WO2017211123A1 - 通信方法、第一站点、第二站点和接入点 - Google Patents

通信方法、第一站点、第二站点和接入点 Download PDF

Info

Publication number
WO2017211123A1
WO2017211123A1 PCT/CN2017/080031 CN2017080031W WO2017211123A1 WO 2017211123 A1 WO2017211123 A1 WO 2017211123A1 CN 2017080031 W CN2017080031 W CN 2017080031W WO 2017211123 A1 WO2017211123 A1 WO 2017211123A1
Authority
WO
WIPO (PCT)
Prior art keywords
sta
bss
color
bss color
tdls setup
Prior art date
Application number
PCT/CN2017/080031
Other languages
English (en)
French (fr)
Inventor
林梅露
周荀
韩霄
郭宇宸
李云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018562337A priority Critical patent/JP6753588B2/ja
Priority to EP17809563.4A priority patent/EP3454622B1/en
Priority to EP20188318.8A priority patent/EP3793320A1/en
Publication of WO2017211123A1 publication Critical patent/WO2017211123A1/zh
Priority to US16/206,444 priority patent/US12010741B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present application relates to the field of communications and, more particularly, to a communication method, a first station, a second station, and an access point.
  • the basic service set (BSS) color field carries the BSS color (or also known as the BSS color).
  • the BSS color belongs to a BSS identifier, and is used to assist the station (STA) in identifying the source of the received high efficiency physical layer convergence procedure protocol data unit (HE PPDU).
  • STA station
  • HE PPDU high efficiency physical layer convergence procedure protocol data unit
  • the BSS from this is also from the overlapping basic service set (OBSS), which is the neighbor BSS.
  • Tunneled direct-link setup is a device-to-device (D2D) communication method.
  • D2D device-to-device
  • AP access point
  • two sites in the same BSS can establish a TDLS direct connection. After the TDLS direct connection is successfully established, the two sites can directly send data to each other without going through the AP until the TDLS is directly disconnected.
  • the TDLS site that is, the capability of the AP associated with the TDLS-connected site is different, which can be divided into two scenarios.
  • One is that the TDLS site is associated with a non-high-efficiency (non-HE) AP. It is the TDLS site associated with the HE AP.
  • the TDLS site In the scenario of a non-HE AP, since the non-HE AP cannot set the BSS color, the TDLS site cannot set the BSS color field included in the HE PPDU when using the HE PPDU for TDLS communication.
  • the HE AP may set the BSS color of the local cell, and the BSS color is used for uplink or downlink communication between the HE STA and the HE AP.
  • the BSS color used when the TDLS site uses the HE PPDU for TDLS data exchange is not explicitly described in the prior art.
  • the embodiment of the present application provides a communication method, a first station, a second station, and an access point, which can overcome the problem that the non-HE AP cannot set the BSS color of the HE STA in the non-HE AP scenario.
  • spatial multiplexing can be enhanced to improve system efficiency and throughput.
  • a communication method including: a first STA determines a first basic service set BSS color color; and when a first STA and a second STA perform a device-to-device D2D transmission, the first STA generates a data frame, and the data is generated.
  • the frame includes a first BSS color; the first STA transmits a data frame to the second STA.
  • the communication method of the embodiment of the present application by carrying the first BSS color in the data frame of the D2D, so that the other receiving stations in the BSS to which the first STA and the second STA belong, when receiving the data frame, may determine that the frame is A frame from a neighboring cell.
  • the problem that the non-HE AP cannot set the BSS color of the HE STA in the non-HE AP scenario is overcome; on the other hand, in the HE AP scenario, the spatial multiplexing can be enhanced, and the system efficiency and the swallow can be improved.
  • the amount of spit by carrying the first BSS color in the data frame of the D2D, so that the other receiving stations in the BSS to which the first STA and the second STA belong, when receiving the data frame, may determine that the frame is A frame from a neighboring cell.
  • the data frame is a high-efficiency physical layer convergence protocol protocol data unit HE PPDU
  • the first BSS color is carried in a basic service set color BSS color field of the HE PPDU.
  • the first station STA determines the first basic service set BSS color color, including: the first STA according to the BSS parameter of the BSS to which the first STA and the second STA belong, the STA parameter of the first STA, or The STA parameter of the second STA determines a first BSS color, where the BSS parameter includes a basic service set identifier BSSID of the BSS or a second BSS color of the BSS, and the STA parameter includes a MAC address of the STA or an association identifier AID of the STA, where The second BSS color is the BSS color set by the STA and the access point AP associated with the second STA.
  • the first station STA determines the first basic service set BSS color color, including: the first STA determines the last six bits of the BSSID as the first BSS color.
  • the method before the first STA generates the data frame, the method further includes: the first STA sending the channel direct link to the second STA by using the access point AP associated with the first STA and the second STA A TDLS setup request frame is established.
  • the TDLS setup request frame includes a first BSS color, so that the second STA determines the first BSS color as the BSS color when performing D2D transmission with the first STA.
  • the method further includes: receiving, by the first STA, a TDLS setup response frame sent by the second STA by using the AP, where the TDLS setup response frame includes an acknowledgement message for confirming the color of the first BSS.
  • the first station STA determines the first basic service set BSS color color, including: the first STA determines the preset fixed value as the first BSS color.
  • the preset fixed value is 0, 1, or 63.
  • the second aspect provides a communication method, including: receiving, by the second station STA, a channel direct link setup TDLS setup request frame sent by the first STA, where the TDLS setup request frame includes a first basic service set BSS color color; the second STA The first BSS color is determined as the BSS color when D2D transmission is performed with the first STA.
  • the method further includes: the second STA sends a TDLS setup response frame to the first STA by using the access point AP associated with the first STA and the second STA, where the TDLS setup response frame includes A confirmation message for the first BSS color.
  • a third aspect provides a communication method, including: an access point AP receiving a channel direct link established by a first station STA to establish a TDLS setup request frame, where the TDLS setup request frame includes a first basic service set BSS color color; The second STA transmits a TDLS setup request frame, so that the second STA determines the first BSS color as the BSS color when performing D2D transmission with the first STA.
  • the method further includes: receiving, by the AP, a TDLS setup response frame sent by the second STA, where the TDLS setup response frame includes an acknowledgement message for confirming the color of the first BSS; and the AP sends the TDLS setup to the first STA. Response frame.
  • a first STA for performing the method of the first aspect or any possible implementation of the first aspect.
  • the first STA comprises means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a second STA is provided for performing the method of any of the possible implementations of the second aspect or the second aspect.
  • the second STA comprises means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • an access point AP for performing any possible implementation of the third aspect or the third aspect The method in the way.
  • the access point AP comprises means for performing the method in any of the possible implementations of the third aspect or the third aspect.
  • a first STA comprising a receiver, a transmitter, a processor, a memory, and a bus system.
  • the receiver, the transmitter, the processor and the memory are connected by a bus system, the memory is used for storing instructions, and the processor is configured to execute instructions stored in the memory to control the receiver to receive signals and control the transmitter to send signals.
  • the processor executes the instructions stored in the memory, the method of causing the processor to perform the first aspect or any of the possible implementations of the first aspect is performed.
  • the present application provides a second STA that includes a receiver, a transmitter, a processor, a memory, and a bus system.
  • the receiver, the transmitter, the processor and the memory are connected by a bus system, the memory is used for storing instructions, and the processor is configured to execute instructions stored in the memory to control the receiver to receive signals and control the transmitter to send signals.
  • the processor executes the instructions stored in the memory, the method of causing the processor to perform the second aspect or any of the possible implementations of the second aspect is performed.
  • the present application provides an access point AP that includes a receiver, a transmitter, a processor, a memory, and a bus system.
  • the receiver, the transmitter, the processor and the memory are connected by a bus system, the memory is used for storing instructions, and the processor is configured to execute instructions stored in the memory to control the receiver to receive signals and control the transmitter to send signals.
  • the processor executes the instructions stored in the memory, the method of causing the processor to perform the third aspect or any of the possible implementations of the third aspect is performed.
  • the application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • the present application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • the present application provides a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the third aspect or any of the possible implementations of the third aspect.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic block diagram of a first STA according to an embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a second STA according to an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of an access point AP according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a first STA according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a second STA according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an access point AP according to an embodiment of the present application.
  • the embodiment of the present application can be applied to a wireless local area network (WLAN).
  • WLAN wireless local area network
  • the WLAN may include multiple BSSs, and the network nodes in the BSS are STAs, and the STAs include a site AP of an access point type and a non-AP STA.
  • Each BSS may include one AP and multiple non-AP STAs associated with the AP.
  • APs are also called wireless access points or hotspots.
  • the AP is an access point for mobile users to enter the wired network. It is mainly deployed in the home, inside the building, and inside the campus. The typical coverage radius is tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • An AP is equivalent to a bridge connecting a wired network and a wireless network. Its main function is to connect the wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP may be a terminal device or a network device with a wireless fidelity (WiFi) chip.
  • the AP may be a device supporting the 802.11ax system.
  • the AP may be a device supporting multiple WLAN technologies such as 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the non-AP STA may be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • mobile phone supporting WiFi communication function tablet computer supporting WiFi communication function, set-top box supporting WiFi communication function, smart TV supporting WiFi communication function, smart wearable device supporting WiFi communication function, and vehicle communication supporting WiFi communication function Devices and computers that support WiFi communication.
  • the site can support the 802.11ax system. Further optionally, the site supports multiple WLAN formats such as 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • STA 101, STA 102, STA 103, STA 104, and STA 105 are all associated with AP 110.
  • the STA may be a HE STA
  • the AP may be a HE AP or a non-HE AP.
  • a normal link AP to STA or STA to AP
  • a direct link STA to STA, that is, D2D
  • the STA 101 and the STA 102 belong to D2D (for example, TDLS) communication
  • the STA 104 and the STA 105 also belong to D2D communication
  • the STA 103 and the AP 110 belong to normal link communication.
  • the TDLS site cannot set the BSS color field included in the HE PPDU when using the HE PPDU for TDLS communication.
  • the HE AP may set the BSS color of the BSS, and the BSS color is used for uplink or downlink communication between the HE STA and the HE AP.
  • the BSS color of the HE PPDU in the data exchange of the TDLS site is not explicitly described in the prior art.
  • a proprietary BSS color may be used.
  • the proprietary BSS color may be referred to as “the first BSS color (color). )".
  • the problem that the non-HE AP cannot set the BSS color of the HE STA in the non-HE AP scenario is overcome; on the other hand, the problem of setting the BSS color in the D2D transmission in the HE AP scenario is solved.
  • the communication method according to an embodiment of the present application will be specifically explained below.
  • the first STA and the second STA in the embodiment of the present application may be any two sites of D2D communication, and are two peers of the STA. That is to say, the second STA can also be used as the sender, and the first STA can also be used as the receiver.
  • the first STA may be the STA 101 shown in FIG. 1, and the second STA may be the STA 102.
  • the first STA may also be the STA 104, and the second STA may be the STA 105.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the first station STA determines the first basic service set BSS color color.
  • the first STA When the first STA and the second STA perform device-to-device D2D transmission, the first STA generates a data frame, where the data frame includes a first BSS color.
  • the first STA sends a data frame to the second STA.
  • the first STA and the second STA may use the BSS color set by the HE AP when performing uplink or downlink communication with the HE AP, which is called the second. BSS color.
  • the BSS color used for D2D transmission is not clearly stated.
  • the first STA and the second STA when the first STA and the second STA perform D2D transmission, the first STA and the second STA are independently determined by the AP, and the first STA and the second STA may determine the first BSS color independently;
  • the STAs in the BSS where the second STA is located are associated with the non-HE AP, and the first STA and the second STA do not have the BSS color when performing the D2D transmission.
  • the first STA and the second STA may set a similar BSS. Color, the first BSS color.
  • the two sites of the D2D transmission may determine the first BSS color before performing the D2D transmission.
  • the two first BSSs determined by the first STA and the second STA are the same color.
  • the first STA When performing D2D data exchange, the first STA generates a data frame according to the previously determined first BSS color, that is, the first BSS color is included in the data frame.
  • the first STA then sends the data frame to the second STA.
  • the second STA compares the first BSS color in the data frame with the BSS color stored by itself, because the first BSS color is already stored in the second BSS, so the data frame can be determined to be from the D2D transmission. Site.
  • the data frame must come from the BSS, that is, the BSS where the first STA and the second STA are located.
  • the STA is independent of the first BSS color set by the AP and the BSS color assigned by the AP, that is, the second BSS color is definitely different. Because if it is the same, there is absolutely no need to set it up autonomously.
  • the sites within the BSS are associated with non-HE APs.
  • the STA 103 does not have a BSS color because the non-HE AP does not have the ability to set the BSS color.
  • the STA 103 receives the data frame and finds that the data frame carries the first BSS color, the data frame is considered to be from the neighbor BSS.
  • the sites within the BSS are associated with HE APs.
  • the STA 103 stores the BSS color set by the HE AP, that is, the second BSS color.
  • the STA 103 receives the data frame, it reads the first BSS color in the data frame, the first BSS color is different from the BSS color stored by itself, so the STA 103 considers the data frame to be from the neighbor BSS.
  • the CCA threshold is an overlapping basic service set packet detection threshold, and the overlapping basic service set packet detection threshold is greater than the receiver minimum reception threshold. (for example, -62dBm).
  • the STA 103 determines that the channel is busy according to the relationship between the signal energy of the detected data frame and the overlapping basic service set packet detection threshold. Specifically, when the STA 103 detects that the signal energy of the data frame is greater than the overlapping basic service set packet detection threshold, it is determined that the channel is busy, and the packet may be discarded.
  • the STA 103 When the STA 103 detects the basic service set packet detection threshold in which the signal energy of the data frame is small overlap, it is determined that the channel is idle, and then continues to determine other conditions required for spatial multiplexing, and if other conditions are also satisfied, the STA 103 may Perform spatial multiplexing.
  • spatial multiplexing two STAs are allowed in the BSS to which the first STA and the second STA belong, that is, the neighboring cell STAs and STAs 103 that are transmitting are simultaneously transmitted through the same channel, so system efficiency and throughput can be improved.
  • the STA 103 when the first STA and the second STA perform D2D transmission in the HE AP scenario, it is possible to adopt the BSS color set by the AP. In this way, when the STA 103 receives the data frame, because the BSS identifier in the data frame is the same as the BSS color stored by the STA, the data frame is considered to be from the BSS, and the STA 103 is not empty. Inter-multiplex. STA 103 performs only conventional CCA detection and uses a CCA threshold that is less than the basic service set packet detection threshold (e.g., -82 dBm) to determine that the channel is busy. If the channel is idle, the STA 103 can perform normal WiFi transmission. For data frames from neighboring BSSs, STA 103 uses the basic service set packet detection threshold for CCA detection.
  • the basic service set packet detection threshold for CCA detection.
  • the first BSS color in the data frame sent by the first STA and the BSS color stored in the STA 103 are both set by the AP, so the first BSS color in the data frame is the same as the STA 103.
  • the STA 103 determines that the data frame transmitted by the first STA is from the present BSS.
  • the STA 103 can use the CCA threshold of -82 dBm to judge that the channel is busy. If the signal energy of the data frame is detected to be -72 dBm, since -72 dBm is greater than -82 dBm, the STA 103 considers the channel to be busy.
  • the STA 103 because the first BSS color in the data frame is different from the BSS color stored in the STA 103, the STA 103 considers that the data frame is from the neighboring cell, and can use the CCA threshold of -62 dBm to determine that the channel is busy. .
  • the STA 103 considers the channel idle. At this time, the STA 103 has an opportunity to perform spatial multiplexing.
  • the communication method in the embodiment of the present application by carrying the first BSS color in the data frame of the D2D, enables the other receiving sites in the BSS to which the first STA and the second STA belong to receive the data frame, and may determine the A frame is a frame from a neighboring cell.
  • the problem that the non-HE AP cannot set the BSS color of the HE STA in the non-HE AP scenario is overcome; on the other hand, in the HE AP scenario, spatial multiplexing can be enhanced, and system efficiency and throughput can be improved.
  • the data frame is a high efficiency physical layer convergence protocol protocol data unit HE PPDU
  • the first BSS color is carried in a basic service set color BSS color field of the HE PPDU.
  • the data frame of the embodiment of the present application may adopt an existing HE PPDU frame format.
  • the high efficiency signal field (HE-SIG) in the HE PPDU includes the BSS color field (currently the standard specifies 6 bits, and the usable BSS color value is an integer value between 0 and 63) .
  • the BSS color field is generally empty because the non-HE AP does not have the ability to set the BSS color.
  • the value of the padding in the BSS color field is used to indicate the source of the data frame.
  • the embodiment of the present application may carry the first BSS color in the BSS color domain, and use the first BSS color to indicate the D2D transmission of the first STA and the second STA.
  • the first STA may directly add the first BSS color to the BSS color field of the data frame.
  • the first STA may no longer use the second BSS color, which is equivalent to replacing the second BSS color with the first BSS color.
  • a new field may also be added in the data frame format in the prior art to carry the first BSS color.
  • the D2D transmission in the embodiment of the present application may adopt the TDLS protocol.
  • the first BSS colors of each pair of STAs transmitted by the D2D may be the same or different.
  • the first BSS color of each pair of STAs transmitted by the D2D is the same, when the STA that establishes the D2D connection receives the data frame of another pair of D2D stations, it is considered to be the data because it is the same color as its own first BSS.
  • the frame is from the BSS, that is, the BSS to which the first STA and the second STA belong, and thus is not spatially multiplexed.
  • the method may further include: S240, the first STA sends the channel direct link to establish TDLS establishment by using the access point AP associated with the first STA and the second STA to the second STA.
  • the request frame, the TDLS setup request frame includes a first BSS color, so that the second STA determines the first BSS color as the BSS color when performing D2D transmission with the first STA.
  • the first STA and the second STA may negotiate to set the first BSS color in the process of establishing the D2D connection.
  • the first STA may select a value as the first BSS color, and add an information field in the TDLS setup request frame, or use the idle field, or multiplex the existing field to carry the selected first BSS color, and then send the selected BSS color to the AP.
  • the TDLS establishes a request frame.
  • the AP forwards the TDLS setup request frame to the second STA.
  • the second STA may store the first BSS color correspondingly, and use the first BSS color sent by the first STA as the first BSS color when data is exchanged with the first STA.
  • the method may further include: 250: The first STA receives, by using the AP, a TDLS setup response frame sent by the second STA, where the TDLS setup response frame includes an acknowledgement message for confirming the color of the first BSS.
  • the second STA may add an information field in the TDLS setup response frame sent to the first STA, or use an idle field or multiplex the existing field to place the acknowledgement message.
  • the first BSS color is determined. After the first STA receives the TDLS setup response frame by forwarding the AP, by reading the acknowledgement message, it can be determined that the first BSS color is used for D2D transmission.
  • each pair of D2D sites may use different first BSS colors, that is, each pair of D2D sites may respectively become one virtual cell.
  • other STAs other than the pair of D2D sites can have the opportunity to perform spatial multiplexing, thereby improving system efficiency.
  • the preset fixed value may be determined as the first BSS color.
  • the first BSS colors of all the STAs that establish the D2D connection in the BSS are the same.
  • the preset fixed value may be 0, or the preset fixed value may be 1, or may be 63, which is not limited by the embodiment of the present application.
  • the first STA and the second STA may perform transmission and reception of data using a preset fixed value as the first BSS color. Specifically, after the first STA and the second STA establish a D2D connection by using the associated AP, the first STA copies the preset fixed value into a data frame (for example, a BSS color field of the HE PPDU), and then sends the second STA to the second STA. The data frame is sent to perform data exchange with the second STA.
  • the preset fixed value may be used to determine whether the data frame is from the BSS or the neighbor BSS.
  • the STA 103 In the HE AP scenario, for a STA that does not establish a D2D connection in the BSS, the STA 103 is used as an example. When receiving a data frame, it can determine the BSS color of the BSS color field stored in the BSS and the preset. The fixed values are different, at which point the STA 103 considers the data frame to be from a neighboring cell. After performing the CCA and determining that the channel is idle, the STA 103 may continue to determine other conditions required for spatial multiplexing, and if other conditions are also satisfied, the STA 103 may perform spatial multiplexing. In addition, in this scenario, when the STA communicates with the AP, the BSS color set by the AP is still used.
  • the first STA and the second STA station store at least one first BSS color and one BSS color for D2D transmission and communication with the AP, respectively.
  • a station that establishes a D2D connection receives a transmission frame, if the first BSS color or BSS color included in the transmission frame is equal to the first BSS color or the second BSS stored by itself Color, the D2D site thinks that it is the frame of this BSS. At this time, the site establishing the D2D connection is not spatially multiplexed.
  • the second STA may store a plurality of BSS colors, for example, a second BSS color when communicating with the AP, and a first BSS color when communicating with the first STA may be simultaneously stored. Or if the second STA also establishes a D2D connection with the third STA (one of the current BSSs), the second STA may also store the BSS color when performing D2D transmission with the third STA.
  • the first BSS color may be determined according to parameters of the BSS.
  • the first BSS colors of all the STAs that establish the D2D connection in the BSS are the same.
  • the first BSS color may be determined according to a basic service set identifier (BSSID) of the BSS. Specifically, the last few bits of the BSSID can be taken as the first BSS color. As another example, the first BSS color can be determined based on the second BSS color. More specifically, a numerical value having a numerical size of the second BSS color +1 may be used as the first BSS color.
  • BSSID basic service set identifier
  • the AP may acquire the first BSS color and store the first BSS color.
  • a transmission frame including the first BSS color for example, a data frame sent by the first STA
  • reading a first BSS color in the transmission frame by comparing the first BSS color stored in the first BSS and the transmission frame
  • the first BSS color it can be determined that the transmission is from the BSS. Then, the AP does not perform spatial multiplexing.
  • the AP receives the downlink data of the D2D transmission caused by the AP transmitting the downlink data to the station that is performing the D2D transmission in the case of allowing the AP to perform spatial multiplexing.
  • the D2D site when the D2D site uses the same first BSS color for D2D transmission, the D2D site may constitute one virtual cell. In this way, when the D2D site communicates, other sites that do not have a D2D connection can have the opportunity to perform spatial multiplexing.
  • the first STA may determine the first BSS color according to the parameters of the first STA or the second STA.
  • the first BSS color may be determined according to a media access control (MAC) address of the first STA or the second STA. Specifically, several bits of the MAC address can be used as the first BSS color.
  • the first BSS color may also be determined according to an association identifier (AID) of the first STA or the second STA. Specifically, the last few bits of the AID may be used as the first BSS color, which is not limited in this embodiment of the present application.
  • MAC media access control
  • AID association identifier
  • the AP may acquire the first BSS color and store the first BSS color.
  • a transmission frame including the first BSS color for example, a data frame sent by the first STA
  • reading a first BSS color in the transmission frame by comparing the first BSS color stored in the first BSS and the transmission frame
  • the first BSS color it can be determined that the transmission is from the BSS. Then, the AP does not perform spatial multiplexing.
  • the AP receives the downlink data of the D2D transmission caused by the AP transmitting the downlink data to the station that is performing the D2D transmission in the case of allowing the AP to perform spatial multiplexing.
  • each pair of D2D sites can use different first BSS colors, that is, each pair of D2D sites can become a virtual cell respectively.
  • STA 101 and STA 102 perform D2D transmission, not only STA3 has the opportunity to perform spatial multiplexing, but also STA 103 and STA 105 have the opportunity to perform spatial multiplexing.
  • FIG. 3 shows a schematic block diagram of a first STA 300 in accordance with an embodiment of the present application.
  • the first STA 300 includes a determining unit 310, a generating unit 320, and a transmitting unit 330.
  • the determining unit 310 is configured to determine a first basic service set BSS color color.
  • the generating unit 320 is configured to generate a data frame when the first STA and the second STA perform device-to-device D2D transmission, where the data frame includes a first BSS color.
  • the sending unit 330 is configured to send a data frame to the second STA.
  • the respective units of the first STA 300 and the other operations or functions described above according to the embodiments of the present application are respectively executed by the first STA in order to implement the above method. For the sake of brevity, it will not be repeated here.
  • the communication method in the embodiment of the present application by carrying the first BSS color in the data frame of the D2D, enables the other receiving sites in the BSS to which the first STA and the second STA belong to receive the data frame, and may determine the A frame is a frame from a neighboring cell.
  • the problem that the non-HE AP cannot set the BSS color of the HE STA in the non-HE AP scenario is overcome; on the other hand, in the HE AP scenario, spatial multiplexing can be enhanced, and system efficiency and throughput can be improved.
  • FIG. 4 shows a schematic block diagram of a second STA 400 in accordance with an embodiment of the present application.
  • the second STA 400 includes a receiving unit 410 and a determining unit 420.
  • the receiving unit 410 is configured to receive a channel direct link setup TDLS setup request frame sent by the first STA, where the TDLS setup request frame includes a first basic service set BSS color color.
  • the determining unit 420 is configured to determine the first BSS color as the BSS color when performing D2D transmission with the first STA.
  • FIG. 5 shows a schematic block diagram of an access point AP 500 in accordance with an embodiment of the present application.
  • the access point AP 500 includes a receiving unit 510 and a transmitting unit 520.
  • the receiving unit 510 is configured to receive a channel direct link setup TDLS setup request frame sent by the first station STA, where the TDLS setup request frame includes a first basic service set BSS color color;
  • the sending unit 520 is configured to send a TDLS setup request frame to the second STA, so that the second STA determines the first BSS color as the BSS color when performing D2D transmission with the first STA.
  • the respective units of the access point AP 500 according to the embodiment of the present application and the other operations or functions described above are respectively executed by the AP in order to implement the above method. For the sake of brevity, it will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a first STA 600 according to an embodiment of the present application.
  • the signal transmitting device 600 includes a receiver 610, a transmitter 620, a processor 630, a memory 640, and a bus system 660.
  • the receiver 610, the transmitter 620, the processor 630, and the memory 640 are connected by a bus system 660 for storing instructions for executing instructions stored in the memory 640 to control the receiver 610 to receive.
  • the processor 630 is configured to determine a first basic service set BSS color color
  • the processor 630 is further configured to: when the first STA and the second STA perform device-to-device D2D transmission, generate a data frame, where the data frame includes a first BSS color;
  • the transmitter 620 is configured to send a data frame to the second STA.
  • the processor 630 may be a central processing unit (CPU), and the processor 630 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 640 can include read only memory and random access memory and provides instructions and data to the processor 630. A portion of the memory 640 can also include a non-volatile random access memory. For example, the memory 640 can also store information of the device type.
  • the bus system 660 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 660 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 630 or an instruction in a form of software.
  • the steps of the communication method disclosed in the embodiments of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 640, and the processor 630 reads the information in the memory 640 and combines the hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • Each unit in the first STA 600 and the other operations or functions described above according to an embodiment of the present application are respectively configured to perform a corresponding flow performed by the first STA in the above method. For the sake of brevity, it will not be repeated here.
  • the communication method in the embodiment of the present application by carrying the first BSS color in the data frame of the D2D, enables the other receiving sites in the BSS to which the first STA and the second STA belong to receive the data frame, and may determine the A frame is a frame from a neighboring cell.
  • the problem that the non-HE AP cannot set the BSS color of the HE STA in the non-HE AP scenario is overcome; on the other hand, in the HE AP scenario, spatial multiplexing can be enhanced, and system efficiency and throughput can be improved.
  • FIG. 7 is a schematic structural diagram of a second STA 700 according to an embodiment of the present application.
  • the signal transmitting device 700 includes a receiver 710, a transmitter 720, a processor 730, a memory 740, and a bus system 770.
  • the receiver 710, the transmitter 720, the processor 730 and the memory 740 are connected by a bus system 770 for storing instructions for executing instructions stored in the memory 740 to control the receiver 710 to receive.
  • the receiver 710 is configured to receive a channel direct link setup TDLS setup request frame sent by the first STA, where the TDLS setup request frame includes a first basic service set BSS color color;
  • the transmitter 720 is configured to determine the first BSS color as the BSS color when performing D2D transmission with the first STA.
  • the processor 730 may be a central processing unit (CPU), and the processor 730 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 740 can include read only memory and random access memory and provides instructions and data to the processor 730. A portion of the memory 740 can also include a non-volatile random access memory. For example, the memory 740 can also store information of the device type.
  • the bus system 770 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 770 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 730 or an instruction in a form of software.
  • the steps of the communication method disclosed in the embodiments of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 740, and processor 730 reads the information in memory 740 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • Each unit in the second STA 700 according to the embodiment of the present application and the other operations or functions described above are respectively configured to perform the corresponding processes performed by the second STA in the above method. For the sake of brevity, it will not be repeated here.
  • FIG. 8 is a schematic structural diagram of an access point AP 800 according to an embodiment of the present application.
  • the signal transmitting device 800 includes a receiver 810, a transmitter 820, a processor 830, a memory 840, and a bus system 880.
  • the receiver 810, the transmitter 820, the processor 830, and the memory 840 are connected by a bus system 880 for storing instructions for executing instructions stored in the memory 840 to control the receiver 810 to receive.
  • the receiver 810 is configured to receive a channel direct link setup TDLS setup request frame sent by the first station STA, where the TDLS setup request frame includes a first basic service set BSS color color;
  • the transmitter 820 is configured to send a TDLS setup request frame to the second STA, so that the second STA determines the first BSS color as the BSS color when performing D2D transmission with the first STA.
  • the processor 830 may be a central processing unit (CPU), and the processor 830 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 840 can include read only memory and random access memory and provides instructions and data to the processor 830. A portion of the memory 840 may also include a non-volatile random access memory. For example, the memory 840 can also store information of the device type.
  • the bus system 880 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 880 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 830 or an instruction in the form of software.
  • the steps of the communication method disclosed in the embodiments of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 840, and processor 830 reads the information in memory 840 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • Each unit in the access point AP 800 and the other operations or functions described above according to embodiments of the present application are respectively configured to perform respective processes performed by the AP in the above method. For the sake of brevity, it will not be repeated here.
  • the communication method in the embodiment of the present application receives the first BSS color in the data frame of the D2D, so that the other receiving stations in the BSS to which the first STA and the second STA belong are receiving.
  • the data frame is reached, it can be determined that the frame is a frame from a neighboring cell.
  • the non-HE AP field is overcome.
  • the non-HE AP cannot set the BSS color of the HE STA.
  • spatial multiplexing can be enhanced to improve system efficiency and throughput.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法,第一STA、第二STA和接入点AP,该方法包括:第一站点STA确定第一基本服务集BSS颜色color;第一站点STA和第二STA进行设备到设备D2D传输时,第一STA生成数据帧,数据帧包括第一BSS颜色;第一STA向第二STA发送数据帧。通过在D2D的数据帧中承载第一BSS颜色,使得第一STA和第二STA所属的BSS中的其他接收站点在接收到该数据帧时,可以判定该帧是来自于邻小区的帧。这样,一方面克服了non-HE AP场景下,non-HE AP无法设置HE STA的BSS颜色的问题;另一方面,HE AP场景下,可以增强空间复用,提高***效率和吞吐量。

Description

通信方法、第一站点、第二站点和接入点
本申请要求于2016年06月08日提交中国专利局、申请号为201610403982.8、发明名称为“通信方法、第一站点、第二站点和接入点”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法、第一站点、第二站点和接入点。
背景技术
基本服务集(basic service set,BSS)颜色(color)域承载BSS颜色(或者也称为BSS color)。BSS颜色属于一种BSS的标识符,用来辅助站点(station,STA)识别接收到的高效率物理层会聚协议协议数据单元(high efficiency physical layer convergence procedure protocol data unit,HE PPDU)的来源,即来自本BSS还是来自于重叠的基本服务集(overlapped basic service set,OBSS),即邻BSS。
通道直接链路建立(tunneled direct-link setup,TDLS)是一种设备到设备(device-to-device,D2D)的通信方式。在所关联接入点(access point,AP)的协助下,处于同一个BSS内的两个站点可以建立TDLS直连。TDLS直连建立成功后,这两个站点之间可以直接互相发送数据而无需再经过AP,直到TDLS直连断开。
根据TDLS站点,即建立TDLS直连的站点所关联的AP的能力的不同,具体地可以分为两个场景,一是TDLS站点关联到非高效率(none high efficiency,non-HE)AP,二是TDLS站点关联到HE AP。在non-HE AP的场景下,由于non-HE AP无法设置BSS颜色,因此TDLS站点使用HE PPDU进行TDLS通信时无法设置HE PPDU所包含的BSS颜色域。在HE AP的场景下,HE AP可以设置本小区的BSS颜色,该BSS颜色用于HE STA和HE AP之间的上行或下行通信。但对于TDLS站点采用HE PPDU进行TDLS数据交换时使用的BSS颜色,现有技术中并未明确说明。
发明内容
本申请实施例提供一种通信方法、第一站点、第二站点和接入点,能够克服non-HE AP场景下,non-HE AP无法设置HE STA的BSS颜色的问题。并且在HE AP场景下,能够增强空间复用,提高***效率和吞吐量。
第一方面,提供了一种通信方法,包括:第一站点STA确定第一基本服务集BSS颜色color;第一STA和第二STA进行设备到设备D2D传输时,第一STA生成数据帧,数据帧包括第一BSS颜色;第一STA向第二STA发送数据帧。
本申请实施例的通信方法,通过在D2D的数据帧中承载第一BSS颜色,使得第一STA和第二STA所属的BSS中的其他接收站点在接收到该数据帧时,可以判定该帧是来自于邻小区的帧。这样,一方面克服了non-HE AP场景下,non-HE AP无法设置HE STA的BSS颜色的问题;另一方面,HE AP场景下,可以增强空间复用,提高***效率和吞 吐量。
在一种可能的实现方式中,数据帧为高效率物理层会聚协议协议数据单元HE PPDU,第一BSS颜色承载在HE PPDU的基本服务集颜色BSS color域中。
在一种可能的实现方式中,第一站点STA确定第一基本服务集BSS颜色color,包括:第一STA根据第一STA和第二STA所属的BSS的BSS参数、第一STA的STA参数或第二STA的STA参数确定第一BSS颜色,其中,BSS参数包括BSS的基本服务集标识符BSSID或BSS的第二BSS颜色,STA参数包括STA的MAC地址或STA的关联识别码AID,其中,第二BSS颜色为STA和第二STA所关联的接入点AP设置的BSS颜色。
在一种可能的实现方式中,第一站点STA确定第一基本服务集BSS颜色color,包括:第一STA将BSSID的最后六个比特位确定为第一BSS颜色。
在一种可能的实现方式中,在第一STA生成数据帧之前,该方法还包括:第一STA通过第一STA和第二STA所关联的接入点AP向第二STA发送通道直接链路建立TDLS建立请求帧,TDLS建立请求帧包括第一BSS颜色,以便于第二STA将第一BSS颜色确定为与第一STA进行D2D传输时的BSS颜色。
在一种可能的实现方式中,该方法还包括:第一STA通过AP接收第二STA发送的TDLS建立响应帧,TDLS建立响应帧包括用于确认第一BSS颜色的确认消息。
在一种可能的实现方式中,第一站点STA确定第一基本服务集BSS颜色color,包括:第一STA将预设的固定值确定为第一BSS颜色。
在一种可能的实现方式中,该预设的固定值为0、1或63。
第二方面,提供了一种通信方法,包括:第二站点STA接收第一STA发送的通道直接链路建立TDLS建立请求帧,TDLS建立请求帧包括第一基本服务集BSS颜色color;第二STA将第一BSS颜色确定为与第一STA进行D2D传输时的BSS颜色。
在一种可能的实现方式中,该方法还包括:第二STA通过第一STA和第二STA所关联的接入点AP向第一STA发送TDLS建立响应帧,TDLS建立响应帧包括用于确认第一BSS颜色的确认消息。
第三方面,提供了一种通信方法,包括:接入点AP接收第一站点STA发送的通道直接链路建立TDLS建立请求帧,TDLS建立请求帧包括第一基本服务集BSS颜色color;AP向第二STA发送TDLS建立请求帧,以便于第二STA将第一BSS颜色确定为与第一STA进行D2D传输时的BSS颜色。
在一种可能的实现方式中,该方法还包括:AP接收第二STA发送的TDLS建立响应帧,TDLS建立响应帧包括用于确认第一BSS颜色的确认消息;AP向第一STA发送TDLS建立响应帧。
第四方面,提供了一种第一STA,用于执行第一方面或第一方面的任意可能的实现方式中的方法。具体地,该第一STA包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种第二STA,用于执行第二方面或第二方面的任意可能的实现方式中的方法。具体地,该第二STA包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
第六方面,提供了一种接入点AP,用于执行第三方面或第三方面的任意可能的实现 方式中的方法。具体地,该接入点AP包括用于执行第三方面或第三方面的任意可能的实现方式中的方法的单元。
第七方面,提供了一种第一STA,该第一STA包括接收器、发送器、处理器、存储器和总线***。其中,接收器、发送器、处理器和存储器通过总线***相连,存储器用于存储指令,处理器用于执行存储器存储的指令,以控制接收器接收信号和控制发送器发送信号。并且当处理器执行存储器存储的指令时,执行使得处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,本申请提供了一种第二STA,该第二STA包括接收器、发送器、处理器、存储器和总线***。其中,接收器、发送器、处理器和存储器通过总线***相连,存储器用于存储指令,处理器用于执行存储器存储的指令,以控制接收器接收信号和控制发送器发送信号。并且当处理器执行存储器存储的指令时,执行使得处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,本申请提供了一种接入点AP,该接入点AP包括接收器、发送器、处理器、存储器和总线***。其中,接收器、发送器、处理器和存储器通过总线***相连,存储器用于存储指令,处理器用于执行存储器存储的指令,以控制接收器接收信号和控制发送器发送信号。并且当处理器执行存储器存储的指令时,执行使得处理器执行第三方面或第三方面的任意可能的实现方式中的方法。
第十方面,本申请提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第十一方面,本申请提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
第十二方面,本申请提供一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第三方面或第三方面的任意可能的实现方式中的方法的指令。
附图说明
图1是根据本申请实施例的一个应用场景的示意图。
图2是根据本申请实施例的通信方法的示意性流程图。
图3是根据本申请实施例的第一STA的示意性框图。
图4是根据本申请实施例的第二STA的示意性框图。
图5是根据本申请实施例的接入点AP的示意性框图。
图6是根据本申请实施例的第一STA的示意性结构图。
图7是根据本申请实施例的第二STA的示意性结构图。
图8是根据本申请实施例的接入点AP的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于无线局域网(wireless local area network,WLAN),目前WLAN采用的标准为IEEE802.11系列。WLAN可以包括多个BSS,BSS中的网络节点为STA,STA包括接入点类的站点AP和非接入点类的站点(none access point station,non-AP STA)。每个BSS可以包含一个AP和多个关联于该AP的non-AP STA。
AP也称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有无线保真(wireless fidelity,WiFi)芯片的终端设备或者网络设备。可选地,AP可以为支持802.11ax制式的设备,进一步可选地,该AP可以为支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式的设备。
non-AP STA可以是无线通讯芯片、无线传感器或无线通信终端。例如:支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机。可选地,站点可以支持802.11ax制式,进一步可选地,该站点支持802.11ac、802.11n、802.11g、802.11b及802.11a等多种WLAN制式。
图1是本申请实施例的一个应用场景的示意图。图1中,STA 101、STA 102、STA 103、STA 104和STA 105都关联于AP 110。其中,STA可以是HE STA,AP可以是HE AP,也可以是non-HE AP。AP 110建立的BSS中,正常链路(AP至STA或者STA至AP)和直接链路(STA至STA,即D2D)共存。STA 101和STA 102之间属于D2D(例如TDLS)通信,STA 104和STA 105之间也属于D2D通信,STA 103和AP 110之间属于正常链路通信。
在AP 110为non-HE AP的场景下,由于non-HE AP无法设置BSS颜色,因此TDLS站点使用HE PPDU进行TDLS通信时无法设置HE PPDU所包含的BSS颜色域。
在AP 110为HE AP的场景下,HE AP可以设置本BSS的BSS颜色,该BSS颜色用于HE STA和HE AP之间的上行或下行通信。而对于TDLS站点数据交换中HE PPDU的BSS颜色,现有技术中并未明确说明。
本申请实施例提供的通信方法中,两个站点采用D2D方式传输时,可以使用专有的BSS颜色,在本申请实施例中可以将这个专有的BSS颜色称为“第一BSS颜色(color)”。这样,一方面克服了non-HE AP场景下,non-HE AP无法设置HE STA的BSS颜色的问题;另一方面,解决了HE AP场景下,D2D传输时设置BSS颜色的问题。下面将具体阐述根据本申请实施例的通信方法。
应理解,本申请实施例中的第一STA和第二STA可以是D2D通信的任意两个站点,并且是对等的两个STA。也就是说,第二STA也可以作为发送方,第一STA也可以作为接收方,本申请实施例对此不作限定。例如,第一STA可以是图1所示的STA 101,第二STA可以是STA 102。第一STA也可以是STA 104,第二STA可以是STA 105。
图2是根据本申请实施例的通信方法的示意性流程图。
S210,第一站点STA确定第一基本服务集BSS颜色color。
S220,第一STA和第二STA进行设备到设备D2D传输时,第一STA生成数据帧,数据帧包括第一BSS颜色。
S230,第一STA向第二STA发送数据帧。
在现有技术中,若第一STA和第二STA关联的是HE AP,那么第一STA或第二STA与HE AP进行上行或下行通信时可以使用HE AP设置的BSS颜色,称为第二BSS颜色。 而对于D2D传输时使用的BSS颜色并未明确说明。本申请实施例中,在第一STA和第二STA进行D2D传输时,采用的是独立与AP设置的,第一STA和第二STA可以自主确定的第一BSS颜色;若第一STA和第二STA所在的BSS内的STA关联的是non-HE AP,那么第一STA和第二STA进行D2D传输时没有BSS颜色,而本申请实施例中第一STA和第二STA可以设置类似的BSS颜色,即第一BSS颜色。
具体地,D2D传输的两个站点,即第一STA和第二STA,在进行D2D传输之前,可以先确定第一BSS颜色。一般地,第一STA和第二STA确定的两个第一BSS颜色相同。在进行D2D数据交换时,第一STA根据之前确定的第一BSS颜色生成数据帧,也就是说,数据帧中包括第一BSS颜色。然后第一STA再向第二STA发送该数据帧。第二STA接收到该数据帧后,将该数据帧中的第一BSS颜色与自己存储的BSS颜色比较,因第二BSS中已存储了第一BSS颜色,所以可以确定该数据帧来自D2D传输站点。当然,该数据帧肯定来自本BSS,即第一STA和第二STA所在的BSS。
可以理解的是,在HE AP场景下,STA独立于AP自主设置的第一BSS颜色与AP分配的BSS颜色,即第二BSS颜色肯定是不同的。因为如果是相同的,就完全没有必要自主设置了。
本申请实施例中,对于第一STA和第二STA所属的BSS内没有建立D2D传输的站点来说,也有可能接收到该数据帧。在这种情况下,以图1所示的STA 103为例来讲,可以分为两种情况。
情况一:
该BSS内的站点关联的是non-HE AP。在这种情况下,由于non-HE AP没有设置BSS颜色的能力,所以STA 103没有BSS颜色。在STA 103接收到数据帧时,发现该数据帧中携带了第一BSS颜色,那么就认为该数据帧来自邻BSS。
情况二:
该BSS内的站点关联的是HE AP。在这种情况下,STA 103存储的是HE AP设置的BSS颜色,即第二BSS颜色。在STA 103接收到数据帧时,读取该数据帧中的第一BSS颜色,该第一BSS颜色与自己存储的BSS颜色不同,所以STA 103认为该数据帧是来自邻BSS的。
在上述两种情况下,STA 103在进行空闲信道评估(clear channel assessment,CCA)时,CCA阈值为重叠的基本服务集包检测门限,并且重叠的基本服务集包检测门限大于接收机最小接收门限(例如,-62dBm)。STA 103根据检测到该数据帧的信号能量与重叠的基本服务集包检测门限的大小关系,判断信道忙闲。具体地,当STA 103检测到该数据帧的信号能量大于重叠的基本服务集包检测门限的时候,判定信道忙,可以丢弃该包。当STA 103检测到该数据帧的信号能量小重叠的基本服务集包检测门限的时候,判定信道闲,然后继续判断空间复用所需的其他条件,若其他条件也满足时,则STA 103可以进行空间复用。通过空间复用,第一STA和第二STA所属的BSS中允许有两个STA,即正在传输的邻小区STA和STA 103通过同一信道同时发送,因此可以提高***效率和吞吐量。
现有技术中,在HE AP场景下,认为第一STA和第二STA进行D2D传输时,有可能采用AP设置的BSS颜色。这样,STA 103在接收到数据帧时,因该数据帧中的BSS标识与自己存储的BSS颜色相同,所以认为数据帧来自本BSS,此时STA 103不进行空 间复用。STA 103只进行传统的CCA检测,并采用小于基本服务集包检测门限(例如,-82dBm)的CCA阈值来判定信道忙闲。如果信道空闲,STA 103可以进行正常的WiFi发送。而对于来自邻BSS的数据帧,STA 103采用基本服务集包检测门限进行CCA检测。
举例来说,现有技术中,因第一STA发送的数据帧中的第一BSS颜色和STA 103存储的BSS颜色都是AP设置的,所以该数据帧中的第一BSS颜色与STA 103相同,STA103判定第一STA发送的数据帧来自本BSS。STA 103可以采用大小为-82dBm的CCA阈值判断信道忙闲。如果检测到该数据帧的信号能量为-72dBm,因-72dBm大于-82dBm,那么STA 103就认为信道忙。而在本申请实施例中,因数据帧中的第一BSS颜色与STA103存储的BSS颜色不同,所以STA 103认为上述数据帧来自邻小区,并可以采用大小为-62dBm的CCA阈值判断信道忙闲。当检测到该数据帧的信号能量为-72dBm时,因-72dBm小于-68dBm,那么STA 103认为信道空闲。此时,STA 103有机会进行空间复用。
因此,本申请实施例的通信方法,通过在D2D的数据帧中承载第一BSS颜色,使得第一STA和第二STA所属的BSS中的其他接收站点在接收到该数据帧时,可以判定该帧是来自于邻小区的帧。这样,一方面克服了non-HE AP场景下,non-HE AP无法设置HE STA的BSS颜色的问题;另一方面,HE AP场景下,可以增强空间复用,提高***效率和吞吐量。
可选地,数据帧为高效率物理层会聚协议协议数据单元HE PPDU,第一BSS颜色承载在HE PPDU的基本服务集颜色BSS color域中。
本申请实施例的数据帧可以采用现有的HE PPDU帧格式。HE PPDU中的高效率信令字段(high efficiency signal field,HE-SIG)中包含BSS颜色域(目前标准规定为6个比特,即可用的BSS颜色值是0到63之间的一个整数值)。在non-HE AP场景下,因non-HE AP没有能力设置BSS颜色,所以BSS颜色域一般为空的。在HE AP场景下,BSS颜色域中的填充的数值用来指示该数据帧的来源。本申请实施例在采用HE PPDU帧格式时,可以在BSS颜色域中承载第一BSS颜色,使用第一BSS颜色用来指示第一STA和第二STA的D2D传输。
更具体地,第一STA和第二STA进行D2D传输时,在non-HE AP场景下,第一STA可以直接将第一BSS颜色添加数据帧的BSS color域中。在HE AP场景下,第一STA可以不再使用第二BSS颜色,相当于采用第一BSS颜色替换了第二BSS颜色。
另外,本申请实施例中,也可以在现有技术中的数据帧格式中添加新的字段来承载第一BSS颜色。
应理解,本申请实施例中的D2D传输可以采用TDLS协议。
需要说明的是,本申请实施例中,D2D传输的每对STA的第一BSS颜色可以相同,也可以不同。
在D2D传输的每对STA的第一BSS颜色相同的情况下,当建立D2D连接的STA接收到另一对D2D站点的数据帧时,因为与自己的第一BSS颜色相同,所以认为是该数据帧来自本BSS,即第一STA和第二STA所属的BSS内,因此不进行空间复用。
在D2D传输的每对STA的第一BSS颜色不同的情况下,当一对D2D传输的STA(例如STA104)接收到另一对D2D传输的STA(例如STA101)发送的数据帧时,判定此时的数据帧来自邻BSS。那么,在检测到信道空闲的情况下,STA104将有机会进行 空间复用,这样能够进一步地增加***效率。
可选地,第一STA生成数据帧之前,该方法还可以包括:S240,第一STA通过第一STA和第二STA所关联的接入点AP向第二STA发送通道直接链路建立TDLS建立请求帧,TDLS建立请求帧包括第一BSS颜色,以便于第二STA将第一BSS颜色确定为与第一STA进行D2D传输时的BSS颜色。
具体地,第一STA和第二STA可以在建立D2D连接的过程中,协商设置第一BSS颜色。第一STA可以选择一个值作为第一BSS颜色,并在TDLS建立请求帧中增加一个信息域,或者使用空闲字段、或复用已有字段来承载所选择的第一BSS颜色,然后向AP发送TDLS建立请求帧。AP接收到该TDLS建立请求帧后,向第二STA转发该TDLS建立请求帧。这样,第二STA在接收到该TDLS建立请求帧时,可以相应存储该第一BSS颜色,并使用第一STA发送的第一BSS颜色作为与第一STA进行数据交换时的第一BSS颜色。
可选地,该方法还可以包括:250,第一STA通过AP接收第二STA发送的TDLS建立响应帧,TDLS建立响应帧包括用于确认第一BSS颜色的确认消息。
在第二STA接收到TDLS建立请求帧后,第二STA可以在向第一STA发送的TDLS建立响应帧中增加一个信息域,或者使用空闲字段、或复用已有字段来放置确认消息,以对第一BSS颜色进行确定。第一STA通过AP的转发接收到TDLS建立响应帧后,通过读取该确认消息,可以确定使用该第一BSS颜色进行D2D传输。
本申请实施例的通信方法,D2D站点在协商设置第一BSS颜色时,每对D2D站点可以使用不同的第一BSS颜色,即每对D2D站点可以分别成为一个虚拟小区。这样,在一对D2D站点通信时,除了该对D2D站点外的其他STA都可以有机会进行空间复用,从而能够提高***效率。
可选地,在第一STA确定第一BSS颜色时,可以将预设的固定值确定为第一BSS颜色。此时,本BSS内所有建立D2D连接的STA的第一BSS颜色都相同。
例如,该预设的固定值可以是0,或者该预设的固定值可以是1,或者可以是63,本申请实施例对此不做限定。
在进行D2D传输时,第一STA和第二STA可以使用一个预设的固定值作为第一BSS颜色,进行数据的发送和接收。具体地,在第一STA和第二STA通过关联的AP建立D2D连接后,第一STA将预设的固定值拷贝到数据帧(例如,HE PPDU的BSS颜色域)中,然后向第二STA发送该数据帧,与第二STA进行数据交换。STA(本BSS或邻BSS的STA)接收到第一STA发送的数据帧时,可以使用这个预设的固定值判断数据帧是来自本BSS还是邻BSS。
在HE AP场景下,对于本BSS内没有建立D2D连接的STA,同样地以STA 103为例来说,当接收到数据帧时,可以判断自己存储的BSS颜色域中的BSS颜色与这个预设的固定值不同,此时STA 103认为该数据帧来自邻小区。在进行CCA并且确定信道空闲后,STA 103可以继续判断空间复用所需的其他条件,若其他条件也满足时,则STA 103可以进行空间复用。另外,在该场景下,STA与AP通信时,仍然使用AP设置的BSS颜色。需要说明的是,第一STA和第二STA站点至少会存储一个第一BSS颜色和一个BSS颜色,分别用于D2D传输和与AP通信。当建立D2D连接的站点收到传输帧时,如果传输帧所包含的第一BSS颜色或BSS颜色等于自己存储的第一BSS颜色或第二BSS 颜色,该D2D站点都认为收到的是本BSS的帧。此时,建立D2D连接的站点不进行空间复用。
应理解,第二STA可以存储多个BSS颜色,例如可以同时存储与AP通信时的第二BSS颜色,与第一STA通信时的第一BSS颜色。或者如果第二STA也与第三STA(本BSS中的其中一个STA)建立了D2D连接,第二STA也可以存储与第三STA进行D2D传输时的BSS颜色。
可选地,在第一STA确定第一BSS颜色时,可以根据BSS的参数确定第一BSS颜色。此时,本BSS内所有建立D2D连接的STA的第一BSS颜色都相同。
例如,可以根据本BSS的基本服务集标识符(basic service set identifier,BSSID)确定第一BSS颜色。具体地,可以将BSSID的最后若干比特作为第一BSS颜色。又如,可以根据第二BSS颜色确定第一BSS颜色。更具体地,可以将数值大小为第二BSS颜色+1的数值作为第一BSS颜色。
本申请实施例中,在第一STA和第二STA站点关联到HE AP的场景下,AP可以获取到第一BSS颜色,并存储第一BSS颜色。AP收到包含该第一BSS颜色的传输帧(例如第一STA发送的数据帧),读取该传输帧中的第一BSS颜色,通过比较自己存储的第一BSS颜色和该传输帧中的第一BSS颜色,可以判定该传输该来自本BSS。那么,AP不进行空间复用。通过上述方法,可以避免在允许AP进行空间复用的情况下,AP向正在进行D2D传输的站点发送下行数据而造成的D2D传输的站点接收冲突的问题。
因此,本申请实施例中,在D2D站点使用相同的第一BSS颜色用于D2D传输时,D2D站点可以组成了一个虚拟小区。这样,D2D站点通信时,其他未建立D2D连接的站点可以有机会进行空间复用。
可选地,在第一STA确定第一BSS颜色时,第一STA可以根据第一STA或第二STA的参数确定第一BSS颜色。
例如,可以根据第一STA或第二STA的媒体访问控制(media access control,MAC)地址确定第一BSS颜色。具体地,可以将MAC地址的若干比特作为第一BSS颜色。另外,还可以根据第一STA或第二STA的关联标识符(association identifier,AID)确定第一BSS颜色。具体地,可以将AID的最后若干比特作为第一BSS颜色,本申请实施例对此不作限定。
本申请实施例中,在第一STA和第二STA站点关联到HE AP的场景下,AP可以获取到第一BSS颜色,并存储第一BSS颜色。AP收到包含该第一BSS颜色的传输帧(例如第一STA发送的数据帧),读取该传输帧中的第一BSS颜色,通过比较自己存储的第一BSS颜色和该传输帧中的第一BSS颜色,可以判定该传输该来自本BSS。那么,AP不进行空间复用。通过上述方法,可以避免在允许AP进行空间复用的情况下,AP向正在进行D2D传输的站点发送下行数据而造成的D2D传输的站点接收冲突的问题。
本申请实施例的通信方法,D2D站点在设置第一BSS颜色时,每对D2D站点可以使用设置不同的第一BSS颜色,即每对D2D站点可以分别成为一个虚拟小区。这样,在一对D2D站点通信时,除了该对D2D站点外的其他站点都可以有机会进行空间复用。以图1为例,STA 101和STA 102进行D2D传输时,此时不仅STA3有机会进行空间复用,STA 103和STA 105也有机会进行空间复用。
上文中结合图1和图2,对根据本申请实施例的通信方法进行了详细说明。以下,结 合图3至图5,对根据本申请实施例的站点和接入点进行说明。
图3示出了根据本申请实施例的第一STA 300的示意性框图。如图3所示,该第一STA 300包括:确定单元310、生成单元320和发送单元330。
确定单元310,用于确定第一基本服务集BSS颜色color。
生成单元320,用于第一STA和第二STA进行设备到设备D2D传输时,生成数据帧,数据帧包括第一BSS颜色。
发送单元330,用于向第二STA发送数据帧。
根据本申请实施例的第一STA 300的各单元和上述其它操作或功能分别为了实现上述方法由第一STA执行的相应流程。为了简洁,此处不再赘述。
因此,本申请实施例的通信方法,通过在D2D的数据帧中承载第一BSS颜色,使得第一STA和第二STA所属的BSS中的其他接收站点在接收到该数据帧时,可以判定该帧是来自于邻小区的帧。这样,一方面克服了non-HE AP场景下,non-HE AP无法设置HE STA的BSS颜色的问题;另一方面,HE AP场景下,可以增强空间复用,提高***效率和吞吐量。
图4示出了根据本申请实施例的第二STA 400的示意性框图。如图4所示,该第二STA 400包括:接收单元410和确定单元420。
接收单元410,用于接收第一STA发送的通道直接链路建立TDLS建立请求帧,TDLS建立请求帧包括第一基本服务集BSS颜色color。
确定单元420,用于将第一BSS颜色确定为与第一STA进行D2D传输时的BSS颜色。
根据本申请实施例的第二STA 400的各单元和上述其它操作或功能分别为了实现上述方法由第二STA执行的相应流程。为了简洁,此处不再赘述。
图5示出了根据本申请实施例的接入点AP 500的示意性框图。如图5所示,该接入点AP 500包括:接收单元510和发送单元520。
接收单元510,用于接收第一站点STA发送的通道直接链路建立TDLS建立请求帧,TDLS建立请求帧包括第一基本服务集BSS颜色color;
发送单元520,用于向第二STA发送TDLS建立请求帧,以便于第二STA将第一BSS颜色确定为与第一STA进行D2D传输时的BSS颜色。
根据本申请实施例的接入点AP 500的各单元和上述其它操作或功能分别为了实现上述方法由AP执行的相应流程。为了简洁,此处不再赘述。
上文中结合图1和图2,对根据本申请实施例的通信方法进行了详细说明。以下,结合图6至图8,对根据本申请实施例的站点和接入点进行说明。
图6是根据本申请实施例的第一STA 600的示意性结构图。如图6所示,该信号发送端设备600包括:接收器610、发送器620、处理器630、存储器640和总线***660。其中,接收器610、发送器620、处理器630和存储器640通过总线***660相连,该存储器640用于存储指令,该处理器630用于执行该存储器640存储的指令,以控制接收器610接收信号,并控制发送器620发送信号,其中,
处理器630,用于确定第一基本服务集BSS颜色color;
处理器630还用于,第一STA和第二STA进行设备到设备D2D传输时,生成数据帧,数据帧包括第一BSS颜色;
发送器620,用于向第二STA发送数据帧。
应理解,在本申请实施例中,该处理器630可以是中央处理单元(central processing unit,CPU),该处理器630还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器640可以包括只读存储器和随机存取存储器,并向处理器630提供指令和数据。存储器640的一部分还可以包括非易失性随机存取存储器。例如,存储器640还可以存储设备类型的信息。
该总线***660除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***660。
在实现过程中,上述方法的各步骤可以通过处理器630中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的通信方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器640,处理器630读取存储器640中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例的第一STA 600中的各单元和上述其它操作或功能分别为了执行上述方法中由第一STA执行的相应流程。为了简洁,此处不再赘述。
因此,本申请实施例的通信方法,通过在D2D的数据帧中承载第一BSS颜色,使得第一STA和第二STA所属的BSS中的其他接收站点在接收到该数据帧时,可以判定该帧是来自于邻小区的帧。这样,一方面克服了non-HE AP场景下,non-HE AP无法设置HE STA的BSS颜色的问题;另一方面,HE AP场景下,可以增强空间复用,提高***效率和吞吐量。
图7是根据本申请实施例的第二STA 700的示意性结构图。如图7所示,该信号发送端设备700包括:接收器710、发送器720、处理器730、存储器740和总线***770。其中,接收器710、发送器720、处理器730和存储器740通过总线***770相连,该存储器740用于存储指令,该处理器730用于执行该存储器740存储的指令,以控制接收器710接收信号,并控制发送器720发送信号,其中,
接收器710,用于接收第一STA发送的通道直接链路建立TDLS建立请求帧,TDLS建立请求帧包括第一基本服务集BSS颜色color;
发送器720,用于将第一BSS颜色确定为与第一STA进行D2D传输时的BSS颜色。
应理解,在本申请实施例中,该处理器730可以是中央处理单元(central processing unit,CPU),该处理器730还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器740可以包括只读存储器和随机存取存储器,并向处理器730提供指令和数据。存储器740的一部分还可以包括非易失性随机存取存储器。例如,存储器740还可以存储设备类型的信息。
该总线***770除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***770。
在实现过程中,上述方法的各步骤可以通过处理器730中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的通信方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器740,处理器730读取存储器740中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例的第二STA 700中的各单元和上述其它操作或功能分别为了执行上述方法中由第二STA执行的相应流程。为了简洁,此处不再赘述。
图8是根据本申请实施例的接入点AP 800的示意性结构图。如图8所示,该信号发送端设备800包括:接收器810、发送器820、处理器830、存储器840和总线***880。其中,接收器810、发送器820、处理器830和存储器840通过总线***880相连,该存储器840用于存储指令,该处理器830用于执行该存储器840存储的指令,以控制接收器810接收信号,并控制发送器820发送信号,其中,
接收器810,用于接收第一站点STA发送的通道直接链路建立TDLS建立请求帧,TDLS建立请求帧包括第一基本服务集BSS颜色color;
发送器820,用于向第二STA发送TDLS建立请求帧,以便于第二STA将第一BSS颜色确定为与第一STA进行D2D传输时的BSS颜色。
应理解,在本申请实施例中,该处理器830可以是中央处理单元(central processing unit,CPU),该处理器830还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器840可以包括只读存储器和随机存取存储器,并向处理器830提供指令和数据。存储器840的一部分还可以包括非易失性随机存取存储器。例如,存储器840还可以存储设备类型的信息。
该总线***880除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***880。
在实现过程中,上述方法的各步骤可以通过处理器830中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的通信方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器840,处理器830读取存储器840中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例的接入点AP 800中的各单元和上述其它操作或功能分别为了执行上述方法中由AP执行的相应流程。为了简洁,此处不再赘述。
因此,在本申请实施例中,因此,本申请实施例的通信方法,通过在D2D的数据帧中承载第一BSS颜色,使得第一STA和第二STA所属的BSS中的其他接收站点在接收到该数据帧时,可以判定该帧是来自于邻小区的帧。这样,一方面克服了non-HE AP场 景下,non-HE AP无法设置HE STA的BSS颜色的问题;另一方面,HE AP场景下,可以增强空间复用,提高***效率和吞吐量。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种通信方法,其特征在于,包括:
    第一站点STA确定第一基本服务集BSS颜色color;
    所述第一STA和第二STA进行设备到设备D2D传输时,所述第一STA生成数据帧,所述数据帧包括所述第一BSS颜色;
    所述第一STA向所述第二STA发送所述数据帧。
  2. 如权利要求1所述的方法,其特征在于,所述数据帧为高效率物理层会聚协议协议数据单元HE PPDU,所述第一BSS颜色承载在所述HE PPDU的基本服务集颜色BSS color域中。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一站点STA确定第一基本服务集BSS颜色color,包括:
    所述第一STA根据所述第一STA和所述第二STA所属的BSS的BSS参数、所述第一STA的STA参数或所述第二STA的STA参数确定所述第一BSS颜色,其中,所述BSS参数包括所述BSS的基本服务集标识符BSSID或第二BSS颜色,所述STA参数包括STA的MAC地址或STA的关联识别码AID,其中,所述第二BSS颜色为所述STA和所述第二STA所关联的接入点AP设置的BSS颜色。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,在所述第一STA生成数据帧之前,所述方法还包括:
    所述第一STA通过所述第一STA和所述第二STA所关联的接入点AP向所述第二STA发送通道直接链路建立TDLS建立请求帧,所述TDLS建立请求帧包括所述第一BSS颜色,以便于所述第二STA将所述第一BSS颜色确定为与所述第一STA进行D2D传输时的BSS颜色。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    所述第一STA通过所述AP接收所述第二STA发送的TDLS建立响应帧,所述TDLS建立响应帧包括用于确认所述第一BSS颜色的确认消息。
  6. 如权利要求1、2、4、5中任一项所述的方法,其特征在于,所述第一站点STA确定第一基本服务集BSS颜色color,包括:
    所述第一STA将预设的固定值确定为所述第一BSS颜色。
  7. 一种通信方法,其特征在于,包括:
    第二站点STA接收第一STA发送的通道直接链路建立TDLS建立请求帧,所述TDLS建立请求帧包括第一基本服务集BSS颜色color;
    所述第二STA将所述第一BSS颜色确定为与所述第一STA进行D2D传输时的BSS颜色。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第二STA通过所述第一STA和所述第二STA所关联的接入点AP向所述第一STA发送TDLS建立响应帧,所述TDLS建立响应帧包括用于确认所述第一BSS颜色的确认消息。
  9. 一种通信方法,其特征在于,包括:
    接入点AP接收第一站点STA发送的通道直接链路建立TDLS建立请求帧,所述TDLS建立请求帧包括第一基本服务集BSS颜色color;
    所述AP向第二STA发送所述TDLS建立请求帧,以便于所述第二STA将所述第一BSS颜色确定为与所述第一STA进行D2D传输时的BSS颜色。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述AP接收所述第二STA发送的TDLS建立响应帧,所述TDLS建立响应帧包括用于确认所述第一BSS颜色的确认消息;
    所述AP向所述第一STA发送所述TDLS建立响应帧。
  11. 一种第一站点STA,其特征在于,包括:
    确定单元,用于确定第一基本服务集BSS颜色color;
    生成单元,用于第一STA和第二STA进行设备到设备D2D传输时,生成数据帧,所述数据帧包括所述第一BSS颜色;
    发送单元,用于向所述第二STA发送所述数据帧。
  12. 如权利要求11所述的第一STA,其特征在于,所述数据帧为高效率物理层会聚协议协议数据单元HE PPDU,所述第一BSS颜色承载在所述HE PPDU的基本服务集颜色BSS color域中。
  13. 如权利要求11或12所述的第一STA,其特征在于,所述确定单元具体用于:
    根据所述第一STA和所述第二STA所属的BSS的BSS参数、所述第一STA的STA参数或所述第二STA的STA参数确定所述第一BSS颜色,其中,所述BSS参数包括所述BSS的基本服务集标识符BSSID或第二BSS颜色,所述STA参数包括STA的MAC地址或STA的关联识别码AID,其中,所述第二BSS颜色为所述STA和所述第二STA所关联的接入点AP设置的BSS颜色。
  14. 如权利要求11至13中任一项所述的第一STA,其特征在于,所述发送单元还用于:
    通过所述第一STA和所述第二STA所关联的接入点AP向所述第二STA发送通道直接链路建立TDLS建立请求帧,所述TDLS建立请求帧包括所述第一BSS颜色,以便于所述第二STA将所述第一BSS颜色确定为与所述第一STA进行D2D传输时的BSS颜色。
  15. 如权利要求14所述的第一STA,其特征在于,所述第一STA还包括:
    接收单元,用于通过所述AP接收所述第二STA发送的TDLS建立响应帧,所述TDLS建立响应帧包括用于确认所述第一BSS颜色的确认消息。
  16. 如权利要求11、12、14、15中任一项所述的第一STA,其特征在于,所述确定单元具体用于:
    所述第一STA将预设的固定值确定为所述第一BSS颜色。
  17. 一种第二站点STA,其特征在于,包括:
    接收单元,用于接收第一STA发送的通道直接链路建立TDLS建立请求帧,所述TDLS建立请求帧包括第一基本服务集BSS颜色color;
    确定单元,用于将所述第一BSS颜色确定为与所述第一STA进行D2D传输时的BSS颜色。
  18. 如权利要求17所述的第二STA,其特征在于,所述第二STA还包括:
    发送单元,用于通过所述第一STA和所述第二STA所关联的接入点AP向所述第一STA发送TDLS建立响应帧,所述TDLS建立响应帧包括用于确认所述第一BSS颜色的 确认消息。
  19. 一种接入点AP,其特征在于,包括:
    接收单元,用于接收第一站点STA发送的通道直接链路建立TDLS建立请求帧,所述TDLS建立请求帧包括第一基本服务集BSS颜色color;
    发送单元,用于向第二STA发送所述TDLS建立请求帧,以便于所述第二STA将所述第一BSS颜色确定为与所述第一STA进行D2D传输时的BSS颜色。
  20. 如权利要求19所述的AP,其特征在于,
    所述接收单元还用于,所述第二STA发送的TDLS建立响应帧,所述TDLS建立响应帧包括用于确认所述第一BSS颜色的确认消息;
    所述发送单元还用于,向所述第一STA发送所述TDLS建立响应帧。
PCT/CN2017/080031 2016-06-08 2017-04-11 通信方法、第一站点、第二站点和接入点 WO2017211123A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018562337A JP6753588B2 (ja) 2016-06-08 2017-04-11 通信方法、第1のステーション、第2のステーション及びアクセスポイント
EP17809563.4A EP3454622B1 (en) 2016-06-08 2017-04-11 Communication method, first station and second station
EP20188318.8A EP3793320A1 (en) 2016-06-08 2017-04-11 Communication methods, first and second stations
US16/206,444 US12010741B2 (en) 2016-06-08 2018-11-30 Communication method, first station, second station, and access point

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610403982.8 2016-06-08
CN201610403982.8A CN107484256B (zh) 2016-06-08 2016-06-08 通信方法、第一站点、第二站点和接入点

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/206,444 Continuation US12010741B2 (en) 2016-06-08 2018-11-30 Communication method, first station, second station, and access point

Publications (1)

Publication Number Publication Date
WO2017211123A1 true WO2017211123A1 (zh) 2017-12-14

Family

ID=60577528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080031 WO2017211123A1 (zh) 2016-06-08 2017-04-11 通信方法、第一站点、第二站点和接入点

Country Status (5)

Country Link
US (1) US12010741B2 (zh)
EP (2) EP3454622B1 (zh)
JP (1) JP6753588B2 (zh)
CN (2) CN107484256B (zh)
WO (1) WO2017211123A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6897566B2 (ja) * 2015-11-19 2021-06-30 ソニーグループ株式会社 装置及び方法
CN107484256B (zh) * 2016-06-08 2021-06-01 华为技术有限公司 通信方法、第一站点、第二站点和接入点
US11395243B2 (en) * 2019-10-16 2022-07-19 Cisco Technology, Inc. Increasing synchronization of virtual reality scene elements with software defined network (SDN) originated information
CN113824753B (zh) * 2020-06-19 2023-09-15 阿里巴巴集团控股有限公司 通信方法及通信***、存储介质、计算设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050311A1 (ko) * 2013-10-05 2015-04-09 엘지전자 주식회사 무선랜 시스템에서 섹터화된 전송기회를 이용한 동작 방법 및 장치
US20150110093A1 (en) * 2013-10-23 2015-04-23 Qualcomm Incorporated Systems, methods and devices for dynamically setting response indication deferral in wireless networks
CN105357719A (zh) * 2015-12-10 2016-02-24 魅族科技(中国)有限公司 无线局域网的通信方法及通信装置、站点和接入点
WO2016036016A1 (ko) * 2014-09-03 2016-03-10 엘지전자 주식회사 무선랜에서 트레이닝 필드를 전송하는 방법 및 장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8345584B2 (en) * 2007-09-26 2013-01-01 Lantiq Deutschland Gmbh Wireless local area network and access point for a wireless local area network
KR101511386B1 (ko) * 2008-10-15 2015-04-13 엘지전자 주식회사 터널 다이렉트 링크 설정 무선 네트워크에서의 다이렉트 링크 설정 절차
US9900779B2 (en) * 2008-12-30 2018-02-20 Qualcomm Incorporated Centralized control of peer-to-peer communication
US8644278B2 (en) * 2010-08-03 2014-02-04 Texas Instruments Incorporated System and method for simultaneous infrastructure and ad hoc networked communications
US9294883B2 (en) * 2012-03-01 2016-03-22 Nokia Technologies Oy Method, apparatus, and computer program product for probe request and response exchange
CA2884587C (en) 2012-09-26 2019-08-06 Lg Electronics Inc. Method and apparatus for sub-channel selective access in wireless lan system
RU2606511C1 (ru) * 2012-12-12 2017-01-10 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ передачи/приема информации, связанной с идентификатором ассоциации, в системе беспроводной связи и соответствующее устройство
CN104125652A (zh) * 2013-04-25 2014-10-29 华为技术有限公司 中继链路的建立方法、站点和***
EP3042443A4 (en) 2013-09-05 2017-04-19 Skykar Inc. Synchronous electric machines
US20150264617A1 (en) * 2014-03-14 2015-09-17 Nokia Corporation Methods and Apparatus for Wireless Networking
US20160006311A1 (en) 2014-06-19 2016-01-07 Turboroto Inc. Electric motor, generator and commutator system, device and method
US10085258B2 (en) * 2014-07-04 2018-09-25 Newracom, Inc. Frame transmitting method and frame receiving method
CN106664721B (zh) 2014-07-11 2020-03-20 索尼公司 信息处理设备
US10111258B2 (en) * 2015-02-13 2018-10-23 Qualcomm Incorporated Methods and systems for receiver initiated protection of a wireless communication exchange
US10178705B2 (en) * 2015-02-23 2019-01-08 Newracom, Inc. Method and apparatus for dynamic channel sensing for direct link in a high efficiency wireless LAN
US10111270B2 (en) * 2015-05-26 2018-10-23 Lg Electronics Inc. Method and apparatus for receiving signal by using resource units in a wireless local area system
US10091714B2 (en) * 2015-06-11 2018-10-02 Qualcomm Incorporated Enabling channel reuse for selective BSS
US20170085461A1 (en) * 2015-09-23 2017-03-23 Qualcomm Incorporated Color assignments for peer-to-peer (p2p) transmissions
CN107484256B (zh) * 2016-06-08 2021-06-01 华为技术有限公司 通信方法、第一站点、第二站点和接入点
US20180184285A1 (en) * 2016-06-13 2018-06-28 Qualcomm Incorporated Techniques for basic service set attribute detection and resolution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050311A1 (ko) * 2013-10-05 2015-04-09 엘지전자 주식회사 무선랜 시스템에서 섹터화된 전송기회를 이용한 동작 방법 및 장치
US20150110093A1 (en) * 2013-10-23 2015-04-23 Qualcomm Incorporated Systems, methods and devices for dynamically setting response indication deferral in wireless networks
WO2016036016A1 (ko) * 2014-09-03 2016-03-10 엘지전자 주식회사 무선랜에서 트레이닝 필드를 전송하는 방법 및 장치
CN105357719A (zh) * 2015-12-10 2016-02-24 魅族科技(中国)有限公司 无线局域网的通信方法及通信装置、站点和接入点

Also Published As

Publication number Publication date
EP3793320A1 (en) 2021-03-17
JP6753588B2 (ja) 2020-09-09
US20190098679A1 (en) 2019-03-28
EP3454622A1 (en) 2019-03-13
CN107484256B (zh) 2021-06-01
EP3454622B1 (en) 2020-09-02
CN113411912A (zh) 2021-09-17
JP2019518379A (ja) 2019-06-27
US12010741B2 (en) 2024-06-11
CN107484256A (zh) 2017-12-15
EP3454622A4 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP6259102B2 (ja) 無線lanシステムにおいてセクター化された送信機会を用いた動作方法及び装置
US20130235788A1 (en) Systems and methods for establishing a connection setup through relays
US9860926B2 (en) Network discovery in wireless network
US12010741B2 (en) Communication method, first station, second station, and access point
WO2017049737A1 (zh) D2d中继资源配置方法、装置及***
WO2022135035A1 (en) Method and apparatus for relay selection
WO2017121301A1 (zh) 传输数据的方法和装置
JP2013527717A (ja) ダイレクトリンクセットアップのための、wlan局の能力の発見のための方法および装置
WO2014104556A1 (ko) 무선랜 시스템의 중계 네트워크에서 멀티캐스트/브로드캐스트를 수행하는 방법 및 장치
CN114071512B (zh) 管理基本服务集颜色的方法、接入点和站点
US20190335370A1 (en) Methods and system for managing handover procedure in a radio access network
US20160270143A1 (en) Communication control method, user terminal, and processor
CN114270892A (zh) 用于在海上网络中的网络节点间转发数据的方法和装置
EP3905736A1 (en) Device discovery method, apparatus, and system
US20220256441A1 (en) Multi-access point assistance transmission method and device, storage medium and electronic device
WO2022056685A1 (zh) 数据重传方法和接入点设备
WO2015139305A1 (zh) 一种数据处理方法及装置
WO2017032252A1 (zh) 业务处理方法和相关装置及通信***

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018562337

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17809563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017809563

Country of ref document: EP

Effective date: 20181204