐性の評価を行い、得られた結果を表IIに示す。
<Hydrophobic organic compound>
Compound B1: Hexyltriethoxysilane (trade name: KBE-3063, manufactured by Shin-Etsu Silicone)
Compound B2: hexanoic acid (caproic acid, CH 3 (CH 2 ) 4 COOH)
Compound B3: Hexamethyldisilazane (trade name; SZ-31 manufactured by Shin-Etsu Silicone)
<Binder resin>
S1: Hydrophilic binder Kuraray Poval PVA105 (polyvinyl alcohol resin, Kuraray Co., Ltd.)
O1: Hydrophobic binder Byron 200 (Amorphous polyester resin, manufactured by Toyobo Co., Ltd.)
<Evaluation of thermochromic film>
Next, for each of the thermochromic films prepared above, the storage stability and the repeated resistance were evaluated in the same manner as in the method described in Example 1, and the obtained results are shown in Table II.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表IIに記載の結果より明らかなように、本発明のサーモクロミックフィルムは、比較例に対し、高い耐久性を有し、かつ繰り返し耐性が良好であることが分かる。 As is clear from the results shown in Table II, it can be seen that the thermochromic film of the present invention has high durability and good repeatability compared to the comparative example.
 本発明のサーモクロミック性二酸化バナジウム含有粒子は、優れた保存安定性と、高いサーモクロミック応答性及びサーモクロミック繰り返し再現性を有し、このサーモクロミック性二酸化バナジウム含有粒子を含有するサーモクロミックフィルムは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。 The thermochromic vanadium dioxide-containing particles of the present invention have excellent storage stability, high thermochromic response and thermochromic repeatability, and the thermochromic film containing the thermochromic vanadium dioxide-containing particles is It can be used for automobiles, railway vehicles, aircraft, ships and buildings.
 1、1a、1b サーモクロミック性二酸化バナジウム含有粒子
 2 コア粒子
 3A 第1シェル層A
 3B 第1シェル層B
 4A 第2シェル層A
 4B 第2シェル層B
 5A 第3シェル層A
 11 サーモクロミックフィルム
 12 透明基材
 13 光学機能層
 12+13 ハイブリッド光学機能層
 14 近赤外光遮蔽層
 50 溶媒置換処理装置
 51 調製釜
 52 二酸化バナジウム含有粒子を含む混合溶液
 53 循環ライン
 54 循環ポンプ
 55 限外濾過部
 56 排出口
 57 溶媒ストック釜
 58 溶媒
 59 溶媒供給ライン
 100 フロー型のリアクター
 101 高圧原料液
 102 予熱水
 103 疎水性有機化合物溶液
 104 二酸化バナジウム含有粒子
 105 水供給路
 106 疎水性有機化合物供給路
 107 原料供給路
 B1、B2 疎水性バインダー
 L 光線入射側
 M 修飾部
 C 冷却部
 G 回収部
 P ポンプ
 H ヒーター
 V 背圧弁
 VO 二酸化バナジウム含有粒子の一次粒子
 VO 二酸化バナジウム含有粒子の二次粒子
1, 1a, 1b Thermochromic vanadium dioxide-containing particles 2 Core particles 3A First shell layer A
3B First shell layer B
4A Second shell layer A
4B Second shell layer B
5A Third shell layer A
DESCRIPTION OF SYMBOLS 11 Thermochromic film 12 Transparent base material 13 Optical functional layer 12 + 13 Hybrid optical functional layer 14 Near-infrared light shielding layer 50 Solvent substitution processing apparatus 51 Preparation kettle 52 Mixed solution containing vanadium dioxide containing particle 53 Circulation line 54 Circulation pump 55 Limit Filtration section 56 Discharge port 57 Solvent stock kettle 58 Solvent 59 Solvent supply line 100 Flow type reactor 101 High pressure raw material liquid 102 Preheated water 103 Hydrophobic organic compound solution 104 Vanadium dioxide-containing particles 105 Water supply path 106 Hydrophobic organic compound supply path 107 secondary particles of the raw material supply path B1, B2 hydrophobic binder L light incident side M modified portion C cooling unit G recovery unit P pump H heater V back pressure valve VO S of vanadium dioxide containing particles primary particles VO M vanadium dioxide containing particles

Claims (13)

  1.  コア・シェル構造を有するサーモクロミック性二酸化バナジウム含有粒子であって、前記コア・シェル構造が、下記コア・シェル構造1又はコア・シェル構造2であることを特徴とするサーモクロミック性二酸化バナジウム含有粒子。
     コア・シェル構造1:コア部に二酸化バナジウム粒子を有し、かつ、当該二酸化バナジウム粒子の表面を修飾する少なくともヒドロキシ基を有する有機化合物からなる第1シェル層Aとアモルファス状金属酸化物を含有する第2シェル層Aとをこの順で有する多層構造。
     コア・シェル構造2:コア部に二酸化バナジウム粒子を有し、かつ、当該二酸化バナジウム粒子の表面上に、少なくとも1層のアモルファス状金属酸化物を含有する第1シェル層Bと、疎水性有機化合物を含有する第2シェル層Bとをこの順で有する多層構造。
    Thermochromic vanadium dioxide-containing particles having a core-shell structure, wherein the core-shell structure is the following core-shell structure 1 or core-shell structure 2 .
    Core-shell structure 1: contains a first shell layer A made of an organic compound having at least a hydroxy group, which has vanadium dioxide particles in the core part and modifies the surface of the vanadium dioxide particles, and an amorphous metal oxide. A multilayer structure having the second shell layer A in this order.
    Core-shell structure 2: first shell layer B having vanadium dioxide particles in the core portion and containing at least one amorphous metal oxide on the surface of the vanadium dioxide particles, and a hydrophobic organic compound A multilayer structure having a second shell layer B containing
  2.  前記コア・シェル構造1を形成する前記第2シェル層A、又は前記コア・シェル構造2を形成する前記第1シェル層Bが含有するアモルファス状金属酸化物が、酸化珪素、酸化チタン、酸化亜鉛、酸化ハフニウム、酸化セリウム及び酸化モリブデンから選ばれる少なくとも1種であることを特徴とする請求項1に記載のサーモクロミック性二酸化バナジウム含有粒子。 The amorphous metal oxide contained in the second shell layer A forming the core-shell structure 1 or the first shell layer B forming the core-shell structure 2 is silicon oxide, titanium oxide, zinc oxide. The thermochromic vanadium dioxide-containing particles according to claim 1, wherein the thermochromic vanadium dioxide-containing particles are at least one kind selected from hafnium oxide, cerium oxide, and molybdenum oxide.
  3.  前記コア・シェル構造1を形成する第1シェル層Aが含有する有機化合物が、ヒドロキシ基と共に、アミノ基又は窒素含有ヘテロ環基を有することを特徴とする請求項1又は請求項2に記載のサーモクロミック性二酸化バナジウム含有粒子。 The organic compound contained in the first shell layer A forming the core-shell structure 1 has an amino group or a nitrogen-containing heterocyclic group together with a hydroxy group. Thermochromic vanadium dioxide-containing particles.
  4.  前記コア・シェル構造1を形成する第2シェル層Aの表面上に、更に疎水性有機化合物を含有する第3シェル層Aを有することを特徴とする請求項1から請求項3までのいずれか一項に記載のサーモクロミック性二酸化バナジウム含有粒子。 4. The method according to claim 1, further comprising a third shell layer A containing a hydrophobic organic compound on the surface of the second shell layer A forming the core-shell structure 1. The thermochromic vanadium dioxide-containing particles according to one item.
  5.  前記コア・シェル構造1を形成する第3シェル層Aが含有する疎水性有機化合物が、疎水性アルキル基又は疎水性アリール基と、シラザン、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1種の基とを有する化合物であることを特徴とする請求項4に記載のサーモクロミック性二酸化バナジウム含有粒子。 The hydrophobic organic compound contained in the third shell layer A forming the core-shell structure 1 is at least one selected from a hydrophobic alkyl group or a hydrophobic aryl group, silazane, silicon alkoxide, alcohol, aldehyde, and carboxylic acid. The thermochromic vanadium dioxide-containing particle according to claim 4, wherein the thermochromic vanadium dioxide-containing particle is a compound having a seed group.
  6.  前記コア・シェル構造2を形成する前記第2シェル層Bが含有する疎水性有機化合物が、疎水性アルキル基又は疎水性アリール基と、シラザン、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1種の基とを有する化合物であることを特徴とする請求項1又は請求項2に記載のサーモクロミック性二酸化バナジウム含有粒子。 The hydrophobic organic compound contained in the second shell layer B forming the core-shell structure 2 is at least selected from a hydrophobic alkyl group or a hydrophobic aryl group, silazane, silicon alkoxide, alcohol, aldehyde and carboxylic acid. The thermochromic vanadium dioxide-containing particle according to claim 1 or 2, wherein the thermochromic vanadium dioxide-containing particle is a compound having one kind of group.
  7.  更に、相転移温度の調整作用を有する元素を含む化合物を含有することを特徴とする請求項1から請求項6までのいずれか一項に記載のサーモクロミック性二酸化バナジウム含有粒子。 The thermochromic vanadium dioxide-containing particles according to any one of claims 1 to 6, further comprising a compound containing an element having an effect of adjusting a phase transition temperature.
  8.  請求項1から請求項5までのいずれか一項に記載のサーモクロミック性二酸化バナジウム含有粒子を製造するサーモクロミック性二酸化バナジウム含有粒子の製造方法であって、
     第1シェル層Aの形成工程として、コア粒子として二酸化バナジウム粒子を含有する水分散液に、少なくともヒドロキシ基を有する有機化合物を添加・分散してシェル層を形成する工程と、
     第2シェル層Aの形成工程として、アモルファス状金属酸化物形成前駆体とアルカリとアルコールを添加してアモルファス状金属酸化物を有するシェル層を形成する工程と、
    を有することを特徴とするサーモクロミック性二酸化バナジウム含有粒子の製造方法。
    A method for producing thermochromic vanadium dioxide-containing particles for producing the thermochromic vanadium dioxide-containing particles according to any one of claims 1 to 5,
    As a forming step of the first shell layer A, a step of forming a shell layer by adding and dispersing an organic compound having at least a hydroxy group to an aqueous dispersion containing vanadium dioxide particles as core particles;
    As a step of forming the second shell layer A, a step of forming an amorphous metal oxide forming precursor, an alkali and an alcohol to form a shell layer having an amorphous metal oxide,
    A process for producing thermochromic vanadium dioxide-containing particles, characterized by comprising:
  9.  請求項4又は請求項5に記載のサーモクロミック性二酸化バナジウム含有粒子を製造するサーモクロミック性二酸化バナジウム含有粒子の製造方法であって、
     第1シェル層Aの形成工程として、コア粒子として二酸化バナジウム粒子を含有する水分散液に、少なくともヒドロキシ基を有する有機化合物を添加・分散して第1シェル層Aを形成する工程と、
     第2シェル層Aの形成工程として、アモルファス状金属酸化物形成前駆体とアルカリとアルコールを添加してアモルファス状金属酸化物を有する第2シェル層Aを形成する工程とを有し、
     かつ、第3シェル層Aの形成工程として、下記工程(3-1)又は(3-2)のいずれかの工程を有することを特徴とするサーモクロミック性二酸化バナジウム含有粒子の製造方法。
     工程(3-1):第2シェル層Aを形成した二酸化バナジウム粒子を含有する水分散液の水媒体を、限外濾過によりヒドロキ基を含有しない有機溶媒に置換し、次いで、シラザン基を有する疎水性有機化合物で表面修飾して第3シェル層Aを形成する工程、
     工程(3-2):亜臨界状態にある高温高圧水の存在下でシリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で処理する、又は、亜臨界状態にある高温高圧水の存在下で前処理した後、超臨界状態にある高温高圧水の存在下で、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で表面修飾して第3シェル層Aを形成する工程。
    A method for producing thermochromic vanadium dioxide-containing particles for producing the thermochromic vanadium dioxide-containing particles according to claim 4 or 5,
    As a step of forming the first shell layer A, a step of forming the first shell layer A by adding and dispersing an organic compound having at least a hydroxy group in an aqueous dispersion containing vanadium dioxide particles as core particles;
    The step of forming the second shell layer A includes the step of forming the second shell layer A having an amorphous metal oxide by adding an amorphous metal oxide forming precursor, alkali and alcohol,
    The method for producing thermochromic vanadium dioxide-containing particles is characterized in that the step of forming the third shell layer A includes any one of the following steps (3-1) and (3-2).
    Step (3-1): The aqueous medium of the aqueous dispersion containing the vanadium dioxide particles forming the second shell layer A is replaced with an organic solvent containing no hydroxy group by ultrafiltration, and then has a silazane group. Forming a third shell layer A by surface modification with a hydrophobic organic compound;
    Step (3-2): treatment with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid in the presence of high-temperature high-pressure water in a subcritical state, or a subcritical state A hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid in the presence of high-temperature high-pressure water in a supercritical state after pretreatment in the presence of high-temperature high-pressure water in A step of surface modification to form the third shell layer A.
  10.  請求項1、請求項2又は請求項6に記載のサーモクロミック性二酸化バナジウム含有粒子を製造するサーモクロミック性二酸化バナジウム含有粒子の製造方法であって、
     第1シェル層Bの形成工程として、コア粒子として二酸化バナジウム粒子を含有する水分散液に、アモルファス状金属酸化物形成前駆体とアルカリとアルコールを添加してアモルファス状金属酸化物を有する第1シェル層Bを形成する工程とを有し、
     かつ、第2シェル層Bの形成工程として、下記工程(2-1)又は(2-2)のいずれかの工程を有することを特徴とするサーモクロミック性二酸化バナジウム含有粒子の製造方法。
     工程(2-1):第1シェル層Bを形成した二酸化バナジウム粒子を含有する水分散液の水媒体を、限外濾過によりヒドロキ基を含有しない有機溶媒に置換し、次いで、シラザン基を有する疎水性有機化合物で表面修飾して第2シェル層Bを形成する工程、
     工程(2-2):亜臨界状態にある高温高圧水の存在下でシリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で処理する、又は、亜臨界状態にある高温高圧水の存在下で前処理した後、超臨界状態にある高温高圧水の存在下で、シリコンアルコキシド、アルコール、アルデヒド及びカルボン酸から選ばれる少なくとも1つの基を有する疎水性有機化合物で表面修飾して第2シェル層Bを形成する工程。
    A method for producing thermochromic vanadium dioxide-containing particles for producing the thermochromic vanadium dioxide-containing particles according to claim 1, claim 2 or claim 6,
    As a forming step of the first shell layer B, a first shell having an amorphous metal oxide by adding an amorphous metal oxide forming precursor, an alkali and an alcohol to an aqueous dispersion containing vanadium dioxide particles as core particles. Forming a layer B,
    The method for producing thermochromic vanadium dioxide-containing particles is characterized in that the step of forming the second shell layer B includes one of the following steps (2-1) and (2-2).
    Step (2-1): The aqueous medium of the aqueous dispersion containing the vanadium dioxide particles forming the first shell layer B is replaced with an organic solvent containing no hydroxy group by ultrafiltration, and then has a silazane group. Forming a second shell layer B by surface modification with a hydrophobic organic compound;
    Step (2-2): treatment with a hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid in the presence of high-temperature high-pressure water in a subcritical state, or a subcritical state A hydrophobic organic compound having at least one group selected from silicon alkoxide, alcohol, aldehyde and carboxylic acid in the presence of high-temperature high-pressure water in a supercritical state after pretreatment in the presence of high-temperature high-pressure water in A step of surface modification to form the second shell layer B.
  11.  請求項1から請求項7までのいずれか一項に記載のサーモクロミック性二酸化バナジウム含有粒子を含有することを特徴とするサーモクロミックフィルム。 A thermochromic film comprising the thermochromic vanadium dioxide-containing particles according to any one of claims 1 to 7.
  12.  更に疎水性バインダーを含有することを特徴とする請求項11に記載のサーモクロミックフィルム。 The thermochromic film according to claim 11, further comprising a hydrophobic binder.
  13.  サーモクロミック性二酸化バナジウム含有粒子を含有するサーモクロミックフィルムの製造方法であって、
     請求項8から請求項10までのいずれか一項に記載のサーモクロミック性二酸化バナジウム含有粒子の製造方法により二酸化バナジウム含有粒子を製造し、さらに当該二酸化バナジウム含有粒子と、少なくとも疎水性バインダーとを混合して、塗布・乾燥することにより製造することを特徴とするサーモクロミックフィルムの製造方法。
    A method for producing a thermochromic film containing thermochromic vanadium dioxide-containing particles,
    A vanadium dioxide-containing particle is produced by the method for producing a thermochromic vanadium dioxide-containing particle according to any one of claims 8 to 10, and the vanadium dioxide-containing particle is mixed with at least a hydrophobic binder. And the manufacturing method of the thermochromic film characterized by manufacturing by apply | coating and drying.
PCT/JP2017/014853 2016-06-07 2017-04-11 Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor WO2017212778A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016113148A JP2019135273A (en) 2016-06-07 2016-06-07 Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
JP2016-113148 2016-06-07
JP2016-113146 2016-06-07
JP2016113146A JP2019135272A (en) 2016-06-07 2016-06-07 Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor

Publications (1)

Publication Number Publication Date
WO2017212778A1 true WO2017212778A1 (en) 2017-12-14

Family

ID=60578495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014853 WO2017212778A1 (en) 2016-06-07 2017-04-11 Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor

Country Status (1)

Country Link
WO (1) WO2017212778A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131112A1 (en) * 2017-12-27 2019-07-04 コニカミノルタ株式会社 Core-shell particle, production method therefor, and composition
CN114672169A (en) * 2022-03-22 2022-06-28 湖南航天三丰科工有限公司 Temperature-sensitive color-changing agent and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178825A (en) * 2010-02-26 2011-09-15 National Institute Of Advanced Industrial Science & Technology Single crystal fine particle, method for producing the same, and application thereof
JP2013075806A (en) * 2011-09-30 2013-04-25 Sekisui Chem Co Ltd Method for producing vanadium dioxide particle having surface protection layer
CN103666444A (en) * 2012-08-31 2014-03-26 中国科学院上海硅酸盐研究所 Preparation method and application of silicon oxide coated vanadium oxide nano/micro powder
WO2016017611A1 (en) * 2014-07-30 2016-02-04 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particles, vanadium dioxide-containing particles, dispersion, and optical film
WO2016047606A1 (en) * 2014-09-22 2016-03-31 積水化学工業株式会社 Carbon-coated vanadium dioxide particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178825A (en) * 2010-02-26 2011-09-15 National Institute Of Advanced Industrial Science & Technology Single crystal fine particle, method for producing the same, and application thereof
JP2013075806A (en) * 2011-09-30 2013-04-25 Sekisui Chem Co Ltd Method for producing vanadium dioxide particle having surface protection layer
CN103666444A (en) * 2012-08-31 2014-03-26 中国科学院上海硅酸盐研究所 Preparation method and application of silicon oxide coated vanadium oxide nano/micro powder
WO2016017611A1 (en) * 2014-07-30 2016-02-04 コニカミノルタ株式会社 Method for producing vanadium dioxide-containing particles, vanadium dioxide-containing particles, dispersion, and optical film
WO2016047606A1 (en) * 2014-09-22 2016-03-31 積水化学工業株式会社 Carbon-coated vanadium dioxide particles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131112A1 (en) * 2017-12-27 2019-07-04 コニカミノルタ株式会社 Core-shell particle, production method therefor, and composition
JPWO2019131112A1 (en) * 2017-12-27 2021-01-14 コニカミノルタ株式会社 Core-shell particles, their production method, and composition
JP7196861B2 (en) 2017-12-27 2022-12-27 コニカミノルタ株式会社 CORE-SHELL PARTICLES, METHOD FOR PRODUCING SAME, AND COMPOSITION
CN114672169A (en) * 2022-03-22 2022-06-28 湖南航天三丰科工有限公司 Temperature-sensitive color-changing agent and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2016052740A1 (en) Optical film and process for producing optical film
JP5228376B2 (en) Infrared shielding fine particles and manufacturing method thereof, infrared shielding fine particle dispersion, infrared shielding body, and infrared shielding base material
WO2010055570A1 (en) Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
US20150160379A1 (en) Nanometric tin-containing metal oxide particle and dispersion, and preparation method and application thereof
JP2016188939A (en) Optical film
JP6384247B2 (en) Optical film and optical film manufacturing method
JP6465117B2 (en) Manufacturing method of optical film
JP7001052B2 (en) Method for Producing Vanadium Dioxide-Containing Particles
WO2017212778A1 (en) Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
WO2016158103A1 (en) Process for producing particles comprising vanadium dioxide
WO2018092502A1 (en) Thermochromic composition and thermochromic film
JP2018058734A (en) Thermochromic vanadium dioxide-containing core-shell particle and production process thereof, and thermochromic film and production process thereof
JP2019135272A (en) Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
JP2019135273A (en) Thermochromic vanadium dioxide-containing particles and production method therefor, and thermochromic film and production method therefor
WO2017073183A1 (en) Thermochromic film and method for producing thermochromic film
JP5344131B2 (en) Ultraviolet shielding material fine particle manufacturing method, ultraviolet shielding material fine particle dispersion, and ultraviolet shielding material
WO2017006767A1 (en) Vanadium dioxide particle aqueous dispersion, method for producing vanadium dioxide particle aqueous dispersion, thermochromic film, and thermochromic complex
JP7173150B2 (en) Method for producing vanadium dioxide-containing particles
JP2014089347A (en) Infrared shield film and method of manufacturing the same
JP2018087094A (en) Production method of vanadium dioxide-containing particle, vanadium dioxide-containing particle, fluid dispersion and optical film
WO2016158603A1 (en) Method for producing rutile vanadium dioxide-containing particle and method for producing optical film
WO2017221633A1 (en) Thermochromic film
JP6949304B2 (en) Masterbatch containing heat ray absorbing component and its manufacturing method, heat ray absorbing transparent resin molded body, and heat ray absorbing transparent laminate
JP2017186398A (en) Producing method for vanadium dioxide containing particles, producing method for vanadium dioxide containing particle dispersion, and producing method for optical film
JP2018087093A (en) Production method of vanadium dioxide-containing particle, preparation method of fluid dispersion, and fluid dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17809961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP