WO2017206563A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2017206563A1
WO2017206563A1 PCT/CN2017/076075 CN2017076075W WO2017206563A1 WO 2017206563 A1 WO2017206563 A1 WO 2017206563A1 CN 2017076075 W CN2017076075 W CN 2017076075W WO 2017206563 A1 WO2017206563 A1 WO 2017206563A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
panel
column
liquid crystal
substrate
Prior art date
Application number
PCT/CN2017/076075
Other languages
English (en)
French (fr)
Inventor
高健
陈小川
杨亚锋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/558,709 priority Critical patent/US10613394B2/en
Publication of WO2017206563A1 publication Critical patent/WO2017206563A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display device.
  • Existing display devices include flat panel display devices and curved display devices.
  • the flat panel display device can save physical space, but due to the light distribution property, in general, the flat panel display device is facing the position of the human eye to both sides, the viewing distance is sequentially increased, and the light intensity is sequentially weakened, which gives the human eye's viewing angle experience bad, especially This effect is more pronounced for large-sized flat panel display devices.
  • the display surface of the curved display device is a curved surface, so the above effects can be reduced.
  • the curved display device has defects such as large size and difficulty in mounting.
  • the present disclosure provides a display device including a display panel, wherein the display device further includes a control module and an auxiliary panel disposed on a light exiting side of the display panel, the auxiliary panel including a first liquid crystal layer, a first substrate and a second substrate disposed on the cartridge, the first liquid crystal layer being encapsulated between the first substrate and the second substrate, the first substrate comprising a first substrate and a first transparent electrode layer disposed on the first substrate, the second substrate including a second substrate and a second transparent electrode layer disposed on the second substrate, the control module being capable of The first transparent electrode layer and the second transparent electrode layer provide control signals such that different regions of the first liquid crystal layer have different refractive indices, such that light emitted by the display panel forms an image on a curved surface, and The opening of the curved surface faces the light exiting direction of the display device.
  • the refractive indices of the first liquid crystal layer are equal.
  • the display panel includes a plurality of pixel units arranged in a plurality of rows and columns, the first transparent electrode layer is a planar electrode covering the first substrate, and the second transparent electrode layer A plurality of second transparent electrode columns are included, each column of the pixel units corresponding to at least one of the second transparent electrode columns, and the control module is configured to Providing a control signal to the first transparent electrode layer and each of the second transparent electrode columns such that a refractive index of a portion of the first liquid crystal layer corresponding to any one of the second transparent electrode columns is from the first
  • the two sides of the width direction of the two transparent electrode columns are gradually increased to the middle of the second transparent electrode column to form an equivalent positive lens, and from the both sides of the auxiliary panel in the width direction of the auxiliary panel In the middle, the focal length of the equivalent lens formed by each portion of the first liquid crystal layer is gradually reduced.
  • control module provides a control signal capable of causing a focal length of an equivalent positive lens formed on a portion of the auxiliary liquid crystal layer corresponding to each of the second transparent electrode columns to be greater than the auxiliary The distance between the panel and the display panel.
  • each column of the pixel unit corresponds to one of the second transparent electrode columns, and an aperture ratio of the display panel gradually increases from a middle portion of the display panel to both sides of the auxiliary panel.
  • control module provides a control signal capable of causing a focal length of the equivalent lens formed on a portion of the auxiliary liquid crystal layer corresponding to each of the second transparent electrode columns to be smaller than the auxiliary panel The distance from the display panel.
  • each column of the pixel unit corresponds to one of the second transparent electrode columns, and an aperture ratio of the display panel gradually decreases from a middle portion of the display panel to both sides of the auxiliary panel.
  • the pixel unit includes a plurality of sub-pixels, each column of the sub-pixels corresponds to at least one of the second transparent electrode columns, and the control module is configured to be capable of corresponding to the same column of pixel units.
  • the second transparent electrode column provides the same control signal.
  • the pixel unit includes a plurality of sub-pixels, each column of the sub-pixels corresponds to one of the second transparent electrode columns, and the control module is configured to be capable of being directed to the first transparent electrode layer and each The second transparent electrode column provides a control signal such that focal lengths of equivalent lenses formed by portions of the first liquid crystal layer corresponding to each column of sub-pixel units on one side of the auxiliary panel are different, and the auxiliary panel The focal length of the equivalent lens formed by the portion of the first liquid crystal layer corresponding to each column of sub-pixel units is symmetrically distributed with respect to the center line in the width direction of the auxiliary panel.
  • the auxiliary panel is divided into three parts in the width direction, and the control module provides a control signal capable of causing a focal length of a portion of the first liquid crystal layer corresponding to a portion on both sides of the auxiliary panel a distance smaller than a distance between the auxiliary panel and the display panel, and an equivalent lens formed by a portion of the first liquid crystal layer located in a middle of a width direction of the auxiliary panel is larger than the auxiliary panel and the auxiliary panel The distance between the display panels.
  • a portion of the display panel corresponding to a portion of both sides of the auxiliary panel, from the middle of the width direction of the display panel to both sides in the width direction of the display panel is gradually reduced; for the portion of the display panel corresponding to the middle portion of the auxiliary panel, from the middle of the width direction of the display panel to the width direction of the display panel On the side, the aperture ratio of the display panel is gradually increased.
  • each pixel unit includes a plurality of sub-pixels, and each column of sub-pixels corresponds to a column of second transparent
  • the electrode column has the same focal length of the equivalent positive lens formed by the second transparent electrode column corresponding to different sub-pixels in the pixel unit.
  • the display panel includes a plurality of pixel units arranged in a plurality of rows and columns, the first transparent electrode layer is a planar electrode covering the first substrate, and the second transparent electrode layer Included in the plurality of second transparent electrode columns, each column of the pixel units corresponding to at least one column of the second transparent electrode columns, the control module being configured to provide control to the first transparent electrode layer and each of the second transparent electrode columns Signaling such that a refractive index of a portion of the first liquid crystal layer corresponding to each of the second transparent electrode columns gradually decreases from two sides in a width direction of the second transparent electrode column to a middle of the second transparent electrode column to form an equivalent A negative lens, and in the width direction of the auxiliary panel, a focal length of an equivalent negative lens formed by each portion of the first liquid crystal layer gradually increases from both sides to the middle of the auxiliary panel.
  • the auxiliary panel is divided into three parts along the width direction
  • the display panel includes a plurality of pixel units arranged in a plurality of rows and columns
  • the first transparent electrode layer covers the first liner a bottom planar electrode
  • the second transparent electrode layer includes a plurality of second transparent electrode columns, each column of the pixel unit corresponding to at least one of the second transparent electrode columns
  • the control module is configured to be capable of a transparent electrode layer and each of the second transparent electrode columns provide a control signal such that a refractive index of a portion of the first liquid crystal layer corresponding to the second transparent electrode column of the portion on both sides of the auxiliary panel is from the second transparent electrode
  • the two sides of the column in the width direction are gradually reduced to the middle of the second transparent electrode column to form an equivalent positive lens, and the refractive index of the portion of the first liquid crystal layer corresponding to the second transparent electrode column of the intermediate portion of the auxiliary panel
  • the two sides of the second transparent electrode column in the width direction to the middle of the second transparent electrode column are gradually
  • the auxiliary panel is divided into three parts along the width direction
  • the display panel includes a plurality of pixel units arranged in a plurality of rows and columns
  • the first transparent electrode layer covers the first liner a bottom planar electrode
  • the second transparent electrode layer includes a plurality of second transparent electrode columns, each column of the pixel unit corresponding to at least one of the second transparent electrode columns
  • the control module is configured to be capable of a transparent electrode layer and each of the second transparent electrode columns provide a control signal such that a refractive index of a portion of the first liquid crystal layer corresponding to the second transparent electrode column of the portion on both sides of the auxiliary panel is from the second transparent electrode
  • the two sides of the column in the width direction are gradually increased to the middle of the second transparent electrode column to form an equivalent positive lens, and a portion of the first liquid crystal layer corresponding to the second transparent electrode column of the portion intermediate the auxiliary panel
  • the refractive index gradually decreases from both sides in the width direction of the second transparent electrode column to the middle of the second transparent electrode column
  • each of the second transparent electrode columns comprises one or more strips of transparent electrode strips.
  • each of the second transparent electrode columns includes a plurality of second transparent electrodes, each of the second transparent electrodes corresponding to one pixel unit, and each of the second transparent electrodes includes a plurality of concentric second transparent electrode rings .
  • the display panel is a liquid crystal display panel
  • the display panel includes a first polarizer and a second polarizer
  • the first polarizer is disposed on a light incident side of the display panel
  • the first The two polarizers are disposed on the light exiting side of the display panel
  • an initial alignment direction of the first liquid crystal layer of the auxiliary panel is parallel to a polarization direction of the second polarizer.
  • the display panel is an organic light emitting diode display panel
  • the display device further includes an adjustment panel disposed on a light exiting side of the display panel and stacked with the auxiliary panel.
  • the adjustment panel includes a third substrate and a fourth substrate disposed on the box, and a second liquid crystal layer encapsulated between the third substrate and the fourth substrate, the initial alignment direction of the second liquid crystal layer
  • the initial alignment direction of the first liquid crystal layer is perpendicular
  • the third substrate includes a third substrate and a third transparent electrode layer
  • the fourth substrate includes a fourth substrate and a fourth transparent electrode layer
  • the third transparent The electrode layer is disposed on the third substrate in the same manner as the first transparent electrode layer is disposed on the first substrate
  • the fourth transparent electrode layer is on the fourth substrate
  • the arrangement is the same as the manner in which the second transparent electrode layer is disposed on the second substrate, and the control module is capable of providing the adjustment panel with the same signal as the auxiliary panel.
  • the direction of the light emitted from the display device can be changed, and an image is formed on the curved surface, that is, the display device can realize curved surface display, and the viewer stands
  • the screen displayed on the curved surface can be viewed from the front of the display unit.
  • the display surface of the display device is not provided as a curved surface, and therefore, the installation space of the display device is not increased. That is to say, the display device can be mounted in a small space.
  • FIG. 1 is a schematic structural diagram of a display device provided by the present disclosure, wherein the display panel is a liquid crystal display panel;
  • FIG. 2 is a schematic diagram showing the display of a positive lens into an enlarged virtual image
  • Figure 3 is a schematic diagram showing the display of a positive lens into a real image
  • FIG. 4 is a schematic diagram showing the negative lens as a reduced virtual image
  • Figure 5 is an equivalent optical path diagram of an equivalent lens formed in an auxiliary panel
  • FIG. 6 is a state diagram of a state in which liquid crystal molecules are arranged when the auxiliary panel is not powered
  • Figure 7a is a diagram showing the state of liquid crystal molecules after the auxiliary panel is powered up, wherein, after power-on, it is equivalent to a positive lens;
  • Figure 7b is a plan view of Figure 7a
  • Figure 8a is a diagram showing the state of liquid crystal molecules after the auxiliary panel is powered up, wherein, after power-on, it is equivalent to a negative lens;
  • Figure 8b is a plan view of Figure 8a
  • Figure 9 is a schematic view showing a positive lens as a rear image
  • Figure 10 is a schematic view of the positive lens in a rear image, wherein the aperture ratio of the display device gradually decreases from the middle to both sides;
  • FIG. 11 is a schematic diagram of a positive lens in a rear image, wherein each column of sub-pixels corresponds to a second transparent electrode column, and the same pixel unit has the same focal length;
  • each column of sub-pixels corresponds to a second transparent electrode Column, the focal length of the same pixel unit is different;
  • Figure 13 is a schematic view showing a positive lens as a front image
  • Figure 14 is a schematic view of the positive lens as a front image, wherein the aperture ratio of the display device gradually decreases from the middle to both sides;
  • each column of sub-pixels corresponds to a second transparent electrode column, and the same pixel unit has the same focal length;
  • FIG. 16 is a schematic diagram of a front lens as a front image, wherein each column of sub-pixels corresponds to a second transparent electrode column, and the focal length of the same pixel unit is different;
  • 17 is a schematic diagram of using a negative lens to reduce a virtual image, the virtual curved surface being located between the liquid crystal lens and the pixel;
  • Figure 18 is a schematic view of the display panel using a positive lens
  • 19 is a schematic view of the display panel by using a positive lens, wherein the aperture ratio of the display device gradually decreases from the middle to both sides;
  • each column of sub-pixels corresponds to one second transparent electrode column, and the same pixel unit has the same focal length;
  • 21 is a schematic diagram of the two sides of the display panel, wherein each column of sub-pixels corresponds to one second transparent electrode column, and the focal length of the same pixel unit is different;
  • Figure 22 is a schematic view of a combined imaging using a positive lens and a negative lens, wherein negative lenses are located on both sides of the display panel;
  • Figure 23 is a schematic illustration of a combination imaging of a positive lens and a negative lens, wherein the negative lens is located in the middle of the display panel;
  • 24a is a schematic diagram of an embodiment of the display device when the display panel is an organic light emitting diode display panel;
  • FIG. 24b is a schematic diagram of another embodiment of the display device when the display panel is an organic light emitting diode display panel.
  • width refers to the lateral direction when the display device is in use. It is also the left-right direction in FIGS. 9 to 23.
  • the display device includes a display panel 200, wherein the display device further includes a control module (not shown) and an auxiliary panel 100 disposed on a light exiting side of the display panel 200, the auxiliary device
  • the panel 100 includes a first liquid crystal layer 130, a first substrate 110 and a second substrate 120 disposed on the cartridge, and the first liquid crystal layer 130 is encapsulated between the first substrate 110 and the second substrate 120.
  • the first substrate 110 includes a first substrate 111 and is disposed on the first substrate. a first transparent electrode layer 112 on the 111, the second substrate 120 includes a second substrate 121 and a second transparent electrode layer 122 disposed on the second substrate 121, and the control module can be directed to the first transparent electrode layer 112 and
  • the two transparent electrode layers 122 provide control signals such that different regions of the first liquid crystal layer have different refractive indices, such that the light emitted by the display panel 200 forms an image on the curved surface, and the opening of the curved surface faces the light exiting direction of the display device.
  • the corresponding region of the second transparent electrode column can be formed into an equivalent lens.
  • Shown in Figures 2 and 3 is the imaging principle of light passing through a positive lens.
  • Shown in Figure 2 is the principle that a positive lens is imaged behind the lens.
  • the object distance l is smaller than the focal length f of the lens, so that the object AB forms a virtual image behind the lens (the left side in Fig. 2).
  • A'B' received by the human eye.
  • Figure 3 shows the principle of positive lens imaging in front of the lens.
  • the object AB is placed behind the lens (left side in Figure 3) so that the object distance l is greater than the focal length f of the lens.
  • the front of the lens (the right side in the figure) is inverted like B'A'.
  • Figure 4 shows a schematic diagram of imaging between a object and a lens using a negative lens. After placing the object AB behind the lens (on the left side in Fig. 4), an image A'B' can be formed between the lens and the object AB.
  • F denotes a focal point of the lens object
  • F' denotes an image focus of the lens
  • Formula (1) is a formula representing the relationship of the object image in the lens. From the formula (1), if the focal length f' of the lens and the distance l between the object and the lens are determined, the distance l' between the object image and the lens can be obtained.
  • l' is the distance between the object and the lens
  • f' is the focal length of the lens.
  • the image displayed by the display panel 200 is the “thing” described above, and the auxiliary panel 100 may be used to form a plurality of equivalent lenses, specifically, each of the second transparent electrode columns. Corresponding to a column of equivalent lenses (which can be an equivalent lens or multiple equivalent lenses).
  • the distance between the display panel 200 and the auxiliary panel 100 is fixed, that is, l in the formula (1) is fixed.
  • the distance between the image formed by the equivalent lens formed by each of the second transparent electrode columns and the light-emitting surface can be determined by the designer as long as the equivalent lens formed by all the second transparent electrode columns is formed.
  • the images are on the same surface. Therefore, it can be considered that the distance l' between the object image and the equivalent lens is known, so that the focal length f' of the equivalent lens can be solved by the formula (1).
  • Shown in Figure 5 is an equivalent path diagram of an equivalent convex lens formed in the auxiliary panel.
  • the refractive index of each part of the equivalent lens can be obtained. Therefore, it is only necessary to apply a signal to the first transparent electrode layer and the second transparent electrode column by using the control module such that the liquid crystal material corresponding to the second transparent electrode column has a corresponding refractive index.
  • f' is the focal length of the equivalent lens
  • n 1 is the refractive index in the middle of the equivalent lens
  • n 2 is the refractive index of the edge of the equivalent lens
  • d is the distance between the display panel and the auxiliary panel
  • p is the width of the second electrode column.
  • n o is the o-light refractive index in the birefringence of the liquid crystal material
  • n e is the e-light refractive index in the birefringence of the liquid crystal material.
  • the direction of the light emitted from the display device can be changed, and an image is formed on the curved surface, that is, the display device can realize the curved surface display.
  • the viewer can view the curved surface display by standing in front of the display device.
  • the display surface of the display device is not set to a curved surface, and therefore, the installation space of the display device is not increased. That is to say, the display device can be mounted in a small space.
  • the control module when the control module does not provide the control signals to the first transparent electrode layer 112 and the second transparent electrode layer 122, the refractive indices of the first liquid crystal layer 130 are equal, so that the display device can realize the plane. display.
  • the user can set whether to make the display device perform surface display according to his own requirements. As shown in FIG. 6, when no signal is applied to the first transparent electrode layer 112 and the second transparent electrode layer 122, the deflection directions of the liquid crystal molecules in the first liquid crystal layer are uniform, and therefore, the refractive index of the first liquid crystal layer is everywhere. The same, so that the light can be directly transmitted, the optical path will not be deflected to achieve a flat display.
  • the initial alignment direction of the liquid crystal molecules in the first liquid crystal layer (that is, the long-axis direction of the liquid crystal molecules when no power is applied) is determined by the display panel.
  • the specific structure of the display panel 200 is not particularly limited.
  • the display panel 200 is a liquid crystal display panel, and when the display panel is a liquid crystal display panel, the display device may further include a backlight. Source 300.
  • the display panel 200 When the display panel 200 is a liquid crystal display panel, the display panel 200 includes a first polarizer and a second polarizer.
  • the first polarizer is disposed on the light incident side of the display panel, and the second polarizer is disposed on the light exit side of the display panel.
  • the initial alignment direction of the first liquid crystal layer of the auxiliary panel is parallel to the polarization direction of the second polarizer.
  • the display panel 200 can also be an organic light emitting diode display panel.
  • the display device further includes an adjustment panel 400 disposed on the light exiting side of the display panel 200 and stacked and adjusted with the auxiliary panel.
  • Panel 400 The third substrate 410 and the fourth substrate 420 disposed on the cartridge, and the second liquid crystal layer 430 encapsulated between the third substrate 410 and the fourth substrate 420, the initial alignment direction of the second liquid crystal layer 430 and the first liquid crystal layer
  • the initial arrangement direction of 130 is vertical.
  • the third substrate includes a third substrate and a third transparent electrode layer
  • the fourth substrate includes a fourth substrate and a fourth transparent electrode layer
  • the third transparent electrode layer is disposed on the third substrate and the first transparent electrode layer
  • the arrangement on the first substrate is the same
  • the fourth transparent electrode layer is disposed on the fourth substrate in the same manner as the second transparent electrode layer on the second substrate, and the control module can provide the adjustment panel with The same signal for the auxiliary panel.
  • the setting of the adjustment panel 400 includes two ways, one is disposed between the display panel 200 and the auxiliary panel 100 (as shown in FIG. 24a), and the other is disposed on the light-emitting side of the auxiliary panel 100 (as shown in FIG. 24b). ).
  • the polarization state of the light emitted by the display panel 200 can be decomposed to be parallel to the paper surface and perpendicular to the paper surface.
  • a control signal is applied to the adjustment panel 400, and the adjustment panel 400 can process the polarized light whose polarization direction is parallel to the paper surface.
  • the polarization direction is polarized parallel to the polarized light of the paper surface to change the exit direction.
  • the refractive index of the polarized light whose polarization direction is perpendicular to the plane of the paper does not change, and passes through the adjustment panel 400 directly.
  • a control signal is applied to the auxiliary panel 100, and the auxiliary panel 100 refracts the polarized light directly passing through the polarization direction of the adjustment panel 400 perpendicular to the paper surface to change its emission direction, and has undergone the polarization direction of the refraction processing of the adjustment panel 400.
  • Light parallel to the paper surface passes directly through the auxiliary panel 100.
  • the auxiliary panel 100 can guide the light having a polarization direction perpendicular to the paper surface to the curved surface
  • the adjustment panel 400 can guide the light having a polarization direction parallel to the paper surface to the curved surface.
  • the auxiliary panel 100 may also be disposed to be capable of guiding light having a polarization direction parallel to the paper surface onto the curved surface, and the adjustment panel 400 is disposed to be capable of guiding light having a polarization direction perpendicular to the paper surface onto the curved surface.
  • the control module can simultaneously control the auxiliary panel 100 and the adjustment panel 400 such that the first liquid crystal layer forms a plurality of equivalent lenses, and the second liquid crystal layer forms a plurality of equivalent lenses, and the plurality of first liquid crystal layers are formed, etc. a pair of mirrors respectively formed by the plurality of equivalent lenses formed by the second liquid crystal layer, and parameters (including focal length, refractive index, etc.) of the equivalent lens formed in the first liquid crystal layer and formed in the second liquid crystal layer
  • the parameters of the corresponding equivalent lenses are the same.
  • the display panel 200 includes a plurality of pixel units arranged in a plurality of rows and columns, each of which includes a plurality of sub-pixels.
  • the first transparent electrode layer 112 is a planar electrode covering the first substrate 111
  • the second transparent electrode layer 122 includes a plurality of second transparent electrode columns, each column pixel unit corresponding to at least One Two transparent electrode columns.
  • the control module is configured to be capable of providing a control signal to the first transparent electrode layer and each of the second transparent electrode columns such that a refractive index of a portion of the first liquid crystal layer corresponding to any one of the second transparent electrode columns is from the second transparent
  • the two sides of the electrode column in the width direction are gradually increased to the middle of the second transparent electrode column to form an equivalent positive lens, and, in the width direction of the auxiliary panel, from the both sides to the middle of the auxiliary panel, the first liquid crystal layer
  • the focal length of the equivalent lens formed by each part is gradually reduced.
  • the first liquid crystal layer may be divided into a plurality of portions, each of the second transparent electrode columns corresponding to a portion of the first liquid crystal layer, and the thickness of each portion of the first liquid crystal layer is always constant, by changing the first
  • the refractive index of each portion of the liquid crystal layer can change the refractive index of each portion that passes through the first liquid crystal layer.
  • FIG. 7a Shown in Figures 7a and 7b is a schematic view of the deflection of liquid crystal molecules in a portion of the first liquid crystal layer corresponding to a second transparent electrode column.
  • the left-right direction is the width direction of the second transparent electrode column.
  • the long-axis direction of the liquid crystal molecules located on both sides in the width direction of the second transparent electrode row is vertical, and the long-axis direction of the liquid crystal molecules located in the middle of the width direction of the second transparent electrode column is horizontal.
  • the focal length of the equivalent positive lens formed by the portions of the first liquid crystal layer corresponding to the different second transparent electrode columns can be controlled, thereby enabling corresponding display at different positions.
  • the image eventually forms a curved surface display.
  • an enlarged image can be formed behind the display panel.
  • an enlarged image can be formed in front of the display panel.
  • a part of the formed image is located in front of the display panel, and a part is located behind the display panel.
  • the corresponding f 1 , f 2 , and f 3 on the equivalent lens are the focal lengths of the equivalent lens. It should be noted that f 1 ⁇ f 2 ⁇ f 3 .
  • each pixel unit corresponds to three sub-pixels, which are a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B, and each column of pixel units corresponds to one.
  • a second transparent electrode column As shown in FIG. 9 , in the display panel, each pixel unit corresponds to three sub-pixels, which are a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B, and each column of pixel units corresponds to one.
  • a second transparent electrode column is shown in the display panel.
  • the position of the image formed by the plurality of equivalent positive lenses can be controlled by controlling the relationship between the distance between the display panel and the auxiliary panel and the focal length of the equivalent positive lens.
  • the control signal provided by the control module enables the corresponding panel to correspond to each of the second transparent electrode columns.
  • the focal length of the equivalent positive lens formed by a liquid crystal layer is greater than the distance between the display panel and the auxiliary panel (ie, the object distance), and, in the width direction of the auxiliary panel, from the both sides of the auxiliary panel to the middle, the first liquid crystal The focal length of the equivalent positive lens formed corresponding to the layer is gradually reduced.
  • a portion of the first liquid crystal layer corresponding to each of the second transparent electrode columns is equivalent to a positive lens. Only five of the equivalent lenses are shown in Fig. 9, and an image formed by an equivalent lens can be seen at the human eye.
  • the dotted line frame shows the image formed by each pixel unit, all The plurality of object images formed by the pixel unit are located on the same curved surface, and the opening of the curved surface faces the viewer (ie, upward in FIG. 9).
  • the equivalent lens can be controlled by setting the relationship between the object distance and the focal length. The size of the image.
  • each column of pixel units corresponds to a second transparent electrode column
  • the aperture ratio of the display panel is from the middle of the display panel to the auxiliary panel. Both sides gradually increase.
  • the aperture ratio of the pixel unit is determined by the width of the black matrix surrounding the pixel unit. Therefore, the width of the black matrix surrounding the pixel unit in the middle is the largest, and the width of the black matrix surrounding the pixel unit on the far side is the smallest.
  • the black matrix can block overlapping portions between the virtual images formed by two adjacent pixel units, so that a better display effect can be obtained.
  • the display device may be disposed such that each column of sub-pixels corresponds to at least one second transparent electrode column, and the control module is configured to be capable of being corresponding to the plurality of second transparent electrode columns of the same column of pixel units. Provide the same signal.
  • each sub-pixel corresponds to one equivalent positive lens, or one sub-pixel corresponds to a plurality of equivalent positive lenses, and the equivalent sub-pixel corresponds to the positive
  • the focal length of the lens is the same, and the equivalent positive lens focal lengths of different pixel units are different.
  • sub-pixels in each pixel unit may overlap when displayed. The overlap between the sub-pixel images does not affect the display, but also facilitates the modulation of the image quality, which indirectly increases the aperture ratio of the pixel unit. Between adjacent pixel units, the images do not overlap or have a small overlap.
  • the display device may be disposed such that each column of sub-pixels corresponds to one second transparent electrode column, and the control module is configured to provide control to the first transparent electrode layer and each of the second transparent electrode columns.
  • a signal such that an focal length of an equivalent positive lens formed by a portion of the first liquid crystal layer corresponding to each column of sub-pixel units on one side of the auxiliary panel is different, and a first liquid crystal layer corresponding to each column of sub-pixel units of the auxiliary panel
  • the focal length of the equivalent positive lens formed by the portion is symmetrically distributed with respect to the center line in the width direction of the auxiliary panel.
  • each sub-pixel corresponds to an equivalent lens when displayed.
  • sub-pixels in each pixel unit may overlap, which is more conducive to color modulation.
  • the virtual images formed by two adjacent pixel units do not overlap or overlap less. When the virtual images formed by two adjacent pixel units overlap, they are blocked by the black matrix, so that the displayed image is not affected.
  • the virtual image formed by the auxiliary panel is located behind the display panel.
  • the control module When the control module is configured to: the control signal provided by the control module enables the focal length of the corresponding portion of the first liquid crystal layer and the second transparent electrode column on the auxiliary panel to be smaller than the distance between the display panel and the auxiliary panel (ie, Object distance).
  • the first liquid crystal layer is formed into an array equivalent to the positive lens by applying a signal to each of the first transparent electrode layer and the second transparent electrode layer.
  • each column of pixel units corresponds to the same column of second transparent electrode columns.
  • the equivalent positive lens formed on the auxiliary panel can form an inverted image in front of the display panel. That is, in the same pixel unit, the position of the sub-pixel changes.
  • the light emitted by the plurality of sub-pixels in the same pixel unit is mixed with each other, so that the pixel unit can display a predetermined color, and the position change of the sub-pixel in the same pixel unit does not affect. The final color of the pixel unit.
  • the following embodiments can solve the problem of image overlap of pixel unit display that may occur when the display device performs curved display.
  • each column of pixel units corresponds to one second transparent electrode column, and the aperture ratio of the display panel gradually decreases from the middle of the display panel to both sides of the auxiliary panel.
  • the aperture ratio of the pixel unit is determined by the width of the black matrix surrounding the pixel unit. Therefore, the black matrix width of the pixel unit surrounding the middle is the smallest, and the width of the black matrix surrounding the pixel unit on the outermost side is the largest.
  • the black matrix can block overlapping portions between the virtual images formed by the adjacent two pixel units, so that a better display effect can be obtained.
  • each sub-pixel corresponds to one equivalent positive lens, or one sub-pixel corresponds to a plurality of equivalent positive lenses, and the equivalent positive lens corresponding to the same sub-pixel has the same focal length.
  • the equivalent positive lens focal lengths corresponding to different pixel units are different.
  • each column of sub-pixels corresponds to an equivalent positive lens when displayed.
  • sub-pixels in each pixel unit may overlap, which is more conducive to color modulation.
  • the virtual images formed by two adjacent pixel units do not overlap or overlap less. When the virtual images formed by two adjacent pixel units overlap, they are blocked by the black matrix, so that the displayed image is not affected.
  • the image formed by the display device may be located on the front and rear sides of the display device by the control signal, that is, the partial image is located in front of the display device (ie, above in FIG. 18), and partially at the rear of the display device (ie, Below 18).
  • the auxiliary panel may be divided into three parts along the width direction of the auxiliary panel, and the control signal provided by the control module enables the focal length of the equivalent positive lens corresponding to the portion of the first liquid crystal layer on the two sides of the auxiliary panel to be smaller than the display panel.
  • an equivalent positive lens located on both sides in the width direction of the display panel may form an inverted image in front of the display panel, and an equivalent positive lens located in the middle of the width direction of the display panel may be on the display panel.
  • An erect image is formed at the rear.
  • the three portions of the auxiliary panel are symmetrical about the center line of the width direction of the auxiliary panel.
  • the size of the portions of the sides of the auxiliary panel is greater than the size of the portion of the display device.
  • An equivalent positive lens formed in a portion of the first liquid crystal layer corresponding to both sides of the auxiliary panel may cause an image displayed by the display panel to form an image located in front of the display device, and a portion of the first liquid crystal layer corresponding to an intermediate portion of the auxiliary panel The equivalent positive lens may cause the image displayed by the display panel to form an image located behind the display device.
  • the aperture ratio of the display panel is gradually reduced.
  • the aperture ratio of the display panel gradually increases from the middle in the width direction of the display panel to both sides in the width direction of the display panel.
  • each column of sub-pixels corresponds to one column of the second transparent electrode columns, and the equivalent positive lenses formed by the second transparent electrode columns corresponding to different sub-pixels in the same pixel unit have the same focal length.
  • the control module is configured to be capable of providing a control signal to the first transparent electrode layer and each of the second transparent electrode columns such that a refractive index of a portion of the first liquid crystal layer corresponding to each of the second transparent electrode columns is from the second transparent electrode column.
  • the two sides of the width direction are gradually reduced to the middle of the second transparent electrode column to form an equivalent negative lens, and in the width direction of the auxiliary panel, from the both sides to the middle of the auxiliary panel, portions of the first liquid crystal layer are formed
  • the focal length of the equivalent negative lens gradually increases.
  • FIG. 8a Shown in Figures 8a and 8b is a schematic view of the deflection of liquid crystal molecules corresponding to a second transparent electrode column.
  • the left-right direction is the width direction of the second transparent electrode column.
  • the long-axis direction of the liquid crystal molecules located on both sides in the width direction of the second transparent electrode row is horizontal, and the long-axis direction of the liquid crystal molecules located in the middle of the width direction of the second transparent electrode column is vertical.
  • the focal length of the equivalent negative lens formed by the portions of the first liquid crystal layer corresponding to the different second transparent electrode columns can be controlled, thereby enabling corresponding display at different positions.
  • the image eventually forms a curved surface display.
  • the auxiliary panel is divided into three parts in the width direction, and the display panel includes a plurality of pixel units arranged in a plurality of rows and columns, the first transparent electrode layer is a planar electrode covering the first substrate, Two transparent electricity
  • the pole layer includes a plurality of second transparent electrode columns, each column of pixel units corresponding to at least one second transparent electrode column, and the control module is configured to provide a control signal to the first transparent electrode layer and each of the second transparent electrode columns, so that the first The refractive index of the portion of the liquid crystal layer corresponding to the second transparent electrode column of the portion on both sides of the auxiliary panel gradually decreases from the two sides in the width direction of the second transparent electrode column to the middle of the second transparent electrode column to form an equivalent a positive lens, a refractive index of a portion of the first liquid crystal layer corresponding to the second transparent electrode column of the portion intermediate the auxiliary panel is gradually increased from two sides in the width direction of the second transparent electrode column to the middle of the second transparent electrode column To form an equivalent negative lens.
  • the first liquid crystal layer on both sides of the auxiliary panel forms an equivalent negative lens
  • the first liquid crystal layer in the middle of the auxiliary panel forms an equivalent positive lens.
  • An equivalent positive lens can be imaged behind the display device (ie, below in FIG. 22), and an equivalent negative lens can form a reduced virtual image between the display panel and the auxiliary panel.
  • the auxiliary panel is divided into three parts in the width direction, and the display panel includes a plurality of pixel units arranged in a plurality of rows and columns, and the first transparent electrode layer is a surface covering the first substrate An electrode, the second transparent electrode layer includes a plurality of second transparent electrode columns, each column of pixel units corresponding to at least one second transparent electrode column, and the control module is configured to provide a control signal to the first transparent electrode layer and each of the second transparent electrode columns a refractive index of a portion of the first liquid crystal layer corresponding to the second transparent electrode column of the portion on both sides of the auxiliary panel from the two sides in the width direction of the second transparent electrode column to the middle of the second transparent electrode column Large to form an equivalent positive direction, a refractive index of a portion corresponding to the second transparent electrode column of the portion of the first liquid crystal layer and the auxiliary panel is from two sides of the width direction of the second transparent electrode column to the second transparent electrode The middle of the column is gradually reduced to form an equivalent negative lens.
  • the first liquid crystal layer on both sides of the auxiliary panel forms an equivalent positive lens
  • the first liquid crystal layer in the middle of the auxiliary panel forms an equivalent negative lens
  • the equivalent positive lens may form an inverted image behind the display device (ie, above in FIG. 23), and an equivalent negative lens may image between the display panel and the auxiliary panel.
  • each of the second transparent electrode columns includes one or more strip-shaped transparent electrode strips. That is, one or more transparent electrode strips in the same column form a second transparent electrode column.
  • This structure is simple to manufacture and easy to control.
  • a portion of the first liquid crystal layer corresponding to the second transparent electrode column may form one or more equivalent cylindrical lenses.
  • the length of the equivalent cylindrical lens is the same as the length of the corresponding column of pixel units.
  • each of the second transparent electrode columns includes a plurality of second transparent electrodes, each of the second transparent electrodes corresponding to one pixel unit, and each of the second transparent electrodes includes a plurality of concentric second transparent electrode rings.
  • one second transparent electrode comprises five second transparent electrode rings.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)

Abstract

一种显示装置,包括显示面板(200)、控制模块和设置在显示面板(200)的出光侧的辅助面板(100),辅助面板(100)包括第一液晶层(130)、对盒设置的第一基板(110)和第二基板(120),第一液晶层(130)封装在第一基板(110)和第二基板(120)之间,第一基板(110)包括第一衬底(111)和设置在第一衬底(111)上的第一透明电极层(112),第二基板(120)包括第二衬底(121)和设置在第二衬底(121)上的第二透明电极层(122),控制模块被配置为向第一透明电极层(112)和第二透明电极层(122)提供使得第一液晶层(130)不同区域具有不同的折射率的控制信号,以使得显示面板(200)透出的光线在曲面上形成图像,且曲面的开口朝向显示装置的出光方向。利用显示装置,在不增加显示装置的安装尺寸的前提下实现曲面显示。

Description

显示装置
交叉引用
本申请要求于2016年6月2日提交的申请号为201610388944.X、名称为“显示装置”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及显示技术领域,具体地,涉及一种显示装置。
背景技术
现有的显示装置包括平板显示装置和曲面显示装置。平板显示装置可以节省物理空间,但是由于光分布属性,一般,平板显示装置正对人眼的位置往两边,观看距离依次增加、光强度依次变弱,给人眼的视角体验不好,特别是对于大尺寸的平板显示装置,这种效应更加明显。曲面显示装置的显示面为曲面,因此可以减少上述效应。但是,曲面显示装置具有尺寸较大、难以安装等缺陷。
因此,如何能在不增加显示装置的安装尺寸的前提下实现曲面显示成为本领域亟待解决的技术问题。
发明内容
本公开的目的在于提供一种显示装置,所述显示装置占用的安装空间较小,并且可以实现曲面显示。
为了实现上述目的,本公开提供一种显示装置,所述显示装置包括显示面板,其中,所述显示装置还包括控制模块和设置在所述显示面板的出光侧的辅助面板,所述辅助面板包括第一液晶层、对盒设置的第一基板和第二基板,所述第一液晶层封装在所述第一基板和所述第二基板之间,所述第一基板包括第一衬底和设置在所述第一衬底上的第一透明电极层,所述第二基板包括第二衬底和设置在所述第二衬底上的第二透明电极层,所述控制模块能够向所述第一透明电极层和所述第二透明电极层提供使得所述第一液晶层不同区域具有不同的折射率的控制信号,以使得所述显示面板透出的光线在曲面上形成图像,且所述曲面的开口朝向所述显示装置的出光方向。
在一个实施例中,所述控制模块不向所述第一透明电极层和所述第二透明电极层提供控制信号时,所述第一液晶层的折射率处处相等。
在一个实施例中,所述显示面板包括排列为多行多列的多个像素单元,所述第一透明电极层为覆盖所述第一衬底的面状电极,所述第二透明电极层包括多个第二透明电极列,每列所述像素单元对应至少一个所述第二透明电极列,所述控制模块设置为 能够向所述第一透明电极层和各个所述第二透明电极列提供控制信号,以使得所述第一液晶层上与任意一个第二透明电极列对应的部分的折射率均为从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐增大,以形成等效正透镜,并且,在所述辅助面板的宽度方向上,从所述辅助面板的两侧至中间,所述第一液晶层的各部分形成的等效透镜的焦距逐渐减小。
在一个实施例中,所述控制模块提供的控制信号能够使得所述辅助面板上与各个所述第二透明电极列对应的第一液晶层的部分形成的等效正透镜的焦距大于所述辅助面板与所述显示面板之间的距离。
在一个实施例中,每列所述像素单元对应一个所述第二透明电极列,所述显示面板的开口率从所述显示面板的中部向所述辅助面板的两边逐渐增大。
在一个实施例中,所述控制模块提供的控制信号能够使得所述辅助面板上与各个所述第二透明电极列对应的第一液晶层的部分形成的等效透镜的焦距小于所述辅助面板与所述显示面板之间的距离。
在一个实施例中,每列所述像素单元对应一个所述第二透明电极列,所述显示面板的开口率从所述显示面板的中部向所述辅助面板的两边逐渐减小。
在一个实施例中,所述像素单元包括多个亚像素,每列所述亚像素对应至少一个所述第二透明电极列,且所述控制模块设置为能够向同一列像素单元对应的多个所述第二透明电极列提供相同的控制信号。
在一个实施例中,所述像素单元包括多个亚像素,每列所述亚像素对应一个所述第二透明电极列,且所述控制模块设置为能够向所述第一透明电极层和各个所述第二透明电极列提供控制信号,以使得所述辅助面板一侧的各列亚像素单元对应的第一液晶层的部分形成的等效透镜的焦距各不相同,并且,所述辅助面板的各列亚像素单元对应的第一液晶层的部分形成的等效透镜的焦距关于所述辅助面板的宽度方向上的中线对称分布。
在一个实施例中,所述辅助面板沿宽度方向被划分为三部分,所述控制模块提供的控制信号能够使得所述第一液晶层中与所述辅助面板两侧的部分对应的部分的焦距小于所述辅助面板与所述显示面板之间的距离,并使得所述第一液晶层位于所述辅助面板的宽度方向的中间的部分形成的等效透镜的焦距大于所述辅助面板与所述显示面板之间的距离。
在一个实施例中,对于所述显示面板中与所述辅助面板的两侧的部分相对应的部分,从所述显示面板的宽度方向的中间至所述显示面板的宽度方向的两侧,所述显示面板的开口率逐渐减小;对于所述显示面板中与所述辅助面板的中间的部分相对应的部分,从所述显示面板的宽度方向的中间至所述显示面板的宽度方向的两侧,所述显示面板的开口率逐渐增大。
在一个实施例中,每个像素单元包括多个亚像素,每列亚像素对应一列第二透明 电极列,同一个所述像素单元中不同亚像素对应的第二透明电极列形成的等效正透镜的焦距相同。
在一个实施例中,所述显示面板包括排列为多行多列的多个像素单元,所述第一透明电极层为覆盖所述第一衬底的面状电极,所述第二透明电极层包括多个第二透明电极列,每列所述像素单元对应至少一列第二透明电极列,所述控制模块设置为能够向所述第一透明电极层和各个所述第二透明电极列提供控制信号,以使得每个第二透明电极列对应的第一液晶层的部分的折射率从该第二透明电极列的宽度方向的两边至第二透明电极列的中间逐渐减小,以形成等效负透镜,并且在所述辅助面板的宽度方向上,从所述辅助面板的两侧至中间,所述第一液晶层的各部分形成的等效负透镜的焦距逐渐增大。
在一个实施例中,所述辅助面板沿宽度方向被划分为三部分,所述显示面板包括排列为多行多列的多个像素单元,所述第一透明电极层为覆盖所述第一衬底的面状电极,所述第二透明电极层包括多个第二透明电极列,每列所述像素单元对应至少一个所述第二透明电极列,所述控制模块设置为能够向所述第一透明电极层和各个所述第二透明电极列提供控制信号,以使得所述辅助面板两侧的部分的第二透明电极列对应的第一液晶层的部分的折射率从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐减小,以形成等效正透镜,所述辅助面板中间的部分的第二透明电极列对应的第一液晶层的部分的折射率从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐增大,以形成等效负透镜。
在一个实施例中,所述辅助面板沿宽度方向被划分为三部分,所述显示面板包括排列为多行多列的多个像素单元,所述第一透明电极层为覆盖所述第一衬底的面状电极,所述第二透明电极层包括多个第二透明电极列,每列所述像素单元对应至少一个所述第二透明电极列,所述控制模块设置为能够向所述第一透明电极层和各个所述第二透明电极列提供控制信号,以使得所述辅助面板两侧的部分的第二透明电极列对应的第一液晶层的部分的折射率从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐增大,以形成等效正透镜,所述第一液晶层中与所述辅助面板中间的部分的第二透明电极列对应的部分折射率从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐减小,以形成等效负透镜。
在一个实施例中,每个所述第二透明电极列包括一个或多个条状的透明电极条。
在一个实施例中,每个所述第二透明电极列包括多个第二透明电极,每个第二透明电极对应一个像素单元,每个第二透明电极包括多个同心的第二透明电极环。
在一个实施例中,所述显示面板为液晶显示面板,所述显示面板包括第一偏光片和第二偏光片,所述第一偏光片设置在所述显示面板的入光侧,所述第二偏光片设置在所述显示面板的出光侧,所述辅助面板的第一液晶层的初始排列方向与所述第二偏光片的偏光方向平行。
在一个实施例中,所述显示面板为有机发光二极管显示面板,所述显示装置还包括调节面板,所述调节面板设置在所述显示面板的出光侧,且与所述辅助面板层叠设置,所述调节面板包括对盒设置的第三基板和第四基板,以及封装在所述第三基板和所述第四基板之间的第二液晶层,所述第二液晶层的初始排列方向与所述第一液晶层的初始排列方向垂直,所述第三基板包括第三衬底和第三透明电极层,所述第四基板包括第四衬底和第四透明电极层,所述第三透明电极层在所述第三衬底上的设置方式与所述第一透明电极层在所述第一衬底上的设置方式相同,所述第四透明电极层在所述第四衬底上的设置方式与所述第二透明电极层在所述第二衬底上的设置方式相同,所述控制模块能够向所述调节面板提供与所述辅助面板相同的信号。
在本公开中,通过控制第一液晶层不同区域的折射率,可以改变从显示装置出射的光的方向,并在曲面上形成图像,即,所述显示装置可以实现曲面显示,观看者站在显示装置的前方即可观看到曲面显示的画面。
在本公开中,并没有将所述显示装置的显示面设置成曲面,因此,所述显示装置的安装空间并没有增加。也就是说,可以在较小的空间内安装所述显示装置。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是本公开所提供的显示装置的结构示意图,其中,所述显示面板为液晶显示面板;
图2是正透镜成放大虚像的显示原理图;
图3是正透镜成实像的显示原理图;
图4是负透镜成缩小虚像的显示原理图;
图5是辅助面板中形成的等效透镜的等效光程图;
图6是辅助面板不加电时液晶分子排布状态的状态图;
图7a是辅助面板加电后液晶分子排布状态图,其中,加电后等效为正透镜;
图7b是图7a的俯视图;
图8a是辅助面板加电后液晶分子排布状态图,其中,加电后等效为负透镜;
图8b是图8a的俯视图;
图9是正透镜成后置图像的示意图;
图10是正透镜成后置图像的示意图,其中,显示装置的开口率从中间到两边逐渐减小;
图11是正透镜成后置图像的示意图,其中,每列亚像素对应一个第二透明电极列,同一个像素单元的焦距相同;
图12是正透镜成后置图像的示意图,其中,每列亚像素对应一个第二透明电极 列,同一个像素单元的焦距不同;
图13是正透镜成前置图像的示意图;
图14是正透镜成前置图像的示意图,其中,显示装置的开口率从中间到两边逐渐减小;
图15是正透镜成前置图像的示意图,其中,每列亚像素对应一个第二透明电极列,同一个像素单元的焦距相同;
图16是正透镜成前置图像的示意图,其中,每列亚像素对应一个第二透明电极列,同一个像素单元的焦距不同;
图17是利用负透镜成缩小虚像的原理图,虚拟曲面位于液晶透镜和像素之间;
图18是利用正透镜成像、位于显示面板两侧的示意图;
图19是利用正透镜成像、位于显示面板两侧的示意图,其中,显示装置的开口率从中间到两边逐渐减小;
图20是利用正透镜成像、位于显示面板两侧的示意图,其中,每列亚像素对应一个第二透明电极列,同一个像素单元的焦距相同;
图21是利用正透镜成像、位于显示面板两侧的示意图,其中,每列亚像素对应一个第二透明电极列,同一个像素单元的焦距不同;
图22是利用正透镜和负透镜的组合成像的示意图,其中,负透镜位于显示面板的两侧;
图23是利用正透镜和负透镜的组合成像的示意图,其中,负透镜位于显示面板的中间;
图24a是所述显示面板为有机发光二极管显示面板时,所述显示装置的一种实施方式的示意图;
图24b是所述显示面板为有机发光二极管显示面板时,所述显示装置的另一种实施方式的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
需要指出的是,下文用到的术语“宽度”是指显示装置处于使用状态时的横向方向。也是图9至图23中的左右方向。
本公开提供一种显示装置,如图1所示,显示装置包括显示面板200,其中,显示装置还包括控制模块(未示出)和设置在显示面板200的出光侧的辅助面板100,该辅助面板100包括第一液晶层130、对盒设置的第一基板110和第二基板120,第一液晶层130封装在第一基板110和第二基板120之间。
如图1和图6所示所示,第一基板110包括第一衬底111和设置在该第一衬底 111上的第一透明电极层112,第二基板120包括第二衬底121和设置在该第二衬底121上的第二透明电极层122,控制模块能够向第一透明电极层112和第二透明电极层122提供使得第一液晶层不同区域具有不同的折射率的控制信号,以使得显示面板200透出的光线在曲面上形成图像,且曲面的开口朝向显示装置的出光方向。
通过控制模块向第一透明电极层112和第二透明电极层122施加控制信号,可以使得第二透明电极列对应的区域形成等效透镜。
图2和图3中所示的是光线通过正透镜的成像原理。
图2中所示的是正透镜在透镜的后方成像的原理。如图所示,将物AB放置在透镜后(图2中的左侧),使物距l小于透镜的焦距f,可以使物AB在透镜的后方(图2中的左侧)形成一个虚像A’B’,被人眼接收。
图3所示的是正透镜在透镜的前方成像的原理,如图所示,将物AB放置在透镜后(图3中的左侧),使物距l大于透镜的焦距f,可以使物在透镜的前方(图中的右侧)形层倒置的像B’A’。
图4所示的是利用负透镜在物和透镜之间成像的原理图。将物AB放置在透镜后(图4中的左侧),可以在透镜和物AB之间形成像A’B’。
在图2至图4中,F表示透镜物方焦点,F’表示透镜的像方焦点。
公式(1)是表示透镜中物像关系的公式。通过公式(1)可知,如果确定了透镜的焦距f’、物与透镜之间的距离l,即可获得物象与透镜之间的距离l’。
Figure PCTCN2017076075-appb-000001
其中,l是物与透镜之间的距离;
l’是物象与透镜之间的距离;
f’是透镜的焦距。
在本公开所提供的显示装置中,显示面板200所显示的图像即为上文中所述的“物”,利用辅助面板100可以形成多个等效透镜,具体地,每个第二透明电极列对应一列等效透镜(可以是一个等效透镜,也可以是多个等效透镜)。显示面板200与辅助面板100之间的距离是固定的,也就是说,公式(1)中的l是固定的。在设计显示装置时,可以由设计人员确定各个第二透明电极列所形成的等效透镜所形成图像与出光面之间的距离,只要保证所有第二透明电极列所形成的等效透镜所形成的图像在同一个曲面上即可。因此,可以认为物像与等效透镜之间的距离l’是已知的,从而可以利用公式(1)求解获得等效透镜的焦距f’。
图5中所示的是辅助面板中形成的等效凸透镜的等效光程图。根据等光程原理公式(2)可以求得等效透镜各个部分的折射率。因此,只需要利用控制模块向第一透明电极层以及第二透明电极列施加信号、使得第二透明电极列对应的液晶材料具有相应的折射率。
Figure PCTCN2017076075-appb-000002
其中,f’为等效透镜的焦距;
n1为等效透镜中部的折射率;
n2为等效透镜边缘的折射率;
d为显示面板与辅助面板之间的距离;
p为第二电极列的宽度。
由于[(n1-n2)*d]2≈0,因此,可以将上述公式(2)简化为以下公式(3):
Figure PCTCN2017076075-appb-000003
其中,no≤n2≤n1≤ne。no为液晶材料双折射中的o光折射率,ne为液晶材料双折射中的e光折射率。
利用等效光程原理计算凹透镜的焦距的原理与凸透镜相似,这里不再赘述。
在本公开的一个或多个实施例中,通过控制第一液晶层不同区域的折射率,可以改变从显示装置出射的光的方向,并在曲面上形成图像,即,显示装置可以实现曲面显示,观看者站在显示装置的前方即可观看到曲面显示的画面。
在本公开的一个或多个实施例中,并没有将显示装置的显示面设置成曲面,因此,显示装置的安装空间并没有增加。也就是说,可以在较小的空间内安装显示装置。
在本公开的一种实施方式中,控制模块不向第一透明电极层112和第二透明电极层122提供控制信号时,第一液晶层130的折射率处处相等,以使得显示装置可以实现平面显示。使用者可以根据自己的要求来设定是否使得显示装置进行曲面显示。如图6所示,在不向第一透明电极层112和第二透明电极层122施加信号时,第一液晶层中液晶分子的偏转方向是一致的,因此,第一液晶层的折射率处处相同,从而可以使得光线直接透过,光路不会发生偏折,以实现平面显示。
并且,在本公开中,第一液晶层中的液晶分子的初始排列方向(即,不加电时,液晶分子的长轴方向)是由显示面板所决定的。
在本公开中,对显示面板200的具体结构并没有特殊的限制,例如,如图1中所示,显示面板200为液晶显示面板,当显示面板为液晶显示面板时,显示装置还可以包括背光源300。
当显示面板200为液晶显示面板时,该显示面板200包括第一偏光片和第二偏光片,第一偏光片设置在显示面板的入光侧,第二偏光片设置在显示面板的出光侧,辅助面板的第一液晶层的初始排列方向与第二偏光片的偏光方向平行。
当然,显示面板200还可以是有机发光二极管显示面板。当显示面板200为有机发光二极管显示面板时,如图24a和图24b所示,显示装置还包括调节面板400,该调节面板400设置在显示面板200的出光侧,且与辅助面板层叠设置,调节面板400 包括对盒设置的第三基板410和第四基板420,以及封装在第三基板410和第四基板420之间的第二液晶层430,第二液晶层430的初始排列方向与第一液晶层130的初始排列方向垂直。第三基板包括第三衬底和第三透明电极层,第四基板包括第四衬底和第四透明电极层,第三透明电极层在第三衬底上的设置方式与第一透明电极层在第一衬底上的设置方式相同,第四透明电极层在第四衬底上的设置方式与第二透明电极层在第二衬底上的设置方式相同,控制模块能够向调节面板提供与辅助面板相同的信号。
调节面板400的设置包括两种方式,一种是设置在显示面板200和辅助面板100之间(如图24a所示),另一种是设置在辅助面板100的出光侧(如图24b所示)。
下面详细介绍图24a中所示的显示装置的显示原理。
显示面板200发出的光的偏振态可以分解为平行于纸面和垂直于纸面。在进行显示时,对调节面板400施加控制信号,调节面板400可以对偏振方向平行于纸面的偏振光进行处理,此时,偏振方向平行于纸面的偏振光进行折射处理,改变其出射方向,但是偏振方向垂直于纸面的偏振光的折射率没有发生改变,直接通过调节面板400。同时,对辅助面板100施加控制信号,辅助面板100对直接通过调节面板400的偏振方向垂直于纸面的偏振光进行折射处理,改变其出射方向,而已经经过调节面板400的折射处理的偏振方向平行于纸面的光直接透过辅助面板100。
经过辅助面板100和调节面板400的处理之后,偏振方向平行于纸面的偏振光和偏振方向垂直于纸面的偏振光的出射方向是一致的,因此,可以得到在曲面上显示的图像。换言之,辅助面板100可以将偏振方向垂直于纸面的光线引导至曲面上,而调节面板400可以将偏振方向平行于纸面的光线引导至曲面上。
需要指出的是,上文仅仅是为了便于描述,而非用于限制。也可以将辅助面板100设置为能够将偏振方向平行于纸面的光引导至曲面上,将调节面板400设置为能够将偏振方向垂直于纸面的光引导至曲面上。
控制模块可以同时控制辅助面板100和调节面板400,以使得第一液晶层形成多个等效透镜,并使得第二液晶层形成多个等效透镜,并且,第一液晶层形成的多个等效透镜分别与第二液晶层形成的多个等效透镜一一对镜,并且,第一液晶层中形成的等效透镜的参数(包括焦距、折射率等)与第二液晶层中形成的相对应的等效透镜的参数相同。
图24b中所示的显示装置的工作原理与图24a中所示的显示装置的工作原理相似,这里不再赘述。
显示面板200包括排列为多行多列的多个像素单元,每个像素单元包括多个亚像素。
在本公开的一种实施方式中,第一透明电极层112为覆盖第一衬底111的面状电极,第二透明电极层122包括多个第二透明电极列,每个列像素单元对应至少一个第 二透明电极列。控制模块设置为能够向第一透明电极层和各个第二透明电极列提供控制信号,以使得第一液晶层上与任意一个第二透明电极列对应的部分的折射率均为从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐增大,以形成等效正透镜,并且,在辅助面板的宽度方向上,从辅助面板的两侧至中间,第一液晶层的各部分形成的等效透镜的焦距逐渐减小。
为了便于描述,可以将第一液晶层划分为多个部分,每个第二透明电极列对应第一液晶层的一部分,第一液晶层的各个部分的厚度是始终不变的,通过改变第一液晶层的各个部分的折射率可以改变透过第一液晶层的各部分的折射率。
图7a和图7b中所示的是一个第二透明电极列对应的第一液晶层的部分中液晶分子的偏转示意图。在图7a中,左右方向即为第二透明电极列的宽度方向。位于第二透明电极列的宽度方向的两侧的液晶分子长轴方向是竖直的,位于第二透明电极列的宽度方向的中间的液晶分子的长轴方向是水平的。
通过设置施加给各个第二透明电极列的电压大小,可以控制不同第二透明电极列对应的第一液晶层的部分所形成的等效正透镜的焦距,从而可以实现在不同位置处显示相应的图像,最终形成曲面显示。
在图9至图12所示的实施方式中,可以在显示面板的后方形成放大的图像。在图13至图16所示的实施方式中,可以在显示面板的前方形成放大的图像。在图18至图21所示的实施方式中,形成的图像的一部分位于显示面板的前方,一部分位于显示面板的后方。需要指出的是,此处所述的“前、后”是指各个图中的“上、下”方向。
下文中将详细介绍上述各图中所描述的实施方式。在图9至图23中,等效透镜上对应的f1、f2、f3为该等效透镜的焦距。需要指出的是,f1<f2<f3
如图9所示,在显示面板中,每个像素单元对应三个亚像素,这三个亚像素分别为红色亚像素R、绿色亚像素G和蓝色亚像素B,每列像素单元对应一个第二透明电极列。
通过控制显示面板与辅助面板之间的距离与等效正透镜的焦距之间的关系可以控制多个等效正透镜成的像的位置。
为了使得辅助面板上形成的等效透镜的阵列形成位于显示面板的后方(图9至图12中的下方),控制模块提供的控制信号能够使得辅助面板上与各个第二透明电极列对应的第一液晶层形成的等效正透镜的焦距大于显示面板和辅助面板之间的距离(即,物距),且,在辅助面板的宽度方向上,从辅助面板的两侧至中间,第一液晶层对应的形成的等效正透镜的焦距逐渐减小。
在图9中,将各个第二透明电极列对应的第一液晶层的部分等效成了正透镜。图9中仅示出了其中的5个等效透镜,在人眼处可以看到通过等效透镜形成的图像,在图9中,虚线框所示的即为各个像素单元形成的物象,所有像素单元形成的多个物象位于同一个曲面上,并且,该曲面的开口朝向观看者(即,图9中的朝上)。
容易理解的是,利用第一透明电极层、第二透明电极层和控制模块使得第一液晶层形成多个等效正透镜时,通过设置物距和焦距之间的关系,可以控制等效透镜成像的大小。
为了防止各个像素显示的图像之间产生重叠,在一个实施例中,如图10所示,每列像素单元对应一个第二透明电极列,显示面板的开口率从显示面板的中部向辅助面板的两边逐渐增大。像素单元的开口率是由环绕该像素单元的黑矩阵的宽度所决定的,因此,环绕中间的像素单元的黑矩阵宽度最大,环绕最边上的像素单元的黑矩阵的宽度最小。黑矩阵可以将相邻两个像素单元形成的虚像之间的重叠的部分挡住,从而可以获得更好的显示效果。
在本公开的另一种实施方式中,可以将显示装置设置为每列亚像素对应至少一个第二透明电极列,且控制模块设置为能够向同一列像素单元对应的多个第二透明电极列提供相同的信号。
与上文中相同,在图11中,示出的是与第二透明电极列对应的第一液晶层的等效正透镜。在图11中所示的实施方式中,在进行显示时,每个亚像素对应一个等效正透镜,或者一个亚像素对应多个等效正透镜,并且,同一个亚像素对应的等效正透镜的焦距相同,不同像素单元对应的等效正透镜焦距不同。虽然没有示出,但是,需要解释的是,进行显示时,每个像素单元中的亚像素可能会产生重叠。亚像素图像之间的重叠不会对显示造成影响,而且还有利于画质色彩的调制,间接提高了像素单元的开口率。而相邻的像素单元之间,图像不会有重叠,或者有少部分的重叠。容易理解的是,由于相邻像素单元之间设置有黑矩阵,因此,相邻像素单元形成的图像之间即便也重叠也会被黑矩阵遮挡。因此,利用图11中所示的显示装置显示图像时,可以获得更好的色彩效果。
在本公开的另一种实施方式中,可以将显示装置设置为每列亚像素对应一个第二透明电极列,且控制模块设置为能够向第一透明电极层和各个第二透明电极列提供控制信号,以使得辅助面板一侧的各列亚像素单元对应的第一液晶层的部分形成的等效正透镜的焦距各不相同,并且,辅助面板的各列亚像素单元对应的第一液晶层的部分形成的等效正透镜的焦距关于辅助面板的宽度方向上的中线对称分布。
与上文中相同,在图12中,示出的是与第二透明电极列对应的第一液晶层形成的等效透镜。在图12中所示的实施方式中,在进行显示时,每个亚像素对应一个等效透镜。这样,每个像素单元中的亚像素都可能会发生重叠,从而更有利于色彩的调制。相邻两个像素单元形成的虚像之间不会重叠,或者重叠较少。当相邻两个像素单元形成的虚像重叠时,会被黑矩阵遮挡,从而不会对显示的图像造成影响。
如上文中所述,辅助面板形成的虚像位于显示面板后方的情况。
当将控制模块设置为:控制模块提供的控制信号能够使得第一液晶层中与辅助面板上各个第二透明电极列对应部分的焦距小于显示面板与辅助面板之间的距离(即, 物距)。在这种情况中,通过向第一透明电极层和第二透明电极层中的各个第二透明电极列施加信号,使得第一液晶层形成等效于正透镜的阵列。
如图13至图16所示,由于等效正透镜的焦距小于显示面板与辅助面板之间的距离,因此,可以在显示装置的前方(即,图13至图16中的上方)成像。
在图13和图14所示的实施方式中,每列像素单元对应同一列第二透明电极列,如图所示,辅助面板上形成的等效正透镜可以在显示面板的前方形成倒置的图像,即,同一个像素单元中,亚像素的位置发生变化。但是,本领域技术人员应当理解的是,同一个像素单元中的多个亚像素发出的光互相混合,可以使得像素单元显示预定的颜色,同一个像素单元中亚像素的位置变化并不会影响像素单元最终呈现出来的颜色。
如上文中所述,可以通过以下几种实施方式来解决显示装置进行曲面显示时可能出现的像素单元显示的图像重叠的问题。
如图14中所示,每列像素单元对应一个第二透明电极列,显示面板的开口率从显示面板的中部向辅助面板的两边逐渐减小。像素单元的开口率是由环绕该像素单元的黑矩阵的宽度所决定的,因此,环绕中间的像素单元的黑矩阵宽度最小,环绕最边上的像素单元的黑矩阵的宽度最大。黑矩阵可以将相邻的两个像素单元形成的虚像之间的重叠的部分挡住,从而可以获得更好的显示效果。
如图15中所示,在进行显示时,每个亚像素对应一个等效正透镜,或者一个亚像素对应多个等效正透镜,并且,同一个亚像素对应的等效正透镜的焦距相同,不同像素单元对应的等效正透镜焦距不同。虽然没有示出,但是,需要解释的是,进行显示时,每个像素单元中的亚像素可能会产生重叠。亚像素图像之间的重叠不会对显示造成影响,而且还有利于画质色彩的调制,间接提高了像素单元的开口率。而相邻的像素单元之间,图像不会有重叠,或者有少部分的重叠。容易理解的是,由于相邻的像素单元之间设置有黑矩阵,因此,相邻的像素单元形成的图像之间即便也重叠也会被黑矩阵遮挡。因此,利用图15中所示的显示装置显示图像时,可以获得更好的色彩效果。
如图16中所示,在进行显示时,每列亚像素对应一个等效正透镜。这样,每个像素单元中的亚像素都可能会产生重叠,从而更有利于色彩的调制。相邻的两个像素单元形成的虚像之间不会重叠,或者重叠较少。当相邻的两个像素单元形成的虚像重叠时,会被黑矩阵遮挡,从而不会对显示的图像造成影响。
当然,还可以通过控制信号使得显示装置形成的图像位于显示装置的前后两侧,即,部分图像位于显示装置的前方(即,图18中的上方),部分位于显示装置的后方(即,图18中的下方)。具体地,可以沿辅助面板的宽度方向将辅助面板划分为三部分,控制模块提供的控制信号能够使得辅助面板两侧的部分的第一液晶层的部分对应的等效正透镜的焦距小于显示面板与辅助面板之间的距离,并使得辅助面板中间的部分的第一液晶层的部分对应的等效正透镜的焦距大于显示面板与辅助面板之间 的距离。通过图18可以看出,位于显示面板的宽度方向的两侧的等效正透镜可以在显示面板的前方形成倒置的像,位于显示面板的宽度方向的中间的等效正透镜可以在显示面板的后方形成正立的像。
在本公开的一个实施例中,为了获得较好的显示效果,辅助面板的三个部分是关于辅助面板的宽度方向的中线对称的。
在一个实施例中,辅助面板的两侧的部分的尺寸大于显示装置的中间的部分的尺寸。第一液晶层中对应于辅助面板的两侧的部分形成的等效正透镜可以使得显示面板显示的图像形成位于显示装置前方的像,第一液晶层中对应于辅助面板的中间的部分形成的等效正透镜可以使得显示面板显示的图像形成位于显示装置后方的像。
为了减少像素单元所成之像的重叠现象,在一个实施例中,如图19所示,对于显示面板中与辅助面板的两侧的部分相对应的部分,从显示面板的宽度方向的中间至显示面板的宽度方向的两侧,显示面板的开口率逐渐减小。对于显示面板中与辅助面板的中间的部分相对应的部分,从显示面板的宽度方向的中间至显示面板的宽度方向的两侧,显示面板的开口率逐渐增大。
同样地,还可以按照图20中的实施方式设置等效透镜,以减小像素单元所成之像之间的重叠。具体地,每列亚像素对应一列第二透明电极列,同一个像素单元中不同亚像素对应的第二透明电极列形成的等效正透镜的焦距相同。
上文中介绍了通过控制信号使得辅助面板的第一液晶层中形成等效正透镜的情况,下面介绍通过控制信号使得辅助面板的第一液晶层中形成等效负透镜情况。
控制模块设置为能够向第一透明电极层和各个第二透明电极列提供控制信号,以使得第一液晶层中与每个第二透明电极列对应的部分的折射率从该第二透明电极列的宽度方向的两边至第二透明电极列的中间逐渐减小,以形成等效负透镜,并且在辅助面板的宽度方向上,从辅助面板的两侧至中间,第一液晶层的各部分形成的等效负透镜的焦距逐渐增大。
图8a和图8b中所示的是一个第二透明电极列对应的液晶分子的偏转示意图。在图8a中,左右方向即为第二透明电极列的宽度方向。位于第二透明电极列的宽度方向的两侧的液晶分子长轴方向是水平的,位于第二透明电极列的宽度方向的中间的液晶分子的长轴方向是竖直的。
通过设置施加给各个第二透明电极列的电压大小,可以控制不同第二透明电极列对应的第一液晶层的部分所形成的等效负透镜的焦距,从而可以实现在不同位置处显示相应的图像,最终形成曲面显示。
如图17中所示,当光线通过等效负透镜时,可以在等效负透镜和显示面板之间形成缩小的像。
在一种实施方式中,辅助面板沿宽度方向被划分为三部分,显示面板包括排列为多行多列的多个像素单元,第一透明电极层为覆盖第一衬底的面状电极,第二透明电 极层包括多个第二透明电极列,每列像素单元对应至少一个第二透明电极列,控制模块设置为能够向第一透明电极层和各个第二透明电极列提供控制信号,以使得第一液晶层中与辅助面板两侧的部分的第二透明电极列对应部分的折射率从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐减小,以形成等效正透镜,第一液晶层中与辅助面板中间的部分的第二透明电极列对应的部分的折射率从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐增大,以形成等效负透镜。
也就是说,如图22所示,辅助面板两侧的第一液晶层形成等效负透镜,辅助面板中间的第一液晶层形成等效正透镜。等效正透镜可以在显示装置的后方(即,图22中的下方)成像,等效负透镜可以在显示面板和辅助面板之间形成缩小的虚像。
在本公开的一种实施方式中,辅助面板沿宽度方向被划分为三部分,显示面板包括排列为多行多列的多个像素单元,第一透明电极层为覆盖第一衬底的面状电极,第二透明电极层包括多个第二透明电极列,每列像素单元对应至少一个第二透明电极列,控制模块设置为能够向第一透明电极层和各个第二透明电极列提供控制信号,以使得第一液晶层中与辅助面板两侧的部分的第二透明电极列对应的部分的折射率从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐增大,以形成等效正都经,第一液晶层中与辅助面板中间的部分的第二透明电极列对应部分的折射率从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐减小,以形成等效负透镜。
如图23所示,辅助面板两侧的第一液晶层形成等效正透镜,辅助面板中间的第一液晶层形成等效负透镜。等效正透镜可以在显示装置的后方(即,图23中的上方)形成倒置的像,等效负透镜可以在显示面板和辅助面板之间成像。
需要指出的是,在显示面板中,同一列像素单元对应的一列等效透镜的各个参数均是相同的。
在本公开中,对第二透明电极列的具体结构并没有特殊的限制,例如,每个第二透明电极列包括一个或多个条状的透明电极条。也就是说,同一列中的一个或多个透明电极条即形成一个第二透明电极列。这种结构制造简单,并且容易控制。在这种情况中,第一液晶层中与第二透明电极列对应的部分可以形成一个或多个等效柱状透镜。容易理解的是,当形成一个等效柱状透镜时,该等效柱状透镜的长度是与相应的一列像素单元的长度相同的。当形成多个等效柱状透镜时,该多个等效柱状透镜的焦距是相同的,并且,多个等效柱状透镜位于同一列中。
当然,第二透明电极列的结构并不限于此。例如,每个第二透明电极列包括多个第二透明电极,每个第二透明电极对应一个像素单元,每个第二透明电极包括多个同心的第二透明电极环。在图7a、图7b、图8a和图8b示出的实施方式中,一个第二透明电极包括5个第二透明电极环。当向这种结构的第二透明电极提供信号时,利用 这种结构的第二透明电极和第一透明电极层之间形成的电场可以使得相应的液晶分子偏转,形成等效的球面透镜。球面透镜成像时具有更好的显示效果,可以减轻像散现象。容易理解的是,一列像素单元对应多个排列层一列的等效球透镜,并且,同一列中的不同像素单元对应的不同等效球透镜的参数是相同的。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (19)

  1. 一种显示装置,所述显示装置包括:
    显示面板;
    控制模块;和
    设置在所述显示面板的出光侧的辅助面板,所述辅助面板包括第一液晶层、对盒设置的第一基板和第二基板,所述第一液晶层封装在所述第一基板和所述第二基板之间,所述第一基板包括第一衬底和设置在所述第一衬底上的第一透明电极层,所述第二基板包括第二衬底和设置在所述第二衬底上的第二透明电极层,
    其中,所述控制模块被配置为向所述第一透明电极层和所述第二透明电极层提供使得所述第一液晶层的不同区域具有不同的折射率的控制信号,以使得所述显示面板透出的光线在曲面上形成图像,且所述曲面的开口朝向所述显示装置的出光方向。
  2. 根据权利要求1所述的显示装置,其中,所述控制模块不向所述第一透明电极层和所述第二透明电极层提供控制信号时,所述第一液晶层的折射率处处相等。
  3. 根据权利要求1所述的显示装置,其中,所述显示面板包括排列为多行多列的多个像素单元,所述第一透明电极层为覆盖所述第一衬底的面状电极,所述第二透明电极层包括多个第二透明电极列,每列所述像素单元对应至少一个所述第二透明电极列,所述控制模块设置为能够向所述第一透明电极层和各个所述第二透明电极列提供控制信号,以使得所述第一液晶层上与任意一个第二透明电极列对应的部分的折射率均为从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐增大,以形成等效正透镜,并且,在所述辅助面板的宽度方向上,从所述辅助面板的两侧至中间,所述第一液晶层的各部分形成的等效透镜的焦距逐渐减小。
  4. 根据权利要求3所述的显示装置,其中,所述控制模块提供的控制信号能够使得所述辅助面板上与各个所述第二透明电极列对应的第一液晶层的部分形成的等效正透镜的焦距大于所述辅助面板与所述显示面板之间的距离。
  5. 根据权利要求4所述的显示装置,其中,每列所述像素单元对应一个所述第二透明电极列,所述显示面板的开口率从所述显示面板的中部向所述辅助面板的两边逐渐增大。
  6. 根据权利要求3所述的显示装置,其中,所述控制模块提供的控制信号能够使得所述辅助面板上与各个所述第二透明电极列对应的第一液晶层的部分形成的等效透镜的焦距小于所述辅助面板与所述显示面板之间的距离。
  7. 根据权利要求6所述的显示装置,其中,每列所述像素单元对应一个所述第二透明电极列,所述显示面板的开口率从所述显示面板的中部向所述辅助面板的两边逐渐减小。
  8. 根据权利要求3至7中任意一项所述的显示装置,其中,所述像素单元包括多个亚像素,每列所述亚像素对应至少一个所述第二透明电极列,且所述控制模块设置为能够向同一列像素单元对应的多个所述第二透明电极列提供相同的控制信号。
  9. 根据权利要求3至7中任意一项所述的显示装置,其中,所述像素单元包括多个亚像素,每列所述亚像素对应一个所述第二透明电极列,且所述控制模块设置为能够向所述第一透明电极层和各个所述第二透明电极列提供控制信号,以使得所述辅助面板一侧的各列亚像素单元对应的第一液晶层的部分形成的等效透镜的焦距各不相同,并且,所述辅助面板的各列亚像素单元对应的第一液晶层的部分形成的等效透镜的焦距关于所述辅助面板的宽度方向上的中线对称分布。
  10. 根据权利要求3所述的显示装置,其中,所述辅助面板沿宽度方向被划分为三部分,所述控制模块提供的控制信号能够使得所述第一液晶层中与所述辅助面板两侧的部分对应的部分的焦距小于所述辅助面板与所述显示面板之间的距离,并使得所述第一液晶层位于所述辅助面板的宽度方向的中间的部分形成的等效透镜的焦距大于所述辅助面板与所述显示面板之间的距离。
  11. 根据权利要求10所述的显示装置,其中,对于所述显示面板中与所述辅助面板的两侧的部分相对应的部分,从所述显示面板的宽度方向的中间至所述显示面板的宽度方向的两侧,所述显示面板的开口率逐渐减小;对于所述显示面板中与所述辅助面板的中间的部分相对应的部分,从所述显示面板的宽度方向的中间至所述显示面板的宽度方向的两侧,所述显示面板的开口率逐渐增大。
  12. 根据权利要求10所述的显示装置,其中,每个像素单元包括多个亚像素,每列亚像素对应一列第二透明电极列,同一个所述像素单元中不同亚像素对应的第二透明电极列形成的等效正透镜的焦距相同。
  13. 根据权利要求1所述的显示装置,其中,所述显示面板包括排列为多行多列的多个像素单元,所述第一透明电极层为覆盖所述第一衬底的面状电极,所述第二透明电极层包括多个第二透明电极列,每列所述像素单元对应至少一列第二透明电极列,所述控制模块设置为能够向所述第一透明电极层和各个所述第二透明电极列提供控制信号,以使得每 个第二透明电极列对应的第一液晶层的部分的折射率从该第二透明电极列的宽度方向的两边至第二透明电极列的中间逐渐减小,以形成等效负透镜,并且在所述辅助面板的宽度方向上,从所述辅助面板的两侧至中间,所述第一液晶层的各部分形成的等效负透镜的焦距逐渐增大。
  14. 根据权利要求1所述的显示装置,其中,所述辅助面板沿宽度方向被划分为三部分,所述显示面板包括排列为多行多列的多个像素单元,所述第一透明电极层为覆盖所述第一衬底的面状电极,所述第二透明电极层包括多个第二透明电极列,每列所述像素单元对应至少一个所述第二透明电极列,所述控制模块设置为能够向所述第一透明电极层和各个所述第二透明电极列提供控制信号,以使得所述辅助面板两侧的部分的第二透明电极列对应的第一液晶层的部分的折射率从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐减小,以形成等效正透镜,所述辅助面板中间的部分的第二透明电极列对应的第一液晶层的部分的折射率从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐增大,以形成等效负透镜。
  15. 根据权利要求1所述的显示装置,其中,所述辅助面板沿宽度方向被划分为三部分,所述显示面板包括排列为多行多列的多个像素单元,所述第一透明电极层为覆盖所述第一衬底的面状电极,所述第二透明电极层包括多个第二透明电极列,每列所述像素单元对应至少一个所述第二透明电极列,所述控制模块设置为能够向所述第一透明电极层和各个所述第二透明电极列提供控制信号,以使得所述辅助面板两侧的部分的第二透明电极列对应的第一液晶层的部分的折射率从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐增大,以形成等效正透镜,所述第一液晶层中与所述辅助面板中间的部分的第二透明电极列对应的部分折射率从该第二透明电极列的宽度方向的两边至该第二透明电极列的中间逐渐减小,以形成等效负透镜。
  16. 根据权利要求3至7、10至15中任意一项所述的显示装置,其中,每个所述第二透明电极列包括一个或多个条状的透明电极条。
  17. 根据权利要求3至7、10至15中任意一项所述的显示装置,其中,每个所述第二透明电极列包括多个第二透明电极,每个第二透明电极对应一个像素单元,每个第二透明电极包括多个同心的第二透明电极环。
  18. 根据权利要求1至7、10至15中任意一项所述的显示装置,其中,所述显示面板为液晶显示面板,所述显示面板包括第一偏光片和第二偏光片,所述第一偏光片设置在所述显示面板的入光侧,所述第二偏光片设置在所述显示面板的出光侧,所述辅助面板的第一 液晶层的初始排列方向与所述第二偏光片的偏光方向平行。
  19. 根据权利要求1至7、10至15中任意一项所述的显示装置,其中,所述显示面板为有机发光二极管显示面板,所述显示装置还包括调节面板,所述调节面板设置在所述显示面板的出光侧,且与所述辅助面板层叠设置,所述调节面板包括对盒设置的第三基板和第四基板,以及封装在所述第三基板和所述第四基板之间的第二液晶层,所述第二液晶层的初始排列方向与所述第一液晶层的初始排列方向垂直,所述第三基板包括第三衬底和第三透明电极层,所述第四基板包括第四衬底和第四透明电极层,所述第三透明电极层在所述第三衬底上的设置方式与所述第一透明电极层在所述第一衬底上的设置方式相同,所述第四透明电极层在所述第四衬底上的设置方式与所述第二透明电极层在所述第二衬底上的设置方式相同,所述控制模块被配置为向所述调节面板提供与所述辅助面板相同的信号。
PCT/CN2017/076075 2016-06-02 2017-03-09 显示装置 WO2017206563A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/558,709 US10613394B2 (en) 2016-06-02 2017-03-09 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610388944.XA CN105866998A (zh) 2016-06-02 2016-06-02 显示装置
CN201610388944.X 2016-06-02

Publications (1)

Publication Number Publication Date
WO2017206563A1 true WO2017206563A1 (zh) 2017-12-07

Family

ID=56676608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076075 WO2017206563A1 (zh) 2016-06-02 2017-03-09 显示装置

Country Status (3)

Country Link
US (1) US10613394B2 (zh)
CN (1) CN105866998A (zh)
WO (1) WO2017206563A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866998A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 显示装置
CN106610552A (zh) * 2017-02-14 2017-05-03 京东方科技集团股份有限公司 一种显示装置
CN107329309B (zh) 2017-06-29 2020-11-03 京东方科技集团股份有限公司 显示模式控制装置及其控制方法、显示装置
CN109991793A (zh) * 2019-03-13 2019-07-09 武汉华星光电半导体显示技术有限公司 一种内置有透镜模块的显示装置
US11106071B2 (en) 2019-03-13 2021-08-31 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display device having a built-in lens module
WO2020191555A1 (zh) * 2019-03-22 2020-10-01 Oppo广东移动通信有限公司 电子设备、显示装置及像素结构
CN111489637B (zh) 2020-04-23 2022-11-25 京东方科技集团股份有限公司 显示模组及显示装置
CN114545650A (zh) * 2020-11-24 2022-05-27 京东方科技集团股份有限公司 一种显示模组、显示装置和显示方法
US20240085756A1 (en) * 2022-09-01 2024-03-14 Meta Platforms Technologies, Llc Gradient-index liquid crystal lens having lens segments with optical power gradient

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030229A (ja) * 2004-07-12 2006-02-02 Comoc:Kk 曲面レンズ及び表示装置
CN104199193A (zh) * 2014-07-31 2014-12-10 京东方科技集团股份有限公司 一种2d和3d显示可切换的显示装置
CN105572930A (zh) * 2016-03-23 2016-05-11 京东方科技集团股份有限公司 一种显示模组及显示***
CN105589277A (zh) * 2016-03-18 2016-05-18 京东方科技集团股份有限公司 一种液晶透镜及显示装置
CN105866998A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 显示装置
CN205679880U (zh) * 2016-06-02 2016-11-09 京东方科技集团股份有限公司 显示装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85105900A (zh) * 1985-07-26 1986-02-10 徐怀方 照相机液晶自动曝光装置
KR100421010B1 (ko) * 2001-07-20 2004-03-04 삼성전자주식회사 구면수차 보상소자 및 이를 적용한 광픽업장치
CN100454412C (zh) * 2005-11-18 2009-01-21 三洋电机株式会社 光拾取装置
CN101458411B (zh) * 2007-12-12 2012-08-29 奇美电子股份有限公司 视角可调的液晶显示装置
JPWO2009110521A1 (ja) * 2008-03-03 2011-07-14 シチズンホールディングス株式会社 電気光学素子
KR20130053103A (ko) * 2011-11-15 2013-05-23 삼성디스플레이 주식회사 표시 패널 및 이를 포함하는 표시 장치
KR101937865B1 (ko) * 2012-02-09 2019-01-15 삼성디스플레이 주식회사 액정 렌즈 패널 및 이를 구비하는 표시 장치
CN102662208B (zh) * 2012-03-15 2015-05-20 京东方科技集团股份有限公司 柱透镜光栅、液晶光栅及显示器件
CN203232232U (zh) * 2012-09-06 2013-10-09 江西理工大学 一种新型电控变焦聚合物分散液晶透镜
JP6028975B2 (ja) * 2012-12-05 2016-11-24 Nltテクノロジー株式会社 立体画像表示装置
CN103048842A (zh) * 2012-12-10 2013-04-17 京东方科技集团股份有限公司 一种液晶透镜及3d显示装置
CN103091854B (zh) * 2013-02-17 2015-06-03 深圳超多维光电子有限公司 一种立体显示装置
CN103309096A (zh) * 2013-06-09 2013-09-18 京东方科技集团股份有限公司 一种双层结构液晶透镜及三维显示装置
CN104950457A (zh) * 2014-03-28 2015-09-30 福京科技股份有限公司 裸视立体显示装置及裸视立体显示装置的像素的排列方法
TWI490591B (zh) * 2014-04-11 2015-07-01 Silicon Touch Tech Inc 液晶透鏡結構
CN204009309U (zh) * 2014-06-11 2014-12-10 重庆卓美华视光电有限公司 裸眼3d立体显示装置
CN104020624A (zh) * 2014-06-11 2014-09-03 重庆卓美华视光电有限公司 裸眼3d立体显示装置
CN104375339B (zh) * 2014-11-13 2017-07-18 深圳市华星光电技术有限公司 曲面液晶显示面板及曲面液晶显示装置
CN104714351B (zh) * 2014-12-26 2018-02-02 上海天马微电子有限公司 一种液晶透镜和其制造方法
CN105301825B (zh) * 2015-10-10 2017-09-01 深圳市华星光电技术有限公司 曲面液晶显示面板
CN105549244A (zh) * 2015-12-15 2016-05-04 深圳市华星光电技术有限公司 曲面液晶显示面板及其阵列基板
CN105629469B (zh) * 2016-01-12 2019-03-15 叠境数字科技(上海)有限公司 基于液晶透镜阵列的头戴式显示设备
CN105607380A (zh) * 2016-03-29 2016-05-25 京东方科技集团股份有限公司 液晶透镜、显示装置及其驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030229A (ja) * 2004-07-12 2006-02-02 Comoc:Kk 曲面レンズ及び表示装置
CN104199193A (zh) * 2014-07-31 2014-12-10 京东方科技集团股份有限公司 一种2d和3d显示可切换的显示装置
CN105589277A (zh) * 2016-03-18 2016-05-18 京东方科技集团股份有限公司 一种液晶透镜及显示装置
CN105572930A (zh) * 2016-03-23 2016-05-11 京东方科技集团股份有限公司 一种显示模组及显示***
CN105866998A (zh) * 2016-06-02 2016-08-17 京东方科技集团股份有限公司 显示装置
CN205679880U (zh) * 2016-06-02 2016-11-09 京东方科技集团股份有限公司 显示装置

Also Published As

Publication number Publication date
CN105866998A (zh) 2016-08-17
US10613394B2 (en) 2020-04-07
US20180188612A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
WO2017206563A1 (zh) 显示装置
WO2018171270A1 (zh) 显示面板、显示装置及驱动方法
WO2018076948A1 (zh) 显示面板和显示装置
US9857594B2 (en) Optical device and head-mounted display device and imaging device equipped with the same
US9201268B2 (en) Liquid-crystal-lens type light-modulating apparatus and liquid crystal display having the same
US20210223619A1 (en) Display Panel, Display Module, and Method for Driving Display Panel
US11314110B2 (en) Liquid crystal display and driving method thereof
US10921493B2 (en) Virtual curved surface display panel, display device and displaying method
WO2013157341A1 (ja) 液晶表示装置
US20100039583A1 (en) Liquid crystal display panel with micro-lens array and liquid crystal display device
US10962823B2 (en) Display module and display device
WO2018228263A1 (zh) 一种显示面板及显示装置
US10386695B2 (en) Auxiliary panel and display device
CN107632448B (zh) 一种显示面板
US20180046026A1 (en) Liquid crystal display and electronic device
WO2019210785A1 (zh) 液晶显示装置以及显示方法
US20160282636A1 (en) Liquid crystal lens and liquid crystal spectacle
WO2013163878A1 (zh) 调光装置及显示器
US20180196329A1 (en) Display Apparatus
WO2019000899A1 (zh) 显示模式控制装置及其控制方法、显示装置
US10001668B2 (en) Liquid crystal panel, display apparatus and display method
KR100851743B1 (ko) 시야각 조절이 가능한 패턴된 수직배향 액정표시장치
US20130050606A1 (en) Liquid Crystal Lens and Liquid Crystal Display Device
KR20090020142A (ko) 휘도 균일성 향상을 위한 백라이트 유닛과 영상표시모듈 및백라이트 유닛 배치방법
CN205679880U (zh) 显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17805508

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17805508

Country of ref document: EP

Kind code of ref document: A1