WO2017204514A1 - 압력 감지 센서 및 이를 포함하는 압력 감지 인솔 - Google Patents

압력 감지 센서 및 이를 포함하는 압력 감지 인솔 Download PDF

Info

Publication number
WO2017204514A1
WO2017204514A1 PCT/KR2017/005302 KR2017005302W WO2017204514A1 WO 2017204514 A1 WO2017204514 A1 WO 2017204514A1 KR 2017005302 W KR2017005302 W KR 2017005302W WO 2017204514 A1 WO2017204514 A1 WO 2017204514A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
pressure
elastic layer
variable member
layer
Prior art date
Application number
PCT/KR2017/005302
Other languages
English (en)
French (fr)
Inventor
조현진
조원근
김정한
이수민
이지나
조인희
주상아
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160062896A external-priority patent/KR102417498B1/ko
Priority claimed from KR1020160089287A external-priority patent/KR101783413B1/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US16/302,589 priority Critical patent/US10918156B2/en
Publication of WO2017204514A1 publication Critical patent/WO2017204514A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • A43B17/003Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined characterised by the material
    • A43B17/006Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined characterised by the material multilayered
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B17/00Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/02Layer formed of wires, e.g. mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/046Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/06Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/045Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0292Polyurethane fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/02Gloves, shoes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys

Definitions

  • the present invention relates to a pressure sensor and a pressure sensing insole comprising the same, and more particularly, to a sensor and an insole for sensing pressure.
  • the senor since the sensor is not flexible and elastic, there is a problem that it is difficult to apply to the shoes of the curved surface form, there is a problem that takes a long process time.
  • the senor since the sensor is not flexible and elastic, there is a problem that it is difficult to apply to the shoes in the form of a curved surface, there is a problem that takes a long process time.
  • Embodiments provide a pressure sensing sensor and a pressure sensing insole that sense pressure and position according to applied weight.
  • Pressure sensor includes an elastic layer including a hole; And a plurality of electrodes spaced apart from each other on the elastic layer.
  • the elastic layer includes a variable member disposed in the hole, wherein the plurality of electrodes are electrically connected to each other by an external pressure, and at least one of the plurality of electrodes covers a portion of the hole.
  • the first electrode and the second electrode may include a conductive fiber, and the conductive fiber may be a metal wire or a fiber coated with a metal film on a surface thereof.
  • the adhesive layer may be disposed on a region other than the region where the hole is formed on the electrode layer.
  • It may include an adhesive member disposed to surround the variable member.
  • An upper surface of the variable member may form a step with an upper surface of the elastic layer.
  • the elastic layer may be formed of a plurality of layers.
  • the variable member may connect between a plurality of electrodes spaced apart by the external pressure.
  • An area of the portion where the plurality of electrodes contact the upper surface of the elastic layer may be smaller than an area of the lower surface of the plurality of electrodes.
  • Pressure sensing insole includes a plurality of pressure sensing sensors; And a connector unit connected to the plurality of pressure sensing sensors, wherein the pressure sensing sensor comprises: an elastic layer including a hole; And a plurality of electrodes spaced apart from each other on the elastic layer.
  • the elastic layer includes a variable member disposed in the hole, wherein the plurality of electrodes are electrically connected to each other by an external pressure, and at least one of the plurality of electrodes covers a portion of the hole.
  • the pressure sensor according to the embodiment of the present invention can accurately detect the pressure according to the applied weight, and can accurately detect the pressure distribution by manufacturing the electrode in various shapes.
  • a separate space for embedding the sensor in the shoe is not required.
  • the pressure sensing insole according to the embodiment of the present invention is flexible and good elasticity can be applied to various types of shoes.
  • the pressure sensor according to the embodiment of the present invention can structurally separate the area for detecting the pressure to prevent the generation of noise for pressure detection.
  • both the anode and the cathode may be disposed on the same layer, so that the thickness of the insole becomes thin.
  • the material cost of the pressure sensor is low and the workability is excellent.
  • FIG. 1 is a cross-sectional view of a pressure sensor according to an embodiment of the present invention.
  • FIGS. 2 to 3 are cross-sectional views in which a step is formed in the pressure sensor in accordance with an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a pressure sensor according to another embodiment of the present invention.
  • FIG. 5 is a view showing an elastic layer composed of a plurality of layers in the pressure sensor according to another embodiment of the present invention.
  • 6 to 7 are cross-sectional views in which a step is formed in the pressure sensor according to another embodiment of the present invention.
  • FIG. 8 is a perspective view illustrating a pressure sensing insole according to an embodiment of the present invention.
  • FIG. 9 is a perspective view showing a pressure sensing insole according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a pressure sensor according to another embodiment of the present invention.
  • FIG. 11 is a perspective view of a pressure sensing insole in accordance with another embodiment of the present invention.
  • FIG. 12 is a top view of a pressure sensing insole in accordance with another embodiment of the present invention.
  • FIG. 13 is a view showing a portion of a bottom view of a pressure sensing insole according to another embodiment of the present invention.
  • FIG. 14 is a view illustrating various shapes of a sensing region of a pressure sensing insole according to another embodiment of the present invention.
  • ordinal numbers such as second and first
  • first and second components may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • second component may be referred to as the first component, and similarly, the first component may also be referred to as the second component.
  • FIG. 1 is a cross-sectional view of a pressure sensor according to an embodiment of the present invention
  • Figures 2 to 3 is a cross-sectional view of the step is formed in the pressure sensor according to an embodiment of the present invention.
  • the pressure sensing sensor 100 may include a first adhesive layer 120 and a first adhesive layer 120 disposed on the first electrode layer 110 and the first electrode layer 110.
  • the first elastic layer 130 disposed on the adhesive layer 120, the second adhesive layer 140 disposed on the first elastic layer 130, and the second electrode layer 150 disposed on the second adhesive layer 140. It includes.
  • the first electrode layer 110 may be made of a fabric.
  • the second electrode layer 150 may be formed of a fabric like the first electrode layer 110.
  • first electrode layer 110 and the second electrode layer 150 may be electrically connected with different polarities.
  • a ground connection may be performed at any one of the first electrode layer 110 and the second electrode layer 150.
  • the electrode is easily connected to the ground and the defective rate is reduced.
  • the fabric may comprise conductive fibers.
  • the conductive fiber may be a metal wire or a general fiber coated with a metal film on the surface.
  • the conductive fiber may be a general fiber in which metal particles are dispersed.
  • the diameter of the metal wire may be 10 ⁇ m to 500 ⁇ m.
  • the strength of the metal wire may be difficult to fabricate, and when the diameter of the metal wire exceeds 500 ⁇ m, the rigidity of the metal wire may be high and the flexibility of the fabric may be reduced. It can damage the equipment and the user is likely to feel heterogeneous.
  • the metal wire may be Cu, Ni, or a stainless alloy.
  • the stainless alloy is, for example, martensitic stainless alloy, ferritic stainless alloy,
  • It may be an austenitic stainless alloy, a two-phase stainless alloy, a precipitation hardening stainless alloy.
  • the corrosion resistance of the pressure sensor 100 may be improved.
  • the conductive fiber is a regular fiber coated with a metal film on the surface, the metal film is gold
  • the inner particles may be formed by a method of coating on the surface of the general fiber by plating or deposition.
  • the metal particles may be Cu, Ni, or a stainless alloy, and the thickness of the metal film may be 1 ⁇ m to 50 ⁇ m. If the thickness of the metal film is less than 1 ⁇ m, the conductivity may be low, and thus loss may occur during signal transmission. If the thickness of the metal film exceeds 50 ⁇ m, the metal film may easily detach from the surface of the fiber.
  • the first adhesive layer 120 may be disposed in a region other than a region in which the first hole h1 of the first elastic layer 130 is formed on the first electrode layer 110.
  • the region in which the first variable member 131 is formed will be described as the sensing region 152 and the region capable of sensing pressure.
  • the regions other than the sensing region 152 will be described as the non-sensing region 154. do
  • first adhesive layer 120 may have various sizes and shapes between the first elastic layer 130 and the first electrode layer 110.
  • the first adhesive layer 120 may have a structure in which an insulating adhesive is coated on both surfaces of the film.
  • the first electrode layer 110 and the first elastic layer 130 may be combined.
  • the portion disposed under the sensing region 152 may not be punched or coated with an insulating adhesive.
  • the first adhesive layer 120 may have a structure in which an adhesive is coated on both surfaces of the film, and may have a structure in which an insulating material is additionally coated except for a region disposed below the sensing region 152.
  • the first elastic layer 130 may be disposed on the first adhesive layer 120, and a plurality of first holes h1 may be formed.
  • the first elastic layer 130 may include an elastic body.
  • the elastic body is a synthetic fiber or natural fiber, elastomer, including one selected from the group consisting of a fiber base having a random fiber arrangement, such as foam foam, nonwoven fabric, nanoweb, polyurethane, nylon, polyethylene terephthalate and polyester, Rubber, urethane, and the like.
  • first variable member 131 may be disposed in the first hole h1 formed in the first elastic layer 130.
  • first hole h1 may be a through hole, but is not limited thereto.
  • the first variable member 131 may include an elastic body like the first elastic layer 130.
  • the elastic body is a synthetic fiber or natural fiber, elastomer, including one selected from the group consisting of a fiber base having a random fiber arrangement, such as foam foam, nonwoven fabric, nanoweb, polyurethane, nylon, polyethylene terephthalate and polyester, Rubber, urethane, and the like.
  • the conductive composite included in the first variable member 131 may be coated on the surface of the fiber forming the elastic body or dispersed in the elastic body.
  • the first variable member 131 when pressure is applied to the first variable member 131 which is the sensing region 152, the first variable member 131 may have a physical change.
  • the first variable member 131 disposed under the sensing region 152 may have a reduced thickness and a change in resistance.
  • the first electrode layer 110, the first variable member 131, and the second electrode layer 150 may be electrically connected to each other.
  • the thickness and resistance of the first variable member 131 may be changed, and the magnitude of the electrical signal flowing between the first electrode layer 110 and the second electrode layer 150 may also be changed by the resistance change.
  • the intensity of the pressure applied to the sensing region 152 may be sensed by using the magnitude change of the electrical signal.
  • pressure sensing is performed through the first variable member 131 disposed below the sensing region 152 with respect to the pressure applied on the sensing region 152.
  • an electrical signal is transmitted to the first variable member 131 disposed below the sensing region 152 to which pressure is applied, and the first variable member 9131 disposed below the sensing region 152 to which pressure is not applied. ) No electrical signal is transmitted.
  • the conductive composite may include a conductive polymer and a conductive powder.
  • the conductive composite may include 1 to 10 wt% of the elastomer. If the conductive composite is included in excess of 10 wt% of the elastic body, it becomes difficult to guarantee the insulating property in the absence of pressure.
  • the conductive polymer may include polyaniline or polypyrrole.
  • the conductive powder may include one selected from the group consisting of Au, Ag, Cu, Ni, carbon nanotubes (CNT), graphene, and ceramic fillers.
  • the diameter of the conductive powder may be 10nm to 500 ⁇ m, may be spherical, needle-like or plate-like. If the diameter of the conductive powder is less than 10nm, it is difficult to disperse in the conductive polymer and the interfacial resistance between particles is high, thereby reducing the resistance of the entire first variable member 131. In addition, when the diameter of the conductive powder exceeds 500 ⁇ m, the surface of the first variable member 131 may not be smooth, and thus frictional force may increase, thereby making processing difficult.
  • an upper surface of the first variable member 131 may form a step with an upper surface of the first elastic layer 130.
  • an upper surface of the first variable member 131 may be disposed above the upper surface of the first elastic layer 130 to form a step d1.
  • the bottom surface of the first variable member 131 may also form a step with the bottom surface of the first elastic layer 130.
  • the first electrode layer 110 and the second electrode layer 150 may be easily electrically connected to the first variable member 131 by the pressure applied to the sensing region 152.
  • the pressure may be concentrated on the thickness of the first variable member 131 protruding by the step (d1). Accordingly, pressure sensing may be performed even for a small pressure applied to the sensing region 152.
  • an upper surface of the first variable member 131 may be disposed below the upper surface of the first elastic layer 130 to form a step d2.
  • a lower surface of the first variable member 131 may also form a step with a lower surface of the first elastic layer 130.
  • the pressure applied to the sensing region 152 is first distributed to the first elastic layer 130 in contact with the first variable member 131, and finally the pressure applied to the sensing region 152 is the first variable member 131. Is delivered to. That is, durability of the first variable member 131 may be improved through pressure distribution.
  • a first adhesive member 132 is disposed on a surface where the first hole h1 and the first variable member 131 contact each other in the first elastic layer 130 to fix and support the first variable member 131. can do.
  • the second adhesive layer 140 may be disposed on an area where the first hole h1 is not formed on the first elastic layer 130. It may be applied in the same manner as the first adhesive layer 120.
  • the second electrode layer 150 may be disposed on the second adhesive layer 140, and may have different polarities from the first electrode layer 110.
  • the same as the first electrode layer 110 may be made of a fabric.
  • pressure may be detected from an electrical signal flowing through the second electrode layer 150, the first variable member 131, and the first electrode layer 110 disposed under the sensing region 152.
  • FIG. 4 is a cross-sectional view of a pressure sensor according to another embodiment of the present invention
  • Figure 5 is a view showing an elastic layer composed of a plurality of layers in the pressure sensor according to another embodiment of the present invention
  • Figure 6 to Figure 7 is a cross-sectional view in which the step is formed in the pressure sensor according to another embodiment of the present invention.
  • the pressure sensor 200 may include a second elastic layer 210 and a second elastic layer 210 including a second hole.
  • the third adhesive layer 220 and the third electrode layer 230 may be disposed on the third adhesive layer 220.
  • the second elastic layer 210 may include an elastic body similar to the first elastic layer described above.
  • the elastic body is a synthetic fiber or natural fiber, elastomer, including one selected from the group consisting of a fiber base having a random fiber arrangement, such as foam foam, nonwoven fabric, nanoweb, polyurethane, nylon, polyethylene terephthalate and polyester, Rubber, urethane, and the like.
  • the second variable member 211 may be disposed in the second hole h2 formed in the second elastic layer 210.
  • the second variable member 211 may include an elastic body like the second elastic layer 210. And it may include a conductive composite dispersed in the elastic body of the second variable member 211.
  • the elastic body is a synthetic fiber or natural fiber, elastomer, including one selected from the group consisting of a fiber base having a random fiber arrangement, such as foam foam, nonwoven fabric, nanoweb, polyurethane, nylon, polyethylene terephthalate and polyester, Rubber, urethane, and the like.
  • the conductive composite included in the second variable member 211 may be coated on the surface of the fiber forming the elastic body or dispersed in the elastic body. Accordingly, the second variable member 211 is disposed under the sensing region 233 when a physical change occurs, that is, when pressure is applied to the second variable member 211 which is the sensing region 233. The thickness of the member 211 decreases, and the resistance changes.
  • the sensing area 233 the area in which the second variable member 211 is formed
  • An area other than the sensing area 233 is described as the non-sensing area 234.
  • the plurality of electrodes 231 and 232 spaced apart from the third electrode layer 230 and the second variable member 211 are electrically connected to each other.
  • the pressure applied to the sensing region 233 may be sensed by changing the magnitude of an electrical signal between the plurality of electrodes 231 and 232 of the third electrode layer 230. .
  • pressure sensing is performed through the second variable member 211 disposed below the sensing region 233 with respect to the pressure applied on the sensing region 233.
  • the second variable member 211 disposed below the sensing region 233 to which pressure is applied may transmit an electrical signal
  • the second variable member 211 disposed below the sensing region 233 may be provided. No electrical signal is transmitted.
  • noise may be prevented by structurally separating the sensing region 233 and the non-sensing region 234. This is because the second elastic layer 210 surrounds the second variable member 211 to which pressure is applied, so that a path through which an electrical signal is transmitted to the adjacent second variable member is blocked by the second elastic layer 210. . Therefore, a signal from which noise is removed, which is an electrical signal detected in an area where no pressure is applied, can be obtained.
  • the conductive composite may include a conductive polymer and a conductive powder.
  • the conductive composite may include 1 to 10 wt% of the elastomer. If the conductive composite is included in excess of 10 wt% of the elastic body, it becomes difficult to guarantee the insulating property in the absence of pressure.
  • the conductive polymer may include polyaniline or polypyrrole.
  • the conductive powder may include one selected from the group consisting of Au, Ag, Cu, Ni, carbon nanotubes (CNT), graphene, and ceramic fillers.
  • the diameter of the conductive powder may be 10nm to 500 ⁇ m, may be spherical, needle-like or plate-like.
  • the diameter of the conductive powder is less than 10 nm, it is difficult to disperse in the conductive polymer and the interfacial resistance between particles is high, thereby reducing the resistance of the entire second variable member 211.
  • the diameter of the conductive powder is greater than 500 ⁇ m, the surface of the second variable member 211 may not be smooth, thereby increasing the frictional force, which may be difficult to process.
  • the second elastic layer 210 may have a form in which a plurality of layers are stacked.
  • the second elastic layer 210 may include a lower second elastic layer 210-1 and an upper second elastic layer 210-2.
  • the elastic force of the upper second elastic layer 210-2 may be greater than the elastic force of the lower second elastic layer 210-1.
  • an upper surface of the second variable member 211 may form a step with an upper surface of the second elastic layer 210.
  • an upper surface of the second variable member 211 may be disposed above the upper surface of the second elastic layer 210 to form a step d3.
  • the plurality of electrodes 231 and 232 of the third electrode layer 230 disposed on the second variable member 211 by the pressure applied to the sensing region 233 is easily electrically connected to the second variable member 211.
  • pressure may be concentrated on the thickness of the second variable member 211 protruding by the step d3.
  • pressure sensing may be possible even for a small pressure applied to the sensing region 233.
  • an upper surface of the second variable member 211 may be disposed below the upper surface of the second elastic layer 210 to form a step d4.
  • the pressure applied to the sensing region 233 may be first distributed to the second elastic layer 210 contacting the second variable member 211 and finally transferred to the second variable member 211. That is, durability of the second variable member 211 may be improved.
  • the second adhesive member 212 may be disposed to surround the second variable member 211 in the second elastic layer 210. That is, the second adhesive member 212 may be disposed on a surface where the second variable member 211 and the second hole h2 are in contact with each other.
  • the third adhesive layer 220 may be made of the same material as the first adhesive layer.
  • the third electrode layer 230 may be combined with the third electrode layer 230 disposed on the upper surface of the third adhesive layer 220.
  • the third electrode layer 230 may be formed of a plurality of electrodes 231 and 232.
  • the plurality of electrodes 231 and 232 may include a first electrode 231 and a second electrode 232.
  • the first electrode 231 and the second electrode 232 may be spaced apart from each other, and the first electrode 231 and the second electrode 232 may have different polarities.
  • the first electrode 231 may be a negative electrode
  • the second electrode 232 may be a positive electrode.
  • the area of the portion where the plurality of electrodes 231 and 232 contact the upper surface of the second elastic layer 210 or the upper surface of the third adhesive layer 220 may be smaller than the area of the lower surface of the plurality of electrodes 231 and 232. have.
  • At least one of the first electrode 231 and the second electrode 232 may cover a portion of the second hole h2.
  • the first electrode 231 and the second electrode 232 may cover the second hole h2 at the same ratio.
  • only one electrode of the first electrode 231 and the second electrode 232 may cover the second hole h2.
  • the second variable member 211 is spaced apart Adjacent electrodes can be electrically connected. That is, the range of pressure sensing can be extended.
  • the pressure sensing insole 300 may include a plurality of pressure sensing sensors and a connector 160 connected to the pressure sensing sensors.
  • the pressure sensing insole 300 may include a plurality of the above-described pressure sensing sensors, and a plurality of layers of the pressure sensing sensors described with reference to FIGS. 1 to 3 may be expanded.
  • the sensing region 152 in which the first variable member 131 of the pressure sensing sensor is disposed may be formed at a portion of the pressure sensing insole 300 to detect the pressure, such as the A-A 'section.
  • the non-sensing area 154 which is an area other than the sensing area 152, may be an area that transmits the electrical signal sensed by the sensing area 152 to the connector unit 160 as illustrated in FIG. 8.
  • the connector unit 160 may be implemented as a flexible printed circuit board (FPCB) and may be connected to an external device (not shown).
  • the pressure sensing insole 400 may include a plurality of pressure sensing sensors and a connector 240 connected to the pressure sensing sensors.
  • the pressure sensing insole 400 may include a plurality of pressure sensing insoles, and a plurality of layers of the pressure sensing sensor described with reference to FIGS. 4 to 7 may be expanded. In addition, a portion in which the plurality of electrodes 231 and 232 are not disposed may exist in the third electrode layer 230. In addition, the sensing region 233 in which the second variable member 211 of the pressure sensing sensor is disposed may be formed at a portion of the pressure sensing insole 400 to detect the pressure, such as the cross section B-B '.
  • non-sensing area 234 which is an area other than the sensing area 233, may be an area for transmitting the electrical signal sensed by the sensing area 233 to the connector unit 240 as described above.
  • the connector unit 240 may also be implemented as a flexible printed circuit board (FPCB) as described above, and may be connected to an external device (not shown).
  • FPCB flexible printed circuit board
  • the above has been described with respect to the pressure sensing insole including a pressure sensor, it can be applied to the case of measuring the pressure on a wearable object, such as gloves, belts, mats.
  • FIG. 10 is a cross-sectional view of a pressure sensing sensor according to another embodiment of the present invention
  • Figure 11 is a perspective view of a pressure sensing insole according to another embodiment of the present invention
  • Figure 12 is according to another embodiment of the present invention Top view of pressure sensing insole.
  • the pressure sensor and the pressure sensing insole 300 include an electrode layer 310, a connection layer 320, a third elastic layer 330, and a cover layer 340.
  • the pressure sensing insole 300 includes a pressure sensing sensor in the sensing region 313, which is a pressure sensing region, and includes a plurality of layers of the electrode layer 310, the connection layer 320, and the third elastic layer in the same manner as the pressure sensing sensor. 330 and cover layer 340.
  • the electrode layer 310 may be made of a fabric and includes a first electrode 311 and a second electrode 312.
  • the first electrode 311 and the second electrode 312 of the electrode layer 310 may be spaced apart on the same surface. This allows a ground connection in one layer and eliminates the need for installing additional ground electrodes, thereby reducing material and manufacturing costs of the pressure sensitive insole 300.
  • the thickness d of the pressure sensing insole 300 is also reduced.
  • the ground connection of the electrode is facilitated, and the failure rate is reduced.
  • the fabric may comprise conductive fibers.
  • the conductive fiber may be a metal wire or a general fiber coated with a metal film on the surface.
  • the conductive fiber may be a general fiber in which metal particles are dispersed.
  • the diameter of the metal wire may be 10 ⁇ m to 500 ⁇ m.
  • the strength of the metal wire may be difficult to fabricate, and when the diameter of the metal wire exceeds 500 ⁇ m, the rigidity of the metal wire may be high and the flexibility of the fabric may be reduced. It can damage the equipment and the user is likely to feel heterogeneous.
  • the metal wire may be Cu, Ni, or a stainless alloy.
  • the stainless alloy is, for example, martensitic stainless alloy, ferritic stainless alloy,
  • It may be an austenitic stainless alloy, a two-phase stainless alloy, a precipitation hardening stainless alloy.
  • the corrosion resistance of the pressure sensing insole 300 may be improved.
  • the conductive fiber is a regular fiber coated with a metal film on the surface, the metal film is gold
  • the inner particles may be formed by a method of coating on the surface of the general fiber by plating or deposition.
  • the metal particles may be Cu, Ni, or a stainless alloy, and the thickness of the metal film may be 1 ⁇ m to 50 ⁇ m. If the thickness of the metal film is less than 1 ⁇ m, the conductivity may be low, which may cause loss in signal transmission. If the thickness of the metal film exceeds 50 ⁇ m, the metal film may be easily detached from the surface of the fiber.
  • the connection layer 320 may include an insulating material 321 and may be disposed on the electrode layer 310.
  • the insulating material 321 may be disposed between the first electrode 311 and the second electrode 312 and the third elastic layer 330 of the electrode layer 310.
  • the first electrode 311 and the second electrode 312 may be spaced apart from each other to form the insulating material pair 322.
  • the insulator 321 may have a structure in which an insulating adhesive is coated on both surfaces of the film.
  • the first electrode 311 and the second electrode 312 may be any one of an anode and a cathode.
  • the sensing region 313 is a region in which a pressure sensor is disposed, including an interval between the first electrode 311 and the second electrode 312, to sense an external pressure applied thereto.
  • the electrode layer 310 includes a sensing region 313.
  • the sensing area 313 may be disposed at a point where pressure is to be detected, and may be detected more accurately by detecting pressure at a point where a user's foot state is desired.
  • the thickness of the elastic third elastic layer 330 changes.
  • the first electrode 311 and the second electrode 312 disposed to be spaced apart by the change in thickness of the third elastic layer 330 are connected to the electricity. And it detects the degree of pressure from the generated electrical signal.
  • Pressure sensing insole 300 is spaced apart from the first electrode 311 and the second electrode 312 and the insulator diagram on the first electrode 311 and the second electrode 312 By spaced apart, it is possible to sense the pressure by forming a gap between the first electrode 311 and the second electrode 312, as well as a gap between the insulator 321 in the pair of insulators 322.
  • the area where the insulator 321 and the first electrode 311 contact each other may be smaller than the area of the upper surface of the first electrode 311.
  • a predetermined interval s may be formed between one end of the first electrode 311 and one end of the insulator.
  • an area in which the insulator 321 and the second electrode 312 contact each other may be formed to be smaller than the area of the upper surface of the second electrode 312.
  • a predetermined interval s may be formed between one end of the first electrode 311 and one end of the insulator 321.
  • the third elastic layer 330 is a pair of insulators 322.
  • the first electrode 311 and the second electrode 312 may be electrically connected in the interval therebetween. That is, the range of pressure sensing can be extended.
  • the non-sensing area 314 may be an area other than the sensing area 313 by wires electrically connected to the first electrode 311 and the second electrode 312 on the same plane.
  • the non-sensing area 314 transmits an electrical signal generated from the sensing area 313 to the connector 315.
  • the connector 315 may be implemented as a flexible printed circuit board (FPCB) and may be connected to an external device (not shown).
  • the external device may analyze the body pressure distribution of the user applied on the pressure sensing insole 300 using the electrical signal received through the connector 315.
  • the connector 315 to which the first electrode 311 and the second electrode 312 are connected may be formed on the same surface of the first electrode 311 and the second electrode 312.
  • an insulator 321 may be disposed between the third elastic layer 330 and the electrode to be insulated. Due to the arrangement of the insulator, the pressure sensing insole 300 according to another embodiment does not sense the pressure exerted on the non-sensing region 314, the pressure sensing sensor is located, and the first electrode 311 and the second electrode are located. A gap is formed between the 312 to sense only the pressure applied to the sensing area 313 for detecting the pressure.
  • the third elastic layer 330 may include an elastic body and a conductive composite dispersed in the elastic body.
  • the elastic body is a synthetic fiber or natural fiber, elastomer, including one selected from the group consisting of a fiber base having a random fiber arrangement, such as foam foam, nonwoven fabric, nanoweb, polyurethane, nylon, polyethylene terephthalate and polyester, Rubber, urethane, and the like.
  • the thickness of the third elastic layer 330 may be 1 to 4mm.
  • the thickness of the third elastic layer 330 is less than 1 mm, it may be difficult to maintain the insulation function in the normal state, that is, the external force is not applied, and when the external force is applied, the change in resistance may be small because the change in thickness is small. have. Accordingly, the pressure sensing efficiency can be lowered. If the thickness of the third elastic layer 330 exceeds 4mm, it may be difficult to apply in the shoe.
  • the conductive composite included in the third elastic layer 330 may be coated on the surface of the fiber forming the elastic body or dispersed in the elastic body. Accordingly, the third elastic layer 330 has a resistance of 1 in the normal state. As described above, when the physical change occurs around the third elastic layers 330 and 340, that is, when a pressure is applied to the sensing region 313, a third electrode disposed under the sensing region 313 is disposed. The thickness of the elastic layer 330 is reduced, the resistance is changed.
  • the conductive composite may include a conductive polymer and a conductive powder.
  • the conductive composite may include 1 to 10 wt% of the elastomer. If the conductive composite is included in excess of 10 wt% of the elastic body, it becomes difficult to guarantee the insulating property in the absence of pressure.
  • the conductive polymer may include polyaniline or polypyrrole.
  • the conductive powder may include one selected from the group consisting of Au, Ag, Cu, Ni, carbon nanotubes (CNT), graphene, and ceramic fillers.
  • the diameter of the conductive powder may be 10nm to 500 ⁇ m, may be spherical, needle-like or plate-like. If the diameter of the conductive powder is less than 10nm, it is difficult to disperse in the conductive polymer and the interfacial resistance between particles is high, thereby reducing the resistance of the entire third elastic layer 330. When the diameter of the conductive powder is greater than 500 ⁇ m, the surface of the third elastic layer 330 may not be smooth, thereby increasing the frictional force, which may be difficult to process.
  • the third elastic layer 330 may have a form in which a plurality of layers are stacked.
  • the cover layer 340 surrounds the outer surface of the pressure sensing insole 300 and protects the pressure sensing insole 300 from an external impact.
  • FIG. 13 is a view showing a portion of a bottom view of a pressure sensing insole according to another embodiment of the present invention.
  • FIG. 13 the sensing regions 313-1 to 313-6 may be divided into six parts.
  • the first electrode and the second electrode of various types were etched by etching the electrode layer coated with the metal film and the conductive fabric, and the sensing area and the non-sensing area were shown on the pressure sensing insole.
  • the conductive fabric itself has a uniform line resistance, but the etching tends not to occur uniformly due to the fabric tendency at the time of etching. For this reason, the initial resistance is different depending on each position of the sensing region.
  • each sensing area 313-1 to 313-6 was repeated bending (250000 times) and the rate of change of the line resistance to the initial line resistance of the electrode layer was measured.
  • the first electrode and the second electrode are horizontally spaced apart on the same plane to detect pressure than the first electrode and the second electrode are placed vertically to detect pressure.
  • the change in the line resistance is small, indicating that the horizontally spaced arrangement of the first electrode and the second electrode is much improved in terms of durability of the pressure sensing insole.
  • FIG. 14 is a view illustrating various shapes of a sensing region of a pressure sensing insole according to another embodiment of the present invention.
  • the first electrode 311 and the second electrode 312 may be spaced apart in various forms.
  • the first electrode 311 and the second electrode 312 may be comb-shaped. (See Figure 14 (a))
  • the comb teeth first electrode 311 and the second electrode 312 may be disposed to face each other.
  • the comb-shaped first electrode 311 and the second electrode 312 may be disposed to overlap each other. (See Figure 14 (c))
  • the sensing region 313 may have a spiral shape in which the first electrode 311 and the second electrode 312 are alternately repeated. As shown in FIG. 14 (d), the first electrode 311 and the second electrode 312 in the sensing region 313 may have various shapes and have a large area for receiving an electrical signal generated by pressure. The sensitivity of the sensor may be greatly improved by increasing the number of overlapping electrodes in the sensing region 313.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Textile Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

실시 예는 홀을 포함하는 탄성층; 및 상기 탄성층 상에 이격 배치된 복수의 전극을 포함하는 전극층; 상기 탄성층은, 상기 홀에 배치되는 가변부재를 포함하고, 상기 복수의 전극은 서로 외부 압력에 의해 전기적으로 연결되며, 상기 복수의 전극 중 적어도 하나는 상기 홀의 일부를 덮는 압력 감지 센서를 개시한다.

Description

압력 감지 센서 및 이를 포함하는 압력 감지 인솔
본 발명은 압력 감지 센서 및 이를 포함하는 압력 감지 인솔에 관한 것으로, 보다 상세하게는 압력을 감지하는 센서 및 인솔에 관한 것이다.
최근, 전자 기술과 정보 통신 기술의 발전으로 헬스 케어(Health Care) 분야가 급속하게 발전하고 있다. 즉, 생체 정보를 이용하여 사람의 몸 상태를 측정할 수 있는 건강 관리 시스템이 요구되고 있다. 예를 들어, 신발 내에 압력을 감지하는 센서를 장착하여 착용자의 건강 상태, 보행 자세 등을 파악하고자 하는 기술이 개발되고 있다.
그러나, 신발의 밑창 또는 인솔 내에 압력 감지 센서를 내장하는 경우, 다수 의 센서가 필요하며, 센서의 삽입을 위하여 추가의 공간이 요구되는 문제가 있다.
또한, 센서가 유연성 및 신축성이 없으므로, 복곡면 형태의 신발에 적용하기는 무리가 있으며, 공정시간이 오래 걸리는 문제가 존재한다.
또한, 센서가 유연성 및 신축성이 없으므로, 복곡면 형태의 신발에 적용하기는 무리가 있으며, 공정시간이 오래 걸리는 문제가 존재한다.
그리고 압력 측정을 원하는 부분 이외의 부분에서도 압력이 측정되는 노이즈 문제가 존재한다.
실시예는 가해진 무게에 따른 압력 및 위치를 감지하는 압력 감지 센서 및 압력 감지 인솔을 제공한다.
또한, 정밀도가 향상된 압력 감지 센서 및 압력 감지 인솔을 제공한다.
또한, 유연하고 신축성 있는 압력 감지 인솔을 제공한다.
또한, 내구성이 개선되고 제조 비용이 적은 압력 감지 센서 및 압력 감지 인솔을 제공한다.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.
실시예에 따른 압력 감지 센서는 홀을 포함하는 탄성층; 및 상기 탄성층 상에 이격 배치된 복수의 전극을 포함하는 전극층; 상기 탄성층은, 상기 홀에 배치되는 가변부재를 포함하고, 상기 복수의 전극은 서로 외부 압력에 의해 전기적으로 연결되며, 상기 복수의 전극 중 적어도 하나는 상기 홀의 일부를 덮는다.
상기 복수의 전극은, 제1 전극; 및 상기 제1 전극과 이격 배치되고, 극성이 상이한 제2 전극을 포함할 수 있다.
상기 제1 전극 및 상기 제2 전극은 전도성 섬유를 포함하고, 상기 전도성 섬유는 금속 와이어이거나, 표면 상에 금속 막이 피복된 섬유일 수 있다.
상기 전극층 상에서 상기 홀이 형성된 영역 이외의 영역에 배치되는 접착층을 포함할 수 있다.
상기 가변부재를 둘러싸도록 배치되는 접착부재를 포함할 수 있다.
상기 가변부재의 상면은 상기 탄성층의 상면과 단차를 형성할 수 있다.
상기 탄성층은 복수의 층으로 이루어질 수 있다.
상기 가변부재는 상기 외부 압력에 의해 이격 배치된 복수의 전극 사이를 연결할 수 있다.
상기 복수의 전극이 상기 탄성층의 상면과 접하는 부분의 면적은 복수의 전극의 하면의 면적보다 작을 수 있다.
실시예에 따른 압력 감지 인솔은 복수의 압력 감지 센서; 및 상기 복수의 압력 감지 센서와 연결된 커넥터부를 포함하고, 상기 압력 감지 센서는, 홀을 포함하는 탄성층; 및 상기 탄성층 상에 이격 배치된 복수의 전극을 포함하는 전극층; 상기 탄성층은, 상기 홀에 배치되는 가변부재를 포함하고, 상기 복수의 전극은 서로 외부 압력에 의해 전기적으로 연결되며, 상기 복수의 전극 중 적어도 하나는 상기 홀의 일부를 덮는다.
본 발명의 실시예에 따른 압력 감지 센서는 가해진 무게에 따른 압력을 정밀하게 감지할 수 있으며, 전극을 다양한 형상으로 제작하여 정밀하게 압력 분포를 감지할 수 있다. 또한, 본 발명의 실시예에 따른 압력 감지 인솔을 사용할 경우 신발 내에 센서를 내장하기 위한 별도의 공간이 요구되지 않는다.
그리고 본 발명의 실시예에 따른 압력 감지 인솔은 유연하고 신축성이 좋아 다양한 형태의 신발에 적용이 가능하다.
또한, 본 발명의 실시예에 따른 압력 감지 센서는 압력을 감지하는 영역을 구조적으로 분리하여 압력 감지에 대한 노이즈 발생을 방지할 수 있다.
또한, 가해지는 압력에 대한 압력 감지 센서의 민감도를 향상시킬 수 있으며, 압력을 분산하여 압력 감지 센서의 내구성을 향상 시킬 수 있다.
또한, 본 발명의 실시예에 따른 압력 감지 센서는 동일한 층 상에 양극과 음극이 모두 배치될 수 있어 인솔의 두께가 얇아진다. 이로써, 압력 감지 센서의 재료비가 적게 들고 가공성이 우수하다.
도 1은 본 발명의 일실시예에 따른 압력 감지 센서의 단면도이다.
도 2 내지 도 3은 본 발명의 일실시예에 따른 압력 감지 센서에서 단차가 형성된 단면도이다.
도 4은 본 발명의 다른 실시예에 따른 압력 감지 센서의 단면도이다.
도 5는 본 발명의 다른 실시예에 따른 압력 감지 센서에서 복수의 층으로 이루어진 탄성층을 도시한 도면이다.
도 6 내지 도 7는 본 발명의 다른 실시예에 따른 압력 감지 센서에서 단차가 형성된 단면도이다.
도 8은 본 발명의 일실시예에 따른 압력 감지 인솔을 도시한 사시도이다.
도 9는 본 발명의 다른 실시예에 따른 압력 감지 인솔을 도시한 사시도이다.
도 10은 본 발명의 또 다른 일실시예에 따른 압력 감지 센서의 단면도이다.
도 11은 본 발명의 또 다른 실시예에 따른 압력 감지 인솔의 사시도이다.
도 12는 본 발명의 또 다른 실시예에 따른 압력 감지 인솔의 상면도이다.
도 13는 본 발명의 또 다른 실시예에 따른 압력 감지 인솔의 하면도의 일부를 도시한 도면이다.
도 14는 본 발명의 또 다른 실시예에 따른 압력 감지 인솔의 센싱 영역의 다양한 형상을 나타낸 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1은 본 발명의 일실시예에 따른 압력 감지 센서의 단면도이고, 도 2 내지 도 3은 본 발명의 일실시예에 따른 압력 감지 센서에서 단차가 형성된 단면도이다.
도 1 내지 도 3을 참조하면, 본 발명의 일실시예에 따른 압력 감지 센서(100)는 제1 전극층(110), 제1 전극층(110) 상에 배치되는 제1 접착층(120), 제1 접착층(120) 상에 배치되는 제1 탄성층(130), 제1 탄성층(130) 상에 배치되는 제2 접착층(140), 제2 접착층(140) 상에 배치되는 제2 전극층(150)을 포함한다.
먼저, 제1 전극층(110)은 직물로 구성될 수 있다. 제2 전극층(150)도 제1 전극층(110)과 마찬가지로 직물로 구성될 수 있다.
또한, 제1 전극층(110) 및 제2 전극층(150)은 서로 다른 극성으로 전기적 연결이 이루어질 수 있다. 예컨대, 제1 전극층(110) 및 제2 전극층(150) 중 어느 하나의 층에서 접지 연결이 가능하다. 뿐만 아니라, 제1 전극층(110)과 제2 전극층(150)은 층으로 이루어져 전극의 접지 연결이 용이해지고 불량률이 감소한다.
직물은 전도성 섬유를 포함할 수 있다. 여기서, 전도성 섬유는 금속 와이어 또는 표면 상에 금속 막이 피복된 일반 섬유일 수 있다. 전도성 섬유는 금속 입자가 분산된 일반 섬유일 수도 있다. 전도성 섬유가 금속 와이어인 경우, 금속 와이어의 직경은 10㎛ 내지 500㎛일 수 있다. 금속 와이어의 직경이 10㎛ 미만이면 금속 와이어의 강도가 약하여 직물 가공이 어려울 수 있으며, 금속 와이어의 직경이 500㎛를 초과하면 금속 와이어의 강성이 높아 직물의 유연성이 떨어질 수 있으므로, 직물의 가공 시 설비에 데미지를 줄 수 있고, 사용자가 이질감을 느끼기 쉽다.
이때, 금속 와이어는 Cu, Ni, 또는 스테인레스 합금일 수 있다. 스테인레스 합금은, 예를 들면 마르텐사이트계 스테인레스 합금, 페라이트계 스테인레스 합금,
오스테나이트계 스테인레스 합금, 2상계 스테인레스 합금, 석출경화계 스테인레스 합금 등일 수 있다. 금속 와이어가 스테인레스 합금인 경우, 압력 감지 센서(100)의 내부식성을 높일 수 있다.
전도성 섬유가 표면 상에 금속 막이 피복된 일반 섬유인 경우, 금속 막은 금
속 입자가 도금 방식 또는 증착 방식으로 일반 섬유의 표면 상에 피복되는 방법에 의하여 형성될 수 있다. 이때, 금속 입자는 Cu, Ni, 또는 스테인레스 합금일 수 있으며, 금속 막의 두께는 1㎛ 내지 50㎛일 수 있다. 금속 막의 두께가 1㎛ 미만이면 전도율이 낮으므로 신호 전송 시에 손실을 유발할 수 있으며, 금속 막의 두께가 50㎛를 초과하면 섬유의 표면에서 금속 막이 쉽게 이탈될 수 있다.
제1 접착층(120)은 제1 전극층(110) 상에서 제1 탄성층(130)의 제1 홀(h1)이 형성된 영역 이외의 영역에 배치될 수 있다. (이하에서 제1 가변부재(131)가 형성된 영역은 센싱 영역(152)으로, 압력을 감지할 수 있는 영역으로 설명한다. 그리고 센싱 영역(152) 이외의 영역은 비감지 영역(154)으로 설명한다)
그리고 제1 접착층(120)은 제1 탄성층(130)과 제1 전극층(110) 사이에서 다양한 크기와 모양을 가질 수 있다.
일예로, 제1 접착층(120)은 필름의 양면 상에 절연 접착제가 코팅된 구조일 수 있다. 이에, 제1 전극층(110)과 제1 탄성층(130)과 결합할 수 있다. 그리고 센싱 영역(152) 아래에 배치되는 부분은 펀칭되거나 절연 접착제가 코팅되지 않을 수 있다. 다른 예로, 제1 접착층(120)은 필름의 양면 상에 접착제가 코팅된 구조이며, 센싱 영역(152) 아래에 배치되는 영역을 제외하고는 절연 물질이 추가로 코팅된 구조일 수도 있다.
제1 탄성층(130)은 제1 접착층(120) 상에 배치되고, 복수 개의 제1 홀(h1)이 형성될 수 있다. 또한, 제1 탄성층(130)은 탄성체를 포함할 수 있다. 여기서, 탄성체는 발포폼, 부직포, 나노웹 등의 랜덤한 섬유 배열을 가지는 섬유 기재, 폴리우레탄, 나일론, 폴리에틸렌 테레프탈레이트 및 폴리에스터로 이루어진 그룹에서 선택된 하나를 포함하는 합성섬유 또는 천연 섬유, 엘라스토머, 고무, 우레탄 등일 수 있다.
또한, 제1 탄성층(130)에 형성된 제1 홀(h1)에는 제1 가변부재(131)가 배치될 수 있다. 일예로 제1 홀(h1)은 관통홀일 수 있으나, 이에 한정되는 것은 아니다.
제1 가변부재(131)는 제1 탄성층(130)과 같이 탄성체를 포함할 수 있다.
여기서, 탄성체는 발포폼, 부직포, 나노웹 등의 랜덤한 섬유 배열을 가지는 섬유 기재, 폴리우레탄, 나일론, 폴리에틸렌 테레프탈레이트 및 폴리에스터로 이루어진 그룹에서 선택된 하나를 포함하는 합성섬유 또는 천연 섬유, 엘라스토머, 고무, 우레탄 등일 수 있다.
한편, 제1 가변부재(131) 내에 포함되는 전도성 복합체는 탄성체를 이루는 섬유의 표면 상에 피복되거나 탄성체 내에 분산될 수 있다. 이러한 구성에 의하여, 센싱 영역(152)인 제1 가변부재(131) 상에 압력이 가해진 경우, 제1 가변부재(131)는 물리적 변화가 발생할 수 있다. 예컨대, 외부 압력이 가해지면 센싱 영역(152) 아래에 배치된 제1 가변부재(131)는 두께가 줄어들고, 저항이 변할 수 있다.
구체적으로, 센싱 영역(152) 상에 압력이 가해지면 제1 전극층(110), 제1 가변부재(131), 제2 전극층(150)이 전기적으로 연결될 수 있다. 그리고 제1 가변부재(131)의 두께 및 저항변화하고, 저항 변화에 의해 제1 전극층(110)과 제2 전극층(150) 사이에서 흐르는 전기적 신호의 크기도 변화할 수 있다. 이러한 전기적 신호의 크기 변화를 이용하여 센싱 영역(152) 상에 가해지는 압력의 세기를 감지할 수 있다.
즉, 센싱 영역(152) 상에 가해진 압력에 대해 센싱 영역(152) 하부에 배치된 제1 가변부재(131)를 통해서 압력 감지가 이루어진다. 뿐만 아니라, 압력이 가해진 센싱 영역(152)의 하부에 배치된 제1 가변부재(131)에는 전기적 신호가 전달되며, 압력이 가해지지 않은 센싱 영역(152)의 하부에 배치된 제1 가변부재9131)에는 전기적 신호가 전달되지 않는다.
제1 가변부재(131)에서 제1 가변부재(131)에 인접한 제1 탄성층(130)으로 전기적 신호 전달이 구조적으로 차단되기 때문이다. 즉, 센싱 영역(152)과 비감지 영역(154)를 구조적으로 분리시켜 노이즈를 방지할 수 있다. 따라서 압력이 가해지지 않은 영역에서 감지되는 전기적 신호인 노이즈가 제거된 신호를 얻을 수 있다.
여기서, 전도성 복합체는 전도성 고분자 및 전도성 분말을 포함할 수 있다. 전도성 복합체는 탄성체의 1 내지 10wt%로 포함될 수 있다. 전도성 복합체가 탄성체의 10wt%를 초과하여 포함되면, 압력이 가해지지 않은 상태에서 절연 특성을 보장하기 어려워진다. 이때, 전도성 고분자는 폴리아닐린(polyaniline) 또는 폴리피롤(polypyrrole)을 포함할 수 있다. 그리고, 전도성 분말은 Au, Ag, Cu, Ni, CNT(Carbon Nano Tube), 그래핀 및 세라믹 필러로 이루어진 그룹에서 선택된 하나를 포함할 수 있다.
이때, 전도성 분말의 직경은 10nm 내지 500㎛일 수 있고, 구형, 침상형 또는 판상형일 수 있다. 전도성 분말의 직경이 10nm 미만이면 전도성 고분자 내 분산이 어려우며 입자간 계면 저항이 높아 제1 가변부재(131)의 전체의 저항이 낮아지게 된다. 그리고, 전도성 분말의 직경이 500㎛를 초과하면 제1 가변부재(131)의 표면이 매끄럽지 못하여 마찰력이 증가하고, 이로 인하여 가공이 어려울 수 있다.
또한, 제1 가변부재(131)의 상면은 제1 탄성층(130)의 상면과 단차를 형성할 수 있다. 일예로, 도 2와 같이 제1 가변부재(131)의 상면이 제1 탄성층(130)의 상면보다 상부에 배치되어 단차(d1)를 형성할 수 있다. 제1 가변부재(131)의 상면과 동일하게, 제1 가변부재(131)의 하면도 제1 탄성층(130)의 하면과 단차를 형성할 수 있다.
이로써, 센싱 영역(152)에 가해진 압력에 의해 제1 전극층(110) 및 제2 전극층(150)은 제1 가변부재(131)와 용이하게 전기적으로 연결될 수 있다. 또한, 단차(d1)만큼 돌출된 제1 가변부재(131)의 두께에 압력이 집중될 수 있다. 이에, 센싱 영역(152)에 가해진 적은 압력에 대해서도 압력 감지가 이루어질 수 있다.
도 3과 같이 제1 가변부재(131)의 상면이 제1 탄성층(130)의 상면보다 하부에 배치되어 단차(d2)를 형성할 수 있다. 제1 가변부재(131)의 하면도 제1 탄성층(130)의 하면과 단차를 형성할 수 있다.
이로써, 센싱 영역(152)에 가해진 압력은 제1 가변부재(131)에 접하는 제1 탄성층(130)으로 먼저 분배되고, 최종적으로 센싱 영역(152)에 가해진 압력은 제1 가변부재(131)로 전달된다. 즉, 압력 분배를 통해 제1 가변부재(131)의 내구성을 향상시킬 수 있다.
또한, 제1 탄성층(130)에서 제1 홀(h1)과 제1 가변부재(131)가 접하는 면에는 제1 접착부재(132)가 배치되어, 제1 가변부재(131)를 고정 및 지지할 수 있다.
제2 접착층(140)은 제1 탄성층(130) 상에서 제1 홀(h1)이 형성되지 않은 영역 상에 배치될 수 있다. 제1 접착층(120)과 동일하게 적용될 수 있다.
제2 전극층(150)은 제2 접착층(140) 상에 배치될 수 있고, 제1 전극층(110)과 극성이 상이할 수 있다. 또한, 제1 전극층(110)과 동일하게 직물로 이루어질 수 있다. 또한, 앞서 설명한 바와 같이, 센싱 영역(152) 하부에 배치된 제2 전극층(150), 제1 가변부재(131) 및 제1 전극층(110)를 통해 흐르는 전기적 신호로부터 압력을 감지할 수 있다.
도 4은 본 발명의 다른 실시예에 따른 압력 감지 센서의 단면도이고, 도 5는 본 발명의 다른 실시예에 따른 압력 감지 센서에서 복수의 층으로 이루어진 탄성층을 도시한 도면이며, 도 6 내지 도 7는 본 발명의 다른 실시예에 따른 압력 감지 센서에서 단차가 형성된 단면도이다.
도 4 내지 도 7을 참조하면, 본 발명의 다른 실시예에 따른 압력 감지 센서(200)는 제2홀을 포함하는 제2 탄성층(210), 제2 탄성층(210) 상에 배치되는 제3 접착층(220), 제3 접착층(220) 상에 배치되는 제3 전극층(230)을 포함할 수 있다.
제2 탄성층(210)은 앞서 기재한 제1 탄성층과 마찬가지로 탄성체를 포함할 수 있다. 여기서, 탄성체는 발포폼, 부직포, 나노웹 등의 랜덤한 섬유 배열을 가지는 섬유 기재, 폴리우레탄, 나일론, 폴리에틸렌 테레프탈레이트 및 폴리에스터로 이루어진 그룹에서 선택된 하나를 포함하는 합성섬유 또는 천연 섬유, 엘라스토머, 고무, 우레탄 등일 수 있다.
또한, 제2 탄성층(210)에 형성된 제2 홀(h2)에는 제2 가변부재(211)가 배치될 수 있다. 제2 가변부재(211)는 제2 탄성층(210)과 같이 탄성체를 포함할 수 있다. 그리고 제2 가변부재(211)의 탄성체 내에 분산된 전도성 복합체를 포함할 수 있다.
여기서, 탄성체는 발포폼, 부직포, 나노웹 등의 랜덤한 섬유 배열을 가지는 섬유 기재, 폴리우레탄, 나일론, 폴리에틸렌 테레프탈레이트 및 폴리에스터로 이루어진 그룹에서 선택된 하나를 포함하는 합성섬유 또는 천연 섬유, 엘라스토머, 고무, 우레탄 등일 수 있다.
한편, 제2 가변부재(211) 내에 포함되는 전도성 복합체는 탄성체를 이루는 섬유의 표면 상에 피복되거나 탄성체 내에 분산될 수 있다. 이에 따라, 제2 가변부재(211)는 물리적 변화가 발생한 경우, 즉 센싱 영역(233)인 제2 가변부재(211) 상에 압력이 가해진 경우, 센싱 영역(233) 아래에 배치된 제2 가변부재(211)의 두께가 줄어들고, 저항이 변화한다. (이하에서 제2 가변부재(211)가 형성된 영역은 센싱 영역(233)으로, 압력을 감지할 수 있는 영역으로 설명한다. 그리고 센싱 영역(233) 이외의 영역은 비감지 영역(234)으로 설명한다) 구체적으로, 센싱 영역(233) 상에 압력이 가해지면 제3 전극층(230)에서 이격 배치된 복수의 전극(231, 232)과 제2 가변부재(211)가 전기적으로 연결되고, 제2 가변부재(211)의 저항변화에 따라 제3 전극층(230)의 복수의 전극(231, 232) 사이의 전기적 신호의 크기 변화 등을 통해 센싱 영역(233) 상에 가해지는 압력을 감지할 수 있다.
즉, 센싱 영역(233) 상에 가해진 압력에 대해 센싱 영역(233) 하부에 배치된 제2 가변부재(211)를 통해서 압력 감지가 이루어진다. 뿐만 아니라, 압력이 가해진 센싱 영역(233)의 하부에 배치된 제2 가변부재(211)는 전기적 신호를 전달될 수 있으나, 센싱 영역(233) 이외의 하부에 배치된 제2 가변부재(211)는 전기적 신호가 전달되지 않는다.
즉, 센싱 영역(233)과 비감지 영역(234)를 구조적으로 분리시켜 노이즈를 방지할 수 있다. 왜냐하면, 제2 탄성층(210)은 압력이 가해진 제2 가변부재(211)를 둘러싸므로, 인접한 제2 가변 부재로 전기적 신호가 전달되는 경로가 제2 탄성층(210)에 의해 차단되기 때문이다. 따라서 압력이 가해지지 않은 영역에서 감지되는 전기적 신호인 노이즈가 제거된 신호를 얻을 수 있다.
여기서, 전도성 복합체는 전도성 고분자 및 전도성 분말을 포함할 수 있다. 전도성 복합체는 탄성체의 1 내지 10wt%로 포함될 수 있다. 전도성 복합체가 탄성체의 10wt%를 초과하여 포함되면, 압력이 가해지지 않은 상태에서 절연 특성을 보장하기 어려워진다. 이때, 전도성 고분자는 폴리아닐린(polyaniline) 또는 폴리피롤(polypyrrole)을 포함할 수 있다. 그리고, 전도성 분말은 Au, Ag, Cu, Ni, CNT(Carbon Nano Tube), 그래핀 및 세라믹 필러로 이루어진 그룹에서 선택된 하나를 포함할 수 있다.
이때, 전도성 분말의 직경은 10nm 내지 500㎛일 수 있고, 구형, 침상형 또는 판상형일 수 있다. 전도성 분말의 직경이 10nm 미만이면 전도성 고분자 내 분산이 어려우며 입자간 계면 저항이 높아 제2 가변부재(211)의 전체의 저항이 낮아지게 된다. 그리고, 전도성 분말의 직경이 500㎛를 초과하면 제2 가변부재(211)의 표면이 매끄럽지 못하여 마찰력이 증가하고, 이로 인하여 가공이 어려울 수 있다.
도 5를 참조하면, 제2 탄성층(210)은 복수의 층이 적층된 형태일 수 있다. 일예로, 제2 탄성층(210)은 하부 제2 탄성층(210-1)과 상부 제2 탄성층(210-2)를 포함할 수 있다. 그리고 상부 제2 탄성층(210-2)의 탄성력이 하부 제2 탄성층(210-1)의 탄성력보다 클 수 있다. 이로써, 유연성을 확보하면서 동시에 지지력이 향상된 압력 감지 센서(200)를 제공할 수 있다.
또한, 제2 가변부재(211)의 상면은 제2 탄성층(210)의 상면과 단차를 형성할 수 있다. 일예로, 도 6을 참조하면 제2 가변부재(211)의 상면이 제2 탄성층(210)의 상면보다 상부에 배치되어 단차(d3)를 형성할 수 있다. 이로써, 센싱 영역(233)에 가해진 압력에 의해 제2 가변부재(211) 상부에 배치된 제3 전극층(230)의 복수의 전극(231, 232)은 제2 가변부재(211)와 용이하게 전기적으로 연결될 수 있다. 또한, 단차(d3)만큼 돌출된 제2 가변부재(211)의 두께에 압력이 집중될 수 있다. 이에, 센싱 영역(233)에 가해진 적은 압력에 대해서도 압력 감지가 가능할 수 있다.
도 7과 같이 제2 가변부재(211)의 상면이 제2 탄성층(210)의 상면보다 하부에 배치되어 단차(d4)를 형성할 수 있다. 이로써, 센싱 영역(233)에 가해진 압력은 제2 가변부재(211)에 접하는 제2 탄성층(210)으로 먼저 분배되고 최종적으로 제2 가변부재(211)로 전달될 수 있다. 즉, 제2 가변부재(211)의 내구성을 향상시킬 수 있다.
제2 탄성층(210)에서 제2 가변부재(211)를 둘러싸도록 제2 접착부재(212)가 배치될 수 있다. 즉, 제2 가변부재(211)와 제2 홀(h2)이 접하는 면에 제2 접착부재(212)가 배치될 수 있다.
제3 접착층(220)은 상기 설명한 바와 같이 제1 접착층과 동일한 재질일 수 있다. 이로써, 제3 접착층(220) 상면에 배치된 제3 전극층(230)과 결합할 수 있다.
제3 전극층(230)은 복수의 전극(231, 232)으로 이루어질 수 있다. 일예로, 복수의 전극(231, 232)은 제1 전극(231)과 제2 전극(232)을 포함할 수 있다. 그리고 제1 전극(231)과 제2 전극(232)은 이격 배치될 수 있으며, 제1 전극(231)과 제2 전극(232)은 서로 상이한 극성일 수 있다. 예를들어, 제1 전극(231)은 음전극이고, 제2 전극(232)는 양전극일 수 있다.
또한, 복수의 전극(231, 232)이 제2 탄성층(210)의 상면 또는 제3 접착층(220)의 상면과 접하는 부분의 면적은 복수의 전극(231, 232)의 하면의 면적보다 작을 수 있다.
그리고 제1 전극(231)과 제2 전극(232) 중 적어도 하나는 제2 홀(h2)의 일부를 덮을 수 있다. 일예로, 제1 전극(231)과 제2 전극(232)가 동일한 비율로 제2 홀(h2)을 덮을 수 있다. 뿐만 아니라, 제1 전극(231) 및 제2 전극(232) 중 어느 하나의 전극만이 제2 홀(h2)를 덮을 수 있다.
이로써, 일실시예에 따른 압력 감지 센서(200)의 센싱 영역(233)에 작은 압력이 가해지는 경우, 제2 가변부재(211)의 두께가 적게 변하더라도 제2 가변부재(211)가 이격 배치된 인접한 전극을 전기적으로 연결할 수 있다. 즉, 압력 감지의 범위를 확장할 수 있다.
도 8은 본 발명의 일실시예에 따른 압력 감지 인솔을 도시한 사시도이다. 도 8을 참조하면, 일실시예에 따른 압력 감지 인솔(300)은 복수의 압력 감지 센서, 압력 감지 센서와 연결된 커넥터부(160)를 포함할 수 있다.
그리고 압력 감지 인솔(300)은 상기 언급한 복수의 압력 감지 센서을 포함하는 형태로, 도1 내지 도3에서 설명한 압력 감지 센서의 복수의 층이 확장된 형태일 수 있다. 그리고 A-A'단면과 같이, 압력 감지 인솔(300)에서 압력을 감지하기 원하는 부분에 압력 감지 센서의 제1 가변부재(131)가 배치된 센싱 영역(152)을 형성할 수 있다. 또한, 센싱 영역(152) 이외의 영역인 비감지 영역(154)은 도 8과 같이 센싱 영역(152)에서 감지한 전기 신호를 커넥터부(160)로 전달하는 영역일 수 있다. 커넥터부(160)는 FPCB(Flexible Printed Circuit Borard)로 구현될 수 있으며, 외부 장치(미도시)와 연결될 수 있다.
도 9는 본 발명의 다른 실시예에 따른 압력 감지 인솔을 도시한 사시도이다. 도 9를 참조하면, 다른 실시예에 따른 압력 감지 인솔(400)은 복수의 압력 감지 센서, 압력 감지 센서와 연결된 커넥터부(240)를 포함할 수 있다.
압력 감지 인솔(400)은 복수의 압력 감지 인솔을 포함하는 형태로, 도4 내지 도7에서 설명한 압력 감지 센서의 복수의 층이 확장된 형태일 수 있다. 또한, 제3 전극층(230)에서 복수의 전극(231, 232)이 배치되지 않은 부분이 존재할 수 있다. 그리고 B-B' 단면과 같이, 압력 감지 인솔(400)에서 압력을 감지하기 원하는 부분에 압력 감지 센서의 제2 가변부재(211)가 배치된 센싱 영역(233)을 형성할 수 있다. 또한, 센싱 영역(233) 이외의 영역인 비감지 영역(234)은 상기 기재와 같이 센싱 영역(233)에서 감지한 전기 신호를 커넥터부(240)로 전달하는 영역일 수 있다. 커넥터부(240)도 상기 기재와 같이 FPCB(Flexible Printed Circuit Borard)로 구현될 수 있으며, 외부 장치(미도시)와 연결될 수 있다.
또한, 상기에서는 압력 감지 센서를 포함하는 압력 감지 인솔에 대하여 설명하였지만, 장갑, 벨트, 매트 등과 같은 웨어러블 물건에 압력을 측정하는 경우에도 적용될 수 있다.
도 10은 본 발명의 또 다른 실시예에 따른 압력 감지 센서의 단면도이고, 도 11는 본 발명의 또 다른 실시예에 따른 압력 감지 인솔의 사시도이며, 도 12은 본 발명의 또 다른 실시예에 따른 압력 감지 인솔의 상면도이다.
도 10 내지 도 12을 참조하면, 압력 감지 센서 및 압력 감지 인솔(300)은 전극층(310), 연결층(320), 제3 탄성층(330) 및 커버층(340)을 포함한다.
압력 감지 인솔(300)은 압력을 감지하는 영역인 센싱 영역(313)에 압력 감지 센서를 포함하며, 압력 감지 센서와 동일하게 복수의 층인 전극층(310), 연결층(320), 제3 탄성층(330) 및 커버층(340)을 포함한다.
전극층(310)은 직물로 구성될 수 있고, 제1 전극(311) 및 제2 전극(312)을 포함한다. 또한, 전극층(310)의 제1 전극(311) 및 제2 전극(312)은 동일 면 상에서 이격 배치될 수 있다. 이로써, 하나의 층에서 접지 연결이 가능하며, 추가 접지 전극을 설치할 필요가 없어, 압력 감지 인솔(300)의 재료비 및 제작 비용이 절감된다. 또한, 압력 감지 인솔(300)의 두께(d)도 감소한다. 뿐만 아니라, 전극의 접지 연결이 용이해져, 불량률이 감소한다.
직물은 전도성 섬유를 포함할 수 있다. 여기서, 전도성 섬유는 금속 와이어 또는 표면 상에 금속 막이 피복된 일반 섬유일 수 있다. 전도성 섬유는 금속 입자가 분산된 일반 섬유일 수도 있다. 전도성 섬유가 금속 와이어인 경우, 금속 와이어의 직경은 10㎛ 내지 500㎛일 수 있다. 금속 와이어의 직경이 10㎛ 미만이면 금속 와이어의 강도가 약하여 직물 가공이 어려울 수 있으며, 금속 와이어의 직경이 500㎛를 초과하면 금속 와이어의 강성이 높아 직물의 유연성이 떨어질 수 있으므로, 직물의 가공 시 설비에 데미지를 줄 수 있고, 사용자가 이질감을 느끼기 쉽다.
이때, 금속 와이어는 Cu, Ni, 또는 스테인레스 합금일 수 있다. 스테인레스 합금은, 예를 들면 마르텐사이트계 스테인레스 합금, 페라이트계 스테인레스 합금,
오스테나이트계 스테인레스 합금, 2상계 스테인레스 합금, 석출경화계 스테인레스 합금 등일 수 있다. 금속 와이어가 스테인레스 합금인 경우, 압력 감지 인솔(300)의 내부식성을 높일 수 있다.
전도성 섬유가 표면 상에 금속 막이 피복된 일반 섬유인 경우, 금속 막은 금
속 입자가 도금 방식 또는 증착 방식으로 일반 섬유의 표면 상에 피복되는 방법에 의하여 형성될 수 있다. 이때, 금속 입자는 Cu, Ni, 또는 스테인레스 합금일 수 있으며, 금속 막의 두께는 1㎛ 내지 50㎛일 수 있다. 금속 막의 두께가 1㎛ 미만이면 전도율이 낮으므로 신호 전송 시에 손실을 유발할 수 있으며, 금속 막의 두께가 50㎛ 를 초과하면 섬유의 표면에서 금속 막이 쉽게 이탈될 수 있다.
연결층(320)은 절연 물질(321)을 포함하고, 전극층(310) 상에 배치될 수 있다. 구체적으로, 절연 물질(321)은 전극층(310)의 제1 전극(311) 및 제2 전극(312)과 제3 탄성층(330) 사이에 배치될 수 있다.
그리고 절연 물질(321)은 제1 전극(311) 및 제2 전극(312)이 이격 배치되어, 절연물질 쌍(322)을 구성할 수 있다. 또한, 절연체(321)는 필름의 양면 상에 절연 접착제가 코팅된 구조일 수 있다. 그리고 제1 전극(311)과 제2 전극(312)은 양극과 음극 중 어느 하나일 수 있다.
실시예로, 센싱 영역(313)은 압력 감지 센서가 배치되어, 제1 전극(311)과 제2 전극(312) 사이의 간격을 포함하면서, 가해지는 외부 압력을 감지하는 영역으다. 압력 감지 인솔(300)에서 전극층(310)은 센싱영역(313)을 포함한다.
센싱 영역(313)은 압력을 감지하고자 하는 지점에 배치될 수 있고, 사용자의 발 상태를 알기 원하는 지점의 압력을 감지하여 보다 정확하게 파악할 수 있다.
도 12을 참조하면, 센싱 영역(313) 상에 압력(F)이 가해지면, 탄성이 있는 제3 탄성층(330)의 두께가 변화한다. 이 때, 제3 탄성층(330)의 두께변화로 이격 배치된 제1 전극(311)과 제2 전극(312) 사이가 연결되어 전기가 통하게 된다. 그리고 발생된 전기 신호로부터 압력의 정도를 감지하게 된다.
본 발명의 또 다른 실시예에 따른 압력 감지 인솔(300)은 제1 전극(311)과 제2 전극(312)을 이격 배치하고 제1 전극(311)과 제2 전극(312) 상에 절연체도 이격 배치함으로써, 제1 전극(311)과 제2 전극(312) 사이에서 간격, 뿐만 아니라 한 쌍의 절연체(322)에서 절연체(321)간에 간격을 형성하여 압력을 감지할 수 있다.
그리고 절연체(321)와 제1 전극(311)이 접하는 면적은 제1 전극(311)의 상부면의 면적보다 좁게 형성될 수 있다. 제1 전극(311)의 일단과 절연체의 일단 사이에 소정의 간격(s)을 형성할 수 있다.
또한, 절연체(321)와 제2 전극(312)이 접하는 면적은 제2 전극(312)의 상부면의 면적보다 좁게 형성될 수 있다. 제1 전극(311)의 일단과 절연체(321)의 일단 사이에 소정의 간격(s)을 형성할 수 있다.
이로써, 또 다른 실시예에 따른 압력 감지 인솔(300)에 낮은 압력이 가해지는 경우, 제3 탄성층(330)의 두께가 적게 변하더라도 제3 탄성층(330)이 한 쌍의 절연체(322) 사이의 간격에서 제1 전극(311)과 제2 전극(312)을 전기적으로 연결할 수 있다. 즉, 압력 감지의 범위를 확장할 수 있다.
또 다른 실시예로, 비감지 영역(314)은 제1 전극(311) 및 제2 전극(312)와 동일 평면 상에서 전기적으로 연결된 배선으로 센싱 영역(313) 이외 영역일 수 있다. 또한, 비감지 영역(314)은 센싱 영역(313)으로부터 발생한 전기 신호를 커넥터(315)에 전달한다. 여기서 커넥터(315)는 FPCB(Flexible Printed Circuit Borard)로 구현될 수 있으며, 외부 장치(미도시)와 연결될 수 있다.
외부 장치는 커넥터(315)를 통해 수신한 전기 신호를 이용하여 압력 감지 인솔(300) 상에 가해진 사용자의 체압 분포를 분석할 수 있다. 여기서 제1 전극(311)과 제2 전극(312)이 연결된 커넥터(315)는 제1 전극(311)과 제2 전극(312)의 동일 면 상에 형성될 수 있다.
그리고 비감지 영역(314)에서 제3 탄성층(330)과 전극 사이는 절연체(321)가 배치되어 절연이 될 수 있다. 절연체의 배치로 인해, 또 다른 실시예에 따른 압력 감지 인솔(300)은 비감지 영역(314)상에 가해진 압력은 감지하지 않으며, 압력 감지 센서가 위치하고, 제1 전극(311)과 제2 전극(312) 사이에 간격을 형성하여 압력을 감지하는 센싱 영역(313) 상에 가해진 압력만을 감지한다.
한편, 제3 탄성층(330)은 탄성체, 그리고 탄성체 내에 분산된 전도성 복합체를 포함할 수 있다. 여기서, 탄성체는 발포폼, 부직포, 나노웹 등의 랜덤한 섬유 배열을 가지는 섬유 기재, 폴리우레탄, 나일론, 폴리에틸렌 테레프탈레이트 및 폴리에스터로 이루어진 그룹에서 선택된 하나를 포함하는 합성섬유 또는 천연 섬유, 엘라스토머, 고무, 우레탄 등일 수 있다.
이에 따라, 제3 탄성층(330)에는 미세 기공이 존재하며, 탄성이 있다. 이때, 제3 탄성층(330)의 두께는 1 내지 4mm일 수 있다. 제3 탄성층(330)의 두께가 1mm 미만인 경우, 정상 상태, 즉 외력이 가해지지 않은 상태에서 절연 기능을 유지하기 어려울 수 있으며, 외력이 가해진 경우 두께의 변화량이 작으므로 저항의 변화량이 작을 수 있다. 이에 따라, 압력 감지 효율이 낮아질 수 있다. 제3 탄성층(330)의 두께가 4mm를 초과하는 경우, 신발 내에 적용하기 어려울 수 있다.
한편, 제3 탄성층(330)에 포함되는 전도성 복합체는 탄성체를 이루는 섬유의 표면 상에 피복되거나, 탄성체 내에 분산될 수 있다. 이에 따라, 제3 탄성층(330)은 정상 상태에서 저항이 1
Figure PCTKR2017005302-appb-I000001
이상으로 절연 특성을 가지나, 제3 탄성층(330, 340)의 주변에 물리적인 변화가 발생한 경우, 즉 센싱 영역(313) 상에 압력이 가해진 경우, 센싱 영역(313) 아래에 배치된 제3 탄성층(330)의 두께가 줄어들어, 저항이 변화하게 된다.
이를 위하여, 전도성 복합체는 전도성 고분자 및 전도성 분말을 포함할 수 있다. 전도성 복합체는 탄성체의 1 내지 10wt%로 포함될 수 있다. 전도성 복합체가 탄성체의 10wt%를 초과하여 포함되면, 압력이 가해지지 않은 상태에서 절연 특성을 보장하기 어려워진다.
이때, 전도성 고분자는 폴리아닐린(polyaniline) 또는 폴리피롤(polypyrrole) 을 포함할 수 있다. 그리고, 전도성 분말은 Au, Ag, Cu, Ni, CNT(Carbon Nano Tube), 그래핀 및 세라믹 필러로 이루어진 그룹에서 선택된 하나를 포함할 수 있다.
이때, 전도성 분말의 직경은 10nm 내지 500㎛일 수 있고, 구형, 침상형 또는 판상형일 수 있다. 전도성 분말의 직경이 10nm 미만이면 전도성 고분자 내 분산이 어려우며 입자간 계면 저항이 높아 제3 탄성층(330) 전체의 저항이 낮아지게 된다. 그리고, 전도성 분말의 직경이 500㎛를 초과하면 제3 탄성층(330)의 표면이 매끄럽지 못하여 마찰력이 증가하고, 이로 인하여 가공이 어려울 수 있다. 또한, 제3 탄성층(330)은 복수의 층이 적층된 형태일 수도 있다.
커버층(340)은 압력 감지 인솔(300)의 외면을 감싸며, 압력 감지 인솔(300)을 외부의 충격으로부터 보호한다.
도 13는 본 발명의 또 다른 실시예에 따른 압력 감지 인솔의 하면도의 일부를 도시한 도면이다. 도 13를 참조하면, 일예로 센싱 영역(313-1 내지 313-6)은 6부분으로 나뉠 수 있다.
그리고 측정 조건은 전도성 직물이면서 금속막이 피복된 전극층을 에칭(etching)에 의해 다양한 형태의 제1 전극 및 제2 전극을 나타내어 센싱 영역 및 비감지 영역을 압력 감지 인솔에 나타내었다. 이에, 전도성 직물 자체는 균일한 선 저항을 가지나, 에칭 시에 직물 성향으로 인해 에칭 작업이 균일하게 일어나지 않게된다. 이로 인해, 센싱 영역의 각 위치에 따라 초기 저항은 상이하게 나타난다.
또한, 반복 굽힘 전/후로 선 저항 측정이 이루어지는 측정 위치에 약간의 오차가 존재하여, 반복 굽힘을 수행한 후에 측정된 선 저항 결과 값에 약간의 오차가 포함된다.
먼저, 제1 전극과 제2 전극이 동일 면 상에 수평으로 배치된 경우 각 센싱 영역(313-1 내지 313-6)에 대한 반복 굽힘(250,000회)을 실시하고 전극층의 초기 선 저항 대비 선 저항의 변화율을 측정하였다. (표 1 참조)
측정위치 초기 저항, [/cm] 반복 굽힘 후, [/cm](250,000회) 초기 대비 변화율, [%]
313-1 6.625 3.38 51
313-2 3.43 3.47 101
313-3 2.39 2.88 321
313-4 0.61 0.71 117
313-5 4.94 3.82 77
313-6 0.63 0.94 150
초기 대비 평균 변화율 103%
추가로, 센싱 영역에 제1 전극과 제2 전극이 수평이 아니라 수직으로 배치된 경우(제1 전극과 제2 전극 사이에 제3 탄성층을 형성한 구조)에 각 센싱 영역(313-1 내지 313-6)에 대한 반복 굽힘(250000회)을 실시하고 전극층의 초기 선 저항 대비 선 저항의 변화율을 측정하였다. (표 2 참조)
측정위치 초기 저항, [/cm] 반복 굽힘 후, [/cm](250,000회) 초기 대비 변화율, [%]
313-1 0.313 0.719 230
313-2 1.04 4.09 395
313-3 0.29 2.07 715
313-4 0.20 1.74 850
313-5 0.29 0.912 310
313-6 0.313 0.313 300
초기 대비 평균 변화율 433%
표 1 및 표 2를 참조하면, 제1 전극과 제2 전극을 동일 면 상에 수평으로 이격 배치하여 압력을 감지하는 경우가 제1 전극과 제2 전극을 수직으로 배치하여 압력을 감지하는 경우보다 선 저항의 변화가 적어, 제1 전극과 제2 전극을 수평으로 이격 배치하는 경우가 압력 감지 인솔의 내구성면에서 훨씬 개선됨을 나타낸다.
이는 초기 대비 선 저항의 평균 변화율의 차이를 통해 알 수 있다. 또한, 제1 전극과 제2 전극을 수평으로 배치한 경우는 반복 굽힘으로 주름이 발생하지 않으나, 제1 전극과 제2 전극이 수직으로 배치된 경우는 반복 굽힘으로 주름이 발생하는 문제점이 존재한다.
도 14는 본 발명의 또 다른 실시예에 따른 압력 감지 인솔의 센싱 영역의 다양한 형상을 나타낸 도면이다.
도 14를 참조하면, 센싱 영역(313)에서 제1 전극(311)과 제2 전극(312)은 다양한 형태로 이격 배치될 수 있다. 일예로, 센싱 영역(313)에서 제1 전극(311) 및 제2 전극(312)은 빗살형상일 수 있다. (도 14(a) 참조)
그리고 빗살 형상의 제1 전극(311)과 제2 전극(312)은 서로 마주보도록 배치될 수 있다. (도 14(b) 참조) 뿐만 아니라, 빗살 형상의 제1 전극(311)과 제2 전극(312)은 서로 겹치도록 배치될 수 있다. (도 14(c) 참조)
또한, 센싱 영역(313)에서 제1 전극(311) 및 제2 전극(312)이 교대로 반복된 나선형상일 수 있다. (도 14(d) 참조)이와 같이 센싱 영역(313)에서 제1 전극(311) 및 제2 전극(312)은 다양한 형태를 가질 수 있고, 압력에 의해 발생하는 전기 신호를 받아들이는 면적이 넓어지도록 센싱 영역(313)에서 겹쳐지는 전극의 수를 증가시켜 센서 민감도를 크게 향상 시킬 수 있다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 홀을 포함하는 탄성층; 및
    상기 탄성층 상에 이격 배치된 복수의 전극을 포함하는 전극층;
    상기 탄성층은,
    상기 홀에 배치되는 가변부재를 포함하고,
    상기 복수의 전극은 서로 외부 압력에 의해 전기적으로 연결되며,
    상기 복수의 전극 중 적어도 하나는 상기 홀의 일부를 덮는 압력 감지 센서.
  2. 제 1항에 있어서,
    상기 가변부재의 상면은 상기 탄성층의 상면과 단차를 형성하는 압력 감지 센서.
  3. 제 1항에 있어서,
    상기 복수의 전극이 상기 탄성층의 상면과 접하는 부분의 면적은 복수의 전극의 하면의 면적보다 작은 압력 감지 센서.
  4. 제 1항에 있어서,
    상기 복수의 전극은,
    제1 전극; 및
    상기 제1 전극과 이격 배치되고, 극성이 상이한 제2 전극을 포함하는 압력 감지 센서.
  5. 제 4항에 있어서,
    상기 제1 전극 및 상기 제2 전극은 전도성 섬유를 포함하고,
    상기 전도성 섬유는 금속 와이어이거나, 표면 상에 금속 막이 피복된 섬유인 압력 감지 센서.
  6. 제 1항에 있어서,
    상기 전극층 상에서 상기 홀이 형성된 영역 이외의 영역에 배치되는 접착층을 포함하는 압력 감지 센서.
  7. 제 1항에 있어서,
    상기 가변부재를 둘러싸도록 배치되는 접착부재를 포함하는 압력 감지 센서.
  8. 제 1항에 있어서,
    상기 탄성층은 복수의 층으로 이루어진 압력 감지 센서.
  9. 제 1항에 있어서,
    상기 가변부재는 상기 외부 압력에 의해 이격 배치된 복수의 전극 사이를 연결하는 압력 감지 센서.
  10. 복수의 압력 감지 센서; 및
    상기 복수의 압력 감지 센서와 연결된 커넥터부를 포함하고,
    상기 압력 감지 센서는,
    홀을 포함하는 탄성층; 및
    상기 탄성층 상에 이격 배치된 복수의 전극을 포함하는 전극층;
    상기 탄성층은,
    상기 홀에 배치되는 가변부재를 포함하고,
    상기 복수의 전극은 서로 외부 압력에 의해 전기적으로 연결되며,
    상기 복수의 전극 중 적어도 하나는 상기 홀의 일부를 덮는 압력 감지 인솔.
PCT/KR2017/005302 2016-05-23 2017-05-23 압력 감지 센서 및 이를 포함하는 압력 감지 인솔 WO2017204514A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/302,589 US10918156B2 (en) 2016-05-23 2017-05-23 Pressure detection sensor and pressure detection insole including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0062896 2016-05-23
KR1020160062896A KR102417498B1 (ko) 2016-05-23 2016-05-23 압력 감지 센서 및 이를 포함하는 압력 감지 인솔
KR10-2016-0089287 2016-07-14
KR1020160089287A KR101783413B1 (ko) 2016-07-14 2016-07-14 압력 감지 센서 및 이를 포함하는 압력 감지 인솔

Publications (1)

Publication Number Publication Date
WO2017204514A1 true WO2017204514A1 (ko) 2017-11-30

Family

ID=60412770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005302 WO2017204514A1 (ko) 2016-05-23 2017-05-23 압력 감지 센서 및 이를 포함하는 압력 감지 인솔

Country Status (2)

Country Link
US (1) US10918156B2 (ko)
WO (1) WO2017204514A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112006377A (zh) * 2020-09-02 2020-12-01 北京泰欣源鞋业有限公司 一种中药艾草抗菌保健鞋垫

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11122851B2 (en) * 2017-01-03 2021-09-21 The Winger Group, LLC Shoes with shape shifting orthotic soles
KR102669798B1 (ko) * 2018-11-09 2024-05-28 주식회사 아모그린텍 배터리 압력 감지 장치
CN113820050A (zh) * 2020-06-18 2021-12-21 深圳市柔宇科技有限公司 压力传感器
US10989575B1 (en) * 2020-09-08 2021-04-27 King Abdulaziz University Multifunctional pressure, displacement and temperature gradient sensor
US11930886B2 (en) * 2020-10-07 2024-03-19 Niameh Freeman Footwear insole with electrical stimulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040061001A (ko) * 2001-11-29 2004-07-06 코닌클리케 필립스 일렉트로닉스 엔.브이. 신발 바닥의 힘 센서 및 상기 센서를 사용하는 장치
KR20100013465A (ko) * 2008-07-31 2010-02-10 한국표준과학연구원 압전물질을 이용한 센서모듈 및 그 제작방법
KR20110124964A (ko) * 2010-05-12 2011-11-18 이진욱 걸음걸이 진단을 위한 신발 깔창
KR20140004206A (ko) * 2011-02-17 2014-01-10 나이키 인터내셔널 엘티디. 센서 시스템을 구비하는 신발류
KR101452748B1 (ko) * 2013-04-24 2014-10-23 한국표준과학연구원 멀티터치에 따른 접촉위치 및 접촉 힘을 감지하는 센서 및 그 제조방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408873A (en) * 1994-07-25 1995-04-25 Cleveland Medical Devices, Inc. Foot force sensor
US9549585B2 (en) * 2008-06-13 2017-01-24 Nike, Inc. Footwear having sensor system
CN102143695A (zh) 2008-06-13 2011-08-03 耐克国际有限公司 具有传感器***的鞋
JP5805218B2 (ja) * 2011-02-17 2015-11-04 ナイキ イノベイト シーブイ センサーシステムを持つ履物
US20130213146A1 (en) * 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US8739639B2 (en) * 2012-02-22 2014-06-03 Nike, Inc. Footwear having sensor system
US20130213147A1 (en) * 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
WO2013182633A1 (en) * 2012-06-06 2013-12-12 Iee International Electronics & Engineering S.A. Pressure sensor, e.g. in sole for an article of footwear
TW201418683A (zh) * 2012-11-13 2014-05-16 Ind Tech Res Inst 壓力量測結構
US10318708B2 (en) * 2013-03-14 2019-06-11 Nike, Inc. System and method for monitoring athletic activity from multiple body locations
US9410857B2 (en) * 2013-03-15 2016-08-09 Nike, Inc. System and method for analyzing athletic activity
CN109152445B (zh) * 2016-03-15 2020-10-30 耐克创新有限合伙公司 用于鞋类的电容式足部存在感测
US11357290B2 (en) * 2016-03-15 2022-06-14 Nike, Inc. Active footwear sensor calibration
GB2550411B (en) * 2016-05-20 2019-04-03 Hp1 Tech Ltd Device for detecting a force
FI127245B (en) * 2016-07-11 2018-02-15 Forciot Oy Power and / or pressure sensors
WO2018213937A1 (en) * 2017-05-25 2018-11-29 Orpyx Medical Technologies Inc. Flexible circuit package
GB2567404A (en) * 2017-06-29 2019-04-17 Nurvv Ltd A force sensitive resistor
GB2567405B (en) * 2017-06-29 2022-07-20 Nurvv Ltd A force sensitive resistor
GB2563908A (en) * 2017-06-29 2019-01-02 Impact Tech Labs Ag A force sensitive resistor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040061001A (ko) * 2001-11-29 2004-07-06 코닌클리케 필립스 일렉트로닉스 엔.브이. 신발 바닥의 힘 센서 및 상기 센서를 사용하는 장치
KR20100013465A (ko) * 2008-07-31 2010-02-10 한국표준과학연구원 압전물질을 이용한 센서모듈 및 그 제작방법
KR20110124964A (ko) * 2010-05-12 2011-11-18 이진욱 걸음걸이 진단을 위한 신발 깔창
KR20140004206A (ko) * 2011-02-17 2014-01-10 나이키 인터내셔널 엘티디. 센서 시스템을 구비하는 신발류
KR101452748B1 (ko) * 2013-04-24 2014-10-23 한국표준과학연구원 멀티터치에 따른 접촉위치 및 접촉 힘을 감지하는 센서 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112006377A (zh) * 2020-09-02 2020-12-01 北京泰欣源鞋业有限公司 一种中药艾草抗菌保健鞋垫

Also Published As

Publication number Publication date
US10918156B2 (en) 2021-02-16
US20190289951A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
WO2017204514A1 (ko) 압력 감지 센서 및 이를 포함하는 압력 감지 인솔
WO2017061799A1 (ko) 압력 감지 의자
US11313743B2 (en) Tactile sensor
KR102040077B1 (ko) 힘 및/또는 압력 센서
US10966316B2 (en) Wiring film, device transfer sheet, and textile type device
WO2020036253A1 (ko) 픽셀형 압력센서 및 그의 제조방법
WO2018004129A1 (ko) 압력 감지 센서
WO2017183922A1 (ko) 압력 감지 센서
WO2018004049A1 (ko) 압력 감지 센서 및 이를 포함하는 압력 감지 장치
WO2017099508A1 (ko) 압력 감지 센서 장치
WO2017039350A1 (ko) 민감도가 향상된 변형감지센서
CN103800018A (zh) 压力测量机构
US10615794B1 (en) Capacitive sensor
WO2021221291A1 (ko) 압력센서모듈 및 그 제어방법
KR20180038757A (ko) 압력 감지 장치
WO2017082613A1 (ko) 압력 감지 인솔
WO2013042907A2 (ko) 반도체 검사 소켓
KR20180049677A (ko) 압력 감지 인솔
US11215516B2 (en) Strain sensor and manufacturing method therefor
WO2020159057A1 (ko) 소프트 센서 내장형 장갑 및 이의 제조 방법
WO2020045739A1 (ko) 정전식 센서와 저항식 센서를 통합한 하이브리드 대면적 압력 센서
KR101783413B1 (ko) 압력 감지 센서 및 이를 포함하는 압력 감지 인솔
FI128328B (en) Power and / or pressure sensors with at least two electrode bearings
WO2021141395A1 (ko) 전도사 압력센서
KR102417498B1 (ko) 압력 감지 센서 및 이를 포함하는 압력 감지 인솔

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17803033

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17803033

Country of ref document: EP

Kind code of ref document: A1