WO2017209240A1 - Decorative sheet and production method for decorative sheet - Google Patents

Decorative sheet and production method for decorative sheet Download PDF

Info

Publication number
WO2017209240A1
WO2017209240A1 PCT/JP2017/020431 JP2017020431W WO2017209240A1 WO 2017209240 A1 WO2017209240 A1 WO 2017209240A1 JP 2017020431 W JP2017020431 W JP 2017020431W WO 2017209240 A1 WO2017209240 A1 WO 2017209240A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent resin
decorative sheet
resin layer
intensity ratio
nucleating agent
Prior art date
Application number
PCT/JP2017/020431
Other languages
French (fr)
Japanese (ja)
Inventor
恵 柏女
真志 服部
達彦 古田
宮本 慎一
正光 長濱
佐藤 彰
高橋 昌利
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2017209240A1 publication Critical patent/WO2017209240A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a decorative sheet used for a building material used for an exterior or interior of a building, a surface of a fitting, a surface material of a home appliance, and a method for manufacturing the decorative sheet.
  • Patent Documents 1 to 5 many decorative sheets using olefin-based resins have been proposed as decorative sheets that replace polyvinyl chloride decorative sheets. These decorative sheets can suppress the generation of toxic gases during incineration by not using polyvinyl chloride.
  • the decorative sheets described in Patent Documents 1 to 5 use general polypropylene sheets or soft polypropylene sheets, they have poor scratch resistance, which is far greater than the scratch resistance of polyvinyl chloride decorative sheets. It was inferior.
  • Japanese Patent Laid-Open No. 2-128843 Japanese Patent Laid-Open No. 4-083664 JP-A-6-001881 JP-A-6-198831 JP-A-9-328562 Japanese Patent No. 3772634
  • a decorative sheet is a decorative sheet having a transparent resin layer containing an olefin resin, and is a transparent resin measured by Raman spectroscopy in the MD direction of the transparent resin layer.
  • a transparent resin having a first intensity ratio which is a spectral intensity ratio between a crystal part and an amorphous part of a layer, in a range of 0.9 or more and 2.0 or less and measured by Raman spectroscopy in the TD direction of the transparent resin layer
  • the second intensity ratio which is the spectral intensity ratio between the crystal part and the amorphous part of the layer, is in the range of 0.9 to 1.9, and the total value of the first intensity ratio and the second intensity ratio is 1. It is in the range of 9 or more and 3.6 or less.
  • the hardness of the transparent resin layer can be made appropriate, and a decorative sheet excellent in scratch resistance and post-processability can be provided.
  • the decorative sheet 1 of the present embodiment has a pattern layer 5, a transparent resin layer 3, and a surface protective layer 2 laminated in this order on one surface of a base material layer 6.
  • Reference numeral 4 denotes an adhesive layer.
  • the concealing layer 7 and the primer layer 8 are formed in this order on the other surface of the base material layer 6.
  • the masking layer 7 may be formed between the base material layer 6 and the pattern layer 5 or may be omitted.
  • the decorative sheet 1 of this embodiment has illustrated the case where the embossed pattern 3a is formed between the surface protective layer 2 and the transparent resin layer 3.
  • FIG. Note that the embossed pattern 3 a may be formed on the upper surface of the surface protective layer 2.
  • “the upper surface of the surface protective layer 2” means the outermost surface of the decorative sheet 1 of the present embodiment, and means the surface of the surface protective layer 2 opposite to the surface on the transparent resin layer 3 side.
  • the layer thickness of the decorative sheet 1 having the above-described configuration is, for example, 3 ⁇ m or more and 20 ⁇ m or less for the surface protective layer 2, 20 ⁇ m or more and 200 ⁇ m or less for the transparent resin layer 3, and the adhesive layer 4 in consideration of printing workability and cost. Is in the range of 1 ⁇ m to 20 ⁇ m.
  • the pattern layer 5 is 3 ⁇ m to 20 ⁇ m
  • the base layer 6 is 20 ⁇ m to 150 ⁇ m
  • the masking layer 7 is 2 ⁇ m to 20 ⁇ m
  • the primer layer 8 is 0.1 ⁇ m to 20 ⁇ m.
  • the total thickness of the decorative sheet 1 shall be in the range of 49.1 micrometers or more and 450 micrometers or less.
  • FIG. 1 the case where the decorative sheet 1 of this embodiment is affixed on the base material B and the decorative board is comprised is illustrated.
  • the base material layer 6 is comprised from paper, a resin sheet, foil, etc.
  • the paper for example, thin paper, titanium paper, resin-impregnated paper, organic or inorganic nonwoven fabric, and synthetic paper can be used.
  • Examples of the resin of the resin sheet include polyethylene, polypropylene, polybutylene, polystyrene, polycarbonate, polyester, polyamide, ethylene-vinyl acetate copolymer, polyvinyl alcohol, acrylic and other synthetic resins, foams of these synthetic resins, ethylene- Rubbers such as propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, styrene-butadiene copolymer rubber, styrene-isoprene-styrene block copolymer rubber, styrene-butadiene-styrene block copolymer rubber, and polyurethane can be used.
  • metal foil such as aluminum, iron, gold
  • the pattern pattern layer 5 is a layer for applying a pattern pattern to the decorative sheet 1.
  • a gravure printing method is preferable in consideration of productivity and picture quality.
  • the design pattern it is sufficient to adopt an arbitrary design pattern in consideration of the place of use such as flooring or wall material, and various wood grain is often used if it is a wood-based design. It can also be a pattern. For example, if it is an image of a stone floor such as marble, marble stones can be used as a pattern.
  • an artificial pattern such as an artificial pattern or a geometric pattern using these as a motif can also be used.
  • the printing ink is not particularly limited, and an ink corresponding to the printing method can be appropriately selected. In particular, it is preferable to select in consideration of adhesion to the base material layer 6, printability, weather resistance of the decorative material, and the like.
  • colorants such as pigments and dyes, extender pigments, solvents, and binders contained in ordinary inks are added to the printing ink.
  • the pigment for example, pearl pigments such as condensed azo, insoluble azo, quinacridone, isoindoline, anthraquinone, imidazolone, cobalt, phthalocyanine, carbon, titanium oxide, iron oxide, and mica can be used.
  • the binder may be, for example, water-based, solvent-based, or emulsion type
  • the curing method is a one-component type, a two-component type composed of a main agent and a curing agent, or a type that is cured by ultraviolet rays, electron beams, or the like.
  • the most general method is a two-component type, which uses a urethane-based main agent and a curing agent made of isocyanate.
  • the design may be applied by vapor deposition or sputtering of various metals.
  • the adhesive layer 4 is a layer for strengthening the adhesion between the base material layer 6 and the pattern layer 5 and the transparent resin layer 3. Thereby, the bending workability which follows a curved surface or a right-angled surface can be provided with respect to the decorative sheet 1.
  • the adhesive layer 4 is preferably transparent.
  • As the adhesive (material) constituting the adhesive layer 4 for example, acrylic, polyester, polyurethane, and epoxy materials can be used.
  • urethane-based material that is a two-component curing type and is obtained by a reaction with a polyol using an isocyanate.
  • the transparent resin layer 3 is a layer for improving the weather resistance and wear resistance of the decorative sheet 1 in addition to providing the decorative sheet 1 with a thickness and depth in a design manner.
  • a transparent olefin resin polyolefin resin
  • the transparent olefin resin include ⁇ -olefin (eg, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene) in addition to polypropylene, polyethylene, polybutene and the like.
  • the olefin resin preferably contains a crystalline polypropylene resin.
  • the crystalline polypropylene resin is contained in an amount of 50% by mass to 100% by mass with respect to the total mass of the transparent resin layer 3.
  • the transparent resin layer 3 can be hardened enough and scratch resistance can be improved.
  • the crystalline polypropylene resin it is more preferable to use a crystalline polypropylene resin that is a propylene homopolymer having an isotactic pentad fraction (mmmm fraction) of 95% or more.
  • the transparent resin layer 3 may be added with a nano-sized nucleating agent, that is, a nano-sized nucleating agent, with respect to the olefin resin.
  • a nano-sized nucleating agent that is, a nano-sized nucleating agent
  • the nano-sized nucleating agent is preferably added in the form of a nucleating agent encapsulated in vesicles (hereinafter also referred to as “nucleating agent vesicle”).
  • the nucleating agent vesicle can be prepared by, for example, the Bangham method, the extrusion method, the hydration method, the surfactant dialysis method, the reverse phase evaporation method, the freeze-thaw method, the supercritical reverse phase evaporation method, and the like.
  • the supercritical reverse phase evaporation method is particularly preferable in consideration of further improvement in dispersibility of the nucleating agent.
  • Supercritical reversed-phase evaporation method is a method of producing nano-sized vesicles (capsules) encapsulating target substances using carbon dioxide under supercritical conditions, temperature conditions above the critical point or pressure conditions above the critical point. It is. Carbon dioxide in a supercritical state means carbon dioxide in a supercritical state at a critical temperature (30.98 ° C.) and a critical pressure (7.3773 ⁇ 0.0030 MPa) or higher, under temperature conditions above the critical point or Carbon dioxide under pressure conditions above the critical point means carbon dioxide under conditions where only the critical temperature or only the critical pressure exceeds the critical condition.
  • an emulsion of supercritical carbon dioxide and aqueous phase is produced by injecting and stirring the aqueous phase into a mixed fluid of supercritical carbon dioxide, phospholipid, and nucleating agent as an inclusion substance. . Thereafter, when the pressure is reduced, carbon dioxide expands and evaporates to cause phase inversion, and nanovesicles in which the surface of the nucleating agent nanoparticles are covered with a monolayer film are generated.
  • this supercritical reverse phase evaporation method since a vesicle of a single layer film can be generated, a very small size vesicle can be obtained.
  • Japanese Patent Laid-Open No. 2002-032564, Japanese Patent Laid-Open No. 2003-119120, Japanese Patent Laid-Open No. 2005-298407 have been proposed by the present inventors in the past. And Japanese Patent Application Laid-Open No. 2008-063274.
  • the average particle diameter of the nucleating agent vesicle encapsulating the nano-sized nucleating agent is preferably 1 ⁇ 2 or less of the visible light wavelength (400 nm or more and 750 nm or less). Considering suppression of light scattering, it is particularly preferable that the thickness be 200 nm or more and 375 nm or less.
  • the nucleating agent vesicle is also present in the resin composition even when the outer membrane of the vesicle is broken and the nucleating agent is exposed.
  • the nucleating agent is not particularly limited as long as it is a substance that becomes a starting point of crystallization when the resin is crystallized.
  • a phosphoric acid ester metal salt, a benzoic acid metal salt, a pimelic acid metal salt, a rosin metal salt, benzylidene sorbitol, quinacridone, cyanine blue and talc can be used.
  • the material itself can be made transparent by nano-treatment
  • colored quinacridone, cyanine blue, talc and the like can be used.
  • molten benzylidene sorbitol may be appropriately mixed with the non-melting nucleating agent.
  • the said nucleating agent is contained within 0.01 mass part or more and 1.0 mass part or less with respect to 100 mass parts of crystalline polypropylene resin which forms the transparent resin layer 3. FIG. When the content of the nucleating agent is within the above range, the transparency, scratch resistance and post-processability of the transparent resin layer 3 are further enhanced.
  • the transparent resin layer 3 has various existing heat stabilizers, ultraviolet absorbers, light stabilizers, anti-blocking agents, catalyst scavengers, colorants, light scattering agents, and gloss adjusting agents as required. Additives may be added.
  • the method for laminating the transparent resin layer 3 is not particularly limited, and for example, a method applying hot pressure, an extrusion laminating method, a dry laminating method, or the like can be appropriately selected.
  • embossing pattern 3a when embossing pattern 3a is applied, for example, a method in which embossed pattern 3a is later laminated by hot pressure on a sheet once laminated by various methods, or an uneven pattern is provided on a cooling roll, and embossed pattern 3a is provided simultaneously with extrusion lamination.
  • the embossing method is not particularly limited, and a known single-wafer or rotary embossing machine can be appropriately selected.
  • Examples of the concavo-convex shape may include a wood grain plate conduit groove, a stone plate surface unevenness (such as granite cleaved surface), a cloth surface texture, a satin texture, a grain texture, a hairline, and a striated groove.
  • the spectral intensity ratio between the crystal part and the amorphous part of the transparent resin layer 3 measured by Raman spectroscopy in the MD direction of the transparent resin layer 3, that is, the flow direction when forming the transparent resin layer 3 (hereinafter, (Also referred to as “first intensity ratio”) is in the range of 0.9 to 2.0.
  • the spectral intensity ratio between the crystal part and the amorphous part the spectral intensity of the crystal part / the spectral intensity of the amorphous part is adopted.
  • the intensity ratio is also in the range of 0.9 to 1.9.
  • the total value of the first intensity ratio and the second intensity ratio is set in the range of 1.9 to 3.6.
  • the peak of the crystal part is observed at 809 cm ⁇ 1 in the spectrum measurement by Raman spectroscopy, as shown in FIG. A peak is observed at 842 cm ⁇ 1 .
  • a small peak of an amorphous part may be observed at 839 cm ⁇ 1 . Therefore, the peak intensity I 809 of the crystal part and the peak intensity (I 839 + I 842 ) of the amorphous part are measured in each of the MD direction and the TD direction, and the ratio I 809 / (I 839 + I 842 ) of the measurement results.
  • the first intensity ratio and the second intensity ratio can be obtained.
  • the “peak intensity” corresponds to the “spectrum intensity” of the present application.
  • the spectral intensity ratio can be kept within the above range by controlling the temperature history at the time of film formation. Specific examples of the temperature history for setting the spectral intensity ratio within the above range are based on an extrusion film forming method using a T-die. When the polypropylene resin melted at 230 ° C. is discharged from the T die, the degree of crystallization can be controlled by the cooling profile gradient of the temperature of the cooling roll immediately below the T die and the resin temperature due to contact with the molten resin.
  • the cooling profile becomes steeper as the temperature difference between the cooling roll and the molten resin increases, and the degree of crystallinity decreases.
  • 45 ° C. to 80 ° C. is suitable as the cooling roll temperature setting for setting the spectral intensity ratio within the above range.
  • the decorative sheet according to the present embodiment based on the present invention includes a transparent resin layer 3 mainly composed of an olefin resin such as a crystalline polypropylene resin, and the transparent resin layer 3 contains a nano-sized nucleating agent.
  • the transparent resin layer 3 has one feature in that it contains a nano-sized nucleating agent (nucleating agent vesicle) encapsulated in a vesicle.
  • the transparent resin layer contains a nano-sized nucleating agent”.
  • the nucleating agent added to the resin composition (olefin-based resin) in a state where the nucleating agent is encapsulated in the vesicle, the dispersibility of the nucleating agent in the resin material, that is, in the transparent resin layer is dramatically improved.
  • the nucleating agent added in the state of vesicle is in a dispersed state having high dispersibility, and the nucleating agent is highly dispersed in the transparent resin layer even in the state of the produced decorative sheet.
  • the decorative sheet is usually produced by a compression treatment or curing to the laminate.
  • Various treatments such as treatment are performed, but by such treatment, the outer membrane of the vesicle encapsulating the nucleating agent is crushed or chemically reacted, and the nucleating agent is not included (encapsulated) in the outer membrane.
  • the present invention is different from the conventional one in that the nucleating agent is blended in a highly dispersed state, whether or not it is because it is added in the state of a vesicle encapsulating the nucleating agent is a cosmetic. In the state of the sheet, it may be impractical to specify the structure and characteristics within the numerical range analyzed based on the measurement.
  • the surface protective layer 2 is a layer for protecting the surface of the decorative sheet 1 and adjusting the gloss.
  • the material of the surface protective layer 2 for example, polyurethane, acrylic silicon, fluorine, epoxy, vinyl, polyester, melamine, aminoalkyd, and urea materials can be used.
  • the form of the material may be any of aqueous, emulsion and solvent type.
  • a curing method for example, a one-component type, a two-component type, an ultraviolet curing method, or the like can be used.
  • a urethane-based resin using isocyanate is preferable from the viewpoints of workability, cost, cohesion of the resin itself, and the like.
  • the isocyanate include tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HMDI), diphenylmethane diisocyanate (MDI), lysine diisocyanate (LDI), isophorone diisocyanate (IPDI), methylhexane diisocyanate (HTDI).
  • HXDI Methylcyclohexanone diisocyanate
  • TMDI trimethylhexamethylene diisocyanate
  • HXDI Methylcyclohexanone diisocyanate
  • TMDI trimethylhexamethylene diisocyanate
  • HMDI hexamethylene diisocyanate
  • the concealment layer 7 is a layer for maintaining concealability. For example, it is formed by printing in the same manner as the picture pattern layer 5.
  • the pigment to be included in the ink it is preferable to use an opaque pigment, titanium oxide, iron oxide or the like.
  • a metal such as gold, silver, copper, and aluminum may be added. In general, flaky aluminum is often added.
  • the masking layer 7 can be omitted when the base material layer 6 is opaque and has masking properties.
  • the primer layer 8 is a layer for improving adhesion with the base material B.
  • the resin constituting the primer layer 8 is an ester resin, a urethane resin, an acrylic resin, a polycarbonate resin, a vinyl chloride-vinyl acetate copolymer, Polyvinyl butyral resin and nitrocellulose resin can be used. These resins can be used alone or mixed to form an adhesive composition, and the primer layer 8 can be formed by using an appropriate application means such as a roll coating method or a gravure printing method.
  • a resin (urethane-acrylate resin) comprising a copolymer of an acrylic resin and a urethane resin and an isocyanate.
  • the decorative sheet 1 of this embodiment has the transparent resin layer 3 containing an olefin resin.
  • the 1st intensity ratio which is the spectral intensity ratio of the crystal part of the transparent resin layer 3 of the transparent resin layer 3 measured by the Raman spectroscopy in MD direction of the transparent resin layer 3, and an amorphous part is 0.9 or more and 2.0 or less range Is within.
  • the second intensity ratio which is the spectral intensity ratio between the crystal part and the amorphous part of the transparent resin layer 3 measured by Raman spectroscopy in the TD direction of the transparent resin layer 3, is in the range of 0.9 to 1.9. Is within.
  • the total value of the first intensity ratio and the second intensity ratio is in the range of 1.9 to 3.6.
  • the transparent resin layer 3 contains crystalline polypropylene resin in the range of 50 mass% or more and 100 mass% or less, the ratio of crystalline polypropylene resin is made high. Since the transparent resin layer 3 can be sufficiently hardened, scratch resistance can be improved.
  • the crystalline polypropylene resin is a crystalline polypropylene resin having an isotactic pentad fraction of 95% or more, the stereoregularity of the crystalline polypropylene resin is improved. The scratch resistance and post-workability can be further improved.
  • the transparent resin layer 3 since the transparent resin layer 3 was made to contain a nanosized nucleating agent, the scattering of the light which arises by addition of a nucleating agent can be suppressed, and the transparent resin layer 3 Scratch resistance and post-processability can be further improved without impairing the transparency of the film.
  • the transparent resin layer 3 since the transparent resin layer 3 is formed by adding a nano-sized nucleating agent to an olefin resin, light scattering caused by the addition of the nucleating agent is performed. Scratch resistance and post-processability can be further improved without impairing the transparency of the transparent resin layer 3.
  • the nano-sized nucleating agent is included in the vesicle, the dispersibility of the nano-sized nucleating agent can be improved, and the transparent resin layer 3 is configured. In the resin, aggregation of the nucleating agent can be suppressed and uniformly dispersed, and transparency can be further improved.
  • the nano-sized nucleating agent is encapsulated in the vesicle by the supercritical reverse phase evaporation method, so that the dispersibility of the nucleating agent is more appropriately improved.
  • the transparent resin layer 3 is 0.01 mass part or more and 1.0 mass part or less of nanosize nucleating agent with respect to 100 mass parts of olefin resin. Since it contains within the range, scratch resistance and post-processability can be further improved. (9) Moreover, in the manufacturing method of the decorative sheet 1 of this embodiment, since the transparent resin layer 3 is formed by adding a nano-sized nucleating agent to an olefin-based resin, light generated by the addition of the nucleating agent is formed. Scattering can be suppressed, and scratch resistance and post-workability can be further improved without impairing the transparency of the transparent resin layer 3.
  • the nano-sized nucleating agent is added to the olefin resin in a state in which the vesicle is encapsulated, the dispersibility of the nano-sized nucleating agent is improved. It is possible to suppress the aggregation of the nucleating agent in the resin constituting the transparent resin layer 3 and uniformly disperse it, and the transparency can be further improved.
  • the nano-sized nucleating agent is vesicled by the supercritical reverse phase evaporation method, so that the dispersibility of the nucleating agent is more appropriately improved. Can do.
  • Example 1 a crystalline polypropylene resin having an isotactic pentad fraction of 97.8%, an MFR (melt flow rate) of 15 g / 10 min (230 ° C.), and a molecular weight distribution MWD (Mw / Mn) of 2.3 (Crystalline homopolypropylene resin) Hindered phenol antioxidant (Irganox 1010: manufactured by BASF) 500PPM and benzotriazole ultraviolet absorber (Tinuvin 328: manufactured by BASF) with respect to 100% by mass of resin.
  • MFR melting rate
  • MWD molecular weight distribution MWD
  • Hindered phenol antioxidant Irganox 1010: manufactured by BASF
  • benzotriazole ultraviolet absorber Tinuvin 328: manufactured by BASF
  • Both surfaces of the formed transparent resin layer 3 were subjected to corona treatment, and the wet tension of the transparent resin sheet surface was set to 40 dyn / cm or more. Further, a 70 ⁇ m polyethylene sheet having a concealing property was used as the base material layer 6.
  • a two-component urethane ink (V180; manufactured by Toyo Ink Manufacturing Co., Ltd.) is used to stabilize the hindered amine based on the total mass of the binder resin of the two-component ink.
  • the pattern layer 5 was formed by performing pattern printing using an ink provided by adding 0.5% by mass of an agent (Kimasorb 944; manufactured by BASF). A gravure printing method was used as a printing method for the pattern layer 5.
  • a concealing layer 7 and a primer layer 8 were formed on the other surface of the base material layer 6.
  • the transparent resin layer 3 is pasted on the upper surface of the pattern layer 5 via the adhesive layer 4 made of an adhesive for dry lamination (Takelac A540; manufactured by Mitsui Chemicals, Inc .; coating amount 2 g / m 2 ). Combined.
  • an adhesive for dry lamination Takelac A540; manufactured by Mitsui Chemicals, Inc .; coating amount 2 g / m 2 .
  • a dry lamination method was used.
  • the embossed pattern 3a is applied to the upper surface of the bonded transparent resin layer 3, and then a two-component curable urethane topcoat (W184; manufactured by DIC Graphics) is applied at a coating thickness of 6 g / m 2.
  • a protective layer 2 was formed. Thereby, the decorative sheet 1 having a total thickness of 170 ⁇ m was formed.
  • the “upper surface of the pattern layer 5” means a surface opposite to the surface of the pattern layer 5 on the base material layer 6 side.
  • the “upper surface of the transparent resin layer 3” means a surface opposite to the surface of the transparent resin layer 3 on the adhesive layer 4 side.
  • Example 1 as shown in Table 1, the spectral intensity ratio (first intensity ratio) between the crystal part and the amorphous part of the transparent resin layer 3 measured by the Raman spectroscopy in the MD direction of the transparent resin layer 3 is expressed as follows. 2.0. The spectral intensity ratio (second intensity ratio) between the crystal part and the amorphous part of the transparent resin layer 3 measured by Raman spectroscopy in the TD direction was set to 1.5. The total sum of the first intensity ratio and the second intensity ratio was 3.5. Note that no nucleating agent was added to the transparent resin layer 3.
  • Example 1 the spectral intensity ratio (first intensity ratio) in the MD direction of the transparent resin layer 3 and the spectral intensity ratio (second intensity ratio) in the TD direction are expressed as follows using Raman spectroscopy.
  • the measurement equipment, measurement conditions, and sample setting method were used.
  • Sample installation method Sample is installed so that the MD direction and TD direction of the transparent resin layer 3 coincide with the laser emission direction.
  • Example 2 In Example 2, the first intensity ratio was 1.9, the second intensity ratio was 1.3, and the sum of these intensity ratios was 3.2. Otherwise, the configuration was the same as in Example 1. (Example 3) In Example 3, the first intensity ratio was 1.9, the second intensity ratio was 1.0, and the sum of these intensity ratios was 2.9. Otherwise, the configuration was the same as in Example 1.
  • Example 4 In Example 4, the first intensity ratio was 1.4, the second intensity ratio was 1.8, and the sum of these intensity ratios was 3.2. Otherwise, the configuration was the same as in Example 1. (Example 5) In Example 5, the first intensity ratio was 1.4, the second intensity ratio was 1.4, and the sum of these intensity ratios was 2.8. Otherwise, the configuration was the same as in Example 1.
  • Example 6 In Example 6, the first intensity ratio was 1.4, the second intensity ratio was 1.0, and the sum of these intensity ratios was 2.4. Otherwise, the configuration was the same as in Example 1. (Example 7) In Example 7, the first intensity ratio was 1.0, the second intensity ratio was 1.4, and the sum of these intensity ratios was 2.4. Otherwise, the configuration was the same as in Example 1.
  • Example 8 In Example 8, the first intensity ratio was 1.0, the second intensity ratio was 1.0, and the sum of these intensity ratios was 2.0. Otherwise, the configuration was the same as in Example 1.
  • Example 9 In Example 9, the first intensity ratio was 1.9, the second intensity ratio was 1.3, and the sum of these intensity ratios was 3.2. Further, it contains an untreated nucleating agent, that is, a nucleating agent that has not been subjected to either nano-treatment or vesicle formation. Otherwise, the configuration was the same as in Example 1.
  • Example 10 In Example 10, the transparent resin layer 3 contained 50% by mass of the crystalline polypropylene resin and 50% by mass of the random polypropylene resin with respect to the total mass of the transparent resin layer 3. Otherwise, the configuration was the same as in Example 8.
  • Example 11 In Example 11, the transparent resin layer 3 contained 90% by mass of crystalline polypropylene resin and 10% by mass of random polypropylene resin with respect to the total mass of the transparent resin layer 3.
  • the crystalline polypropylene resin contains a nano-sized nucleating agent. Otherwise, the configuration was the same as in Example 2.
  • Example 12 the nano-sized nucleating agent was vesicled by the supercritical reverse phase evaporation method and included in the vesicle. Otherwise, the configuration was the same as in Example 11.
  • a phosphate ester metal salt nucleating agent (Adeka Stub NA-11, manufactured by ADEKA) as a nucleating agent, After putting 5 parts by mass of phosphatidylcholine as a substance constituting the outer membrane in a high-pressure stainless steel container kept at 60 ° C.
  • nucleating agent liposome A nucleating agent for a vesicle having a monolayer outer membrane made of phospholipid by stirring for 15 minutes while maintaining the temperature and pressure in a supercritical state and then discharging carbon dioxide to return to atmospheric pressure.
  • a vesicle-containing nucleating agent (nucleating agent liposome) was obtained.
  • a crystalline polypropylene resin having an isotactic pentad fraction of 97.8%, an MFR (melt flow rate) of 15 g / 10 min (230 ° C.), and a molecular weight distribution MWD (Mw / Mn) of 2.3.
  • Example 13 In Example 13, the first intensity ratio was 1.8, the second intensity ratio was 1.1, and the sum of these intensity ratios was 2.9. Further, the transparent resin layer 3 contained 40% by mass ( ⁇ 50% by mass) of the crystalline polypropylene resin and 60% by mass of the random polypropylene resin with respect to the total mass of the transparent resin layer 3. Otherwise, the configuration was the same as in Example 1. (Example 14) In Example 14, the first intensity ratio was 1.3, the second intensity ratio was 1.2, and the sum of these intensity ratios was 2.5. In addition, the transparent resin layer 3 had an isotactic pentad fraction of 92% ( ⁇ 95%). Otherwise, the configuration was the same as in Example 1.
  • Example 1 In Comparative Example 1, the first intensity ratio was 2.1, the second intensity ratio was 2.0, and the sum of these intensity ratios was 4.1 (> 3.6). Otherwise, the configuration was the same as in Example 1.
  • Comparative Example 2 In Comparative Example 2, the first intensity ratio was 2.1, the second intensity ratio was 1.7, and the sum of these intensity ratios was 3.8 (> 3.6). Otherwise, the configuration was the same as in Example 1.
  • Example 3 In Comparative Example 3, the first intensity ratio was 1.9, the second intensity ratio was 1.9, and the sum of these intensity ratios was 3.8 (> 3.6). Otherwise, the configuration was the same as in Example 1.
  • Comparative Example 4 In Comparative Example 4, the first intensity ratio was 0.9, the second intensity ratio was 0.9, and the sum of these intensity ratios was 1.8 ( ⁇ 1.9). Otherwise, the configuration was the same as in Example 1.
  • Comparative Example 5 In Comparative Example 5, the first intensity ratio was 0.9, the second intensity ratio was 0.8, and the sum of these intensity ratios was 1.7 ( ⁇ 1.9). Otherwise, the configuration was the same as in Example 1.
  • Comparative Example 6 In Comparative Example 6, the first intensity ratio was 0.8, the second intensity ratio was 0.7, and the sum of these intensity ratios was 1.5 ( ⁇ 1.9). Further, the transparent resin layer 3 contained 40% by mass ( ⁇ 50% by mass) of the crystalline polypropylene resin and 60% by mass of the random polypropylene resin with respect to the total mass of the transparent resin layer 3. Otherwise, the configuration was the same as in Example 1.
  • Example 7 In Comparative Example 7, the first intensity ratio was 1.2, the second intensity ratio was 2.3, and the sum of these intensity ratios was 3.5. Otherwise, the configuration was the same as in Example 1.
  • Comparative Example 8 In Comparative Example 8, the first intensity ratio was 2.4, the second intensity ratio was 1.1, and the sum of these intensity ratios was 3.5. Otherwise, the configuration was the same as in Example 1.
  • the scratch resistance was evaluated using a pencil hardness test in accordance with JIS-K5600.
  • the maximum hardness of the transparent resin layer 3 with no dent is HB or more, “ ⁇ ”, when it is 2B or more, “ ⁇ ”, when it is 3B or more, “ ⁇ ”, when it is less than 3B, “ ⁇ ” "
  • the acceptance criteria in this scratch resistance test is 3B or more.
  • each decorative sheet 1 produced by the above method is attached to one surface of the medium fiberboard (MDF) constituting the base material B using a urethane-based adhesive, With respect to the other surface of the base material B, a V-shaped groove is inserted to the boundary where the base material B and the decorative sheet 1 are bonded together so that the decorative sheet 1 on the opposite side is not scratched.
  • the base material B is bent to 90 degrees along the V-shaped groove so that the surface of the decorative sheet 1 is mountain-folded, and no whitening or cracks occur in the bent portion of the surface of the decorative sheet 1.
  • the first strength ratio is in the range of 0.9 to 2.0
  • the second strength ratio is in the range of 0.9 to 1.9
  • the crystal part and the non-crystal part of the transparent resin layer 3 are set to appropriate amounts, and the transparent resin layer 3 Is considered to have good scratch resistance and post-workability.
  • the scratch resistance is inferior compared with the case where the ratio of the random polypropylene resin is high. It is thought that it became.
  • the scratch resistance is higher than when the isotactic pentad fraction is high. Is considered to be inferior.
  • the scratch resistance is good. It is thought that it sometimes whitened and became inferior in post-processability.
  • the decorative sheet 1 of the comparative examples 4 and 5 since there are too many amorphous parts in the transparent resin layer 3, that is, crystallization is not progressing and it does not become hard enough, post-processability becomes favorable. It is thought that it was inferior in scratch resistance.
  • the decorative sheet 1 of the comparative example 6 since the ratio of the random polypropylene resin of the transparent resin layer 3 is high and it is not hard enough, it is thought that it became inferior to scratch resistance.
  • the decorative sheets 1 of Comparative Examples 7 and 8 are greatly oriented in the MD direction or the TD direction, so that the scratch resistance is good, but since it becomes too hard, the post-processability is considered to be inferior. It is done. From the above evaluation results, it was revealed that the decorative sheet 1 of the present invention shown in Examples 1 to 14 is a decorative sheet 1 excellent in scratch resistance and post-processing properties.

Abstract

The purpose of the present invention is to provide: a decorative sheet that has superior scratch resistance and post-processability; and a production method for the decorative sheet. The decorative sheet (1) according to the present invention has a transparent resin layer (3) containing an olefin-based resin. A first intensity ratio which is a spectral intensity ratio between a crystalline part and a non-crystalline part of the transparent resin layer (3) as measured in the MD direction of the transparent resin layer (3) by Raman spectroscopy falls within the range of 0.9-2.0. In addition, a second intensity ratio which is a spectral intensity ratio between the crystalline part and the non-crystalline part of the transparent resin layer (3) as measured in the TD direction of the transparent resin layer (3) by Raman spectroscopy falls within the range of 0.9-1.9. Further, the sum of the first intensity ratio and the second intensity ratio falls within the range of 1.9-3.6.

Description

化粧シート及び化粧シートの製造方法Decorative sheet and method for producing the decorative sheet
 本発明は、建築物の外装や内装に用いられる建装材、建具の表面、家電品の表面材等に用いられる化粧シート及び化粧シートの製造方法に関する。 [Technical Field] The present invention relates to a decorative sheet used for a building material used for an exterior or interior of a building, a surface of a fitting, a surface material of a home appliance, and a method for manufacturing the decorative sheet.
 従来、特許文献1~5に示すように、ポリ塩化ビニル製の化粧シートに替わる化粧シートとして、オレフィン系樹脂を使用した化粧シートが数多く提案されている。これらの化粧シートは、ポリ塩化ビニルを使用しないことで、焼却時における有毒ガスの発生等を抑制することができる。しかしながら、特許文献1~5に記載の化粧シートは、一般的なポリプロピレンシートや軟質ポリプロピレンシートを使用しているため、耐傷性が悪く、ポリ塩化ビニル製の化粧シートの耐傷性に比べ、はるかに劣っているものであった。 Conventionally, as shown in Patent Documents 1 to 5, many decorative sheets using olefin-based resins have been proposed as decorative sheets that replace polyvinyl chloride decorative sheets. These decorative sheets can suppress the generation of toxic gases during incineration by not using polyvinyl chloride. However, since the decorative sheets described in Patent Documents 1 to 5 use general polypropylene sheets or soft polypropylene sheets, they have poor scratch resistance, which is far greater than the scratch resistance of polyvinyl chloride decorative sheets. It was inferior.
特開平2-128843号公報Japanese Patent Laid-Open No. 2-128843 特開平4-083664号公報Japanese Patent Laid-Open No. 4-083664 特開平6-001881号公報JP-A-6-001881 特開平6-198831号公報JP-A-6-198831 特開平9-328562号公報JP-A-9-328562 特許第3772634号公報Japanese Patent No. 3772634
 そこで、本発明者等は、これらの欠点を解消するべく、特許文献6に記載のように、耐傷性や後加工性に優れた化粧シートを提案した。しかしながら、このような化粧シートを用いた化粧板の用途の益々の拡大とともに、消費者の品質に対する意識も益々高度化していることから、化粧シートに対して、耐傷性や後加工性の更なる向上が求められている。
 本発明は、上記のような点に着目し、耐傷性と後加工性とに優れた化粧シート及び化粧シートの製造方法を提供することを目的とする。
Therefore, the present inventors have proposed a decorative sheet having excellent scratch resistance and post-processing properties as described in Patent Document 6 in order to eliminate these drawbacks. However, as the use of the decorative sheet using such a decorative sheet is further expanded, the consumer's consciousness about the quality is also becoming more and more sophisticated, so that the decorative sheet is further improved in scratch resistance and post-processability. There is a need for improvement.
This invention pays attention to the above points, and it aims at providing the manufacturing method of a decorative sheet and a decorative sheet excellent in scratch resistance and post-processability.
 上記課題を解決するため、本発明の一態様である化粧シートは、オレフィン系樹脂を含む透明樹脂層を有する化粧シートであって、透明樹脂層のMD方向におけるラマン分光法で測定される透明樹脂層の結晶部と非結晶部とのスペクトル強度比である第1強度比が0.9以上2.0以下の範囲内であり、透明樹脂層のTD方向におけるラマン分光法で測定される透明樹脂層の結晶部と非結晶部とのスペクトル強度比である第2強度比が0.9以上1.9以下の範囲内であり、第1強度比と第2強度比との合計値が1.9以上3.6以下の範囲内であることを特徴とする。 In order to solve the above problems, a decorative sheet according to one embodiment of the present invention is a decorative sheet having a transparent resin layer containing an olefin resin, and is a transparent resin measured by Raman spectroscopy in the MD direction of the transparent resin layer. A transparent resin having a first intensity ratio, which is a spectral intensity ratio between a crystal part and an amorphous part of a layer, in a range of 0.9 or more and 2.0 or less and measured by Raman spectroscopy in the TD direction of the transparent resin layer The second intensity ratio, which is the spectral intensity ratio between the crystal part and the amorphous part of the layer, is in the range of 0.9 to 1.9, and the total value of the first intensity ratio and the second intensity ratio is 1. It is in the range of 9 or more and 3.6 or less.
 本発明の一態様によれば、透明樹脂層の硬度を適切なものとすることができ、耐傷性と後加工性とに優れた化粧シートを提供することができる。 According to one embodiment of the present invention, the hardness of the transparent resin layer can be made appropriate, and a decorative sheet excellent in scratch resistance and post-processability can be provided.
本発明に係る実施形態の化粧シート及び化粧板の構成を示す断面図である。It is a sectional view showing composition of a decorative sheet and a decorative board of an embodiment concerning the present invention. ラマン分光法を用いて、ポリプロピレン樹脂の結晶部と非結晶部とのスペクトル強度比を測定した場合のスペクトルを示すグラフである。It is a graph which shows a spectrum at the time of measuring the spectral intensity ratio of the crystalline part of a polypropylene resin, and an amorphous part using Raman spectroscopy.
 次に、本発明の実施形態について図面を参照して説明する。
 ここで、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なる。また、以下に示す実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
Next, embodiments of the present invention will be described with reference to the drawings.
Here, the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Further, the embodiment described below exemplifies a configuration for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, etc. of the component as follows. It is not something specific. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
 本実施形態の化粧シート1は、図1に示すように、基材層6の一方の面に、絵柄模様層5、透明樹脂層3及び表面保護層2がこの順に積層されている。符号4は接着剤層を示す。また、基材層6の他方の面に、隠蔽層7及びプライマー層8がこの順に形成されている。なお、隠蔽層7は基材層6と絵柄模様層5との間に形成してもよいし省略してもよい。
 また、本実施形態の化粧シート1は、表面保護層2と透明樹脂層3との間に、エンボス模様3aが形成されている場合を例示している。なお、エンボス模様3aは、表面保護層2の上面に形成されていてもよい。ここで、「表面保護層2の上面」とは、本実施形態の化粧シート1における最外面を意味し、表面保護層2の透明樹脂層3側の面とは反対側の面を意味する。
As shown in FIG. 1, the decorative sheet 1 of the present embodiment has a pattern layer 5, a transparent resin layer 3, and a surface protective layer 2 laminated in this order on one surface of a base material layer 6. Reference numeral 4 denotes an adhesive layer. Moreover, the concealing layer 7 and the primer layer 8 are formed in this order on the other surface of the base material layer 6. The masking layer 7 may be formed between the base material layer 6 and the pattern layer 5 or may be omitted.
Moreover, the decorative sheet 1 of this embodiment has illustrated the case where the embossed pattern 3a is formed between the surface protective layer 2 and the transparent resin layer 3. FIG. Note that the embossed pattern 3 a may be formed on the upper surface of the surface protective layer 2. Here, “the upper surface of the surface protective layer 2” means the outermost surface of the decorative sheet 1 of the present embodiment, and means the surface of the surface protective layer 2 opposite to the surface on the transparent resin layer 3 side.
 また、上記構成の化粧シート1の層厚は、例えば、印刷作業性やコスト等を考慮して、表面保護層2は3μm以上20μm以下、透明樹脂層3は20μm以上200μm以下、接着剤層4は1μm以上20μm以下の範囲内とする。また、絵柄模様層5は3μm以上20μm以下、基材層6は20μm以上150μm以下、隠蔽層7は2μm以上20μm以下、プライマー層8は0.1μm以上20μm以下の範囲内とする。そして、化粧シート1の総厚は49.1μm以上450μm以下の範囲内とする。なお、図1においては、本実施形態の化粧シート1を基材Bに貼り付けて化粧板を構成する場合を例示している。 The layer thickness of the decorative sheet 1 having the above-described configuration is, for example, 3 μm or more and 20 μm or less for the surface protective layer 2, 20 μm or more and 200 μm or less for the transparent resin layer 3, and the adhesive layer 4 in consideration of printing workability and cost. Is in the range of 1 μm to 20 μm. The pattern layer 5 is 3 μm to 20 μm, the base layer 6 is 20 μm to 150 μm, the masking layer 7 is 2 μm to 20 μm, and the primer layer 8 is 0.1 μm to 20 μm. And the total thickness of the decorative sheet 1 shall be in the range of 49.1 micrometers or more and 450 micrometers or less. In addition, in FIG. 1, the case where the decorative sheet 1 of this embodiment is affixed on the base material B and the decorative board is comprised is illustrated.
(基材層6)
 基材層6は、紙、樹脂シート、箔等から構成される。紙としては、例えば、薄葉紙、チタン紙、樹脂含浸紙、有機もしくは無機系の不織布、合成紙を用いることができる。樹脂シートの樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブチレン、ポリスチレン、ポリカーボネート、ポリエステル、ポリアミド、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、アクリル等の合成樹脂、あるいはこれら合成樹脂の発泡体、エチレン-プロピレン共重合ゴム、エチレン-プロピレン-ジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、スチレン-イソプレン-スチレンブロック共重合ゴム、スチレン-ブタジエン-スチレンブロック共重合ゴム、ポリウレタン等のゴムを用いることができる。箔としては、例えば、アルミニウム、鉄、金、銀等の金属箔を用いることができる。
(Base material layer 6)
The base material layer 6 is comprised from paper, a resin sheet, foil, etc. As the paper, for example, thin paper, titanium paper, resin-impregnated paper, organic or inorganic nonwoven fabric, and synthetic paper can be used. Examples of the resin of the resin sheet include polyethylene, polypropylene, polybutylene, polystyrene, polycarbonate, polyester, polyamide, ethylene-vinyl acetate copolymer, polyvinyl alcohol, acrylic and other synthetic resins, foams of these synthetic resins, ethylene- Rubbers such as propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, styrene-butadiene copolymer rubber, styrene-isoprene-styrene block copolymer rubber, styrene-butadiene-styrene block copolymer rubber, and polyurethane can be used. . As foil, metal foil, such as aluminum, iron, gold | metal | money, silver, can be used, for example.
(絵柄模様層5)
 絵柄模様層5は、化粧シート1に絵柄模様を付与するための層である。絵柄模様層5の形成方法としては、生産性や絵柄の品位を考慮すると、グラビア印刷法が好ましい。絵柄模様としては、床材や壁材等の使用箇所を考慮して任意の絵柄模様を採用すればよく、木質系の絵柄であれば各種木目が用いられることが多く、木目以外にもコルクを絵柄模様とすることもできる。例えば、大理石等の石材の床をイメージしたものであれば、大理石の石目等を絵柄模様として用いることができる。また、天然材料の絵柄模様以外にそれらをモチーフとした人工的絵柄模様や幾何学模様等の人工的絵柄模様も用いることができる。
(Pattern pattern layer 5)
The pattern pattern layer 5 is a layer for applying a pattern pattern to the decorative sheet 1. As a method for forming the picture pattern layer 5, a gravure printing method is preferable in consideration of productivity and picture quality. As the design pattern, it is sufficient to adopt an arbitrary design pattern in consideration of the place of use such as flooring or wall material, and various wood grain is often used if it is a wood-based design. It can also be a pattern. For example, if it is an image of a stone floor such as marble, marble stones can be used as a pattern. In addition to the natural material pattern, an artificial pattern such as an artificial pattern or a geometric pattern using these as a motif can also be used.
 印刷インキは、特に限定されるものではなく、印刷方式に対応したインキを適宜選択できる。特に、基材層6に対する密着性や印刷適性、化粧材の耐候性等を考慮して選択することが好ましい。印刷インキには、例えば、通常のインキに含まれている顔料、染料等の着色剤、体質顔料、溶剤、バインダーを添加する。顔料としては、例えば、縮合アゾ、不溶性アゾ、キナクリドン、イソインドリン、アンスラキノン、イミダゾロン、コバルト、フタロシアニン、カーボン、酸化チタン、酸化鉄、雲母等のパール顔料を用いることができる。
 また、バインダーは、例えば、水性、溶剤系、エマルジョンタイプのいずれでもよく、硬化方法についても1液タイプ、主剤と硬化剤とからなる2液タイプ、もしくは、紫外線や電子線等によって硬化するタイプ等特に限定するものではない。なかでも最も一般的な方法は、2液タイプのもので、ウレタン系の主剤と、イソシアネートからなる硬化剤を用いる方法である。この他にも、各種金属の蒸着やスパッタリングで意匠を施すようにしてもよい。
The printing ink is not particularly limited, and an ink corresponding to the printing method can be appropriately selected. In particular, it is preferable to select in consideration of adhesion to the base material layer 6, printability, weather resistance of the decorative material, and the like. For example, colorants such as pigments and dyes, extender pigments, solvents, and binders contained in ordinary inks are added to the printing ink. As the pigment, for example, pearl pigments such as condensed azo, insoluble azo, quinacridone, isoindoline, anthraquinone, imidazolone, cobalt, phthalocyanine, carbon, titanium oxide, iron oxide, and mica can be used.
The binder may be, for example, water-based, solvent-based, or emulsion type, and the curing method is a one-component type, a two-component type composed of a main agent and a curing agent, or a type that is cured by ultraviolet rays, electron beams, or the like. There is no particular limitation. Among them, the most general method is a two-component type, which uses a urethane-based main agent and a curing agent made of isocyanate. In addition, the design may be applied by vapor deposition or sputtering of various metals.
(接着剤層4)
 接着剤層4は、基材層6及び絵柄模様層5と透明樹脂層3との接着を強固にするための層である。これにより、化粧シート1に対し、曲面や直角面に追随する曲げ加工性を付与することができる。接着剤層4は、透明であることが好ましい。接着剤層4の形成方法としては、例えば、熱ラミネート、押出ラミネート、ドライラミネートを用いることができる。接着剤層4を構成する接着剤(材料)としては、例えば、アクリル系、ポリエステル系、ポリウレタン系、エポキシ系の材料を用いることができる。特に、その凝集力を考慮すると、2液硬化タイプのものであって、イソシアネートを用いたポリオールとの反応で得られるウレタン系の材料を用いることが好ましい。なお、接着剤層4は、基材層6及び絵柄模様層5と透明樹脂層3との接着強度が十分に得られる場合には、省略してもよい。
(Adhesive layer 4)
The adhesive layer 4 is a layer for strengthening the adhesion between the base material layer 6 and the pattern layer 5 and the transparent resin layer 3. Thereby, the bending workability which follows a curved surface or a right-angled surface can be provided with respect to the decorative sheet 1. The adhesive layer 4 is preferably transparent. As a method for forming the adhesive layer 4, for example, thermal lamination, extrusion lamination, or dry lamination can be used. As the adhesive (material) constituting the adhesive layer 4, for example, acrylic, polyester, polyurethane, and epoxy materials can be used. In particular, considering the cohesive strength, it is preferable to use a urethane-based material that is a two-component curing type and is obtained by a reaction with a polyol using an isocyanate. In addition, you may abbreviate | omit the adhesive bond layer 4, when the adhesive strength of the base material layer 6, the pattern pattern layer 5, and the transparent resin layer 3 is fully obtained.
(透明樹脂層3)
 透明樹脂層3は、化粧シート1に意匠的に厚みや深みを出させるほか、化粧シート1の耐候性、耐磨耗性能を向上させるための層である。例えば、環境適合性や加工性、価格等を考慮して、透明なオレフィン系樹脂(ポリオレフィン系樹脂)を用いることができる。透明なオレフィン系樹脂としては、例えば、ポリプロピレン、ポリエチレン、ポリブテン等の他に、αオレフィン(例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセン等)を単独重合あるいは2種類以上共重合させたもの、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、エチレン・メチルメタクリレート共重合体、エチレン・エチルメタクリレート共重合体、エチレン・ブチルメタクリレート共重合体、エチレン・メチルアクリレート共重合体、エチレン・エチルアクリレート共重合体、エチレン・ブチルアクリレート共重合体等のように、エチレンまたはαオレフィンとその他のモノマーとを共重合させたものを用いることができる。
(Transparent resin layer 3)
The transparent resin layer 3 is a layer for improving the weather resistance and wear resistance of the decorative sheet 1 in addition to providing the decorative sheet 1 with a thickness and depth in a design manner. For example, a transparent olefin resin (polyolefin resin) can be used in consideration of environmental compatibility, processability, price, and the like. Examples of the transparent olefin resin include α-olefin (eg, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene) in addition to polypropylene, polyethylene, polybutene and the like. 1-decene, 1-undecene, 1-dodecene, tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene 3-ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-dodecene, 12-ethyl-1-teto Decene etc.) homopolymerized or copolymerized with two or more kinds, ethylene / vinyl acetate copolymer, ethylene / vinyl alcohol copolymer, ethylene / methyl methacrylate copolymer, ethylene / ethyl methacrylate copolymer, ethylene / vinyl methacrylate copolymer, A copolymer of ethylene or α-olefin and other monomers such as butyl methacrylate copolymer, ethylene / methyl acrylate copolymer, ethylene / ethyl acrylate copolymer, ethylene / butyl acrylate copolymer, etc. Can be used.
 特に、耐傷性を考慮した場合、オレフィン系樹脂としては、結晶性ポリプロピレン樹脂を含有するものが好ましい。特に、結晶性ポリプロピレン樹脂を、透明樹脂層3の全質量に対して、50質量%以上100質量%以下含有するものがより好ましい。これにより、結晶性ポリプロピレン樹脂の比率が高くなるため、透明樹脂層3を十分に硬くすることができ、耐傷性を向上することができる。さらに、結晶性ポリプロピレン樹脂として、アイソタクチックペンタッド分率(mmmm分率)が95%以上のプロピレン単独重合体である結晶性ポリプロピレン樹脂を用いるものがより好ましい。これにより、結晶性ポリプロピレン樹脂の立体規則性を向上でき、耐傷性や後加工性をより向上することができる。
 また、透明樹脂層3は、オレフィン系樹脂に対して、ナノ化処理された造核剤、つまり、ナノサイズの造核剤を添加してもよい。これにより、造核剤の添加によって生じる光の散乱を抑制でき、透明樹脂層3の透明性を損なうことなく、耐傷性と後加工性とをより向上することができる。特に、ナノサイズの造核剤が、ベシクルで内包された造核剤(以下、「造核剤ベシクル」とも呼ぶ)の形で添加されていることが好ましい。これにより、ナノサイズの造核剤の分散性を向上でき、造核剤の凝集を抑制して均一に分散でき、透明性をより向上できる。造核剤ベシクルは、例えば、Bangham法、エクストルージョン法、水和法、界面活性剤透析法、逆相蒸発法、凍結融解法、超臨界逆相蒸発法等で調製できる。なかでも、造核剤の分散性の更なる向上を考慮すると、特に超臨界逆相蒸発法がより好ましい。
In particular, in consideration of scratch resistance, the olefin resin preferably contains a crystalline polypropylene resin. In particular, it is more preferable that the crystalline polypropylene resin is contained in an amount of 50% by mass to 100% by mass with respect to the total mass of the transparent resin layer 3. Thereby, since the ratio of crystalline polypropylene resin becomes high, the transparent resin layer 3 can be hardened enough and scratch resistance can be improved. Furthermore, as the crystalline polypropylene resin, it is more preferable to use a crystalline polypropylene resin that is a propylene homopolymer having an isotactic pentad fraction (mmmm fraction) of 95% or more. Thereby, the stereoregularity of crystalline polypropylene resin can be improved, and scratch resistance and post-processability can be improved more.
Further, the transparent resin layer 3 may be added with a nano-sized nucleating agent, that is, a nano-sized nucleating agent, with respect to the olefin resin. Thereby, the scattering of the light which arises by addition of a nucleating agent can be suppressed, and scratch resistance and post-processability can be improved more without impairing the transparency of the transparent resin layer 3. In particular, the nano-sized nucleating agent is preferably added in the form of a nucleating agent encapsulated in vesicles (hereinafter also referred to as “nucleating agent vesicle”). Thereby, the dispersibility of the nano-sized nucleating agent can be improved, the aggregation of the nucleating agent can be suppressed and uniformly dispersed, and the transparency can be further improved. The nucleating agent vesicle can be prepared by, for example, the Bangham method, the extrusion method, the hydration method, the surfactant dialysis method, the reverse phase evaporation method, the freeze-thaw method, the supercritical reverse phase evaporation method, and the like. Among these, the supercritical reverse phase evaporation method is particularly preferable in consideration of further improvement in dispersibility of the nucleating agent.
 超臨界逆相蒸発法とは、超臨界状態または臨界点以上の温度条件下もしくは臨界点以上の圧力条件下の二酸化炭素を用いて対象物質を内包したナノサイズのベシクル(カプセル)を作製する方法である。超臨界状態の二酸化炭素とは、臨界温度(30.98℃)及び臨界圧力(7.3773±0.0030MPa)以上の超臨界状態にある二酸化炭素を意味し、臨界点以上の温度条件下もしくは臨界点以上の圧力条件下の二酸化炭素とは、臨界温度だけ、あるいは臨界圧力だけが臨界条件を超えた条件下の二酸化炭素を意味する。
 具体的には、超臨界二酸化炭素とリン脂質と内包物質としての造核剤との混合流体中に水相を注入して攪拌することで、超臨界二酸化炭素と水相とのエマルジョンが生成する。その後、減圧すると二酸化炭素が膨張・蒸発して転相が生じ、リン脂質が造核剤ナノ粒子の表面を単層膜で覆ったナノベシクルが生成する。この超臨界逆相蒸発法によれば、単層膜のベシクルを生成できるので、極めて小さいサイズのベシクルを得ることができる。
 なお、超臨界逆相蒸発法のより詳しい内容については、本発明者等が過去に提案している、特表2002-032564号公報、特開2003-119120号公報、特開2005-298407号公報及び特開2008-063274号公報に開示されている。
Supercritical reversed-phase evaporation method is a method of producing nano-sized vesicles (capsules) encapsulating target substances using carbon dioxide under supercritical conditions, temperature conditions above the critical point or pressure conditions above the critical point. It is. Carbon dioxide in a supercritical state means carbon dioxide in a supercritical state at a critical temperature (30.98 ° C.) and a critical pressure (7.3773 ± 0.0030 MPa) or higher, under temperature conditions above the critical point or Carbon dioxide under pressure conditions above the critical point means carbon dioxide under conditions where only the critical temperature or only the critical pressure exceeds the critical condition.
Specifically, an emulsion of supercritical carbon dioxide and aqueous phase is produced by injecting and stirring the aqueous phase into a mixed fluid of supercritical carbon dioxide, phospholipid, and nucleating agent as an inclusion substance. . Thereafter, when the pressure is reduced, carbon dioxide expands and evaporates to cause phase inversion, and nanovesicles in which the surface of the nucleating agent nanoparticles are covered with a monolayer film are generated. According to this supercritical reverse phase evaporation method, since a vesicle of a single layer film can be generated, a very small size vesicle can be obtained.
For more detailed contents of the supercritical reverse phase evaporation method, Japanese Patent Laid-Open No. 2002-032564, Japanese Patent Laid-Open No. 2003-119120, Japanese Patent Laid-Open No. 2005-298407 have been proposed by the present inventors in the past. And Japanese Patent Application Laid-Open No. 2008-063274.
 ナノサイズの造核剤を内包した造核剤ベシクルの平均粒径は、可視光波長(400nm以上750nm以下)の1/2以下とすることが好ましい。光の散乱の抑制を考慮すると、特に200nm以上375nm以下とすることがより好ましい。なお造核剤ベシクルは、樹脂組成物中ではベシクルの外膜が破れて造核剤が露出している状態でも存在している。 The average particle diameter of the nucleating agent vesicle encapsulating the nano-sized nucleating agent is preferably ½ or less of the visible light wavelength (400 nm or more and 750 nm or less). Considering suppression of light scattering, it is particularly preferable that the thickness be 200 nm or more and 375 nm or less. The nucleating agent vesicle is also present in the resin composition even when the outer membrane of the vesicle is broken and the nucleating agent is exposed.
 造核剤としては、樹脂が結晶化する際に結晶化の起点となる物質であれば特に限定されるものではない。例えば、リン酸エステル金属塩、安息香酸金属塩、ピメリン酸金属塩、ロジン金属塩、ベンジリデンソルビトール、キナクリドン、シアニンブルー及びタルクを用いることができる。特に、ナノ化処理の効果を最大限に得るべく、非溶融型で良好な透明性が期待できるリン酸エステル金属塩、安息香酸金属塩、ピメリン酸金属塩、ロジン金属塩を用いることが好ましいが、ナノ化処理によって材料自体の透明化が可能な場合には、例えば、有色のキナクリドン、シアニンブルー、タルク等も用いることができる。また、非溶融型の造核剤に対し、溶融型のベンジリデンソルビトールを適宜混合して用いてもよい。
 なお、上記造核剤は、透明樹脂層3を形成する結晶性ポリプロピレン樹脂100質量部に対して0.01質量部以上1.0質量部以下の範囲内で含有されていることが好ましい。造核剤の含有量が上記範囲内であれば、透明樹脂層3の透明性、耐傷性、後加工性がさらに高まる。
The nucleating agent is not particularly limited as long as it is a substance that becomes a starting point of crystallization when the resin is crystallized. For example, a phosphoric acid ester metal salt, a benzoic acid metal salt, a pimelic acid metal salt, a rosin metal salt, benzylidene sorbitol, quinacridone, cyanine blue and talc can be used. In particular, in order to obtain the maximum effect of nano-treatment, it is preferable to use a phosphoric acid ester metal salt, a benzoic acid metal salt, a pimelic acid metal salt, and a rosin metal salt that can be expected to be non-molten and have good transparency. In the case where the material itself can be made transparent by nano-treatment, for example, colored quinacridone, cyanine blue, talc and the like can be used. In addition, molten benzylidene sorbitol may be appropriately mixed with the non-melting nucleating agent.
In addition, it is preferable that the said nucleating agent is contained within 0.01 mass part or more and 1.0 mass part or less with respect to 100 mass parts of crystalline polypropylene resin which forms the transparent resin layer 3. FIG. When the content of the nucleating agent is within the above range, the transparency, scratch resistance and post-processability of the transparent resin layer 3 are further enhanced.
 また、透明樹脂層3には、必要に応じて既存の熱安定化剤、紫外線吸収剤、光安定化剤、ブロッキング防止剤、触媒捕捉剤、着色剤、光散乱剤及び艶調整剤等の各種添加剤を添加してもよい。透明樹脂層3の積層方法は、特に限定されるものではなく、例えば、熱圧を応用した方法、押出ラミネート法及びドライラミネート法等を適宜選択することができる。また、エンボス模様3aを施す場合には、例えば、一旦各種方法でラミネートしたシートに、後から熱圧によりエンボス模様3aを入れる方法や、冷却ロールに凹凸模様を設け、押出ラミネートと同時にエンボス模様3aを施す方法を用いることができる。エンボス加工方法は、特に限定されるものではなく、公知の枚葉式または輪転式のエンボス機を適宜選択することができる。凹凸形状としては、例えば、木目板導管溝、石板表面凹凸(花崗岩劈開面等)、布表面テクスチャア、梨地、砂目、ヘアライン、万線条溝等を用いることができる。 In addition, the transparent resin layer 3 has various existing heat stabilizers, ultraviolet absorbers, light stabilizers, anti-blocking agents, catalyst scavengers, colorants, light scattering agents, and gloss adjusting agents as required. Additives may be added. The method for laminating the transparent resin layer 3 is not particularly limited, and for example, a method applying hot pressure, an extrusion laminating method, a dry laminating method, or the like can be appropriately selected. In addition, when embossing pattern 3a is applied, for example, a method in which embossed pattern 3a is later laminated by hot pressure on a sheet once laminated by various methods, or an uneven pattern is provided on a cooling roll, and embossed pattern 3a is provided simultaneously with extrusion lamination. Can be used. The embossing method is not particularly limited, and a known single-wafer or rotary embossing machine can be appropriately selected. Examples of the concavo-convex shape may include a wood grain plate conduit groove, a stone plate surface unevenness (such as granite cleaved surface), a cloth surface texture, a satin texture, a grain texture, a hairline, and a striated groove.
 ここで、透明樹脂層3のMD方向、つまり、透明樹脂層3を形成する際の流れ方向におけるラマン分光法で測定される透明樹脂層3の結晶部と非晶部のスペクトル強度比(以下、「第1強度比」とも呼ぶ)は0.9以上2.0以下の範囲内とする。結晶部と非晶部のスペクトル強度比としては、結晶部のスペクトル強度/非晶部のスペクトル強度を採用する。
 また、透明樹脂層3のTD方向、つまり、MD方向とは同一平面の垂直方向におけるラマン分光法で測定される透明樹脂層3の結晶部と非晶部のスペクトル強度比(以下、「第2強度比」とも呼ぶ)は0.9以上1.9以下の範囲内とする。そして、第1強度比と第2強度比との合計値を1.9以上3.6以下の範囲内とする。これにより、透明樹脂層3の結晶部と非結晶部とのそれぞれを適正な分量とし、透明樹脂層3の結晶部が多くなりすぎずまた少なくなりすぎず、適度な硬さを有するため、耐傷性及び後加工性の両方を向上できる。なお、合計値が1.9未満である場合には、非晶部が多すぎる、つまり十分に硬くないために、耐傷性が悪くなってしまう。また、合計値が3.6より大きい場合には、結晶部が多すぎる、つまり硬くなり過ぎてしまうために、後加工性が悪くなってしまう。
Here, the spectral intensity ratio between the crystal part and the amorphous part of the transparent resin layer 3 measured by Raman spectroscopy in the MD direction of the transparent resin layer 3, that is, the flow direction when forming the transparent resin layer 3 (hereinafter, (Also referred to as “first intensity ratio”) is in the range of 0.9 to 2.0. As the spectral intensity ratio between the crystal part and the amorphous part, the spectral intensity of the crystal part / the spectral intensity of the amorphous part is adopted.
Further, the spectral intensity ratio (hereinafter referred to as “second”) of the crystal part and the amorphous part of the transparent resin layer 3 measured by Raman spectroscopy in the TD direction of the transparent resin layer 3, that is, the perpendicular direction of the same plane as the MD direction. The intensity ratio is also in the range of 0.9 to 1.9. The total value of the first intensity ratio and the second intensity ratio is set in the range of 1.9 to 3.6. Thereby, each of the crystal part and the non-crystal part of the transparent resin layer 3 is made an appropriate amount, and the crystal part of the transparent resin layer 3 is not too much and not too little, and has an appropriate hardness. Both the property and post-workability can be improved. In addition, when the total value is less than 1.9, since there are too many amorphous parts, that is, it is not sufficiently hard, scratch resistance is deteriorated. On the other hand, when the total value is larger than 3.6, the number of crystal parts is too much, that is, the film becomes too hard, and the post-workability is deteriorated.
 なお、透明樹脂層3の樹脂として結晶性ポリプロピレン樹脂を用いた場合、ラマン分光法によるスペクトル測定において、図2に示すように、結晶部のピークが809cm-1に観測され、非晶部のメインピークが842cm-1に観測される。また、839cm-1に非晶部の小ピークが観測されることもある。それゆえ、MD方向及びTD方向のそれぞれで結晶部のピーク強度I809と非晶部のピーク強度(I839+I842)とを測定し、それら測定結果の比率I809/(I839+I842)から、第1強度比と第2強度比とを得ることができる。なお、上記「ピーク強度」が本願の「スペクトル強度」に相当する。
 また、ポリプロピレン樹脂の結晶化は、製膜時の温度履歴に大きく依存するため、製膜時の温度履歴を制御することで、スペクトル強度比を上記範囲内に収めることができる。
 スペクトル強度比を上記範囲内とするための温度履歴について、Tダイによる押出製膜法に基づく具体例を挙げる。Tダイより230℃で溶融したポリプロピレン樹脂を吐出する場合、Tダイ直下の冷却ロールの温度と溶融樹脂との接触による樹脂温度の冷却プロファイル勾配によって結晶化の度合いを制御することができる。冷却プロファイルは、冷却ロールと溶融樹脂の温度差が大きいほど急勾配となり、結晶化度は小さくなる。この場合、スペクトル強度比を上記範囲内とするための冷却ロール温度設定として、45℃~80℃が好適となる。
When a crystalline polypropylene resin is used as the resin of the transparent resin layer 3, the peak of the crystal part is observed at 809 cm −1 in the spectrum measurement by Raman spectroscopy, as shown in FIG. A peak is observed at 842 cm −1 . In addition, a small peak of an amorphous part may be observed at 839 cm −1 . Therefore, the peak intensity I 809 of the crystal part and the peak intensity (I 839 + I 842 ) of the amorphous part are measured in each of the MD direction and the TD direction, and the ratio I 809 / (I 839 + I 842 ) of the measurement results. Thus, the first intensity ratio and the second intensity ratio can be obtained. The “peak intensity” corresponds to the “spectrum intensity” of the present application.
Further, since the crystallization of polypropylene resin greatly depends on the temperature history at the time of film formation, the spectral intensity ratio can be kept within the above range by controlling the temperature history at the time of film formation.
Specific examples of the temperature history for setting the spectral intensity ratio within the above range are based on an extrusion film forming method using a T-die. When the polypropylene resin melted at 230 ° C. is discharged from the T die, the degree of crystallization can be controlled by the cooling profile gradient of the temperature of the cooling roll immediately below the T die and the resin temperature due to contact with the molten resin. The cooling profile becomes steeper as the temperature difference between the cooling roll and the molten resin increases, and the degree of crystallinity decreases. In this case, 45 ° C. to 80 ° C. is suitable as the cooling roll temperature setting for setting the spectral intensity ratio within the above range.
 本発明に基づく本実施形態の化粧シートは、結晶性ポリプロピレン樹脂等のオレフィン系樹脂を主成分とする透明樹脂層3を備え、その透明樹脂層3は、ナノサイズの造核剤を含有している。特に、その透明樹脂層3がベシクルに内包されたナノサイズの造核剤(造核剤ベシクル)を含有する点に一つの特徴がある。 The decorative sheet according to the present embodiment based on the present invention includes a transparent resin layer 3 mainly composed of an olefin resin such as a crystalline polypropylene resin, and the transparent resin layer 3 contains a nano-sized nucleating agent. Yes. In particular, the transparent resin layer 3 has one feature in that it contains a nano-sized nucleating agent (nucleating agent vesicle) encapsulated in a vesicle.
 上述のように、本実施形態の化粧シートの特徴(発明特定事項)の一つは、「透明樹脂層は、ナノサイズの造核剤を含んでいる」ことにある。そして、その造核剤をベシクルに内包させた状態で樹脂組成物(オレフィン系樹脂)に添加することで、樹脂材料中、すなわち透明樹脂層中への造核剤の分散性が飛躍的に向上するという効果を奏するが、その特徴を、完成された化粧シートの状態における物の構造や特性にて直接特定することは、状況により困難な場合も想定され、非実際的であるといえる。その理由は次の通りである。ベシクルの状態で添加された造核剤は、高い分散性を有して分散された状態になっていて、作製した化粧シートの状態においても、造核剤は透明樹脂層に高分散されている。しかしながら、透明樹脂層を構成する樹脂組成物に造核剤をベシクルの状態で添加して透明樹脂層を作製した後の、化粧シートの作製工程においては、通常、積層体への圧縮処理や硬化処理などの種々の処理が施されるが、このような処理によって、造核剤を内包するベシクルの外膜が破砕や化学反応して、造核剤が外膜で包含(***)されていない可能性も高く、その外膜が破砕や化学反応している状態が化粧シートの処理工程によってばらつくためである。そして、この造核剤が外膜で包含されていないなどの状況は、物性自体を数値範囲で特定することが困難であり、また破砕された外膜の構成材料が、ベシクルの外膜なのか造核剤とは別に添加された材料なのか判定が困難な場合も想定される。このように、本願発明は、従来に比して造核剤が高分散で配合されている点で相違があるものの、造核剤を内包するベシクルの状態で添加されたためなのかどうかが、化粧シートの状態において、その構造や特性を測定に基づき解析した数値範囲で特定することが非実際的である場合も想定される。 As described above, one of the features (invention specific matter) of the decorative sheet of the present embodiment is that “the transparent resin layer contains a nano-sized nucleating agent”. And by adding the nucleating agent to the resin composition (olefin-based resin) in a state where the nucleating agent is encapsulated in the vesicle, the dispersibility of the nucleating agent in the resin material, that is, in the transparent resin layer is dramatically improved. However, it is impractical to specify the characteristics directly with the structure and characteristics of the object in the state of the finished decorative sheet, which may be difficult depending on the situation. The reason is as follows. The nucleating agent added in the state of vesicle is in a dispersed state having high dispersibility, and the nucleating agent is highly dispersed in the transparent resin layer even in the state of the produced decorative sheet. . However, after the nucleating agent is added to the resin composition constituting the transparent resin layer in the form of a vesicle to produce the transparent resin layer, the decorative sheet is usually produced by a compression treatment or curing to the laminate. Various treatments such as treatment are performed, but by such treatment, the outer membrane of the vesicle encapsulating the nucleating agent is crushed or chemically reacted, and the nucleating agent is not included (encapsulated) in the outer membrane. This is because the possibility that the outer membrane is crushed or chemically reacted varies depending on the process of the decorative sheet. In situations where this nucleating agent is not included in the outer membrane, it is difficult to specify the physical properties themselves in the numerical range, and whether the crushed outer membrane constituent material is the outer membrane of the vesicle. It may be difficult to determine whether the material is added separately from the nucleating agent. Thus, although the present invention is different from the conventional one in that the nucleating agent is blended in a highly dispersed state, whether or not it is because it is added in the state of a vesicle encapsulating the nucleating agent is a cosmetic. In the state of the sheet, it may be impractical to specify the structure and characteristics within the numerical range analyzed based on the measurement.
(表面保護層2)
 表面保護層2は、化粧シート1の表面の保護や艶の調整のための層である。表面保護層2の材料としては、例えば、ポリウレタン系、アクリルシリコン系、フッ素系、エポキシ系、ビニル系、ポリエステル系、メラミン系、アミノアルキッド系、尿素系の材料を用いることができる。材料の形態は、水性、エマルジョン、溶剤系のいずれであってもよい。また、硬化方法としては、例えば、一液タイプ、二液タイプ、紫外線硬化法等を用いることができる。
(Surface protective layer 2)
The surface protective layer 2 is a layer for protecting the surface of the decorative sheet 1 and adjusting the gloss. As the material of the surface protective layer 2, for example, polyurethane, acrylic silicon, fluorine, epoxy, vinyl, polyester, melamine, aminoalkyd, and urea materials can be used. The form of the material may be any of aqueous, emulsion and solvent type. As a curing method, for example, a one-component type, a two-component type, an ultraviolet curing method, or the like can be used.
 特に、表面保護層2の主成分としては、イソシアネートを用いたウレタン系の樹脂が、作業性、価格、樹脂自体の凝集力等の観点から好適である。イソシアネートとしては、例えば、トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、ヘキサメチレンジイソシアネート(HMDI)、ジフェニルメタンジイソシアネート(MDI)、リジンジイソシアネート(LDI)、イソホロンジイソシアネート(IPDI)、メチルヘキサンジイソシアネート(HTDI)、メチルシクロヘキサノンジイソシアネート(HXDI)、トリメチルヘキサメチレンジイソシアネート(TMDI)を用いることができる。耐候性を考慮すると、直鎖状の分子構造を有するヘキサメチレンジイソシアネート(HMDI)が好適である。また、表面硬度の向上を考慮すると、紫外線や電子線等の活性エネルギー線で硬化する複数種類の樹脂を用いることが好ましい。なお、これらの樹脂は相互に組み合わせて用いられる。例えば、熱硬化型と光硬化型とのハイブリッド型とすることで、表面硬度の向上、硬化収縮の抑制及び密着性の向上を図ることができる。 In particular, as the main component of the surface protective layer 2, a urethane-based resin using isocyanate is preferable from the viewpoints of workability, cost, cohesion of the resin itself, and the like. Examples of the isocyanate include tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), hexamethylene diisocyanate (HMDI), diphenylmethane diisocyanate (MDI), lysine diisocyanate (LDI), isophorone diisocyanate (IPDI), methylhexane diisocyanate (HTDI). ), Methylcyclohexanone diisocyanate (HXDI), trimethylhexamethylene diisocyanate (TMDI) can be used. In consideration of weather resistance, hexamethylene diisocyanate (HMDI) having a linear molecular structure is preferable. In consideration of the improvement of the surface hardness, it is preferable to use a plurality of types of resins that are cured by active energy rays such as ultraviolet rays and electron beams. These resins are used in combination with each other. For example, by adopting a hybrid type of a thermosetting type and a photocurable type, it is possible to improve surface hardness, suppress curing shrinkage, and improve adhesion.
(隠蔽層7)
 隠蔽層7は、隠蔽性を保たせるための層である。例えば、絵柄模様層5と同様に印刷によって形成される。インキに含ませる顔料としては、不透明な顔料、酸化チタン、酸化鉄等を使用することが好ましい。また、隠蔽性を上げるために、例えば、金、銀、銅、アルミ等の金属を添加してもよい。一般的には、フレーク状のアルミを添加することが多い。なお、隠蔽層7は、基材層6が不透明で隠蔽性を有している場合には、省略することができる。
(Hidden layer 7)
The concealment layer 7 is a layer for maintaining concealability. For example, it is formed by printing in the same manner as the picture pattern layer 5. As the pigment to be included in the ink, it is preferable to use an opaque pigment, titanium oxide, iron oxide or the like. Moreover, in order to improve the concealing property, for example, a metal such as gold, silver, copper, and aluminum may be added. In general, flaky aluminum is often added. The masking layer 7 can be omitted when the base material layer 6 is opaque and has masking properties.
(プライマー層8)
 プライマー層8は、基材Bとの密着性を向上させるための層である。例えば、基材Bが木質系基材である場合には、プライマー層8を構成する樹脂として、エステル系樹脂、ウレタン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル-酢酸ビニル共重合体、ポリビニルブチラール系樹脂、ニトロセルロース系樹脂を用いることができる。これらの樹脂は、単独ないし混合して接着組成物とし、ロールコート法やグラビア印刷法等の適宜の塗布手段を用いることで、プライマー層8を形成することができる。樹脂を混合してなる接着組成物を用いる場合、アクリル系樹脂とウレタン系樹脂との共重合体とイソシアネートとからなる樹脂(ウレタン-アクリレート系樹脂)を用いるのが好ましい。
(Primer layer 8)
The primer layer 8 is a layer for improving adhesion with the base material B. For example, when the base material B is a woody base material, the resin constituting the primer layer 8 is an ester resin, a urethane resin, an acrylic resin, a polycarbonate resin, a vinyl chloride-vinyl acetate copolymer, Polyvinyl butyral resin and nitrocellulose resin can be used. These resins can be used alone or mixed to form an adhesive composition, and the primer layer 8 can be formed by using an appropriate application means such as a roll coating method or a gravure printing method. In the case of using an adhesive composition formed by mixing a resin, it is preferable to use a resin (urethane-acrylate resin) comprising a copolymer of an acrylic resin and a urethane resin and an isocyanate.
(本実施形態の効果)
(1)このように、本実施形態の化粧シート1は、オレフィン系樹脂を含む透明樹脂層3を有する。そして、透明樹脂層3のMD方向におけるラマン分光法で測定される透明樹脂層3の結晶部と非結晶部とのスペクトル強度比である第1強度比が0.9以上2.0以下の範囲内である。また、透明樹脂層3のTD方向におけるラマン分光法で測定される透明樹脂層3の結晶部と非結晶部とのスペクトル強度比である第2強度比が0.9以上1.9以下の範囲内である。さらに、第1強度比と第2強度比との合計値が1.9以上3.6以下の範囲内である。これにより、耐傷性と後加工性とに優れた化粧シート1を提供できる。
(Effect of this embodiment)
(1) Thus, the decorative sheet 1 of this embodiment has the transparent resin layer 3 containing an olefin resin. And the 1st intensity ratio which is the spectral intensity ratio of the crystal part of the transparent resin layer 3 of the transparent resin layer 3 measured by the Raman spectroscopy in MD direction of the transparent resin layer 3, and an amorphous part is 0.9 or more and 2.0 or less range Is within. The second intensity ratio, which is the spectral intensity ratio between the crystal part and the amorphous part of the transparent resin layer 3 measured by Raman spectroscopy in the TD direction of the transparent resin layer 3, is in the range of 0.9 to 1.9. Is within. Furthermore, the total value of the first intensity ratio and the second intensity ratio is in the range of 1.9 to 3.6. Thereby, the decorative sheet 1 excellent in scratch resistance and post-processability can be provided.
(2)また、本実施形態の化粧シート1では、透明樹脂層3は、結晶性ポリプロピレン樹脂を50質量%以上100質量%以下の範囲内で含有するため、結晶性ポリプロピレン樹脂の比率を高くし、透明樹脂層3を十分に硬くすることができるため、耐傷性を向上させることができる。
(3)また、本実施形態の化粧シート1では、結晶性ポリプロピレン樹脂を、アイソタクチックペンタッド分率が95%以上である結晶性ポリプロピレン樹脂としたため、結晶性ポリプロピレン樹脂の立体規則性を向上でき、耐傷性や後加工性をより向上させることができる。
(2) Moreover, in the decorative sheet 1 of this embodiment, since the transparent resin layer 3 contains crystalline polypropylene resin in the range of 50 mass% or more and 100 mass% or less, the ratio of crystalline polypropylene resin is made high. Since the transparent resin layer 3 can be sufficiently hardened, scratch resistance can be improved.
(3) Moreover, in the decorative sheet 1 of this embodiment, since the crystalline polypropylene resin is a crystalline polypropylene resin having an isotactic pentad fraction of 95% or more, the stereoregularity of the crystalline polypropylene resin is improved. The scratch resistance and post-workability can be further improved.
(4)また、本実施形態の化粧シート1では、透明樹脂層3が、ナノサイズの造核剤を含むようにしたため、造核剤の添加によって生じる光の散乱を抑制でき、透明樹脂層3の透明性を損なうことなく、耐傷性と後加工性とをより向上させることができる。
(5)また、本実施形態の化粧シート1では、透明樹脂層3を、オレフィン系樹脂にナノサイズの造核剤を添加して形成しているため、造核剤の添加によって生じる光の散乱を抑制でき、透明樹脂層3の透明性を損なうことなく、耐傷性と後加工性とをさらに向上させることができる。
(4) Moreover, in the decorative sheet 1 of this embodiment, since the transparent resin layer 3 was made to contain a nanosized nucleating agent, the scattering of the light which arises by addition of a nucleating agent can be suppressed, and the transparent resin layer 3 Scratch resistance and post-processability can be further improved without impairing the transparency of the film.
(5) Moreover, in the decorative sheet 1 of this embodiment, since the transparent resin layer 3 is formed by adding a nano-sized nucleating agent to an olefin resin, light scattering caused by the addition of the nucleating agent is performed. Scratch resistance and post-processability can be further improved without impairing the transparency of the transparent resin layer 3.
(6)また、本実施形態の化粧シート1では、ナノサイズの造核剤が、ベシクルに内包されているため、ナノサイズの造核剤の分散性を向上でき、透明樹脂層3を構成する樹脂中において造核剤の凝集を抑制して均一に分散でき、透明性をより向上させることができる。
(7)また、本実施形態の化粧シート1では、超臨界逆相蒸発法によって、ナノサイズの造核剤をベシクルに内包させているため、造核剤の分散性がより適切に向上する。
(6) Moreover, in the decorative sheet 1 of this embodiment, since the nano-sized nucleating agent is included in the vesicle, the dispersibility of the nano-sized nucleating agent can be improved, and the transparent resin layer 3 is configured. In the resin, aggregation of the nucleating agent can be suppressed and uniformly dispersed, and transparency can be further improved.
(7) Further, in the decorative sheet 1 of the present embodiment, the nano-sized nucleating agent is encapsulated in the vesicle by the supercritical reverse phase evaporation method, so that the dispersibility of the nucleating agent is more appropriately improved.
(8)また、本実施形態の化粧シート1では、透明樹脂層3が、オレフィン系樹脂100質量部に対して、ナノサイズの造核剤を0.01質量部以上1.0質量部以下の範囲内で含有しているため、耐傷性や後加工性をさらに向上させることができる。
(9)また、本実施形態の化粧シート1の製造方法では、透明樹脂層3を、オレフィン系樹脂にナノサイズの造核剤を添加して形成するため、造核剤の添加によって生じる光の散乱を抑制でき、透明樹脂層3の透明性を損なうことなく、耐傷性と後加工性とをより向上させることができる。
(8) Moreover, in the decorative sheet 1 of this embodiment, the transparent resin layer 3 is 0.01 mass part or more and 1.0 mass part or less of nanosize nucleating agent with respect to 100 mass parts of olefin resin. Since it contains within the range, scratch resistance and post-processability can be further improved.
(9) Moreover, in the manufacturing method of the decorative sheet 1 of this embodiment, since the transparent resin layer 3 is formed by adding a nano-sized nucleating agent to an olefin-based resin, light generated by the addition of the nucleating agent is formed. Scattering can be suppressed, and scratch resistance and post-workability can be further improved without impairing the transparency of the transparent resin layer 3.
(10)また、本実施形態の化粧シート1の製造方法では、オレフィン系樹脂にナノサイズの造核剤をベシクルに内包させた状態で添加するため、ナノサイズの造核剤の分散性を向上でき、透明樹脂層3を構成する樹脂中において造核剤の凝集を抑制して均一に分散でき、透明性をより向上させることができる。
(11)また、本実施形態の化粧シート1の製造方法では、超臨界逆相蒸発法によって、ナノサイズの造核剤をベシクル化するため、造核剤の分散性をより適切に向上させることができる。
(10) Moreover, in the manufacturing method of the decorative sheet 1 of this embodiment, since the nano-sized nucleating agent is added to the olefin resin in a state in which the vesicle is encapsulated, the dispersibility of the nano-sized nucleating agent is improved. It is possible to suppress the aggregation of the nucleating agent in the resin constituting the transparent resin layer 3 and uniformly disperse it, and the transparency can be further improved.
(11) Moreover, in the manufacturing method of the decorative sheet 1 of the present embodiment, the nano-sized nucleating agent is vesicled by the supercritical reverse phase evaporation method, so that the dispersibility of the nucleating agent is more appropriately improved. Can do.
[実施例]
 次に、本発明の実施例及び比較例について説明する。
 なお、以下の化粧シート1の層構成は、上記した実施形態の層構成と同様とする。
(実施例1)
 実施例1では、アイソタクチックペンタッド分率が97.8%、MFR(メルトフローレート)が15g/10min(230℃)、分子量分布MWD(Mw/Mn)が2.3の結晶性ポリプロピレン樹脂(結晶性ホモポリプロピレン樹脂)100質量%からなる樹脂に対して、ヒンダードフェノール系酸化防止剤(イルガノックス1010:BASF社製)を500PPMと、ベンゾトリアゾール系紫外線吸収剤(チヌビン328:BASF社製)を2000PPMと、ヒンダードアミン系光安定化剤(キマソーブ944:BASF社製)を2000PPMとを添加し、溶融押出機によって溶融・押出を行なうことで、透明樹脂層3を製膜した。透明樹脂層3(透明樹脂シート)の厚さは、80μmとした。
[Example]
Next, examples and comparative examples of the present invention will be described.
In addition, the layer structure of the following decorative sheets 1 is the same as the layer structure of the above-described embodiment.
Example 1
In Example 1, a crystalline polypropylene resin having an isotactic pentad fraction of 97.8%, an MFR (melt flow rate) of 15 g / 10 min (230 ° C.), and a molecular weight distribution MWD (Mw / Mn) of 2.3 (Crystalline homopolypropylene resin) Hindered phenol antioxidant (Irganox 1010: manufactured by BASF) 500PPM and benzotriazole ultraviolet absorber (Tinuvin 328: manufactured by BASF) with respect to 100% by mass of resin. ) 2000PPM and hindered amine light stabilizer (Kimasorb 944: manufactured by BASF) 2000PPM were added, and melted and extruded by a melt extruder to form a transparent resin layer 3. The thickness of the transparent resin layer 3 (transparent resin sheet) was 80 μm.
 製膜した透明樹脂層3(透明樹脂シート)の両面には、コロナ処理を施し、透明樹脂シート表面の濡れ張力を40dyn/cm以上とした。
 また、隠蔽性のある70μmのポリエチレンシートを基材層6として用いた。基材層6の一方の面には、2液型ウレタンインキ(V180;東洋インキ製造(株)製)に、その2液型インキのバインダー樹脂分の全質量に対して、ヒンダードアミン系光安定化剤(キマソーブ944;BASF社製)を0.5質量%添加して設けられたインキを用いて絵柄印刷を施して絵柄模様層5を形成した。絵柄模様層5の印刷方法としては、グラビア印刷方式を用いた。基材層6の他方の面には、隠蔽層7及びプライマー層8を形成した。
Both surfaces of the formed transparent resin layer 3 (transparent resin sheet) were subjected to corona treatment, and the wet tension of the transparent resin sheet surface was set to 40 dyn / cm or more.
Further, a 70 μm polyethylene sheet having a concealing property was used as the base material layer 6. On one surface of the base material layer 6, a two-component urethane ink (V180; manufactured by Toyo Ink Manufacturing Co., Ltd.) is used to stabilize the hindered amine based on the total mass of the binder resin of the two-component ink. The pattern layer 5 was formed by performing pattern printing using an ink provided by adding 0.5% by mass of an agent (Kimasorb 944; manufactured by BASF). A gravure printing method was used as a printing method for the pattern layer 5. A concealing layer 7 and a primer layer 8 were formed on the other surface of the base material layer 6.
 続いて、絵柄模様層5の上面に、ドライラミネート用接着剤(タケラックA540;三井化学(株)製;塗布量2g/m)からなる接着剤層4を介して、透明樹脂層3を貼り合わせた。透明樹脂層3の貼り合わせ方法としては、ドライラミネート法を用いた。続いて、貼り合わせた透明樹脂層3の上面に、エンボス模様3aを施した後、2液硬化型ウレタントップコート(W184;DICグラフィックス社製)を塗布厚6g/mで塗布して表面保護層2を形成した。これにより、総厚170μmの化粧シート1を形成した。ここで、「絵柄模様層5の上面」とは、絵柄模様層5の基材層6側の面とは反対側の面を意味する。また、「透明樹脂層3の上面」とは、透明樹脂層3の接着剤層4側の面とは反対側の面を意味する。 Subsequently, the transparent resin layer 3 is pasted on the upper surface of the pattern layer 5 via the adhesive layer 4 made of an adhesive for dry lamination (Takelac A540; manufactured by Mitsui Chemicals, Inc .; coating amount 2 g / m 2 ). Combined. As a method for bonding the transparent resin layer 3, a dry lamination method was used. Subsequently, the embossed pattern 3a is applied to the upper surface of the bonded transparent resin layer 3, and then a two-component curable urethane topcoat (W184; manufactured by DIC Graphics) is applied at a coating thickness of 6 g / m 2. A protective layer 2 was formed. Thereby, the decorative sheet 1 having a total thickness of 170 μm was formed. Here, the “upper surface of the pattern layer 5” means a surface opposite to the surface of the pattern layer 5 on the base material layer 6 side. The “upper surface of the transparent resin layer 3” means a surface opposite to the surface of the transparent resin layer 3 on the adhesive layer 4 side.
 実施例1では、表1に示すように、透明樹脂層3のMD方向におけるラマン分光法で測定される透明樹脂層3の結晶部と非結晶部とのスペクトル強度比(第1強度比)を2.0とした。また、TD方向におけるラマン分光法で測定される透明樹脂層3の結晶部と非結晶部とのスペクトル強度比(第2強度比)を1.5とした。また、第1強度比と第2強度比との合計値和を3.5とした。なお、透明樹脂層3への造核剤の添加は行わなかった。 In Example 1, as shown in Table 1, the spectral intensity ratio (first intensity ratio) between the crystal part and the amorphous part of the transparent resin layer 3 measured by the Raman spectroscopy in the MD direction of the transparent resin layer 3 is expressed as follows. 2.0. The spectral intensity ratio (second intensity ratio) between the crystal part and the amorphous part of the transparent resin layer 3 measured by Raman spectroscopy in the TD direction was set to 1.5. The total sum of the first intensity ratio and the second intensity ratio was 3.5. Note that no nucleating agent was added to the transparent resin layer 3.
 ここで、実施例1では、透明樹脂層3のMD方向におけるスペクトル強度比(第1強度比)と、TD方向におけるスペクトル強度比(第2強度比)とを、ラマン分光法を用いて、以下の測定機器、測定条件及びサンプル設置方法により測定した。
 測定機器:HORIBA社製 LabRAM ARAMIS
 測定条件:レーザー波長532nm、測定時間10秒、積算回数5回、顕微鏡倍率100倍
 サンプル設置方法:レーザーの出射方向に対し、透明樹脂層3のMD方向やTD方向が一致するようにサンプルを設置
Here, in Example 1, the spectral intensity ratio (first intensity ratio) in the MD direction of the transparent resin layer 3 and the spectral intensity ratio (second intensity ratio) in the TD direction are expressed as follows using Raman spectroscopy. The measurement equipment, measurement conditions, and sample setting method were used.
Measuring instrument: LabRAM ARAMIS manufactured by HORIBA
Measurement conditions: Laser wavelength 532 nm, measurement time 10 seconds, number of integrations 5 times, microscope magnification 100 times Sample installation method: Sample is installed so that the MD direction and TD direction of the transparent resin layer 3 coincide with the laser emission direction.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 実施例2では、第1強度比を1.9、第2強度比を1.3、これらの強度比の和を3.2とした。それ以外は実施例1と同様の構成とした。
(実施例3)
 実施例3では、第1強度比を1.9、第2強度比を1.0、これらの強度比の和を2.9とした。それ以外は実施例1と同様の構成とした。
(Example 2)
In Example 2, the first intensity ratio was 1.9, the second intensity ratio was 1.3, and the sum of these intensity ratios was 3.2. Otherwise, the configuration was the same as in Example 1.
(Example 3)
In Example 3, the first intensity ratio was 1.9, the second intensity ratio was 1.0, and the sum of these intensity ratios was 2.9. Otherwise, the configuration was the same as in Example 1.
(実施例4)
 実施例4では、第1強度比を1.4、第2強度比を1.8、これらの強度比の和を3.2とした。それ以外は実施例1と同様の構成とした。
(実施例5)
 実施例5では、第1強度比を1.4、第2強度比を1.4、これらの強度比の和を2.8とした。それ以外は実施例1と同様の構成とした。
Example 4
In Example 4, the first intensity ratio was 1.4, the second intensity ratio was 1.8, and the sum of these intensity ratios was 3.2. Otherwise, the configuration was the same as in Example 1.
(Example 5)
In Example 5, the first intensity ratio was 1.4, the second intensity ratio was 1.4, and the sum of these intensity ratios was 2.8. Otherwise, the configuration was the same as in Example 1.
(実施例6)
 実施例6では、第1強度比を1.4、第2強度比を1.0、これらの強度比の和を2.4とした。それ以外は実施例1と同様の構成とした。
(実施例7)
 実施例7では、第1強度比を1.0、第2強度比を1.4、これらの強度比の和を2.4とした。それ以外は実施例1と同様の構成とした。
(Example 6)
In Example 6, the first intensity ratio was 1.4, the second intensity ratio was 1.0, and the sum of these intensity ratios was 2.4. Otherwise, the configuration was the same as in Example 1.
(Example 7)
In Example 7, the first intensity ratio was 1.0, the second intensity ratio was 1.4, and the sum of these intensity ratios was 2.4. Otherwise, the configuration was the same as in Example 1.
(実施例8)
 実施例8では、第1強度比を1.0、第2強度比を1.0、これらの強度比の和を2.0とした。それ以外は実施例1と同様の構成とした。
(実施例9)
 実施例9では、第1強度比を1.9、第2強度比を1.3、これらの強度比の和を3.2とした。また、未処理の造核剤、つまり、ナノ化処理とベシクル化とのいずれも行われていない造核剤を含有している。それ以外は実施例1と同様の構成とした。
(Example 8)
In Example 8, the first intensity ratio was 1.0, the second intensity ratio was 1.0, and the sum of these intensity ratios was 2.0. Otherwise, the configuration was the same as in Example 1.
Example 9
In Example 9, the first intensity ratio was 1.9, the second intensity ratio was 1.3, and the sum of these intensity ratios was 3.2. Further, it contains an untreated nucleating agent, that is, a nucleating agent that has not been subjected to either nano-treatment or vesicle formation. Otherwise, the configuration was the same as in Example 1.
(実施例10)
 実施例10では、透明樹脂層3は、透明樹脂層3の全質量に対して、結晶性ポリプロピレン樹脂を50質量%、ランダムポリプロピレン樹脂を50質量%含有するようにした。それ以外は実施例8と同様の構成とした。
(実施例11)
 実施例11では、透明樹脂層3は、透明樹脂層3の全質量に対して、結晶性ポリプロピレン樹脂を90質量%、ランダムポリプロピレン樹脂を10質量%含有するようにした。また、結晶性ポリプロピレン樹脂に、ナノサイズの造核剤を含有するようにした。それ以外は実施例2と同様の構成とした。
(Example 10)
In Example 10, the transparent resin layer 3 contained 50% by mass of the crystalline polypropylene resin and 50% by mass of the random polypropylene resin with respect to the total mass of the transparent resin layer 3. Otherwise, the configuration was the same as in Example 8.
(Example 11)
In Example 11, the transparent resin layer 3 contained 90% by mass of crystalline polypropylene resin and 10% by mass of random polypropylene resin with respect to the total mass of the transparent resin layer 3. The crystalline polypropylene resin contains a nano-sized nucleating agent. Otherwise, the configuration was the same as in Example 2.
(実施例12)
 実施例12では、ナノサイズの造核剤を、超臨界逆相蒸発法によってベシクル化して、ベシクルに内包させた。それ以外は実施例11と同様の構成とした。
 ここで、超臨界逆相蒸発法によるベシクル化では、まず、メタノール100質量部、造核剤としてのリン酸エステル金属塩系造核剤(アデカスタブNA-11、ADEKA社製)82質量部、ベシクルの外膜を構成する物質としてのホスファチジルコリン5質量部を60℃に保たれた高圧ステンレス容器に入れて密閉し、圧力が20MPaとなるように二酸化炭素を注入して超臨界状態とした後、激しく攪拌混合しながらイオン交換水を100質量部注入した。容器内の温度及び圧力を超臨界状態に保持した状態で15分間攪拌後、二酸化炭素を排出して大気圧に戻すことによってリン脂質からなる単層膜の外膜を具備するベシクルに造核剤を内包した、ベシクル化した造核剤(造核剤リポソーム)を得た。
Example 12
In Example 12, the nano-sized nucleating agent was vesicled by the supercritical reverse phase evaporation method and included in the vesicle. Otherwise, the configuration was the same as in Example 11.
Here, in the vesicle formation by the supercritical reverse phase evaporation method, first, 100 parts by mass of methanol, 82 parts by mass of a phosphate ester metal salt nucleating agent (Adeka Stub NA-11, manufactured by ADEKA) as a nucleating agent, After putting 5 parts by mass of phosphatidylcholine as a substance constituting the outer membrane in a high-pressure stainless steel container kept at 60 ° C. and injecting carbon dioxide so that the pressure becomes 20 MPa to make a supercritical state, While stirring and mixing, 100 parts by mass of ion-exchanged water was injected. A nucleating agent for a vesicle having a monolayer outer membrane made of phospholipid by stirring for 15 minutes while maintaining the temperature and pressure in a supercritical state and then discharging carbon dioxide to return to atmospheric pressure. A vesicle-containing nucleating agent (nucleating agent liposome) was obtained.
 そして、アイソタクチックペンタッド分率が97.8%、MFR(メルトフローレート)が15g/10min(230℃)、分子量分布MWD(Mw/Mn)が2.3の結晶性ポリプロピレン樹脂(結晶性ホモポリプロピレン樹脂)90質量%とランダムポリプロピレン樹脂10質量%とからなる樹脂に対して、ヒンダードフェノール系酸化防止剤(イルガノックス1010:BASF社製)500PPMと、ベンゾトリアゾール系紫外線吸収剤(チヌビン328:BASF社製)2000PPMと、ヒンダードアミン系光安定化剤(キマソーブ944:BASF社製)2000PPMと、上記したベシクル化した造核剤1000PPMとを添加した樹脂を、溶融押出機によって溶融・押出を行なうことで、透明樹脂層3を製膜した。透明樹脂層3(透明樹脂シート)の厚さは80μmとした。 A crystalline polypropylene resin (crystallinity) having an isotactic pentad fraction of 97.8%, an MFR (melt flow rate) of 15 g / 10 min (230 ° C.), and a molecular weight distribution MWD (Mw / Mn) of 2.3. (Homopolypropylene resin) 90% by mass of resin and 10% by mass of random polypropylene resin, hindered phenol antioxidant (Irganox 1010: manufactured by BASF) 500PPM and benzotriazole UV absorber (Tinuvin 328) : BASF) 2000PPM, hindered amine light stabilizer (Kimasorb 944: manufactured by BASF) 2000PPM, and the above-mentioned vesicularized nucleating agent 1000PPM are melted and extruded using a melt extruder. Thus, the transparent resin layer 3 was formed. The thickness of the transparent resin layer 3 (transparent resin sheet) was 80 μm.
(実施例13)
 実施例13では、第1強度比を1.8、第2強度比を1.1、これらの強度比の和を2.9とした。また、透明樹脂層3は、透明樹脂層3の全質量に対して、結晶性ポリプロピレン樹脂を40質量%(<50質量%)、ランダムポリプロピレン樹脂を60質量%含有するようにした。それ以外は実施例1と同様の構成とした。
(実施例14)
 実施例14では、第1強度比を1.3、第2強度比を1.2、これらの強度比の和を2.5とした。また、透明樹脂層3は、アイソタクチックペンタッド分率が92%(<95%)になるようにした。それ以外は実施例1と同様の構成とした。
(Example 13)
In Example 13, the first intensity ratio was 1.8, the second intensity ratio was 1.1, and the sum of these intensity ratios was 2.9. Further, the transparent resin layer 3 contained 40% by mass (<50% by mass) of the crystalline polypropylene resin and 60% by mass of the random polypropylene resin with respect to the total mass of the transparent resin layer 3. Otherwise, the configuration was the same as in Example 1.
(Example 14)
In Example 14, the first intensity ratio was 1.3, the second intensity ratio was 1.2, and the sum of these intensity ratios was 2.5. In addition, the transparent resin layer 3 had an isotactic pentad fraction of 92% (<95%). Otherwise, the configuration was the same as in Example 1.
(比較例1)
 比較例1では、第1強度比を2.1、第2強度比を2.0、これらの強度比の和を4.1(>3.6)とした。それ以外は実施例1と同様の構成とした。
(比較例2)
 比較例2では、第1強度比を2.1、第2強度比を1.7、これらの強度比の和を3.8(>3.6)とした。それ以外は実施例1と同様の構成とした。
(Comparative Example 1)
In Comparative Example 1, the first intensity ratio was 2.1, the second intensity ratio was 2.0, and the sum of these intensity ratios was 4.1 (> 3.6). Otherwise, the configuration was the same as in Example 1.
(Comparative Example 2)
In Comparative Example 2, the first intensity ratio was 2.1, the second intensity ratio was 1.7, and the sum of these intensity ratios was 3.8 (> 3.6). Otherwise, the configuration was the same as in Example 1.
(比較例3)
 比較例3では、第1強度比を1.9、第2強度比を1.9、これらの強度比の和を3.8(>3.6)とした。それ以外は実施例1と同様の構成とした。
(比較例4)
 比較例4では、第1強度比を0.9、第2強度比を0.9、これらの強度比の和を1.8(<1.9)とした。それ以外は実施例1と同様の構成とした。
(比較例5)
 比較例5では、第1強度比を0.9、第2強度比を0.8、これらの強度比の和を1.7(<1.9)とした。それ以外は実施例1と同様の構成とした。
(Comparative Example 3)
In Comparative Example 3, the first intensity ratio was 1.9, the second intensity ratio was 1.9, and the sum of these intensity ratios was 3.8 (> 3.6). Otherwise, the configuration was the same as in Example 1.
(Comparative Example 4)
In Comparative Example 4, the first intensity ratio was 0.9, the second intensity ratio was 0.9, and the sum of these intensity ratios was 1.8 (<1.9). Otherwise, the configuration was the same as in Example 1.
(Comparative Example 5)
In Comparative Example 5, the first intensity ratio was 0.9, the second intensity ratio was 0.8, and the sum of these intensity ratios was 1.7 (<1.9). Otherwise, the configuration was the same as in Example 1.
(比較例6)
 比較例6では、第1強度比を0.8、第2強度比を0.7、これらの強度比の和を1.5(<1.9)とした。また、透明樹脂層3は、透明樹脂層3の全質量に対して、結晶性ポリプロピレン樹脂を40質量%(<50質量%)、ランダムポリプロピレン樹脂を60質量%含有するようにした。それ以外は実施例1と同様の構成とした。
(Comparative Example 6)
In Comparative Example 6, the first intensity ratio was 0.8, the second intensity ratio was 0.7, and the sum of these intensity ratios was 1.5 (<1.9). Further, the transparent resin layer 3 contained 40% by mass (<50% by mass) of the crystalline polypropylene resin and 60% by mass of the random polypropylene resin with respect to the total mass of the transparent resin layer 3. Otherwise, the configuration was the same as in Example 1.
(比較例7)
 比較例7では、第1強度比を1.2、第2強度比を2.3、これらの強度比の和を3.5とした。それ以外は実施例1と同様の構成とした。
(比較例8)
 比較例8では、第1強度比を2.4、第2強度比を1.1、これらの強度比の和を3.5とした。それ以外は実施例1と同様の構成とした。
(Comparative Example 7)
In Comparative Example 7, the first intensity ratio was 1.2, the second intensity ratio was 2.3, and the sum of these intensity ratios was 3.5. Otherwise, the configuration was the same as in Example 1.
(Comparative Example 8)
In Comparative Example 8, the first intensity ratio was 2.4, the second intensity ratio was 1.1, and the sum of these intensity ratios was 3.5. Otherwise, the configuration was the same as in Example 1.
<評価>
 実施例1~14及び比較例1~8で得られた化粧シート1を、ウレタン系の接着剤を用いて木質系の基材Bに貼り合わせた後、耐傷性と後加工性との評価を行った。
 各評価試験の試験方法を簡単に説明する。
<Evaluation>
After the decorative sheets 1 obtained in Examples 1 to 14 and Comparative Examples 1 to 8 were bonded to a wooden base material B using a urethane-based adhesive, evaluation of scratch resistance and post-processability was performed. went.
The test method of each evaluation test will be briefly described.
(耐傷性)
 耐傷性は、JIS-K5600に準拠し、鉛筆硬度試験を用いて評価した。そして、透明樹脂層3の表面に凹みが付かない最高硬度がHB以上の場合を「◎」、2B以上の場合を「○」、3B以上の場合を「△」、3B未満の場合を「×」とした。なお、本耐傷性試験における合格基準は、3B以上である。
(Scratch resistance)
The scratch resistance was evaluated using a pencil hardness test in accordance with JIS-K5600. When the maximum hardness of the transparent resin layer 3 with no dent is HB or more, “◎”, when it is 2B or more, “◯”, when it is 3B or more, “Δ”, when it is less than 3B, “×” " In addition, the acceptance criteria in this scratch resistance test is 3B or more.
(後加工性)
 後加工性は、V溝曲げ加工適性試験を用いて評価した。具体的には、まず、基材Bを構成する中質繊維板(MDF)の一方の面に対して、上記の方法で作製した各化粧シート1をウレタン系の接着剤を用いて貼り付け、基材Bの他方の面に対して、反対側の化粧シート1にキズが付かないようにV型の溝を基材Bと化粧シート1とを貼り合わせている境界まで入れる。次に、化粧シート1の面が山折りとなるように基材Bを当該V型の溝に沿って90度まで曲げ、化粧シート1の表面の折れ曲がった部分に白化や亀裂等が生じていないかを光学顕微鏡を用いて観察し、後加工性の優劣の評価を行った。そして、白化・亀裂等が認められなかった場合を「◎」、白化・亀裂等が認められたが容認できる場合を「○」、化粧シートとして容認できない白化・亀裂等が認められた場合を「×」とした。
(Post-processability)
Post-workability was evaluated using a V-groove bending workability test. Specifically, first, each decorative sheet 1 produced by the above method is attached to one surface of the medium fiberboard (MDF) constituting the base material B using a urethane-based adhesive, With respect to the other surface of the base material B, a V-shaped groove is inserted to the boundary where the base material B and the decorative sheet 1 are bonded together so that the decorative sheet 1 on the opposite side is not scratched. Next, the base material B is bent to 90 degrees along the V-shaped groove so that the surface of the decorative sheet 1 is mountain-folded, and no whitening or cracks occur in the bent portion of the surface of the decorative sheet 1. This was observed using an optical microscope, and the superiority or inferiority of post-processability was evaluated. When no whitening / cracking is observed, `` ◎ '', when whitening / cracking is recognized but acceptable, `` ○ '', when unacceptable whitening / cracking is recognized as a decorative sheet, × ”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~14の化粧シート1では、耐傷性と後加工性とにおいて良好な結果「◎」、「○」、「△」が得られた。これに対して、比較例1~8の化粧シート1では、耐傷性と後加工性とのいずれかが劣るもの「×」となった。
 これは、実施例1~14の化粧シート1については、第1強度比を0.9以上2.0以下の範囲内、第2強度比を0.9以上1.9以下の範囲内、第1強度比と第2強度比との合計値を1.9以上3.6以下の範囲内とすることで、透明樹脂層3の結晶部と非結晶部とを適正量とし、透明樹脂層3が適切な硬度となっているため、耐傷性及び後加工性が良好になったと考えられる。
 なお、実施例13の化粧シート1については、透明樹脂層3のランダムポリプロピレン樹脂の比率が高く、十分に硬くなっていないため、ランダムポリプロピレン樹脂の比率が高い場合に比べて耐傷性が劣るものとなったと考えられる。
 また、実施例14の化粧シート1については、透明樹脂層3のアイソタクチックペンタッド分率が低く、十分に硬くなっていないため、アイソタクチックペンタッド分率が高い場合に比べて耐傷性が劣るものになったと考えられる。
As shown in Table 2, in the decorative sheets 1 of Examples 1 to 14, good results “◎”, “◯”, and “Δ” were obtained in terms of scratch resistance and post-processability. On the other hand, in the decorative sheets 1 of Comparative Examples 1 to 8, either “scratch resistance” or “post-processability” was inferior, and “x” was obtained.
For the decorative sheets 1 of Examples 1 to 14, the first strength ratio is in the range of 0.9 to 2.0, the second strength ratio is in the range of 0.9 to 1.9, By setting the total value of the 1 intensity ratio and the 2nd intensity ratio in the range of 1.9 or more and 3.6 or less, the crystal part and the non-crystal part of the transparent resin layer 3 are set to appropriate amounts, and the transparent resin layer 3 Is considered to have good scratch resistance and post-workability.
In addition, about the decorative sheet 1 of Example 13, since the ratio of the random polypropylene resin of the transparent resin layer 3 is high and not sufficiently hard, the scratch resistance is inferior compared with the case where the ratio of the random polypropylene resin is high. It is thought that it became.
Moreover, about the decorative sheet 1 of Example 14, since the isotactic pentad fraction of the transparent resin layer 3 is low and not sufficiently hard, the scratch resistance is higher than when the isotactic pentad fraction is high. Is considered to be inferior.
 また、比較例1~3の化粧シート1については、透明樹脂層3の結晶部が多すぎる、つまり、結晶化が進みすぎて、硬くなったために、耐傷性は良好となるが、V溝加工時に白化し、後加工性に劣るものになったと考えられる。また、比較例4、5の化粧シート1については、透明樹脂層3に非結晶部が多すぎる、つまり結晶化が進んでおらず、十分に硬くならないために、後加工性は良好となるが、耐傷性に劣るものになったと考えられる。 Further, in the decorative sheets 1 of Comparative Examples 1 to 3, since the transparent resin layer 3 has too many crystal parts, that is, the crystallization progressed too much and became hard, the scratch resistance is good. It is thought that it sometimes whitened and became inferior in post-processability. Moreover, about the decorative sheet 1 of the comparative examples 4 and 5, since there are too many amorphous parts in the transparent resin layer 3, that is, crystallization is not progressing and it does not become hard enough, post-processability becomes favorable. It is thought that it was inferior in scratch resistance.
 また、比較例6の化粧シート1については、透明樹脂層3のランダムポリプロピレン樹脂の比率が高く、十分に硬くなっていないため、耐傷性に劣るものになったと考えられる。
 また、比較例7、8の化粧シート1については、MD方向又はTD方向に大きく配向しているため、耐傷性は良好となるが、硬くなり過ぎたため、後加工性に劣るものになったと考えられる。
 以上の評価結果から、実施例1~14に示す本発明の化粧シート1は、耐傷性と後加工性とに優れた化粧シート1であることが明らかとなった。
Moreover, about the decorative sheet 1 of the comparative example 6, since the ratio of the random polypropylene resin of the transparent resin layer 3 is high and it is not hard enough, it is thought that it became inferior to scratch resistance.
In addition, the decorative sheets 1 of Comparative Examples 7 and 8 are greatly oriented in the MD direction or the TD direction, so that the scratch resistance is good, but since it becomes too hard, the post-processability is considered to be inferior. It is done.
From the above evaluation results, it was revealed that the decorative sheet 1 of the present invention shown in Examples 1 to 14 is a decorative sheet 1 excellent in scratch resistance and post-processing properties.
1 化粧シート
2 表面保護層
3 透明樹脂層
4 接着剤層
5 絵柄模様層
6 基材層
7 隠蔽層
8 プライマー層
B 基材
DESCRIPTION OF SYMBOLS 1 Decorative sheet 2 Surface protective layer 3 Transparent resin layer 4 Adhesive layer 5 Picture pattern layer 6 Base material layer 7 Concealing layer 8 Primer layer B Base material

Claims (11)

  1.  オレフィン系樹脂を含む透明樹脂層を有する化粧シートであって、
     前記透明樹脂層のMD方向におけるラマン分光法で測定される前記透明樹脂層の結晶部と非結晶部とのスペクトル強度比である第1強度比が0.9以上2.0以下の範囲内であり、
     前記透明樹脂層のTD方向におけるラマン分光法で測定される前記透明樹脂層の結晶部と非結晶部とのスペクトル強度比である第2強度比が0.9以上1.9以下の範囲内であり、
     前記第1強度比と前記第2強度比との合計値が1.9以上3.6以下の範囲内であることを特徴とする化粧シート。
    A decorative sheet having a transparent resin layer containing an olefin resin,
    A first intensity ratio, which is a spectral intensity ratio between a crystal part and an amorphous part of the transparent resin layer measured by Raman spectroscopy in the MD direction of the transparent resin layer, is in a range of 0.9 to 2.0. Yes,
    The second intensity ratio, which is the spectral intensity ratio between the crystal part and the non-crystal part of the transparent resin layer measured by Raman spectroscopy in the TD direction of the transparent resin layer, is in the range of 0.9 or more and 1.9 or less. Yes,
    A decorative sheet, wherein a total value of the first intensity ratio and the second intensity ratio is in a range of 1.9 to 3.6.
  2.  前記透明樹脂層は、前記透明樹脂層の全質量に対して、結晶性ポリプロピレン樹脂を50質量%以上100質量%以下の範囲内で含有することを特徴とする請求項1に記載の化粧シート。 The decorative sheet according to claim 1, wherein the transparent resin layer contains a crystalline polypropylene resin in a range of 50% by mass to 100% by mass with respect to the total mass of the transparent resin layer.
  3.  前記結晶性ポリプロピレン樹脂は、アイソタクチックペンタッド分率が95%以上である結晶性ポリプロピレン樹脂であることを特徴とする請求項2に記載の化粧シート。 The decorative sheet according to claim 2, wherein the crystalline polypropylene resin is a crystalline polypropylene resin having an isotactic pentad fraction of 95% or more.
  4.  前記透明樹脂層は、ナノサイズの造核剤を含んでいることを特徴とする請求項1から3のいずれか1項に記載の化粧シート。 The decorative sheet according to any one of claims 1 to 3, wherein the transparent resin layer contains a nano-sized nucleating agent.
  5.  前記透明樹脂層を、前記オレフィン系樹脂にナノサイズの造核剤を添加して形成することを特徴とする請求項1から3のいずれか1項に記載の化粧シート。 The decorative sheet according to any one of claims 1 to 3, wherein the transparent resin layer is formed by adding a nano-sized nucleating agent to the olefin resin.
  6.  前記ナノサイズの造核剤は、ベシクルに内包されていることを特徴とする請求項4または5に記載の化粧シート。 The decorative sheet according to claim 4 or 5, wherein the nano-sized nucleating agent is encapsulated in a vesicle.
  7.  超臨界逆相蒸発法によって、前記ナノサイズの造核剤をベシクルに内包させたことを特徴とする請求項6に記載の化粧シート。 The decorative sheet according to claim 6, wherein the nano-sized nucleating agent is encapsulated in a vesicle by a supercritical reverse phase evaporation method.
  8.  前記透明樹脂層は、前記オレフィン系樹脂100質量部に対して、前記ナノサイズの造核剤を0.01質量部以上1.0質量部以下の範囲内で含有することを特徴とする請求項4から7のいずれか1項に記載の化粧シート。 The said transparent resin layer contains the said nano-sized nucleating agent within the range of 0.01 mass part or more and 1.0 mass part or less with respect to 100 mass parts of the said olefin resin. The decorative sheet according to any one of 4 to 7.
  9.  請求項1から8のいずれか1項に記載の化粧シートの製造方法であって、
     前記透明樹脂層を、前記オレフィン系樹脂にナノサイズの造核剤を添加して形成することを特徴とする化粧シートの製造方法。
    A method for producing a decorative sheet according to any one of claims 1 to 8,
    A method for producing a decorative sheet, wherein the transparent resin layer is formed by adding a nano-sized nucleating agent to the olefin resin.
  10.  前記オレフィン系樹脂に前記ナノサイズの造核剤をベシクルに内包させた状態で添加することを特徴とする請求項9に記載の化粧シートの製造方法。 The method for producing a decorative sheet according to claim 9, wherein the nano-sized nucleating agent is added to the olefin-based resin in a state in which the vesicle is encapsulated.
  11.  超臨界逆相蒸発法によって、前記ナノサイズの造核剤をベシクル化することを特徴とする請求項9または10に記載の化粧シートの製造方法。 The method for producing a decorative sheet according to claim 9 or 10, wherein the nano-sized nucleating agent is vesicled by a supercritical reverse phase evaporation method.
PCT/JP2017/020431 2016-06-01 2017-06-01 Decorative sheet and production method for decorative sheet WO2017209240A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-110296 2016-06-01
JP2016110296 2016-06-01

Publications (1)

Publication Number Publication Date
WO2017209240A1 true WO2017209240A1 (en) 2017-12-07

Family

ID=60478731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020431 WO2017209240A1 (en) 2016-06-01 2017-06-01 Decorative sheet and production method for decorative sheet

Country Status (2)

Country Link
JP (1) JP6963273B2 (en)
WO (1) WO2017209240A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218587A (en) * 2016-06-01 2017-12-14 凸版印刷株式会社 Decorative sheet and manufacturing method of decorative sheet
US11660836B2 (en) * 2018-04-25 2023-05-30 Toppan Printing Co., Ltd. Decorative sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068496A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Laminated film
JP2016068495A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Laminated film
WO2016076360A1 (en) * 2014-11-11 2016-05-19 株式会社トッパン・コスモ Decorated sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074203A (en) * 2009-09-30 2011-04-14 Toyobo Co Ltd Polypropylene-based resin film for protecting surface and surface-protecting film
JP6963273B2 (en) * 2016-06-01 2021-11-05 凸版印刷株式会社 Decorative sheet and manufacturing method of decorative sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068496A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Laminated film
JP2016068495A (en) * 2014-09-30 2016-05-09 大日本印刷株式会社 Laminated film
WO2016076360A1 (en) * 2014-11-11 2016-05-19 株式会社トッパン・コスモ Decorated sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218587A (en) * 2016-06-01 2017-12-14 凸版印刷株式会社 Decorative sheet and manufacturing method of decorative sheet
US11660836B2 (en) * 2018-04-25 2023-05-30 Toppan Printing Co., Ltd. Decorative sheet

Also Published As

Publication number Publication date
JP2017218587A (en) 2017-12-14
JP6963273B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
JP6650706B2 (en) Decorative sheet and method for manufacturing decorative sheet
JP2017047687A (en) Decorative sheet
JP2016155233A (en) Decorative sheet
JPWO2018117268A1 (en) Laminated stretched film, base material for decorative sheet, decorative sheet and decorative plate
WO2018235782A1 (en) Decorative sheet
WO2017209240A1 (en) Decorative sheet and production method for decorative sheet
JP7322381B2 (en) Decorative sheet and its manufacturing method
JP2023161006A (en) Laminated stretched film, base material for decorative sheet, decorative sheet and decorative plate
JP6959606B2 (en) Decorative sheet and manufacturing method of decorative sheet
JP7331626B2 (en) Decorative sheet and its manufacturing method
JP7006164B2 (en) Decorative sheet and manufacturing method of decorative sheet
JP6622561B2 (en) Decorative sheet and method for producing the decorative sheet
JP6876289B2 (en) Decorative sheet and manufacturing method of decorative sheet
JP2016175363A (en) Decorative sheet
US11446906B2 (en) Decorative sheets
JP7279532B2 (en) makeup sheet
JP7298137B2 (en) Decorative sheet and its manufacturing method
WO2020129983A1 (en) Decorative sheet
JP2023158003A (en) Laminated oriented film, base material for decorative sheet, decorative sheet and decorative plate
JP2020100115A (en) Decorative sheet
JP2018039248A (en) Decorative sheet and method for producing decorative sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806790

Country of ref document: EP

Kind code of ref document: A1