WO2017201987A1 - 一种抗静电复合纳米材料薄膜及其制备方法 - Google Patents

一种抗静电复合纳米材料薄膜及其制备方法 Download PDF

Info

Publication number
WO2017201987A1
WO2017201987A1 PCT/CN2016/106203 CN2016106203W WO2017201987A1 WO 2017201987 A1 WO2017201987 A1 WO 2017201987A1 CN 2016106203 W CN2016106203 W CN 2016106203W WO 2017201987 A1 WO2017201987 A1 WO 2017201987A1
Authority
WO
WIPO (PCT)
Prior art keywords
fgnrs
cnfs
tpu
film
composite
Prior art date
Application number
PCT/CN2016/106203
Other languages
English (en)
French (fr)
Inventor
郑玉婴
陈宇
杨隽逸
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2017201987A1 publication Critical patent/WO2017201987A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Definitions

  • the invention belongs to the technical field of preparation of polymer composite films, and particularly relates to an antistatic composite nano material film and a preparation method thereof.
  • Thermoplastic polyurethane is a new generation of synthetic polymer materials. It is a linear multi-block copolymer composed of a hard segment and a soft segment. TPU not only has excellent high stretchability, non-toxicity, high transparency, oil resistance, but also a new environmentally friendly material. Based on the above performance advantages, TPU can replace a variety of traditional materials, widely used in medical devices, food packaging, shoe materials, composite materials and other fields. However, due to the essential characteristics of the polymer, its volume resistivity ( ⁇ v ) is generally as high as 10 12 to 10 15 ⁇ cm, which easily accumulates static electricity and is dangerous. At the same time, some small molecules such as oxygen and water vapor easily permeate, greatly Limits the application of TPU film materials in electrical and barrier applications. Therefore, further improving the performance of TPU and making it functional is the focus of research.
  • Graphene nanoribbons can be thought of as a single layer of graphene, a thin strip of quasi-one-dimensional graphene nanomaterial composed of carbon atoms. Due to its unique structural properties, it has excellent electrical, barrier and mechanical properties.
  • Carbon nanofibers are one-dimensional carbon materials, which are between carbon nanotubes and carbon fibers, and generally have a diameter between 50 nm and 200 nm. They have not only small defect area, large specific surface area, but also excellent specific modulus. , specific strength and electrical properties. Both of these are ideal nanofillers that improve the antistatic and barrier properties of the film.
  • the object of the present invention is to provide an antistatic composite nano material film and a preparation method thereof according to the deficiencies of the prior art.
  • the invention combines the FGNRs-CNFs intercalation with the TPU matrix to make the composite film have excellent antistatic properties and barrier properties.
  • Antistatic composite nano material film FGNRs-CNFs nanocomposite is dispersed in TPU matrix, and film is prepared after coating: said FGNRs are graphene oxide nanobelts (GONRs) via silicon germanium coupling agent KH550 ( ⁇ -aminopropyltriethoxysilane) modified, and then modified by hydrazine hydrate: wherein, in FGNRs-CNFs nanocomposites, the mass ratio of FGNRs to CNFs is 4:1; FGNRs -CNFs nanocomposites account for 0.2% to 1.5% by mass of the TPU matrix.
  • GONRs graphene oxide nanobelts
  • KH550 ⁇ -aminopropyltriethoxysilane
  • the CNFs have a diameter of 50 to 150 nm and an aspect ratio of 100 to 500.
  • step (1) the temperature of the silicon oxide coupling agent KH550 modified graphene oxide nanobelt is: 60 ° C, the modification time is 24 h; the temperature of the hydrazine hydrate reduction FGONRs is 100 ° C, and the reaction time is 6 h.
  • step (2) the swelling temperature of TPU in DMF is 60 ° C for 24 h; the concentration of FGNRs in the dispersion is 0.002 mg ⁇ mL -1 ; the drying temperature is 70 ° C, and the drying time is 24 h.
  • the environment-friendly composite film material obtained by the method of the invention has excellent antistatic property and barrier property. It can be applied to precision electronic packaging and electronic equipment in actual production, and has broad practical application value.
  • the FGNRs obtained by hydrazine hydrazine reduction have the characteristics of low defect and compact structure. Due to the introduction of KH550, the oleophilic property is improved, and the uniform dispersion in DMF is realized. The excellent dispersibility provides the basis for preparing the composite film;
  • the nano-filler FGNRs-CNFs are stably dispersed in TPU and have good compatibility with the matrix: the nano-carbon fibers are crossed between the graphene nano-belts, and the network structure is formed.
  • the nano-carbon fibers support the nano-belts as skeletons, and the nano-belts are distributed parallel to the matrix. This unique network structure provides the basis for high barrier properties and excellent antistatic properties;
  • the preparation method of the invention is scientific and reasonable, the process is simple, and the operability is strong.
  • the preparation of the TPU composite nano material film is safe and environmentally friendly, and is especially suitable for the film materials of precision electronic packaging and electronic equipment; at the same time, it is closely following the current trend of high electronic development.
  • the development of composite new materials has broad prospects and uses in the actual high-end electronics industry.
  • A is the FTIR spectrum of (a) GONRs, (b) FGONRs and (c) FGNRs, and B is the dispersion of (1) GONRs, (2) FGONRs and (3) FGNRs-CNFs in DMF (solution The concentration is 0.5 mg ⁇ mL -1 , after standing for 15 days);
  • Figure 2 is a scanning electron microscopy analysis (SEM) of the FGNRs-CNFs/TPU composite film samples after quenching of the quenched section;
  • Figure 3 is a graph showing the oxygen transmission rate of a pure TPU film and a TPU composite film when different nanofillers are added;
  • Figure 4 is a graph showing the volume resistivity of a pure TPU film and a TPU composite film with different nanofillers added.
  • a preparation method of antistatic composite nano material film the specific steps are as follows:
  • TPU film material was completely obtained by drying in a dry box at 70 ° C for 24 hours until the solvent was evaporated.
  • 7.5 g of fully dried TPU was swollen in 60 mL of DMF at 60 ° C for 24 h to obtain a viscous TPU solution: then a DMF solution containing 0.06 g of FGNRs was taken in a volume ratio, and 0.015 g of CNFs was added at 100 W for 1 h to form FGNRs:
  • the CNFs is a 4:1 homogeneous mixed solution, mixed with the swollen TPU; mechanically stirred for 5 h, the mixture is ultrasonicated for 1 h to remove the bubbles therein, and then coated on a coater with a 0.08 mm film, and finally dried in a dry box at 70 ° C for 24 h.
  • the solvent was evaporated to obtain a 1.0 wt% FGNRs-CNFs/TPU composite film.
  • the bubbles were then coated on a film applicator with a 0.08 mm film, and finally dried in a dry box at 70 ° C for 24 h until the solvent was evaporated to obtain a 1.5 wt% FGNRs-CNFs/TPU composite film.

Abstract

一种抗静电复合纳米材料薄膜及其制备方法。首先利用改进Hummers法制备氧化石墨烯纳米带,用KH550进行改性得到KGONRs,再用水合肼还原,制得FGNRs;然后FGNRs与CNFs在超声状态下共混,形成纳米复合材料,最后以TPU树脂为基体,采用溶液涂覆成膜工艺制得FGNRs-CNFs/TPU复合薄膜。本发明中FGNRs附着在骨架CNFs上形成稳定的FGNRs-CNFs网络结构,这有利于其在TPU中均匀分散。FGNRs-CNFs插层与TPU基体间的紧密结合使得复合材料薄膜具有优异的抗静电性能和阻隔性能,可以应用在日益发达的电子精密材料上面,具有广泛的应用前景。

Description

一种抗静电复合纳米材料薄膜及其制备方法 技术领域
本发明属于高分子复合薄膜制备技术领域,具体涉及一种抗静电复合纳米材料薄膜及其制备方法。
背景技术
热塑性聚氨醋(TPU)是新一代人工合成的高分子材料。它是由硬段和软段组成的线型多嵌段共聚物。TPU不仅拥有卓越的高伸展性、无毒性、高透明性、耐油性,同时还是新型环保材料。基于上述性能优势,TPU可以代替多种传统材料,广泛地应用于医疗器件、食品包装、鞋材服装、复合材料等领域。但是由于聚合物的本质特点,其体积电阻率(ρv)一般高达1012~1015Ω·cm,易积蓄静电而发生危险,同时一些小分子如氧气、水蒸气等容易渗透出去,极大地限制了TPU薄膜材料在电学、阻隔方面的应用。所以进一步提高TPU的性能,使其功能化成为研究的重点。
为了提高薄膜材料的电学性能和阻隔性能,可以考虑在TPU基体中均匀分散适量的具有高性能效率的填料,从而使薄膜达到预想的效果。石墨烯纳米带(GNRs)可以看做是单层的石墨烯,是一条由碳原子构成的薄条状准一维石墨烯纳米材料。由于其独特的结构性能,使其具有优异的电子、阻隔以及机械性能。碳纳米纤维(CNFs)是一维碳材料,它介于碳纳米管和碳纤维之间,直径一般在50nm~200nm之间,不仅具有缺陷面积小、比表面积大,而且兼具优异的比模量、比强度和电学性能。这两种都是理想的纳米填料,可以提升薄膜的抗静电性能和阻隔性能。
发明内容
本发明的目的在于针对现有技术的不足,提供一种抗静电复合纳米材料薄膜及其制备方法。本发明通过FGNRs-CNFs插层与TPU基体间的紧密结合使得复合材料薄膜具有优异的抗静电性能和阻隔性能。
为实现本发明的目的,采用如下技术方案:
一种抗静电复合纳米材料薄膜:将FGNRs-CNFs纳米复合材料分散于TPU基体中,经涂抹后制得的薄膜:所述的FGNRs为氧化石墨烯纳米带(GONRs)经硅皖偶联剂KH550(γ-氨丙基三乙氧基硅皖)改性,再经水合肼还原后得到的改性材料:其中,FGNRs-CNFs纳米复合材料中,FGNRs与CNFs的质量比为4:l;FGNRs-CNFs纳米复合材料占TPU基体的质量含量为0.2%~1.5%。
所述的CNFs的管径为50~150nm,长径比为100~500。
一种制备如上所述的抗静电复合纳米材料薄膜的方法,具体步骤包括:
(l)FGNRs的制备:先将氧化石墨烯纳米带经硅皖偶联剂KH550改性、冷冻干燥后得到FGONRs,再经FGONRs均匀分散于去离子水中,加入水合肼,还原得到FGNRs;
(2)FGNRs-CNFs/TPU复合薄膜的制备:将充分干燥的TPU在DMF中溶胀,得到粘稠溶液:将FGNRs散于DMF中形成分散液,然后在分散液中加入CNFs,超声形成复合溶液:然后将复合溶液与粘稠溶液混合后,经涂膜、干燥制得FGNRs-CNFs/TPU复合薄膜。
步骤(1)中硅皖偶联剂KH550改性氧化石墨烯纳米带的温度为:60℃,改性时间为24h;水合肼还原FGONRs的温度为100℃,反应时间为6h。
步骤(2)中TPU在DMF中溶胀温度为60℃,时间为24h;分散液中FGNRs的浓度为0.002mg·mL-1;干燥的温度为70℃,干燥时间为24h。
经本发明方法制得的环保型复合薄膜材料具有优异的抗静电性能、阻隔性能。在实际生产中可以应用在精密电子包装和电子器材方面,具有广阔的实际应用价值。
本发明的有益效果在于:
1)经过水合肼还原所得的FGNRs具有低缺陷、结构致密等特点,由于引入了KH550,改善了其亲油性,实现了在DMF中均匀分散,优良的分散性为制备复合材料薄膜提供了基础;纳米填料FGNRs-CNFs在TPU中稳定分散,与基体相容性好:石墨烯纳米带之间交叉着纳米碳纤维,构成的网络结构,纳米碳纤维作为骨架支撑着纳米带,纳米带平行于基体分布,这种独特的网络结构为高阻隔性、优异的抗静电性提供基础;
2)本发明制备方法科学合理、工序简单、操作性强,制备TPU复合纳米材料薄膜安全环保,尤其适用于精密电子包装和电子器材方面薄膜材料;同时更是紧跟现在高电子发展时代的潮流,复合新型材料的发展,在实际高端电子产业中拥有广泛的前景和用途。
附图说明
图1中A为(a)GONRs、(b)FGONRs和(c)FGNRs的FTIR谱图以及B为(1)GONRs、(2)FGONRs和(3)FGNRs-CNFs在DMF中的分散图(溶液浓度为0.5mg·mL-1,静置15d后);
图2为FGNRs-CNFs/TPU复合材料薄膜试样的淬断面喷金后的扫描电镜分析图(SEM);
图3为纯TPU薄膜以及添加不同纳米填料时TPU复合材料薄膜的氧气透过率变化曲线;
图4为纯TPU薄膜以及添加不同纳米填料时TPU复合材料薄膜的体积电阻变化曲线。
具体实施方式
为进一步公开而不是限制本发明,以下结合实例对本发明作进一步的详细说明。
一种抗静电复合纳米材料薄膜的制备方法,具体步骤为:
(l)GONRs的制备:首先将180mL浓H2S04缓慢地加入到圆底烧瓶中搅拌,再将20mL H3PO4慢慢滴入,在一定转速下混合均匀,将1g MWCNTs缓慢加入并搅拌30min至均匀,再将6g KMnO4缓慢加入到以上混合液中:将上述反应体系在50℃的油浴中搅拌反应24h后降温至室温,然后将其倒入含10mL H202的500mL去离子水中冰浴搅拌1h,此时溶液变成墨绿色说明反应充分,然后加入适量HCl离心至中性,最后在冷冻干燥机中干燥得到GONRs;
(2)FGONRs的制备:将500mg GONRs溶于250mL去离子水和200mL无水乙醇的混合溶液中,100W超声1h形成均匀分散液:将1.5g KH-550溶于50mL无水乙醇50W超声30min后缓慢地加入到上述混合液中搅拌,在60℃下反应24h,得到的黑色糊状产物用无水乙醇和去离子水洗涤多次以除去剩余的KH-550,最后在冷冻干燥机中干燥得到FGONRs;
(3)FGNRs的制备:将100mg FGONRs溶于100mL去离子水中,100W超声1h形成均匀分散液,加入1g水合肼,于100℃下还原6h:得到的黑色糊状产物用无水乙醇和去离子水洗涤多次以除去剩余的水合肼,再将所得FGNRs分散于DMF中,形成浓度为0.002mg·mL-1的FGNRs溶液:
(4)FGNRs-CNFs/TPU复合薄膜的制备:取充分干燥的TPU在60mL的DMF中60℃溶胀24h,得到粘稠状的TPU溶液。然后按体积比取含0.06g FGNRs的DMF溶液,加入0.015g CNFs在100W超声lh,形成FGNRs:CNFs为4:1的均匀混合溶液,与溶胀的TPU混合;机械搅拌5h,再将混合物超声1h除去其中的气泡,然后在涂膜机上涂膜,最后在干燥箱中70℃干燥24h待溶剂挥发完全得不同含量的FGNRs-CNFs/TPU复合薄膜。
对比例1
取15g充分干燥的TPU在60mL的DMF中60℃溶胀24h,得到粘稠状的TPU溶液;机械搅拌5h,再将混合物超声1h除去其中的气泡,然后在涂膜机上涂0.08mm的膜,最后在干燥箱中70℃干燥24h待溶剂挥发完全得TPU薄膜材料。
实施例1
取15g充分干燥的TPU在60mL的DMF中60℃溶胀24h,得到粘稠状的TPU溶液;然后按体积比取含0.06g FGNRs的DMF溶液,加入0.015g CNFs在100W超声lh,形成FGNRs:CNFs为4:1的均匀混合溶液,与溶胀的TPU混合;机械搅拌5h,再将混合物超声1h除去其中的气泡,然后在涂膜机上涂0.08mm的膜,最后在干燥箱中70℃干燥24h待溶剂挥发完全得0.5wt%FGNRs-CNFs/TPU复合薄膜。
实施例2
取37.5g充分干燥的TPU在60mL的DMF中60℃溶胀24h,得到粘稠状的TPU溶液;然后按 体积比取含0.06g FGNRs的DMF溶液,加入0.015g CNFs在100W超声lh,形成FGNRs:CNFs为4:1的均匀混合溶液,与溶胀的TPU混合;机械搅拌5h,再将混合物超声1h除去其中的气泡,然后在涂膜机上涂0.08mm的膜,最后在干燥箱中70℃干燥24h待溶剂挥发完全得0.2wt%FGNRs-CNFs/TPU复合薄膜。
实施例3
取18.75g充分干燥的TPU在60mL的DMF中60℃溶胀24h,得到粘稠状的TPU溶液;然后按体积比取含0.06g FGNRs的DMF溶液,加入0.015g CNFs在100W超声lh,形成FGNRs:CNFs为4:1的均匀混合溶液,与溶胀的TPU混合;机械搅拌5h,再将混合物超声1h除去其中的气泡,然后在涂膜机上涂0.08mm的膜,最后在干燥箱中70℃干燥24h待溶剂挥发完全得0.4wt%FGNRs-CNFs/TPU复合薄膜。
实施例4
取12.5g充分干燥的TPU在60mL的DMF中60℃溶胀24h,得到粘稠状的TPU溶液;然后按体积比取含0.06g FGNRs的DMF溶液,加入0.015g CNFs在100W超声lh,形成FGNRs:CNFs为4:1的均匀混合溶液,与溶胀的TPU混合;机械搅拌5h,再将混合物超声1h除去其中的气泡,然后在涂膜机上涂0.08mm的膜,最后在干燥箱中70℃干燥24h待溶剂挥发完全得0.6wt%FGNRs-CNFs/TPU复合薄膜。
实施例5
取9.375g充分干燥的TPU在60mL的DMF中60℃溶胀24h,得到粘稠状的TPU溶液;然后按体积比取含0.06g FGNRs的DMF溶液,加入0.015g CNFs在100W超声lh,形成FGNRs:CNFs为4:1的均匀混合溶液,与溶胀的TPU混合;机械搅拌5h,再将混合物超声1h除去其中的气泡,然后在涂膜机上涂0.08mm的膜,最后在干燥箱中70℃干燥24h待溶剂挥发完全得0.8wt%FGNRs-CNFs/TPU复合薄膜。
实施例6
取7.5g充分干燥的TPU在60mL的DMF中60℃溶胀24h,得到粘稠状的TPU溶液:然后按体积比取含0.06g FGNRs的DMF溶液,加入0.015g CNFs在100W超声lh,形成FGNRs:CNFs为4:1的均匀混合溶液,与溶胀的TPU混合;机械搅拌5h,再将混合物超声1h除去其中的气泡,然后在涂膜机上涂0.08mm的膜,最后在干燥箱中70℃干燥24h待溶剂挥发完全得1.0wt%FGNRs-CNFs/TPU复合薄膜。
实施例7
取5g充分干燥的TPU在60mL的DMF中60℃溶胀24h,得到粘稠状的TPU溶液;然后按体 积比取含0.06g FGNRs的DMF溶液,加入0.015g CNFs在100W超声lh,形成FGNRs:CNFs为4:1的均匀混合溶液,与溶胀的TPU混合;机械搅拌5h,再将混合物超声1h除去其中的气泡,然后在涂膜机上涂0.08mm的膜,最后在干燥箱中70℃干燥24h待溶剂挥发完全得l.5wt%FGNRs-CNFs/TPU复合薄膜。

Claims (5)

  1. 一种抗静电复合纳米材料薄膜,其特征在于:将FGNRs-CNFs纳米复合材料分散于TPU基体中,经涂抹后制得的薄膜;所述的FGNRs为氧化石墨烯纳米带经硅皖偶联剂KH550改性,再经水合肼还原后得到的改性材料:其中,FGNRs-CNFs纳米复合材料中,FGNRs与CNFs的质量比为4:l;FGNRs-CNFs纳米复合材料占TPU基体的质量含量为0.2%~1.5%。
  2. 根据权利要求1所述的抗静电复合纳米材料薄膜,其特征在于:所述的CNFs的管径为50~150nm,长径比为100~500。
  3. 一种制备如权利要求1所述的抗静电复合纳米材料薄膜的方法,其特征在于:具体步骤包括:
    (1)FGNRs的制备:先将氧化石墨烯纳米带经硅皖偶联剂KH-550改性、冷冻干燥后得到FGONRs,再经FGONRs均匀分散于去离子水中,加入水合肼,还原得到FGNRs;
    (2)FGNRs-CNFs/TPU复合薄膜的制备:将充分干燥的TPU在DMF中溶胀,得到粘稠溶液:将FGNRs散于DMF中形成分散液,然后在分散液中加入CNFs,超声形成复合溶液:然后将复合溶液与粘稠溶液混合后,经涂膜、干燥制得FGNRs-CNFs/TPU复合薄膜。
  4. 根据权利要求3所述的制备抗静电复合纳米材料薄膜的方法,其特征在于:步骤(1)中硅皖偶联剂KH-550改性氧化石墨烯纳米带的温度为:60℃,改性时间为24h:水合肼还原FGONRs的温度为100℃,反应时间为6h。
  5. 根据权利要求3所述的制备抗静电复合纳米材料薄膜的方法,其特征在于:步骤(2)中TPU在DMF中溶胀温度为60℃,时间为24h;分散液中FGNRs的浓度为0.002mg·mL-1:干燥的温度为70℃,干燥时间为24h。
PCT/CN2016/106203 2016-05-24 2016-11-17 一种抗静电复合纳米材料薄膜及其制备方法 WO2017201987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610346604.0A CN105968777B (zh) 2016-05-24 2016-05-24 一种抗静电复合纳米材料薄膜及其制备方法
CN201610346604.0 2016-05-24

Publications (1)

Publication Number Publication Date
WO2017201987A1 true WO2017201987A1 (zh) 2017-11-30

Family

ID=56955685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106203 WO2017201987A1 (zh) 2016-05-24 2016-11-17 一种抗静电复合纳米材料薄膜及其制备方法

Country Status (2)

Country Link
CN (1) CN105968777B (zh)
WO (1) WO2017201987A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892134A (zh) * 2018-08-02 2018-11-27 青岛在宇工贸有限公司 一种复合石墨烯电热膜的制备方法
CN109679098A (zh) * 2019-01-03 2019-04-26 华东理工大学 石榴型闭孔二氧化硅-含氟聚苯并二噁唑复合薄膜的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105968777B (zh) * 2016-05-24 2018-09-18 福州大学 一种抗静电复合纳米材料薄膜及其制备方法
CN107099095A (zh) * 2017-05-23 2017-08-29 海南大学 具有双导电网络结构的碳纳米粒子/tpv复合材料的制备方法
CN109438968A (zh) * 2018-09-11 2019-03-08 苏州市雄林新材料科技有限公司 一种汽车头枕用高阻隔tpu薄膜及其制备方法
CN112375368B (zh) * 2020-09-28 2021-08-13 厦门大学 一种碳系柔性导电膜、制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131890A1 (fr) * 2010-04-22 2011-10-27 Arkema France Materiau composite thermoplastique et/ou elastomerique a base de nanotubes de carbone et de graphenes
CN104072979A (zh) * 2014-07-18 2014-10-01 福州大学 一种氧化石墨烯纳米带/聚合物复合薄膜及其制备方法
CN104448366A (zh) * 2014-12-17 2015-03-25 福州大学 一种管道内衬用高阻隔性tpu薄膜及其制备方法
CN105086425A (zh) * 2015-09-17 2015-11-25 福州大学 层叠状功能化石墨烯纳米带/tpu复合材料及其制备
CN105968777A (zh) * 2016-05-24 2016-09-28 福州大学 一种抗静电复合纳米材料薄膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104530686B (zh) * 2015-01-16 2017-11-17 福州大学 一种功能石墨烯/tpu薄膜及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011131890A1 (fr) * 2010-04-22 2011-10-27 Arkema France Materiau composite thermoplastique et/ou elastomerique a base de nanotubes de carbone et de graphenes
CN104072979A (zh) * 2014-07-18 2014-10-01 福州大学 一种氧化石墨烯纳米带/聚合物复合薄膜及其制备方法
CN104448366A (zh) * 2014-12-17 2015-03-25 福州大学 一种管道内衬用高阻隔性tpu薄膜及其制备方法
CN105086425A (zh) * 2015-09-17 2015-11-25 福州大学 层叠状功能化石墨烯纳米带/tpu复合材料及其制备
CN105968777A (zh) * 2016-05-24 2016-09-28 福州大学 一种抗静电复合纳米材料薄膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892134A (zh) * 2018-08-02 2018-11-27 青岛在宇工贸有限公司 一种复合石墨烯电热膜的制备方法
CN109679098A (zh) * 2019-01-03 2019-04-26 华东理工大学 石榴型闭孔二氧化硅-含氟聚苯并二噁唑复合薄膜的制备方法
CN109679098B (zh) * 2019-01-03 2021-05-28 华东理工大学 石榴型闭孔二氧化硅-含氟聚苯并二噁唑复合薄膜的制备方法

Also Published As

Publication number Publication date
CN105968777B (zh) 2018-09-18
CN105968777A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2017201987A1 (zh) 一种抗静电复合纳米材料薄膜及其制备方法
Li et al. Facile preparation, characterization and performance of noncovalently functionalized graphene/epoxy nanocomposites with poly (sodium 4-styrenesulfonate)
Song et al. Enhancing the thermal, electrical, and mechanical properties of silicone rubber by addition of graphene nanoplatelets
Li et al. Mechanical and dielectric properties of graphene incorporated polypropylene nanocomposites using polypropylene-graft-maleic anhydride as a compatibilizer
Guo et al. Improved interfacial properties for largely enhanced thermal conductivity of poly (vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes
Zhang et al. Enhanced interactions between multi-walled carbon nanotubes and polystyrene induced by melt mixing
Choudhary et al. Polymer/carbon nanotube nanocomposites
Guo et al. High thermal conductive poly (vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance
Itapu et al. A review in graphene/polymer composites
CN103183847B (zh) 一种高介电常数低介电损耗的石墨烯弹性体纳米复合材料及其制备方法
Shang et al. The synthesis of graphene nanoribbon and its reinforcing effect on poly (vinyl alcohol)
Liu et al. Controllable reduction of graphene oxide and its application during the fabrication of high dielectric constant composites
Wang et al. Functionalization of MWCNTs with silver nanoparticles decorated polypyrrole and their application in antistatic and thermal conductive epoxy matrix nanocomposite
Tunckol et al. Polymerized ionic liquid functionalized multi-walled carbon nanotubes/polyetherimide composites
Ahmad et al. Exfoliated graphene reinforced polybenzimidazole nanocomposite with improved electrical, mechanical and thermal properties
WO2016041310A1 (zh) 一种防水隔氧密封膜及其制备和应用
Zhou et al. Enhanced conductivity in polybenzoxazoles doped with carboxylated multi-walled carbon nanotubes
Zheming et al. Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers
Yu et al. Constructing of strawberry-like core-shell structured Al2O3 nanoparticles for improving thermal conductivity of nitrile butadiene rubber composites
Na et al. Study on dispersion and electrical property of multi-walled carbon nanotubes/low-density polyethylene nanocomposites
Tang et al. Epoxy-based high-k composites with low dielectric loss caused by reactive core-shell-structured carbon nanotube hybrids
Wu et al. Dispersion of nano-carbon filled polyimide composites using self-degradated low molecular poly (amic acid) as impurity-free dispersant
CN103408895A (zh) 一种石墨烯环氧树脂复合材料的制备方法
CN114854087A (zh) 一种具备双导热网络的聚酰亚胺复合材料及其制备方法
Awasthi et al. Synthesis and characterization of carbon nanotube–polyethylene oxide composites

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902971

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902971

Country of ref document: EP

Kind code of ref document: A1