WO2017206670A1 - 混合接入网络中的流量分发方法和装置 - Google Patents

混合接入网络中的流量分发方法和装置 Download PDF

Info

Publication number
WO2017206670A1
WO2017206670A1 PCT/CN2017/083495 CN2017083495W WO2017206670A1 WO 2017206670 A1 WO2017206670 A1 WO 2017206670A1 CN 2017083495 W CN2017083495 W CN 2017083495W WO 2017206670 A1 WO2017206670 A1 WO 2017206670A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel
state
threshold
throughput
delay
Prior art date
Application number
PCT/CN2017/083495
Other languages
English (en)
French (fr)
Inventor
张东霞
朱夏
罗江华
程剑
张民贵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17805615.6A priority Critical patent/EP3457642A1/en
Publication of WO2017206670A1 publication Critical patent/WO2017206670A1/zh
Priority to US16/206,619 priority patent/US11245627B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/12Network monitoring probes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/11Identifying congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/122Avoiding congestion; Recovering from congestion by diverting traffic away from congested entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/50Overload detection or protection within a single switching element
    • H04L49/501Overload detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2212/00Encapsulation of packets

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method and apparatus for distributing traffic in a hybrid access network.
  • a Hybrid Access Aggregation Node is a router node deployed to cooperate with Hybrid Access (HA).
  • the HAAP is used to implement the User Subscriber (Digital Subscriber Line, hereinafter referred to as "DSL") and Long Term Evolution (LTE) for each Home Gateway (HG).
  • DSL Digital Subscriber Line
  • LTE Long Term Evolution
  • the original DSL link bandwidth is reserved, and the bandwidth of the network is expanded by using LTE resources.
  • the user establishes a binding bonding tunnel with the HAAP through the HG dialing, that is, the LTE tunnel and the DSL tunnel, and thus the user implements network access with three paths: an LTE tunnel, a DSL tunnel, and a DSL link.
  • the service of the user can be divided into two types: the ordinary Internet access service and the high-priority service.
  • the service traffic of the high-priority service can only be transmitted through the DSL link. Therefore, in addition to the DSL chain occupied by the high-priority service. Outside the bandwidth of the road, the DSL tunnel will take up the remaining bandwidth.
  • the service traffic of the ordinary Internet access service is preferentially transmitted through the DSL tunnel, and is further shunted to the LTE tunnel when the DSL bandwidth is insufficient.
  • the dual tunnel binding is automatically enabled by default and the service traffic of the user is offloaded packet by packet.
  • the user's service traffic is forwarded on a per-packet basis. Therefore, a sequence-preserving mechanism is introduced to overcome the out-of-order of packets on the peer device due to the delay difference between the LTE tunnel and the DSL tunnel. By adding a sequence number to each packet, the peer device uses the sequence number after receiving the packet to restore the packet out-of-order caused by packet-by-packet offload.
  • the peer device will always wait after receiving the forwarded message, or directly send the mess after exceeding the sequence delay.
  • the throughput of the system will fluctuate back and forth, resulting in the bandwidth of the dual tunnel being lower than the bandwidth of the single tunnel.
  • the embodiments of the present invention provide a method and device for distributing traffic in a hybrid access network, which helps to improve bandwidth and improve user experience.
  • a method for distributing traffic in a hybrid access network including:
  • the probe traffic is transmitted through the second tunnel, where the probe traffic is the traffic used by the user to obtain the state of the second tunnel.
  • the HAAP acquires a state of the first tunnel and a state of the second tunnel;
  • the first tunnel and the second tunnel are used to transmit the traffic of the user.
  • the HAAP may only use the first tunnel to transmit the traffic of the user, and monitor whether the first tunnel is congested in real time, and the first tunnel occurs.
  • the probe traffic is transmitted through the second tunnel, and the probe traffic is used to obtain the state of the second tunnel in the detection phase.
  • the HAAP uses the second tunnel to transmit the probe traffic
  • the HAAP acquires the current state of the first tunnel and the state of the second tunnel, after the state of the first tunnel and the state of the second tunnel satisfy the offload condition.
  • the HAAP will use the first tunnel and the second tunnel to mix and transmit the traffic of the user.
  • the detected traffic may be a preset ratio of user traffic or a set value, and the specific value of the detected traffic is not exemplified herein.
  • the second tunnel is used to transmit the probe traffic
  • the first tunnel is transmitted using a usual mechanism.
  • the HAAP acquires the state of the first tunnel and the state of the second tunnel. It should be understood that the state of the tunnel is different when transmitting traffic of different bandwidths, and the foregoing state specifically refers to the detection of the second tunnel. The current state of the first tunnel and the second tunnel when traffic is flowing.
  • the state of the first tunnel may include a throughput of the first tunnel and/or a delay of the first tunnel; a state of the second tunnel may include a throughput of the second tunnel and/or the first The delay of the second tunnel.
  • the judging may be performed according to at least one of the following two judging methods, that is, one of the two judging methods The judging method is determined according to the throughput of the first tunnel and the throughput of the second tunnel in the current state, and another judging method is: performing the delay of the first tunnel and the delay of the second tunnel according to the current state. Judge.
  • the method further includes: after the HAAP determines that the state of the first tunnel and the state of the second tunnel do not satisfy the offload condition, determining the state of the first tunnel and Whether the state of the second tunnel meets the backoff condition; after the HAAP determines that the state of the first tunnel and the state of the second tunnel satisfy the backoff condition, the HAAP determines whether the first tunnel is congested.
  • the HAAP may further determine whether the state of the first tunnel and the state of the second tunnel satisfy a backoff condition.
  • the back-off condition is used to indicate whether to allow back-off to the situation where only the traffic of the first tunnel transmission user is used and the first tunnel is monitored in real time. If the state of the first tunnel and the state of the second tunnel meet the backoff condition, the HAAP may only use the first tunnel to transmit the traffic of the user and detect whether the first tunnel is congested in real time.
  • the HAAP may only use the first tunnel to transmit the traffic of the user, and does not detect whether the first tunnel is congested within a certain length of time. .
  • the method further includes: determining, by the HAAP, a state of the first tunnel and a state of the second tunnel not satisfying the back After the condition is returned, the HAAP uses the first tunnel to transmit the traffic of the user, and does not perform congestion judgment on the first tunnel within a preset duration.
  • the timer may be started, and after the timer expires, the switch only uses the first tunnel. Transfer user Traffic and detect in real time whether the first tunnel is congested.
  • the HAAP transmits the probe traffic through the second tunnel, if it is determined that the state of the first tunnel and the state of the second tunnel in the current state do not satisfy the offload condition, the traffic of the user is not offloaded to the second.
  • the tunnel only the traffic of the user is transmitted by using the first tunnel, which can avoid the situation that the overall bandwidth of the traffic using the dual tunnel is lower than the bandwidth of the traffic transmitted by the single tunnel, thereby improving the user experience.
  • the method before the hybrid access aggregation node HAAP determines that the first tunnel is congested when transmitting traffic of the user, the method further The HAAP determines whether the first tunnel is congested according to the link quality parameter of the first tunnel and the first threshold.
  • the HAAP may set a detection period, a detection times, and a congestion threshold, and perform a preset number of congestion detections in the detection period. If the number of congestions exceeds a congestion threshold, the HAAP may determine The first tunnel is congested.
  • the HAAP determines that the first tunnel is congested when transmitting the traffic of the user, including: if the link of the first tunnel If the quality parameter is greater than the first threshold, the HAAP determines that the first tunnel is congested.
  • the HAAP determines that the first tunnel does not experience congestion.
  • the link quality parameter of the first tunnel is a packet loss ratio of the first tunnel, and the first threshold value a threshold corresponding to the packet loss rate;
  • the link quality parameter of the first tunnel is the throughput of the first tunnel, and the first threshold is a threshold corresponding to the throughput;
  • the link quality parameter of the first tunnel includes a packet loss rate of the first tunnel and a throughput of the first tunnel, where the first threshold value includes a first sub-threshold value and a second sub-threshold value, where The first sub-threshold is a threshold corresponding to the packet loss rate, and the second sub-threshold is a threshold corresponding to the throughput.
  • the state of the second tunnel includes a throughput of the second tunnel
  • the state of the first tunnel includes the first The throughput of the tunnel
  • the HAAP determines whether the state of the first tunnel and the state of the second tunnel meet the offload condition according to the state of the first tunnel and the state of the second tunnel, including:
  • the HAAP determines whether the sum of the throughput of the first tunnel and the throughput of the second tunnel is greater than a second threshold, the second threshold being the throughput of the first tunnel and the throughput of the second tunnel The threshold corresponding to the sum of the quantities.
  • the HAAP allocates a certain proportion of traffic to the second tunnel, and the remaining traffic is still transmitted according to the usual split mode, first flowing through the first tunnel, and the bandwidth in the first tunnel is insufficient.
  • the HAAP first forces the traffic of 1M to be transmitted through the second tunnel to enter the detection phase.
  • the HAAP obtains the state when the first tunnel transmits 5M traffic and the state when the second tunnel transmits 1M traffic.
  • the HAAP may transmit the 4M traffic in the 10M traffic through the second tunnel according to a preset policy. Therefore, if the link quality of the second tunnel is good enough, the sum of the throughput of the first tunnel and the throughput of the second tunnel can be maintained at 10M. If the link quality of the second tunnel is relatively poor, after the second tunnel is introduced for transmission, the user traffic will drop sharply. The HAAP determines that the state of the first tunnel and the state of the second tunnel do not satisfy the shunt condition during the detection phase. Start the second tunnel to transmit user traffic.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel meet the offload condition, including: the HAAP is The sum of the throughput of the first tunnel and the throughput of the second tunnel is greater than the second threshold, and the state of the first tunnel and the state of the second tunnel are determined to satisfy the offload condition.
  • the sum of the throughput of the first tunnel and the throughput of the second tunnel is less than or equal to the second threshold, determining that the state of the first tunnel and the state of the second tunnel are not met.
  • the shunt condition is not met.
  • determining whether the state of the first tunnel and the state of the second tunnel meet a backoff condition including: determining the HAAP Whether the sum of the throughput of the first tunnel and the throughput of the second tunnel is less than a third threshold, the third threshold being the sum of the throughput of the first tunnel and the throughput of the second tunnel Corresponding threshold.
  • the third threshold is less than the second threshold.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel meet a backoff condition, including: The sum of the throughput of the first tunnel and the throughput of the second tunnel is less than the third threshold, and the HAAP determines that the state of the first tunnel and the state of the second tunnel satisfy the backoff condition.
  • the state of the second tunnel further includes a delay of the second tunnel
  • the state of the first tunnel further includes the The time delay of the first tunnel determines whether the state of the first tunnel and the state of the second tunnel meet the backoff condition, including:
  • the HAAP determines whether the difference between the delay of the second tunnel and the delay of the first tunnel is less than a fourth threshold, where the fourth threshold is a delay from the second tunnel and a time of the first tunnel The threshold corresponding to the difference in delay.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel meet a backoff condition, including: The sum of the throughput of the first tunnel and the throughput of the second tunnel is greater than or equal to the third threshold, and the difference between the delay of the second tunnel and the delay of the first tunnel is less than the fourth gate.
  • the limit value is that the HAAP determines that the state of the first tunnel and the state of the second tunnel satisfy the backoff condition.
  • the state of the second tunnel includes a throughput of the second tunnel and a delay of the second tunnel, where The state of the first tunnel includes the throughput of the first tunnel and the delay of the first tunnel.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel do not satisfy the backoff condition, including:
  • the sum of the throughput of the first tunnel and the throughput of the second tunnel is greater than or equal to a third threshold, and the difference between the delay of the second tunnel and the delay of the first tunnel is greater than or equal to a fourth threshold value, determining that the state of the first tunnel and the state of the second tunnel do not satisfy a backoff condition, wherein the third threshold is a throughput with the first tunnel and a throughput of the second tunnel a threshold corresponding to the sum of the quantities, the fourth threshold being a threshold corresponding to a difference between the delay of the second tunnel and the delay of the first tunnel.
  • the state of the second tunnel includes a delay of the second tunnel
  • the state of the first tunnel includes the first The time delay of the tunnel
  • the HAAP determines whether the state of the first tunnel and the state of the second tunnel meet the shunting condition according to the state of the first tunnel and the state of the second tunnel, including:
  • the HAAP determines whether the difference between the delay of the second tunnel and the delay of the first tunnel is less than a fourth threshold, where the fourth threshold is the delay of the second tunnel and the time of the first tunnel.
  • the threshold corresponding to the difference in delay.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel meet the offload condition, including: the HAAP The difference between the delay of the second tunnel and the delay of the first tunnel is less than the fourth threshold, and it is determined that the state of the first tunnel and the state of the second tunnel satisfy the shunt condition.
  • the difference between the delay of the second tunnel and the delay of the first tunnel is greater than or equal to the fourth threshold, and determining that the state of the first tunnel and the state of the second tunnel are not met.
  • the shunt condition is
  • the state of the second tunnel includes a throughput of the second tunnel
  • the state of the first tunnel includes the first The throughput of a tunnel, determining whether the state of the first tunnel and the state of the second tunnel meet the backoff condition, including:
  • the HAAP determines whether the sum of the throughput of the first tunnel and the throughput of the second tunnel is less than a third threshold, the third threshold being the throughput of the first tunnel and the throughput of the second tunnel The threshold corresponding to the sum of the quantities.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel meet a backoff condition, including: The sum of the throughput of the first tunnel and the throughput of the second tunnel is less than the third threshold, and the HAAP determines that the state of the first tunnel and the state of the second tunnel satisfy the backoff condition.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel do not satisfy the backoff condition, including: If the sum of the throughput of the first tunnel and the throughput of the second tunnel is greater than or equal to the third threshold and less than or equal to the second threshold, the HAAP determines the state of the first tunnel and the The state of the second tunnel does not satisfy the backoff condition, and the second threshold is greater than the third threshold.
  • the method further includes: The HAAP determines whether the state of the first tunnel and the state of the second tunnel meet the exit condition; after the HAAP determines that the state of the first tunnel and the state of the second tunnel satisfy the exit condition, the HAAP adopts the first tunnel transmission The traffic of the user and determining whether the first tunnel is congested.
  • the method further includes: obtaining, by the first tunnel and the second tunnel, the traffic of the user by using the first tunnel and the second tunnel The state of the first tunnel and the state of the second tunnel.
  • the state of the first tunnel in the eighteenth possible implementation manner of the first aspect is the state of the first tunnel after the second tunnel is diverted, and the state of the second tunnel is the second tunnel after the second tunnel is split. status.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel meet the offload condition according to the state when the probe traffic is transmitted by using the second tunnel, and uses the first tunnel and the second tunnel to transmit the traffic of the user by using the first tunnel and the second tunnel. Thereafter, the state of the first tunnel and the state of the second tunnel in the current situation can be detected. Due to the unstable state of the tunnel, there may be a case where the delay difference between the two tunnels is too large or the link quality of one of the tunnels is not good during the transmission process. Therefore, in the process of the split transmission, real-time monitoring is possible. The state of the first tunnel and the state of the second tunnel. If the state of the first tunnel and the state of the second tunnel meet the exit condition, the HAAP may not use the second tunnel to transmit user traffic, and only use the first tunnel to transmit user traffic, and detect the first in real time. Whether the tunnel is congested.
  • the state of the first tunnel includes a throughput of the first tunnel and a delay of the first tunnel
  • the state of the second tunnel includes the The throughput of the second tunnel and the delay of the second tunnel, the fallback condition being a fifth threshold and a sixth threshold
  • the HAAP determining that the state of the first tunnel and the state of the second tunnel satisfy the exit Conditions, including:
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel satisfy the exit condition.
  • the fifth threshold value may be the same as the third threshold value, or may be different.
  • the sixth threshold value may be the same as the fourth threshold value, or may be different. This is not limited.
  • the throughput may be used as a priority judgment condition, and when the throughput does not satisfy the backoff condition, the delay is further determined.
  • the difference is a secondary judgment condition.
  • the HAAP may also use the delay difference as a priority judgment condition.
  • the throughput is regarded as a secondary judgment condition, and the judgment may be performed only according to the priority judgment condition.
  • the second embodiment of the present invention does not limit the present invention.
  • the acquiring the state of the first tunnel and the state of the second tunnel in the second state includes:
  • the HAAP receives the Generic Routing Encapsulation Protocol (GRE) packet sent by the HG.
  • the HAAP determines the state of the first tunnel and the state of the second tunnel according to the GRE packet.
  • GRE Generic Routing Encapsulation Protocol
  • the HAAP can measure the throughput, packet loss rate, and delay of the tunnel by sending the GRE packet.
  • the HAAP may send the GRE packet to the HG, and the HG fills the parameter in the GRE packet, and then sends the GRE packet to the HAAP, and the HAAP determines the first tunnel according to the parameter in the GRE packet. State and state of the second tunnel.
  • a traffic distribution apparatus in a hybrid access network for performing the method of any of the foregoing first aspect or any of the possible implementations of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a traffic distribution device in a hybrid access network comprising: a communication interface, a memory, a processor, and a communication bus.
  • the communication interface, the memory and the processor are connected by the bus system.
  • the memory is for storing instructions, the processor reading the instructions stored by the memory, performing the method of the first aspect or any possible implementation of the first aspect.
  • a fourth aspect provides a traffic distribution system in a hybrid access network, the system comprising a home gateway and the apparatus in any of the possible implementations of the second aspect or the second aspect; or
  • the system comprises a home gateway and the apparatus of any of the possible implementations of the third aspect or the third aspect above.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • 1 is a schematic diagram of a hybrid access network.
  • FIG. 2 is a flowchart of a method for distributing traffic in a hybrid access network according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of state switching of a traffic distribution method in a hybrid access network according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a first state in a traffic distribution method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a second state in a traffic distribution method according to an embodiment of the present invention.
  • FIG. 6 is another schematic flowchart of a second state in a traffic distribution method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a third state in a traffic distribution method according to an embodiment of the present invention.
  • FIG. 8 is another schematic flowchart of a third state in a traffic distribution method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a traffic distribution method in a hybrid access network according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a GRE message according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a traffic distribution apparatus in a hybrid access network according to an embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of a traffic distribution apparatus in a hybrid access network according to an embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of a hybrid access network.
  • the network 100 can include a home gateway 110 and a hybrid access sink node 120.
  • the traffic of the user may be mixed and transmitted by establishing the first tunnel and the second tunnel.
  • the home gateway 110 may send a request message to the hybrid access sink node 120, where the request message is used to request to establish a tunnel.
  • the hybrid access aggregation node 120 can learn the address and the second address of the first tunnel required to establish a tunnel between the hybrid access aggregation node 120 and the home gateway 110 in response to the request of the home gateway 110.
  • the address of the tunnel authenticates and authorizes the address of the first tunnel and the address of the second tunnel.
  • the hybrid access aggregation node 120 establishes the first tunnel and the second tunnel, and allocates a service address to the home gateway 110. Thereafter, when the home gateway 110 accesses the hybrid access aggregation node 120 according to the service address, the service traffic of the user may be mixed and transmitted through the first tunnel and the second tunnel.
  • the home gateway 110 can monitor the uplink bandwidth of the high-priority service traffic, calculate the uplink available bandwidth of the first tunnel, and preferentially flow the uplink traffic of the user through the first tunnel, exceeding the uplink available bandwidth.
  • the uplink traffic flows through the second tunnel.
  • the home gateway 110 can monitor the downlink bandwidth of the high-priority service traffic, calculate the downlink available bandwidth of the first tunnel, and send a notification message carrying the downlink available bandwidth to notify the hybrid access.
  • the hybrid access aggregation node 120 preferentially flows the downlink traffic of the user through the first tunnel, and the downlink traffic that exceeds the downlink available bandwidth flows through the second tunnel.
  • first tunnel may be a DSL tunnel
  • second tunnel may be an LTE tunnel.
  • the scenario of the DSL and LTE hybrid access is used as an example for description, but the embodiment of the present invention is not limited thereto.
  • users' services can be divided into two categories: one is the ordinary Internet access service, such as the File Transfer Protocol (FTP) download, and the other is the high-priority service.
  • This type of high-priority service is called bypass Bypass. business. Take the DSL tunnel and the LTE tunnel as an example.
  • the bypass service has a high priority and only takes the original DSL link and does not take the tunnel. Therefore, in addition to the bandwidth of the DSL link occupied by the high priority service, the DSL tunnel will occupy the remaining bandwidth.
  • the service traffic of the ordinary Internet access service is preferentially transmitted through the DSL tunnel, and is further shunted to the LTE tunnel when the DSL bandwidth is insufficient.
  • the dual tunnel binding is automatically enabled by default and the service traffic of the user is offloaded packet by packet.
  • the user's service traffic is forwarded on a per-packet basis. Therefore, a sequence-preserving mechanism is introduced to overcome the out-of-order of packets on the peer device due to the delay difference between the LTE tunnel and the DSL tunnel.
  • the peer device uses the sequence number after receiving the packet to restore the packet disorder caused by the packet-by-packet offload.
  • the peer device will always wait after receiving the forwarded message, or directly send the mess after exceeding the sequence delay.
  • the throughput of the system will fluctuate back and forth, resulting in the bandwidth of the dual tunnel being lower than the bandwidth of the single tunnel.
  • the embodiment of the present invention provides a traffic distribution method under the dual tunnel in the new hybrid access network, which helps to improve the bandwidth, which helps to avoid The bandwidth of a dual tunnel is lower than the bandwidth of a single tunnel.
  • the HAAP determines that the first tunnel is congested when the traffic of the user is transmitted, and the probe traffic is transmitted through the second tunnel, where the probe traffic is the traffic used to obtain the state of the second tunnel in the traffic of the user.
  • the HAAP acquires a state of the first tunnel and a state of the second tunnel; the HAAP determines a state of the first tunnel according to a state of the first tunnel and a state of the second tunnel Whether the state of the second tunnel satisfies the shunting condition; after the HAAP determines that the state of the first tunnel and the state of the second tunnel satisfy the shunting condition, the first tunnel and the second tunnel are adopted. Transmitting the traffic of the user.
  • FIG. 2 is a flowchart of a method for distributing traffic in a hybrid access network according to an embodiment of the present invention.
  • the method 200 can be applied to the network 100 shown in FIG. 1, but the embodiment of the present invention is not limited thereto.
  • the HAAP determines that the first tunnel is congested when the traffic of the user is transmitted, and the probe traffic is transmitted by using the second tunnel, where the probe traffic is the traffic used by the user to obtain the state of the second tunnel.
  • the HAAP preferentially uses the first tunnel to transmit the service traffic of the user, and monitors the state of the first tunnel in real time, if the first tunnel occurs. In the case of congestion, the HAAP offloads a part of the traffic on the first tunnel to the second tunnel, that is, detects the traffic. The part of the traffic is transmitted by the second tunnel, so that the HAAP determines whether the traffic on the first tunnel can be offloaded to the second tunnel according to the state of the second tunnel during transmission.
  • the HAAP allocates a certain proportion of traffic to the second tunnel, and the remaining traffic is still transmitted according to the usual split mode, first flowing through the first tunnel, and the bandwidth in the first tunnel is insufficient.
  • the HAAP first forces the traffic of 1M to be transmitted through the second tunnel to enter the detection phase.
  • the HAAP obtains the state when the first tunnel transmits 5M traffic and the state when the second tunnel transmits 1M traffic.
  • the HAAP may transmit the 4M traffic in the 10M traffic through the second tunnel according to a preset policy. Therefore, if the link quality of the second tunnel is good enough, the sum of the throughput of the first tunnel and the throughput of the second tunnel can be maintained at 10M. If the link quality of the second tunnel is relatively poor, after the second tunnel is introduced for transmission, the user traffic will drop sharply. The HAAP determines that the state of the first tunnel and the state of the second tunnel do not satisfy the shunt condition during the detection phase. Start the second tunnel to transmit user traffic.
  • the method before the hybrid access aggregation node HAAP determines that the first tunnel is congested when transmitting the traffic of the user, the method further includes: the HAAP according to the link quality parameter of the first tunnel, and the first The threshold value determines whether the first tunnel is congested.
  • the HAAP can determine whether the first tunnel is congested when transmitting the traffic of the user in multiple manners. As an optional embodiment, the HAAP determines that the first tunnel is congested when transmitting the traffic of the user, including: If the link quality parameter of the first tunnel is greater than the first threshold, the HAAP determines that the first tunnel is congested.
  • the link quality parameter of the first tunnel is a packet loss rate of the first tunnel, and the first threshold is a threshold corresponding to the packet loss rate; or the first tunnel The link quality parameter is the throughput of the first tunnel, and the first threshold is a threshold corresponding to the throughput; or the link quality parameter of the first tunnel includes a packet loss rate of the first tunnel
  • the first threshold value includes a first sub-threshold value and a second sub-threshold value, where the first sub-threshold is a threshold corresponding to the packet loss rate The second sub-threshold is a threshold corresponding to the throughput.
  • the HAAP determines that the first tunnel is congested when transmitting the traffic of the user, including: determining, by the HAAP, whether the throughput of the first tunnel is greater than a first threshold; if the throughput of the first tunnel is The amount is greater than the first threshold, and the HAAP determines that the first tunnel is congested.
  • the method further includes: if the throughput of the first tunnel is less than or equal to the first threshold, the HAAP determines whether the packet loss rate of the first tunnel is greater than a packet loss threshold. If the packet loss rate of the first tunnel is greater than the packet loss rate threshold, the HAAP determines that the first tunnel is congested.
  • the HAAP may determine the current state of the first tunnel according to the throughput and/or the packet loss rate of the first tunnel, and determine whether the first tunnel occurs when the service traffic of the first tunnel is used to transmit the user. congestion.
  • the HAAP acquires a state of the first tunnel and a state of the second tunnel.
  • the HAAP acquires the state of the first tunnel and the state of the second tunnel.
  • the HAAP can obtain the state of the first tunnel and the state of the second tunnel in multiple manners.
  • the HAAP acquires the state of the first tunnel and the state of the second tunnel, including: the HAAP receives a Generic Routing Encapsulation (GRE) sent by the HG; the HAAP Determining a state of the first tunnel and a state of the second tunnel according to the GRE packet.
  • GRE Generic Routing Encapsulation
  • the HAAP may send a GRE packet to the HG, and measure the states of the first tunnel and the second tunnel by using the GRE packet.
  • the HG fills in the relevant link quality parameter in the GRE packet, and then returns the GRE packet to the HAAP, so that the HAAP receives the GRE packet returned by the HG.
  • the state of the first tunnel and the state of the second tunnel may be obtained according to the link quality parameter carried in the GRE packet.
  • the HAAP can periodically monitor the state of the first tunnel and the state of the second tunnel.
  • the state of the first tunnel and the state of the second tunnel in S220 are the state of the first tunnel and the state of the second tunnel acquired after the HAAP transmits the probe traffic through the second tunnel.
  • the HAAP determines, according to the state of the first tunnel and the state of the second tunnel, whether the state of the first tunnel and the state of the second tunnel meet a shunt condition
  • the HAAP may determine, according to the state of the first tunnel and the state of the second tunnel, that after the probe traffic is offloaded to the second tunnel, the overall bandwidth of the first tunnel and the second tunnel is compared with the traffic using only the first tunnel. Whether the ratio is improved or not, so as to decide whether to divert the user's traffic.
  • the HAAP can determine whether to perform the offloading in multiple manners. Specifically, the HAAP can determine the throughput as the offload condition, but the embodiment of the present invention is not limited thereto.
  • the method includes: determining, by the HAAP, whether a sum of a throughput of the first tunnel and a throughput of the second tunnel is The second threshold is greater than a threshold corresponding to a sum of a throughput of the first tunnel and a throughput of the second tunnel.
  • the state of the second tunnel includes a delay of the second tunnel, and the shape of the first tunnel The state includes the delay of the first tunnel, and the HAAP determines, according to the state of the first tunnel and the state of the second tunnel, whether the state of the first tunnel and the state of the second tunnel meet the shunting condition, including: the HAAP Determining whether the difference between the delay of the second tunnel and the delay of the first tunnel is less than a fourth threshold, where the fourth threshold is a delay from the second tunnel and a delay of the first tunnel The threshold corresponding to the difference.
  • the first tunnel and the second tunnel are used to transmit the traffic of the user.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel meet the offload condition, which indicates that the traffic of the first tunnel and the second tunnel mixed transmission user can achieve the effect of improving the bandwidth, and therefore, the HAAP can be the first tunnel.
  • the congested traffic is offloaded to the second tunnel, and the first tunnel and the second tunnel are used to transmit the traffic of the user.
  • the HAAP determines the state of the first tunnel and the second The state of the tunnel satisfies the offloading condition, including: if the sum of the throughput of the first tunnel and the throughput of the second tunnel is greater than the second threshold, the HAAP determines the state of the first tunnel and the second tunnel The state satisfies the shunt condition.
  • the HAAP determines the state of the first tunnel and the second The state of the tunnel meets the diversion condition, including: the difference between the delay of the second tunnel and the delay of the first tunnel is less than the fourth threshold, determining the state of the first tunnel and the second tunnel The state satisfies the shunt condition.
  • the HAAP transmits the probe traffic through the second tunnel to detect the state of the second tunnel.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel meet the traffic off condition, and then uses the first tunnel and the second tunnel to mix and transmit the traffic of the user. In this way, the HAAP detects the state of the second tunnel before the offloading, which can avoid the situation that the overall bandwidth of the traffic using the dual tunnel is lower than the bandwidth of the traffic transmitted by the single tunnel, thereby improving the user experience.
  • the method further includes: after the HAAP determines that the state of the first tunnel and the state of the second tunnel do not satisfy the offloading condition, determining the state of the first tunnel and the state of the second tunnel Whether the back-off condition is met; after the HAAP determines that the state of the first tunnel and the state of the second tunnel satisfy the back-off condition, the HAAP determines whether the first tunnel is congested.
  • the method further includes: after the HAAP determines that the state of the first tunnel and the state of the second tunnel do not meet the fallback condition, the HAAP uses the first tunnel to transmit the traffic of the user, and is preset The congestion of the first tunnel is not judged within the duration.
  • the preset duration may be referred to as a penalty duration.
  • the penalty period is used to indicate the time period of the penalty phase.
  • the setting of the penalty duration can be determined by the HAAP according to the actual situation. For example, for a user, when entering the penalty phase for the first time, the HAAP can set the penalty duration to 30s. If the same user enters the penalty phase for the second time, the HAAP can extend the penalty duration to 60s, and so on, but the embodiment of the present invention does not limit this.
  • the HAAP does not perform the congestion judgment on the first tunnel in the preset duration.
  • the HAAP can set a timer. After the timer expires, the HAAP determines whether the first tunnel is in a congested state. .
  • the HAAP determines that, in a case that the second tunnel is used to transmit the probe traffic, after the state of the first tunnel and the state of the second tunnel do not satisfy the offload condition, the state of the first tunnel and the second tunnel may also be determined. Whether the status meets the fallback condition.
  • the fallback condition is used to indicate whether to allow the rollback to be performed to the traffic of the user using only the first tunnel and to monitor whether the first tunnel is congested in real time.
  • the HAAP may use only the first tunnel to transmit the traffic of the user and detect whether the first tunnel is congested in real time; if the state of the first tunnel and the state of the second tunnel do not satisfy the fallback condition, the HAAP The traffic of the user may be transmitted only by using the first tunnel, but the first tunnel is not detected to be congested within a preset duration.
  • the HAAP can determine whether the state of the first tunnel and the state of the second tunnel satisfy a backoff condition in multiple manners.
  • the state of the second tunnel further includes a delay of the second tunnel
  • the state of the first tunnel further includes a delay of the first tunnel
  • determining the state of the first tunnel and the Whether the state of the second tunnel meets the fallback condition includes: determining, by the HAAP, whether the difference between the delay of the second tunnel and the delay of the first tunnel is less than a fourth threshold, where the fourth threshold is The threshold value corresponding to the difference between the delay of the second tunnel and the delay of the first tunnel. If the difference between the delay of the second tunnel and the delay of the first tunnel is less than the fourth threshold, the HAAP determines that the state of the first tunnel and the state of the second tunnel satisfy the backoff condition.
  • the state of the second tunnel includes the throughput of the second tunnel
  • the state of the first tunnel includes the throughput of the first tunnel
  • the state of the first tunnel and the second Whether the state of the tunnel meets the fallback condition the HAAP determines whether the sum of the throughput of the first tunnel and the throughput of the second tunnel is less than a third threshold, and the third threshold is the first The threshold corresponding to the sum of the throughput of the tunnel and the throughput of the second tunnel. If the sum of the throughput of the first tunnel and the throughput of the second tunnel is less than the third threshold, the HAAP determines that the state of the first tunnel and the state of the second tunnel satisfy the backoff condition.
  • the third threshold is less than the second threshold.
  • the method further includes: if the sum of the throughput of the first tunnel and the throughput of the second tunnel is greater than or equal to the third threshold, the HAAP determines the time of the first tunnel Whether the difference between the delay of the second tunnel and the delay of the second tunnel is less than the fourth threshold; if the difference between the delay of the first tunnel and the delay of the second tunnel is less than the fourth threshold, the HAAP determines The state of the first tunnel and the state of the second tunnel satisfy the backoff condition.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel do not satisfy the backoff condition, including: if the throughput of the first tunnel and the throughput of the second tunnel And the greater than or equal to the third threshold, and the difference between the delay of the first tunnel and the delay of the second tunnel is greater than the fourth threshold, the HAAP determines the state of the first tunnel and the first The state of the second tunnel does not satisfy the fallback condition.
  • the HAAP can specifically determine whether the state of the first tunnel and the state of the second tunnel meet the offload condition or the backoff condition in the detection phase by the throughput and/or the delay difference, thereby correspondingly the current traffic transmission state. Adjustment.
  • the method further includes: determining, by the HAAP, whether the state of the first tunnel and the state of the second tunnel are met. After the HAAP determines that the state of the first tunnel and the state of the second tunnel meet the exit condition, the HAAP uses the first tunnel to transmit the traffic of the user, and determines whether the first tunnel is congested.
  • the first tunnel and the second tunnel are used to transmit the traffic of the user.
  • the state of the first tunnel and the state of the second tunnel can be monitored in real time. If the state of the first tunnel and the state of the second tunnel meet the exit condition, the HAAP may not use the second tunnel to transmit user traffic, and only use the first tunnel to perform user traffic transmission.
  • the HAAP may determine, by using multiple manners, whether the state of the first tunnel and the state of the second tunnel meet the exit. condition.
  • determining whether the state of the first tunnel and the state of the second tunnel meet the exit condition include: determining, by the HAAP, whether the sum of the throughput of the first tunnel and the throughput of the second tunnel is Greater than the fifth threshold.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel meet the exit condition, including: if the sum of the throughput of the first tunnel and the throughput of the second tunnel is less than or equal to the fifth gate a limit value, the HAAP determines that the state of the first tunnel and the state of the second tunnel satisfy the exit condition.
  • determining whether the state of the first tunnel and the state of the second tunnel meet the exit condition further includes: if the sum of the throughput of the first tunnel and the throughput of the second tunnel is less than or The fifth threshold is equal to whether the difference between the delay of the first tunnel and the delay of the second tunnel is greater than a sixth threshold.
  • the HAAP determines that the state of the first tunnel and the state of the second tunnel meet the exit condition, including: the sum of the throughput of the first tunnel and the throughput of the second tunnel is less than or equal to the fifth gate The limit value, and the difference between the delay of the first tunnel and the delay of the second tunnel is greater than the sixth threshold, and the HAAP determines that the state of the first tunnel and the state of the second tunnel satisfy the exit condition .
  • the HAAP may determine whether to exit the offload mode by using the throughput and/or the delay difference, that is, not using the second tunnel for offloading, and only using the first tunnel to transmit user traffic, The user's traffic transmission status is adjusted in real time according to the current situation, thereby improving the user experience.
  • the fifth threshold value may be the same as or different from the third threshold value.
  • the sixth threshold value may be the same as the fourth threshold value, or may be different. The embodiment of the present invention does not limit this.
  • the HAAP may use the sum of the throughputs of the two tunnels as the exit determination condition, or may use the sum of the throughputs of the two tunnels and the delay difference between the two tunnels as the exit determination condition, and the present invention implements This example does not limit this.
  • the HAAP can set the detection period and the number of exits, and the HAAP record satisfies the number of exit conditions.
  • the HAAP may not use the second tunnel for offloading, and only the first tunnel transmits user traffic.
  • the number of times limit may be increased in the specific implementation process, which is not limited by the embodiment of the present invention.
  • FIG. 3 is a schematic diagram of state switching of a traffic distribution method in a hybrid access network according to an embodiment of the present invention.
  • the hybrid access aggregation node HAAP sets the traffic transmission state of the service traffic of the user to a first state.
  • the first state only the traffic of the user is transmitted by using the first tunnel, and whether the first tunnel is detected while transmitting the traffic Congestion
  • the HAAP sets the traffic transmission state of the service traffic of the user to a second state.
  • the traffic of the user is transmitted by using the first tunnel and the second tunnel, and the probe traffic is carried on the second tunnel.
  • the detection traffic is the traffic used by the user to obtain the state of the second tunnel;
  • the HAAP sets the traffic transmission state of the service traffic of the user to a third state, and in the third state, the traffic of the user is transmitted in a normal packet-by-packet manner, that is, the hybrid transmission is performed on the first tunnel and the second tunnel.
  • the HAAP sets the traffic transmission state of the service traffic of the user to a fourth state.
  • the traffic of the user is transmitted only through the first tunnel, but in the fourth state, the first tunnel is not congested. Detection.
  • a state machine can be run on the HAAP, and the traffic transmission state of the user's traffic between the HAAP and the HG can be switched between multiple states.
  • the state switching rule between the above four states will be described in detail below with reference to FIG.
  • Switching from S340 to S310 the HAAP maintains the fourth state in the first time period, and after the first time period elapses, directly switches the traffic transmission state back to the first state, that is, switches back from S340 to S310, thereby passing the A tunnel transmits the traffic of the user while monitoring whether the first tunnel is congested in real time.
  • the four states for traffic transmission can be switched according to the current state of the first tunnel and/or the current state of the second tunnel, so as to avoid the overall bandwidth of the dual tunnel being lower than the single tunnel bandwidth when the dual tunnel is bound. The situation, thereby improving the user experience.
  • FIG. 4 is a schematic flowchart of a first state in a traffic distribution method according to an embodiment of the present invention.
  • the first state S310 includes the contents of S301 to S304.
  • the HAAP obtains a throughput of the first tunnel in the first state.
  • the HAAP determines whether the throughput of the first tunnel is greater than a first sub-threshold value
  • the HAAP determines that the first tunnel is congested, and the HAAP performs S320 to switch the state machine from the first state S310 to the second state S320.
  • the first sub-threshold is a threshold corresponding to the throughput of the first tunnel, and can be used to determine whether congestion occurs in the first tunnel.
  • the method further includes: if the throughput of the first tunnel is less than or equal to the first sub-threshold, the HAAP performs S303, that is, obtains a packet loss rate of the first tunnel in the first state. .
  • the HAAP determines whether the packet loss rate of the first tunnel is greater than a second sub-threshold value
  • the HAAP determines that the first tunnel is congested, and the HAAP switches the state machine from the first state S310 to the second state S320.
  • the HAAP determines that the first tunnel is not congested, and performs S301.
  • the HAAP may periodically detect the throughput of the first tunnel to determine whether the first tunnel is congested.
  • FIG. 5 is a schematic flowchart of a second state in a traffic distribution method according to an embodiment of the present invention.
  • the second state S320 includes the contents of S305 to S309.
  • the HAAP obtains a sum of a throughput of the first tunnel in the second state and a throughput of the second tunnel.
  • the HAAP determines whether a sum of a throughput of the first tunnel and a throughput of the second tunnel is greater than a second threshold
  • the HAAP determines that the current state of the first tunnel and the second tunnel meets the offload condition, and the HAAP switches from the second state S320 to The third state S330, that is, the corresponding (2) in FIG. 3 is executed.
  • the HAAP performs S307.
  • the HAAP determines whether a sum of a throughput of the first tunnel and a throughput of the second tunnel is less than a third threshold.
  • the second threshold is greater than the third threshold.
  • the HAAP confirms that the current state of the first tunnel and the second tunnel meets a fallback condition, and the HAAP is from the second state S320. Switching back to the first state S310, the corresponding (3) in FIG. 3 is executed.
  • the HAAP performs S308.
  • the HAAP obtains the difference between the delay of the first tunnel and the delay of the second tunnel, and then executes S309;
  • the HAAP determines whether the difference between the delay of the first tunnel and the delay of the second tunnel is less than a fourth threshold
  • the HAAP determines that the current state of the first tunnel and the second tunnel meets a fallback condition, and the HAAP is from the second state. S320 switches back to the first state S310, that is, performs the corresponding (3) in FIG.
  • the HAAP is switched from the second state S320 to the fourth state S340, that is, the corresponding (4) in FIG.
  • the method further includes: after entering the first time period of the fourth state S340, the HAAP performs S310, and performs congestion determination by using a throughput of the first tunnel and/or a packet loss rate of the first tunnel.
  • the HAAP can determine whether to switch the state in various manners. For example, in FIG. 5, the HAAP takes the sum of the throughput of the first tunnel and the throughput of the second tunnel as a priority judgment condition, and the sum of the throughput of the first tunnel and the throughput of the second tunnel does not satisfy the shunt. When the condition and the back-off condition are used, the difference between the first tunnel and the second tunnel is used as a judgment condition, and further judgment is made.
  • the HAAP may also use the difference between the delay of the first tunnel and the delay of the second tunnel as a priority determining condition, the delay of the first tunnel, and the second tunnel.
  • the difference of the delay does not satisfy the shunt condition, it is determined whether to fall back to the first state or enter the fourth state according to the sum of the throughput of the first tunnel and the throughput of the second tunnel.
  • the HAAP obtains a difference between a delay of the first tunnel in the second state and a delay of the second tunnel.
  • the HAAP determines whether a difference between a delay of the first tunnel and a delay between the second tunnel is less than a fourth threshold
  • the HAAP determines that the current state of the first tunnel and the second tunnel meets the offload condition, and the HAAP will The traffic transmission state is switched from the second state S320 to the third state S330, that is, (2) corresponding to FIG. 3 is performed.
  • the difference between the delay of the first tunnel and the delay between the second tunnel is greater than or equal to the fourth threshold, indicating the delay of the first tunnel and the second after the second tunnel is introduced. If the difference in delay of the tunnel is too large, the HAAP performs S305.
  • the HAAP obtains the sum of the throughput of the first tunnel in the second state and the throughput of the second tunnel, and then executes S306;
  • the HAAP determines whether a sum of a throughput of the first tunnel and a throughput of the second tunnel is greater than a second threshold
  • the HAAP confirms that the current state of the first tunnel and the second tunnel meets the offload condition, and the HAAP transmits the traffic state from the first
  • the two states S320 are switched to the third state S330, that is, (2) corresponding to FIG. 3 is executed.
  • the HAAP performs S307.
  • the HAAP determines whether a sum of a throughput of the first tunnel and a throughput of the second tunnel is less than a third threshold.
  • the second threshold is greater than the third threshold.
  • the HAAP determines that the current state of the first tunnel and the second tunnel meets a fallback condition, and the HAAP will The traffic transmission state is switched back from the second state S320 to the first state S310, that is, (3) corresponding to FIG. 3 is executed.
  • the HAAP switches the traffic transmission state from the second state S320 to the fourth state S340, that is, FIG. 3 is performed. Corresponding (4).
  • the HAAP switches the traffic transmission state back to the first state, that is, performs (5) corresponding to FIG. 3 .
  • FIG. 7 is a schematic flowchart of a third state in a traffic distribution method according to an embodiment of the present invention.
  • the third state S330 includes the contents of S311 to S314.
  • the HAAP obtains a sum of a throughput of the first tunnel and a throughput of the second tunnel in the third state.
  • the HAAP determines whether a sum of a throughput of the first tunnel and a throughput of the second tunnel is greater than a fifth threshold
  • the fifth threshold may be the same as the third threshold or different from the third threshold.
  • the HAAP performs S311.
  • the HAAP can periodically detect the sum of the throughput of the first tunnel and the throughput of the second tunnel.
  • the HAAP performs S313.
  • the HAAP obtains a delay difference between the first tunnel and the second tunnel, and then performs S314;
  • the delay difference between the first tunnel and the second tunnel is the difference between the delay of the first tunnel and the delay of the second tunnel.
  • the HAAP determines whether a delay difference between the first tunnel and the second tunnel is greater than a sixth threshold
  • the HAAP switches the traffic transmission state from the third state S330 to the first state S310, that is, performs the corresponding FIG. 3 ( 6).
  • the HAAP performs S311.
  • the HAAP can periodically detect the sum of the throughput of the first tunnel and the throughput of the second tunnel.
  • the HAAP can determine whether to switch the state in various manners. For example, in FIG. 7, the HAAP takes the sum of the throughput of the first tunnel and the throughput of the second tunnel as a priority judgment condition, and the sum of the throughput of the first tunnel and the throughput of the second tunnel does not satisfy the exit condition. At the same time, the difference between the delay of the first tunnel and the delay of the second tunnel is used as a judgment condition, and further judgment is made.
  • the HAAP may also use the difference between the delay of the first tunnel and the delay of the second tunnel as a priority determining condition, and the delay of the first tunnel and the delay of the second tunnel.
  • the difference does not satisfy the exit condition, it is determined whether to switch back to the first state according to the sum of the throughput of the first tunnel and the throughput of the second tunnel.
  • the HAAP obtains a delay difference between the first tunnel and the second tunnel.
  • the HAAP determines whether a delay difference between the first tunnel and the second tunnel is greater than a sixth threshold
  • the HAAP performs S311.
  • the HAAP performs S313.
  • the HAAP can periodically detect the delay difference between the first tunnel and the second tunnel.
  • the HAAP obtains a sum of a throughput of the first tunnel and a throughput of the second tunnel in the third state.
  • the HAAP determines whether a sum of a throughput of the first tunnel and a throughput of the second tunnel is greater than a fifth threshold
  • the HAAP switches the traffic transmission state from the third state S330 back to the first state S310, that is, the execution map 3 corresponds to (6).
  • the HAAP performs S313.
  • the HAAP can periodically detect the delay difference between the first tunnel and the second tunnel.
  • the switching of the HAAP to the first state indicates that the HAAP performs the corresponding content of S301 to S304 shown in FIG. 4.
  • the switching of the HAAP to the second state indicates that the HAAP performs the corresponding content of S306 to S309 shown in FIG. 5, or executes the corresponding contents of S309 to S307 shown in FIG. 6.
  • the switching of the HAAP to the third state indicates that the HAAP performs the corresponding content of S311 to S314 shown in FIG. 7, or performs the corresponding contents of S313 to S312 shown in FIG.
  • FIG. 9 is a schematic diagram of a traffic distribution method in a hybrid access network according to an embodiment of the present invention. As shown in FIG. 9, the traffic distribution method provided by this embodiment includes:
  • S400 The HAAP uses the first tunnel to transmit traffic of the user.
  • the HAAP sends a first GRE message to the HG.
  • S401 can be executed simultaneously with S400, and S401 can also be performed before or after execution of S400.
  • the first GRE packet is used to obtain the first parameter of the first tunnel.
  • the first parameter of the first tunnel may reflect the link quality of the first tunnel.
  • the HAAP may periodically send the first GRE message to the HG.
  • the HG obtains a second GRE message.
  • the HG receives the first GRE message.
  • the HG obtains the second GRE packet according to the first GRE packet and the first parameter of the first tunnel.
  • the second GRE packet includes the first GRE packet and a first parameter of the first tunnel.
  • the HG sends the second GRE packet to the HAAP.
  • the HAAP sends a third GRE message to the HG.
  • the third GRE packet is used to obtain the second parameter of the first tunnel and the parameter of the second tunnel.
  • the second parameter of the first tunnel may reflect the link quality of the first tunnel.
  • the parameters of the second tunnel may reflect the link quality of the second tunnel.
  • the second parameter of the first tunnel may be identical to the first parameter of the first tunnel, or may not be identical to the first parameter of the first tunnel.
  • the HAAP may periodically send the third GRE message to the HG.
  • the HG obtains a fourth GRE message.
  • the HG receives the third GRE packet.
  • the HG obtains the fourth GRE packet according to the third GRE packet, the second parameter of the first tunnel, and the parameter of the second tunnel.
  • the fourth GRE packet includes the third GRE packet, the second parameter of the first tunnel, and the parameter of the second tunnel.
  • the HG sends the fourth GRE message to the HAAP.
  • the HAAP determines that the first tunnel is congested according to the received second GRE message, and performs S408.
  • the HAAP may determine, according to the first parameter of the first tunnel in the second GRE message, whether the first tunnel is congested.
  • the HAAP transmits the probe traffic through the second tunnel.
  • the HAAP determines, according to the fourth GRE message, that the first tunnel and the second tunnel meet the offload condition
  • the parameter of the second tunnel included in the fourth GRE packet may be the obtained parameter of the second tunnel under the transmission of the probe traffic.
  • the HAAP may determine, according to the second parameter of the first tunnel and the parameter of the second tunnel, whether the first tunnel and the second tunnel meet a traffic off condition.
  • the HAAP uses the first tunnel and the second tunnel to mix and transmit traffic of the user.
  • the GAP packet is periodically sent by the HAAP, and is used to obtain the parameters of the first tunnel and/or the parameters of the second tunnel in the current traffic transmission state, and according to the parameters and/or the parameters of the first tunnel.
  • the parameters of the second tunnel adjust the traffic transmission status of the user.
  • the GRE packet can be used to measure the throughput, packet loss rate, and delay of the tunnel. More specifically, for example, the first tunnel is a digital subscriber line DSL tunnel and the second tunnel is a long term evolution LTE tunnel.
  • the control message type of the GRE packet is 10, and the specific format is as shown in Figure 10.
  • the GRE message may include: a check (C) bit, a keyword (K) bit, a recursion field, a version field, a protocol type, a key field, and a control.
  • the check digit if the bit is set to 1, it indicates that the GRE header has a checksum field inserted; this bit is 0 indicating that the GRE header does not contain a checksum field.
  • the keyword bit if the bit is set to 1, it indicates that the GRE header has a keyword field inserted; if the bit is 0, the GRE header does not contain a keyword field.
  • the encapsulation layer number field is used to indicate the number of layers in which the GRE message is encapsulated. The purpose of this field is to prevent the packet from being encapsulated indefinitely. After the GRE encapsulation is completed, the field is incremented by 1. If the number of encapsulation layers is greater than 3, the packet is discarded.
  • the keyword field is used by the tunnel receiving end to verify the received packet. Tunnel type, indicating that the packet belongs to a DSL tunnel or an LTE tunnel.
  • the AVP included in the GRE packet is extended, and the AVP for carrying the related attribute of the DSL tunnel and the AVP for carrying the related attribute of the LTE tunnel are added.
  • the AVP that carries the related attributes of the DSL tunnel can carry the related attributes of the DSL tunnel through the extended attribute type, attribute length, and attribute value field. Used
  • the AVP carrying the relevant attributes of the LTE tunnel may carry related attributes of the LTE tunnel through the extended attribute type, attribute length, and attribute value fields.
  • the related attributes of the DSL tunnel include parameters for obtaining a packet loss rate, throughput, and/or delay of the DSL tunnel.
  • the relevant attributes of the LTE tunnel include parameters for obtaining the packet loss rate, throughput, and/or delay of the LTE tunnel.
  • the specific form and content of the AVP will not be exemplified one by one.
  • the HAAP After receiving the second GRE message or the fourth GRE message sent by the HG, the HAAP needs to perform calculation and processing to obtain the throughput, packet loss rate, and delay difference of the first tunnel and/or the second tunnel.
  • the specific calculation method is as follows:
  • Tx_Packet is the number of packets sent by the HAAP to the HG.
  • Tx_Packet_2 indicates the number of packets sent by the HAAP to the HG at the time t2.
  • Tx_Packet_1 indicates the number of packets sent by the HAAP to the HG at the time t1.
  • Rx_Packet is the number of packets received by the HG.
  • Rx_Packet_2 indicates the number of packets received by the HG at time t2.
  • Rx_Packet_1 indicates the number of packets received by the HG at time t1.
  • Tx_Byte_DSL_TUNNEL is the number of bytes that HAAP sends to the HG through the DSL tunnel.
  • Tx_Byte_DSL_TUNNEL_2 indicates the number of bytes that HAAP sends to the HG through the DSL tunnel at time t2.
  • Tx_Byte_DSL_TUNNEL_1 indicates the number of bytes that HAAP sends to the HG through the DSL tunnel at time t1.
  • Rx_Byte_DSL_TUNNEL is the number of bytes received by the HG through the DSL tunnel.
  • Rx_Byte_DSL_TUNNEL_2 indicates the number of bytes received by the HG through the DSL tunnel at time t2.
  • Rx_Byte_DSL_TUNNEL_1 indicates the number of bytes received by the HG through the DSL tunnel at time t1.
  • Tx_Byte_LTE_TUNNEL is the number of bytes that the HAAP sends to the HG through the LTE tunnel.
  • Tx_Byte_LTE_TUNNEL_2 indicates the number of bytes that the HAAP sends to the HG through the LTE tunnel at time t2.
  • Tx_Byte_LTE_TUNNEL_1 indicates the number of bytes that the HAAP sends to the HG through the LTE tunnel at time t1.
  • Rx_Byte_LTE_TUNNEL is the number of bytes received by the HG through the LTE tunnel.
  • Rx_Byte_LTE_TUNNEL_2 indicates the number of bytes received by the HG through the LTE tunnel at time t2.
  • Rx_Byte_LTE_TUNNEL_1 indicates the number of bytes received by the HG through the LTE tunnel at time t1.
  • Tx_Byte_DSL_BYPASS is the number of bytes transmitted by the HG over the DSL link.
  • Tx_Byte_DSL_BYPASS_2 represents the number of bytes transmitted by the HG over the DSL link at time t2.
  • Tx_Byte_DSL_BYPASS_1 represents the number of bytes transmitted by the HG over the DSL link at time t1.
  • Tx_Packet, Rx_Packet, Tx_Byte_DSL_TUNNEL, Rx_Byte_DSL_TUNNEL, Tx_Byte_LTE_TUNNEL, Rx_Byte_LTE_TUNNEL, and Tx_Byte_DSL_BYPASS are cumulative values.
  • the current state of the first tunnel and the second tunnel may be determined according to the foregoing parameters, so that the traffic transmission state of the user traffic between the HAAP and the HG is adjusted accordingly.
  • the traffic distribution method in the hybrid access network according to the embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 10.
  • the following describes the hybrid access network according to the embodiment of the present invention in detail with reference to FIG. 11 to FIG. Traffic distribution device.
  • FIG. 11 shows a traffic distribution device 500 in a hybrid access network according to an embodiment of the present invention.
  • the device 500 includes a sending unit 510, an obtaining unit 520, and a determining unit 530.
  • the sending unit 510 is configured to determine, when the first tunnel is congested, the traffic is transmitted through the second tunnel, and the probe traffic is the traffic used to obtain the state of the second tunnel in the traffic of the user.
  • the acquiring unit 520 is configured to acquire a state of the first tunnel and a state of the second tunnel.
  • the determining unit 530 is configured to determine, according to the state of the first tunnel and the state of the second tunnel, whether the state of the first tunnel and the state of the second tunnel satisfy a shunt condition.
  • the sending unit 510 is configured to use the first tunnel and the second tunnel to transmit the traffic of the user after the determining unit 530 determines that the state of the first tunnel and the state of the second tunnel meet the offloading condition.
  • the determining unit 530 is further configured to: determine that the state of the first tunnel and the state of the second tunnel do not satisfy the offloading condition, and determine whether the state of the first tunnel and the state of the second tunnel meet the backoff The determining unit 530 is further configured to determine whether the first tunnel is congested after the state of the first tunnel and the state of the second tunnel meet the backoff condition.
  • the sending unit 510 is further configured to: after the determining unit 530 determines that the state of the first tunnel and the state of the second tunnel do not satisfy the back-off condition, using the first tunnel to transmit the traffic of the user;
  • the determining unit 530 is further configured to not perform congestion judgment on the first tunnel within a preset duration.
  • the determining unit 530 is further configured to determine, according to the link quality parameter of the first tunnel and the first threshold, whether the first tunnel is determined before the determining that the first tunnel is congested when the traffic of the user is transmitted. Congestion has occurred.
  • the determining unit 530 is specifically configured to determine that the first tunnel is congested when the link quality parameter of the first tunnel is greater than the first threshold.
  • the link quality parameter of the first tunnel is a packet loss rate of the first tunnel, where the first threshold is a threshold corresponding to the packet loss rate;
  • the link quality parameter of the first tunnel is the throughput of the first tunnel, and the first threshold is a threshold corresponding to the throughput;
  • the link quality parameter of the first tunnel includes a packet loss rate of the first tunnel and a throughput of the first tunnel, where the first threshold value includes a first sub-threshold value and a second sub-threshold value, where the A sub-threshold is a threshold corresponding to the packet loss rate, and the second sub-threshold is a threshold corresponding to the throughput.
  • the state of the second tunnel includes the throughput of the second tunnel
  • the state of the first tunnel includes the throughput of the first tunnel
  • the determining unit 530 is specifically configured to determine the throughput of the first tunnel. Whether the sum of the throughputs of the second tunnel is greater than a second threshold, where the second threshold is a threshold corresponding to a sum of a throughput of the first tunnel and a throughput of the second tunnel.
  • the determining unit 530 is specifically configured to use a sum of a throughput of the first tunnel and a throughput of the second tunnel. And determining, by the second threshold, that the sum of the throughput of the first tunnel and the throughput of the second tunnel is greater than the second threshold.
  • the determining unit 530 is specifically configured to determine whether a sum of a throughput of the first tunnel and a throughput of the second tunnel is less than a third threshold, where the third threshold is related to the first tunnel.
  • the threshold corresponding to the sum of the throughput and the throughput of the second tunnel.
  • the determining unit 530 is specifically configured to determine that the state of the first tunnel and the state of the second tunnel are satisfied, where a sum of a throughput of the first tunnel and a throughput of the second tunnel is less than the third threshold. The fallback condition.
  • the state of the second tunnel further includes a delay of the second tunnel
  • the state of the first tunnel further includes a delay of the first tunnel
  • the determining unit 530 is specifically configured to determine the time of the second tunnel. Whether the difference between the delay of the first tunnel and the delay of the first tunnel is less than a fourth threshold, and the fourth threshold is a threshold corresponding to a difference between the delay of the second tunnel and the delay of the first tunnel.
  • the determining unit 530 is specifically configured to: the sum of the throughput of the first tunnel and the throughput of the second tunnel is greater than or equal to the third threshold, and the delay of the second tunnel and the first tunnel The difference between the delays is less than the fourth threshold, and it is determined that the state of the first tunnel and the state of the second tunnel satisfy the backoff condition.
  • the state of the second tunnel includes a throughput of the second tunnel and a delay of the second tunnel
  • the state of the first tunnel includes a throughput of the first tunnel and a delay of the first tunnel.
  • the determining unit 530 is specifically configured to: determine that a sum of a throughput of the first tunnel and a throughput of the second tunnel is greater than or equal to a third threshold, and a delay of the second tunnel and a time of the first tunnel The delay difference is greater than or equal to a fourth threshold value, wherein the third threshold value is a threshold value corresponding to a sum of a throughput of the first tunnel and a throughput of the second tunnel, the fourth threshold The value is a threshold corresponding to a difference between the delay of the second tunnel and the delay of the first tunnel.
  • the state of the second tunnel includes a delay of the second tunnel
  • the state of the first tunnel includes a delay of the first tunnel
  • the determining unit 530 is specifically configured to determine a delay of the second tunnel. Whether the difference between the delays of the first tunnel is less than a fourth threshold, and the fourth threshold is a threshold corresponding to a difference between a delay of the second tunnel and a delay of the first tunnel.
  • the determining unit 530 is specifically configured to determine that the delay of the second tunnel and the time of the first tunnel are determined when the difference between the delay of the second tunnel and the delay of the first tunnel is less than the fourth threshold. The difference between the delays is less than the fourth threshold.
  • the state of the second tunnel includes the throughput of the second tunnel
  • the state of the first tunnel includes the throughput of the first tunnel
  • the determining unit 530 is specifically configured to determine the throughput of the first tunnel. Whether the sum of the throughputs of the second tunnel is less than a third threshold, and the third threshold is a threshold corresponding to a sum of a throughput of the first tunnel and a throughput of the second tunnel.
  • the determining unit 530 is specifically configured to determine that the state of the first tunnel and the state of the second tunnel are satisfied, where a sum of a throughput of the first tunnel and a throughput of the second tunnel is less than the third threshold. The fallback condition.
  • the determining unit 530 is specifically configured to determine, if the sum of the throughput of the first tunnel and the throughput of the second tunnel is greater than or equal to the third threshold, and less than or equal to the second threshold, The state of the first tunnel and the state of the second tunnel do not satisfy the backoff condition, and the second threshold is greater than the third threshold.
  • the determining unit 530 is further configured to: after determining, by using the first tunnel and the second tunnel, the traffic of the user, whether the state of the first tunnel and the state of the second tunnel meet an exit condition;
  • the sending unit 510 is further configured to: after the determining unit 530 determines that the state of the first tunnel and the state of the second tunnel meet the exit condition, using the first tunnel to transmit the traffic of the user, and the determining unit 530 is further configured to determine Whether the first tunnel is congested.
  • the state of the first tunnel includes a throughput of the first tunnel and a delay of the first tunnel
  • the second tunnel The state of the track includes the throughput of the second tunnel and the delay of the second tunnel, the exit condition being a fifth threshold and a sixth threshold
  • the determining unit 530 is specifically configured to perform the throughput in the first tunnel.
  • the sum of the quantity and the throughput of the second tunnel is less than the fifth threshold, and the difference between the delay of the second tunnel and the delay of the first tunnel is greater than the sixth threshold, and the state of the first tunnel is determined.
  • the state of the second tunnel satisfies the exit condition.
  • the obtaining unit 520 is specifically configured to receive a GRE packet that is sent by the HG, where the GRE packet includes a parameter of the first tunnel and a parameter of the second tunnel.
  • the parameter of the first tunnel and the parameter of the second tunnel included in the GRE packet obtain the state of the first tunnel and the state of the second tunnel.
  • the device 500 may be specifically the hybrid access aggregation node HAAP in the foregoing embodiment, where the device 500 may be used to perform various processes and/or steps corresponding to the hybrid access aggregation node HAAP in the foregoing method embodiment, where Let me repeat.
  • the traffic distribution device in the hybrid access network of the embodiment of the present invention when the first tunnel is congested by the HAAP, splits the probe traffic to the second tunnel, and is used to detect the state of the second tunnel in the state of the first tunnel. After the state of the second tunnel meets the splitting condition, the first tunnel and the second tunnel are used to transmit the traffic of the user, so that by detecting the state of the second tunnel before the splitting, the double tunnel can be avoided.
  • the overall bandwidth of traffic transmission is lower than the bandwidth of traffic transmission using a single tunnel, thereby improving the user experience.
  • FIG. 12 shows a traffic distribution device 600 in a hybrid access network provided by an embodiment of the present invention.
  • the device 600 includes a communication interface 620, a processor 630, a memory 640, and a communication bus 650.
  • the communication interface 620, the processor 630 and the memory 640 are connected by a bus system 650.
  • the memory 640 is used to store instructions.
  • the traffic distribution device 600 can be disposed on the hybrid access aggregation node HAAP in any of the embodiments corresponding to FIG. 2 to FIG. 9 , and the method adopted by the HAAP in the embodiment corresponding to FIG. 2 to FIG. 11 can be adopted.
  • the traffic distribution device 600 and the traffic distribution device 500 may be the same device.
  • the processor 630 reads the program from the memory 640 and performs the following operations according to the instructions corresponding to the program:
  • the processor 630 after determining that the first tunnel is congested when transmitting the traffic of the user, transmits the probe traffic through the second tunnel via the communication interface 620, where the probe traffic is used to obtain the state of the second tunnel in the traffic of the user. flow;
  • the processor 30 acquires a state of the first tunnel and a state of the second tunnel;
  • the processor 630 determines, according to the state of the first tunnel and the state of the second tunnel, whether the state of the first tunnel and the state of the second tunnel meet a shunt condition
  • the processor 630 determines that the state of the first tunnel and the state of the second tunnel meet the offload condition, the first tunnel and the second tunnel are used to transmit the traffic of the user via the communication interface 620.
  • the communication interface 620 can send and receive data and/or information through the first tunnel and/or the second tunnel.
  • the processor 630 may perform the steps and/or processes of the HAAP execution in any of the foregoing embodiments corresponding to the foregoing FIG. 2 to FIG. 9 according to the instructions stored in the memory 640, and details are not described herein.
  • the memory 640 can include a read only memory and a random access memory. A portion of the memory may also include a non-volatile random access memory.
  • the specific values of the threshold values mentioned in the embodiments of the present invention can be set as needed, and will not be exemplified one by one.
  • the first threshold may be set to the bandwidth of the first proportion of the DSL tunnel;
  • the second threshold may be set to the sum of the bandwidths of the second ratio of the DSL tunnel and the LET tunnel;
  • the third threshold may be Set to the sum of the bandwidth of the DSL tunnel and the LTE tunnel in the third ratio.
  • the first ratio, the second ratio, and the third ratio may be as needed Seek to set up, no longer here to illustrate.
  • the processor of the foregoing device may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution completion, or performed by a combination of hardware and software units in the processor.
  • the software unit can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory, in combination with hardware to perform the steps of the above method.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a disk or a CD.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供了一种混合接入网络中的流量分发方法和装置,有助于避免采用双隧道进行流量传输的整体带宽低于采用单隧道进行流量传输的带宽,有助于提升带宽和提高用户体验。该方法包括:混合接入汇聚节点HAAP确定第一隧道在传输用户的流量时发生拥塞后,通过第二隧道传输探测流量;该HAAP获取该第一隧道的状态和该第二隧道的状态;该HAAP根据该第一隧道的状态和该第二隧道的状态,判断该第一隧道的状态和该第二隧道的状态是否满足分流条件;该HAAP确定该第一隧道的状态和该第二隧道的状态满足该分流条件后,采用该第一隧道和该第二隧道传输该用户的流量。

Description

混合接入网络中的流量分发方法和装置
本申请要求于2016年5月31日提交中国专利局、申请号为CN 201610379123.X、发明名称为“混合接入网络中的流量分发方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种混合接入网络中的流量分发方法和装置。
背景技术
混合接入汇聚节点(Hybrid access aggregation point,简称为“HAAP”)是为配合混合接入(Hybrid Access,简称为“HA”)方案而部署的路由器节点。HAAP用于实现每个家庭网关(Home Gateway,简称为“HG”)的用户绑定数字用户线路(Digital Subscriber Line,简称为“DSL”)和长期演进(Long Term Evolution,简称为“LTE”)***的双隧道混合接入网络。
在现有的HA方案中,保留了原有的DSL链路带宽,同时利用LTE资源对网络的带宽进行扩容。具体地,用户通过HG拨号,与HAAP建立绑定bonding隧道,即LTE隧道和DSL隧道,由此用户实现网络访问具有三条路径:LTE隧道、DSL隧道和DSL链路。从业务角度来讲,用户的业务可以分为普通上网业务和高优先级业务两大类,高优先级业务的业务流量只能通过DSL链路传输,因此,除了高优先级业务占用的DSL链路的带宽外,DSL隧道将占用剩下的带宽。对于普通上网业务而言,普通上网业务的业务流量优先通过DSL隧道传输,在DSL带宽不足的情况下再分流到LTE隧道上。HG和HAAP之间在成功建立LTE隧道和DSL隧道之后,会默认自动开启双隧道绑定并对用户的业务流量逐包进行分流。在分流过程中,由于用户的业务流量被逐包进行转发,因此引入了保序机制来克服因LTE隧道和DSL隧道之间的时延差而导致的报文在对端设备出现的乱序。通过在每个报文中增加序列号,对端设备在收到报文后使用该序列号来还原逐包分流导致的报文乱序。
但是,在上述LTE隧道和DSL隧道之间的时延差过大的情况下,对端设备在收到转发来的报文后会一直处于等待状态,或在超出保序时延后直接发送乱序的报文,这样,***的吞吐量会来回震荡,导致双隧道的带宽低于单隧道的带宽。
发明内容
有鉴于此,本发明实施例提供一种混合接入网络中的流量分发方法和装置,有助于提升带宽,从而提高用户体验。
第一方面,提供了一种混合接入网络中的流量分发方法,包括:
HAAP确定第一隧道在传输用户的流量时发生拥塞后,通过第二隧道传输探测流量,该探测流量为该用户的流量中用于获取该第二隧道的状态的流量;
该HAAP获取该第一隧道的状态和该第二隧道的状态;
该HAAP根据该第一隧道的状态和该第二隧道的状态,判断该第一隧道的状态和该第 二隧道的状态是否满足分流条件;
该HAAP确定该第一隧道的状态和该第二隧道的状态满足该分流条件后,采用该第一隧道和该第二隧道传输该用户的流量。
具体地,在该HAAP与家庭网关建立了第一隧道和第二隧道之后,该HAAP可以仅采用第一隧道传输用户的流量,并实时监测该第一隧道是否发生拥塞,在该第一隧道发生拥塞的情况下,将该用户的一部分流量分流到该第二隧道,即通过第二隧道传输探测流量,该探测流量用于获取该第二隧道的在探测阶段的状态。在该HAAP采用第二隧道传输探测流量的情况下,该HAAP获取当前该第一隧道的状态和该第二隧道的状态,在该第一隧道的状态和该第二隧道的状态满足分流条件后,该HAAP将采用该第一隧道和该第二隧道混合传输该用户的流量。
这样,HAAP通过在分流前对第二隧道的状态进行探测,即对第二隧道进行探测的阶段,在满足分流条件后才采用该第二隧道进行分流传输,能够避免出现采用双隧道进行流量传输的整体带宽低于采用单隧道进行流量传输的带宽的情形,从而提高用户体验。
在第一方面,可选地,该探测流量可以是预设比例的用户流量,也可以是一设定值,在此不再对探测流量的具体数值进行举例说明。在采用该第二隧道传输该探测流量的同时,第一隧道采用通常的机制进行传输。在这种情况下,该HAAP获取该第一隧道的状态和该第二隧道的状态,应理解,在传输不同带宽的流量时隧道的状态是不同的,上述状态特指在第二隧道传输探测流量时该第一隧道和该第二隧道的当前状态。
可选地,该第一隧道的状态可以包括该第一隧道的吞吐量和/或该第一隧道的时延;该第二隧道的状态可以包括该第二隧道的吞吐量和/或该第二隧道的时延。具体地,在根据该第一隧道的状态和该第二隧道的状态判断是否满足分流条件时,可以根据下述两个判断方法中的至少一个判断方法进行判断,即两个判断方法中的一个判断方法为根据当前状态下该第一隧道的吞吐量和该第二隧道的吞吐量进行判断,另一个判断方法为根据当前状态下该第一隧道的时延和该第二隧道的时延进行判断。
在第一方面的第一种可能的实现方式中,该方法还包括:该HAAP确定该第一隧道的状态和该第二隧道的状态不满足该分流条件后,判断该第一隧道的状态和该第二隧道的状态是否满足回退条件;该HAAP确定该第一隧道的状态和该第二隧道的状态满足该回退条件后,该HAAP判断该第一隧道是否发生拥塞。
具体地,该HAAP确定了第一隧道的状态和第二隧道的状态不满足分流条件之后,还可以确定该第一隧道的状态和该第二隧道的状态是否满足回退条件。应理解,该回退条件用于表示是否允许回退到仅采用第一隧道传输用户的流量并实时监测该第一隧道是否发生拥塞的情形。若该第一隧道的状态和该第二隧道的状态满足回退条件,该HAAP可以仅采用第一隧道传输用户的流量并实时检测该第一隧道是否发生拥塞。若该第一隧道的状态和该第二隧道的状态不满足回退条件和分流条件,该HAAP可以仅采用第一隧道传输用户的流量,且在一定时长内不检测该第一隧道是否发生拥塞。
结合第一方面的上述可能的实现方式,在第一方面的第二种可能的实现方式中,该方法还包括:该HAAP确定该第一隧道的状态和该第二隧道的状态不满足该回退条件后,该HAAP采用该第一隧道传输该用户的流量,且在预设时长内不对该第一隧道进行拥塞判断。
可选地,该HAAP在进入仅采用第一隧道传输用户的流量,但不检测该第一隧道是否发生拥塞的情形时,可以开启定时器,且定时器超时后,切换到仅采用第一隧道传输用户 的流量并实时检测该第一隧道是否发生拥塞。
这样,该HAAP在通过该第二隧道传输探测流量之后,若确定当前状态下该第一隧道的状态和该第二隧道的状态不满足分流条件,便不会将用户的流量分流到该第二隧道,仅采用该第一隧道传输用户的流量,能够避免出现采用双隧道进行流量传输的整体带宽低于采用单隧道进行流量传输的带宽的情形,从而提高用户体验。
结合第一方面的上述可能的实现方式,在第一方面的第三种可能的实现方式中,在该混合接入汇聚节点HAAP确定第一隧道在传输用户的流量时发生拥塞之前,该方法还包括:该HAAP根据该第一隧道的链路质量参数和第一门限值,判断该第一隧道是否发生拥塞。
可选地,该HAAP可以设置检测周期、检测次数和拥塞次数门限值,在该检测周期内进行预设次数的拥塞检测,若拥塞的次数超出了拥塞次数门限值,则该HAAP可以确定该第一隧道发生拥塞。
结合第一方面的上述可能的实现方式,在第一方面的第四种可能的实现方式中,该HAAP确定第一隧道在传输用户的流量时发生拥塞,包括:若该第一隧道的链路质量参数大于该第一门限值,则该HAAP确定该第一隧道发生拥塞。
可选地,若该第一隧道的链路质量参数小于或者等于该第一门限值,则该HAAP确定该第一隧道未发生拥塞。
结合第一方面的上述可能的实现方式,在第一方面的第五种可能的实现方式中,该第一隧道的链路质量参数为该第一隧道的丢包率,该第一门限值为与该丢包率对应的门限值;或者
该第一隧道的链路质量参数为该第一隧道的吞吐量,该第一门限值为与该吞吐量对应的门限值;或者
该第一隧道的链路质量参数包括该第一隧道的丢包率和该第一隧道的吞吐量,该第一门限值包括第一子门限值和第二子门限值,其中,该第一子门限值为与该丢包率对应的门限值,该第二子门限值为与该吞吐量对应的门限值。
结合第一方面的上述可能的实现方式,在第一方面的第六种可能的实现方式中,该第二隧道的状态包括该第二隧道的吞吐量,该第一隧道的状态包括该第一隧道的吞吐量,该HAAP根据该第一隧道的状态和该第二隧道的状态,判断该第一隧道的状态和该第二隧道的状态是否满足分流条件,包括:
该HAAP判断该第一隧道的吞吐量与该第二隧道的吞吐量之和是否大于第二门限值,该第二门限值是与该第一隧道的吞吐量与该第二隧道的吞吐量之和对应的门限值。
应理解,在对第二隧道进行探测的阶段,该HAAP分配一定比例的流量到第二隧道,剩余的流量依旧按照通常的分流方式进行传输,先流经第一隧道,在第一隧道带宽不足的情况下再分流到第二隧道,例如,若用户的流量为10M,第一隧道的带宽为5M,那么该HAAP先强制分配1M的流量通过第二隧道传输,进入探测阶段。在探测阶段,HAAP获得第一隧道传输5M流量时的状态和第二隧道传输1M的流量时的状态。如果HAAP确定在探测阶段,第一隧道的状态和第二隧道的状态满足分流条件,则HAAP可根据预设策略将10M流量中的4M流量通过第二隧道进行传输。因此,若该第二隧道的链路质量够好,则该第一隧道的吞吐量与该第二隧道的吞吐量之和能够维持10M。若第二隧道的链路质量比较差,则引入第二隧道进行传输后,用户流量将急剧下降,HAAP确定在探测阶段,第一隧道的状态和第二隧道的状态不满足分流条件,暂时不启动第二隧道传输用户流量。
结合第一方面的上述可能的实现方式,在第一方面的第七种可能的实现方式中,该HAAP确定该第一隧道的状态和该第二隧道的状态满足分流条件,包括:该HAAP在该第一隧道的吞吐量与该第二隧道的吞吐量之和大于该第二门限值,确定该第一隧道的状态和该第二隧道的状态满足该分流条件。
可选的,该HAAP在该第一隧道的吞吐量与该第二隧道的吞吐量之和小于或等于该第二门限值,确定该第一隧道的状态和该第二隧道的状态不满足该分流条件。
结合第一方面的上述可能的实现方式,在第一方面的第八种可能的实现方式中,判断该第一隧道的状态和该第二隧道的状态是否满足回退条件,包括:该HAAP判断该第一隧道的吞吐量与该第二隧道的吞吐量之和是否小于第三门限值,该第三门限值是与该第一隧道的吞吐量与该第二隧道的吞吐量之和对应的门限值。
可选的,该第三门限值小于该第二门限值。
结合第一方面的上述可能的实现方式,在第一方面的第九种可能的实现方式中,该HAAP确定该第一隧道的状态和该第二隧道的状态满足回退条件,包括:若该第一隧道的吞吐量与该第二隧道的吞吐量之和小于该第三门限值,则该HAAP确定该第一隧道的状态和该第二隧道的状态满足该回退条件。
结合第一方面的上述可能的实现方式,在第一方面的第十种可能的实现方式中,该第二隧道的状态还包括该第二隧道的时延,该第一隧道的状态还包括该第一隧道的时延,判断该第一隧道的状态和该第二隧道的状态是否满足回退条件,包括:
该HAAP判断该第二隧道的时延和该第一隧道的时延之差是否小于第四门限值,该第四门限值是与该第二隧道的时延和该第一隧道的时延之差对应的门限值。
结合第一方面的上述可能的实现方式,在第一方面的第十一种可能的实现方式中,该HAAP确定该第一隧道的状态和该第二隧道的状态满足回退条件,包括:若该第一隧道的吞吐量与该第二隧道的吞吐量之和大于或等于该第三门限值,且该第二隧道的时延和该第一隧道的时延之差小于该第四门限值,则该HAAP确定该第一隧道的状态和该第二隧道的状态满足该回退条件。
结合第一方面的上述可能的实现方式,在第一方面的第十二种可能的实现方式中,该第二隧道的状态包括该第二隧道的吞吐量和该第二隧道的时延,该第一隧道的状态包括该第一隧道的吞吐量和该第一隧道的时延,该HAAP确定该第一隧道的状态和该第二隧道的状态不满足回退条件,包括:
该HAAP在该第一隧道的吞吐量与该第二隧道的吞吐量之和大于或等于第三门限值,且该第二隧道的时延和该第一隧道的时延之差大于或等于第四门限值,确定该第一隧道的状态和该第二隧道的状态不满足回退条件,其中,该第三门限值是与该第一隧道的吞吐量与该第二隧道的吞吐量之和对应的门限值,该第四门限值是与该第二隧道的时延和该第一隧道的时延之差对应的门限值。
结合第一方面的上述可能的实现方式,在第一方面的第十三种可能的实现方式中,该第二隧道的状态包括该第二隧道的时延,该第一隧道的状态包括该第一隧道的时延,该HAAP根据该第一隧道的状态和该第二隧道的状态,判断该第一隧道的状态和该第二隧道的状态是否满足分流条件,包括:
该HAAP判断该第二隧道的时延与该第一隧道的时延之差是否小于第四门限值,该第四门限值是与该第二隧道的时延与该第一隧道的时延之差对应的门限值。
结合第一方面的上述可能的实现方式,在第一方面的第十四种可能的实现方式中,该HAAP确定该第一隧道的状态和该第二隧道的状态满足分流条件,包括:该HAAP在该第二隧道的时延和该第一隧道的时延之差小于该第四门限值,确定该第一隧道的状态和该第二隧道的状态满足该分流条件。
可选的,该HAAP在该第二隧道的时延和该第一隧道的时延之差大于或等于该第四门限值,确定该第一隧道的状态和该第二隧道的状态不满足该分流条件。
结合第一方面的上述可能的实现方式,在第一方面的第十五种可能的实现方式中,该第二隧道的状态包括该第二隧道的吞吐量,该第一隧道的状态包括该第一隧道的吞吐量,判断该第一隧道的状态和该第二隧道的状态是否满足回退条件,包括:
该HAAP判断该第一隧道的吞吐量与该第二隧道的吞吐量之和是否小于第三门限值,该第三门限值是与该第一隧道的吞吐量与该第二隧道的吞吐量之和对应的门限值。
结合第一方面的上述可能的实现方式,在第一方面的第十六种可能的实现方式中,该HAAP确定该第一隧道的状态和该第二隧道的状态满足回退条件,包括:若该第一隧道的吞吐量与该第二隧道的吞吐量之和小于该第三门限值,则该HAAP确定该第一隧道的状态和该第二隧道的状态满足该回退条件。
结合第一方面的上述可能的实现方式,在第一方面的第十七种可能的实现方式中,该HAAP确定该第一隧道的状态和该第二隧道的状态不满足回退条件,包括:若该第一隧道的吞吐量与该第二隧道的吞吐量之和大于或等于该第三门限值,且小于或等于第二门限值,则该HAAP确定该第一隧道的状态和该第二隧道的状态不满足该回退条件,该第二门限值大于该第三门限值。
结合第一方面的上述可能的实现方式,在第一方面的第十八种可能的实现方式中,在该采用该第一隧道和该第二隧道传输该用户的流量之后,该方法还包括:该HAAP判断该第一隧道的状态和该第二隧道的状态是否满足退出条件;该HAAP确定该第一隧道的状态和该第二隧道的状态满足退出条件后,该HAAP采用该第一隧道传输该用户的流量,并判断该第一隧道是否发生拥塞。
可选的,该HAAP判断该第一隧道的状态和该第二隧道的状态是否满足退出条件之前,该方法还包括:该HAAP获得在采用第一隧道和第二隧道传输该用户的流量过程中,该第一隧道的状态和该第二隧道的状态。
其中,在第一方面的第十八种可能的实现方式中的第一隧道的状态是采用第二隧道分流后第一隧道的状态,第二隧道的状态是采用第二隧道分流后第二隧道的状态。
具体地,该HAAP在根据采用该第二隧道传输探测流量时的状态确定第一隧道的状态和第二隧道的状态满足分流条件,并采用该第一隧道和该第二隧道分流传输用户的流量之后,可以检测在当前情况下该第一隧道的状态和该第二隧道的状态。由于隧道的状态不稳定,在传输过程中可能会出现两个隧道之间的时延差过大或者其中一个隧道的链路质量不好的情况,因此,在分流传输的过程中,可以实时监测该第一隧道的状态和该第二隧道的状态。若该第一隧道的状态和该第二隧道的状态满足退出条件,则该HAAP可以不采用该第二隧道传输用户流量,仅采用该第一隧道进行用户流量的传输,并实时检测该第一隧道是否发生拥塞。
结合第一方面的上述可能的实现方式,在第一方面的第十九种可能的实现方式中,该第一隧道的状态包括该第一隧道的吞吐量和该第一隧道的时延,该第二隧道的状态包括该 第二隧道的吞吐量和该第二隧道的时延,该回退条件为第五门限值和第六门限值,该HAAP确定该第一隧道的状态和该第二隧道的状态满足退出条件,包括:
若该第一隧道的吞吐量与该第二隧道的吞吐量之和小于该第五门限值,且该第二隧道的时延和该第一隧道的时延之差大于该第六门限,则该HAAP确定该第一隧道的状态和该第二隧道的状态满足该退出条件。
应理解,该第五门限值与上述第三门限值可以相同,也可以不相同,该第六门限值与上述第四门限值可以相同,也可以不相同,本发明实施例对此不作限定。
还应理解,该HAAP在判断该第一隧道的状态和该第二隧道的状态是否满足退出条件时,可以将吞吐量作为优先判断条件,在吞吐量不满足回退条件时,再将时延差作为次要判断条件。可选的,该HAAP也可以将时延差作为优先判断条件,在时延差不满足回退条件时,再将吞吐量作为次要判断条件,还可以只根据优先判断条件来进行判断,跳过次要判断条件,本发明实施例对此不作限定。
结合第一方面的上述可能的实现方式,在第一方面的第二十种可能的实现方式中,该获取该第二状态下该第一隧道的状态和该第二隧道的状态,包括:该HAAP接收HG发送的通用路由封装协议GRE报文;该HAAP根据该GRE报文,确定该第一隧道的状态和该第二隧道的状态。
具体地,该HAAP可以通过发送该GRE报文测量隧道的吞吐量、丢包率和时延。该HAAP可以向HG发送该GRE报文,该HG填充该GRE报文内的参数后,再将该GRE报文发送给该HAAP,该HAAP根据该GRE报文中的参数确定该第一隧道的状态和该第二隧道的状态。
第二方面,提供了一种混合接入网络中的流量分发装置,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。
具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第三方面,提供了一种混合接入网络中的流量分发装置,该装置包括:通信接口、存储器、处理器和通信总线。其中,该通信接口、该存储器和该处理器通过该总线***相连。该存储器用于存储指令,该处理器读取该存储器存储的指令,执行第一方面或第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种混合接入网络中的流量分发***,该***包括家庭网关和上述第二方面或第二方面的任一种可能实现方式中的装置;或者
该***包括家庭网关和上述第三方面或第三方面的任一种可能实现方式中的装置。
第五方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
附图说明
图1是一种混合接入网的示意图。
图2是本发明实施例提供的混合接入网络中的流量分发方法的流程图。
图3是本发明实施例提供的混合接入网络中的流量分发方法的状态切换示意图。
图4是本发明实施例提供的流量分发方法中第一状态的示意性流程图。
图5是本发明实施例提供的流量分发方法中第二状态的一种示意性流程图。
图6是本发明实施例提供的流量分发方法中第二状态的另一种示意性流程图。
图7是本发明实施例提供的流量分发方法中第三状态的一种示意性流程图。
图8是本发明实施例提供的流量分发方法中第三状态的另一种示意性流程图。
图9是本发明实施例提供的混合接入网络中的流量分发方法的示意图。
图10是本发明实施例提供的GRE报文的示意图。
图11是本发明实施例提供的混合接入网络中的流量分发装置的示意性框图。
图12是本发明实施例提供的混合接入网络中的流量分发装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。
图1示出了一种混合接入网的示意图。该网络100可以包括家庭网关110和混合接入汇聚节点120。为了提升网络带宽,在家庭网关110和混合接入汇聚节点120之间,可以通过建立第一隧道和第二隧道来混合传输用户的业务流量。
具体地,家庭网关110可以向混合接入汇聚节点120发送请求报文,该请求报文用于请求建立隧道。混合接入汇聚节点120在收到该请求报文之后,可以响应该家庭网关110的请求,学习混合接入汇聚节点120和家庭网关110之间建立隧道所需的第一隧道的地址和第二隧道的地址,分别对第一隧道的地址和第二隧道的地址进行认证授权。在认证授权通过后,该混合接入汇聚节点120建立该第一隧道和该第二隧道,并为家庭网关110分配业务地址。此后,该家庭网关110根据该业务地址访问该混合接入汇聚节点120时,就可以通过第一隧道和第二隧道混合传输用户的业务流量。
在传输用户的上行业务流量时,家庭网关110可以监测高优先级业务流量的上行带宽,计算第一隧道的上行可用带宽,使用户的上行业务流量优先流经该第一隧道,超出上行可用带宽的上行业务流量再流经该第二隧道。同理,在传输用户的下行业务流量时,家庭网关110可以监测高优先级业务流量的下行带宽,计算第一隧道的下行可用带宽,并发送携带该下行可用带宽的通知报文告知混合接入汇聚节点120,该混合接入汇聚节点120在收到该下行可用带宽之后,使用户的下行业务流量优先流经该第一隧道,超出下行可用带宽的下行业务流量再流经该第二隧道。
应理解,家庭网关110和混合接入汇聚节点120之间还可以建立其他多个隧道,本发明实施例对此不作限定。还应理解,上述的第一隧道可以是DSL隧道,第二隧道可以是LTE隧道,本文仅以DSL和LTE混合接入的场景为例进行说明,但本发明实施例不限于此。
从业务角度来讲,用户的业务可以分成两大类:一类是普通上网业务,如文件传输协议(File Transfer Protocol,简称为“FTP”)下载等,另一类是高优先级业务,如交互式网络电视IPTV、视频点播技术(Video On Demand,简称为“VOD”)、网络电话(Voice over Internet Protocol,简称为“VOIP”)等,这一类高优先级业务统一称为旁路Bypass业务。以DSL隧道和LTE隧道为例,Bypass业务具有高优先级,只走原有的DSL链路,不走隧道。因此,除了高优先级业务占用的DSL链路的带宽外,DSL隧道将占用剩下的带宽。对于普通上网业务而言,普通上网业务的业务流量优先通过DSL隧道传输,在DSL带宽不足的情况下再分流到LTE隧道上。
HG和HAAP之间在成功建立LTE隧道和DSL隧道之后,会默认自动开启双隧道绑定并对用户的业务流量逐包进行分流。在分流过程中,由于用户的业务流量被逐包进行转发,因此引入了保序机制来克服因LTE隧道和DSL隧道之间的时延差而导致的报文在对端设备出现的乱序。通过在每个报文的GRE头中增加序列号,对端设备在收到报文后使用该序列号来还原逐包分流导致的报文乱序。
但是,在上述LTE隧道和DSL隧道之间的时延差过大的情况下,对端设备在收到转发来的报文后会一直处于等待状态,或在超出保序时延后直接发送乱序的报文,这样,***的吞吐量会来回震荡,导致双隧道的带宽低于单隧道的带宽。
为了解决上述双隧道的带宽低于单隧道的带宽的问题,本发明实施例提出了一种新的混合接入网络中双隧道下的流量分发方法,有助于提升带宽,即有助于避免双隧道的带宽低于单隧道的带宽。该方法中,HAAP确定第一隧道在传输用户的流量时发生拥塞后,通过第二隧道传输探测流量,所述探测流量为所述用户的流量中用于获取所述第二隧道的状态的流量;所述HAAP获取所述第一隧道的状态和所述第二隧道的状态;所述HAAP根据所述第一隧道的状态和所述第二隧道的状态,判断所述第一隧道的状态和所述第二隧道的状态是否满足分流条件;所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足所述分流条件后,采用所述第一隧道和所述第二隧道传输所述用户的流量。
图2示出了本发明实施例提供的混合接入网络中的流量分发方法的流程图。该方法200可以应用于图1所示的网络100,但本发明实施例不限于此。
S210,HAAP确定第一隧道在传输用户的流量时发生拥塞后,通过第二隧道传输探测流量,该探测流量为该用户的流量中用于获取该第二隧道的状态的流量;
具体地,在HAAP和HG之间建立了第一隧道和第二隧道之后,该HAAP优先采用该第一隧道传输用户的业务流量,并实时监测该第一隧道的状态,若该第一隧道发生拥塞,则该HAAP将该第一隧道上的一部分流量分流到第二隧道,即探测流量。由该第二隧道来传输这一部分流量,以便于该HAAP根据该第二隧道在传输时的状态决定能否将第一隧道上的流量分流到第二隧道。
应理解,在对第二隧道进行探测的阶段,该HAAP分配一定比例的流量到第二隧道,剩余的流量依旧按照通常的分流方式进行传输,先流经第一隧道,在第一隧道带宽不足的情况下再分流到第二隧道,例如,若用户的流量为10M,第一隧道的带宽为5M,那么该HAAP先强制分配1M的流量通过第二隧道传输,进入探测阶段。在探测阶段,HAAP获得第一隧道传输5M流量时的状态和第二隧道传输1M的流量时的状态。如果HAAP确定在探测阶段,第一隧道的状态和第二隧道的状态满足分流条件,则HAAP可根据预设策略将10M流量中的4M流量通过第二隧道进行传输。因此,若该第二隧道的链路质量够好,则该第一隧道的吞吐量与该第二隧道的吞吐量之和能够维持10M。若第二隧道的链路质量比较差,则引入第二隧道进行传输后,用户流量将急剧下降,HAAP确定在探测阶段,第一隧道的状态和第二隧道的状态不满足分流条件,暂时不启动第二隧道传输用户流量。
作为一个可选的实施例,在该混合接入汇聚节点HAAP确定第一隧道在传输用户的流量时发生拥塞之前,该方法还包括:该HAAP根据该第一隧道的链路质量参数和第一门限值,判断该第一隧道是否发生拥塞。
该HAAP可以通过多种方式确定该第一隧道在传输该用户的流量时是否发生拥塞。作为一个可选的实施例,该HAAP确定第一隧道在传输用户的流量时发生拥塞,包括:若该 第一隧道的链路质量参数大于该第一门限值,则该HAAP确定该第一隧道发生拥塞。
作为一个可选的实施例,该第一隧道的链路质量参数为该第一隧道的丢包率,该第一门限值为与该丢包率对应的门限值;或者该第一隧道的链路质量参数为该第一隧道的吞吐量,该第一门限值为与该吞吐量对应的门限值;或者该第一隧道的链路质量参数包括该第一隧道的丢包率和该第一隧道的吞吐量,该第一门限值包括第一子门限值和第二子门限值,其中,该第一子门限值为与该丢包率对应的门限值,该第二子门限值为与该吞吐量对应的门限值。
作为一个可选的实施例,该HAAP确定第一隧道在传输用户的流量时发生拥塞,包括:该HAAP判断该第一隧道的吞吐量是否大于第一门限值;若该第一隧道的吞吐量大于该第一门限值,该HAAP确定该第一隧道发生拥塞。
作为一个可选的实施例,该方法还包括:若该第一隧道的吞吐量小于或者等于该第一门限值,该HAAP判断该第一隧道的丢包率是否大于丢包率门限值;若该第一隧道的丢包率大于该丢包率门限值,该HAAP确定该第一隧道发生拥塞。
具体地,该HAAP可以根据第一隧道的吞吐量和/或丢包率来确定该第一隧道的当前状态,并判断在仅采用该第一隧道传输用户的业务流量时该第一隧道是否发生拥塞。
S220,该HAAP获取该第一隧道的状态和该第二隧道的状态;
具体地,在该HAAP将探测流量分流到第二隧道之后,该HAAP获取第一隧道的状态和第二隧道的状态。
该HAAP可以通过多种方式获取该第一隧道的状态和该第二隧道的状态。作为一个可选的实施例,该HAAP获取该第一隧道的状态和该第二隧道的状态,包括:该HAAP接收HG发送的路由封装协议(Generic Routing Encapsulation,简称为“GRE”);该HAAP根据该GRE报文,确定该第一隧道的状态和该第二隧道的状态。
具体地,该HAAP可以向HG发送GRE报文,通过GRE报文测量第一隧道和第二隧道的状态。该HG在收到该GRE报文之后,填充该GRE报文内的相关链路质量参数,再将该GRE报文返回给该HAAP,这样,该HAAP接收到该HG返回的该GRE报文,根据该GRE报文中携带的链路质量参数,就可以获得该第一隧道的状态和该第二隧道的状态。
本发明实施例中,HAAP可周期性监测第一隧道的状态和第二隧道的状态。S220中的第一隧道的状态和第二隧道的状态,是HAAP通过第二隧道传输探测流量后,获取的第一隧道的状态和第二隧道的状态。
S230,该HAAP根据该第一隧道的状态和该第二隧道的状态,判断该第一隧道的状态和该第二隧道的状态是否满足分流条件;
具体地,该HAAP可以根据该第一隧道的状态和该第二隧道的状态判断将探测流量分流到第二隧道后,第一隧道和第二隧道的整体带宽与仅采用第一隧道传输流量相比是否有所提升,从而决定是否要对用户的流量进行分流。
该HAAP可以通过多种方式判断是否进行分流,具体地,该HAAP可以将吞吐量作为分流条件进行判断,但本发明实施例不限于此。
作为一个可选的实施例,判断该第一隧道的状态和该第二隧道的状态是否满足分流条件,包括:该HAAP判断该第一隧道的吞吐量与该第二隧道的吞吐量之和是否大于第二门限值,该第二门限值是与该第一隧道的吞吐量与该第二隧道的吞吐量之和对应的门限值。
作为一个可选的实施例,该第二隧道的状态包括该第二隧道的时延,该第一隧道的状 态包括该第一隧道的时延,该HAAP根据该第一隧道的状态和该第二隧道的状态,判断该第一隧道的状态和该第二隧道的状态是否满足分流条件,包括:该HAAP判断该第二隧道的时延与该第一隧道的时延之差是否小于第四门限值,该第四门限值是与该第二隧道的时延与该第一隧道的时延之差对应的门限值。
S240,该HAAP确定该第一隧道的状态和该第二隧道的状态满足该分流条件后,采用该第一隧道和该第二隧道传输该用户的流量。
该HAAP确定第一隧道的状态和第二隧道的状态满足分流条件,这就说明采用第一隧道和第二隧道混合传输用户的流量能够达到提升带宽的效果,因此,该HAAP可将第一隧道拥塞的流量分流到第二隧道,采用该第一隧道和该第二隧道传输该用户的流量。
若将吞吐量作为分流条件进行判断,即第二门限值是与吞吐量之和对应的门限值,在一个可选的实施例中,该HAAP确定该第一隧道的状态和该第二隧道的状态满足该分流条件,包括:若该第一隧道的吞吐量与该第二隧道的吞吐量之和大于该第二门限值,该HAAP确定该第一隧道的状态和该第二隧道的状态满足该分流条件。
若将时延差作为分流条件进行判断,即第四门限值是与时延差对应的门限值,在另一个可选的实施例,该HAAP确定该第一隧道的状态和该第二隧道的状态满足分流条件,包括:该HAAP在该第二隧道的时延和该第一隧道的时延之差小于该第四门限值,确定该第一隧道的状态和该第二隧道的状态满足分流条件。
本发明实施例的混合接入网络中的流量分发方法,HAAP检测到第一隧道拥塞后,通过第二隧道传输探测流量,以探测第二隧道的状态。在第二隧道传输探测流量的阶段,HAAP确定该第一隧道的状态和该第二隧道的状态满足分流条件后,再采用该第一隧道和该第二隧道混合传输用户的流量。这样,HAAP在分流前对第二隧道的状态进行探测,能够避免出现采用双隧道进行流量传输的整体带宽低于采用单隧道进行流量传输的带宽的情形,从而提高用户体验。
作为一个可选的实施例,该方法还包括:该HAAP确定该第一隧道的状态和该第二隧道的状态不满足该分流条件后,判断该第一隧道的状态和该第二隧道的状态是否满足回退条件;该HAAP确定该第一隧道的状态和该第二隧道的状态满足该回退条件后,该HAAP判断该第一隧道是否发生拥塞。
可选的,该方法还包括:该HAAP确定该第一隧道的状态和该第二隧道的状态不满足该回退条件后,该HAAP采用该第一隧道传输该用户的流量,且在预设时长内不对该第一隧道进行拥塞判断。其中,该预设时长可以称为惩罚时长。惩罚时长用于表示惩罚阶段的时间段。惩罚时长的设置可以由该HAAP根据实际情况而定,例如,对于一个用户而言,第一次进入惩罚阶段时,该HAAP可以设置惩罚时长为30s。若同一用户第二次进入惩罚阶段,则该HAAP可以将惩罚时长延长至60s,依次类推,但本发明实施例对此不作限定。
举例说明,该HAAP在预设时长内不对该第一隧道进行拥塞判断可通过定时器实现,即该HAAP可以设置定时器,在该定时器超时之后,该HAAP判断该第一隧道是否处于拥塞状态。
具体地,该HAAP确定了在采用第二隧道传输探测流量的情况下,第一隧道的状态和第二隧道的状态不满足分流条件之后,还可以确定该第一隧道的状态和该第二隧道的状态是否满足回退条件。该回退条件用于表示是否允许回退到仅采用第一隧道传输用户的流量并实时监测该第一隧道是否发生拥塞的情形。若该第一隧道的状态和该第二隧道的状态满 足回退条件,该HAAP可以仅采用第一隧道传输用户的流量并实时检测该第一隧道是否发生拥塞;若该第一隧道的状态和该第二隧道的状态不满足回退条件,该HAAP可以仅采用第一隧道传输用户的流量,但在预设时长内不检测该第一隧道是否发生拥塞。
此外,该HAAP可以通过多种方式确定该第一隧道的状态和该第二隧道的状态是否满足回退条件。
作为一个可选的实施例,该第二隧道的状态还包括该第二隧道的时延,该第一隧道的状态还包括该第一隧道的时延,该判断该第一隧道的状态和该第二隧道的状态是否满足回退条件,包括:该HAAP判断该第二隧道的时延和该第一隧道的时延之差是否小于第四门限值,该第四门限值是与该第二隧道的时延和该第一隧道的时延之差对应的门限值。若该第二隧道的时延和该第一隧道的时延之差小于第四门限值,则HAAP确定该第一隧道的状态和该第二隧道的状态满足该回退条件。
作为一个可选的实施例,该第二隧道的状态包括该第二隧道的吞吐量,该第一隧道的状态包括该第一隧道的吞吐量,该判断该第一隧道的状态和该第二隧道的状态是否满足回退条件,包括:该HAAP判断该第一隧道的吞吐量与该第二隧道的吞吐量之和是否小于第三门限值,该第三门限值是与该第一隧道的吞吐量与该第二隧道的吞吐量之和对应的门限值。若该第一隧道的吞吐量与该第二隧道的吞吐量之和小于该第三门限值,该HAAP确定该第一隧道的状态和该第二隧道的状态满足该回退条件。其中,该第三门限值小于该第二门限值。
作为一个可选的实施例,该方法还包括:若该第一隧道的吞吐量与该第二隧道的吞吐量之和大于或者等于该第三门限值,该HAAP判断该第一隧道的时延与该第二隧道的时延的差值是否小于第四门限值;若该第一隧道的时延与该第二隧道的时延的差值小于该第四门限值,该HAAP确定该第一隧道的状态和该第二隧道的状态满足该回退条件。
作为一个可选的实施例,该HAAP确定该第一隧道的状态和该第二隧道的状态不满足该回退条件,包括:若该第一隧道的吞吐量与该第二隧道的吞吐量之和大于或者等于该第三门限值,且该第一隧道的时延与该第二隧道的时延的差值大于该第四门限值,该HAAP确定该第一隧道的状态和该第二隧道的状态不满足该回退条件。
这样,该HAAP可以具体通过吞吐量和/或时延差来判断在探测阶段,第一隧道的状态和第二隧道的状态是否满足分流条件或回退条件,从而对当前的流量传输状态进行相应的调整。
作为一个可选的实施例,在该采用该第一隧道和该第二隧道传输该用户的流量之后,该方法还包括:该HAAP判断该第一隧道的状态和该第二隧道的状态是否满足退出条件;该HAAP确定该第一隧道的状态和该第二隧道的状态满足退出条件后,该HAAP采用该第一隧道传输该用户的流量,并判断该第一隧道是否发生拥塞。
具体地,该HAAP在已经分流成功后,采用第一隧道和第二隧道混合传输该用户的流量。但是,由于隧道的状态不稳定,在传输过程中可能会出现两个隧道之间的时延差过大或者其中一个隧道的链路质量不好的情况。因此,在分流传输的过程中,可以实时监测该第一隧道的状态和该第二隧道的状态。若该第一隧道的状态和该第二隧道的状态满足上述退出条件,则该HAAP可以不采用该第二隧道传输用户流量,仅采用该第一隧道进行用户流量的传输。
该HAAP可以通过多种方式确定该第一隧道的状态和该第二隧道的状态是否满足退出 条件。作为一个可选的实施例,判断该第一隧道的状态和该第二隧道的状态是否满足退出条件,包括:该HAAP判断该第一隧道的吞吐量与该第二隧道的吞吐量之和是否大于第五门限值。相应的,该HAAP确定该第一隧道的状态和该第二隧道的状态满足退出条件,包括:若该第一隧道的吞吐量与该第二隧道的吞吐量之和小于或者等于该第五门限值,该HAAP确定该第一隧道的状态和该第二隧道的状态满足该退出条件。
作为一个可选的实施例,判断该第一隧道的状态和该第二隧道的状态是否满足退出条件,还包括:若该第一隧道的吞吐量与该第二隧道的吞吐量之和小于或者等于该第五门限值,判断该第一隧道的时延与该第二隧道的时延的差值是否大于第六门限值。相应的,该HAAP确定该第一隧道的状态和该第二隧道的状态满足退出条件,包括:在该第一隧道的吞吐量与该第二隧道的吞吐量之和小于或者等于该第五门限值,且该第一隧道的时延与该第二隧道的时延的差值大于该第六门限值,该HAAP确定该第一隧道的状态和该第二隧道的状态满足该退出条件。
这样,在正常分流的过程中,该HAAP可以具体通过吞吐量和/或时延差来判断是否要退出分流模式,即不采用第二隧道进行分流,仅采用第一隧道传输用户的流量,能够根据当前情况实时调整用户的流量传输状态,从而提高用户体验。
其中,该第五门限值与上述第三门限值可以相同,也可以不相同。该第六门限值与上述第四门限值可以相同,也可以不相同,本发明实施例对此不作限定。
还应理解,该HAAP可以将两个隧道的吞吐量之和作为退出判定条件,也可以将两个隧道的吞吐量之和与两个隧道之间的时延差作为退出判定条件,本发明实施例对此不作限定。
可选的,该HAAP可以设置检测周期和退出次数,HAAP记录满足退出条件的次数。在满足退出条件的次数达到该退出次数时,HAAP可不采用该第二隧道进行分流,仅采用第一隧道传输用户流量。对于本发明实施例的拥塞判定、分流判定、回退判定等等,在具体实现过程中都可以增加次数限制,本发明实施例对此不作限定。
图3示出了本发明实施例提供的混合接入网络中的流量分发方法的状态切换示意图。
S310,混合接入汇聚节点HAAP设置用户的业务流量的流量传输状态为第一状态,在该第一状态下,仅采用第一隧道传输用户的流量,在传输流量的同时检测该第一隧道是否发生拥塞;
S320,该HAAP设置用户的业务流量的流量传输状态为第二状态,在该第二状态下,采用第一隧道和第二隧道传输用户的流量,将探测流量在该第二隧道上承载,该探测流量为用户的流量中用于获取第二隧道的状态的流量;
S330,该HAAP设置用户的业务流量的流量传输状态为第三状态,在该第三状态下,采用通常的逐包分流方式传输用户的流量,即在第一隧道和第二隧道上混合传输该用户的流量;
S340,该HAAP设置用户的业务流量的流量传输状态为第四状态,在该第四状态下,用户的流量仅通过第一隧道传输,但是,在第四状态下,不对该第一隧道进行拥塞检测。
具体地,在HAAP上可以运行一个状态机,用户的业务流量在HAAP与HG之间的流量传输状态可以在多个状态之间切换。下面结合图3详细描述上面四种状态之间的状态切换规则。
(1)从S310切换到S320:在采用第一隧道传输用户的流量时,若该HAAP检测到 该第一隧道发生拥塞,则会通过第二隧道传输探测流量,即将流量传输状态从S310切换到S320,该探测流量用于获取该第二隧道的状态,以便于该HAAP判断是否可以将该用户的流量分流到该第二隧道。
(2)从S320切换到S330:若该HAAP确定该第一隧道的状态和该第二隧道的状态满足上述分流条件,则将流量传输状态从S320切换到S330,即采用通常的逐包分流模式通过该第一隧道和该第二隧道传输该用户的流量。
(3)从S320切换到S310:若该HAAP确定该第一隧道的状态和该第二隧道的状态不满足上述分流条件但满足回退条件,则将流量传输状态从S320切换回S310。
(4)从S320切换到S340:若该HAAP确定该第一隧道的状态和该第二隧道的状态不满足上述分流条件且不满足上述回退条件,则将流量传输状态从S320切换到S340。
(5)从S340切换到S310:该HAAP在第一时间段内维持第四状态,该第一时间段过后,直接将流量传输状态切换回第一状态,即从S340切换回S310,从而通过第一隧道传输用户的流量,同时实时监测该第一隧道是否发生拥塞。
(6)从S330切换到S310:在第三状态下,即采用第一隧道和第二隧道混合传输用户的流量时,可能出现吞吐量不足或链路质量不好的情况,因此,需要该HAAP获取该状态下第一隧道的状态和第二隧道的状态,并判断该第一隧道的状态和该第二隧道的状态是否满足退出条件,若满足退出条件,则该HAAP不采用第二隧道传输流量,将流量传输状态从S330切换回S310,仅采用第一隧道传输用户的流量。
这样,用于流量传输的四个状态之间能够根据第一隧道的当前状态和/或第二隧道的当前状态互相切换,避免出现在双隧道绑定时双隧道的整体带宽低于单隧道带宽的情形,从而提高用户体验。
图4是本发明实施例提供的流量分发方法中第一状态的示意性流程图。第一状态S310包括S301至S304的内容。
S301,该HAAP获得在该第一状态下该第一隧道的吞吐量;
S302,该HAAP判断该第一隧道的吞吐量是否大于第一子门限值;
若该第一隧道的吞吐量大于该第一子门限值,则该HAAP确定该第一隧道出现拥塞,HAAP执行S320,将状态机从第一状态S310切换至第二状态S320。其中,第一子门限值是与第一隧道的吞吐量对应的门限值,可用于判断该第一隧道是否发生拥塞。
可选地,该方法还包括:若该第一隧道的吞吐量小于或者等于该第一子门限值,则该HAAP执行S303,即获得在该第一状态下该第一隧道的丢包率。
S304,该HAAP判断该第一隧道的丢包率是否大于第二子门限值;
若该第一隧道的丢包率大于该第二子门限值,则该HAAP确定该第一隧道出现拥塞,HAAP将状态机从第一状态S310切换至第二状态S320。
若该第一隧道的丢包率小于或者等于该第二子门限值,则该HAAP确定第一隧道未拥塞,执行S301。HAAP可周期性检测第一隧道的吞吐量,以判断所述第一隧道是否发生拥塞。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
图5是本发明实施例提供的流量分发方法中第二状态的一种示意性流程图。第二状态S320包括S305至S309的内容。
S305,HAAP获得在该第二状态下的第一隧道的吞吐量与第二隧道的吞吐量之和;
S306,该HAAP判断该第一隧道的吞吐量与第二隧道的吞吐量之和是否大于第二门限值;
若该第一隧道的吞吐量与第二隧道的吞吐量之和大于第二门限值,则该HAAP确定第一隧道和第二隧道的当前状态满足分流条件,HAAP从第二状态S320切换至第三状态S330,即执行图3中对应的(2)。
若该第一隧道的吞吐量与第二隧道的吞吐量之和小于或等于该第二门限值,则该HAAP执行S307。
S307,该HAAP判断该第一隧道的吞吐量与第二隧道的吞吐量之和是否小于第三门限值。其中,该第二门限值大于该第三门限值。
若该第一隧道的吞吐量与第二隧道的吞吐量之和小于该第三门限值,则该HAAP确认第一隧道和第二隧道的当前状态满足回退条件,HAAP从第二状态S320切换回第一状态S310,即执行图3中对应的(3)。
若该第一隧道的吞吐量与第二隧道的吞吐量之和大于或者等于该第三门限值,则该HAAP执行S308。
S308,HAAP获得该第一隧道的时延与该第二隧道的时延的差值,之后执行S309;
S309,该HAAP判断该第一隧道的时延与该第二隧道的时延的差值是否小于第四门限值;
若该第一隧道与该第二隧道之间的时延差小于该第四门限值,则该HAAP确定该第一隧道和该第二隧道的当前状态满足回退条件,HAAP从第二状态S320切换回第一状态S310,即执行图3中对应的(3)。
若该第一隧道的时延与该第二隧道的时延间的差值大于或者等于该第四门限值,则表明在引入第二隧道之后,第一隧道和第二隧道之间的时延差过大,拉低了整体的吞吐量,则该HAAP从第二状态S320切换至第四状态S340,即图3中对应的(4)。
可选地,该方法还包括:在进入第四状态S340的第一时间段之后,该HAAP执行S310,利用第一隧道的吞吐量和/或第一隧道的丢包率进行拥塞判断。
应理解,在流量传输状态处于第二状态时,该HAAP可以通过多种方式确定是否要进行状态的切换。例如,在图5中,该HAAP将第一隧道的吞吐量与第二隧道的吞吐量之和作为优先判断条件,在该第一隧道的吞吐量与第二隧道的吞吐量之和不满足分流条件和回退条件时,再将第一隧道与第二隧道之间的时延差作为判断条件,进行进一步判断。
可选地,如图6所示,该HAAP也可以将该第一隧道的时延与该第二隧道的时延之差作为优先判断条件,在该第一隧道的时延与该第二隧道的时延之差不满足分流条件时,再根据第一隧道的吞吐量与第二隧道的吞吐量之和判断是否回退至第一状态或进入第四状态。
S308,该HAAP获得在该第二状态下的第一隧道的时延与第二隧道的时延的差值;
S309,该HAAP判断该第一隧道的时延与该第二隧道之间的时延的差值是否小于第四门限值;
若该第一隧道的时延与第二隧道的时延的差值小于该第四门限值,则该HAAP确定该第一隧道和该第二隧道的当前状态满足该分流条件,该HAAP将流量传输状态从第二状态S320切换至第三状态S330,即执行图3对应的(2)。
该第一隧道的时延与该第二隧道之间的时延的差值大于或者等于该第四门限值,则表明在引入第二隧道之后,该第一隧道的时延和该第二隧道的时延之差过大,该HAAP执行S305。
S305,该HAAP获得在该第二状态下的第一隧道的吞吐量与第二隧道的吞吐量之和,之后执行S306;
S306,该HAAP判断该第一隧道的吞吐量与第二隧道的吞吐量之和是否大于第二门限值;
若该第一隧道的吞吐量与第二隧道的吞吐量之和大于该第二门限值,则该HAAP确认第一隧道和第二隧道的当前状态满足分流条件,HAAP将流量传输状态从第二状态S320切换至第三状态S330,即执行图3对应的(2)。
若该第一隧道的吞吐量与第二隧道的吞吐量之和小于或者等于第二门限值,则HAAP执行S307。
S307,该HAAP判断该第一隧道的吞吐量与第二隧道的吞吐量之和是否小于第三门限值。其中,该第二门限值大于该第三门限值。
若该第一隧道的吞吐量与该第二隧道的吞吐量之和小于该第三门限值,则该HAAP确定该第一隧道和该第二隧道的当前状态满足回退条件,该HAAP将流量传输状态从第二状态S320切换回第一状态S310,即执行图3对应的(3)。
若该第一隧道的吞吐量与第二隧道的吞吐量之和大于或等于该第三门限值,则该HAAP将流量传输状态从第二状态S320切换至第四状态S340,即执行图3对应的(4)。
可选地,在第四状态的第一时间段之后,该HAAP将流量传输状态切换回第一状态,即执行图3对应的(5)。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
图7是本发明实施例提供的流量分发方法中第三状态的一种示意性流程图。第三状态S330包括S311至S314的内容。
S311,该HAAP获得在该第三状态下该第一隧道的吞吐量与该第二隧道的吞吐量之和;
S312,该HAAP判断该第一隧道的吞吐量与该第二隧道的吞吐量之和是否大于第五门限值;
其中,该第五门限值可以与第三门限值相同,也可以与第三门限值不同。
若该第一隧道的吞吐量与该第二隧道的吞吐量之和大于该第五门限值,则该HAAP执行S311。HAAP可周期性检测第一隧道的吞吐量与第二隧道的吞吐量之和。
若该第一隧道的吞吐量与该第二隧道的吞吐量之和小于或者等于该第五门限值,则该HAAP执行S313。
S313,该HAAP获得该第一隧道与该第二隧道之间的时延差,之后执行S314;
其中,该第一隧道与该第二隧道之间的时延差即为该第一隧道的时延与该第二隧道的时延之间的差值。
S314,该HAAP判断该第一隧道与该第二隧道之间的时延差是否大于第六门限值;
若该第一隧道与该第二隧道之间的时延差大于该第六门限值,则该HAAP将流量传输状态从第三状态S330切换回第一状态S310,即执行图3对应的(6)。
若该第一隧道与该第二隧道之间的时延差小于或者等于该第六门限值,则该HAAP执行S311。HAAP可周期性检测第一隧道的吞吐量与第二隧道的吞吐量之和。
应理解,在流量传输状态处于第三状态时,该HAAP可以通过多种方式确定是否要进行状态的切换。例如,在图7中,该HAAP将第一隧道的吞吐量与第二隧道的吞吐量之和作为优先判断条件,在第一隧道的吞吐量与第二隧道的吞吐量之和不满足退出条件时,再将第一隧道的时延与第二隧道的时延之差作为判断条件,进行进一步判断。
可选地,如图8所示,该HAAP也可以将第一隧道的时延与第二隧道的时延之差作为优先判断条件,在该第一隧道的时延与第二隧道的时延之差不满足退出条件时,再根据第一隧道的吞吐量与第二隧道的吞吐量之和判断是否切换回第一状态。
S313,该HAAP获得该第一隧道与该第二隧道之间的时延差;
S314,该HAAP判断该第一隧道与该第二隧道之间的时延差是否大于第六门限值;
若该第一隧道与该第二隧道之间的时延差大于该第六门限值,则该HAAP执行S311。
若该第一隧道与该第二隧道之间的时延差小于或者等于该第六门限值,则该HAAP执行S313。HAAP可周期性检测第一隧道与第二隧道之间的时延差。
S311,该HAAP获得在该第三状态下该第一隧道的吞吐量与该第二隧道的吞吐量之和;
S312,该HAAP判断该第一隧道的吞吐量与该第二隧道的吞吐量之和是否大于第五门限值;
若该第一隧道的吞吐量与该第二隧道的吞吐量之和小于或者等于该第五门限值,则该HAAP将流量传输状态从第三状态S330切换回第一状态S310,即执行图3对应的(6)。
若该第一隧道的吞吐量与该第二隧道的吞吐量之和大于该第五门限值,则该HAAP执行S313。HAAP可周期性检测第一隧道与第二隧道之间的时延差。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
在本发明实施例中,该HAAP切换到第一状态表示该HAAP执行图4所示的S301至S304的相应内容。该HAAP切换到第二状态表示该HAAP执行图5所示的S306至S309的相应内容,或者执行图6所示的S309至S307的相应内容。该HAAP切换到第三状态表示该HAAP执行图7所示的S311至S314的相应内容,或者执行图8所示的S313至S312的相应内容。
图9是本发明实施例提供的混合接入网络中的流量分发方法的示意图。如图9所示,该实施例提供的流量分发方法包括:
S400,HAAP采用第一隧道传输用户的流量。
S401,该HAAP向HG发送第一GRE报文。
S401可与S400同时执行,S401还可在S400执行之前或之后执行。该第一GRE报文用于获取该第一隧道的第一参数。所述第一隧道的第一参数可反映第一隧道的链路质量。
其中,该HAAP可周期性地向HG发送第一GRE报文。
S402,该HG获得第二GRE报文。
其中,该HG接收该第一GRE报文。该HG根据该第一GRE报文和第一隧道的第一参数,获得第二GRE报文。所述第二GRE报文包括所述第一GRE报文和所述第一隧道的第一参数。
S403,该HG向该HAAP发送该第二GRE报文。
S404,该HAAP向HG发送第三GRE报文。
该第三GRE报文用于获取第一隧道的第二参数和第二隧道的参数。该第一隧道的第二参数可反映第一隧道的链路质量。该第二隧道的参数可反映第二隧道的链路质量。该第一隧道的第二参数可以和该第一隧道的第一参数完全相同,也可以和该第一隧道的第一参数不完全相同。
其中,该HAAP可周期性地向HG发送所述第三GRE报文。
S405,该HG获得第四GRE报文。
其中,该HG接收第三GRE报文。该HG根据该第三GRE报文、第一隧道的第二参数和第二隧道的参数,获得第四GRE报文。所述第四GRE报文包括所述第三GRE报文、所述第一隧道的第二参数和所述第二隧道的参数。
S406,该HG向该HAAP发送该第四GRE报文。
S407,该HAAP可根据接收到的第二GRE报文确定第一隧道出现拥塞,执行S408。
可选的,S407之前,该HAAP可根据第二GRE报文中的第一隧道的第一参数,判断第一隧道是否出现拥塞。
S408,该HAAP通过第二隧道传输探测流量。
S409,该HAAP可根据第四GRE报文,确定该第一隧道和第二隧道满足分流条件;
其中,该第四GRE报文包括的第二隧道的参数可以是第二隧道在传输探测流量下的获得的参数。
可选的,S409之前,该HAAP可根据第一隧道的第二参数和第二隧道的参数,判断所述第一隧道和所述第二隧道是否满足分流条件。
S410,该HAAP采用第一隧道和第二隧道混合传输该用户的流量。
在上述过程中,由HAAP周期性发送GRE报文,用于获取在当前流量传输状态下的第一隧道的参数和/或第二隧道的参数,并根据该第一隧道的参数和/或第二隧道的参数对用户的流量传输状态进行调整。
具体地,该GRE报文可以用于测量隧道的吞吐量、丢包率和时延。更具体地,例如,该第一隧道为数字用户线路DSL隧道,第二隧道为长期演进LTE隧道。定义该GRE报文的控制消息类型为10,具体格式如图10所示。该GRE报文可以包括:校验(C)位、关键字(K)位、封装层数(recursion)字段、版本(version)字段、协议类型(Protocol Type)、关键字(key)字段、控制消息类型(MsgType)、隧道类型(T)、保留字段(Res)、属性类型(Attribute Type)、属性长度(Date length)和属性值(Data Value)。对于校验位来说,如果该位置1,表示GRE头***了校验和字段;该位为0表示GRE头不包含校验和字段。对于关键字位来说,如果该位置1,表示GRE头***了关键字字段;该位为0表示GRE头不包含关键字字段。封装层数字段用于表示该GRE报文被封装的层数,该字段的作用是防止报文被无限次的封装。在完成一次GRE封装后将该字段加1,如果封装层数大于3,则丢弃该报文。关键字字段用于隧道接收端对收到的报文进行验证。隧道类型,用于表示该报文属于DSL隧道或者LTE隧道。
本发明实施例对GRE报文包括的AVP进行了扩展,增加了用来携带DSL隧道的相关属性的AVP和用来携带LTE隧道的相关属性的AVP。用来携带DSL隧道的相关属性的AVP可通过扩展的属性类型、属性长度和属性值字段来携带DSL隧道的相关属性。用来 携带LTE隧道的相关属性的AVP可通过扩展的属性类型、属性长度和属性值字段来携带LTE隧道的相关属性。其中,DSL隧道的相关属性包括用于获得DSL隧道的丢包率、吞吐量和/或时延的参数。LET隧道的相关属性包括用于获得LTE隧道的丢包率、吞吐量和/或时延的参数。在此不再对AVP的具体形式和内容进行逐一举例说明。
该HAAP在收到HG发送的第二GRE报文或第四GRE报文后,需要进行计算和处理来获得第一隧道和/或第二隧道的吞吐量、丢包率和时延差。具体计算方法如下:
DSL隧道的丢包率:
Figure PCTCN2017083495-appb-000001
ΔTx=Tx_Packet_2-Tx_Packet_1,
ΔRx=Rx_Packet_2-Rx_Packet_1,
DSL隧道的吞吐量:
DSL链路的吞吐量:
Figure PCTCN2017083495-appb-000003
LTE隧道的吞吐量:
Figure PCTCN2017083495-appb-000004
上述公式中,Tx_Packet为HAAP发送给HG的报文数。Tx_Packet_2表示到达t2时刻HAAP发送给HG的报文数。Tx_Packet_1表示到达t1时刻HAAP发送给HG的报文数。Rx_Packet为HG接收到的报文数。Rx_Packet_2表示到达t2时刻HG接收到的报文数。Rx_Packet_1表示到达t1时刻HG接收到的报文数。
上述公式中,Tx_Byte_DSL_TUNNEL为HAAP通过DSL隧道发送给HG的字节数。Tx_Byte_DSL_TUNNEL_2表示到达t2时刻HAAP通过DSL隧道发送给HG的字节数。Tx_Byte_DSL_TUNNEL_1表示到达t1时刻HAAP通过DSL隧道发送给HG的字节数。
Rx_Byte_DSL_TUNNEL为HG通过DSL隧道收到的字节数。Rx_Byte_DSL_TUNNEL_2表示到达t2时刻HG通过DSL隧道收到的字节数。Rx_Byte_DSL_TUNNEL_1表示到达t1时刻HG通过DSL隧道收到的字节数。
上述公式中,Tx_Byte_LTE_TUNNEL为HAAP通过LTE隧道发送给HG的字节数。Tx_Byte_LTE_TUNNEL_2表示到达t2时刻HAAP通过LTE隧道发送给HG的字节数。Tx_Byte_LTE_TUNNEL_1表示到达t1时刻HAAP通过LTE隧道发送给HG的字节数。
Rx_Byte_LTE_TUNNEL为HG通过LTE隧道收到的字节数。Rx_Byte_LTE_TUNNEL_2表示到达t2时刻HG通过LTE隧道收到的字节数。Rx_Byte_LTE_TUNNEL_1表示到达t1时刻HG通过LTE隧道收到的字节数。
上述公式中,Tx_Byte_DSL_BYPASS为HG通过DSL链路传输的字节数。Tx_Byte_DSL_BYPASS_2表示到达t2时刻HG通过DSL链路传输的字节数。Tx_Byte_DSL_BYPASS_1表示到达t1时刻HG通过DSL链路传输的字节数。
其中,Tx_Packet、Rx_Packet、Tx_Byte_DSL_TUNNEL、Rx_Byte_DSL_TUNNEL、 Tx_Byte_LTE_TUNNEL、Rx_Byte_LTE_TUNNEL和Tx_Byte_DSL_BYPASS均是累计值。
在该HAAP计算出了上述参数后,可根据上述参数确定第一隧道和第二隧道的当前状态,从而对HAAP和HG之间用户流量的流量传输状态进行相应的调整。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文中结合图1至图10,详细描述了根据本发明实施例的混合接入网络中的流量分发方法,下面将结合图11至图12,详细描述根据本发明实施例的混合接入网络中的流量分发装置。
图11示出了本发明实施例提供的混合接入网络中的流量分发装置500,该装置500包括:发送单元510、获取单元520和判断单元530。
该发送单元510用于确定第一隧道在传输用户的流量时发生拥塞后,通过第二隧道传输探测流量,该探测流量为该用户的流量中用于获取该第二隧道的状态的流量。
该获取单元520用于获取该第一隧道的状态和该第二隧道的状态。
该判断单元530用于根据该第一隧道的状态和该第二隧道的状态,判断该第一隧道的状态和该第二隧道的状态是否满足分流条件。
该发送单元510用于在该判断单元530确定该第一隧道的状态和该第二隧道的状态满足该分流条件后,采用该第一隧道和该第二隧道传输该用户的流量。
可选地,该判断单元530还用于确定该第一隧道的状态和该第二隧道的状态不满足该分流条件后,判断该第一隧道的状态和该第二隧道的状态是否满足回退条件;该判断单元530还用于确定该第一隧道的状态和该第二隧道的状态满足该回退条件后,判断该第一隧道是否发生拥塞。
可选地,该发送单元510还用于在该判断单元530确定该第一隧道的状态和该第二隧道的状态不满足该回退条件后,采用该第一隧道传输该用户的流量;且该判断单元530还用于在预设时长内不对该第一隧道进行拥塞判断。
可选地,该判断单元530还用于在该确定第一隧道在传输用户的流量时发生拥塞之前,根据该第一隧道的链路质量参数和第一门限值,判断该第一隧道是否发生拥塞。
其中,该判断单元530具体用于在该第一隧道的链路质量参数大于该第一门限值,确定该第一隧道发生拥塞。
可选地,该第一隧道的链路质量参数为该第一隧道的丢包率,该第一门限值为与该丢包率对应的门限值;或者
该第一隧道的链路质量参数为该第一隧道的吞吐量,该第一门限值为与该吞吐量对应的门限值;或者
该第一隧道的链路质量参数包括该第一隧道的丢包率和该第一隧道的吞吐量,该第一门限值包括第一子门限值和第二子门限值,该第一子门限值为与该丢包率对应的门限值,该第二子门限值为与该吞吐量对应的门限值。
可选地,该第二隧道的状态包括该第二隧道的吞吐量,该第一隧道的状态包括该第一隧道的吞吐量,该判断单元530具体用于判断该第一隧道的吞吐量与该第二隧道的吞吐量之和是否大于第二门限值,该第二门限值是与该第一隧道的吞吐量与该第二隧道的吞吐量之和对应的门限值。
其中,该判断单元530具体用于在该第一隧道的吞吐量与该第二隧道的吞吐量之和大 于该第二门限值,确定该第一隧道的吞吐量与该第二隧道的吞吐量之和大于该第二门限值。
可选地,该判断单元530具体用于判断该第一隧道的吞吐量与该第二隧道的吞吐量之和是否小于第三门限值,该第三门限值是与该第一隧道的吞吐量与该第二隧道的吞吐量之和对应的门限值。
其中,该判断单元530具体用于在该第一隧道的吞吐量与该第二隧道的吞吐量之和小于该第三门限值,确定该第一隧道的状态和该第二隧道的状态满足该回退条件。
可选地,该第二隧道的状态还包括该第二隧道的时延,该第一隧道的状态还包括该第一隧道的时延,该判断单元530具体用于判断该第二隧道的时延和该第一隧道的时延之差是否小于第四门限值,该第四门限值是与该第二隧道的时延和该第一隧道的时延之差对应的门限值。
其中,该判断单元530具体用于在该第一隧道的吞吐量与该第二隧道的吞吐量之和大于或等于该第三门限值,且该第二隧道的时延和该第一隧道的时延之差小于该第四门限值,确定该第一隧道的状态和该第二隧道的状态满足该回退条件。
可选地,该第二隧道的状态包括该第二隧道的吞吐量和该第二隧道的时延,该第一隧道的状态包括该第一隧道的吞吐量和该第一隧道的时延,该判断单元530具体用于:确定该第一隧道的吞吐量与该第二隧道的吞吐量之和大于或等于第三门限值,且该第二隧道的时延和该第一隧道的时延之差大于或等于第四门限值,其中,该第三门限值是与该第一隧道的吞吐量与该第二隧道的吞吐量之和对应的门限值,该第四门限值是与该第二隧道的时延和该第一隧道的时延之差对应的门限值。
可选地,该第二隧道的状态包括该第二隧道的时延,该第一隧道的状态包括该第一隧道的时延,该判断单元530具体用于判断该第二隧道的时延与该第一隧道的时延之差是否小于第四门限值,该第四门限值是与该第二隧道的时延与该第一隧道的时延之差对应的门限值。
其中,该判断单元530具体用于在该第二隧道的时延和该第一隧道的时延之差小于该第四门限值,确定该第二隧道的时延和该第一隧道的时延之差小于该第四门限值。
可选地,该第二隧道的状态包括该第二隧道的吞吐量,该第一隧道的状态包括该第一隧道的吞吐量,该判断单元530具体用于判断该第一隧道的吞吐量与该第二隧道的吞吐量之和是否小于第三门限值,该第三门限值是与该第一隧道的吞吐量与该第二隧道的吞吐量之和对应的门限值。
其中,该判断单元530具体用于在该第一隧道的吞吐量与该第二隧道的吞吐量之和小于该第三门限值,确定该第一隧道的状态和该第二隧道的状态满足该回退条件。
可选地,该判断单元530具体用于若该第一隧道的吞吐量与该第二隧道的吞吐量之和大于或等于该第三门限值,且小于或等于第二门限值,确定该第一隧道的状态和该第二隧道的状态不满足该回退条件,该第二门限值大于该第三门限值。
可选地,该判断单元530还用于在该采用该第一隧道和该第二隧道传输该用户的流量之后,判断该第一隧道的状态和该第二隧道的状态是否满足退出条件;该发送单元510还用于在该判断单元530确定该第一隧道的状态和该第二隧道的状态满足退出条件后,采用该第一隧道传输该用户的流量,且该判断单元530还用于判断该第一隧道是否发生拥塞。
可选地,该第一隧道的状态包括该第一隧道的吞吐量和该第一隧道的时延,该第二隧 道的状态包括该第二隧道的吞吐量和该第二隧道的时延,该退出条件为第五门限值和第六门限值,该判断单元530具体用于在该第一隧道的吞吐量与该第二隧道的吞吐量之和小于该第五门限值,且该第二隧道的时延和该第一隧道的时延之差大于该第六门限,确定该第一隧道的状态和该第二隧道的状态满足该退出条件。
可选地,该获取单元520具体用于接收HG发送的GRE报文,所述GRE报文包括所述第一隧道的参数和所述第二隧道的参数;该判断单元530具体用于根据该GRE报文包括的所述第一隧道的参数和所述第二隧道的参数,获得该第一隧道的状态和该第二隧道的状态。
举例说明,装置500可以具体为上述实施例中的混合接入汇聚节点HAAP,装置500可以用于执行上述方法实施例中与混合接入汇聚节点HAAP对应的各个流程和/或步骤,在此不再赘述。
本发明实施例的混合接入网络中的流量分发装置,通过HAAP检测到第一隧道拥塞时,将探测流量分流到第二隧道,用于探测第二隧道的状态,在该第一隧道的状态和该第二隧道的状态满足分流条件后,采用该第一隧道和该第二隧道混合传输用户的流量,这样,通过在分流前对第二隧道的状态进行探测,能够避免出现采用双隧道进行流量传输的整体带宽低于采用单隧道进行流量传输的带宽的情形,从而提高用户体验。
图12示出了本发明实施例提供的混合接入网络中的流量分发装置600。该装置600包括通信接口620、处理器630、存储器640和通信总线650。其中,通信接口620、处理器630和存储器640通过总线***650相连.该存储器640用于存储指令。流量分发装置600可设于图2至图9对应的任一实施例中的混合接入汇聚节点HAAP上,可采用图2至图11对应的实施例中HAAP所采用的方法。流量分发装置600和流量分发装置500可以是相同的装置。
处理器630从存储器640中读取程序,并根据程序对应的指令执行如下操作:
处理器630在确定第一隧道在传输用户的流量时发生拥塞后,经由通信接口620,通过第二隧道传输探测流量,该探测流量为该用户的流量中用于获取该第二隧道的状态的流量;
处理器30获取该第一隧道的状态和该第二隧道的状态;
处理器630根据该第一隧道的状态和该第二隧道的状态,判断该第一隧道的状态和该第二隧道的状态是否满足分流条件;
处理器630确定该第一隧道的状态和该第二隧道的状态满足该分流条件后,经由通信接口620,采用该第一隧道和该第二隧道传输该用户的流量。
其中,通信接口620可通过第一隧道和/或第二隧道收发数据和/或信息。
可选的,该处理器630还可根据该存储器640中存储的指令,执行上述图2至图9对应的任一实施例中HAAP执行的各个步骤和/或流程,在此不再赘述。
可选地,该存储器640可以包括只读存储器和随机存取存储器。存储器的一部分还可以包括非易失性随机存取存储器。
本发明实施例中提及的门限值的具体数值,可根据需要进行设置,在此不再逐一举例说明。在可能的实现方式中,第一门限可设置为第一比例的DSL隧道的带宽;第二门限值可设置为第二比例的DSL隧道和LET隧道的带宽之和;第三门限值可设置为第三比例的DSL隧道和LTE隧道的带宽之和。所述第一比例、所述第二比例和所述第三比例可根据需 求进行设置,在此不再举例说明。
在本发明实施例中,上述装置的处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件单元组合执行完成。软件单元可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称为“ROM”)、随机存取存储器(Random Access Memory,简称为“RAM”)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (40)

  1. 一种混合接入网络中的流量分发方法,其特征在于,所述方法包括:
    混合接入汇聚节点HAAP确定第一隧道在传输用户的流量时发生拥塞后,通过第二隧道传输探测流量,所述探测流量为所述用户的流量中用于获取所述第二隧道的状态的流量;
    所述HAAP获取所述第一隧道的状态和所述第二隧道的状态;
    所述HAAP根据所述第一隧道的状态和所述第二隧道的状态,判断所述第一隧道的状态和所述第二隧道的状态是否满足分流条件;
    所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足所述分流条件后,采用所述第一隧道和所述第二隧道传输所述用户的流量。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述HAAP确定所述第一隧道的状态和所述第二隧道的状态不满足所述分流条件后,判断所述第一隧道的状态和所述第二隧道的状态是否满足回退条件;
    所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足所述回退条件后,所述HAAP判断所述第一隧道是否发生拥塞。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述HAAP确定所述第一隧道的状态和所述第二隧道的状态不满足所述回退条件后,所述HAAP采用所述第一隧道传输所述用户的流量,且在预设时长内不对所述第一隧道进行拥塞判断。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,在所述混合接入汇聚节点HAAP确定第一隧道在传输用户的流量时发生拥塞之前,所述方法还包括:
    所述HAAP根据第一门限值和所述第一隧道的链路质量参数,判断所述第一隧道是否发生拥塞。
  5. 根据权利要求4所述的方法,其特征在于,所述HAAP确定第一隧道在传输用户的流量时发生拥塞,包括:
    若所述第一隧道的链路质量参数大于所述第一门限值,则所述HAAP确定所述第一隧道发生拥塞。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一隧道的链路质量参数为所述第一隧道的丢包率,所述第一门限值为与所述丢包率对应的门限值;或者
    所述第一隧道的链路质量参数为所述第一隧道的吞吐量,所述第一门限值为与所述吞吐量对应的门限值;或者
    所述第一隧道的链路质量参数包括所述第一隧道的丢包率和所述第一隧道的吞吐量,所述第一门限值包括第一子门限值和第二子门限值,所述第一子门限值为与所述丢包率对应的门限值,所述第二子门限值为与所述吞吐量对应的门限值。
  7. 根据权利要求3所述的方法,其特征在于,所述第二隧道的状态包括所述第二隧道的吞吐量,所述第一隧道的状态包括所述第一隧道的吞吐量;
    所述HAAP根据所述第一隧道的状态和所述第二隧道的状态,判断所述第一隧道的状态和所述第二隧道的状态是否满足分流条件,包括:
    所述HAAP判断所述第一隧道的吞吐量与所述第二隧道的吞吐量之和是否大于第二门限值,所述第二门限值是与所述第一隧道的吞吐量与所述第二隧道的吞吐量之和对应的门 限值。
  8. 根据权利要求7所述的方法,其特征在于,所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足分流条件,包括:
    若所述第一隧道的吞吐量与所述第二隧道的吞吐量之和大于所述第二门限值,所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足所述分流条件。
  9. 根据权利要求7或8所述的方法,其特征在于,所述判断所述第一隧道的状态和所述第二隧道的状态是否满足回退条件,包括:
    所述HAAP判断所述第一隧道的吞吐量与所述第二隧道的吞吐量之和是否小于第三门限值,所述第三门限值是与所述第一隧道的吞吐量与所述第二隧道的吞吐量之和对应的门限值。
  10. 根据权利要求9所述的方法,其特征在于,所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足回退条件,包括:
    若所述第一隧道的吞吐量与所述第二隧道的吞吐量之和小于所述第三门限值,则所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足所述回退条件。
  11. 根据权利要求9所述的方法,其特征在于,所述第二隧道的状态还包括所述第二隧道的时延,所述第一隧道的状态还包括所述第一隧道的时延;
    所述判断所述第一隧道的状态和所述第二隧道的状态是否满足回退条件,包括:
    所述HAAP判断所述第二隧道的时延和所述第一隧道的时延之差是否小于第四门限值,所述第四门限值是与所述第二隧道的时延和所述第一隧道的时延之差对应的门限值。
  12. 根据权利要求11所述的方法,其特征在于,所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足回退条件,包括:
    若所述第一隧道的吞吐量与所述第二隧道的吞吐量之和大于或等于所述第三门限值,且所述第二隧道的时延和所述第一隧道的时延之差小于所述第四门限值,则所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足所述回退条件。
  13. 根据权利要求7至12中任一项所述的方法,其特征在于,所述第二隧道的状态包括所述第二隧道的吞吐量和所述第二隧道的时延,所述第一隧道的状态包括所述第一隧道的吞吐量和所述第一隧道的时延;
    所述HAAP确定所述第一隧道的状态和所述第二隧道的状态不满足回退条件,包括:
    所述HAAP确定所述第一隧道的吞吐量与所述第二隧道的吞吐量之和大于或等于第三门限值,且所述第二隧道的时延和所述第一隧道的时延之差大于或等于第四门限值,其中,所述第三门限值是与所述第一隧道的吞吐量与所述第二隧道的吞吐量之和对应的门限值,所述第四门限值是与所述第二隧道的时延和所述第一隧道的时延之差对应的门限值。
  14. 根据权利要求3所述的方法,其特征在于,所述第二隧道的状态包括所述第二隧道的时延,所述第一隧道的状态包括所述第一隧道的时延;
    所述HAAP根据所述第一隧道的状态和所述第二隧道的状态,判断所述第一隧道的状态和所述第二隧道的状态是否满足分流条件,包括:
    所述HAAP判断所述第二隧道的时延与所述第一隧道的时延之差是否小于第四门限值,所述第四门限值是与所述第二隧道的时延与所述第一隧道的时延之差对应的门限值。
  15. 根据权利要求14所述的方法,其特征在于,所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足分流条件,包括:
    所述HAAP在所述第二隧道的时延和所述第一隧道的时延之差小于所述第四门限值,确定所述第一隧道的状态和所述第二隧道的状态满足所述分流条件。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第二隧道的状态包括所述第二隧道的吞吐量,所述第一隧道的状态包括所述第一隧道的吞吐量;
    所述判断所述第一隧道的状态和所述第二隧道的状态是否满足回退条件,包括:
    所述HAAP判断所述第一隧道的吞吐量与所述第二隧道的吞吐量之和是否小于第三门限值,所述第三门限值是与所述第一隧道的吞吐量与所述第二隧道的吞吐量之和对应的门限值。
  17. 根据权利要求16所述的方法,其特征在于,所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足回退条件,包括:
    若所述第一隧道的吞吐量与所述第二隧道的吞吐量之和小于所述第三门限值,则所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足所述回退条件。
  18. 根据权利要求16或17所述的方法,其特征在于,所述HAAP确定所述第一隧道的状态和所述第二隧道的状态不满足回退条件,包括:
    若所述第一隧道的吞吐量与所述第二隧道的吞吐量之和大于或等于所述第三门限值,且小于或等于第二门限值,则所述HAAP确定所述第一隧道的状态和所述第二隧道的状态不满足所述回退条件,所述第二门限值大于所述第三门限值。
  19. 根据权利要求1至18中任一项所述的方法,其特征在于,在所述采用所述第一隧道和所述第二隧道传输所述用户的流量之后,所述方法还包括:
    所述HAAP判断所述第一隧道的状态和所述第二隧道的状态是否满足退出条件;
    所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足退出条件后,所述HAAP采用所述第一隧道传输所述用户的流量,并判断所述第一隧道是否发生拥塞。
  20. 根据权利要求19所述的方法,其特征在于,所述第一隧道的状态包括所述第一隧道的吞吐量和所述第一隧道的时延,所述第二隧道的状态包括所述第二隧道的吞吐量和所述第二隧道的时延,所述回退条件为第五门限值和第六门限值;
    所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足退出条件,包括:
    若所述第一隧道的吞吐量与所述第二隧道的吞吐量之和小于所述第五门限值,且所述第二隧道的时延和所述第一隧道的时延之差大于所述第六门限,则所述HAAP确定所述第一隧道的状态和所述第二隧道的状态满足所述退出条件。
  21. 一种混合接入网络中的流量分发装置,其特征在于,所述装置包括:发送单元、获取单元和判断单元;
    所述发送单元用于确定第一隧道在传输用户的流量时发生拥塞后,通过第二隧道传输探测流量,所述探测流量为所述用户的流量中用于获取所述第二隧道的状态的流量;
    所述获取单元用于获取所述第一隧道的状态和所述第二隧道的状态;
    所述判断单元用于根据所述第一隧道的状态和所述第二隧道的状态,判断所述第一隧道的状态和所述第二隧道的状态是否满足分流条件;
    所述发送单元用于在所述判断单元确定所述第一隧道的状态和所述第二隧道的状态满足所述分流条件后,采用所述第一隧道和所述第二隧道传输所述用户的流量。
  22. 根据权利要求21所述的装置,其特征在于,所述判断单元还用于:
    确定所述第一隧道的状态和所述第二隧道的状态不满足所述分流条件后,判断所述第 一隧道的状态和所述第二隧道的状态是否满足回退条件;
    确定所述第一隧道的状态和所述第二隧道的状态满足所述回退条件后,判断所述第一隧道是否发生拥塞。
  23. 根据权利要求22所述的装置,其特征在于,所述发送单元还用于:
    在所述判断单元确定所述第一隧道的状态和所述第二隧道的状态不满足所述回退条件后,采用所述第一隧道传输所述用户的流量;
    且所述判断单元还用于:
    在预设时长内不对所述第一隧道进行拥塞判断。
  24. 根据权利要求21至23中任一项所述的装置,其特征在于,所述判断单元还用于:
    在所述确定第一隧道在传输用户的流量时发生拥塞之前,根据第一门限值和所述第一隧道的链路质量参数,判断所述第一隧道是否发生拥塞。
  25. 根据权利要求24所述的装置,其特征在于,所述判断单元具体用于:
    在所述第一隧道的链路质量参数大于所述第一门限值,确定所述第一隧道发生拥塞。
  26. 根据权利要求24或25所述的装置,其特征在于,所述第一隧道的链路质量参数为所述第一隧道的丢包率,所述第一门限值为与所述丢包率对应的门限值;或者
    所述第一隧道的链路质量参数为所述第一隧道的吞吐量,所述第一门限值为与所述吞吐量对应的门限值;或者
    所述第一隧道的链路质量参数包括所述第一隧道的丢包率和所述第一隧道的吞吐量,所述第一门限值包括第一子门限值和第二子门限值,所述第一子门限值为与所述丢包率对应的门限值,所述第二子门限值为与所述吞吐量对应的门限值。
  27. 根据权利要求23所述的装置,其特征在于,所述第二隧道的状态包括所述第二隧道的吞吐量,所述第一隧道的状态包括所述第一隧道的吞吐量;
    所述判断单元具体用于:
    判断所述第一隧道的吞吐量与所述第二隧道的吞吐量之和是否大于第二门限值,所述第二门限值是与所述第一隧道的吞吐量与所述第二隧道的吞吐量之和对应的门限值。
  28. 根据权利要求27所述的装置,其特征在于,所述判断单元具体用于:
    在所述第一隧道的吞吐量与所述第二隧道的吞吐量之和大于所述第二门限值,确定所述第一隧道的状态和所述第二隧道的状态满足所述分流条件。
  29. 根据权利要求27或28所述的装置,其特征在于,所述判断单元具体用于:
    判断所述第一隧道的吞吐量与所述第二隧道的吞吐量之和是否小于第三门限值,所述第三门限值是与所述第一隧道的吞吐量与所述第二隧道的吞吐量之和对应的门限值。
  30. 根据权利要求29所述的装置,其特征在于,所述判断单元具体用于:
    在所述第一隧道的吞吐量与所述第二隧道的吞吐量之和小于所述第三门限值,确定所述第一隧道的状态和所述第二隧道的状态满足所述回退条件。
  31. 根据权利要求29所述的装置,其特征在于,所述第二隧道的状态还包括所述第二隧道的时延,所述第一隧道的状态还包括所述第一隧道的时延;
    所述判断单元具体用于:
    判断所述第二隧道的时延和所述第一隧道的时延之差是否小于第四门限值,所述第四门限值是与所述第二隧道的时延和所述第一隧道的时延之差对应的门限值。
  32. 根据权利要求31所述的装置,其特征在于,所述判断单元具体用于:
    在所述第一隧道的吞吐量与所述第二隧道的吞吐量之和大于或等于所述第三门限值,且所述第二隧道的时延和所述第一隧道的时延之差小于所述第四门限值,确定所述第一隧道的状态和所述第二隧道的状态满足所述回退条件。
  33. 根据权利要求27至32中任一项所述的装置,其特征在于,所述第二隧道的状态包括所述第二隧道的吞吐量和所述第二隧道的时延,所述第一隧道的状态包括所述第一隧道的吞吐量和所述第一隧道的时延;
    所述判断单元具体用于:
    确定所述第一隧道的吞吐量与所述第二隧道的吞吐量之和大于或等于第三门限值,且所述第二隧道的时延和所述第一隧道的时延之差大于或等于第四门限值,其中,所述第三门限值是与所述第一隧道的吞吐量与所述第二隧道的吞吐量之和对应的门限值,所述第四门限值是与所述第二隧道的时延和所述第一隧道的时延之差对应的门限值。
  34. 根据权利要求23所述的装置,其特征在于,所述第二隧道的状态包括所述第二隧道的时延,所述第一隧道的状态包括所述第一隧道的时延;
    所述判断单元具体用于:
    判断所述第二隧道的时延与所述第一隧道的时延之差是否小于第四门限值,所述第四门限值是与所述第二隧道的时延与所述第一隧道的时延之差对应的门限值。
  35. 根据权利要求34所述的装置,其特征在于,所述判断单元具体用于:
    在所述第二隧道的时延和所述第一隧道的时延之差小于所述第四门限值,确定所述第一隧道的状态和所述第二隧道的状态满足所述分流条件。
  36. 根据权利要求34或35所述的装置,其特征在于,所述第二隧道的状态包括所述第二隧道的吞吐量,所述第一隧道的状态包括所述第一隧道的吞吐量;
    所述判断单元具体用于:
    判断所述第一隧道的吞吐量与所述第二隧道的吞吐量之和是否小于第三门限值,所述第三门限值是与所述第一隧道的吞吐量与所述第二隧道的吞吐量之和对应的门限值。
  37. 根据权利要求36所述的装置,其特征在于,所述判断单元具体用于:
    在所述第一隧道的吞吐量与所述第二隧道的吞吐量之和小于所述第三门限值,确定所述第一隧道的状态和所述第二隧道的状态满足所述回退条件。
  38. 根据权利要求36或37所述的装置,其特征在于,所述判断单元具体用于:
    在所述第一隧道的吞吐量与所述第二隧道的吞吐量之和大于或等于所述第三门限值,且小于或等于第二门限值,确定所述第一隧道的状态和所述第二隧道的状态不满足所述回退条件,所述第二门限值大于所述第三门限值。
  39. 根据权利要求21至38中任一项所述的装置,其特征在于,所述判断单元还用于:
    在所述发送单元采用所述第一隧道和所述第二隧道传输所述用户的流量之后,判断所述第一隧道的状态和所述第二隧道的状态是否满足退出条件;
    所述发送单元还用于:
    在所述判断单元确定所述第一隧道的状态和所述第二隧道的状态满足退出条件后,采用所述第一隧道传输所述用户的流量;
    且所述判断单元还用于:
    判断所述第一隧道是否发生拥塞。
  40. 根据权利要求39所述的装置,其特征在于,所述第一隧道的状态包括所述第一 隧道的吞吐量和所述第一隧道的时延,所述第二隧道的状态包括所述第二隧道的吞吐量和所述第二隧道的时延,所述退出条件为第五门限值和第六门限值;
    所述判断单元具体用于:
    在所述第一隧道的吞吐量与所述第二隧道的吞吐量之和小于所述第五门限值,且所述第二隧道的时延和所述第一隧道的时延之差大于所述第六门限,确定所述第一隧道的状态和所述第二隧道的状态满足所述退出条件。
PCT/CN2017/083495 2016-05-31 2017-05-08 混合接入网络中的流量分发方法和装置 WO2017206670A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17805615.6A EP3457642A1 (en) 2016-05-31 2017-05-08 Method and device for flow distribution in hybrid access network
US16/206,619 US11245627B2 (en) 2016-05-31 2018-11-30 Traffic distribution method and apparatus in hybrid access network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610379123.X 2016-05-31
CN201610379123.XA CN107454006B (zh) 2016-05-31 2016-05-31 混合接入网络中的流量分发方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/206,619 Continuation US11245627B2 (en) 2016-05-31 2018-11-30 Traffic distribution method and apparatus in hybrid access network

Publications (1)

Publication Number Publication Date
WO2017206670A1 true WO2017206670A1 (zh) 2017-12-07

Family

ID=60478497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083495 WO2017206670A1 (zh) 2016-05-31 2017-05-08 混合接入网络中的流量分发方法和装置

Country Status (4)

Country Link
US (1) US11245627B2 (zh)
EP (1) EP3457642A1 (zh)
CN (2) CN111953611B (zh)
WO (1) WO2017206670A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110300431A (zh) * 2018-03-22 2019-10-01 华为技术有限公司 一种数据流量处理方法及相关网络设备
CN110505163B (zh) * 2018-05-18 2021-08-20 华为技术有限公司 传输报文的方法和装置
US11349736B1 (en) * 2020-11-09 2022-05-31 Vmware, Inc. Flow-based latency measurement for logical overlay network traffic
US11936566B2 (en) * 2020-12-18 2024-03-19 Dish Wireless L.L.C. Intelligent router bonding 5G telephony and digital subscriber line services
US11546242B2 (en) 2020-12-30 2023-01-03 Vmware, Inc. Logical overlay tunnel monitoring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741736A (zh) * 2009-12-09 2010-06-16 中兴通讯股份有限公司 一种发送报文时可切换路径的确定方法及其***
CN102572905A (zh) * 2012-01-09 2012-07-11 中兴通讯股份有限公司 一种双归保护倒换方法和***
CN104158761A (zh) * 2014-08-05 2014-11-19 华为技术有限公司 一种分流流量的方法和装置
US20150156034A1 (en) * 2013-11-29 2015-06-04 Fujitsu Limited Tunnel management device, communication control device, and tunnel management method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7751331B1 (en) * 2005-05-09 2010-07-06 Cisco Technology, Inc. Technique for policy conflict resolution using priority with variance
CN101150503B (zh) * 2007-10-24 2011-06-08 华为技术有限公司 一种用于点到多点隧道的上游节点标签分配方法和***
CN101753546B (zh) * 2008-12-16 2012-10-31 ***通信集团公司 一种数据包传送方法及装置
CN101646196A (zh) * 2009-08-31 2010-02-10 华为技术有限公司 保证业务服务质量的方法及装置
CN102571302B (zh) * 2011-01-07 2015-10-28 开曼群岛威睿电通股份有限公司 用于在分组数据网络上提供电路交换事件通知的方法及装置
US9716659B2 (en) * 2011-03-23 2017-07-25 Hughes Network Systems, Llc System and method for providing improved quality of service over broadband networks
WO2013071988A1 (en) * 2011-11-16 2013-05-23 Telefonaktiebolaget L M Ericsson (Publ) Technique for network routing
CN103428716B (zh) 2012-05-17 2018-08-03 中兴通讯股份有限公司 动态调整ptp报文速率的方法及装置
CN103945461A (zh) * 2013-01-23 2014-07-23 中兴通讯股份有限公司 数据多流传输方法及装置
US9173117B2 (en) * 2013-05-02 2015-10-27 Telefonaktiebolaget L M Ericsson (Publ) Enhancing a mobile backup channel to address a node failure in a wireline network
CN104521197B (zh) * 2013-06-28 2017-10-17 华为技术有限公司 拥塞信息反馈方法及装置、网关
CN106453027B (zh) * 2013-07-12 2019-08-20 华为技术有限公司 Gre隧道实现方法、接入设备和汇聚网关

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741736A (zh) * 2009-12-09 2010-06-16 中兴通讯股份有限公司 一种发送报文时可切换路径的确定方法及其***
CN102572905A (zh) * 2012-01-09 2012-07-11 中兴通讯股份有限公司 一种双归保护倒换方法和***
US20150156034A1 (en) * 2013-11-29 2015-06-04 Fujitsu Limited Tunnel management device, communication control device, and tunnel management method
CN104158761A (zh) * 2014-08-05 2014-11-19 华为技术有限公司 一种分流流量的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3457642A4 *
YOU J. ET AL.: "Traffic Distribution for GRE Tunnel Bonding", NETWORK WORKING GROUP INTERNET -DRAFT, 21 March 2016 (2016-03-21), pages 1 - 8, XP015112046 *

Also Published As

Publication number Publication date
CN107454006A (zh) 2017-12-08
EP3457642A4 (en) 2019-03-20
US11245627B2 (en) 2022-02-08
CN111953611B (zh) 2024-06-14
US20190097934A1 (en) 2019-03-28
CN111953611A (zh) 2020-11-17
EP3457642A1 (en) 2019-03-20
CN107454006B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2017206670A1 (zh) 混合接入网络中的流量分发方法和装置
CN108023758B (zh) 一种混合接入网络中处理报文的方法及网络设备
CN105657748B (zh) 基于隧道绑定的通信方法和网络设备
US8565077B2 (en) System and method for enhancing network quality of service
WO2016019822A1 (zh) 一种分流流量的方法和装置
US12003407B2 (en) Resource usage in a multipath network
US11190451B2 (en) Packet transmission method and network device
WO2017000750A1 (zh) 测量终端上运行的业务的质量的方法、设备及***
US11522803B2 (en) Method and apparatus for handling packet delay budget division and quality of service monitoring in a communication system
WO2019179157A1 (zh) 一种数据流量处理方法及相关网络设备
US12010025B2 (en) System and method for accelerating or decelerating a data transport network protocol based on real time transport network congestion conditions
US20210360486A1 (en) Traffic Availability in a Cellular Communication Network
WO2022268224A1 (zh) 一种报文处理方法及相关设备
EP3562108B1 (en) Load sharing between hybrid tunnels
CN111615170B (zh) 一种数据传输方法及***
EP4014446B1 (en) Techniques for adaptive bitrate video traffic shaping
WO2016000481A1 (zh) 路径切换的方法和网络设备
WO2022057706A1 (zh) 一种数据传输方法及相关设备
CN112671657A (zh) 业务数据的传输方法和装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017805615

Country of ref document: EP

Effective date: 20181212